TW201226880A - Optical detection apparatus and optical detection method - Google Patents

Optical detection apparatus and optical detection method Download PDF

Info

Publication number
TW201226880A
TW201226880A TW100106498A TW100106498A TW201226880A TW 201226880 A TW201226880 A TW 201226880A TW 100106498 A TW100106498 A TW 100106498A TW 100106498 A TW100106498 A TW 100106498A TW 201226880 A TW201226880 A TW 201226880A
Authority
TW
Taiwan
Prior art keywords
angle
rotating arm
optical
detecting device
disposed
Prior art date
Application number
TW100106498A
Other languages
Chinese (zh)
Other versions
TWI420092B (en
Inventor
Yung-Sung Lan
Chu-Yu Huang
Hann-Wen Guan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW201226880A publication Critical patent/TW201226880A/en
Application granted granted Critical
Publication of TWI420092B publication Critical patent/TWI420092B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An optical detection apparatus adapted to measure a substance to be measured is provided. The optical detection apparatus includes a first rotation arm, a second rotation arm, a light source, an optical detector, a carrier, and a control unit. The second rotation arm is pivotally connected to the first rotation arm through a rotation center. The light source is disposed on the first rotation arm. The optical detector is disposed on the second rotation arm. The substance to be measured is adapted to be disposed adjacent to the rotation center. The carrier is disposed on the rotation center, and has a carrying surface. The carrying surface is for carrying the substance to be measured. The optical detector has a light sensing surface. The control unit is for adjusting an included angle between a normal vector of the light sensing surface and an extending direction of the second rotation arm according to an included angle between the second rotation arm and an inverse vector of a normal vector of the carrying surface. An optical detection method is also provided.

Description

* - J8TW 36089twf.doc/n 六、發明說明: 【發明所屬之技術領域j 本發明是L—縣學系統與檢測方法,且特別是 有關於一種光學檢測襞置與光學檢測方法。 【先前技術】 光學檢測是一種利用光與物質的交互作用來對物質 作檢測的方法。由於利用光的檢測通常不會對物質本身造 成過多的破壞性’ ϋ此有利洲來作為各種物質的檢測。 表面電漿共振顯微術為近年來極具潛力的一種光學 檢測方法,其可應用於生物科技領域中。生物科技是臺灣 在這個世紀裏首要發展的國家科技的重點專案之一,而藥 ,開發更是生物科技社流。開發快速檢測方式與有效的 藥物篩選是所有生物㈣技術的共同目標,喊面電黎共 振影像技術平臺將可有效率地篩選萃取物中的有效成分。 ,篩選技述也可被應用於各種接受器上,並針對不同接受 器所4選出來的標的物中的特異性配基來開發各種治療性 的藥物,例如免疫調解藥物、抗發炎藥物、抗骨質疏鬆藥 物、抗癌藥物及抗過敏藥物等。 此外,表面電漿共振技術近來來被大量應用在發展生 物分子感測器上,這是一種利用光學的方式便可達到非標 記、高敏感度、少量樣本、即時的檢測方法。表面電漿共 振技術利用生物免疫分析的特殊選擇性,可以在複雜的混 合物中偵測到相當低濃度的特定分子。 201226880 * 36089twf.doc/n 【發明内容】* - J8TW 36089twf.doc/n VI. Description of the Invention: [Technical Field of the Invention] The present invention is an L-county system and detection method, and particularly relates to an optical detection device and an optical detection method. [Prior Art] Optical detection is a method of detecting substances by the interaction of light and matter. Since the detection of light does not usually cause excessive destructiveness to the substance itself, this is advantageous as a detection of various substances. Surface plasma resonance microscopy is an optical detection method with great potential in recent years, which can be applied in the field of biotechnology. Biotechnology is one of the key national science and technology projects that Taiwan has developed in the past century, and medicine and development are biotechnology. The development of rapid detection methods and effective drug screening is the common goal of all biological (four) technologies, and the singapore image technology platform will be able to efficiently screen the active ingredients in the extract. The screening technique can also be applied to various receptors, and various therapeutic drugs such as immunomodulatory drugs, anti-inflammatory drugs, and anti-inflammatory drugs are developed for specific ligands in the targets selected by different receptors. Osteoporosis drugs, anticancer drugs and anti-allergic drugs. In addition, surface plasmon resonance technology has recently been widely used in the development of biomolecular sensors, which is an optical method that can achieve non-marking, high sensitivity, small sample, and instant detection methods. Surface plasma resonance technology utilizes the specific selectivity of biological immunoassays to detect relatively low concentrations of specific molecules in complex mixtures. 201226880 * 36089twf.doc/n [Summary content]

本發明的-實施例提出一種光學檢測裝置,適於量測 待測物質。此光學檢戦置包括第—旋轉臂、第二旋轉臂、 光源、光_器、承魅及控制單元。第二旋轉臂經由旋 轉中心與第-旋轉臂樞接。光源配置於第—旋轉臂上。光 偵測器配置於第二旋轉臂上,其巾待測物f適於配置於旋 轉中心附近。承載器配置於旋轉中心上,其中承載器具有 承載面’且承載關以承載待測物質。以貞㈣具有感光 面,且控制單元用以根據第二旋轉臂與承載面的法向量的 反向量的夾角,來調整感光面的法向量相對於第二旋轉臂 的延伸方向的夾角。當第二旋轉臂與承載面的法向量的反 向量的夾角遞增或遞減時,控制單元使感光面的法向量相 對於第二旋轉臂的延伸方向的夾角遞增或遞減。 本發明的另一實施例提出一種光學檢測方法,其包括 下列步驟。提供上述光學檢測裝置。將待測物質置於旋轉 中心附近。開啟光源,以使光源所發出的照明光束照射在 待測物質上,其中待測物質將照明光束反射成感測光。以 光偵測器偵測感測光。改變照明光束入射待測物質的角 度’且同時改變光偵測器所偵測到的感測光的反射角度, 並根據第一旋轉臂與承載面的法向量的反向量的失角,來 調整感光面的法向量相對於第二旋轉臂的延伸方向的夾 201226880 x-,*„vw„8TW 36089twf.doc/n 的失角遞增 臂的延伸方 ^ ^ t —㈣臂與承戴面的法向量的反向量 二二日、’使感光面的法向量相對於第二旋轉 向的失角遞增或遞減。 顯易懂,下文特舉實施 下。 為讓本發明之上述特徵能更明 例’並配合所附圖式作詳細說明如 【實施方式】 圖1為本發明的—實施例的光學檢測裝置的分解圖。 f2A為圖1中的第-旋轉臂、第二旋轉臂、推桿L 為及基板的立體不意圖,而圖2B繪示圖2A的結構的背 面。圖3為圖i的光學檢測裝置的光路示意圖。請參照圖 1圖2A目2B及圖3 ’本實施例的光學檢測裝置觸適 於董測待麟f 52。在本實補巾,光學檢職置1〇〇例 如為表面電漿共振影像儀(surface plasm〇n⑽⑽⑽⑶ image apparatus),而待測物質52例如為水、液體、藥物、 有機體、微生物體或其他生化物質。光學檢測裝置1〇〇包 括第一旋轉臂110、第二旋轉臂12〇、推桿丨3〇、光源21〇 及光偵測器230。第一旋轉臂110具有第一溝槽112。第二 旋轉臂120經由旋轉中心14〇與第一旋轉臂11〇枢接’且 具有第二溝槽122。推桿13〇具有相對的第一端132與第 二端134 ’且包括配置於第一端132的第一栓136及配置 於第二端134的第二栓138。第一栓136滑設於第一溝槽 112 ’且第二栓138滑設於第二溝槽122。光源210配置於 第一旋轉臂110上,光偵測器230配置於第二旋轉臂120 201226880 r^^,^〇8TW 36089twf.doc/n 上,且待測物質52適於配置於旋轉中心i4〇附近。 八在本實施例中,光學檢測裝置1〇〇還包括表面電漿共 振榀測。50,其配置於旋轉中心14〇上,且接觸待測物質 以產生表面電漿共振現象。在本實施例中,表面電漿 /、振k測部50例如為稜鏡式表面電漿共振感測部。此外, 表面電漿共振檢測部5〇例如為承载器,其具有承載面分, 而承載面59用以承載待測物質52。具體而言,表面電漿 振檢测部50包括稜鏡51、透明板%、金屬膜56及多個 生物铋針54。在本實施例中,承載面59位於旋轉中心14〇 例如疋金屬膜56位於旋轉中心14〇上。此外,在本實 ’金屬g 26上的中心、線的延伸線通過旋轉中心 此中心線例如是通過金屬膜26的中心且將金屬膜26 ^分成兩部分的參考線。換言之,旋轉中心、140對準金屬 屬26的中心線設置。然而’在其他實施例中,亦可以是金 實,26、上的一參考線的延伸線通過旋轉中心,且此參考線 ^ Ϊ上平f於金屬膜2 6的中心線,但不與此中心線重合。 會二之’旋轉中心14〇偏離金屬膜56的中心線設置。在本 薄^例中’透明板58例如為玻璃板,金屬膜56例如為金 、’而生物探針54配置於承載面59上,其中生物探針 則可抓取待測物質52中的特定成分以供量測用。在本 夕卜,例中,透明板58配置於稜鏡51與金屬膜56之間。此 透明板58與稜鏡μ之間可設有折射率匹配油層’以 U更佳合效果’且可避免光在介面上的反射損失。 