201227112 P51990018TW 36654twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種陣列基板,且特別是有關於一種 便於檢測雷射切割製程的陣列基板。 【先前技術】201227112 P51990018TW 36654twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to an array substrate, and more particularly to an array substrate which facilitates detection of a laser cutting process. [Prior Art]
在平面顯示技術中,以具有輕薄短小、省電、低輕射、 王衫及方便攜帶等優點的液晶顯示器(Liquid Crystal ^ispl:y ’ LCD)技術最為純熟且普及化。舉凡手機、數位相 曰帝丈攝影機、個人數位助理(PDA)、筆記型電腦、液 曰曰電視等都有其應用範圍。 雖然液晶顯示器技術已趨成熟,但液晶顯示面板在製 ,過,之中難免會產生—些瑕疫(撼叫。這些瑕疯在液晶 f不器顯稀料會造成❹上料適,特別是液晶顯示 益的主動7〇件_基板中若發生有瑕疲,其顯示品質所受 的影顯更是顯著。目此,液晶顯示器岐之前,必須將陣 列基板進行電性檢測,以破保品質。 身又而S,在製作主動元件陣列基板時,會將檢測導 線製作於主動70件陣列基板的周邊電路區中,以方便檢測 作業。疋成檢測之後,再以雷射切割的方式將這些電測導 線切斷以使主動元件陣列基板的各元件彼此獨立。雷射切 割的過程中,若發生了對位上的誤差,將會造成雷射切割 的失敗’ 導致檢測電路未被完全地姆】或是部份必須連 接的電路被切斷。 ' 201227112 P51990018TW36654twf.doc/n 所以,雷射切割之後,必須進行適當的檢測來確保切 割製程疋否精確。舉例而言,一種自動化的檢測設計係利 用CCD攝影機來擷取切割後的主動元件陣列基板,藉以 觀察切割製程是否有對位誤差產生。這樣的自動化檢測設 計雖然可以加快檢測速率,但CCD攝影機往往僅具有固 疋的放大倍率。因此’在線路佈局密度較高的產品中, 攝影機無法正確地判斷出雷射切割的位置。 【發明内容】 本發明提供一種陣列基板,利用輔助圖案的配置以便 於在雷射切割之後進行檢測。 本發明提出-種陣列基板,包括一基板、一主動元件 陣列、-第-定位標記、多條檢測導線以及至少一第一輔 助圖案。基板,具有-主祕以及位於主動區旁的一周邊 、二動元件陣列配置於主動區中。第-定位標記配 置=周邊線路區中。檢測導線以—第—間距配置周邊線路 2=,線電性連接於主動元件陣列。第-辅助圖 1配=邊線路區上,位在第—定位標記與檢測導線之 辅:圖案與最接近的一條檢測導線相隔一第二間 距且第二間距不等於第一間距。 件陣ί發Γί提出—種陣列基板,包括—基板、一主動元 :車歹J、-第一定位標記、一第二定位標記、多條檢 助圖案。基板具有-主動區以及位於主動區 旁的一周邊線路區。主動元件_配置於主祕中。第一 201227112 P51990018TW36654twf.doc/n 定位標記配置於周邊線路區中。第二定位標記配置於周邊 線路區中。檢測導線以一第一間距配置周邊線路區中,並 位在第一定位標記以及第二定位標記之間,且檢測導線電 性連接於主動元件陣列。辅助圖案配置於周邊線路區中, 位在第一定位標記與檢測導線之間。任兩相鄰輔助圖案相 隔一第二間距且第二間距不等於第一間距。 ^ f於上述,本發明在陣列基板上設置有輔助圖案,其 • 位在定位標記與檢測導線之間。輔助圖案是浮置的圖案, 其不與任何的元件電性導通,因而可以依照特定的需求來 設置其配置位置,辅助圖案之整體舉例可完全位於定位標 兄與檢測導線之間,其中輔助圖案與相鄰近的檢測導線之 間所間隔的間距可以大於檢測導線之間的間距,或是多個 辅助圖案之間的間距可以大於檢測導線之間的間距。如此 一來,陣列基板在雷射切割製程之後,可以輕易地檢測出 雷射切割的路徑是正確。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 響舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1繪示為本發明一實施例的陣列基板上視示意圖, 而圖2繪示為圖1的陣列基板中周邊線路區在-實施方式 時的局部放大示意圖。請同時參照圖1與圖2,陣列基板 100包括包括一基板110、一主動元件陣列12〇、一第一定 位標記13G、多條檢測導線140以及至少-第-辅助圖案 201227112 P51990018TW 36654twf.doc/n 150。基板no具有一主動區112以及位於主動區112旁的 一周邊線路區114。主動元件陣列12〇配置於主動區112 中。第一定位標記130配置於周邊線路區114中。檢測導 線140以一第一間距pi配置周邊線路區114中,且檢測 導線140電性連接於主動元件陣列12〇。第一輔助圖案15〇 配置於周邊線路區114上’位在第一定位標記130與檢測 導線140之間。第一輔助圖案15〇與最接近的一條檢測導 線140相隔一第二間距P2。在本實施例中,第二間距打 例如是大於第一間距P1。另外,陣列基板10〇還可選擇性 地包括有一驅動晶片K0,其配置於周邊線路區114中, 並連接於檢測導線15〇。 具體而言,為了清楚表示各元件之間的關係,驅動晶 片160在圖2中並未繪示出來。並且,由圖2可知,陣列 基板1〇〇可以包括一第二定位標記170,且檢測導線14〇 位於第一定位標記130與第二定位標記170之間。第一定 位標記130可以包括有一十字圖案132以及一度量圖案 134 ’而第二定位標記170也可以具有相似的設計。在採用 雷射切割製程切割檢測導線丨4 〇時,可以依據度量圖案13 4 上的刻度來調整雷射光的起始位置以使雷射光對準於十字 圖案132,並使雷射光由第一定位標記130朝向第二定位 標記160晝割檢測導線140。也就是說,雷射光實質上可 沿著雷射切割路徑L切割檢測導線 140,而在切割之後, 所有的檢測導線14 0彼此為電性獨立。 一般而言’受限於精準度的限制,雷射光不一定可以 201227112 P51990018TW36654twf.d〇c/n 完全地沿著預定的路徑進行切割。因此,在切割之後,需 要進行檢測的動作,以確定雷射切割路紅是否落在In the flat display technology, the liquid crystal display (Liquid Crystal ^ispl: y ’ LCD) technology which has the advantages of being thin and light, power saving, low light shot, king shirt and convenient carrying is the most sophisticated and popular. All mobile phones, digital cameras, personal digital assistants (PDAs), notebook computers, and liquid TVs have their applications. Although the liquid crystal display technology has matured, the liquid crystal display panel is in the process of production, and it will inevitably produce some plagues (squeaky. These madnesses in the liquid crystal f will not cause thinner materials, especially liquid crystals. If there is any fatigue in