TW201227901A - Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask - Google Patents
Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask Download PDFInfo
- Publication number
- TW201227901A TW201227901A TW100102449A TW100102449A TW201227901A TW 201227901 A TW201227901 A TW 201227901A TW 100102449 A TW100102449 A TW 100102449A TW 100102449 A TW100102449 A TW 100102449A TW 201227901 A TW201227901 A TW 201227901A
- Authority
- TW
- Taiwan
- Prior art keywords
- bump
- conductive
- substrate
- interconnect
- semiconductor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/64—Manufacture or treatment of solid state devices other than semiconductor devices, or of parts thereof, not peculiar to a single device provided for in groups H01L31/00 - H10K99/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16238—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
201227901 六、發明說明: 〔優先權主張〕 本申請案是2009年5月22曰申請的美國申請案號 12/47 1,1 80的一部分接續案,並且根據美國專利法第 條主張前述基礎申請案的優先權。 【發明所屬之技術領域】 本發明係大致有關於半導體裝置,並且更具體而古係 有關於一種在未使用焊料遮罩的回焊期間的導電凸塊^料 的自我局限(self-confinement)的半導體裝置及方法。 【先前技術】 半導體裝置常見於現代的電子產品中❶半導體裝置在 電性構件的數目及密度上有所不同。離散的半導體裝置一 般包含-種類型的電性構件,例如’發光二極體(led)、小 信號的電晶體、電阻器、電容器、電感器以及功率金屬氧 化物半導體場效電晶體⑽㈣了)。積體化半導體裝置通常 包含數百個到數百萬個電性構件。葙體化 韦 再旰槓體化+導體裝置的例 子包含微控制器、微處理器、電荷麵人爹 电仃祸口裝置(CCD)、太陽能 電池以及數位微鏡裝置(DMD)。 半導體裝置可執行廣大範圍的功能,例如:信號處理、 高速的計算、傳送及接收電磁信[控制電子裝置、轉換 太陽光成為電力以及產生用於電視顯示器之可見的投影。 半導體裝置可見於娛樂、通訊、電力轉換 电刀褥換、網路、電腦以 201227901 及4費性產品的領域中。丰 牛導體裝置亦可見於軍事康用、 航空、汽車、工業用批如干子愿用 彔用控制态以及辦公室設備。 半導體裝置係利用半導體 干等體材枓的電氣特性。半導體材 料的原子結構係容許其導雷庚 了 一導電度可藉由一電場或基極電流的 施加或是透過摻雜的贺起Α 4 幻表程來刼控。摻雜係將雜質引入半導 體材料中以操控及控制半導體裝置的導電度。 半導體裝置係包含主動及被動的電氣結構。包含雙 載子及場效電晶體的主動結構係控制電流的流動。藉由改 變摻雜的程度以及-電場或基極電流施加的位準,電晶體 不是提升就是限制電流的流動。包含電阻器、電容器及電 感器的被動結構係產生執行各種t氣功能所必要的一種電 壓及電流間之關係。被動及主動結構係電連接以形成電 路,此係使得半導體裝置能夠執行高速的計算以及其它有 用的功能。 半導體裝置一般是利用兩種複雜的製程,亦即,前端 製造及後端製造來製成,每一種都牽涉到可能有數百道的 步驟。前端製造係牽涉到在一半導體晶圓的表面上複數個 晶粒的形成。每個晶粒通常是相同的並且包含由電連接主 動及被動構件所形成的電路。後端製造係牽涉到從晶圓成 品單切(singulating)個別的晶粒及封裝該晶粒以提供結構的 支撐及環境的隔離。 半導體製造的一項目標是生產出更小的半導體裝置。 越小的裝置通常消耗更低的電力,具有更高的效能,並且 可更有效率地被生產出。此外,越小的半導體裝置具有更 201227901 小的覆蓋區(footprint),此係為更小的最終產品所期望的。 更小的晶粒尺寸可藉由在前端製程中以更小及更高密度的 主動及被動構件來產生晶粒的改良而達成。後端製程可藉 由在電氣互連及封裝材料上的改良以產生更小的覆蓋區之 半導體裝置封裝。 圖1係描繪覆晶類型半導體裝置1〇的一部份,其具有 利用悍料遮罩15以冶金且電連接在凸塊墊14及線路導線 20間之互連12。如同在圖2中所示,一圓形的焊料遮罩或 對準開口(SR0)16係被形成在基板18之上以露出線路導線 20。線路導線20是一具有選配的用於配接到互連丨2的凸 塊墊之直的導體。SR0 1 6係在回焊期間將導電凸塊材料局 限在線路導線20的凸塊墊上並且避免熔化的凸塊材料流失 到線路導線之上,此可能會造成電短路到相鄰的結構。sr〇 係被做成大於線路導線或凸塊墊。sr〇 16在形狀上通常 是圓形的並且做成儘可能小,以降低線路導線2〇的間距且 增高繞線密度。 在典型的設計規則中’線路導線20之最小的逸散. (escape)間距係受限於sr〇 16必須至少和互連丨2的基底直 徑(D)加上一焊料遮罩對準容限(SRT) 一樣大的實情。此外, 由於焊料遮罩應用製程的限制,在相鄰的開口需要焊料遮 罩材料之最小的孔帶(L,ligament)。更明確地說,最小的逸 散間距係定義為P=D + 2*SRT+L。在一實施例中,〇是1〇〇 微米(μηι) ’ SRT是ΙΟμηι,並且L是60μηι,因此,最小的 逸散間距是 100 + 2* 10 + 60=1 80μπι。 6 201227901 圖3a及3b係展示另一習知的配置的俯視圖及橫截面 圖’其中線路導線30繞線在基板40上的線路導線32及34 以及凸塊36及38之間。凸塊36及38係將半導體晶粒42 電連接至基板40。焊料遮罩44係覆蓋凸塊墊46及48。線 路導線30之最小的逸散間距係藉由p=D/2 + SRT+L+w/2所 界疋,其中D是凸塊基底直徑,SRT是焊料遮罩對準容限, W是線路線寬,並且L是在SR〇及相鄰的結構間之孔帶間 隔。在一實施例中,D是1〇〇_,SRT是ι〇μιη,w是3〇_, 並且L是60μιη。線路導線3〇·34之最小的逸散間距是 100/2+1(Η60 + 30/2 = 135μιη。由於對於高繞線密度的需求增 加’因此需要更小的逸散間距。 【發明内容】 對於最小化線路導線的逸散間距以得到較高的繞線密 度存在著需求。於是,在一實施例中,本發明是一種製造 半導體裝置之方法,其係包括以下步驟:提供具有晶粒凸 塊墊的半導體晶粒;提供具有導電線路之基板,該導電線 路ν、有互連位置,在該互連位置或晶粒凸塊塾上沉積導電 凸塊材料,將該半導體晶粒安裝至該基板以使得該導電凸 塊材料被設置在該晶粒凸塊墊及互連位置之間;在該晶粒 凸塊墊或互連位置周圍沒有焊料遮罩下回焊該導電凸塊材 料以在該半導體晶粒及基板之間形成互連結構;以及在該 半導體晶粒及基板之間沉積封裝材料。該導電凸塊材料係 自我局限在該晶粒凸塊墊或互連位置内。 201227901 在另一實施例中,本發明是-種製造半導體裝置之方 法’其係、包括以下步驟:提供具有第一互連位置的第一半 導體結構’·提供具有第二互連位置的第二半導體結構,·在 該第一及第二互連位置之間沉積導電凸塊材料’·在該第-及第二互連位置周圍沒有谭料遮罩下從該導電凸塊材料形 成互連結構以連結該第一及第二半導體結構·在該第一及 第一半導體、構之間》儿積封裝材料。該導電凸塊材料係自 我局限在該第一及第二互連位置内。 在另-實施例中,本發明是一種製造半導體裝置之方 法,其係包括以下步驟:提供具有第一互連位置的第一半 導體結構;提供具有第二互連位置的第二半導體結構;在 第-互連位置或第二互連位置之上沉積導電凸塊材料;以 及在該第及第一互連位置周圍沒有焊料遮罩下從該導電 凸塊材料形成互連結構以連結該第一及第二半導體結構。 在另-實施例中,本發明是一種半導體裝置,其係包 括具有第-互連位置的第一半導體結構以及具有第二互連 位置的第二半導體結構。互連結構係在該第一及第二互連 位置周圍沒有焊料遮罩下形成在該第-及第二半導體結構 之間。封裝材料係沉積在該第—及第二半導體結構之間。 【實施方式】 本發明在以下參考圖式的說明中係以一或多個實施例 加以描述,其中相同元件符號代表相同或類似元件。儘管 本發明是依據達成本發明目的之最佳模式描述,但熟習此項 8 201227901 技術者將瞭解本發明欲涵蓋如隨附申請專利範圍所界定之 可内含於本發明之精神及範疇内的替代物、修改及等效物 以及如以下揭示内容及圖式所支持之其等效物。 半導體裝置一般是使用兩個複雜的製程來製造:前端 製造與後端製造。前端製造係牽涉到在半導體晶圓表面上 形成夕個Ba粒。該晶圓上之各晶粒含有主動及被動電性構 件係電連接以形成功能電路。諸如電晶體及二極體之 主動電性構件係具有控制電流流動之能力。諸如電容器、 電感器、電阻器及變壓器之被動電性構件係產生執行電路 功能所必要的一種電壓及電流間之關係。 被動及主動構件藉由一系列製程步驟形成於半導體晶 圓表面上,包括摻雜、沉積、微影、敍刻及平坦化。摻雜 係藉由諸如離子植入或熱擴散之技術將雜質引入半導體材 料中。摻雜製程改變主動裝置中半導體材料之導電度,從 而將該半導體材料轉變成絕緣體、導體,或是響應於電場 或基極電流而動態地改變該半導體材料之導電度。電晶體 含有換雜類型及程度不同之區域,其視需要來加以配Z以 使该電晶體能夠在施加電場或基極電流時促進或限制電流 流動。 主動及被動構件係由具有不同電特性之材料層形成。 該等層可藉由多種沉積技術形成,該些沉積技術部分是由 所沉積之材料類型決定的。舉例而言,薄膜沉積可包括化 學氣相沉積(CVD)'物理氣相沉積(PVD)、電解的電锻及無 電的電鍍製程。每個層一般是經圖案化以形成主動構件: 201227901 破動構件或各構件間電連接的部分。 (例/1些層可使⑽料行圖案化,其牵㈣使光敏材料 =°£阻)沉積於待圖案化的層之上。錢光以將圖案自光 =印溶劑移除光阻圖案曝光之部分 一:待圖案化之下層部分。移除該光阻之其餘部分,留下 :圖案化的層。或者,某些類型的材料係使用諸如無電 •鍍及電解的電鍍之技術藉由使材料直接沉積於由先前 沉積/蝕刻製程所形成的區域或空隙中而加以圖案化。 在現有圖案之上沉積一材料薄膜可能會放大下面的圖 〃且產生非均句平坦的表面。生產較小且較密集封裝之主 動及被動構件需要均句平坦的表面。可使用平坦化以自曰 圓表面移除材料且產生均句平坦的表面。平坦化係牵^ 用拋光㈣光晶圓的表面。在拋光期間將研磨材料及腐钱 性化學。。添加至晶圓的表面。研磨劑的機械作用與化學品 的腐敍作用組合可銘/工h Τ Μ , 了移除任何不規則的表面構形,從而產生 均勻平坦的表面。 “後端製造係指將晶圓成品切割或單切成個別晶粒且接 著封裝該晶粒以提供結構的支撐及環境的隔離。為了單切 晶粒,沿著晶圓非功能區(稱為切割道或劃線)將晶圓劃痕並 切斷。使用雷射切割工具或蘇條單切晶圓。在單切之後, 將個別晶粒安裝於-封裝基板上,該封裝基板包括接腳或 接觸墊以供與其他系統構件互連。接著使半導體晶粒上所 形成之接觸堅連接至封裝内之接觸墊。該電連接可由焊料 凸塊、柱形凸塊、導電膏或焊線一ebGnd)形成。使一封裳 10 201227901 材料或其它模製材料沉積於封裝之上以提供物理支撐及電 隔離接著將$品封裝插入一電系,统中,&使半導體裝置 之功能可供其他系統構件利用β 圖4係描繪具有多個安裝於其表面上之半導體封裝的 晶片載體基板或印刷電路板(pCB)52之電子裝置5〇。視應 用而疋’電子裝置5G可具有—種類型之半導體封裝或多種 類垔之半導體封裝。不同類型之半導體封裝係為了說明之 目的而展示於圖4中。 電子裝置50可以是一使用該些半導體封裝以執行一或 多種電功能之獨立的系統。或者,電子裝置5〇可以是一較 大系統之子構件。舉例而言,電子裝置5〇可以是行動電話、 個人數位助理(PDA)、數位視訊攝影機(DVC)、或是其它電 子通訊裝置的-部份。或者是,電子裝置50可以是一可插 ,電腦中之顯不卡、網路介面卡或其他信號處理卡。該半 導體封裝可包括微處理器、記憶體、特殊應用積體電路 (ASIC)、邏輯電路、類比電路、RF電路'離散裝置或其: 半導體晶粒或電性構件。小型化及重量減輕是這些產品能 夠破市場接受所不可少的。在半導體裝置間的距離必須縮 短以達到更高的密度。 '、 在圖4中,PCB 52係提供—般的基板以供安裝在該 上之半導體封裝的結構支撐及電氣互連。導電的信號線路 54係利用蒸錢、電解的電鍍、無電的電锻、網版印刷或盆 ,的金屬沉積製程而被形成在pCB52的一表面之上或 疋在層内。信號線路54提供在半導體封裝、安裝的構件、 11 201227901 以及其它外部的系統構件的每一個之間的電通訊。線路54 亦提供電源及接地連接給每個半導體封裝。 在某些實施例中,一半導體裝置具有兩個封裝層級。 第一層級的封裝是一種用於將半導體晶粒機械及電氣地附 接至一中間載體的技術。第二層級的封裝係牵涉到將該中 間載體機械及電氣地附接至PCB。在其它實施例中,一半 導體裝置可以只有該第—層級的封裝,其中晶粒是直接機 械及電氣地安裝到PCB上。 為了說明之目的,包含打線接合封裝56及覆晶58之 數種類型的帛一層、級的封裝係被展示在pcB 52上。此外, 包含球狀柵格陣列(BGA)6〇、凸塊晶片載體(Bcc)62、雙排 型封裝(DIP)64、平台柵格陣列(LGA)66、多晶片模組 (MCM)68、四邊扁平無引腳封裝(QFN)7〇及四邊爲平封裝 72之數種類型的第二層級的封裝係被展示安裝在μ 上。視系統需求而定,以第一及第二層級的封裝類型的任 意組合來組態的半導體封裝的任何組合及其它電子構件可 連接至PCB 52。在某些實施例中’電子裝置5〇包含單一附 接的半導體封裝,而其它實施例需要多個互連的封裝。藉 由在單-基板之上組合—或多個半導體封裝,製造商可將 預製的構件納入電子裝置及系統_。由於半導體封裝包括 複雜的功能’因此可使用較便宜構件及流線化製程來製造 電子裝置。所產生的裝置不太可能發生故障且製造費用 低’從而降低消費者成本。201227901 VI. INSTRUCTIONS: [Priority Claims] This application is part of the continuation of US Application No. 12/47 1,1 80, filed May 22, 2009, and claims the aforementioned basic application in accordance with Articles of the US Patent Law. Priority of the case. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to semiconductor devices, and more particularly to a self-confinement of conductive bumps during reflow soldering without solder masking. Semiconductor device and method. [Prior Art] Semiconductor devices are commonly found in modern electronic products. Semiconductor devices differ in the number and density of electrical components. Discrete semiconductor devices typically comprise a type of electrical component such as a 'LED', a small signal transistor, a resistor, a capacitor, an inductor, and a power metal oxide semiconductor field effect transistor (10) (4)) . Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of the sinusoidal sinusoidal bar + conductor device include a microcontroller, a microprocessor, a charge surface 爹 device, a solar cell, and a digital micromirror device (DMD). Semiconductor devices can perform a wide range of functions, such as signal processing, high speed computing, transmitting and receiving electromagnetic signals [control electronics, converting sunlight into electricity, and producing visible projections for television displays. Semiconductor devices can be found in the fields of entertainment, communication, power conversion, electric knife replacement, network, and computer in 201227901 and 4 expense products. Fengniu conductors can also be found in military, civil, automotive, industrial batches such as the use of control and office equipment. The semiconductor device utilizes the electrical characteristics of a semiconductor material such as a semiconductor. The atomic structure of the semiconductor material allows it to conduct a Thunder. A conductivity can be controlled by the application of an electric or base current or by the doping of the X-ray. The doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device. Semiconductor devices include active and passive electrical structures. Active structures containing bipolar and field effect transistors control the flow of current. By changing the degree of doping and the level at which the electric field or base current is applied, the transistor does not boost or limit the flow of current. Passive structures containing resistors, capacitors, and inductors produce a relationship between voltage and current necessary to perform various t-gas functions. The passive and active structures are electrically connected to form a circuit that enables the semiconductor device to perform high speed calculations and other useful functions. Semiconductor devices are typically fabricated using two complex processes, namely front-end manufacturing and back-end manufacturing, each involving hundreds of steps. Front end manufacturing involves the formation of a plurality of grains on the surface of a semiconductor wafer. Each die is typically the same and contains circuitry formed by electrically connecting the active and passive components. Back-end manufacturing involves singulating individual dies from wafer fabrication and packaging the dies to provide structural support and environmental isolation. One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume lower power, are more efficient, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller 201227901 footprint, which is desirable for smaller end products. Smaller grain sizes can be achieved by producing grain improvements with smaller and higher density active and passive components in the front end process. The backend process can be modified by electrical interconnects and packaging materials to create a semiconductor device package with a smaller footprint. 1 is a diagram depicting a portion of a flip-chip type semiconductor device 1 having interconnects 12 that are metallurgically and electrically connected between bump pads 14 and line conductors 20 using a germanium mask 15. As shown in Fig. 2, a circular solder mask or alignment opening (SR0) 16 is formed over the substrate 18 to expose the line conductors 20. The line conductor 20 is a straight conductor having an optional bump pad for mating to the interconnector 2. The SR0 1 6 system confines the conductive bump material to the bump pads of the line conductor 20 during reflow and prevents molten bump material from escaping onto the line conductors, which may cause electrical shorts to adjacent structures. The sr system is made larger than the line conductor or bump pad. The sr 〇 16 is generally circular in shape and made as small as possible to reduce the pitch of the line conductors 2 增 and increase the winding density. In a typical design rule, the minimum escape of the line conductor 20 is limited by the sr〇16 must be at least the base diameter (D) of the interconnect 丨2 plus a solder mask alignment tolerance. (SRT) The same big truth. In addition, due to the limitations of the solder mask application process, the smallest aperture (L, ligament) of the solder mask material is required in adjacent openings. More specifically, the minimum escape spacing is defined as P = D + 2 * SRT + L. In one embodiment, 〇 is 1 微米 micron (μηι) ′ SRT is ΙΟμηι, and L is 60 μηι, therefore, the minimum escape pitch is 100 + 2* 10 + 60 = 80 μm. 6 201227901 Figures 3a and 3b show top and cross-sectional views of another conventional configuration in which the line conductors 30 are wound between the line conductors 32 and 34 on the substrate 40 and the bumps 36 and 38. Bumps 36 and 38 electrically connect semiconductor die 42 to substrate 40. Solder mask 44 covers bump pads 46 and 48. The minimum escape spacing of the line conductors 30 is defined by p = D / 2 + SRT + L + w / 2, where D is the bump base diameter, SRT is the solder mask alignment tolerance, and W is the line The route is wide and L is the hole spacing between the SR〇 and the adjacent structure. In one embodiment, D is 1 〇〇 _, SRT is ι 〇 μηη, w is 3 〇 _, and L is 60 μηη. The minimum escape spacing of the line conductors 3〇·34 is 100/2+1 (Η60 + 30/2 = 135 μηη. Due to the increased demand for high winding density), a smaller escape spacing is required. There is a need to minimize the escape spacing of the line conductors to achieve higher winding densities. Thus, in one embodiment, the present invention is a method of fabricating a semiconductor device that includes the steps of providing a grain bump a semiconductor die of a bulk pad; providing a substrate having a conductive trace, having an interconnecting location, depositing a conductive bump material on the interconnect location or the die bump, mounting the semiconductor die to the Substrate such that the conductive bump material is disposed between the die bump pad and the interconnect location; the conductive bump material is reflowed without a solder mask around the die bump pad or interconnect location to An interconnect structure is formed between the semiconductor die and the substrate; and an encapsulation material is deposited between the semiconductor die and the substrate. The conductive bump material is self-limited in the die pad pad or interconnection position. In another embodiment, the invention is a method of fabricating a semiconductor device, comprising the steps of: providing a first semiconductor structure having a first interconnect location; providing a second having a second interconnect location a semiconductor structure, - depositing a conductive bump material between the first and second interconnect locations - forming an interconnect structure from the conductive bump material without a tantalum mask around the first and second interconnect locations Encapsulating the first and second semiconductor structures between the first and first semiconductor structures. The conductive bump material is self-limited in the first and second interconnection locations. In another embodiment, the invention is a method of fabricating a semiconductor device comprising the steps of: providing a first semiconductor structure having a first interconnect location; providing a second semiconductor structure having a second interconnect location; Depositing a conductive bump material over the interconnect location or the second interconnect location; and forming an interconnect structure from the conductive bump material under the first and second interconnect locations without a solder mask to bond the first And a second semiconductor structure. In another embodiment, the invention is a semiconductor device comprising a first semiconductor structure having a first interconnection location and a second semiconductor structure having a second interconnection location. Formed between the first and second semiconductor structures without a solder mask around the first and second interconnect locations. An encapsulation material is deposited between the first and second semiconductor structures. The invention is described in the following description with reference to the drawings, wherein the same reference numerals refer to the same or similar elements. Although the invention is described in accordance with the best mode for the purpose of the invention, 8 201227901 The skilled artisan will understand that the present invention is intended to cover alternatives, modifications, and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Its equivalent. Semiconductor devices are typically fabricated using two complex processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a Ba particle on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components that are electrically connected to form a functional circuit. Active electrical components such as transistors and diodes have the ability to control the flow of current. Passive electrical components such as capacitors, inductors, resistors, and transformers produce a relationship between voltage and current necessary to perform circuit functions. The passive and active components are formed on the surface of the semiconductor wafer by a series of process steps including doping, deposition, lithography, lithography, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process