在本實施例中,光源210例如為發光二極體(light 201226880 --------8FW 36089twf.doc/n emitting diode,LmD ),其適於發出照明光束212 (如圖3 所繪示)。然而,在其他實施例中,光源21〇亦可以是雷 射射為。表面電聚共振檢測部5 0配置於照明光束212 的傳遞路徑上’照明光束212在照射於表面電漿共振檢測 部50後,產生攜帶有表面電漿共振資訊的感測光214,且 光偵測器230配置於感測光214的傳遞路徑上。具體而言, 在本實施例中,照明光束212於光源210與表面電漿共振 檢測部50之間的傳遞路徑上設有遮片25〇、透鏡組26〇、 帶通濾光器270及偏振器220,且這些元件均配置於第一 旋轉臂110上,其中這些元件可構成照明光學模組2〇5。 遮片250具有孔252 ’而照明光束212經由孔252通 過遮片250。透鏡組260則用以提升照明光束212的准直 性。帶通濾光器270則是用以純化照明光束212的顏色, 以使照明光束212接近於單波長光束。偏振器220則用以 使照明光束212產生線性偏振,而其偏振方向對於承載面 59而言為P偏振。當具P偏振的照明光束212經由棱鏡 51及透明板58而照射於金屬膜56時,生物探針54所抓 取到的待測物質52會改變金屬膜56的表面電漿共振狀 態。此外,金屬膜56會將照明光束212反射成感測光214, 以使感測光攜帶表面電漿共振資訊。感測光214於表面電 漿共振檢測部5 0與光偵測器23 0之間的傳遞路徑上設有成 像光學模組240’以使感測光214傳遞至光偵測器230,並 將金屬膜56面成像於光偵測器230上,其中成像光學模組 240配置於第二旋轉臂120上。在本實施例中,成像光學 201226880 〜36089twf.doc/n 模組240例如為成像鏡頭。光偵測器230例如為電荷耦合 元件攝影機(charge coupled device camera, CCD camera) 或互補式金氧半導體攝影機(complementary metal oxide semiconductor camera, CMOS camera),以拍攝金屬膜 56 上的表面電漿共振影像。此外,通過第一旋轉臂110與第 二旋轉臂120的轉動,可變化照明光束212入射金屬膜56 的入射角’進而通過拍攝到的表面電漿共振影像找到待測 物質52所產生的共振角,如此便可分析出待測物的種類與 特性。 由於金屬膜56的反射符合反射定律,因此無論第一 旋轉臂110如何轉動而使光源210轉動,可設計使照明光 束212在光軸上的光線的入射角q〗保持實質上等於進入光 偵測器230的感測光214在光軸上的光線的反射角Θ2,這 樣能夠達到較佳的量測效果。換言之,無論光源21〇如何 轉動’照明光束212的光軸與感測光214的光軸的角平分 線E貫質上與金屬膜56的法線重合。為了達到這樣的效 鲁 果,可將光學檢測裝置1〇〇設計成當第一栓136與第二栓 138分別在第一溝槽112與第二溝槽122中滑動時,第一 栓136至旋轉中心140的距離維持實質上等於第二栓138 至旋轉中心140的距離。也就是說,無論第一旋轉臂110 與第二旋轉臂120如何轉動,第一栓136、第二柱138及 旋轉中心140所構成的三角形始終都是等腰三角形,如此 —來,第一旋轉臂110與第二旋轉臂12〇的角平分線 持與承栽面59垂直,進而使入射角Θ1保持在實質上等於 201226880 r ji?^vv〇8TW 36089twf.d〇c/n 反射角Θ2的狀態,以達到較佳的量測效果。 在本實施例中,光學檢測裝置100還包括基板150, 其具有多個第三溝槽(在圖1中是以第三溝槽152與第三 溝槽154為例’且推桿130還包括多個第三栓(在圖2B 中是以第三栓135與第三栓137為例),分別滑設於這些 第二溝槽152、154中’其中這些第三溝槽丨%、154實質 上平行於第一旋轉臂110與第二旋轉臂12〇的角平分線 E。在本實施例中,第三栓135位於推桿13〇的第一端132, 且第二栓135與第一栓130分別位於推桿13〇的相對兩 側。此外,第三栓137位於推桿13〇的第二端134,且第 二栓137與第二栓138分別位於推桿13〇的相對兩側。再 =在本實施例中,推桿13〇配置於基板15〇與第一旋轉 之間,且配置於基板150與第二旋轉臂12〇之間。 ^本實施例中,第一溝槽⑴實質上平行於照明光束 12的^轴’且第二溝槽122實質上平行於感測光214的 的靠、斤136與第二检138分別逐漸往第一溝槽112 =疑轉中,的一端與第二溝槽122的靠近旋轉中 ,第一旋轉臂110與第二旋轉臂120 之=it 當第1轉臂11G與第二旋轉臂120 的二 =生第—旋轉臂110與第二旋轉臂12。 中是以夾_^1=失_不變(在本實施例 使推才干130上下移動,便能夠使入射角的產生 201226880 一 *〜〜w8TW 36089twf.doc/n 熒化,進而找到待測物質52的共振角。在本實施例中,光 學檢測裝置100還包括致動器18〇,連接至推桿13〇,以驅 使推桿130移動而使第一栓136與第二栓138分別在第一 溝槽112與第二溝槽122中滑動。如此一來,入射角Θ1 會維持在貫質上等於反射角02的狀態,便能達到較佳的光 冬里測效果。致動裔18〇例如為線性馬達,但本發明不以 此為限。本實施例的光學檢測裝置1〇〇通過較簡易的機構 _ 作動’就能夠使照明光束252的光軸的入射角Θ1維持與感 測光214的光軸的反射角θ2實質上相等,因此本實施例的 光學檢測裝置100能夠兼具較低的製造成本與較佳的量測 準確性。此外,本實施例的光學檢測裝置1〇〇由於通過致 動器180驅動推桿丨3〇,因此光學檢測裝置1〇〇可不斷地 作即時(realtime)量測。舉例而言,待測物質52例如為 流動的液體,而隨著液體不斷地流動,光學檢測裝置100 可即時監控液體的特性在不同時間的變化。然而,在其他 貫施例中’光學檢測裝置亦可不包括致動器180,而是使 鲁 用者用手移動推桿130。 圖4為本發明的另一實施例的光學檢測裝置中的第一 旋轉臂、第二旋轉臂、推桿、致動器及基板的立體示意圖。 請參照圖4,本實施例的光學檢測裝置與圖1的光學檢測 裝置100類似,而兩者的差異如下所述’在本實施例的光 學檢測裝置中,基板150位於推桿130a與第一旋轉臂110 之間’且基板15〇位於推桿13〇a與第二旋轉臂12〇之間。 此外’推桿13〇a不具有圖2B中的第三栓135、137,而推 11 201226880 _ , rji77w88TW 36089twf.doc/n 桿130a的第一栓136與第二栓138除了分別滑設於第一溝 槽112與第二溝槽122之外,還分別滑設於這些第三溝槽 152、154。換&之,第一栓136經由第三溝槽152穿過基 板150而滑設於第一溝槽112,且第二栓138經由第三溝 槽154穿過基板150而滑設於第二溝槽丨22。 圖5與圖6為本發明的又一實施例的光學檢測裝置中 的第-旋轉臂、第二旋轉臂、推桿、致動器及基板的兩個 不同視角的立體示意圖。請參照圖5與圖6,本實施例的 光學檢測裝置與圖1的光學檢測裝置1()〇類似,而兩者的 _ 差異如下所述。在本實施例的光學檢測裝置中,光學檢測 裝置還包括滑轨160,配置於基板150上,其中推桿i3〇b 不可轉動地滑設於滑軌160上,且滑執160實質上平行於 第一旋轉臂110與第二旋轉臂120的角平分線E。具體而 言,在本實施例中,滑軌160與第一旋轉臂11〇分別設於 基板150的相對兩側,且滑軌160與第二旋轉臂12〇分別 設於基板150的相對兩側。光學檢測裝置還包括滑動部 170,且推桿130b通過滑動部170滑設於滑執16〇上。 在本實施例中’基板150具有至少一第三溝槽(在圖 5中疋以兩個第二溝槽152b與154b為例),滑動部 與推桿130b分別設於基板150的相對兩側。此外,光學檢 測裝置還包括至少一連接部135b (在本實施例中是以兩個 連接部為例),一個連接部135b穿過第三溝槽154b,而 另一個圖5中被致動器180遮擋到而沒繪出的連接部通過 第三溝槽152b,且兩個連接部皆連接滑動部170與推桿The embodiment of the invention proposes an optical detecting device adapted to measure a substance to be tested. The optical inspection device includes a first rotating arm, a second rotating arm, a light source, a light ray, an enchantment and a control unit. The second rotating arm is pivotally coupled to the first to fourth rotating arms via a center of rotation. The light source is disposed on the first rotating arm. The photodetector is disposed on the second rotating arm, and the towel to be tested f is adapted to be disposed near the center of rotation. The carrier is disposed on the center of rotation, wherein the carrier has a bearing surface & is loaded to carry the substance to be tested. The 贞(4) has a photosensitive surface, and the control unit adjusts the angle between the normal vector of the photosensitive surface and the extending direction of the second rotating arm according to the angle between the second rotating arm and the inverse vector of the normal vector of the bearing surface. When the angle between the second rotating arm and the inverse vector of the normal vector of the bearing surface is incremented or decremented, the control unit increments or decrements the angle of the normal of the photosensitive surface with respect to the extending direction of the second rotating arm. Another embodiment of the present invention provides an optical detecting method comprising the following steps. The above optical detecting device is provided. Place the substance to be tested near the center of rotation. The light source is turned on to illuminate the illumination beam emitted by the light source on the substance to be tested, wherein the substance to be tested reflects the illumination beam into the sensed light. The light detector detects the sensed light. Changing the angle of the illumination beam incident on the substance to be tested and simultaneously changing the reflection angle of the sensing light detected by the photodetector, and adjusting the sensitization according to the angle of deviation of the inverse vector of the normal vector of the first rotating arm and the bearing surface The normal vector of the face relative to the direction of extension of the second rotating arm 201226880 x-, *„vw„8TW 36089twf.doc/n The extension of the lost-angle arm ^ ^ t — (4) The normal vector of the arm and the wearing surface The inverse vector of the second and second days, 'increasing or decrementing the normal angle of the photosensitive surface relative to the second rotational direction. It is easy to understand, and the following is specifically implemented. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of an optical detecting apparatus according to an embodiment of the present invention, in order to make the above-described features of the present invention more exemplified and in conjunction with the accompanying drawings. FIG. f2A is a perspective view of the first-rotating arm, the second rotating arm, the push rod L and the substrate in Fig. 1, and Fig. 2B shows the back surface of the structure of Fig. 2A. 3 is a schematic view of the optical path of the optical detecting device of FIG. Referring to FIG. 1 , FIG. 2A, FIG. 2B and FIG. 3, the optical detecting device of the present embodiment is adapted to Dong Jianlin. In the actual towel, the optical inspection position is, for example, a surface plasm〇n (10) (10) (10) (3) image apparatus, and the substance to be tested 52 is, for example, water, a liquid, a drug, an organism, a microorganism, or other biochemicals. substance. The optical detecting device 1 includes a first rotating arm 110, a second rotating arm 12A, a push rod 丨3, a light source 21A, and a photodetector 230. The first rotating arm 110 has a first groove 112. The second rotating arm 120 is pivotally coupled to the first rotating arm 11 via the center of rotation 14' and has a second groove 122. The push rod 13 has an opposite first end 132 and a second end 134' and includes a first plug 136 disposed at the first end 132 and a second plug 138 disposed at the second end 134. The first pin 136 is slidably disposed on the first groove 112 ′ and the second pin 138 is slidably disposed on the second groove 122 . The light source 210 is disposed on the first rotating arm 110, and the light detecting device 230 is disposed on the second rotating arm 120 201226880 r^^, ^ 8TW 36089twf.doc / n, and the substance to be tested 52 is adapted to be disposed in the rotating center i4 〇 nearby. In the present embodiment, the optical detecting device 1A further includes surface plasma resonance spectrometry. 50, which is disposed on the center of rotation 14 , and contacts the substance to be tested to generate a surface plasma resonance phenomenon. In the present embodiment, the surface plasma/vibration detecting portion 50 is, for example, a 稜鏡-type surface plasma resonance sensing portion. Further, the surface plasma resonance detecting portion 5 is, for example, a carrier having a bearing surface portion, and the bearing surface 59 is for carrying the substance to be tested 52. Specifically, the surface plasma vibration detecting unit 50 includes a crucible 51, a transparent plate %, a metal film 56, and a plurality of biocylinder needles 54. In the present embodiment, the bearing surface 59 is located at the center of rotation 14, for example, the base metal film 56 is located at the center of rotation 14〇. Further, the center line of the present metal grating 26, the extension line of the line passes through the center of rotation. This center line is, for example, a reference line which passes through the center of the metal film 26 and divides the metal film 26 into two parts. In other words, the center of rotation 140 is aligned with the centerline of the metal genus 26. However, in other embodiments, it may be gold, 26, the extension line of a reference line passes through the center of rotation, and the reference line is flat on the center line of the metal film 26, but not The center lines coincide. The 'rotation center 14' of the second meeting is offset from the center line of the metal film 56. In the present example, the 'transparent plate 58 is, for example, a glass plate, and the metal film 56 is, for example, gold,' and the bioprobe 54 is disposed on the bearing surface 59, wherein the bioprobe can grasp a specific one of the substances to be tested 52. Ingredients are used for measurement. In the example of the present invention, the transparent plate 58 is disposed between the crucible 51 and the metal film 56. Between the transparent plate 58 and the 稜鏡μ, an index matching oil layer ' can be provided with a better U effect and the reflection loss of light on the interface can be avoided. In this embodiment, the light source 210 is, for example, a light-emitting diode (light 201226880 -------- 8FW 36089 twf. doc/n emitting diode, LmD ), which is adapted to emit an illumination beam 212 (as depicted in FIG. 3 ). Show). However, in other embodiments, the light source 21A may also be a laser shot. The surface electro-polymerization resonance detecting unit 50 is disposed on the transmission path of the illumination light beam 212. After the illumination light beam 212 is irradiated onto the surface plasma resonance detecting unit 50, the sensing light 214 carrying the surface plasma resonance information is generated, and the light detection is performed. The device 230 is disposed on the transmission path of the sensing light 214. Specifically, in the present embodiment, the illumination beam 212 is provided with a mask 25 〇, a lens group 26 〇, a band pass filter 270, and a polarization on a transmission path between the light source 210 and the surface plasma resonance detecting portion 50. The device 220 is disposed on the first rotating arm 110, wherein the components can constitute the illumination optical module 2〇5. The mask 250 has apertures 252' and the illumination beam 212 passes through the apertures 250 through the apertures 252. Lens group 260 is used to enhance the collimation of illumination beam 212. Bandpass filter 270 is used to purify the illumination beam 212 such that illumination beam 212 is close to a single wavelength beam. Polarizer 220 is used to cause illumination beam 212 to produce linear polarization, while its polarization direction is P-polarized for bearing surface 59. When the P-polarized illumination beam 212 is irradiated to the metal film 56 via the prism 51 and the transparent plate 58, the substance to be tested 52 captured by the bioprobe 54 changes the surface plasma resonance state of the metal film 56. In addition, metal film 56 reflects illumination beam 212 into sensed light 214 such that the sensed light carries surface plasma resonance information. The sensing light 214 is provided with an imaging optical module 240 ′ on the transmission path between the surface plasma resonance detecting unit 50 and the photodetector 230 to transmit the sensing light 214 to the photodetector 230 and to the metal film. The 56 surface is imaged on the photodetector 230, wherein the imaging optical