the substrate, the display quality of the substrate will be more significant. Therefore, before the liquid crystal display, the array substrate must be electrically detected to break the quality. When the active component array substrate is fabricated, the detection wires are fabricated in the peripheral circuit area of the active 70-piece array substrate to facilitate the inspection operation. After the detection, the laser is cut by laser cutting. The wire is cut so that the components of the active device array substrate are independent of each other. In the process of laser cutting, if the alignment error occurs, the laser cutting failure will occur, causing the detection circuit not to be completely completed. Or some of the circuits that must be connected are cut off. ' 201227112 P51990018TW36654twf.doc/n Therefore, after laser cutting, proper inspection must be performed to ensure that the cutting process is accurate. For example, an automated inspection design uses a CCD camera to capture the cut active component array substrate to observe whether the cutting process has a registration error. Such an automated inspection design can speed up the detection rate, but CCD cameras tend to It has only a solid magnification. Therefore, in a product with a high line layout density, the camera cannot correctly determine the position of the laser cutting. SUMMARY OF THE INVENTION The present invention provides an array substrate, which is configured to facilitate the use of an auxiliary pattern. The invention is characterized in that the array substrate comprises a substrate, an active device array, a -first positioning mark, a plurality of detecting wires and at least one first auxiliary pattern. The substrate has a main secret and A peripheral and two-moving element array located beside the active area is disposed in the active area. The first-position mark is configured in the peripheral line area. The detecting wire is configured with a -first spacing, and the line is electrically connected to the active element array. The first-auxiliary map 1 is matched with the side line region, and is located at the first-position mark and the detecting wire. Supplementary: the pattern is separated from the closest one of the detecting wires by a second pitch and the second pitch is not equal to the first pitch. The array substrate is provided with an array substrate, including a substrate, an active element: a rut J, - a first positioning mark, a second positioning mark, and a plurality of detection patterns. The substrate has an active area and a peripheral line area located beside the active area. The active component is disposed in the main secret. First 201227112 P51990018TW36654twf.doc/n The positioning mark is disposed in the peripheral line area. The second positioning mark is disposed in the peripheral line area. The detecting wire is disposed in the peripheral line area at a first spacing, and is located between the first positioning mark and the second positioning mark, and is detected The wire is electrically connected to the active device array, and the auxiliary pattern is disposed in the peripheral circuit region between the first positioning mark and the detecting wire. Any two adjacent auxiliary patterns are separated by a second pitch and the second pitch is not equal to the first pitch. ^ f In the above, the present invention is provided with an auxiliary pattern on the