changes the conductivity of the semiconductor material in the active device, thereby converting the semiconductor material into an insulator, a conductor, or dynamically changing the conductivity of the semiconductor material in response to an electric field or base current. The transistor contains regions of varying type and extent that are optionally Z to enable the transistor to promote or limit current flow when an electric or base current is applied. Active and passive components are formed from layers of material having different electrical properties. The layers can be formed by a variety of deposition techniques that are determined in part by the type of material being deposited. For example, thin film deposition can include chemical vapor deposition (CVD) 'physical vapor deposition (PVD), electrolytic forging, and electroless plating processes. Each layer is typically patterned to form an active member: 201227901 Broken member or portion of the electrical connection between the components. (Example/1 layers may be used to pattern (10) the rows of the material, which are deposited on the layer to be patterned. Qian Guang removes the pattern from the light = printing solvent to remove the resist pattern. Part 1: The lower part of the layer to be patterned. The rest of the photoresist is removed leaving a patterned layer. Alternatively, certain types of materials are patterned using direct plating techniques such as electroless plating and electroplating by depositing the material directly into regions or voids formed by previous deposition/etch processes. Depositing a film of material over an existing pattern may magnify the pattern below and produce a surface that is not flat. Active and passive components that produce smaller, denser packages require a flat surface. Planarization can be used to remove material from the rounded surface and produce a flat surface. The planarization system uses the surface of the polished (iv) optical wafer. The abrasive material and the rot are chemically etched during polishing. . Add to the surface of the wafer. The combination of the mechanical action of the abrasive and the rotative action of the chemical can remove any irregular surface configuration, resulting in a uniform, flat surface. “Back-end manufacturing refers to cutting or simply cutting a finished wafer into individual dies and then encapsulating the dies to provide structural support and environmental isolation. For single-cut dies, along the non-functional area of the wafer (called Cutting or dicing the wafer. Cutting the wafer using a laser cutting tool or a strip. After a single dicing, the individual dies are mounted on a package substrate that includes pins. Or contact pads for interconnection with other system components. The contacts formed on the semiconductor die are then rigidly bonded to the contact pads in the package. The electrical connections may be by solder bumps, stud bumps, conductive paste or bond wires. ebGnd) is formed by depositing a skirt 10 201227901 material or other molding material on the package to provide physical support and electrical isolation, and then inserting the package into an electrical system, and enabling the function of the semiconductor device Other system components utilize β. FIG. 4 depicts an electronic device 5 having a plurality of wafer carrier substrates or printed circuit boards (pCBs) 52 mounted on a surface thereof. Depending on the application, the electronic device 5G may have a type A semiconductor package or a plurality of semiconductor packages of different types. Different types of semiconductor packages are shown for purposes of illustration in Figure 4. The electronic device 50 can be a separate system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, the electronic device 5 can be a sub-component of a larger system. For example, the electronic device 5 can be a mobile phone, a personal digital assistant (PDA), a digital video camera (DVC), or other electronic communication device. Alternatively, the electronic device 50 can be a pluggable, display card in a computer, a network interface card or other signal processing card. The semiconductor package can include a microprocessor, a memory, and a special application integrated circuit. (ASIC), logic circuit, analog circuit, RF circuit 'discrete device or its: semiconductor die or electrical component. Miniaturization and weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices must be Shortened to achieve higher density. ', in Figure 4, PCB 52 provides a general substrate for mounting on the semiconductor package Structural support and electrical interconnection. The conductive signal line 54 is formed on a surface of the pCB 52 or on the surface by a metal deposition process using steaming, electrolytic plating, electroless electric forging, screen printing or potting. Signal line 54 provides electrical communication between each of the semiconductor package, mounted components, 11 201227901, and other external system components. Line 54 also provides power and ground connections to each semiconductor package. A semiconductor device has two package levels. The first level package is a technique for mechanically and electrically attaching a semiconductor die to an intermediate carrier. The second level of package involves the intermediate carrier mechanism. And electrically attached to the PCB. In other embodiments, a semiconductor device may have only the first level of packaging, wherein the die is directly mechanically and electrically mounted to the PCB. For purposes of illustration, several types of 帛 one layer, stage packages including wire bond package 56 and flip chip 58 are shown on pcB 52. In addition, a ball grid array (BGA) 6 〇, a bump wafer carrier (Bcc) 62, a double row package (DIP) 64, a platform grid array (LGA) 66, a multi-chip module (MCM) 68, A four-sided flat leadless package (QFN) 7" and a four-level package with four sides of a flat package 72 are shown mounted on the μ. Any combination of semiconductor packages and other electronic components configured in any combination of the first and second level package types may be coupled to PCB 52, depending on system requirements. In some embodiments 'electronic device 5' includes a single attached semiconductor package, while other embodiments require multiple interconnected packages. Manufacturers can incorporate prefabricated components into electronic devices and systems by combining them on a single-substrate—or multiple semiconductor packages. Since semiconductor packages include complex functions, electronic devices can be fabricated using less expensive components and streamlined processes. The resulting device is less likely to fail and has a lower manufacturing cost' thereby reducing consumer costs.
5a-5d係展示範例的半導體封裝 圖5a係描繪安裝 12 201227901 在PCB52上的DIP64之進一步的細節。半導體晶粒以係 包括一含有類比或數位電路的主動區域,該些類比或數位 電路係被實施為形成在晶粒内之主動裝置、被動裝置、導 電層及介電層並且根據該晶粒的電設計而電互連。例如, 該電路可包含形成在半導體晶粒74的主動區域内之多 個電晶體、二極體、電感器、電容器、電阻器以及其它= 路兀件。接觸墊76是一或多層的導電材料,例如鋁(A”、 銅(Cu)、錫(Sn)、鎳(Ni)、金(Au)或銀(Ag),並且電連接至 形成在半導體晶粒74 β之電路元件。在mp Μ的組裝期 間,半導體晶粒74係利用一金矽共晶層或例如是熱環氧樹 脂的黏著劑材料而被安裝至一中間載體78。封裝主體係包 含-種例如是聚合物或陶瓷的絕緣封裝材料。導線及焊 線82係在半導體晶粒74及pCB 52之間提供電互連。封裝 材料84係為了環境保護而沉積在該封裝之上以防止濕氣^ 微粒進入該封裝且污染晶粒74或焊線82。 μ圖讣係描繪安裝在pCB 52上之bcc 62的進一步細 卽。半導體晶粒88係利用-種底膠填充㈣咐⑴)或是環氧 樹脂黏著材料92而被安裝在載體9〇之上。焊線94係在接 觸塾%及98之間提供第一層級的封裝互連。模製化合物 ,封裝材_ _係沉積在半導體晶粒88及焊線Μ之上以 提供,理切及電氣隔離給該裝^接㈣Μ係利用一 例如疋電解的電鍍或無電的電鍍之合適的金屬沉積製程而 被形成在PCB 52的一表面之上以避免氧化。接觸墊102係 電連接至PCB 52中的一或多個導電信號線路54。凸塊1045a-5d shows an exemplary semiconductor package. Figure 5a depicts further details of the installation of 12 201227901 DIP64 on PCB 52. The semiconductor die includes an active region including an analog or digital circuit, and the analog or digital circuit is implemented as an active device, a passive device, a conductive layer, and a dielectric layer formed in the die and according to the die Electrically designed and electrically interconnected. For example, the circuit can include a plurality of transistors, diodes, inductors, capacitors, resistors, and other devices formed in the active region of the semiconductor die 74. The contact pad 76 is one or more layers of a conductive material such as aluminum (A", copper (Cu), tin (Sn), nickel (Ni), gold (Au) or silver (Ag), and is electrically connected to the semiconductor crystal. The circuit element of the grain 74. During the assembly of the mp ,, the semiconductor die 74 is mounted to an intermediate carrier 78 using a metal eutectic layer or an adhesive material such as a thermal epoxy. The package main system contains An insulating encapsulating material such as a polymer or ceramic. The wires and bonding wires 82 provide electrical interconnection between the semiconductor die 74 and the pCB 52. The encapsulation material 84 is deposited over the package for environmental protection to prevent Moisture particles enter the package and contaminate the die 74 or bond wire 82. The μ figure depicts a further detail of the bcc 62 mounted on the pCB 52. The semiconductor die 88 is filled with a primer (4) 咐(1)) Or an epoxy adhesive material 92 is mounted over the carrier 9. The bonding wire 94 provides a first level of package interconnection between the contact % and 98. The molding compound, the package _ _ deposited in The semiconductor die 88 and the wire bond are provided above, and are cut and electrically isolated. The bonding (4) is formed on a surface of the PCB 52 by a suitable metal deposition process such as electroplating or electroless plating to avoid oxidation. The contact pads 102 are electrically connected to one of the PCBs 52. a plurality of conductive signal lines 54. Bumps 104
13 S 201227901 係形成在BCC 62的接觸墊98以及pCB 52的接觸墊ι〇 間。 在圖5c中,半導體晶粒58係以覆晶型第一層級的封裝 方式面向下安裝到中間載體1〇6。半導體晶粒58的主動區 2⑽係包含類比或數位電路,該些類比或數位電路係被 實施為根據該晶粒的電設計所形成的主動裝置、被動裝 置、導電層及介電層。例如,該電路可包含一或多個電晶 體一極體、電感器、電容器、電阻器以及主動區域ι〇8 内之其匕電路兀件。半導體晶粒58係透過凸塊i 1〇電氣及 機械地連接至載體1 〇6。 BGA60係以BGA型第二層級的封裝方式利用凸塊m 電氣及機械地連接至PCB 52。半導體晶粒58係透過凸塊 、彳§號線114及凸塊112電連接至PCB 52中的導電信 號線路54。-種模製化合物或封裝材料116係、沉積在半導 體晶粒58及載體106之上以提供物理支撐及電氣隔離給該 裝置° 3彡覆晶半導體裝置係提供從半導體晶粒5 8上的主動 裝置到PCB 52上的導電跡線之短的導電路徑,以便縮短信 號傳播距離、降低電容以及改善整體電路效能。在另一實 施例中,半導體晶粒58可在無中間載體的情況下,利 用覆Ba型第一層級的封裝直接機械及電連接至pCB 52。 在另一實施例中,半導體晶粒58的主動區域1〇8係直 接向下安裝到PCB 11 5,亦即,在無中間載體下直接向下安 裝,即如同在圖5d中所示者。ώ塊墊ln係利用一蒸鍍、 電解的電鍍、無電的電鍍、網版印刷或其它合適的金屬沉 14 201227901 積製程而形成在主動區域108上。凸塊墊iu係藉由主動 區域1 08中的導電跡線以連接至主動及被動電路。凸塊塾 111可以是Al、Sn、Ni、Au、Ag或Cu。—導電凸塊材料 係利用一蒸鍍、電解的電鍍、無電的電鍍、球式滴落(ba drop)或網版印刷製程以沉積在凸塊墊n丨之 ^ 成凸塊材 料可以是A卜Sn、Ni、Au、Ag、鉛(Pb)、Bi、Cu、谭料及 其組合,其具有一選配的助熔(flux)材料。例如,該凸塊材 料可以是共晶Sn/Pb、高鉛的焊料或無鉛的焊料。該凸塊材 料係利用一合適的附著或連結製程連結到晶粒凸塊塾 160。在一實施例中,該凸塊材料係藉由加熱該材料超過其 熔點來回焊以形成球或凸塊U7。在某些應用中,凸塊丄P 係進行二次回焊以改善至凸塊& lu的電接觸。該覆晶半 導體裝置係提供從半導體晶粒58上的主 上的導電跡線之—短的導電路徑,以便㈣短錢I 降低電容及達成整體較佳的電路效能。 圖6a及6b係描繪具有晶粒凸塊墊122的覆晶類型的半 導體晶粒120的-部份的俯視圖及橫截面i線路導線m 是-具有形成在基板或PCB 13G上的—體型㈣啊叫凸 塊塾126之直的導體。圖7^7b係展示基板凸塊塾⑶ :者線路導線m的進一步細節。該基板凸㈣126可以 是如同圖7a中所示為圓拟沾+ 马圓形的、或是如同圖7b中所示為矩形 的。基板凸塊塾126的侧邊可以是和線路導線共線的。 導電凸塊材料係利用-蒸鍍、電解的電鍍、無電的 '鑛、球式滴落或網版印刷製程沉積在晶粒凸塊墊122或 15 201227901 基板凸塊墊126之上。該凸塊材料可以是A1、Sn、Ni、Au、13 S 201227901 is formed between the contact pads 98 of the BCC 62 and the contact pads ι of the pCB 52. In Fig. 5c, the semiconductor die 58 is mounted face down to the intermediate carrier 1〇6 in a flip-chip type first level package. The active region 2 (10) of the semiconductor die 58 includes analog or digital circuitry that is implemented as an active device, a passive device, a conductive layer, and a dielectric layer formed in accordance with the electrical design of the die. For example, the circuit can include one or more of a transistor body, an inductor, a capacitor, a resistor, and other circuitry within the active region ι8. The semiconductor die 58 is electrically and mechanically connected to the carrier 1 透过 6 through the bumps i 1 . The BGA 60 is electrically and mechanically connected to the PCB 52 by bumps m in a BGA type second level package. Semiconductor die 58 is electrically coupled to conductive signal line 54 in PCB 52 via bumps, wires 114 and bumps 112. a molding compound or encapsulating material 116, deposited over the semiconductor die 58 and the carrier 106 to provide physical support and electrical isolation to the device. The flip-chip semiconductor device provides active from the semiconductor die 58 A short conductive path to the conductive traces on the PCB 52 to reduce signal propagation distance, reduce capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be directly and mechanically and electrically connected to the pCB 52 using a Ba-type first level package without an intermediate carrier. In another embodiment, the active region 1 〇 8 of the semiconductor die 58 is mounted directly down to the PCB 117, i.e., directly down without the intermediate carrier, as shown in Figure 5d. The block pad ln is formed on the active region 108 by a vapor deposition, electrolytic plating, electroless plating, screen printing or other suitable metal sinking process. The bump pads iu are connected to the active and passive circuits by conductive traces in the active region 108. The bump 塾 111 may be Al, Sn, Ni, Au, Ag or Cu. - the conductive bump material is deposited by a vapor deposition, electrolytic plating, electroless plating, ball drop or screen printing process on the bump pad n 成 ^ bump material can be A Sn, Ni, Au, Ag, lead (Pb), Bi, Cu, tantalum, and combinations thereof, have an optional flux material. For example, the bump material can be eutectic Sn/Pb, high lead solder or lead free solder. The bump material is bonded to the die bumps 160 by a suitable attachment or bonding process. In one embodiment, the bump material is soldered back and forth to form a ball or bump U7 by heating the material beyond its melting point. In some applications, the bumps P are subjected to secondary reflow to improve electrical contact to the bumps & lu. The flip-chip semiconductor device provides a short conductive path from the main conductive traces on the semiconductor die 58 to (4) reduce the capacitance and achieve overall better circuit performance. 6a and 6b are plan views showing a portion of a flip chip type semiconductor die 120 having a die bump pad 122 and a cross section i line wire m being - having a body type (4) formed on a substrate or a PCB 13G. It is called the straight conductor of the bump 塾126. Figure 7^7b shows further details of the substrate bump 塾(3): the line conductor m. The substrate projections (four) 126 may be circular as shown in Figure 7a or rounded as shown in Figure 7b. The sides of the substrate bumps 126 may be collinear with the line conductors. The conductive bump material is deposited over the die bump pads 122 or 15 201227901 substrate bump pads 126 using an evaporation, electrolytic plating, electroless 'mine, ball drop, or screen printing process. The bump material may be A1, Sn, Ni, Au,