module 240 is disposed on the second rotating arm 120. In the present embodiment, the imaging optics 201226880 to 36089 twf.doc/n module 240 is, for example, an imaging lens. The photodetector 230 is, for example, a charge coupled device camera (CCD camera) or a complementary metal oxide semiconductor camera (CMOS camera) to capture a surface plasma resonance image on the metal film 56. . In addition, by the rotation of the first rotating arm 110 and the second rotating arm 120, the incident angle of the incident light beam 212 incident on the metal film 56 can be changed, and the resonance angle generated by the substance to be tested 52 can be found by the captured surface plasma resonance image. In this way, the type and characteristics of the object to be tested can be analyzed. Since the reflection of the metal film 56 conforms to the law of reflection, regardless of how the first rotating arm 110 rotates to rotate the light source 210, the incident angle q of the light of the illumination beam 212 on the optical axis can be designed to remain substantially equal to the incoming light detection. The reflection angle 264 of the light of the sense light 214 of the device 230 on the optical axis can achieve a better measurement effect. In other words, regardless of how the light source 21 turns "the optical axis of the illumination beam 212 and the angular bisector E of the optical axis of the sensed light 214 are consistently coincident with the normal to the metal film 56. In order to achieve such a effect, the optical detecting device 1〇〇 can be designed such that when the first pin 136 and the second pin 138 slide in the first groove 112 and the second groove 122, respectively, the first pin 136 is The distance of the center of rotation 140 is maintained substantially equal to the distance of the second pin 138 to the center of rotation 140. That is to say, no matter how the first rotating arm 110 and the second rotating arm 120 rotate, the triangle formed by the first plug 136, the second column 138 and the rotating center 140 is always an isosceles triangle, so that the first rotation The angle bisector of the arm 110 and the second rotating arm 12〇 is perpendicular to the bearing surface 59, so that the incident angle Θ1 is maintained substantially equal to 201226880 r ji?^vv〇8TW 36089twf.d〇c/n reflection angle Θ2 State to achieve better measurement results. In the present embodiment, the optical detecting device 100 further includes a substrate 150 having a plurality of third trenches (in the example of the third trench 152 and the third trench 154 in FIG. 1) and the push rod 130 further includes a plurality of third plugs (exemplified by the third plug 135 and the third plug 137 in FIG. 2B) are respectively slidably disposed in the second grooves 152, 154, wherein the third grooves 丨%, 154 are substantially The upper bisector E is parallel to the first rotating arm 110 and the second rotating arm 12A. In this embodiment, the third plug 135 is located at the first end 132 of the push rod 13〇, and the second plug 135 is first The bolts 130 are respectively located on opposite sides of the push rod 13〇. Further, the third plug 137 is located at the second end 134 of the push rod 13〇, and the second plug 137 and the second plug 138 are respectively located on opposite sides of the push rod 13〇. In this embodiment, the push rod 13 is disposed between the substrate 15 and the first rotation, and is disposed between the substrate 150 and the second rotating arm 12A. In this embodiment, the first groove (1) substantially parallel to the axis ' of the illumination beam 12 and the second groove 122 is substantially parallel to the sense of the sensed light 214, the jin 136 and the second test 138 gradually move toward the first groove The groove 112 = the one end of the suspected rotation, and the rotation of the second groove 122, the first rotating arm 110 and the second rotating arm 120 =it when the first rotating arm 11G and the second rotating arm 120 are two = raw The first-rotating arm 110 and the second rotating arm 12 are in the middle of the clamp _^1=loss _ unchanged (in this embodiment, the push-and-dry 130 is moved up and down, so that the incident angle can be generated 201226880 a *~~w8TW 36089twf The .doc/n is fluoresced to find the resonance angle of the substance to be tested 52. In the present embodiment, the optical detecting apparatus 100 further includes an actuator 18A connected to the push rod 13A to drive the push rod 130 to move. The first pin 136 and the second pin 138 are respectively slid in the first groove 112 and the second groove 122. Thus, the incident angle Θ1 is maintained at a state equal to the reflection angle 02, which is better. The effect of measuring the light in winter is as follows. The actuating device 18 is, for example, a linear motor, but the invention is not limited thereto. The optical detecting device 1 of the present embodiment can make the illumination beam 252 by a relatively simple mechanism _acting ' The incident angle Θ1 of the optical axis is maintained substantially equal to the reflection angle θ2 of the optical axis of the sensing light 214, and thus The optical detecting device 100 of the embodiment can have both a low manufacturing cost and a good measurement accuracy. Further, since the optical detecting device 1 of the present embodiment drives the push rod 丨3〇 by the actuator 180, The optical detecting device 1 can be continuously measured for real time. For example, the substance to be tested 52 is, for example, a flowing liquid, and as the liquid continuously flows, the optical detecting device 100 can instantly monitor the characteristics of the liquid. Changes in different times. However, in other embodiments, the optical detecting device may not include the actuator 180, but instead allows the user to move the push rod 130 by hand. Fig. 4 is a perspective view showing the first rotating arm, the second rotating arm, the push rod, the actuator, and the substrate in the optical detecting device according to another embodiment of the present invention. Referring to FIG. 4, the optical detecting device of the present embodiment is similar to the optical detecting device 100 of FIG. 1, and the difference between