array substrate, which is located between the positioning mark and the detecting wire. The auxiliary pattern is a floating pattern, which is not electrically connected to any element, and thus can be set according to a specific requirement. The overall example of the auxiliary pattern can be completely located between the positioning body and the detecting wire, wherein the auxiliary pattern The spacing between the adjacent detecting wires may be greater than the spacing between the detecting wires, or the spacing between the plurality of auxiliary patterns may be greater than the spacing between the detecting wires. In this way, after the laser cutting process, the array substrate can easily detect that the path of the laser cutting is correct. The above described features and advantages of the present invention will be more apparent from the following description. 1 is a schematic top view of an array substrate according to an embodiment of the present invention, and FIG. 2 is a partially enlarged schematic view showing a peripheral circuit region in the array substrate of FIG. 1 and 2, the array substrate 100 includes a substrate 110, an active device array 12A, a first positioning mark 13G, a plurality of detecting wires 140, and at least a - auxiliary pattern 201227112 P51990018TW 36654twf.doc/ n 150. Substrate no has an active region 112 and a peripheral line region 114 located adjacent active region 112. The active device array 12A is disposed in the active region 112. The first positioning mark 130 is disposed in the peripheral line area 114. The detecting wires 140 are disposed in the peripheral line region 114 at a first pitch pi, and the detecting wires 140 are electrically connected to the active device array 12A. The first auxiliary pattern 15 is disposed on the peripheral line region 114 at a position between the first alignment mark 130 and the detecting wire 140. The first auxiliary pattern 15 is spaced apart from the nearest one of the detection lines 140 by a second pitch P2. In this embodiment, the second pitch is, for example, greater than the first pitch P1. In addition, the array substrate 10A can also optionally include a driving wafer K0 disposed in the peripheral wiring region 114 and connected to the detecting wiring 15A. Specifically, in order to clearly show the relationship between the elements, the driving wafer 160 is not shown in Fig. 2. Moreover, as can be seen from FIG. 2, the array substrate 1A can include a second positioning mark 170, and the detecting wire 14 is located between the first positioning mark 130 and the second positioning mark 170. The first position mark 130 may include a cross pattern 132 and a metric pattern 134' and the second position mark 170 may have a similar design. When the laser cutting process is used to cut the detecting wire 丨4 ,, the starting position of the laser light can be adjusted according to the scale on the metric pattern 13 4 to align the laser light to the cross pattern 132, and the laser light is first positioned. The marker 130 casts the detection lead 140 toward the second positioning mark 160. That is, the laser light can substantially cut the test wire 140 along the laser cutting path L, and after the cutting, all of the test wires 14 0 are electrically independent of each other. In general, 'restricted by the accuracy limit, the laser light may not be cut completely along the predetermined path 201227112 P51990018TW36654twf.d〇c/n. Therefore, after cutting, the action of detecting is required to determine whether the laser cutting path red falls.