Ag Pb Bi Cu焊料及其組合,其具有一選配的助熔溶 劑。例如,該凸塊材料可以是共晶Sn/pb、高鉛的焊料或無 船的焊料。該凸塊材料係利用一合適的附著或連結製程以 連結到晶粒凸塊墊122及基板凸塊墊126。在一實施例中, 該凸塊材料係#由加&該材料超過其炫點纟回焊以形成互 連132。在某些應用中,互連132係進行二次回焊以改善在 晶粒凸塊塾Π2及基板凸塊塾126間之電接觸。在窄基板 凸塊塾126周圍的凸塊材料係在回烊期間維持晶粒的設 置。儘管互連132被展示成連接至線路導線124而為導線 上的凸塊(BOL)’該互連亦可形成在基板㈣上的凸塊塾之 上’其具有和晶粒凸塊墊122相同數量級或更大的面積。 一選配的底膠填充材料138係沉積在半導體晶& 12〇及基 板1 3 0之間。 在高繞線密度的應用中,最小化線路導線124的逸散 間距是所期望的。在線路導、線124間之逸散間距可藉由消 除用於回焊限制的痒料遮罩,亦即,ϋ由在無焊料遮罩下 回燁凸塊材料來加以縮小。焊料遮罩14()可形成在基板m 的-部份之上。然而,谭料遮罩14〇並未為了回焊限制而 形成在線路導線124的基板凸塊墊126之上。換言之線 路導線124中被設計以和凸塊材料配接的部份並沒有焊料 遮罩的任何SR0。由於沒有SR0被形成在晶粒凸塊塾 122或基板凸塊墊126的周圍’線路導線m可用較細的間 距來加以形成,亦即,線路導線m可被設置成較靠在一 201227901 起或疋較靠近附近的結構。在無焊料遮罩14〇下,線路導 線124間的間距係給定為p=D+pLT+w/2,其中d是互連 的基底直徑’ PLT是晶粒設置容限,並且w是線路導線124 的寬度在一實施例中,給定丨〇〇μιη的凸塊基底直徑、1 的PLT以及30μιη的線路線寬,線路導線124之最小的逸 散間距是125μηι。該無焊料遮罩的凸塊形成係免去需要考 里到如習知技術中可見的相鄰開口間之焊料遮罩材料的孔 帶間隔、SRT、以及最小可解析的SR〇。 备該凸塊材料在沒有焊料遮罩下被回焊以將晶粒凸塊 墊122冶金且電連接至基板凸塊墊126時,潤濕及表面張 力係使得該凸塊材料維持自我局限且被保持在晶粒凸塊墊 1 22與基板凸塊墊126及基板13〇中緊鄰線路導線124且實 質在該凸塊塾的覆蓋區中的部份之間的空間内。 為了達成該所要的自我局限性質,凸塊材料可在置放 於晶粒凸塊墊122或基板凸塊墊126上之前先被浸沒在一 助溶溶劑中’以選擇性地使得該凸塊材料所接觸的區域比 線路導線124周圍的區域更濕潤。該熔化的凸塊材料係由 於該助熔溶劑的可濕性而維持局限在實質由凸塊墊所界定 的區域内。該凸塊材料並不溢出到較不濕潤的區域。一薄 的氧化層或是其它絕緣層可形成在其中不打算有凸塊材料 的區域之上’以使該區域較不濕潤。因此,晶粒凸塊塾12 2 或基板凸塊墊126周圍並不需要有焊料遮罩140。 在另一實施例中,一複合的互連144係形成在晶粒凸 塊墊122及基板凸塊墊126之間以達成該所要的凸塊材料 17 201227901 自我局限。複合的互連144係包含一由cu、Au、如、川 及pb製成的不可炫的基底146,以及一由焊料、sn或铜製 成的可熔的蓋M8,即如同在圓8中所示者。相對於該不可 炫的基底材料之可溶的凸塊材料的量係被選擇成確保藉由 表面張力的自我局限。纟回焊期間,該可熔的基底材料係 自我局限在4不可熔的基底材料的周圍。該不可溶的基底 周圍之可熔的凸塊材料亦在回焊期間維持晶粒的設置。一 般而。,複合的互連144的高度是和該凸塊的直徑相同或 是小於該凸塊的直徑。在某些情形中,複合的互連144的 高度係大於該互連的直徑。在—實施例中,給定⑽_的 凸塊基底直徑,該不可㈣基底146在高度上大約是 45μΐη,並且該可溶的蓋148在高度上大約是35μη^該熔化 的凸塊材料係維持實質局限在由凸塊墊所界定的區域内, 因為沉積以形成複合的凸塊144(包含不可熔的基底146以 及可熔的i Μ8)之凸塊材料的量係被選擇成使得所產生的 表面張力是足以將該凸塊材料實質保持在該凸塊墊的覆蓋 區之内並且避免溢出到非所要的相鄰或附近的區域。因 此,晶粒凸塊墊122或基板凸塊墊丨26的周圍不需要焊料 遮罩140,此係縮小線路導線間距且增加繞線密度。 圖9a及9b係描繪具有晶粒凸塊墊i 52之覆晶類型的半 導體晶粒150的另一實施例的俯視圖及橫截面圖。類似於 圖7a及7b,線路導線154是一具有形成在基板或pcB 16〇 上的一體型凸塊墊156之直的導體。在此實施例中,凸塊 墊156係以多個列或是偏置的列被配置。於是,交替的線 18 201227901 路導線154係包含一用於繞線到凸塊墊156的肘部。 導電凸塊材料係利用一蒸鍍、電解的電鍍、無電的 電鍍、球式滴落或網版印刷製程來沉積在晶粒凸塊塾M2 或基板凸塊墊156之上。該凸塊材料可以是八卜如、犯、 △—,,、^焊料及其組合^具有一選配的助 熔溶劑。例如,該凸塊材料可以是共晶祕、高鉛的焊料 或無鉛的焊料。該凸塊材料係利用一合適的附著或連結製 程以連結到晶粒凸塊墊152及基板凸塊墊156。在一實‘例 中,該&塊材料係II由加熱該材料超過其炼點來回焊以形 成凸塊或互連162。在某些應用中,互連162係進行二次回 焊以改善在晶粒凸塊墊152及基板凸塊墊156之間的電接 觸。在窄基板凸㈣156周圍的凸塊材料係在回焊期間維 夺aa粒的β又置。儘管互$ i 62被展示成連接至線路導線1 54 而為BOL,該&塊材料亦可回焊在基板⑽上的凸塊塾之 上,其具有和晶粒凸塊墊152相同數量級或是更大的面積。 選配的底膠填充材料168係沉積在半導體晶粒150及基 板160之間。 在商繞線密度的應用巾,最小化逸散間距是所期望 的。為了縮小線路導線154間的間距,該凸塊材料係在益 烊料遮罩下進行回焊。線路導線154間的逸散間距可藉由 消除用於焊料回焊限制的焊料遮罩,'亦即,藉由在無焊料 遮罩下回焊該凸塊材料而被縮小。焊料鮮17〇可形成在 基板16G的-部份之上。^而,焊料遮罩並未為了焊 料回焊限制而形成在線路導線154的基板凸㈣156之 19 201227901 上。換言之’線路導線1 54中被設計以和凸塊材料配接的 部份並沒有焊料遮罩170的SRO。由於沒有sr〇形成在晶 粒凸塊墊152或基板凸塊墊156的周圍,線路導線154可 用較細的間距來加以形成,亦即,線路導線丨54可被設置 成較罪近相鄰的結構。 在無焊料遮罩170下’線路導線154間的間距係給定 為P = D/2 + PLT+W/2 ,其中D是凸塊162的基底直徑,pLT 是晶粒設置容限,並且W是線路導線1 54的寬度。在一實 施例中’給定1〇〇μηι的凸塊直徑、ι〇μιη的PLT以及3〇μηι 的線路線寬,線路導線154之最小的逸散間距是75μπ^該 無焊料遮罩的凸塊形成係免去需要考量到如習知技術中可 見的相鄰開口間之焊料遮罩材料的孔帶間隔、Srt、以及最 小可解析的SRO。 當該凸塊材料係在無焊料遮罩下回焊以冶金及電連接 半導體晶粒1 50的晶粒凸塊墊丨52至線路導線丨54的基板 凸塊墊156時,潤濕及表面張力係使得該凸塊維持自我局 限並且保持在晶粒凸塊墊丨5 2與基板凸塊墊丨5 6以及基板 1 60中緊鄰線路導線丨54且實質在該凸塊墊的覆蓋區中的部 份之間的空間内。 為了達成該所要的自我局限性質,該凸塊材料可在置 放於晶粒凸塊墊152或基板凸塊墊156上之前先被浸沒在 一助熔溶劑中,以選擇性地使得該凸塊材料所接觸的區域 比線路導線1 5 4周圍的區域更濕潤。由於該助熔溶劑的可 濕性’該熔化的凸塊材料係維持實質局限在由凸塊墊所界 20 201227901 定的區域内。該凸塊材料並不溢出到較不濕潤的區域。— 薄的氧化層或其它絕緣層可形成在其中不打算有凸塊材料 的區域之上,以使該區域較不濕潤。因此,晶粒凸塊墊m 或基板凸塊塾156周圍不需要谭料遮罩17〇。 在另-實施例中,-複合的互連係形成在晶粒凸塊塾 152及基板凸塊墊156之間以達成該所要的凸塊材料自我局 限。類似於圖8,該複合的互連係包含—由CU、Au、如、 州或Pb製成的不可炼的基底,以及一由焊料、^或姻製 成的可熔的蓋。言亥可熔的凸塊材料㈣於該不可溶的基底 材料之高度或量係被選擇成確保藉由表面張力的自我局 限。在回焊期間’該可溶的基底材料係自我局限在該不可 熔的基底材料的周圍。該不可熔的基底周圍之可熔的凸塊 材料亦在回焊期間維持晶粒的設置。一般而言,該複合的 :連的高度是和該凸塊的直徑相同或是小於該凸塊的直 徑。在某些情形中,該複合的互連的高度係大於該互連的 直徑。在-實施例中’給定1()_的凸塊基底直控,該不 可熔的基底在尚度上大約是45μιη,並且該可熔的蓋在高度 上大約是35μη!。該熔化的凸塊材料係維持實質局限在由凸 塊塾所界定的區域内,因為沉積以形成該複合的凸塊(包含 =可熔的基底以及可熔的蓋)之凸塊材料的量係被選擇成使 得所產生的表面張力足以將該凸塊材料實質保持在該凸塊 墊的覆蓋區之内並且避免溢出到非所要的相鄰或附近的區 域。因此,晶粒凸塊墊152或基板凸塊墊156的周圍不需 要焊料遮罩170,此係縮小線路導線間距且增加繞線密度。 21 201227901 圖1 0 15係“述其匕具有各種互連結構的實施例,該些 互連結構可應用到如圖6·9中所述的無sr〇的互連結構。 圖係展示-具有-種例如切、鍺“申化鎵、構化姻或 碳切的主體基板㈣222以供結構支㈣半導體晶圓 220。複數個半導體晶粒或構件 ^ 又稱件224係形成在晶圓22〇上且 藉由如上所述的切割道226分開。 圖i〇b係展示半導體晶圓22〇的一部份的橫截面圖。 母個半導體晶纟224具有一背表面228以及包含類比或數 位電路的主動表面23〇,該類比或數位電路被實施為形成在 該晶粒内且根據該晶粒的電設計及功能電互連的主動裝 置、被動裝置、導電層以及介電層。例如該電路可包含 一或多個電晶體、二極體以及其它形成在主動表面23〇内 之電路元件以實施類比電路或數位電路’例如數位信號處 理器(DSP)、ASIC、記憶體或是其它信號處理電路。半導體 f粒224亦可包含整合被動裝置(IpD),例如電感器、電容 器及電阻器’以供RF信號處理使用。在__實施例中,半導 體晶粒224是一覆晶類型的半導體晶粒。 -導電層232係利用pVD、CVD、電解的電鍍、 的電鑛製程、或是其它合適的金屬沉積製程而形成在主動 表面230之上。導電層232可以是A卜Cu、Sn、Ni、Au、Ag Pb Bi Cu solder and combinations thereof have an optional fluxing solvent. For example, the bump material can be eutectic Sn/pb, high lead solder or no ship solder. The bump material is bonded to the die bump pads 122 and the substrate bump pads 126 using a suitable attachment or bonding process. In one embodiment, the bump material is # reflowed by adding & the material beyond its dazzle to form interconnects 132. In some applications, interconnect 132 is subjected to secondary reflow to improve electrical contact between die bumps 2 and substrate bumps 126. The bump material around the narrow substrate bumps 126 maintains the die arrangement during the retrace. Although the interconnect 132 is shown as being connected to the line conductor 124 as a bump on the conductor (BOL)' the interconnect may also be formed over the bump on the substrate (four) 'which has the same dimensions as the die bump pad 122 An order of magnitude or larger. An optional primer fill material 138 is deposited between the semiconductor crystal & 12 and the substrate 130. In applications with high wire density, it is desirable to minimize the escape spacing of the line conductors 124. The escape spacing between the line guides and lines 124 can be reduced by eliminating the blister mask for reflow restrictions, i.e., by rubbing the bump material under the no-solder mask. A solder mask 14() may be formed over the portion of the substrate m. However, the tantalum mask 14 is not formed over the substrate bump pads 126 of the line conductors 124 for reflow restrictions. In other words, the portion of the wire conductor 124 that is designed to mate with the bump material does not have any SR0 of the solder mask. Since no SR0 is formed around the die bump 塾122 or the substrate bump pad 126, the line wire m can be formed with a fine pitch, that is, the line wire m can be set to be closer to a 201227901 or疋 is closer to the nearby structure. Under the solderless mask 14 ,, the spacing between the line conductors 124 is given as p = D + pLT + w / 2, where d is the interconnected substrate diameter ' PLT is the die set tolerance, and w is the line Width of Wire 124 In one embodiment, given the bump base diameter of 丨〇〇μηη, the PLT of 1 and the line width of 30 μm, the minimum escape pitch of line conductor 124 is 125 μm. The solder-free bump formation eliminates the need for tape spacing, SRT, and minimum resolvable SR〇 of the solder mask material between adjacent openings as seen in the prior art. When the bump material is reflowed without a solder mask to metallurgically and electrically connect the die bump pads 122 to the substrate bump pads 126, wetting and surface tension are such that the bump material remains self-contained and It is held in the space between the die bump pad 1 22 and the substrate bump pad 126 and the substrate 13 紧邻 in the immediate vicinity of the line conductor 124 and substantially in the coverage area of the bump. In order to achieve the desired self-limiting nature, the bump material may be immersed in a solubilizing solvent prior to being placed on the die bump pad 122 or the substrate bump pad 126 to selectively cause the bump material to be The area of contact is more humid than the area around the line conductor 124. The molten bump material is maintained confined within the area substantially defined by the bump pads due to the wettability of the fluxing solvent. The bump material does not spill into the less humid areas. A thin oxide layer or other insulating layer can be formed over the area where the bump material is not intended to make the area less humid. Therefore, there is no need for a solder mask 140 around the die bumps 12 2 or the substrate bump pads 126. In another embodiment, a composite interconnect 144 is formed between the die bump pads 122 and the substrate bump pads 126 to achieve the desired bump material 17 201227901 self-limiting. The composite interconnect 144 includes a non-shockable substrate 146 made of cu, Au, ruthenium, and pb, and a fusible cover M8 made of solder, Sn, or copper, as in the circle 8. Shown. The amount of soluble bump material relative to the non-glazable substrate material is selected to ensure self-limiting by surface tension. During reflow, the fusible base material is self-constrained around the 4 non-fusible base material. The fusible bump material around the insoluble substrate also maintains the grain placement during reflow. Generally. The height of the composite interconnect 144 is the same as or smaller than the diameter of the bump. In some cases, the height of the composite interconnect 144 is greater than the diameter of the interconnect. In an embodiment, given a bump base diameter of (10)_, the non-tetrazed substrate 146 is approximately 45 μηη in height, and the soluble cap 148 is approximately 35 μηη in height. The molten bump material is maintained Substantially limited to the area defined by the bump pads, since the amount of bump material deposited to form the composite bumps 144 (including the non-fusible substrate 146 and the fusible i Μ 8) is selected such that The surface tension is sufficient to substantially retain the bump material within the footprint of the bump pad and to avoid spilling into undesired adjacent or nearby regions. Therefore, the solder mask 140 is not required around the die bump pad 122 or the substrate bump pad 26, which reduces the line conductor pitch and increases the wire density. Figures 9a and 9b depict top and cross-sectional views of another embodiment of a flip chip type semiconductor die 150 having a die bump pad i52. Similar to Figures 7a and 7b, the line conductor 154 is a straight conductor having an integral bump pad 156 formed on a substrate or pcB 16A. In this embodiment, the bump pads 156 are configured in a plurality of columns or offset columns. Thus, the alternating line 18 201227901 way conductor 154 includes an elbow for winding to the bump pad 156. The conductive bump material is deposited on the die bump 塾M2 or the substrate bump pad 156 by an evaporation, electrolytic plating, electroless plating, ball dropping or screen printing process. The bump material may be an arsenic, a dysprosium, a Δ-, a solder, and a combination thereof having an optional fluxing solvent. For example, the bump material can be a eutectic, high lead solder or a lead free solder. The bump material is bonded to the die bump pad 152 and the substrate bump pad 156 using a suitable attachment or bonding process. In a real example, the & block material system II is reflowed by heating the material beyond its refining point to form bumps or interconnects 162. In some applications, interconnect 162 is subjected to secondary reflow to improve electrical contact between die bump pads 152 and substrate bump pads 156. The bump material around the narrow substrate bump (four) 156 retains the beta of the aa pellet during reflow. Although the mutual $i 62 is shown as being connected to the line conductor 1 54 and is BOL, the & block material may also be reflowed over the bump 上 on the substrate (10), which is of the same order of magnitude as the die bump pad 152 or It is a larger area. An optional primer fill material 168 is deposited between the semiconductor die 150 and the substrate 160. Minimizing the escape spacing is desirable in applications where the winding density is applied. In order to reduce the spacing between the line conductors 154, the bump material is reflowed under a protective mask. The escape spacing between the line conductors 154 can be reduced by eliminating the solder mask for solder reflow restrictions, i.e., by reflowing the bump material under a solder free mask. A solder 17 can be formed over the portion of the substrate 16G. ^, the solder mask is not formed on the substrate bumps (4) 156 of 19 201227901 of the line conductors 154 for solder reflow restrictions. In other words, the portion of the line conductor 1 54 that is designed to mate with the bump material does not have the SRO of the solder mask 170. Since no sr〇 is formed around the die bump pad 152 or the substrate bump pad 156, the line wires 154 can be formed with a fine pitch, that is, the line wires 54 can be disposed adjacent to each other. structure. The spacing between the line conductors 154 under the solderless mask 170 is given as P = D/2 + PLT + W/2 , where D is the base diameter of the bumps 162, pLT is the grain set tolerance, and W Is the width of the line conductor 1 54. In one embodiment, 'giving a bump diameter of 1〇〇μηι, a PLT of ι〇μη, and a line line width of 3〇μηι, the minimum escape pitch of the line conductor 154 is 75μπ^ the bump of the solderless mask The block formation eliminates the need to consider the hole spacing, Srt, and minimum resolvable SRO of the solder mask material between adjacent openings as seen in the prior art. When the bump material is reflowed under a solderless mask to metallurgically and electrically connect the die bump pads 52 of the semiconductor die 150 to the substrate bump pads 156 of the wire bond 54, wetting and surface tension The bump is self-contained and remains in the portion of the die bump pad 52 and the substrate bump pad 56 and the substrate 160 that is adjacent to the line conductor 54 and substantially in the footprint of the bump pad. Within the space between the shares. In order to achieve the desired self-limiting nature, the bump material may be immersed in a fluxing solvent prior to being placed on the die bump pad 152 or the substrate bump pad 156 to selectively cause the bump material to be selected. The area contacted is more humid than the area around the line conductor 154. Due to the wettability of the fluxing solvent, the molten bump material remains substantially confined within the area defined by the bump pad boundary 20 201227901. The bump material does not spill into the less humid areas. — A thin oxide layer or other insulating layer can be formed over the area where the bump material is not intended to make the area less humid. Therefore, a tantalum mask 17 is not required around the die bump pad m or the substrate bump 156. In another embodiment, a composite interconnect is formed between the die bumps 152 and the substrate bump pads 156 to achieve the desired self-limiting bump material. Similar to Figure 8, the composite interconnect comprises a non-refinable substrate made of CU, Au, such as, state or Pb, and a fusible cover made of solder, solder or solder. The height or amount of the intumescent bump material (4) at the insoluble substrate material is selected to ensure self-limiting by surface tension. The soluble substrate material is self-contained around the non-fusible substrate material during reflow. The fusible bump material around the non-fusible substrate also maintains the placement of the grains during reflow. In general, the height of the composite is the same as or smaller than the diameter of the bump. In some cases, the height of the composite interconnect is greater than the diameter of the interconnect. In the embodiment - the bump substrate of 1 () is given a direct control, the infusible substrate is about 45 μm in the scent, and the fusible cover is about 35 μm in height! The molten bump material maintains substantial confinement in the region defined by the bumps because of the amount of bump material deposited to form the composite bumps (including = fusible substrate and fusible cover) It is selected such that the resulting surface tension is sufficient to substantially retain the bump material within the footprint of the bump pad and to avoid spilling into undesired adjacent or nearby regions. Therefore, no solder mask 170 is required around the die bump pad 152 or the substrate bump pad 156, which reduces the line conductor pitch and increases the wire density. 21 201227901 Figure 1 0 15 is a description of embodiments having various interconnect structures that can be applied to the sr〇-free interconnect structure as described in Figure 6.9. - For example, a "substrate (4) 222 of "cutting, gallium, conformation, or carbon cut" is provided for the structural (four) semiconductor wafer 220. A plurality of semiconductor dies or members, also referred to as 224, are formed on wafer 22 and separated by scribe lines 226 as described above. Figure i〇b shows a cross-sectional view of a portion of a semiconductor wafer 22A. The mother semiconductor wafer 224 has a back surface 228 and an active surface 23A including an analog or digital circuit implemented to be formed within the die and electrically interconnected according to electrical design and function of the die Active device, passive device, conductive layer and dielectric layer. For example, the circuit can include one or more transistors, diodes, and other circuit components formed in the active surface 23A to implement analog circuits or digital circuits such as digital signal processors (DSPs), ASICs, memories, or Other signal processing circuits. Semiconductor f-particles 224 may also include integrated passive devices (IpD), such as inductors, capacitors, and resistors, for use in RF signal processing. In the embodiment, the semiconductor die 224 is a flip chip type semiconductor die. - Conductive layer 232 is formed over active surface 230 by pVD, CVD, electroplating, electrowinning, or other suitable metal deposition process. The conductive layer 232 may be A, Cu, Sn, Ni, Au,