the two is as follows. In the optical detecting device of the present embodiment, the substrate 150 is located at the push rod 130a and the first Between the rotating arms 110' and the substrate 15 is located between the push rod 13A and the second rotating arm 12A. In addition, the 'push rod 13〇a does not have the third pin 135, 137 in FIG. 2B, and the first pin 136 and the second pin 138 of the push pin 11 201226880 _ , rji77w88TW 36089twf.doc / n bar 130a are respectively slid in the first A trench 112 and a second trench 122 are further slidably disposed on the third trenches 152, 154, respectively. And the first plug 136 is slidably disposed on the first trench 112 through the substrate 150 via the third trench 152, and the second plug 138 is slid through the substrate 150 via the third trench 154. Trench 丨 22. Fig. 5 and Fig. 6 are perspective views showing two different viewing angles of a first rotating arm, a second rotating arm, a push rod, an actuator and a substrate in an optical detecting device according to still another embodiment of the present invention. Referring to Fig. 5 and Fig. 6, the optical detecting device of this embodiment is similar to the optical detecting device 1() of Fig. 1, and the difference between the two is as follows. In the optical detecting device of the embodiment, the optical detecting device further includes a slide rail 160 disposed on the substrate 150, wherein the push rod i3〇b is non-rotatably slidably disposed on the slide rail 160, and the slipper 160 is substantially parallel to the slide rail 160. The angle between the first rotating arm 110 and the second rotating arm 120 is bisector E. Specifically, in the embodiment, the slide rail 160 and the first rotating arm 11 are respectively disposed on opposite sides of the substrate 150, and the slide rail 160 and the second rotating arm 12 are respectively disposed on opposite sides of the substrate 150. . The optical detecting device further includes a sliding portion 170, and the push rod 130b is slidably disposed on the sliding handle 16 through the sliding portion 170. In the present embodiment, the substrate 150 has at least one third trench (in FIG. 5, two second trenches 152b and 154b are taken as an example), and the sliding portion and the push rod 130b are respectively disposed on opposite sides of the substrate 150. . Further, the optical detecting device further includes at least one connecting portion 135b (in the present embodiment, taking two connecting portions as an example), one connecting portion 135b passes through the third groove 154b, and the other is actuated in FIG. The connecting portion that is blocked by 180 and passes through the third groove 152b, and the two connecting portions are connected to the sliding portion 170 and the push rod

S 12 36089twf.doc/n 201226880 .....«rw 130b。此外,兩個連接部適於分別在第三溝槽15孔與 溝槽154b中移動。致動器18〇連接至滑動部17(),以二 滑動部170在滑執上滑動,進而帶動推桿n〇b上下移 如此一來,便能夠使第一旋轉臂11〇與第二旋轉臂 動’並同時維持入射肖Θ1實質上等於反射肖θ2 (請參职 圖3)。 〜、、、S 12 36089twf.doc/n 201226880 ..... «rw 130b. Further, the two connecting portions are adapted to move in the third groove 15 and the groove 154b, respectively. The actuator 18 is connected to the sliding portion 17 (), and the sliding portion 170 slides on the sliding portion, thereby driving the push rod n〇b to move up and down, so that the first rotating arm 11 and the second rotation can be made. Arming 'and maintaining the incident angle 1 is substantially equal to the reflection θ2 (see Figure 3). ~,,,

立圖7為本發明的再一實施例的光學檢測裝置的光路示 意圖。本實施例的光學檢測裝置與圖i及圖3❸光學檢测 裝置類似’而兩者的差異在於本實施_光學檢測裝置的 表面電漿共振檢測部50e為光柵式表面電料振感測部。 具體而言,表面電漿共振檢測部5〇c的表面具有光栅社構 54c ’其可抓取待測㈣52。此外,絲電漿共振檢測部 5〇c的承載面59c亦維持在實質上垂直於照明光束212的 ^軸與感測光214的光軸的角平分線E的狀態,亦即第一 旋轉臂11〇與第二旋轉臂120(請參照圖n的角平分線e 維持在承載面59c的法線上。 一圖8與圖9為本發明的另二實施例的光學檢測裝置的 光路示思圖。在這兩個實施例中,僅緣示出光路來說明, 而其餘的機構(例如第一旋轉臂110、第二旋轉臂12〇、推 桿130、基板150、致動器180)均與圖1相同,因此相關 機構凊參照圖1 ’在此不再重複繪製。請參照圖8,本實施 7的光學檢測裝置為橢圓儀,其可用以量測待測物52d的 厚度’其中待測物52d例如為薄膜。在本實施例中,光源 21〇d例如為雷射光束,其所發出的照明光束例如為 13 201226880 一—…^8TW 36089twf.doc/n 單波長雷射光束。在另一實施例中,光源亦可以採用多波 長光源(例如白色光源)搭配在照明光束的傳遞路徑上設 置帶通濾光器來獲得單波長光束。 在本實施例中,光學檢測裝置還包括第一偏振器222d 及第二偏振器242d。光源21〇d所發出的照明光束212d照 射在待測物質52d上,第一偏振器222d配置於照明光束 212d的傳遞路徑上,且位於光源21〇d與待測物質52d之 間。待測物質52d將照明光束212d反射成感測光214d, 且感測光214d射向光偵測器230d。第二偏振器242d配置 於感測光214d的傳遞路徑上,且位於待測物質52d與光偵 測器230d之間。在本實施例中,光源21〇d與第一偏振器 222d配置於第一旋轉臂110 (請參照圖〇上,待測物質 52d配置於旋轉中心140 (請參照圖υ附近,且第二偏振 器242d與光偵測器230d配置於第二旋轉臂12〇 (請參照 圖1)上。在本實施例中,通過第一旋轉臂11〇與第二旋 轉臂120的旋轉,可使照明光束212d入射待測物52d的入 射角改變,進而使照明光束212d的光軸與感測光214(1的 光軸的角平分線E實質上垂直於待測物5 2 d的表面,如此 便月b夠達到較佳的量測效果。在本實施例中,光學檢測裝 置可還包括相位延遲器224d,例如為四分之一波片,此時 光,檢測裝置可採用歸零式消光法(肋11 dlipolmeteO來 作罝測。請參照圖9,本實施例的光學檢測裝置與圖8的 光學檢測裝置類似,而兩者的差異在於圖9的光學檢測震 置不採用圖8的相位延遲器224d,因此圖9的光學檢測裂 201226880 rDiyyuu«8TW 36089twf.doc/n 置ΊΓ採用相位„周製光度量測法(⑽如。⑽。如) 來作量測。 本發明的光學檢測裳置不限定為表面電聚共振影像 擴1^儀或_影像儀,在其他實施例巾,光學檢測裝 & 2疋其他任何需使㈣光束的絲減測光的光轴的 哭了刀線*隨著朗光束的人射肖的改變而改變的光學儀 一主圖10為本發明的又—實施例的先學檢測裝置的結構 '^圖。清參照圖10,本實施例的光學檢測裝置100e與 :的光學檢職置⑽有部分類似。兩者類似或相同的 在此勺元件以相同的標號表示出,而其詳細的功用與作動 例的“,重述此外,兩者不同之處如下所述。在本實施 旋轎f學檢測裝置100e中,驅使第一旋轉臂110e與第二 5 B臂I20e轉動的機構不限制為前述實施例的機構,其可 12〇你何形式的可驅使第一旋轉臂ll〇e與第二旋轉臂 _ :旋轉的機構。在本實施例中,第一旋轉臂110e與第 走轉臂12〇e適於等角度反向旋轉,亦即無論第一旋轉臂 、與第二旋轉臂12〇e如何旋轉,第一旋轉臂li〇e與垂 ;承栽面59的角平分線e的夾角始終維持在實質上等 、&二旋轉臂12〇e與角平分線e的夾角的狀態。 23〇光學檢測裝置l〇〇e包括控制單元310,且光偵測器 /有感光面234e。具體而言,光偵測器230具有影像 的二疋件232e ’而感光面234e例如為影像偵測元件232e 、咸光面,其中影像偵測元件232e例如為電荷耦合元件 15 8TW 36089twf.doc/n 201226880 (charge coupled device,CCD)或互補式金氧半導體感測 益(complementary metal oxide semiconductor sensor, CMOS sensor)。控制單元310用以根據第二旋轉臂i2〇e 與承載面的法向量VI的反向量(inverse vector)的夾角 φΐ ’來調整感光面234e的法向量V2相對於第二旋轉臂的 延伸方向(在本實施例中即平行於成像光學模組24〇的光 軸124的方向)的夾角φ2。舉例而言,當夾角w由一第 一角度遞增時,控制單元310在夾角ψ1為第一角度時給 夾角φ2 —初始的第三角度,當夾角⑴由第一角度遞增至 一第二角度時,夾角φ2由一第三角度遞減至一第四角度, 其中第-角度小於第二角度,且第四角度小於第三角度。 當夾角^從第二角度遞減至第一角度時,失 k苐四角度遞增至第三角度。 在另-實施例中,亦可以是當夹由 遞增時,控制單元+ + & ^ ^ -初始的第三角度,當—角度時給爽角帕 角度時,夾角φ2由—第三角& ^ 第-角度小於第二角度,且第角f角遞 = 細其中 當央角ml你笙_ & 弟—角度小於第四角度。或者, 角度遞減至第^肖錢至第—歧時,夾角啦從第四 在本說明書中,物 體内指向所述物體外,的法向量定義為由所述物 在本說明書中,向量與:於所述表面的向量。此外, 量與所述直線(或所㈣、fpf)的夾角定義為所述向 )的兩個相加起來等於180度的 201226880 rDiyyuu»8TW 36089twf.doc/n 夾角中較小的那-個,而當所述向量與所述直線 臂)互相垂直時,則兩者的夾角為9〇度。 靜態時,物平面例如承載面59與光# 、 _ 造成光偵測器230所偵測到的承載面59 :二: (perspective distortion) > ^ ,.t , 冉為梯形失真(keystone chstomon)。動態掃目苗時,假設夾角φ1增加作 〇度’光_器23 0所偵測到承載面5 9的影像會隨著夹角 cplU口而造成光偵測器230所偵測到影像壓縮 此 體修正影像以修正透視變形與影像壓縮的因 “將不同夾角φ1所測得的不同量測點的資料作 比L ’透過軟體修正影雜,影像的解心 降低’這會影響到量測的準確性’這種問題在二二時 越為嚴重。