立ίΐ圍中。舉例而言,在自動化設備中,多半是以CCD 攝衫機來拍攝切割後的陣列基板刚以確認雷射切割路徑 L的位置。 過在驅動晶片160採用高接腳密度的規格時,檢 的配置密度也會越益提高。此時,驅動晶片⑽ 的使用數量可以降低㈣錢本。Standing in the middle of the circle. For example, in an automated device, a CCD camera is used to photograph the cut array substrate just to confirm the position of the laser cutting path L. When the drive wafer 160 is of a high pin density specification, the configuration density of the inspection is also increased. At this time, the number of uses of the driving chip (10) can be reduced (four) money.
嫌=::呈=糊雷=;二正礦地辨識出每一 攝影機所操取的影像中正確地被_;來也就無法在CCD 因此’在本實施例中,第一鍤 幫助雷射切割路徑L的辨螞—° 的δ又置可以 精確。值得-提的θ =,糟以檢測雷射切割製程是否 係浮置於基板100上的元::_第-辅助圖案150舉例 無特定的限制,用丄== -條:ί線❶舆最接近的 檢測導線M0之間的第_ n t f距P2不侧舉例大於) 二間距P2舉例係大的於第第=:在本實施例中’第 所截取的影像中,第-P1 °所以,在CCD攝影機 弟一間距P2相對地容易辨識出來,而 201227112 P51990018TW 36654twf.doc/n 可藉以確認雷射切割路徑L的位置。此外,進行雷射十宝I 時,雷射光至少會依據第一定位標記13〇所在位置進 位。所以,為了確實檢測雷射切割路徑[的可能位置,^ 一辅助圖案150的長度L1可以至少等於第一定位標 的長度L2。 進一步而言,圖3繪示為圖2中第一定位標記、第— 輔助圖案以及部分檢測導線在雷射切割之後的局部放大示 意圖。請參照圖3,在雷射切割之後,第一輔助圖案15〇 具有一第一截切線152,該第一截切線152將第一辅助圖 案150斷開成至少兩個不彼此連接的區塊,而各檢測導線 140具有一第二截切線142,且第一截切線152與第二截切 線142實質上沿著圖2所繪示的雷射切割路徑L分布。也 就是說,第一輔助圖案150以及各檢測導線140在切割之 後都會沿著雷射切割路徑L斷開,而CCD攝影機所擷取 的影像就是用來判斷這些斷開處的位置是否為正確。 由圖3可清楚知道’第一間距pi相對較小,而第二 間距P2相對較大,所以在CCD攝影機所擷取的影像中, 第二間距P2可以容易地被辨認出來。檢測者也可以容易 地辨認出第一辅助圖案150上的第一截切線152位置,藉 以確認圖2中的雷射切割路徑l是否正確。也就是說,本 實施例在第—辅助圖案150的設置下,不需要提高檢測工 具的放大倍率或是解析度就可以正確地辨認出雷射切割路 徑L·的位置,以檢測雷射切割的正確與否。當然,無論檢 測導線140的配置密度是否被提高,本實施例的設計都可 201227112 P51990018TW 36654twf.doc/n 以正確地確5¾、雷射切割步驟的正確性。換言之,陣列基板 100上的驅動晶片160是使用高接腳密度的規格時,雖然 檢測導線140間的第一間距pi相當的小,檢測者仍然可 以正確地判斷雷射切割路徑L的位置以確定雷射切割製程 的正確性。 圖4續·示為圖1的陣列基板中周邊線路區在另一實施 方式時的局部放大示意圖。請參照圖4,本實施例所描述 φ 的元件除了圖2中所繪示的所有元件,還包括另一第一輔 助圖案250。也就是說,周邊線路區114上可以配置有多 個第一辅助圖案150、250。另外,在本實施例中,第一輔 助圖案150與250之間可以相隔一第三間距p3。 具體而言,第二間距P2與第三間距中至少一者不 等於(例如是大於)第一間距!^,則第一輔助圖案15〇、25〇 就可用以辅助雷射切割路徑的檢測。因此,在一實施例中, 右第二間距P2大於第一間距pl,則第三間距p3的大小不 f制地較,其可以等於、大於或是小於第—間距ρι。 相似地:¾第二間距P3大於第一間距p 1,則第二間距p2 可以選擇性地等於、大於或是小於第—間距p卜藉著這樣 的設計,第一辅助圖案150、250可以清楚地在CCD攝影 機所摘取的影像中被辨別出來,而用來判斷雷射切割路徑 的位置。 除此之外,以上的實施例皆以第一定位標記13〇與檢 測導線140之間設置有輔助圖案150、250來進行說明。在 其他的實施方式中,第二定位標記17〇與檢測導線14〇之 201227112 P51990018TW 36654twf.doc/n 間也可以設置有辅助圖案。舉例而言,圖5綠示為圖i的 陣列基板中周邊線路區在又—實施方式時的局部放大示意 圖。請參照圖5,本實施例所描述的元件除了圖2中所繪 不的所有兀件,還包括一第二辅助圖案35〇。也就是說, 本實施例>除了第一定位標記13〇旁設置有第一輔助圖案 150外,第一疋位標5己170與檢測導線140之間更設置有 第二輔助圖案350。 以本實施例而言,第二輔助圖案35〇的尺寸設計及位 置設計可以參照於第一輔助圖案15〇的設計。簡言之,第 二辅助圖案350與最接近的一條檢測導線14〇相隔一第四 間距P4,且第四間距P4例如會大於第一間距ρι。此外, 第二辅助圖案35〇是一浮置的元件’其不與其他的元件電 I"生連接,並且第一輔助圖案350的長度至少等於第二定位 標記170的長度。當然,進行雷射切割製程後第二辅助 圖案350可以具有沿著雷射切割路徑分布的一第三截切線 (未繪示)。檢測者藉由觀察第三截切線(未繪示)的位置就可 以判斷雷射切割是否執行於正確的位置上。 整體而言,本實施例在檢測導線14〇的兩侧都設置有 用來確認雷射_雜之位置賴案,其在CCD攝影機 中可以清楚地被辨別出來。因此,檢測者不需以較高解析 度,是較大倍率的檢測設備就可以輕易地確認雷射切割製 程疋否正確。尤其是’在檢測導線140的分布密度提高時, 檢測者仍可有效率地檢測出雷射切割製程是否合乎規範。 此外,本實施例雖然僅繪示一個第一辅助圖案15〇以 201227112 P51990018TW36654twf.d〇c/n 及-個第二辅助圖帛视來進行說明 限。在其他的實施方式巾,第 彳:本發月不以此為 個,其如圖6所示。由圖6可以是多 彻之間可以相隔-第五間距助圖案350、 第五間距Ρ5只要至少—者大於檢’ 與 間距m域助於正確地檢_路==的t 當第四間距P4大於第—門距^ _路k的位置。亦即’ 地限制而可以等於、大於或是小不咖^ 第五間㈣大於第—間韻,外’當 限制而可料於、A於或是小 / P4不需特別地 言,在其他的魏方式巾,第Η。進一步而 Acr, 稀助圓案150與第二輔助 圖=5:、450的數量可以都是多個、都 一者為多個而另一者為一個。 次疋/、中 線旁本發明利用浮置的辅助_設置於檢測導 =二: 製程中雷射切割路徑的位置。因此, ^發月的_基板上的檢猶路無論以何種配密产分佈, 正糊斷出來雷射切割路徑的位;。在自 動化δ又備中,檢測用的CCD攝影機僅且 時,仍可正確地檢測出的雷射切割路 = 的檢測導線是以高佈線密度設置。卩使陣列基板上 本發日發邮以實施觸露如上,然其麟用以限定 ^ ^,任何所屬技術領域中具知識者,在不脫離 範圍内,當可作些許之更動與潤飾,故本 發月之保#_當視後附之”專利範圍所界定者為準。 