Ag、或是其它合適的導電材料的一或多層。導電層係 運作為電連接至主動表自,上的電路之接觸塾或晶、 塊墊。 圖10c係展示具有-形成在接觸墊232之上的互連結構 22 201227901 的半導體晶圓220的一部份。一導電凸塊材料234係利用 一蒸鍍、電解的電鍍、無電的電鍍、球式滴落、或是網版 印刷製程而沉積在接觸墊232之上。凸塊材料234可以是 A卜Sn、Ni、Au、Ag、Pb、Bi、C:u、焊料及其組合,其具 有一選配的助熔溶劑。例如,凸塊材料234可以是共晶 Sn/Pb、高鉛的焊料或是無鉛的焊料。凸塊材料234是大致 順應的(compliant)並且在相當於約2〇〇克的垂直荷重的力 下進行大於約25μιη的塑性變形。凸塊材料234係利用一合 適的附著或連結製程連結到接觸墊232。例如,凸塊材料 234可以壓縮連結到接觸墊232。凸塊材料234亦可藉由加 熱該材料超過其熔點來進行回焊以形成球或凸塊236,即如 同在圖1〇d中所示者。在某些應用中,凸塊咖係進行二 次回焊以改善至接觸墊232的電連接。凸塊2%係代表一 種可形成在接觸墊232之上的互連結構類型。該互連結構 亦可以使用柱形凸塊、微凸塊或是其它電互連。 圖l〇e係展示互連結構的另一實施例’其係以複合的凸 塊238形成在接觸墊232之上,該凸塊238包含—不可熔 或不可分解的部份240以及可熔或可分解的部份242。該可 熔或可分解的特質以及不可熔或不可分解的特質係針對凸 塊238關於回焊條件所界定的。該不可熔的部份“ο可以 是Au、Cu、Ni、高鉛的焊料、或是鉛錫合金。該可熔的:: 份242可以是Sn、無鉛的合金、Sn_Ag合金 °n-Ag-Cu 合 金、Sn-Ag-铜(ln)合金、共晶焊料、錫和Ag、Cu或外的合 金、或是其它相對低溫熔化的焊料。在—實施例中,給: 23 201227901 一接觸墊232 ΙΟΟμιη的寬度或直徑,該不可熔的部份24〇 咼度大約是45μηι並且可熔的部份242高度大約是350爪。 圖l〇f係展示互連結構的另一實施例,其係形成在接觸 塾232之上而成為導電柱246之上的凸塊244。凸塊244是 可熔或可分解的,並且導電柱246是不可熔或不可分解的。 該可熔或可分解的特質以及不可熔或不可分解的特質係相 關於回焊條件加以界定。凸塊244可以是Sn、無鉛的合金、Ag, or one or more layers of other suitable electrically conductive materials. The conductive layer operates to electrically connect to the contacts on the active surface, or the contacts of the crystal or the pad. Figure 10c shows a portion of a semiconductor wafer 220 having an interconnect structure 22 201227901 formed over a contact pad 232. A conductive bump material 234 is deposited over the contact pads 232 by a vapor deposition, electrolytic plating, electroless plating, ball dropping, or screen printing process. The bump material 234 can be A, Sn, Ni, Au, Ag, Pb, Bi, C:u, solder, and combinations thereof, with an optional fluxing solvent. For example, bump material 234 can be eutectic Sn/Pb, high lead solder or lead free solder. The bump material 234 is substantially compliant and undergoes plastic deformation greater than about 25 μηη under a force corresponding to a vertical load of about 2 gram. The bump material 234 is bonded to the contact pads 232 by a suitable attachment or bonding process. For example, bump material 234 can be compression bonded to contact pad 232. The bump material 234 can also be reflowed by heating the material beyond its melting point to form a ball or bump 236, as shown in Figure 1〇d. In some applications, the bumps are soldered twice to improve the electrical connection to the contact pads 232. The bump 2% represents a type of interconnect structure that can be formed over contact pads 232. The interconnect structure can also use stud bumps, microbumps, or other electrical interconnects. Figure 1A shows another embodiment of an interconnect structure formed by a composite bump 238 over a contact pad 232 that includes a non-meltable or indecomposable portion 240 and a fusible or Decomposable part 242. The fusible or decomposable trait and the non-meltable or non-decomposable trait are defined for the bump 238 with respect to the reflow condition. The non-meltable portion "o may be Au, Cu, Ni, high lead solder, or a lead tin alloy. The fusible:: part 242 may be Sn, a lead-free alloy, a Sn_Ag alloy °n-Ag- Cu alloy, Sn-Ag-copper (ln) alloy, eutectic solder, tin and Ag, Cu or alloy, or other relatively low temperature melting solder. In the embodiment, give: 23 201227901 a contact pad 232 The width or diameter of the 不可μιη, the non-meltable portion 24 is about 45 μm and the fusible portion 242 is about 350 claws. Figure 1〇f shows another embodiment of the interconnect structure, which is formed Above the contact pad 232 is a bump 244 over the conductive post 246. The bump 244 is fusible or decomposable, and the conductive post 246 is non-meltable or non-decomposable. The fusible or decomposable trait and The non-meltable or non-decomposable properties are defined in relation to the reflow conditions. The bumps 244 may be Sn, lead-free alloys,
Sn-Ag合金、Sn-Ag-Cu合金、Sn-Ag-In合金、共晶焊料、 錫和Ag、Cu或Pb的合金、或是其它相對低溫熔化的焊料。 導電柱246可以是Au、Cu、Ni、高鉛的焊料、或是鉛錫合 金。在一實施例中’導電柱246是一 Cu柱,並且凸塊244 是一焊料蓋。給定一接觸墊232 ΙΟΟμπι的寬度或直徑,導 電柱246高度大約是45μιη,並且凸塊244高度大約是35μιη。 圖1 〇 g係展示互連結構的另一實施例,其係形成在接 觸塾232之上而為具有突點(asperity)250的凸塊材料248。 類似於凸塊材料234,凸塊材料248在回焊條件下是軟的且 可變形的’具有低的屈伏強度(yield strength)以及高的致衰 壞伸長率(elongation to failure) »突點250係以電鑛的表面 處理而形成,並且為了說明之目的係在圖式中被誇大展 示。突點250的等級一般是在大約1-25μιη的數量級。該突 點亦可形成在凸塊236、複合的凸塊238以及凸塊244上。 在圖10h中,半導體晶圓220係利用一鋸條或雷射切 割工具252透過切割道226被單切為個別的半導體晶粒 224 〇 24 201227901 圖1 la係展示一具有導電線路256的基板或PCB 254 » 基板254可以是單面FR5層壓板或是雙面BT-樹脂層壓板。 半導體晶粒224係被設置以使得凸塊材料234係和導電線 路256上之互連位置對準,請參見圖i9a_19g。或者是,凸 塊材料234可和形成在基板254上的導電墊或是其它互連 位置對準。凸塊材料234係比導電線路256寬。在一實施 例中’對於150μιη的凸塊間距,凸塊材料234具有小於 ΙΟΟμηι的寬度,並且導電線路或墊256具有35μιη的寬度。 導電線路256係可應用到如圖6-9中所述之無SRO的互連 結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊材料234壓到導電線路256之上。該力F可在高 溫下施加。由於凸塊材料234之順應的本質,該凸塊材料 係變形或突出在導電線路256的頂表面及側表面周圍,被 稱為BOL。尤其,在相當於大約2〇〇克的垂直荷重之力f 下,壓力的施加係使得凸塊材料234進行大於約25μηι的塑 性變形並且覆蓋導電線路的頂表面及側表面,即如同在圖 lib中所示者。凸塊材料234亦可藉由將該凸塊材料和導電 線路實體接觸並且接著在一回焊溫度下回焊該凸塊材料以 冶金連接至導電線路256。 藉由使得導電線路256比凸塊材料234窄,導電線路 的間距可被降低以增加繞線密度以及1/〇數目。較窄的導電 線路256係降低使凸塊材料234變形在導電線路的周圍所 需的力F。例如’該必要的力F可以是使凸塊材料抵靠比凸 25 201227901 之3 0 - 5 0 %。較小的Sn-Ag alloy, Sn-Ag-Cu alloy, Sn-Ag-In alloy, eutectic solder, alloy of tin and Ag, Cu or Pb, or other relatively low temperature melting solder. The conductive pillars 246 may be Au, Cu, Ni, high lead solder, or lead tin alloy. In one embodiment, the conductive pillar 246 is a Cu pillar and the bump 244 is a solder cap. Given the width or diameter of a contact pad 232 ΙΟΟμπι, the height of the conductive post 246 is approximately 45 μm, and the height of the bump 244 is approximately 35 μm. FIG. 1 shows another embodiment of an interconnect structure formed over bump 232 and having bump material 248 having an aperture 250. Similar to bump material 234, bump material 248 is soft and deformable under reflow conditions 'has low yield strength and high elongation to failure»bumps 250 It is formed by surface treatment of the electric ore and is shown exaggerated in the drawings for the purpose of illustration. The level of the bumps 250 is typically on the order of about 1-25 μm. The bumps may also be formed on the bumps 236, the composite bumps 238, and the bumps 244. In FIG. 10h, the semiconductor wafer 220 is individually diced into individual semiconductor dies 224 through a dicing street 226 using a saw blade or laser cutting tool 252. 201224 201227901 FIG. 1a shows a substrate or PCB 254 having conductive lines 256. » The substrate 254 can be a single sided FR5 laminate or a double sided BT-resin laminate. The semiconductor die 224 is arranged such that the bump material 234 is aligned with the interconnect locations on the conductive traces 256, see Figures i9a-19g. Alternatively, bump material 234 can be aligned with conductive pads or other interconnect locations formed on substrate 254. The bump material 234 is wider than the conductive traces 256. In one embodiment, the bump material 234 has a width less than ΙΟΟμηι for a bump pitch of 150 μm, and the conductive trace or pad 256 has a width of 35 μm. Conductive lines 256 can be applied to the SRO-free interconnect structure as described in Figures 6-9. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 234 over the conductive traces 256. This force F can be applied at a high temperature. Due to the compliant nature of the bump material 234, the bump material deforms or protrudes around the top and side surfaces of the conductive trace 256 and is referred to as BOL. In particular, at a force f corresponding to a vertical load of about 2 gram, the application of pressure causes the bump material 234 to undergo plastic deformation greater than about 25 μm and cover the top and side surfaces of the conductive trace, as in Figure lib Shown in it. The bump material 234 can also be metallurgically connected to the conductive traces 256 by physically contacting the bump material with the conductive traces and then reflowing the bump material at a reflow temperature. By making the conductive traces 256 narrower than the bump material 234, the pitch of the conductive traces can be reduced to increase the filament density and the number of turns. The narrower conductive traces 256 reduce the force F required to deform the bump material 234 around the conductive traces. For example, the necessary force F may be such that the bump material abuts 30 to 50% of the convexity 25 201227901. smaller
動或是晶粒浮接。 塊材料寬的導電線路或墊變形所需的力 壓力F對於細間距互連及小的晶粒維4 共面性以及達成均勻的Z向變形;5古^ 圖11c係展示形成在半導體晶粒224的接觸墊232之上 的凸塊236。半導體晶粒224係被設置以使得凸塊236和導 電線路256上的互連位置對準》或者是,凸塊236可和形 成在基板254上的導電塾或其它互連位置對準。凸塊236 係比導電線路256寬。導電線路256係可應用到如圖6_9 中所述之無SRO的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊236壓到導電線路256之上。該力ρ可在高溫下 施加。由於凸塊236之順應的本質,該凸塊係變形或突出 在導電線路256的頂表面及側表面周圍。尤其,壓力的施 加係使得凸塊材料236進行塑性變形並且覆蓋導電線路256 的頂表面及側表面。凸塊236亦可藉由在回焊溫度下使該 凸塊和該導電線路實體接觸以冶金連接至導電線路256。 藉由使得導電線路256比凸塊236窄,導電線路的間 距可被降低以增加繞線密度及I/O數目。較窄的導電線路 256係降低將凸塊236變形在導電線路的周圍所需的力F。 例如,該必要的力F可以是使一凸塊抵靠一比該凸塊寬的 導電線路或墊變形所需的力之30-50%。較低的壓力F對於 26 201227901 細間距互連及小的晶粒維持在一指$容限内料面性以及 達成均勻的Z向變形及高可靠度的互連結合是有用的。此 外,將凸塊236變形在導電線路256的周圍係將該凸塊機 械式鎖到該線路以避免在回焊期間的晶粒移動或晶粒浮 接0 圖lid 232之 係展示形成在半導體晶粒224的接觸墊 上的複合的凸塊238。半導體晶粒224係被設置以使得複合 的凸塊238和導電線路256上的互連位置對準。或者是, 複合的凸塊238可和形成在基板254上的導電墊或其它互 連位置對準。複合的凸塊238係比導電線路256寬了導電 線路256係可應㈣如@ 6_9中所述之無_的互連结構。 壓力或力F係被施加至半導體晶粒224的背表面 以將可炼的部们42壓到導電線路256之上。該力F可在 高溫下施加。由於可熔的料242之順應的本質,該可熔 的部份係變形或突出在導雷@ 导%線路2 5 6的頂表面及側表面周 圍尤其,壓力的施加係使得可炫的部份242進行塑性變 形並且覆蓋導電線% 256的頂表面及側表面。複合的凸塊 =8亦可藉由在回焊溫度下使可熔的部份和該導電線路 貫體接觸以冶金遠接5 i 遲接至導電線路256。該不可熔的部份240 在壓力或溫度的祐‘ & 0日u 旳施加期間並不熔化或變形,並且保持其高 又及形狀而作為在半導體晶粒224及基板254間之一垂直 , 牛導體日日粒224及基板254間之額外的位移 係在配接的表面之間提供較大的共面性容限。 ▲回焊製程期間’半導體晶粒224上之大數目的(例 27 201227901 如數千個)複合的凸塊238係附接到基板254的導電線路 256上之互連位置。某些凸塊238可能未能夠適當地連接到 導電線路256,特別是當晶粒224被扭曲時。回想起複合的 凸塊238係比導電線路256寬。在施加一適當的力之下, s玄可熔的部份242係變形或突出在導電線路256的頂表面 及側表面周圍,並且將複合的凸塊238機械式鎖到該導電 線路。該機械式緊密連接係藉由該可熔的部份242的本質 而形成,s玄本質是比導電線路250軟且更順應,因而變形 在忒導電線路的頂表面之上以及在該導電線路的側表面周 圍以得到較大的接觸表面積。在複合的凸塊238以及導電 線路256之間的機械式緊密連接係在回焊期間將該凸塊保 持在該導電線路,亦即,該凸塊及導電線路並不失去接觸。 於是,複合的凸塊238配接到導電線路256係減少凸塊互 連的失敗。 圖1 le係展示形成在半導體晶粒224的接觸墊232之上 的導電柱246及凸塊244。半導體晶粒224係被設置以使得 凸塊244和導電線路256上之互連位置對準。或者是,凸 塊244可和形成在基板254上的導電墊或其它互連位置對 準。凸塊244係比導電線路256寬。導電線路256係可應 用到如圖6-9中所述之無SRO的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊244壓到導電線路256之上。該力F可在高溫下 施加。由於凸塊244之順應的本質,該凸塊係變形或突出 在導電線路256的頂表面及側表面周圍。尤其,壓力的施 28 201227901 加係使得凸塊244進行塑性變形並且覆蓋導電線路256的 頂表面及側表面。導電柱246及凸塊244亦可藉由在回焊 溫度下使該凸塊和該導電線路實體接觸以冶金連接至導電 線路256。導電柱246在壓力或溫度的施加期間並不炫化或 變形,並且保持其高度及形狀而成為在半導體晶粒224及 基板254間之一垂直的間隙。該在半導體晶粒224及基板 254間之額外的位移係在配接的表面之間提供較大的共面 性容限。該較寬的凸塊244及較窄的導電線路256具有類 似以上針對凸塊材料234及凸塊236所述的低必要的壓力 及機械式鎖住的特點及優點。 圖Ilf係展示形成在半導體晶粒224的接觸墊232之上 的具有突點250的凸塊材料248 »半導體晶粒224係被設置 以使得凸塊材料248係和導電線路256上的互連位置對 準。或者疋’凸塊材料248可和形成在基板254上的導電 墊或其它互連位置對準。凸塊材料248係比導電線路256 寬。一 >1力或力F係被施加至半導體晶粒224的背表面228 以將凸塊材料248壓到導電線路256之上。該力F可在高 /里下施加。由於凸塊材料248之順應的本質,該凸塊係變 形或犬出在導電線路256的頂表面及侧表面周圍。尤其, ^力的知加係使得凸塊材料248進行塑性變形並且覆蓋導 電線路256的頂表面及側表面。此外,突點250係冶金連 接至導電線路256。突點250的尺寸係做成大約1-25μπι的 數量級。 圖1lg係展示基板或PCB 258具有成角度或傾斜的側 29 201227901 邊之梯形導電線路260。凸塊材料261係被形成在半導體晶 粒224的接觸墊232之上。半導體晶粒224係被設置以使 得凸塊材料261和導電線路260上的互連位置對準。或者 是’凸塊材料261可和形成在基板258上的導電墊或其它 互連位置對準。凸塊材料261係比導電線路260寬。導電 線路260係可應用到如圖6_9中所述之無SR〇的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊材料261壓到導電線路26〇之上。該力F可在高 溫下施加。由於凸塊材料261之順應的本質,該凸塊材料 係變形或突出在導電線路26〇的頂表面及侧表面周圍。尤 其’壓力的施加係使得凸塊材料261在力F下進行塑性變 形,以覆蓋導電線路260的頂表面以及傾斜的側表面。凸 塊材料261亦可藉由將該凸塊材料和導電線路實體接觸並 且接著在一回焊溫度下回焊該凸塊材料以冶金連接至導電 線路260。 圖12a-12d係展示半導體晶粒224以及具有一不可熔或 不可分解的部份264及可熔或可分解的部份266之細長複 ,的凸塊262之一 BOL實施例。該不可熔的部份可以 疋Au、Cu、Ni、高鉛的焊料、或是鉛錫合金。該可熔的部 份266可以是Sn、無船的合金、Sn_Ag合金、SnAg心合 =、Sn-Ag-In合金、共晶焊料、錫和Ag、Cu或η的合金°、 或是其它相對低溫熔化的焊料。該不可熔的部份264比該 可熔的部份266構成複合的凸塊262之較大的—部分。= 不可溶的部份264係固定到半導體晶粒224的接觸塾刀23二 30 201227901 半導體晶粒224係被設置以使得複合的凸塊262係和 形成在基板270上之導電線路268上的互連位置對準,即 如同在圖12a中所示者。複合的凸塊262係沿著導電線路 268漸縮,亦即’該複合的凸塊具有楔形,沿著導電線路 268的長度方向上較長,而橫跨該導電線路的方向上較窄。 複合的凸塊262之漸縮特點係出現在沿著導電線路268的 長度方向上。圖12 a中的繪圖係展示該較短的特點或變窄的 漸縮疋與導電線路268共線的。垂直於圖12a的圖12b中的 繪圖係展示該楔形複合的凸塊262之較長的特點。複合的 凸塊262之較短的特點係比導電線路268寬。該可熔的部 份266在壓力施加及/或以熱回焊時分解在導電線路268的 周圍,即如圖12c及12d中所示者。該不可熔的部份264 在回焊期間並不熔化或變形,並且保持其外形及形狀。該 不可熔的部份264的尺寸可被設為在半導體晶粒224及基 板270之間提供一間隙距離。一例如是Cu OSP的處理可施 加到基板270。導電線路268係可應用到如圖6_9中所述之 無SRO的互連結構。 在回烊製程期間,半導體晶粒224上之大數目的(例 如,數千個)複合的凸塊262係附接到基板270❾導電線路 268上之互連位置。$些凸土鬼262彳能未能夠適當地連接到 導電線路268’特別是半導體晶粒m被扭曲時。回想起複 合的凸塊262係比導電線路268 t。在施加-適當的力之 下°玄可溶的部份266係變形或突出在導電線路268的頂 表面及側表面周圍’並且將複合的凸i鬼262機械式鎖到該 31 201227901 導電線路° S玄機械式緊密連接係藉由該可炫的部份266之 本質而形成,該本質係比導電線路268軟且較順應的,因 而變形在該導電線路的頂表面及側表面周圍以得到較大的 接觸面積。複合的凸塊262的楔形係增加在該凸塊及導電 線路間的接觸面積,例如,沿著圖12b及12d之較長的特 徵方向增加,而沒有犧牲到沿著圖12a及12c之較短的特徵 方向上的間距。在複合的凸塊262及導電線路268間之機 械式緊密連接係在回焊期間將該凸塊保持在該導電線路, 亦即,該凸塊及導電線路並不失去接觸。於是,配接到導 電線路268之複合的凸塊262係減少凸塊互連的失敗。 圖13a_13d係展示半導體晶粒224的一 BOL實施例, 其中類似於圖10c,凸塊材料274係形成在接觸墊232之 上。在圖13a中,凸塊材料274是大致順應的,並且在一相 當於大約200克的垂直荷重之力下進行大於約25μιη的塑性 變形。凸塊材料274係比基板278上的導電線路276寬。 複數個突點280係以一大約的數量級之高度形成在 導電線路276上。 半導體晶粒224係被設置以使得凸塊材料274和導電 線路276上的互連位置對準。或者是,凸塊材料274可和 形成在基板278上的導電墊或其它互連位置對準。—壓力 或力F係被施加至半導體晶粒224的背表面228以將凸塊 材料274壓到導電線路276及突點28〇之上,即如同在圖 13b中所示者。該力F可在高溫下施加。由於凸塊材料μ 之順應的本質,該凸塊材料係變形或突出在導電線路 32 201227901 的頂表面及側表面以及突點280周圍。尤其,壓力的施加 係使得凸塊材料274進行塑性變形並且覆蓋導電線路276 的頂表面及側表面以及突點28心凸塊材料274的塑性流動 係在該凸塊材料與導電線路276的頂表面及側表面以及突 點280之間產生巨觀的機械式緊密連接點。凸塊材料274 的塑性流動係發生在導電線路276的頂表面及側表面以及 突點280周圍,但並不過度地延伸到基板278之上,否則 可旎造成電氣短路及其它缺陷。在該凸塊材料與導電線路 276的頂表面及側表面以及突點28〇之間的機械式緊密連接 係在不顯著增加連結力t下’|供—纟有個別的表面間較 大的接觸面積之強健的連接。在該凸塊材料與導電線路2% 的頂表面及側表面以及突點28〇之間的機械式緊密連接亦 降低在例如是封裝的後續製程期間橫向的晶粒移動。 圖1 3c係展示其中凸塊材料274比導電線路2%窄的另 - BOL實施例。壓力或力"系被施加至半導體晶粒以的 背表面228以將凸塊材料274壓到導電線路2%及突點 之上。該力F可在高 —'rT 厶 / < 川貝;!(¾ 的本質’該凸塊材料係變形或突出在導電線路2%的頂表 面及突點280之上。尤其,壓力的施加係使得凸塊材料274 進行塑性變形並且覆蓋導電線路276的頂表面及突點則。 凸塊材料274的塑性流動係在該凸塊材料以及導電線路276 =表面及突‘點280之間產生巨觀的機械^緊密連接點。 在该凸塊材料以及導電線路276的頂表面及突點28〇之間 的機械式緊密連接係在不顯著增加連結力之下,提供一具 33 201227901 有個別的表面間較大的接觸面積之強健的連接。在該凸塊 材料以及導電線路276的頂表面及突點28〇之間的機械式 緊密連接亦降低在例如是封裝的後續製程期間橫向的晶粒 移動。 圖13d係展示另一 B0L實施例,其中凸塊材料274形 成在導電線路276的一邊緣之上,亦即,部份的凸塊材料 在該導電線路之上,而部份的凸塊材料則不在該導電線路 之上。一壓力或力F係被施加至半導體晶粒224的背表面 228以將凸塊材料274壓到導電線路276及突點28〇之上。 該力F可在高溫下施加。由於凸塊材料274之順應的本質, 該&塊材料係變形或突出在導電線路276的頂表面及側表 面及突點280之上。尤其’壓力的施加係使得凸塊材料274 進行塑性變形並且覆蓋導電線路276的頂表面及側表面及 突點280。凸塊材料274的塑性流動係在該凸塊材料與導電 線路276㈣表面及側表面以及突點28〇 <間產生巨觀的 機械式緊密連接。在該凸塊材料與導電線路2%的頂表面 及側表面以及突點280《間的機械式緊密連接係在不顯著 增加連結力之下提供-具有個別的表面間大的接觸面積 之強健的連接。在該凸塊材料與導電線路276的頂表面及 側表面以及突‘點之間的機械式f密連接轉低在例如 是封裝的後續製程期間橫向的晶粒移動。 圖14a-14c係展示半導體晶粒224的一 b〇l實施例, 其t類似於圖丨〇c ’凸塊材料284形成在接觸墊232之上。 -尖端286係從凸塊材料284的主體延伸成為—階梯形凸 34 201227901 塊,其中尖端286比凸塊材料284的主體窄,即如同在圖 14a中所不者。半導體晶粒224係被設置以使得凸塊材料284 和基板290上的導電線路288上之互連位置對準。更明確 地說,尖端286係被設置在導電線路288上的互連位置之 中央上。或者是,凸塊材料284及尖端286可和形成在基 板290上的導電墊或其它互連位置對準。凸塊材料284係 比基板290上的導電線路288寬。 導電線路288是大致順應的,並且在一相當於大約2〇〇 克的垂直荷重的力之下進行大於約25μηι的塑性變形。一壓 力或力F係被施加至半導體晶粒224的背表面228以將尖 端284壓到導電線路288之上。該力F可在高溫下施加。 由於導電線路288之順應的本質’該導電線路係變形在尖 端286的周圍,即如同在圖14b中所示者。尤其,壓力的 施加係使得導電線路288進行塑性變形並且覆蓋尖端286 的頂表面及側表面。 圖14c係展示另一 BOL實施例,其中圓形的凸塊材料 294係形成在接觸墊232之上。一尖端296係從凸塊材料 294的主體延伸以形成一柱形凸塊,其中該尖端比凸塊材料 294的主體乍。半導體晶粒224係被設置以使得凸塊材料 294和基板300上的導電線路298上之互連位置對準。更明 確地說,尖端296係被設置在導電線路298上的互連位置 之中央上。或者是,凸塊材料294及尖端296可和形成在 基板300上的導電墊或其它互連位置對準。凸塊材料294 係比基板300上的導電線路298寬。 35 201227901 導電線路298是大致順應的,並且在一相當於大約2〇〇 克的垂直荷重的力之下進行大於約25μιη的塑性變形。—壓 力或力F係被施加至半導體晶粒224的背表面228以將尖 端296壓到導電線路298之上。該力F可在高溫下施加。 由於導電線路298之順應的本質,該導電線路係變形在尖 端296周圍。尤其’壓力的施加係使得導電線路298進行 塑性變形,並且覆蓋尖端296的頂表面及側表面。 圖11a-11 g、12a-12d及13a-13d中所述的導電線路亦可 以是如圖14a-14c中所述之順應的材料。 圖15a-15b係展示半導體晶粒224的一 BOL實施例, 其中類似於圖11c,凸塊材料304係形成在接觸塾232之 上。凸塊材料304是大致順應的’並且在一相當於大約200 克的垂直荷重的力之下進行大於約25 μπι的塑性變形。凸塊 材料304係比基板308上的導電線路306寬。一具有開口 312及導電的側壁314之導電貫孔310係穿過導電線路306 而形成,即如同在圖1 5a中所示者《導電線路3〇6係可應用 到如圖6-9中所述之無SRO的互連結構。 半導體晶粒224係被設置以使得凸塊材料304和導電 線路306上的互連位置對準’請參見圖19a_i9g。或者是, 凸塊材料304可和形成在基板308上的導電整或其它互連 位置對準。一壓力或力F係被施加至半導體晶粒224的背 表面228以將凸塊材料304壓到導電線路306之上並且壓 入導電貫孔3 10的開口 3 12中。該力f可在高溫下施加。 由於凸塊材料304之順應的本質,該凸塊材料係變形或突 36 201227901 出在導電線路306的頂表面及側表面周圍且進入到導電貫 孔310的開口 312中,即如同在圖15b中所示者。尤其, 壓力的施加係使得凸塊材料3〇4進行塑性變形並且覆蓋導 電線路306的頂表面及側表面且進入到導電貫孔31〇的開 口 312中。因此,凸塊材料3〇4係電連接至導電線路3〇6 及導電的側壁314以供穿過基板3〇8的z向垂直的互連使 用。凸塊材料304的塑性流動係在該凸塊材料與導電線路 3〇6的頂表面及側表面以及導電貫孔31〇的開口 si]之間產 生機械式緊密連接。在該凸塊材料與導電線路的頂表 面及側表面以及導電貫孔310的開口 312之間的機械式緊 密連接係在不顯著增加連結力之下提供一具有個別的表面 間較大的接觸面積之強健的連接。在該凸塊材料與導電線 路306的頂表面及側表面以及導電貫孔31〇的開口 Η?之 間的機械式緊密連接亦降低在例如是封裝的後續製程期間 橫向的晶粒移動。由於導電貫孔31〇係和凸塊材料3〇4 一 起被形成在該互連位置之内,因此總基板互連面積係減少。 在圖 lla-Ug、以-⑶、13a_13d、14a_Uc& A — 的BOL實施例中,藉由使導電線路比互連結構窄,導電線 路的間距可被降低以增加繞線密度及1/0數目。較窄的導電 線路係降低將互連結構變形在導電線路的周圍所需的力 卜例如’該必要的力F可以是使一凸塊抵靠一比該四塊寬 的導電線路或墊變形所需的力之3〇·5〇%。該較低的壓力F 對於細間距互連及小的晶粒維持在一指$容限内的共面性 以及達成均勻的Ζ向變形及高可靠度的互連結合是有用 37 201227901 的》此外,將互連結構變形在導電線路的周圍係將該凸塊 機械式鎖到該線路以避免在回焊期間的晶粒移動或晶粒浮 接。 圖16a-16c係展示一種模具底膠填充(MUF)製程以將封 裝材料 >儿積在半導體晶粒及基板間的凸塊周圍。圖16a係展 不半導體晶粒224利用圖! lb的凸塊材料234而安裝到基 板254 ’並且被設置在凹槽(chase)模具32〇的上方模具支撐 件316及下方模具支撐件318之間。圖Uaiig、i2ai2d、 13a-1 3d、14a-14c及15a-15b之其它的半導體晶粒及基板之 組合亦可設置在凹槽模具32〇的上方模具支撐件316及下 方模具支樓件318之間。該上方模具支樓件316係包含可 壓縮的離型膜(releasing film)322。 在圖16b中,上方模具支樓件316及下方模具支標件 318被放在一起以封入半導體晶粒224及基板254,其具有 開放空間在該基板之上且在該半導體晶粒及基板之間。 可£縮的離型膜322係貼合半導體晶粒224的背表面 及側表面以阻擋封裝材料在這些表面上的形成…種處於 液態的封裝材们24係利时嘴326而被注人到凹槽模具 320的側中,而一選配的真空輔助328從相反的側邊吸壓 、封裝材料均勻地填入基板254之上的開放空間以及 在半導體晶粒224及基板254之間的開放空間。封裝材料 β 、疋聚合物複合材料(例如,具有填充劑的環氧樹 脂γ2有填充劑的環氧丙烯酸醋)、或是具有適合的填充劑 之聚0物。封裝材料324是非導電的並且在環境上保護半 38 201227901 導體裝置免於接觸到外部的元素及污染物。可壓縮的材料 322係避免封裝材料324流到半導體晶粒224的背表面 之上及側表面的周圍。封裝材料324係被固化。半導體晶 粒224的背表面228及側表面係保持露出自封裝材料η#。 圖16c係展示MUF及模具過度填充(厘〇1?),亦即,在 沒有可壓縮的材料322下的一實施例。