然而’在本實關狀學檢囉置咖中,奋 炎角91由一第一角度遞增時’控制單元310在夹角φ1 ^ 第-角度時給夾角cp2—初始的第三角度 第 :角=Γί:角度時,夾角φ2由一第三角= 至一第四角度,其中第一角度小於第二角产,Figure 7 is a schematic illustration of the optical path of an optical detecting device according to still another embodiment of the present invention. The optical detecting device of this embodiment is similar to the optical detecting device of Figs. 1 and 3, and the difference between the two is that the surface plasma resonance detecting portion 50e of the optical detecting device is a grating type surface acoustic vibration sensing portion. Specifically, the surface of the surface plasma resonance detecting portion 5A has a grating structure 54c' which can grasp the (four) 52 to be tested. Further, the bearing surface 59c of the wire plasma resonance detecting portion 5〇c is also maintained in a state substantially perpendicular to the angle bisector E of the optical axis of the illumination beam 212 and the optical axis of the sensing light 214, that is, the first rotating arm 11 〇 and the second rotating arm 120 (please refer to the angle bisector e of Fig. n to maintain the normal line of the bearing surface 59c. Fig. 8 and Fig. 9 are optical path diagrams of the optical detecting device according to another embodiment of the present invention. In both embodiments, only the optical path is illustrated, and the remaining mechanisms (eg, the first rotating arm 110, the second rotating arm 12, the push rod 130, the substrate 150, and the actuator 180) are shown in FIG. 1 is the same, so the related mechanism will not be repeatedly drawn here with reference to FIG. 1. Referring to FIG. 8, the optical detecting device of the seventh embodiment is an ellipsometer, which can be used to measure the thickness of the object to be tested 52d, in which the object to be tested 52d is, for example, a film. In the present embodiment, the light source 21〇d is, for example, a laser beam, and the illumination beam emitted by the light source 21〇 is, for example, 13 201226880 one-...^8TW 36089twf.doc/n single-wavelength laser beam. In an embodiment, the light source can also adopt a multi-wavelength light source (for example, a white light source). A band pass filter is disposed on the transmission path of the illumination beam to obtain a single wavelength beam. In this embodiment, the optical detecting device further includes a first polarizer 222d and a second polarizer 242d. The light source 21〇d emits The illumination beam 212d is irradiated on the substance to be tested 52d, and the first polarizer 222d is disposed on the transmission path of the illumination beam 212d, and is located between the light source 21〇d and the substance to be tested 52d. The substance to be tested 52d reflects the illumination beam 212d into The sensing light 214d is directed to the photodetector 230d. The second polarizer 242d is disposed on the transmission path of the sensing light 214d and is located between the substance to be tested 52d and the photodetector 230d. The light source 21〇d and the first polarizer 222d are disposed on the first rotating arm 110 (please refer to the figure, the substance to be tested 52d is disposed at the center of rotation 140 (please refer to the vicinity of the figure 且, and the second polarizer 242d and the light) The detector 230d is disposed on the second rotating arm 12〇 (please refer to FIG. 1). In this embodiment, the illumination beam 212d can be incident on the object through the rotation of the first rotating arm 11〇 and the second rotating arm 120. The incident angle of the object 52d changes, and further The optical axis of the illumination beam 212d and the angle bisector E of the optical axis of the sensing light 214 (1 is substantially perpendicular to the surface of the object to be tested 5 2 d, so that the monthly measurement is sufficient to achieve a better measurement effect. In this embodiment The optical detecting device may further include a phase retarder 224d, for example, a quarter-wave plate. At this time, the detecting device may adopt a return-to-zero extinction method (rib 11 dlipolmete O for speculation. Referring to FIG. 9, the present embodiment The optical detecting device of the example is similar to the optical detecting device of FIG. 8, and the difference between the two is that the optical detecting shake of FIG. 9 does not use the phase retarder 224d of FIG. 8, so the optical detecting crack of FIG. 9 is 201226880 rDiyyuu «8TW 36089twf. Doc/n is set to use the phase „weekly photometric method ((10) eg. (10). For example, to measure. The optical detecting skirt of the present invention is not limited to the surface electro-convergence resonance image expanding device or the imager, and in other embodiments, the optical detecting device & 2 疋 any other optical axis of the wire minus the measuring light of the (four) beam The crying knife line* is an optical instrument that changes with the change of the human beam of the Lang beam. FIG. 10 is a structural diagram of the prior art detecting device of the embodiment of the present invention. Referring to Fig. 10, the optical detecting device 100e of the present embodiment is partially similar to the optical inspection device (10). The elements of the same or the same are denoted by the same reference numerals, and the detailed functions and the examples of the operation are "repeated. In addition, the difference between the two is as follows. In this embodiment, the teaching method is as follows. In 100e, the mechanism for driving the rotation of the first rotating arm 110e and the second 5B arm I20e is not limited to the mechanism of the foregoing embodiment, which can drive the first rotating arm 11〇e and the second rotating arm. _: a rotating mechanism. In this embodiment, the first rotating arm 110e and the first traveling arm 12〇e are adapted to rotate at an equal angle, that is, regardless of the first rotating arm and the second rotating arm 12〇e Rotation, the angle between the first rotating arm li〇e and the sag; the angle bisector e of the bearing surface 59 is always maintained at substantially the same angle as the angle between the two rotating arms 12〇e and the angle bisector e. The optical detecting device 10e includes a control unit 310, and the photodetector/photosensitive surface 234e. Specifically, the photodetector 230 has a photo element 232e' and the photosensitive surface 234e is, for example, an image detecting element. 