201227112 P51990018TW 36654twf,d〇c/n 【圖式簡單說明】 圖1繪示為本發明一實施例的陣列基板上視示意圖。 圖2繪示為圖1的陣列基板中周邊線路區在一實施方 式時的局部放大示意圖。 立圖3繪示為圖2中第一定位標記、第一輔助圖案以及 邻刀檢測導線在雷射切割之後的局部放大示意圖。 圖4繪示為圖1的陣列基板中周邊線路區在另一實施 方式時的局部放大示意圖。 圖5繪示為圖1的陣列基板中周邊線路區在又一實施 方式時的局部放大示意圖。 圖6繒·示為圖1的陣列基板中周邊線路區在另一實施 方式時的局部放大示意圖。 【主要元件符號說明】 100 :陣列基板 110 :基板 U2 :主動區 U4 :周邊線路區 120 :主動元件陣列 130 :第一定位標記 132 :十字圖案 134 :度*圖案 14〇 :檢測導線 142 :第二截切線 201227112 P51990018TW 36654twf.doc/n 150、250 :第一輔助圖案 152 :第一截切線 160 .驅動晶片 170 :第二定位標記 350、450 :第二輔助圖案 P1 :第一間距 P2 :第二間距 P3 :第三間距 P4 ··第四間距 P5 :第五間距 L:雷射切割路徑 LI、L2 ··長度 13Suspect =:: = = mine mine =; Erzheng mine identified that the image taken by each camera is correctly _; can not be in the CCD therefore 'in this embodiment, the first 锸 help laser The δ of the cutting path L can be accurately determined. It is worthwhile to mention θ =, to detect whether the laser cutting process is floating on the substrate 100: :_--Auxiliary pattern 150 is exemplified without specific restrictions, with 丄==-bar: ί line ❶舆 most The _ntf distance between the adjacent detection wires M0 is greater than the P2 side. The two-pitch P2 example is larger than the first =: In the present embodiment, the first intercepted image, the -P1 °, therefore, The distance P2 of the CCD camera is relatively easy to recognize, and 201227112 P51990018TW 36654twf.doc/n can confirm the position of the laser cutting path L. In addition, when laser X-ray I is performed, the laser light is at least positioned according to the position of the first positioning mark 13〇. Therefore, in order to surely detect the possible position of the laser cutting path, the length L1 of the auxiliary pattern 150 may be at least equal to the length L2 of the first positioning target. Further, FIG. 3 is a partial enlarged view of the first positioning mark, the first auxiliary pattern, and the partial detecting wire of FIG. 2 after laser cutting. Referring to FIG. 3, after laser cutting, the first auxiliary pattern 15A has a first cutting line 152 that breaks the first auxiliary pattern 150 into at least two blocks that are not connected to each other. Each of the detecting wires 140 has a second cutting line 142, and the first cutting line 152 and the second cutting line 142 are substantially distributed along the laser cutting path L illustrated in FIG. 2 . That is to say, the first auxiliary pattern 150 and each of the detecting wires 140 are broken along the laser cutting path L after the cutting, and the image captured by the CCD camera is used to judge whether the positions of the breaks are correct. As is clear from Fig. 3, the first pitch pi is relatively small, and the second pitch P2 is relatively large, so that the second pitch P2 can be easily recognized in the image captured by the CCD camera. The position of the first cut line 152 on the first auxiliary pattern 150 can also be easily recognized by the examiner to confirm whether the laser cut path 1 in Fig. 2 is correct. That is to say, in the embodiment, in the arrangement of the first auxiliary pattern 150, the position of the laser cutting path L· can be correctly recognized without increasing the magnification or resolution of the detecting tool to detect the laser cutting. Correct or not. Of course, regardless of whether the configuration density of the detecting wire 140 is increased, the design of the present embodiment can be correctly corrected to the correctness of the laser cutting step by 201227112 P51990018TW 36654twf.doc/n. In