半導體晶粒224及 基板254係被設置在凹槽模具32〇的上方模具支撐件 及下方模具支撐件318之間。該上方模具支撐件3i6及下 方楔具支撐件3 1 8係被放在一起以封入半導體晶粒224及 基板254,其具有一開放空間在該基板之上、在該半導體晶 粒的周圍且在該半導體晶粒及基板之間。處於液態的封裝 材料324係利用喷嘴326而被注入到凹槽模具320的-側 中,而一選配的真空辅助328係從相反的側邊吸壓以將該 封裝材料均勻地填入在半導體晶粒224的周圍且在基板 之上的開放空間以及在半導體晶粒224及基板254之間的 開放空間。封裝材料324係被固化。 圖π係展示將封裝材料沉積在半導體晶粒224的周圍 且在半導體晶,位224及基板254之間的間隙中的另一實施 例。半導體晶粒224及基板254係藉由屏障((1細)33〇圍住。 封裝材料332係以液態從喷嘴334分配到屏障33〇中,以 真入基板254·之上的開放办p弓丨” η +丨,1 叼阀狄工間以及在半導體晶粒224及基 板254之間的開放空間。從喷嘴334分配的封裝材料如 的量係被控制在不覆蓋半導體晶'粒224的背表面228或側 表面下填入屏障33G。封裝材料332係被固化。 39 201227901 圖18係展示在圖16a、16c及17的MUF製程之後的半 導體晶粒224及基板254。封裝材料324係均勻地散佈在基 板254之上且在半導體晶粒224及基板254之間的凸塊材 料234的周圍。 圖19a-1 9g係展示在基板或PCB 340上之各種的導電線 路佈局的俯視圖。在圖19a中,導電線路342是一形成在基 板340上具有一體型凸塊墊或互連位置344之直的導體。 基板凸塊墊344的側邊可以是和導電線路342共線的。在 習知技術中,一焊料對準開口(SR0)通常是形成在該互連位 置之上,以在回焊期間限制凸塊材料。該Sr〇會增加互連 間距且減少I/O數目。相對地,遮罩層346可形成在基板 340的一部份之上;然而,該遮罩層並未形成在導電線路 342的基板凸塊墊344的周圍。換言之,導電線路342中被 設計來和凸塊材料配接的部份並沒有原本用於在回焊期間 凸塊限制的遮罩層346的任何SRO。 半導體aB粒224係被設置在基板340之上,並且凸塊 材料係和基板凸㈣344對準。凸塊材料耗由使該凸塊 材料和該凸塊墊實體接觸並且接著在一回焊溫度下回焊該 凸塊材料以電氣且冶金連接至基板凸塊墊344。 在另一實施例中,一導電凸塊材料係利用一蒸鍍、電 解的電鐘、無電的電鍵、球式滴落或網版印刷製程以沉積 在基板凸塊墊344之上。該凸塊材料可以是Dynamic or grain floating. The force pressure F required for the deformation of the conductive material or the pad of the block material is fine-spaced interconnect and small grain dimension 4 coplanarity and uniform Z-direction deformation; 5 ancient Figure 11c shows the formation of semiconductor grains A bump 236 over the contact pad 232 of 224. The semiconductor die 224 is arranged to align the bumps 236 with the interconnect locations on the conductive traces 256. Alternatively, the bumps 236 can be aligned with conductive turns or other interconnect locations formed on the substrate 254. Bump 236 is wider than conductive line 256. Conductive lines 256 can be applied to the SRO-free interconnect structure as described in Figure 6-9. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bumps 236 onto the conductive traces 256. This force ρ can be applied at a high temperature. Due to the compliant nature of the bumps 236, the bumps deform or protrude around the top and side surfaces of the conductive traces 256. In particular, the application of pressure causes the bump material 236 to plastically deform and cover the top and side surfaces of the conductive traces 256. Bumps 236 can also be metallurgically connected to conductive traces 256 by physically contacting the bumps with the conductive traces at reflow temperatures. By making the conductive traces 256 narrower than the bumps 236, the spacing of the conductive traces can be reduced to increase the winding density and the number of I/Os. The narrower conductive traces 256 reduce the force F required to deform the bumps 236 around the conductive traces. For example, the necessary force F may be 30-50% of the force required to deform a bump against a conductive line or pad that is wider than the bump. The lower pressure F is useful for 26 201227901 fine pitch interconnects and small die retention in a single-capacity tolerance and for achieving uniform Z-direction deformation and high reliability interconnect bonding. In addition, deforming the bump 236 around the conductive line 256 mechanically locks the bump to the line to avoid grain movement or grain floating during reflow. FIG. Composite bumps 238 on the contact pads of the particles 224. The semiconductor die 224 is arranged such that the composite bumps 238 and the interconnect locations on the conductive traces 256 are aligned. Alternatively, the composite bumps 238 can be aligned with conductive pads or other interconnect locations formed on the substrate 254. The composite bumps 238 are wider than the conductive traces 256. The conductive traces 256 are (4) unconnected structures as described in @6_9. A pressure or force F is applied to the back surface of the semiconductor die 224 to press the refinable portions 42 onto the conductive traces 256. This force F can be applied at high temperatures. Due to the compliant nature of the fusible material 242, the fusible portion is deformed or protruded around the top surface and the side surface of the guide rails, and the pressure is applied to make the stunable portion 242 is plastically deformed and covers the top surface and the side surface of the conductive line % 256. The composite bump = 8 can also be delayed to the conductive trace 256 by metallurgical remote 5 i by contacting the fusible portion with the conductive trace at the reflow temperature. The non-fusible portion 240 does not melt or deform during application of pressure or temperature, and maintains its height and shape as perpendicular to one of the semiconductor die 224 and the substrate 254. The additional displacement between the bobbin day granule 224 and the substrate 254 provides a greater coplanar tolerance between the mating surfaces. A large number (e.g., 201227901, if thousands) of composite bumps 238 on the semiconductor die 224 during the reflow process are attached to interconnect locations on the conductive traces 256 of the substrate 254. Some of the bumps 238 may not be properly connected to the conductive traces 256, particularly when the die 224 is twisted. Recall that the composite bump 238 is wider than the conductive trace 256. Under application of a suitable force, the smectible portion 242 is deformed or protrudes around the top and side surfaces of the conductive trace 256 and mechanically locks the composite bump 238 to the conductive trace. The mechanical tight connection is formed by the nature of the fusible portion 242, which is softer and more compliant than the conductive trace 250, and thus deforms over the top surface of the tantalum conductive trace and over the conductive trace Around the side surfaces to obtain a larger contact surface area. The mechanical tight connection between the composite bumps 238 and the conductive traces 256 maintains the bumps on the conductive traces during reflow, i.e., the bumps and conductive traces do not lose contact. Thus, the mating bump 238 is coupled to the conductive trace 256 to reduce the bump interconnect failure. 1 shows the conductive pillars 246 and bumps 244 formed over the contact pads 232 of the semiconductor die 224. Semiconductor die 224 is positioned to align bumps 244 with interconnect locations on conductive traces 256. Alternatively, bumps 244 can be aligned with conductive pads or other interconnect locations formed on substrate 254. Bumps 244 are wider than conductive lines 256. Conductive lines 256 can be applied to the SRO-free interconnect structure as described in Figures 6-9. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bumps 244 onto the conductive traces 256. This force F can be applied at high temperatures. Due to the compliant nature of the bumps 244, the bumps deform or protrude around the top and side surfaces of the conductive traces 256. In particular, the application of pressure 28 201227901 adds plastic deformation of the bumps 244 and covers the top and side surfaces of the conductive traces 256. Conductive posts 246 and bumps 244 may also be metallurgically connected to conductive traces 256 by physically contacting the bumps with the conductive traces at a reflow temperature. The conductive post 246 does not smear or deform during application of pressure or temperature and maintains its height and shape to become a vertical gap between the semiconductor die 224 and the substrate 254. This additional displacement between semiconductor die 224 and substrate 254 provides a greater coplanar tolerance between the mated surfaces. The wider bumps 244 and the narrower conductive traces 256 have similar low pressure and mechanical locking characteristics and advantages as described above for the bump material 234 and the bumps 236. Figure 11f shows bump material 248 with bumps 250 formed over contact pads 232 of semiconductor die 224. Semiconductor die 224 is disposed such that bump material 248 is interconnected on conductive trace 256. alignment. Alternatively, the bump material 248 can be aligned with conductive pads or other interconnect locations formed on the substrate 254. The bump material 248 is wider than the conductive trace 256. A > 1 force or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 248 onto the conductive trace 256. This force F can be applied at high/inside. Due to the compliant nature of the bump material 248, the bumps are deformed or canineed around the top and side surfaces of the conductive traces 256. In particular, the force of the force is such that the bump material 248 is plastically deformed and covers the top and side surfaces of the conductive line 256. In addition, bumps 250 are metallurgically connected to conductive traces 256. The size of the bumps 250 is of the order of about 1-25 μm. Figure 11g shows the substrate or PCB 258 having an angled or sloped side 29 201227901 side trapezoidal conductive line 260. A bump material 261 is formed over the contact pads 232 of the semiconductor wafer 224. The semiconductor die 224 is arranged to align the bump locations on the bump material 261 and the conductive traces 260. Alternatively, the bump material 261 can be aligned with conductive pads or other interconnect locations formed on the substrate 258. The bump material 261 is wider than the conductive trace 260. Conductive line 260 can be applied to an SR-free interconnect structure as described in Figures 6-9. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 261 over the conductive traces 26A. This force F can be applied at a high temperature. Due to the compliant nature of the bump material 261, the bump material deforms or protrudes around the top and side surfaces of the conductive traces 26A. In particular, the application of pressure causes the bump material 261 to be plastically deformed under force F to cover the top surface of the conductive trace 260 and the inclined side surface. The bump material 261 can also be metallurgically bonded to the conductive traces 260 by physically contacting the bump material with the conductive traces and then reflowing the bump material at a reflow temperature. Figures 12a-12d show a BOL embodiment of a semiconductor die 224 and a bump 262 having an infusible or indecomposable portion 264 and a fusible or decomposable portion 266. The non-meltable part can be made of Au, Cu, Ni, high lead solder, or lead-tin alloy. The fusible portion 266 can be Sn, a shipless alloy, a Sn_Ag alloy, a SnAg core =, a Sn-Ag-In alloy, a eutectic solder, an alloy of tin and Ag, Cu or eta, or other relative Low temperature melting solder. The non-fusible portion 264 forms a larger portion of the composite bump 262 than the fusible portion 266. The insoluble portion 264 is attached to the contact boring blade 23 of the semiconductor die 224. The semiconductor die 224 is disposed such that the composite bump 262 is interconnected with the conductive trace 268 formed on the substrate 270. The position is aligned, as shown in Figure 12a. The composite bumps 262 are tapered along the conductive traces 268, i.e., the composite bumps have a wedge shape that is longer along the length of the conductive traces 268 and narrower across the conductive traces. The tapered features of the composite bumps 262 appear along the length of the conductive traces 268. The drawing in Figure 12a shows that the shorter features or the narrowed tapered turns are collinear with the conductive traces 268. The drawing in Figure 12b perpendicular to Figure 12a shows the longer features of the wedge-shaped composite bump 262. The shorter features of the composite bumps 262 are wider than the conductive traces 268. The fusible portion 266 is decomposed around the conductive traces 268 during pressure application and/or by thermal reflow, i.e., as shown in Figures 12c and 12d. The non-fusible portion 264 does not melt or deform during reflow and maintains its shape and shape. The non-fusible portion 264 can be sized to provide a gap distance between the semiconductor die 224 and the substrate 270. A process such as Cu OSP can be applied to the substrate 270. Conductive line 268 can be applied to an SRO-free interconnect structure as described in Figures 6-9. During the retracement process, a large number (e.g., thousands) of composite bumps 262 on semiconductor die 224 are attached to interconnect locations on substrate 270 ❾ conductive traces 268. Some of the crypts 262 can not be properly connected to the conductive traces 268', particularly when the semiconductor die m is distorted. Recall that the composite bump 262 is more conductive than the conductive trace 268t. Under application-appropriate force, the portion 266 of the meta-soluble portion is deformed or protruded around the top surface and the side surface of the conductive line 268' and mechanically locks the composite convex i-ghost 262 to the 31 201227901 conductive line. The S-mechanical tight connection is formed by the nature of the sleek portion 266, which is softer and more compliant than the conductive trace 268, and thus deforms around the top and side surfaces of the conductive trace to obtain Large contact area. The wedge shape of the composite bump 262 increases the contact area between the bump and the conductive trace, for example, increasing along the longer characteristic of Figures 12b and 12d without sacrificing the shorter along Figures 12a and 12c. The spacing of the features in the direction. The mechanically tight connection between the composite bumps 262 and the conductive traces 268 maintains the bumps on the conductive traces during reflow, i.e., the bumps and conductive traces do not lose contact. Thus, the composite bumps 262 that are coupled to the conductive traces 268 reduce the failure of the bump interconnects. Figures 13a-13d show a BOL embodiment of a semiconductor die 224 in which bump material 274 is formed over contact pad 232, similar to Figure 10c. In Figure 13a, the bump material 274 is substantially conformable and undergoes a plastic deformation of greater than about 25 μηη under a force corresponding to a vertical load of about 200 grams. The bump material 274 is wider than the conductive traces 276 on the substrate 278. A plurality of bumps 280 are formed on the conductive traces 276 at an approximate order of magnitude. The semiconductor die 224 is arranged to align the bump locations on the bump material 274 and the conductive traces 276. Alternatively, bump material 274 can be aligned with conductive pads or other interconnect locations formed on substrate 278. - Pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 274 over the conductive traces 276 and bumps 28, as shown in Figure 13b. This force F can be applied at high temperatures. Due to the compliant nature of the bump material μ, the bump material is deformed or protrudes around the top and side surfaces of the conductive traces 32 201227901 and the bumps 280. In particular, the application of pressure causes the bump material 274 to plastically deform and cover the top and side surfaces of the conductive traces 276 and the plastic flow of the bumps 28 of the core bump material 274 at the top surface of the bump material and conductive traces 276. A macroscopic mechanical close connection point is created between the side surface and the bump 280. The plastic flow of the bump material 274 occurs around the top and side surfaces of the conductive traces 276 and around the bumps 280, but does not extend excessively over the substrate 278, which can cause electrical shorts and other defects. The mechanical tight connection between the bump material and the top surface and the side surface of the conductive line 276 and the bump 28 系 does not significantly increase the bonding force t, and there is a large contact between the individual surfaces. A strong connection to the area. The mechanical tight connection between the bump material and the top surface and side surfaces of the conductive traces and the bumps 28〇 also reduces lateral grain movement during subsequent processes such as packaging. Figure 1 3c shows an alternative - BOL embodiment in which the bump material 274 is 2% narrower than the conductive trace. Pressure or force is applied to the back surface 228 of the semiconductor die to press the bump material 274 onto the conductive trace 2% and the bump. The force F can be high—'rT 厶/ <chuanbei;! (the essence of 3⁄4' the bump material is deformed or protrudes above the top surface of the conductive line 2% and the bump 280. In particular, the application of pressure The bump material 274 is plastically deformed and covers the top surface and the bump of the conductive trace 276. The plastic flow of the bump material 274 creates a giant between the bump material and the conductive trace 276 = surface and protrusion '280 The mechanical close connection point between the bump material and the top surface of the conductive line 276 and the bump 28 〇 is provided without a significant increase in the bonding force, providing a 33 201227901 individual A robust connection between the surfaces with a large contact area. The mechanical tight connection between the bump material and the top surface of the conductive trace 276 and the bump 28 亦 also reduces lateral grain during subsequent processes such as packaging. Figure 13d shows another embodiment of the POL in which bump material 274 is formed over an edge of conductive trace 276, i.e., a portion of the bump material is over the conductive trace and a portion of the bump Material is not Above the conductive traces, a pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 274 onto the conductive traces 276 and the bumps 28A. The force F can be applied at elevated temperatures. Due to the compliant nature of the bump material 274, the & block material deforms or protrudes above the top and side surfaces of the conductive traces 276 and over the bumps 280. In particular, the application of pressure causes the bump material 274 to be plastically deformed. And covering the top surface and the side surface of the conductive line 276 and the bump 280. The plastic flow of the bump material 274 is a giant mechanical machine between the bump material and the conductive surface 276 (four) surface and the side surface and the bump 28 〇 Tightly connected. The mechanically tight connection between the bump material and the top surface and side surfaces of the conductive traces and the bumps 280 is provided without significantly increasing the bonding force - with individual large contact between the surfaces A robust connection of the area. The mechanical f-bonding between the bump material and the top and side surfaces of the conductive trace 276 and the point of the bump is reduced in the lateral grain shift during subsequent processes such as packaging. 