232e, a salty surface, wherein the image detecting element 232e is, for example, a charge coupled element 15 8TW 3 6089 twf.doc/n 201226880 (charge coupled device, CCD) or a complementary metal oxide semiconductor sensor (CMOS sensor). The control unit 310 is used according to the second rotating arm i2〇e and the bearing surface The angle φ ΐ ' of the inverse vector of the normal vector VI adjusts the direction of extension of the normal vector V2 of the photosensitive surface 234e with respect to the second rotating arm (in this embodiment, parallel to the optical axis of the imaging optical module 24A) The angle φ2 of the direction of 124. For example, when the angle w is incremented by a first angle, the control unit 310 gives the angle φ2 - the initial third angle when the angle ψ 1 is the first angle, when the angle (1) is from the first angle When increasing to a second angle, the angle φ2 is decreased from a third angle to a fourth angle, wherein the first angle is smaller than the second angle, and the fourth angle is smaller than the third angle. When the angle ^ is decreased from the second angle to the second angle At one angle, the four angles are increased to the third angle. In another embodiment, the control unit + + & ^ ^ - the initial third angle when the clip is incremented, when the angle is Cool When the angle is angled, the angle φ2 is determined by the third angle & ^ first angle is smaller than the second angle, and the first angle f angle is fine = where the central angle ml you _ & brother - the angle is smaller than the fourth angle. When the angle is decremented to the second to the first, the angle is from the fourth. In the present specification, the normal vector pointing out of the object is defined by the object in the specification, the vector and the The vector of the surface. In addition, the angle between the quantity and the straight line (or (four), fpf) is defined as the smaller of the angles of the two phases of 201226880 rDiyyuu»8TW 36089twf.doc/n which are added to the angle of 180 degrees. When the vector and the linear arm are perpendicular to each other, the angle between the two is 9 degrees. In static state, the object plane such as the bearing surface 59 and the light #, _ causes the bearing surface 59 detected by the photodetector 230: two: (perspective distortion) > ^ , .t , 冉 is keystone chstomon . When the eyebrows are dynamically scanned, it is assumed that the angle φ1 is increased as the degree of light. The image detected by the light source 231 is detected by the photodetector 230 as the angle cplU is detected. The body correction image is used to correct the perspective distortion and image compression. "The data of different measurement points measured by different angles φ1 is compared with L 'by software correction, and the image center is reduced." This will affect the accuracy of the measurement. Sexuality's problem is more serious at 2nd and 2nd. However, in the actual situation, when the angle of the flame is increased from a first angle, the control unit 310 is at an angle φ1 ^ When the angle cp2 is set - the initial third angle: angle = Γί: angle, the angle φ2 is from a third angle = to a fourth angle, wherein the first angle is smaller than the second angle,

St三角度。或者:當夾角Φΐ從第二;度遞減至第: 角又時,夾角φ2從第四角度遞增至第三角产。在一 施例中’亦可以是當失角φ1* —第1度^時,㈣ 早兀310在夾角φ1為第一角度時給失角扣一初始的第三 角度’當夾角φΐ由第-角度遞增至1二角度時,失角⑽ 由-第三角度遞增至—第四角度,其中第—角度小於第二 角度,且第三肢小於第四角度。或者,當夾肖^從第 17 201226880 r j iyyuuo8TW 36089twf.doc/n 二角度遞減至第一角度時,夾角從第四角度遞減至第 三角度。如此一來,則可有效降低透視變形與影像壓縮的 程度’進而有效改善上述影像解析度降低的問題。如此一 來’本實施例的光學檢測裝置l〇〇e的量測準確度與可靠度 便可大為提升。 以下以表格來幫助說明上述四種φΐ及φ2的遞增、遞 減的情況: φΐ ω2 第一角度 第二角度 第二角度 第四角度 情況1 小 大 大(初始角 大) 小 情況2 大 小 小 大 情況3 小 大 小(初始角 小) 大 情況4 大 小 大 小St three angles. Or: when the angle Φ ΐ decreases from the second degree to the first angle, the angle φ2 increases from the fourth angle to the third angle. In one embodiment, 'may also be when the angle of loss φ1* - the first degree ^, (4) early 兀 310 when the angle φ1 is the first angle, the angle of the initial angle of the declination is 'when the angle φ ΐ is from the first angle When increasing to a two-two angle, the lost angle (10) is incremented from a third angle to a fourth angle, wherein the first angle is smaller than the second angle, and the third limb is smaller than the fourth angle. Alternatively, when the clip is reduced from the second angle to the first angle from the second angle, the angle is decreased from the fourth angle to the third angle. In this way, the degree of perspective distortion and image compression can be effectively reduced, thereby effectively improving the problem of reduced image resolution. Thus, the measurement accuracy and reliability of the optical detecting device 10e of the present embodiment can be greatly improved. The following table is used to help explain the above-mentioned four kinds of increments and decrements of φΐ and φ2: φΐ ω2 first angle second angle second angle fourth angle case 1 small large (initial angle large) small case 2 small size large situation 3 Small size (small initial angle) large case 4 size

在情況1中’夾角φΐ從較小的第一角度遞增至較大 的第二角度,而此時夾角φ2從較大的初始的第三角度遞 減至較小的第四角度。在情況2中,夾角φι從較大的第 一角度遞減至較小的第二角度,而此時夾角φ2從較小的 第二角度遞增至較大的第四角度。在情況3中,夾角φ1 從較小的第一角度遞增至較大的第二角度,而此時夾角φ2 從較小的初始的第三角度遞增至較大的第四角度。在情況 4中’夾角φΐ從較大的第一角度遞減至較小的第二角度, 而此時夾角Φ2從較大的第三角度遞減至較小的第四角In case 1, the angle φ 递增 is increased from a smaller first angle to a larger second angle, while the angle φ 2 is now reduced from a larger initial third angle to a smaller fourth angle. In case 2, the angle φι is decreased from the larger first angle to the smaller second angle, and at this time the angle φ2 is increased from the smaller second angle to the larger fourth angle. In case 3, the angle φ1 is increased from a smaller first angle to a larger second angle, while the angle φ2 is incremented from a smaller initial third angle to a larger fourth angle. In case 4, the angle φ 递 decreases from a larger first angle to a smaller second angle, and at this time the angle Φ2 decreases from a larger third angle to a smaller fourth angle.