other words, when the driving wafer 160 on the array substrate 100 is of a high pin density specification, although the first pitch pi between the detecting wires 140 is relatively small, the detector can correctly determine the position of the laser cutting path L to determine. The correctness of the laser cutting process. Figure 4 is a partially enlarged schematic view showing the peripheral line region of the array substrate of Figure 1 in another embodiment. Referring to Figure 4, the elements of φ described in this embodiment include another first auxiliary pattern 250 in addition to all of the elements illustrated in Figure 2. That is, a plurality of first auxiliary patterns 150, 250 may be disposed on the peripheral line region 114. In addition, in the embodiment, the first auxiliary patterns 150 and 250 may be separated by a third pitch p3. Specifically, at least one of the second pitch P2 and the third pitch is not equal to (for example, greater than) the first pitch! ^, then the first auxiliary patterns 15 〇, 25 〇 can be used to assist in the detection of the laser cutting path. Therefore, in an embodiment, the right second pitch P2 is greater than the first pitch pl, and the third pitch p3 is not equal to, and may be equal to, greater than, or smaller than the first pitch ρι. Similarly, if the second pitch P3 is greater than the first pitch p1, the second pitch p2 may be selectively equal to, greater than, or less than the first pitch p. By the design, the first auxiliary patterns 150, 250 may be clear. The ground is discerned in the image taken by the CCD camera and used to determine the position of the laser cutting path. In addition, the above embodiments are described by providing the auxiliary patterns 150 and 250 between the first positioning marks 13A and the detecting wires 140. In other embodiments, an auxiliary pattern may also be provided between the second positioning mark 17A and the detecting wire 14〇201227112 P51990018TW 36654twf.doc/n. For example, FIG. 5 is a partially enlarged schematic view showing a peripheral line region in the array substrate of FIG. Referring to FIG. 5, the components described in this embodiment include a second auxiliary pattern 35A in addition to all the components depicted in FIG. That is to say, in the present embodiment, in addition to the first auxiliary pattern 150 disposed beside the first positioning mark 13A, the second auxiliary pattern 350 is further disposed between the first index mark 5 and the detecting wire 140. In this embodiment, the size design and the position design of the second auxiliary pattern 35A can be referred to the design of the first auxiliary pattern 15A. In short, the second auxiliary pattern 350 is spaced apart from the closest one of the detecting wires 14A by a fourth pitch P4, and the fourth pitch P4 is, for example, larger than the first pitch ρι. Further, the second auxiliary pattern 35A is a floating element 'which is not electrically connected to other elements, and the length of the first auxiliary pattern 350 is at least equal to the length of the second positioning mark 170. Of course, the second auxiliary pattern 350 may have a third cut line (not shown) distributed along the laser cutting path after the laser cutting process. The detector can determine whether the laser cutting is performed at the correct position by observing the position of the third cutting line (not shown). In