14a-14c show an embodiment of a semiconductor die 224, which is similar to the pattern 丨〇c' bump material 284 formed over the contact pad 232. - the tip 286 is from the bump material 284 The body extends into a stepped projection 34 201227901 block in which the tip 286 is narrower than the body of the bump material 284, i.e., as shown in Figure 14a. The semiconductor die 224 is disposed such that the bump material 284 and the substrate 290 are disposed. The interconnections on the conductive traces 288 are aligned. More specifically, the tips 286 are disposed on the center of the interconnect locations on the conductive traces 288. Alternatively, bump material 284 and tip 286 can be aligned with conductive pads or other interconnect locations formed on substrate 290. The bump material 284 is wider than the conductive traces 288 on the substrate 290. Conductive line 288 is generally compliant and undergoes plastic deformation greater than about 25 [mu]m under a force corresponding to a vertical load of about 2 gram. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the tip 284 over the conductive traces 288. This force F can be applied at high temperatures. Due to the compliant nature of the conductive traces 288, the conductive traces are deformed around the tip 286, as shown in Figure 14b. In particular, the application of pressure causes the conductive traces 288 to plastically deform and cover the top and side surfaces of the tip 286. Figure 14c shows another BOL embodiment in which a circular bump material 294 is formed over contact pads 232. A tip 296 extends from the body of the bump material 294 to form a stud bump, wherein the tip is larger than the body of the bump material 294. The semiconductor die 224 is configured to align the bump material 294 with the interconnect locations on the conductive traces 298 on the substrate 300. More specifically, the tip 296 is disposed on the center of the interconnecting location on the conductive trace 298. Alternatively, bump material 294 and tip 296 can be aligned with conductive pads or other interconnect locations formed on substrate 300. The bump material 294 is wider than the conductive traces 298 on the substrate 300. 35 201227901 Conductive line 298 is generally compliant and undergoes plastic deformation greater than about 25 μηη under a force corresponding to a vertical load of about 2 gram. - A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the tip 296 onto the conductive trace 298. This force F can be applied at high temperatures. Due to the compliant nature of the conductive traces 298, the conductive traces are deformed around the tips 296. In particular, the application of pressure causes the conductive traces 298 to plastically deform and cover the top and side surfaces of the tip 296. The conductive traces described in Figures 11a-11g, 12a-12d and 13a-13d may also be compliant materials as described in Figures 14a-14c. Figures 15a-15b show a BOL embodiment of a semiconductor die 224 in which a bump material 304 is formed over the contact pad 232, similar to Figure 11c. The bump material 304 is substantially conformable' and undergoes a plastic deformation greater than about 25 μπι under a force corresponding to a vertical load of about 200 grams. The bump material 304 is wider than the conductive traces 306 on the substrate 308. A conductive via 310 having an opening 312 and a conductive sidewall 314 is formed through the conductive trace 306, i.e., as shown in Figure 15a, the conductive trace 3 〇 6 can be applied as shown in Figures 6-9. The interconnection structure without SRO is described. The semiconductor die 224 is arranged to align the bump locations on the bump material 304 and the conductive traces 306. See Figures 19a-i9g. Alternatively, bump material 304 can be aligned with conductive or other interconnect locations formed on substrate 308. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 304 over the conductive traces 306 and into the openings 3 12 of the conductive vias 30. This force f can be applied at high temperatures. Due to the compliant nature of the bump material 304, the bump material is deformed or protruded around the top and side surfaces of the conductive traces 306 and into the opening 312 of the conductive via 310, as in Figure 15b. Shown. In particular, the application of pressure causes the bump material 3〇4 to plastically deform and cover the top and side surfaces of the conductive line 306 and into the opening 312 of the conductive via 31〇. Therefore, the bump material 3〇4 is electrically connected to the conductive traces 3〇6 and the conductive sidewalls 314 for use in the z-direction vertical interconnection through the substrate 3〇8. The plastic flow of the bump material 304 creates a mechanical tight connection between the bump material and the top and side surfaces of the conductive traces 3〇6 and the openings si] of the conductive vias 31〇. The mechanical tight connection between the bump material and the top and side surfaces of the conductive traces and the opening 312 of the conductive via 310 provides a large contact area between the individual surfaces without significantly increasing the bonding force Strong connection. The mechanical tight connection between the bump material and the top and side surfaces of the conductive traces 306 and the openings of the conductive vias 31 also reduces lateral grain movement during subsequent processes such as packaging. Since the conductive via 31 and the bump material 3〇4 are formed together within the interconnection position, the total substrate interconnection area is reduced. In the BOL embodiments of FIGS. 11a-Ug, -(3), 13a_13d, 14a_Uc&A -, by making the conductive lines narrower than the interconnect structure, the pitch of the conductive lines can be reduced to increase the wire density and the number of 1/0. . A narrower conductive path reduces the force required to deform the interconnect structure around the conductive trace. For example, the necessary force F may be such that a bump abuts a conductive line or pad that is wider than the four. The required force is 3〇·5〇%. The lower pressure F is useful for fine-pitch interconnects and small-grain coplanarity within a finger-to-tolerance tolerance and for achieving uniform slanting deformation and high reliability interconnect combinations. Deforming the interconnect structure around the conductive trace mechanically locks the bump to the trace to avoid grain movement or grain floating during reflow. Figures 16a-16c illustrate a mold underfill (MUF) process to deposit the package material > around the bumps between the semiconductor die and the substrate. Figure 16a shows the use of the semiconductor die 224! The bump material 234 of lb is mounted to the substrate 254' and is disposed between the upper mold support 316 and the lower mold support 318 of the chase mold 32A. The other semiconductor die and substrate combination of Uaiig, i2ai2d, 13a-1 3d, 14a-14c and 15a-15b may also be disposed on the upper mold support 316 and the lower mold support 318 of the groove mold 32A. between. The upper mold leg 316 is comprised of a compressible leaving film 322. In Figure 16b, the upper mold support member 316 and the lower mold support member 318 are placed together to enclose the semiconductor die 224 and the substrate 254 having an open space over the substrate and between the semiconductor die and the substrate. between. The shrinkable release film 322 is bonded to the back surface and the side surface of the semiconductor die 224 to block the formation of the encapsulating material on the surface. The liquid-filled package material is infused into the mouth 326. In the side of the groove mold 320, an optional vacuum assist 328 draws from the opposite sides, the encapsulating material fills evenly into the open space above the substrate 254, and the opening between the semiconductor die 224 and the substrate 254. space. The encapsulating material β, a ruthenium polymer composite (for example, an epoxy acrylate having a filler of epoxy resin γ2 with a filler), or a polysiloxane having a suitable filler. The encapsulating material 324 is non-conductive and environmentally protected. The conductor device is protected from external elements and contaminants. The compressible material 322 prevents the encapsulating material 324 from flowing over the back surface of the semiconductor die 224 and around the side surfaces. The encapsulating material 324 is cured. The back surface 228 and side surfaces of the semiconductor wafer 224 remain exposed from the package material η#. Figure 16c shows an embodiment of MUF and overfilling of the mold (centangles 1?), i.e., without the compressible material 322. The semiconductor die 224 and the substrate 254 are disposed between the upper mold support and the lower mold support 318 of the groove mold 32A. The upper mold support 3i6 and the lower wedge support 3 18 are placed together to enclose the semiconductor die 224 and the substrate 254 having an open space above the substrate, around the semiconductor die, and Between the semiconductor die and the substrate. The encapsulating material 324 in a liquid state is injected into the - side of the groove mold 320 by the nozzle 326, and an optional vacuum assist 328 is sucked from the opposite side to uniformly fill the encapsulating material in the semiconductor. An open space around the die 224 and above the substrate and an open space between the semiconductor die 224 and the substrate 254. The encapsulating material 324 is cured. Figure π shows another embodiment of depositing an encapsulation material around the semiconductor die 224 and in the gap between the semiconductor die, bit 224 and substrate 254. The semiconductor die 224 and the substrate 254 are surrounded by a barrier ((1) 33 。. The encapsulation material 332 is dispensed from the nozzle 334 into the barrier 33〇 in a liquid state to open the p-bow on the substrate 254· η" η + 丨, 1 叼 valve dime and the open space between the semiconductor die 224 and the substrate 254. The amount of encapsulation material dispensed from the nozzle 334 is controlled to cover the back of the semiconductor crystal 'grain 224 The surface 228 or the side surface is filled under the barrier 33G. The encapsulation material 332 is cured. 39 201227901 Figure 18 shows the semiconductor die 224 and the substrate 254 after the MUF process of Figures 16a, 16c and 17. The encapsulation material 324 is evenly Between the substrate 254 and the bump material 234 between the semiconductor die 224 and the substrate 254. Figures 19a-1 9g show top views of various conductive trace layouts on the substrate or PCB 340. Figure 19a The conductive trace 342 is a conductor formed on the substrate 340 having an integral bump pad or interconnect location 344. The sides of the substrate bump pad 344 may be collinear with the conductive traces 342. Conventional techniques Medium, a solder alignment opening (SR0) is usually Was formed over the interconnect location to limit the bump material during reflow. The Sr〇 increases interconnect spacing and reduces the number of I/Os. In contrast, the mask layer 346 can be formed on a portion of the substrate 340. Above; however, the mask layer is not formed around the substrate bump pads 344 of the conductive traces 342. In other words, the portions of the conductive traces 342 that are designed to mate with the bump material are not originally used in Any SRO of the bump-limited mask layer 346 during reflow. The semiconductor aB particles 224 are disposed over the substrate 340, and the bump material is aligned with the substrate bump 344. The bump material is consumed by the bump material Contacting the bump pad body and then reflowing the bump material for electrical and metallurgical bonding to the substrate bump pad 344 at a reflow temperature. In another embodiment, a conductive bump material utilizes an evaporation An electrolysis electric clock, an electroless electric key, a ball drop or screen printing process is deposited on the substrate bump pad 344. The bump material may be
Au Ag、Pb、B!、Cu、焊料以及其組合,其具有一選配的 助熔溶劑。例如,該凸塊材料可以是共晶_、高鉛的焊 40 201227901 料、或疋無船的焊料。該凸塊材料# &丨_ λ. Α刊τ寸你利用一合適的附著 連結製程來連結到基板凸塊塾3料。在—實施例中,該凸塊 材料係藉由加熱該材料超過其熔點來回焊,以形成凸塊或 互連348,即如同在圖19b中所示者。在某些應用中,凸塊 348係進行二次回焊以改#到基板凸料的電氣接觸。 在該窄的基板凸塊墊344周圍的凸塊材料係在回焊期間維 持晶粒的位置。 在高繞線密度的應用中,最小化導電線路342的逸散 間距是所期望的。在導電線路342之間的逸散間距可藉由 消除用於回焊限制目的之遮罩層,亦即,藉由在沒有遮罩 層下回焊凸塊材料而被減少。由於沒有SR〇被形成在晶粒 凸塊墊232或基板凸塊墊344的周圍,所以導電線路342 可用較細的間距形成,亦即,導電線路342可被設置成較 靠在一起或是較靠近附近的結構。在基板凸塊墊344周圍 沒有SRO之下,導電線路342間的間距係給定為 P = D + PLT+W/2 ’其中D是凸塊348的基底直徑,plt是晶 粒設置容限’並且W是導電線路342的寬度。在一實施例 中’給定ΙΟΟμιη的凸塊基底直徑、ΐ〇μπι的PLT、以及30μιη 的線路線寬,導電線路342之最小的逸散間距是125pm。 該無遮罩的凸塊形成係免去需要考量到如習知技術中可見 的相鄰開口間之遮罩材料的孔帶間隔、焊料遮罩對準容限 (SRT)、以及最小可解析的SRO。 當該凸塊材料在沒有遮罩層下被回焊以將晶粒凸塊墊 232冶金且電連接至基板凸塊墊344時,潤濕及表面張力係 41 201227901 使得該凸塊材料維持自我局限且被保持在晶粒凸塊塾232 與基板凸塊墊344及基板340中緊鄰導電線路342且實質 在該凸塊墊的覆蓋區中的部份之間的空間内。 為了達成該所要的自我局限性質,凸塊材料可在置放 於晶粒凸塊塾232或基板凸塊墊344上之前被浸沒在—助 熔溶劑中,以選擇性地使得該凸塊材料所接觸的區域比導 電線路3 4 2周圍的區域更濕爛。該炼化的凸塊材料係由於 該助熔溶劑的可濕性而維持局限在實質由凸塊墊所界定的 區域内。該凸塊材料並不溢出到較不濕潤的區域。一薄的 氧化層或是其它絕緣層可形成在其中不打算有凸塊材料的 區域之上’以使該區域較不濕潤。因此,晶粒凸塊墊2 3 2 或基板凸塊墊344周圍並不需要有遮罩層34〇。 圖19c係展示平行的導電線路352為直的導體之另一實 施例,其中類似於圖7b,一體型矩形凸塊墊或互連位置354 形成在基板350上。在此例中,基板凸塊墊354係比導電 線路352寬,但是小於配接的凸塊寬度。基板凸塊墊3m 的側邊可以是平行於導電線路352。遮罩層356可形成在基 板350的一部份之上;然而,該遮罩層並未形成在導電線 路352的基板凸塊墊354的周圍。換言之,導電線路352 中被設計以和凸塊材料配接的部份並沒有原本用於在回焊 期間凸塊限制的遮罩層356的任何sr〇。 圖19d係展示以多個列的一陣列配置的導電線路36〇 及362的另一實施例,其中偏置的一體型凸塊墊或互連位 置364形成在基板366上以得到最大的互連逸散的繞線密 42 201227901 度及容量。交替的導電線路360及362係包含一用於繞線 到凸塊整364的肘部。每個基板凸塊塾364的側邊係和導 電線路360及362共線的《遮罩層368可形成在基板366 的一部伤之上’然而’遮罩層368並未形成在導電線路360 及362的基板凸塊塾364的周圍。換言之,導電線路360 及362中被設計以和凸塊材料配接的部份並沒有原本用於 在回焊期間凸塊限制的遮罩層368的任何SR〇。 圖19e係展示以多個列的一陣列配置的導電線路370 及372的另一實施例,其中偏置的一體型凸塊墊或互連位 置374形成在基板376上以得到最大的互連逸散的繞線密 度及容量《交替的導電線路37〇及372係包含一用於繞線 到凸塊墊374的肘部。在此例中,基板凸塊墊374是圓形 的並且比導電線路370及372寬,但是小於配接的互連凸 塊材料的寬度。遮罩層378可形成在基板376的一部份之 上,然而,遮罩層378並未形成在導電線路37〇及372的 基板凸塊墊374的周圍。換言之,導電線路37〇及372中 被設計以和凸塊材料配接的部份並沒有原本用於在回焊期 間凸塊限制的遮罩層378的任何。 圖19f係展不以多個列的一陣列配置的導電線路38〇 及382 &另-實施例中偏置的一體型凸塊墊或互連位 置384形成在基板386上以得到最大的互連逸散的繞線密 度及容量。交替的導電線路則& 382係包含一用於繞線 到&塊塾384的肘部。在此例中,基板凸塊塾384是矩形 的並且比導電線路38…82寬,但是小於配接的互連凸 43 201227901 塊材料的寬度。遮罩層388可形成在基板386的一部份之 上,然而,遮罩層388並未形成在導電線路38〇及382的 基板凸塊墊384的周圍。換言之,導電線路38〇及382中 被設計以和凸塊材料配接的部份並沒有原本用於在回焊期 間凸塊限制的遮罩層388的任何SR0。 作為互連製程的一例子,半導體晶粒224係被設置在 基板366之上,並且凸塊材料234係和圖19d的基板凸塊 墊364對準。凸塊材料234係藉由如同圖lla-llg、12a-12d、 13a-13d、14a-14c及15a-15b所述,加壓該凸塊材料或是藉 由使該凸塊材料和該凸塊墊實體接觸並且接著在一回焊溫 度下回焊該凸塊材料,以電氣及冶金連接至基板凸塊墊 364 〇 在另一實施例中,一導電凸塊材料係利用一蒸鍍、電 解的電鍍、無電的電鍍、球式滴落或網版印刷的製程沉積 在基板凸塊墊364之上。該凸塊材料可以是八卜Sn ' Ni、Au Ag, Pb, B!, Cu, solder, and combinations thereof, have an optional fluxing solvent. For example, the bump material can be a eutectic _, a high lead solder 40 201227901 material, or a shipless solder. The bump material # &丨_ λ. τ τ 寸 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你In an embodiment, the bump material is soldered back and forth by heating the material beyond its melting point to form bumps or interconnects 348, as shown in Figure 19b. In some applications, bumps 348 are subjected to secondary reflow to change the electrical contact to the substrate bumps. The bump material around the narrow substrate bump pad 344 maintains the position of the die during reflow. In applications with high wire density, it is desirable to minimize the escape spacing of the conductive traces 342. The escape spacing between the conductive traces 342 can be reduced by eliminating the masking layer for reflow soldering purposes, i.e., by soldering the bump material without the mask layer. Since no SR is formed around the die bump pad 232 or the substrate bump pad 344, the conductive traces 342 can be formed with a fine pitch, that is, the conductive traces 342 can be placed closer together or Close to the nearby structure. Below the substrate bump pad 344, there is no SRO, and the spacing between the conductive lines 342 is given as P = D + PLT + W / 2 ' where D is the base diameter of the bump 348, and plt is the die set tolerance' And W is the width of the conductive line 342. In one embodiment, given the bump base diameter of ΙΟΟμιη, the PLT of ΐ〇μπι, and the line width of 30 μm, the minimum escape pitch of the conductive trace 342 is 125 pm. The maskless bump formation eliminates the need to consider the hole spacing of the mask material between adjacent openings as seen in the prior art, solder mask alignment tolerance (SRT), and minimally resolvable SRO. When the bump material is reflowed without the mask layer to metallurgically and electrically connect the die bump pads 232 to the substrate bump pads 344, the wetting and surface tension system 41 201227901 maintains the bump material self-limiting And being held in the space between the die bumps 232 and the substrate bump pads 344 and the portions of the substrate 340 that are in close proximity to the conductive traces 342 and substantially in the footprint of the bump pads. To achieve the desired self-limiting nature, the bump material can be immersed in a fluxing solvent prior to placement on the die bumps 232 or substrate bump pads 344 to selectively cause the bump material to The area of contact is more wet than the area around the conductive line 34. The refining bump material is maintained confined to a region substantially defined by the bump pads due to the wettability of the fluxing solvent. The bump material does not spill into the less humid areas. A thin oxide layer or other insulating layer may be formed over the area where the bump material is not intended to make the area less humid. Therefore, there is no need for a mask layer 34〇 around the die bump pad 2 3 2 or the substrate bump pad 344. Figure 19c shows another embodiment in which parallel conductive traces 352 are straight conductors, wherein an integral rectangular bump pad or interconnect location 354 is formed on substrate 350, similar to Figure 7b. In this example, the substrate bump pads 354 are wider than the conductive traces 352, but less than the mating bump width. The sides of the substrate bump pads 3m may be parallel to the conductive traces 352. The mask layer 356 can be formed over a portion of the substrate 350; however, the mask layer is not formed around the substrate bump pads 354 of the conductive traces 352. In other words, the portion of the conductive trace 352 that is designed to mate with the bump material does not have any sr turns that would otherwise be used for the bump layer 356 that was bump-limited during reflow. Figure 19d shows another embodiment of conductive traces 36A and 362 arranged in an array of a plurality of columns, wherein an offset integral bump pad or interconnect location 364 is formed over substrate 366 for maximum interconnection. The escaped winding is 42 201227901 degrees and capacity. The alternating conductive traces 360 and 362 comprise an elbow for winding to the bump 364. The side layer of each substrate bump 364 and the conductive lines 360 and 362 are collinear. The mask layer 368 can be formed over a portion of the substrate 366. However, the mask layer 368 is not formed on the conductive line 360. And the periphery of the substrate bump 364 of 362. In other words, the portions of conductive traces 360 and 362 that are designed to mate with the bump material do not have any SR turns that would otherwise be used for bump-limited masking 368 during reflow. Figure 19e shows another embodiment of conductive traces 370 and 372 arranged in an array of a plurality of columns, wherein an offset integral bump pad or interconnect location 374 is formed over substrate 376 for maximum interconnection Dispersed Winding Density and Capacity The alternating conductive lines 37A and 372 comprise an elbow for winding to the bump pad 374. In this example, the substrate bump pads 374 are circular and wider than the conductive traces 370 and 372, but less than the width of the mating interconnect bump material. A mask layer 378 can be formed over a portion of the substrate 376, however, the mask layer 378 is not formed around the substrate bump pads 374 of the conductive traces 37A and 372. In other words, the portions of the conductive traces 37A and 372 that are designed to mate with the bump material do not have any of the mask layers 378 that would otherwise be used for bump limiting during reflow. Figure 19f shows the conductive traces 38 and 382 in an array of multiple columns, and the integrated bump pads or interconnect locations 384 that are biased in another embodiment are formed on the substrate 386 for maximum mutual The winding density and capacity of Lian Yi San. The alternating conductive lines & 382 comprise an elbow for winding to & block 384. In this example, the substrate bumps 384 are rectangular and wider than the conductive traces 38...82, but less than the width of the mating interconnect bumps 43 201227901 block material. Mask layer 388 can be formed over a portion of substrate 386, however, mask layer 388 is not formed around substrate bump pads 384 of conductive traces 38A and 382. In other words, the portions of the conductive traces 38A and 382 that are designed to mate with the bump material do not have any SR0 that would otherwise be used for the bump layer 388 that was bump-limited during reflow. As an example of an interconnect process, semiconductor die 224 is disposed over substrate 366 and bump material 234 is aligned with substrate bump pad 364 of Figure 19d. The bump material 234 is pressed by the bump material or by the bump material and the bump as described in FIGS. 11a-llg, 12a-12d, 13a-13d, 14a-14c, and 15a-15b The pad is in physical contact and then reflowed to the bump material at a reflow temperature for electrical and metallurgical bonding to the substrate bump pad 364. In another embodiment, a conductive bump material utilizes an evaporation, electrolysis A process of electroplating, electroless plating, ball dropping or screen printing is deposited over the substrate bump pads 364. The bump material may be Ba Bu Sn ' Ni,
Au、Ag' Pb、Bi、Cu、焊料及其組合’其具有一選配的助 熔T劑。例如,該凸塊材料可以是共晶Sn/pb、高鉛的焊料、 或是無錯的焊料。該凸塊材料係利用_ *適的附著或連結 製程連結到基板凸塊墊364。在一實施例中,該凸塊材料: 藉由加#該材料超過其炫點而被回焊以形成凸塊或互連 390,即如同在圖19g中所示者。在某些應用中,凸塊_ 係進行二次回焊以改善到基板凸塊塾⑽的電氣接觸1 窄的基板凸㈣364周圍的凸塊材料係維持在回 : 粒的置放。凸塊材料234或凸塊390亦可形成在圖二: 201227901 的基板凸塊墊配置上。 在高繞線密度的應用中,最小化圖19a- 1 9g的導電線路 360及362或是其它導電線路配置的逸散間距是所期望的。 在導電線路360及362之間的逸散間距可藉由消除用於回 焊限制目的之遮罩層,亦即,藉由在沒有遮罩層下回焊凸 塊材料而被減少。由於沒有SRO被形成在晶粒凸塊墊232 或基板凸塊墊364的周圍,所以導電線路36〇及362可用 較細的間距形成,亦即,導電線路36〇及362可被設置成 較靠在一起或是較靠近附近的結構。在基板凸塊墊364周 圍沒有SRO之下,導電線路360及362間的間距係給定為 P=D/2+PLT+W/2,其争D是凸塊390的基底直徑,PLT是 晶粒設置容限,並且W是導電線路360及362的寬度。在 一貫把例中’給定1 ΟΟμιη的凸塊基底直徑、1 〇μιη的PLT、 以及30μπι的線路線寬,導電線路36〇及362之最小的逸散 間距是125μιη。該無遮罩的凸塊形成係免去需要考量到如 習知技術中可見的相鄰開口間之遮罩材料的孔帶間隔、 SRT、以及最小可解析的SRO。 當s玄凸塊材料在沒有遮罩層下被回焊以將晶粒凸塊塾 232冶金且電連接至基板凸塊墊364時,潤濕及表面張力係 使得該凸塊材料維持自我局限且被保持在晶粒凸塊墊232 與基板凸塊墊364及基板366中緊鄰導電線路360及362 且實質在該凸塊墊的覆蓋區中的部份之間的空間内。 為了達成該所要的自我局限性質,凸塊材料可在置放 於晶粒凸塊墊232或基板凸塊墊3 64上之前被浸沒在一助 45 201227901 熔溶劑中,以選擇性地使得該凸塊材料所接觸的區域比導 電線路360及362周圍的區域更濕潤。該熔化的凸塊材料 係由於該助熔溶劑的可濕性而維持局限在實質由凸塊墊所 界定的區域内。該凸塊材料並不溢出到較不濕潤的區域。 薄的氧化層或是其它絕緣層可形成在其中不打算有凸塊 材料的區域之上,以使該區域較不濕潤。因此,晶粒凸塊 墊332或基板凸塊墊364周圍並不需要有遮罩層368。 在圖20a中,遮罩層392係沉積在導電線路394及396 的一部份之上。然而,遮罩層392並未形成在一體型凸塊 墊398之上。因此,在基板4〇〇上的每個凸塊墊398都沒 有SRO。一非濕性遮罩補片(patch)4〇2係被形成在基板4〇〇 上且在一體型凸塊塾3 9 8的陣列内的空隙中,亦即,在相 鄰的凸塊塾之間。该遮罩補片402亦可形成在半導體晶粒 2 2 4上且在晶粒凸塊墊3 9 8的陣列内的空隙中。更一般而 5 ’ s玄遮罩補片係被形成在任何配置中的一體型&塊塾附 近’以避免溢出到較不濕潤的區域。 半導體晶粒224係被设置在基板4〇〇之上,並且凸塊 材料係和基板凸塊墊398對準。該凸塊材料係藉由如同圖 lla-llg、12a-12d、13a-13d、14a-14c 及 i5a_15b 所述地壓 下該凸塊材料或疋藉由使S亥凸塊材料和該凸塊墊實體接觸 並且接著在一回焊溫度下回焊該凸塊材料,以電氣且冶金 連接至基板凸塊墊398。 在另一實施例中’一導電凸塊材料係利用一蒸鍍、電 解的電锻、無電的電鑛、球式滴落、或是網版印刷的製程 46 201227901 沉積在晶粒的一體型凸塊墊398之上。該巴塊材料可以是 Sn Ni Au、Ag、Pb、Bi、Cu、焊料及其組合,其具 有選配的助熔溶劑。例如,該凸塊材料可以是共晶 Sn/Pb、冋鉛的烊料、或是無鉛的焊料。該凸塊材料係利用 一合適的附著或連結製程連結到一體型凸塊墊398。在一實 &例中Θ凸塊材料係藉由加熱該材料超過其溶點來進行 回焊’以形成球或凸塊4〇4,即如同在圖廳中所示者。在 某些應用中,凸塊404係進行二次回焊以改善至—體型凸 塊墊398的電氣接觸。該凸塊亦可壓縮連結到一體型凸塊 塾398。凸塊404係代表-種可形成在—體型凸塊墊398之 上的互連結構的類型。該互連結構亦可以使用柱形凸塊、 微凸塊、或其它電互連。 在向繞線密度的應用巾,最小化逸散間距是所期望 的。為了減少在導電線路394及396間的間距,該凸塊材 料係在一體型凸塊墊398周圍沒有遮罩層之下進行回焊。 在導電線路394及396之間的逸散間距可藉由消除用於回 焊限制目的之遮罩層以及該一體型凸塊墊周圍相關的 SRO,亦即,藉由在沒有遮罩層下回焊凸塊材料而被減少。 遮罩層392可形成在導電線路394及396以及基板4〇〇中 遠離一體型凸塊墊398的一部份之上;然而’遮罩層392 並未形成在一體型凸塊墊398的周圍。換言之,導電線路 394及396中被設計以和凸塊材料配接的部份並沒有原本用 於在回焊期間凸塊限制的遮罩層392的任何sr〇。 此外,遮罩補片402係被形成在基板4〇〇上且在一體 47 201227901Au, Ag' Pb, Bi, Cu, solder, and combinations thereof have an optional fluxing agent T. For example, the bump material can be eutectic Sn/pb, high lead solder, or error free solder. The bump material is bonded to the substrate bump pad 364 by a suitable attachment or bonding process. In one embodiment, the bump material: is reflowed by the addition of the material beyond its dazzle to form bumps or interconnects 390, as shown in Figure 19g. In some applications, the bumps are subjected to secondary reflow to improve the electrical contact to the substrate bumps (10). The narrow bumps (4) 364 around the bumps are maintained in the back: grain placement. Bump material 234 or bumps 390 may also be formed on the substrate bump pad configuration of Figure 2: 201227901. In high wire density applications, it is desirable to minimize the escape spacing of the conductive traces 360 and 362 of Figures 19a-9g or other conductive trace configurations. The escape spacing between the conductive traces 360 and 362 can be reduced by eliminating the masking layer for reflow soldering purposes, i.e., by reflow solder bump material without the mask layer. Since no SRO is formed around the die bump pad 232 or the substrate bump pad 364, the conductive traces 36 and 362 can be formed with a fine pitch, that is, the conductive traces 36 and 362 can be placed relatively Together or closer to the nearby structure. Below the substrate bump pad 364, there is no SRO, and the spacing between the conductive lines 360 and 362 is given as P = D / 2 + PLT + W / 2, which is the base diameter of the bump 390, and the PLT is crystal. The particles are set to tolerance and W is the width of conductive lines 360 and 362. In the conventional example, the bump base diameter of 1 ΟΟ μηη, the PLT of 1 μm, and the line width of 30 μm are given, and the minimum escape pitch of the conductive lines 36 〇 and 362 is 125 μm. The maskless bump formation eliminates the need to consider the aperture spacing, SRT, and minimum resolvable SRO of the masking material between adjacent openings as seen in the prior art. When the s-bump material is reflowed without the mask layer to metallurgically and electrically connect the die bumps 232 to the substrate bump pads 364, the wetting and surface tension are such that the bump material remains self-contained and It is held in the space between the die bump pad 232 and the substrate bump pad 364 and the substrate 366 in the immediate vicinity of the conductive traces 360 and 362 and substantially in the footprint of the bump pad. In order to achieve the desired self-limiting nature, the bump material may be immersed in a flux 45 squirrel pad 232 or substrate bump pad 3 64 to selectively cause the bump to be placed on the die bump pad 232 or the substrate bump pad 3 64. The area in contact with the material is more humid than the area around conductive lines 360 and 362. The molten bump material is maintained confined within the area substantially defined by the bump pads due to the wettability of the fluxing solvent. The bump material does not spill into the less humid areas. A thin oxide layer or other insulating layer may be formed over the area where the bump material is not intended to make the area less humid. Therefore, a mask layer 368 is not required around the die bump pad 332 or the substrate bump pad 364. In Figure 20a, a mask layer 392 is deposited over a portion of conductive traces 394 and 396. However, the mask layer 392 is not formed over the integral bump pad 398. Therefore, each bump pad 398 on the substrate 4 has no SRO. A non-wet mask patch 4 〇 2 is formed on the substrate 4 且 and in the voids in the array of integral bump 塾 298, that is, in adjacent bumps 塾between. The mask patch 402 can also be formed on the semiconductor die 2 24 and in the voids within the array of die bump pads 298. More generally, the 5's mysterious patch patch is formed adjacent to the integral & block in any configuration to avoid spillage into less humid areas. The semiconductor die 224 is disposed over the substrate 4 and the bump material is aligned with the substrate bump pad 398. The bump material is pressed by the bump material or by using the bump material and the bump pad as described in FIGS. 11a-llg, 12a-12d, 13a-13d, 14a-14c, and i5a-15b The bump material is then contacted and then re-welded at a reflow temperature for electrical and metallurgical bonding to the substrate bump pads 398. In another embodiment, a conductive bump material is deposited on the die by a vapor deposition, electrolytic forging, electroless ore, ball drop, or screen printing process 46 201227901 Above the block pad 398. The block material may be Sn Ni Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional fluxing solvent. For example, the bump material may be eutectic Sn/Pb, tantalum lead, or lead-free solder. The bump material is bonded to the integral bump pad 398 using a suitable attachment or bonding process. In a real & example, the bismuth bump material is reflowed by heating the material beyond its melting point to form a ball or bump 4, 4, as shown in the chamber. In some applications, bumps 404 are subjected to secondary reflow to improve electrical contact to body-type bump pads 398. The bumps can also be compression-bonded to the integral bumps 398. Bumps 404 are representative of the type of interconnect structure that can be formed over the body bump pads 398. The interconnect structure can also use stud bumps, microbumps, or other electrical interconnects. Minimizing the escape spacing is desirable in applications where the winding density is applied. In order to reduce the spacing between the conductive traces 394 and 396, the bump material is reflowed without the mask layer around the integral bump pads 398. The escape spacing between the conductive traces 394 and 396 can be achieved by eliminating the mask layer for reflow soldering purposes and the associated SRO around the integral bump pad, that is, by having no mask layer back. Solder bump material is reduced. The mask layer 392 can be formed over portions of the conductive traces 394 and 396 and the substrate 4 away from the integral bump pads 398; however, the mask layer 392 is not formed around the integral bump pads 398. . In other words, the portions of conductive traces 394 and 396 that are designed to mate with the bump material do not have any sr turns that would otherwise be used for bump-limited masking layer 392 during reflow. In addition, the mask patch 402 is formed on the substrate 4〇〇 and integrated in one body.