general, the present embodiment is provided with a position for confirming the position of the laser beam on both sides of the detecting wire 14〇, which can be clearly discerned in the CCD camera. Therefore, the detector can easily confirm whether the laser cutting process is correct without requiring a higher resolution and a larger magnification detecting device. In particular, when the distribution density of the detecting wire 140 is increased, the detector can still efficiently detect whether the laser cutting process is conformable. In addition, although only one first auxiliary pattern 15 is shown in the embodiment, it is limited by 201227112 P51990018TW36654twf.d〇c/n and a second auxiliary figure. In other embodiments, the first paragraph is not shown in this month, which is shown in Fig. 6. Figure 6 may be separated by a plurality of - the fifth spacing assist pattern 350, the fifth spacing Ρ 5 as long as at least - greater than the detection 'and spacing m domain to help correctly detect _ road == t when the fourth spacing P4 Greater than the position of the first door-to-door ^ _ road k. That is, 'the ground limit can be equal to, greater than or small, no coffee ^ The fifth (four) is greater than the first - rhyme, the outer 'when the limit can be expected, A or small / P4 does not need special words, in other Wei style towel, Dijon. Further, Acr, the thinning aid case 150 and the second auxiliary drawing = 5:, 450 may be plural, one for each and one for the other. Next to the secondary line, the present invention utilizes the aid of floating _ set to the detection guide = two: the position of the laser cutting path in the process. Therefore, the inspection road on the _ substrate of the month of the moon is smearing the position of the laser cutting path regardless of the distribution of the distribution. In the automatic δ replenishment, the detection CCD camera is only able to correctly detect the laser cutting path = the detection wire is set at a high wiring density.卩 本 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列 阵列The present invention is defined by the patent scope of the present invention. 201227112 P51990018TW 36654twf, d〇c/n [Simplified Schematic] FIG. 1 illustrates an array substrate according to an embodiment of the present invention. 2 is a partially enlarged schematic view showing a peripheral line region in the array substrate of FIG. 1 in an embodiment. FIG. 3 is a first positioning mark, a first auxiliary pattern, and an adjacent knife detecting wire in FIG. FIG. 4 is a partially enlarged schematic view showing a peripheral line region in the array substrate of FIG. 1 in another embodiment. FIG. 5 is a diagram showing a peripheral line region in the array substrate of FIG. FIG. 6 is a partially enlarged schematic view showing a peripheral line region in the array substrate of FIG. 1 in another embodiment. [Main component symbol description] 100: Array substrate 110: Board U2: active area U4: peripheral line area 120: active element array 130: first positioning mark 132: cross pattern 134: degree * pattern 14: detection wire 142: second cutting line 201227112 P51990018TW 36654twf.doc/n 150, 250: first auxiliary pattern 152: first cut line 160. drive wafer 170: second positioning mark 350, 450: second auxiliary pattern P1: first pitch P2: second pitch P3: third pitch P4 · · fourth Pitch P5: fifth pitch L: laser cutting path LI, L2 · length 13