型凸塊墊398的陣列内的命胳、士 A 單歹J内的工隙中。遮罩補片402是非濕性 材料。遮罩補片402可以是和谀置思Μ。Λ 疋不遮罩層392相同的材料並且 在相同的處理步驟期間施加、或為不同的材料而在不同的 處理步驟期間施加。遮罩補“〇2可藉由對於一體型凸塊 塾刑的睁列内之線路或塾的部份選擇性的氧化、電鐘、 或其它處理來加以形成。遮罩補#術係限制凸塊材料流 到-體型凸㈣398且避免導電凸塊材料滲到相鄰的結構。 田該凸塊材料係利用設置在一體型凸塊墊398的陣列 内之空隙的遮罩補>;4〇2進行回焊時,潤濕及表面張力係 使得該凸塊材料局限且保持在晶粒凸塊墊232與一體型凸 鬼墊398及基板400中緊鄰導電線路394及396且實質在 該一體型凸塊墊398的覆蓋區中的部份之間的空間内。 為了達成所要的局限性質,該凸塊材料可在置放於晶 粒凸塊t* 232 < —體型凸塊塾398 ±之前被浸沒在一助炫 岭劑中,以選擇性地使得該凸塊材料所接觸的區域比導電 線路394及396的周圍區域更濕潤。該熔化的凸塊材料係 由於該助炫溶劑的可濕性而維持局限在實質由凸塊墊所界 疋的區域内。該凸塊材料並不溢出到較不濕潤的區域。一 涛的氧化層或是其它絕緣層可形成在其中不打算有凸塊材 料的區域之上’以使該區域較不濕潤。因此’晶粒凸塊墊 232或一體型凸塊墊398的周圍並不需要遮罩層392。 由於晶粒凸塊墊232或一體型凸塊墊398的周圍沒有 形成SRO,所以導電線路394及396可用較細的間距形成, 亦即’導電線路可較靠近相鄰的結構來設置,而不會接觸 48 201227901 且形成電氣短路。假設相同 ^ 394 ^ 』的綷枓對準設計規則,導電線In the array of the type of bump pads 398, the life in the array is in the work gap. The mask patch 402 is a non-wet material. The mask patch 402 can be thought of. Λ 疋 The same material is not masked 392 and applied during the same processing step, or during different processing steps for different materials. The mask complement "〇2 can be formed by selective oxidation, electric clock, or other treatment of the lines or turns in the array of integrated bumps. The bulk material flows to the body-shaped convex (four) 398 and prevents the conductive bump material from seeping into the adjacent structure. The bump material is covered with a mask provided in the gap of the array of integral bump pads 398>; 2 When reflowing, the wetting and surface tension are such that the bump material is confined and held in the grain bump pad 232 and the integrated bump pad 398 and the substrate 400 in close proximity to the conductive traces 394 and 396 and substantially in the integrated type. In the space between the portions of the footprint of the bump pad 398. To achieve the desired properties, the bump material can be placed before the die bumps t* 232 <-body bumps 塾 398 ± Immersed in a glazing agent to selectively wet the area where the bump material is in contact with the surrounding area of the conductive traces 394 and 396. The molten bump material is due to the wettability of the auxiliaries And the maintenance is limited to the area bounded by the bump pad. The block material does not spill into the less wetted area. An oxide layer or other insulating layer may be formed over the area where the bump material is not intended to make the area less humid. Therefore, the grain convex The mask layer 392 is not required around the block pad 232 or the integral bump pad 398. Since the SRO is not formed around the die bump pad 232 or the integral bump pad 398, the conductive traces 394 and 396 can be thinner. The pitch is formed, that is, the 'conductive line can be set closer to the adjacent structure without contacting 48 201227901 and forming an electrical short. Assuming the same ^ 394 ^ 綷枓 綷枓 alignment design rule, the conductive line
! 6之間的間距係給定為陳1〇 +擎,其中D 疋凸塊404的基底直徑,並且w ^ 疋等電線路394及396的 見又。在 貫施例中’仏宏1 ,,口疋10^m的凸塊直徑以及20μιη 的線路線寬,導電線路394 96之取小的逸散間距是 65μηι。s亥凸塊形成係免去雷|去θ η 光紊需要考®到如習知技術中可見的 相鄰開口間之遮罩材料的孔 的孔帶間隔、以及最小可解析的 SRO 〇 圖2i係展示堆疊封裝(pGp)彻,其中半導體晶粒概 係利用晶粒附接黏著劑41〇而堆疊在半導體晶粗彻上。 半導體晶粒4〇6及408八2丨丨θ 士 及408刀別具有一包含類比或數位電路的 主動表面,該類比或數位電路被實施為形成在該晶粒内且 根據該晶粒的電設計及功能來電互連的主動裝置、被動裝 置、導電層以及介電μ。如t 斗 1電層例如,該電路可包含一或多個電 晶體、二極體以及JL夕犯4^ 八 $成在该主動表面内之電路元件以 實施類比電路或數位雷,说 .t ( W位電路’例如:Dsp、Asic、記憶體或 其它信號處理電路。车道M H t 电峪牛導體晶粒406及408亦可包含例如 是電感器、電容器及電卩且TTJh 电态的IPD,以供RF信號處理使用。 半導體晶粒406係利用圖Ua_Ug、〜⑶、i3a i3d、 15a_15b的實施例中之任一實施例,利用形成在 接觸塾418上之凸塊材料416而被安裝到形成在基板414 上的導電線路412。導電線路412係可應用到如圖Μ中所 述之無SRO的互連結構。半導體晶粒彻係利用焊線仏 電連接至形成在基板414上之接觸塾42〇。焊線⑵之相反 49 201227901 知係連結到半導體晶粒4 〇 6上之接觸塾4 2 4。 遮罩層426备'被形成在基板414之上且開口超過半導 體晶粒406的覆蓋區。儘管遮罩層426在回焊期間並不限 制凸塊材料416到導電線路412,該開放的遮罩可運作為一 屏障以避免在MUF期間封裝材料428遷移到接觸墊42〇或 焊線422。封裝材料428係類似於圖16a“6c沉積在半導體 b曰粒408及基板414之間。遮罩層426係阻擋muf封裝材 料428到達接㈣42〇及焊線422,否則可能會造成缺陷。 遮罩層426係容許較大的半導體晶粒被設置在一特定的基 板上,而無封裝材料428流出到接觸墊42〇之上的風險。 儘管本發明的一或多個實施例已詳細地解說,熟習此 項技術者冑會體認到可在不脫離如以下的申料利範圍中 所闡述之本發明的範_下,對於該些實施例進行修改及調 適〇 【圖式簡單說明】 圖1係描繪一形成在半導體晶粒及基板上的線路導線 間之習知的互連的橫截面圖; 圖2係描繪透過一焊料遮罩開口而形成在線路導線之 上的習知的互連的俯視圖; ^圖3a-3b係描繪在利用一焊料遮罩回焊的互連之間的 習知的線路導線配置; 係描繪一女裝到其表面之不同類型的封裝的PCB; 圖5a-5d係描繪安裝到該pCB的代表性的半導體封裝 50 201227901 之進一步細節; 圖6a-6b是一具有在無焊料遮罩下回焊在線路導線上 之互連的半導體裝置; 圖7a-7b係展示該凸塊墊沿著線路導線的進一步細節; 圖8係展示一具有不可熔的基底以及可熔的蓋之複合 的互連; 圖9a-9b係描繪具有在無焊料遮罩下回焊在線路導線 上的互連之半導體裝置的一替代的實施例; 圖10a-1 Oh係描繪形成在一半導體晶粒之上用於連結 至一基板上的導電線路之各種的互連結構; 圖11 a-11 g係描繪該半導體晶粒以及連結到該些導電 線路的互連結構; 圖12a-12d係描繪具有一連結到該些導電線路之楔形 的互連結構的半導體晶粒; 圖13a-13d係描繪該半導體晶粒以及連結到該些導電 線路的互連結構的另一實施例; 圖14a-14c係描繪連結到該些導電線路的階梯形凸塊 以及柱形凸塊互連結構; 圖15a-15b係描繪具有導電貫孔的導電線路; 圖16a-16c係描繪在該半導體晶粒及基板之間的模具 底膠填充; 圖17係描繪在該半導體晶粒及基板之間的另一模具底 膠填充; _ 圖18係描繪在模具底膠填充後之半導體晶粒及基板; 51 201227901 圖19a-19g得、描·诊具有開放的焊料對準的$電線路之 各種配置; 圖2〇a-20b係描繪具有在導電線路㈣ 焊料對準;並且 圖21係描繪具有遮罩層屏 制封裝材料之P〇P。 #帛在模具底膠填充期間抑 【主 要元件符號說明】 10 覆晶類型半導體裝置 12 互連 14 凸塊塾 15 焊料遮罩 16 焊料遮罩或對準開口 18 基板 20 線路導線 30 線路導線 32 線路導線 34 線路導線 36 凸塊 38 凸塊 40 基板 42 半導體晶粒 44 焊料遮罩 46 凸塊墊 52 201227901 48 凸塊墊 50 電子裝置 52 印刷電路板 54 線路 56 打線接合封裝 58 覆晶 60 球狀柵格陣列 62 凸塊晶片載體 64 雙排型封裝 66 平台柵格陣列 68 多晶片模組 70 四邊扁平無引腳封裝 72 四邊扁平封裝 74 半導體晶粒 76 接觸墊 78 中間載體 80 導線 82 焊線 84 封裝材料 88 半導體晶粒 90 载體 92 底勝填充或環氧樹脂黏者材料 94 焊線 96 接觸墊 53 201227901 98 接觸墊 100 模製化合物或封裝材料 102 接觸墊 104 凸塊 106 中間載體 108 主動區域 110 凸塊 111 凸塊墊 112 凸塊 114 信號線The spacing between 6 is given as the thickness of the base of the D 疋 bump 404, and the w ^ 疋 isoelectric lines 394 and 396 are seen again. In the example, '仏宏1', the diameter of the bump of 10^m and the line width of 20μm, the small escape pitch of the conductive line 394 96 is 65μη. The s-high bump formation system is free of lightning. The θ η luminescence needs to be tested to the hole spacing of the holes of the mask material between adjacent openings as seen in the prior art, and the minimum resolvable SRO 〇 Figure 2i A stacked package (pGp) is shown in which the semiconductor crystal grains are stacked on the semiconductor crystal by using the die attach adhesive 41. The semiconductor die 4 〇 6 and 408 八 丨丨 θ 士 and 408 刀 have an active surface comprising an analog or digital circuit, the analog or digital circuit being implemented to be formed within the die and based on the die Design and function call interconnect active devices, passive devices, conductive layers and dielectric μ. For example, the circuit can include one or more transistors, diodes, and JLs to form a circuit component within the active surface to implement an analog circuit or a digital ray, said .t (W-bit circuit 'eg Dsp, Asic, memory or other signal processing circuit. Lane MH t electric yak conductor dies 406 and 408 may also contain IPDs such as inductors, capacitors and gongs and TTJh electrical states, For use in RF signal processing, the semiconductor die 406 is mounted to form using any of the embodiments of Figures Ua_Ug, ~(3), i3a i3d, 15a-15b, using bump material 416 formed on contact pads 418. Conductive line 412 on substrate 414. Conductive line 412 can be applied to an SRO-free interconnect structure as described in Figure 半导体. The semiconductor die is electrically connected to the contact formed on substrate 414 by wire bonds. 42. The opposite of the bonding wire (2) 49 201227901 is known to be bonded to the contact 塾 4 2 4 on the semiconductor die 4 〇 6. The mask layer 426 is formed over the substrate 414 and the opening exceeds the coverage of the semiconductor die 406 Zone. Although the mask layer 426 is during reflow The bump material 416 is not limited to the conductive traces 412, which can function as a barrier to avoid migration of the encapsulation material 428 to the contact pads 42 or bond wires 422 during the MUF. The encapsulation material 428 is similar to Figure 6a "6c" Deposited between the semiconductor b particles 408 and the substrate 414. The mask layer 426 blocks the muf package material 428 from reaching the junction 42 and the bond wires 422, which may cause defects. The mask layer 426 allows for larger semiconductor grains. The risk is placed on a particular substrate without the encapsulation material 428 flowing over the contact pads 42. Although one or more embodiments of the present invention have been explained in detail, those skilled in the art will recognize Modifications and adaptations of the embodiments may be made without departing from the scope of the invention as set forth in the following claims. FIG. 1 depicts a semiconductor die and substrate. A cross-sectional view of a conventional interconnection between line conductors; FIG. 2 is a top plan view of a conventional interconnection formed over a line conductor through a solder mask opening; ^ Figures 3a-3b are depicted in Using a solder mask A conventional line conductor configuration between soldered interconnects; a PCB depicting a different type of package for women's wear to the surface; FIGS. 5a-5d depict further semiconductor package 50 201227901 mounted to the pCB 6a-6b is a semiconductor device having interconnects soldered back to the line conductors without a solder mask; Figures 7a-7b show further details of the bump pads along the line conductors; Figure 8 is a An interconnected interconnect having a non-fusible substrate and a fusible cover; Figures 9a-9b depict an alternate embodiment of a semiconductor device having interconnects soldered back on a line conductor without a solder mask; 10a-1 Oh depicts various interconnect structures formed over a semiconductor die for bonding to conductive traces on a substrate; FIG. 11 a-11 g depicting the semiconductor die and bonding to the conductive traces Figure 12a-12d depicts a semiconductor die having a wedge-shaped interconnect structure bonded to the conductive traces; Figures 13a-13d depict the semiconductor die and interconnections bonded to the conductive traces Another structure Figures 14a-14c depict stepped bumps and stud bump interconnect structures bonded to the conductive traces; Figures 15a-15b depict conductive traces having conductive vias; Figures 16a-16c depict The die pad between the semiconductor die and the substrate is filled; FIG. 17 depicts another die underfill between the semiconductor die and the substrate; FIG. 18 depicts the semiconductor die after the die pad is filled. And the substrate; 51 201227901 Figures 19a-19g show, describe the various configurations of the electrical circuit with open solder alignment; Figures 2a-20b depict the solder alignment on the conductive traces (4); and Figure 21 depicts P〇P with masking screen packaging material. #帛 During the mold underfill filling [Main component symbol description] 10 flip chip type semiconductor device 12 interconnection 14 bump 塾 15 solder mask 16 solder mask or alignment opening 18 substrate 20 line wire 30 line wire 32 line Wire 34 Line Conductor 36 Bump 38 Bump 40 Substrate 42 Semiconductor Die 44 Solder Mask 46 Bump Pad 52 201227901 48 Bump Pad 50 Electronics 52 Printed Circuit Board 54 Line 56 Wire Bonded Package 58 Flip Chip 60 Ball Grid Grid array 62 bump wafer carrier 64 double row package 66 platform grid array 68 multi wafer module 70 quad flat no-lead package 72 quad flat package 74 semiconductor die 76 contact pad 78 intermediate carrier 80 wire 82 wire bonding 84 package Material 88 Semiconductor die 90 Carrier 92 Bottom fill or epoxy adhesive material 94 Bond wire 96 Contact pad 53 201227901 98 Contact pad 100 Molding compound or encapsulating material 102 Contact pad 104 Bump 106 Intermediate carrier 108 Active region 110 Bump 111 bump pad 112 bump 114 signal line
115 PCB 116 模製化合物或封裝材料 117 球或凸塊 120 覆晶類型的半導體晶粒 122 晶粒凸塊墊 1 24 線路導線 126 凸塊墊115 PCB 116 Molding compound or encapsulant 117 Ball or bump 120 Flip-chip type semiconductor die 122 Grain bump pad 1 24 Line wire 126 Bump pad
130 基板或PCB 132 互連 138 底膠填充材料 140 焊料遮罩 144 複合的凸塊 146 不可熔的基底 148 可熔的蓋 54 201227901 150 152 154 156 160 162 168 170 220 222 324 226 228 230 232 234 236 238 240 242 244 246 248 覆晶類型的半導體晶粒 晶粒凸塊塾 線路導線 凸塊墊130 Substrate or PCB 132 Interconnect 138 Underfill Filler 140 Solder Mask 144 Composite Bump 146 Non-Fuseable Substrate 148 Fusible Cover 54 201227901 150 152 154 156 160 162 168 170 220 222 324 226 228 230 232 234 236 238 240 242 244 246 248 Flip-chip type semiconductor grain grain bumps 塾 line conductor bump pads
基板或PCB 互連 底膠填充材料 焊料遮罩 半導體晶圓 主體基板材料 半導體晶粒或構件 切割道 背表面 主動表面 導電層 凸塊材料 球或凸塊 複合的凸塊 不可熔的部份 可熔的部份 凸塊 導電柱 凸塊材料 突點 55 250 201227901 252 254 256 258 260 261 262 264 266 268 270 274 276 27 8 280 284 286 288 290 294 296 298 300 304 鋸條或雷射切割工具 基板 導電線路 基板或PCB 導電線路 凸塊材料 複合的凸塊 不可熔或不可分解的部份 可熔或可分解的部份 導電線路 基板 凸塊材料 導電線路 基板 突點 凸塊材料 尖端 導電線路 基板 凸塊材料 尖端 導電線路 基板 凸塊材料 56 201227901 306 308 310 312 314 316 318 320 322 324 326 328 330 332 334 340 342 344 346 348 350 352 354 導電線路 基板 導電貫孔 開口 導電的側壁 上方模具支撐件 下方模具支撐件 凹槽模具 可壓縮的離型膜 封裝材料 喷嘴 輔助 屏障 封裝材料 喷嘴 基板 導電線路 基板凸塊塾 遮罩層 凸塊或互連 基板 導電線路 基板凸塊墊 遮罩層 £ 57 356 201227901 360 導電線路 362 導電線路 364 基板凸塊塾 366 基板 368 遮罩層 370 導電線路 372 導電線路 374 基板凸塊墊 376 基板 378 遮罩層 380 導電線路 382 導電線路 384 基板凸塊墊 386 基板 388 遮罩層 390 凸塊或互連 392 遮罩層 394 導電線路 396 導電線路 398 凸塊墊 400 基板 402 遮罩補片 404 球或凸塊 405 堆疊封裝 58 201227901 406 半導體晶粒 408 半導體晶粒 410 晶粒附接黏著劑 412 導電線路 414 基板 416 凸塊材料 418 接觸墊 420 接觸墊 422 焊線 424 接觸墊 426 遮罩層 428 封裝材料 59Substrate or PCB Interconnect Primer Filler Solder Mask Semiconductor Wafer Body Substrate Material Semiconductor Die or Member Cut Surface Back Surface Active Surface Conductive Layer Bump Material Ball or Bump Composite Bump Non-meltable Part Fusible Partial bump conductive stud bump material bump 55 250 201227901 252 254 256 258 260 261 262 264 266 268 270 274 276 27 8 280 284 286 288 290 294 296 298 300 304 Saw blade or laser cutting tool substrate conductive circuit substrate or PCB conductive line bump material composite bump non-meltable or non-decomposable part fusible or decomposable part of conductive circuit substrate bump material conductive circuit substrate bump bump material tip conductive circuit substrate bump material tip conductive line Substrate bump material 56 201227901 306 308 310 312 314 318 318 320 322 324 326 328 330 332 334 340 342 344 346 348 350 352 354 Conductive circuit substrate conductive through hole opening conductive sidewall above mold support lower mold support groove mold Compressible release film packaging material nozzle auxiliary barrier packaging material nozzle base Conductive circuit substrate bump 塾 mask layer bump or interconnect substrate conductive circuit substrate bump pad mask layer £ 57 356 201227901 360 conductive line 362 conductive line 364 substrate bump 塾 366 substrate 368 mask layer 370 conductive line 372 conductive Line 374 Substrate bump pad 376 Substrate 378 Mask layer 380 Conductive line 382 Conductive line 384 Substrate bump pad 386 Substrate 388 Mask layer 390 Bump or interconnect 392 Mask layer 394 Conductive line 396 Conductive line 398 Bump pad 400 Substrate 402 Mask Patch 404 Ball or Bump 405 Stack Package 58 201227901 406 Semiconductor Die 408 Semiconductor Die 410 Die Attachment Adhesive 412 Conductive Line 414 Substrate 416 Bump Material 418 Contact Pad 420 Contact Pad 422 Bond Wire 424 Contact pad 426 mask layer 428 encapsulation material 59
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/969,467 US9029196B2 (en) | 2003-11-10 | 2010-12-15 | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201227901A true TW201227901A (en) | 2012-07-01 |
TWI527178B TWI527178B (en) | 2016-03-21 |
Family
ID=46686379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100102449A TWI527178B (en) | 2010-12-15 | 2011-01-24 | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101979024B1 (en) |
TW (1) | TWI527178B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10043774B2 (en) | 2015-02-13 | 2018-08-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuit packaging substrate, semiconductor package, and manufacturing method |
US10304801B2 (en) | 2016-10-31 | 2019-05-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Redistribution layers in semiconductor packages and methods of forming same |
TWI693644B (en) * | 2019-01-28 | 2020-05-11 | 鼎元光電科技股份有限公司 | Structure for packaging and method for manufacturing the same |
US11158619B2 (en) | 2016-10-31 | 2021-10-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Redistribution layers in semiconductor packages and methods of forming same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI655891B (en) * | 2018-03-08 | 2019-04-01 | 綠點高新科技股份有限公司 | Electronic module, manufacturing method thereof, housing of electronic device and manufacturing method thereof |
CN112652540B (en) | 2020-07-01 | 2022-04-22 | 腾讯科技(深圳)有限公司 | Indium column welding spot preparation method, chip substrate and chip |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6774497B1 (en) * | 2003-03-28 | 2004-08-10 | Freescale Semiconductor, Inc. | Flip-chip assembly with thin underfill and thick solder mask |
JP4263953B2 (en) * | 2003-06-23 | 2009-05-13 | 三洋電機株式会社 | Semiconductor device and manufacturing method thereof |
KR101249555B1 (en) * | 2003-11-10 | 2013-04-01 | 스태츠 칩팩, 엘티디. | Bump-on-lead flip chip interconnection |
JP2010141055A (en) * | 2008-12-10 | 2010-06-24 | Sanyo Electric Co Ltd | Semiconductor module, method of manufacturing semiconductor module, and portable equipment |
US8198186B2 (en) * | 2008-12-31 | 2012-06-12 | Stats Chippac, Ltd. | Semiconductor device and method of confining conductive bump material during reflow with solder mask patch |
-
2011
- 2011-01-24 TW TW100102449A patent/TWI527178B/en active
- 2011-03-17 KR KR1020110024067A patent/KR101979024B1/en active IP Right Grant
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10043774B2 (en) | 2015-02-13 | 2018-08-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Integrated circuit packaging substrate, semiconductor package, and manufacturing method |
TWI662658B (en) * | 2015-02-13 | 2019-06-11 | 台灣積體電路製造股份有限公司 | Integrated circuit packaging substrate, semiconductor package and manufacturing method thereof |
US10304801B2 (en) | 2016-10-31 | 2019-05-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Redistribution layers in semiconductor packages and methods of forming same |
TWI667762B (en) * | 2016-10-31 | 2019-08-01 | 台灣積體電路製造股份有限公司 | Redistribution layers in semiconductor packages and methods of forming same |
US11158619B2 (en) | 2016-10-31 | 2021-10-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Redistribution layers in semiconductor packages and methods of forming same |
TWI693644B (en) * | 2019-01-28 | 2020-05-11 | 鼎元光電科技股份有限公司 | Structure for packaging and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TWI527178B (en) | 2016-03-21 |
KR20120067266A (en) | 2012-06-25 |
KR101979024B1 (en) | 2019-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI539540B (en) | Semiconductor device and method of forming flipchip interconnection structure with bump on partial pad | |
US9899286B2 (en) | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask | |
US9679811B2 (en) | Semiconductor device and method of confining conductive bump material with solder mask patch | |
US9385101B2 (en) | Semiconductor device and method of forming bump-on-lead interconnection | |
JP5952523B2 (en) | Semiconductor device and method for forming flip chip interconnect structure | |
US8884430B2 (en) | Semiconductor device and method of confining conductive bump material during reflow with solder mask patch | |
US20110121464A1 (en) | Semiconductor Device and Method of Forming Electrical Interconnect with Stress Relief Void | |
US9258904B2 (en) | Semiconductor device and method of forming narrow interconnect sites on substrate with elongated mask openings | |
TWI527178B (en) | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask | |
TWI553775B (en) | Semiconductor device and method of confining conductive bump material with solder mask patch | |
TWI538129B (en) | Semiconductor device and method of forming narrow interconnect sites on substrate with elongated mask openings |