18 S 201226880 j. ^7uu〇8TW 36089twf.doc/n 度。上述不同情況中的第一角度可以彼此不完全相同或完 全不同。同理,這四種情況中的第二角度亦可以彼此不完 全相同或完全不同。以此類推,不同情況中的第三角度與 第四角度亦疋如此。其中,情況i與情況2是發生在夹角 Φ2對夾角cpl的補償效果過大時,而情況3與情況4是發 ,在夾角φ2對夾角φΐ的補償效果不足時,而此補償效果 疋私經由夾角φ2的變化來降低透視變形與影像壓縮的程 度的效果。 在本貝施例中’光學檢測裝置1〇〇e還包括致動器 320 ’其連接至光憤測$ 23〇,且用以驅使感光面 234e 旋 轉,其中致動器320電性連接至控制單元31〇,且控制單 兀310適於命令致動器32〇驅使感光面23牝旋轉。具體而 δ,控制單元310例如為控制電路,其通過電訊號命令致 動器320驅使感光面234e旋轉。在本實施例中,光偵測器 230樞接於第二旋轉臂12如上,致動器32〇例如為馬達, 其驅使光偵測器230轉動,而光偵測器23〇帶動感光面 • 234e旋轉。在本實施例中,致動器320位於光偵測器230 與第二旋轉臂120e之間,亦即第二旋轉臂12〇e上先配置 致動器320後’再將光偵測器230配置於致動器320上。 然而’在其他實施例中,亦可以是光偵測器230位於致動 器320與第二旋轉臂12〇e之間,亦即第二旋轉臂123e上 先配置光偵測器230後,再配置致動器320。 感光面234e具有通過感光面234e的中心的中心線 235e ’此中心線235e落在感光面234e上,且感光面234e 19 201226880 rji^-yuu68TW 36089twf.doc/n 繞此中心線235e旋轉。為了使影像的成像效果更為良好, 在本實施例中,可使致動器320的旋轉軸位於感光面234e 的中心線235e的延伸線上,且使感光面234e的中心線235e 垂直於第一旋轉臂ll〇e與第二旋轉臂12〇e的旋轉平面。 此外,可再進一步使感光面234e的中心線235e與成像光 學模組240的光軸124相交’如此亦有助於提升影像的成 像效果。在本實施例中,中心線235e與光軸124實質上互 相垂直。此外,在本實施例中,夾角φ1的變動範圍是落 在大於0度且小於90度的範圍内,且夾角φ2的變動範圍 疋落在0度至70度的範圍内。此外’炎角φΐ與夾角印2 的範圍可相關於光學檢測裝置100e的放大倍率。然而,在 其他貫施例中,感光面234e亦可以是繞著感光面234e上 偏離感光面234e的中心的參考線旋轉,此參考線例如與中 心線235e平行但不重合。此外,致動器32〇的旋轉軸亦可 以是位於此參考線的延伸線上。 為了避免外界的雜散光對光學檢測結果的干擾,在本 貫施例中,光學模測裝置l〇〇e還包括中空遮光彈性套筒 330,連接成像光學模組24〇與光偵測器23〇 ’其中中空遮 光彈性套筒330將成像光學模組240與光偵測器23〇之間 的感測光214密閉於中空遮光彈性套筒33〇中。換言之, 中空遮光彈性套筒330環繞成像光學模組24〇的光軸 124,且不漏光地緊密連接成像光學模組24〇與光偵測器 230。如此一來,外界的雜散光便不會射入光偵測器 中以造成對量測結果的干擾。當光偵測器23〇轉動以帶動18 S 201226880 j. ^7uu〇8TW 36089twf.doc/n degrees. The first angles in the different situations described above may not be identical or completely different from one another. Similarly, the second angles of the four cases may not be identical or completely different from each other. By analogy, the third and fourth angles in different situations are also the same. Wherein, case i and case 2 occur when the angle Φ2 has an excessive compensation effect on the angle cpl, and case 3 and case 4 are hair, and when the angle φ2 is insufficient for the compensation effect of the angle φ ,, the compensation effect is private. The change in the angle φ2 reduces the effect of the perspective distortion and the degree of image compression. In the present embodiment, the 'optical detection device 1 〇〇e further includes an actuator 320' that is connected to the light anger $ 23 〇 and is used to drive the photosensitive surface 234e to rotate, wherein the actuator 320 is electrically connected to the control The unit 31 is adapted and the control unit 310 is adapted to command the actuator 32 to drive the photosensitive surface 23 to rotate. Specifically, δ, the control unit 310 is, for example, a control circuit that drives the photosensitive surface 234e to rotate by the electrical command actuator 320. In this embodiment, the photodetector 230 is pivotally connected to the second rotating arm 12 as above. The actuator 32 is, for example, a motor, which drives the photodetector 230 to rotate, and the photodetector 23 〇 drives the photosensitive surface. 234e rotates. In this embodiment, the actuator 320 is located between the photodetector 230 and the second rotating arm 120e, that is, after the actuator 320 is disposed on the second rotating arm 12〇e, the photodetector 230 is further disposed. It is disposed on the actuator 320. However, in other embodiments, the photodetector 230 may be located between the actuator 320 and the second rotating arm 12〇e, that is, after the photodetector 230 is disposed on the second rotating arm 123e, The actuator 320 is configured. The photosensitive surface 234e has a center line 235e' passing through the center of the photosensitive surface 234e, and the center line 235e falls on the photosensitive surface 234e, and the photosensitive surface 234e 19 201226880 rji^-yuu68TW 36089twf.doc/n rotates around the center line 235e. In order to make the imaging effect of the image better, in the present embodiment, the rotation axis of the actuator 320 can be located on the extension line of the center line 235e of the photosensitive surface 234e, and the center line 235e of the photosensitive surface 234e is perpendicular to the first The rotation plane of the rotating arm 11〇e and the second rotating arm 12〇e. In addition, the center line 235e of the photosensitive surface 234e can be further intersected with the optical axis 124 of the imaging optical module 240. This also contributes to enhancing the image forming effect of the image. In the present embodiment, the centerline 235e and the optical axis 124 are substantially perpendicular to each other. Further, in the present embodiment, the variation range of the included angle φ1 falls within a range of more than 0 degrees and less than 90 degrees, and the variation range of the included angle φ2 falls within the range of 0 to 70 degrees. Further, the range of the 'inflammation angle φ ΐ and the angle 2 can be related to the magnification of the optical detecting device 100e. However, in other embodiments, the photosensitive surface 234e may also be rotated about a reference line offset from the center of the photosensitive surface 234e on the photosensitive surface 234e, which is, for example, parallel to the center line 235e but not coincident. Further, the rotation axis of the actuator 32A may be an extension line located on the reference line. In order to avoid the interference of the external stray light on the optical detection result, in the present embodiment, the optical sensing device 10e further includes a hollow light-shielding elastic sleeve 330 connected to the imaging optical module 24 and the photodetector 23 The hollow light-shielding elastic sleeve 330 seals the sensing light 214 between the imaging optical module 240 and the photodetector 23A in the hollow light-shielding elastic sleeve 33A. In other words, the hollow light-shielding elastic sleeve 330 surrounds the optical axis 124 of the imaging optical module 24, and is closely connected to the imaging optical module 24 and the photodetector 230 without light leakage. As a result, external stray light will not enter the photodetector to cause interference with the measurement results. When the photodetector 23 is rotated to drive

S 20 201226880 ^Diyyuus8TW 36089twf.doc/n 感光面234e轉動時,中空遮光彈性套筒33〇隨之變形,而 有保持此過程雜散光不跑到光偵測器上。 控制單元31〇以查表的方式根據第二旋轉臂12〇e與 承載面59的法向量VI的反向量的夾角φ1,來找到感光 面234e的法向量V2相對於第二旋轉臂12〇e的延伸方向 的對應的夾角φ2。具體而言,可先經由實驗得知,當夾角 φΐ的大小為某個值時,採用何種大小的夾角φ2可得到最 φ 佳的檢測效果,並將此時的φΐ值與φ2值記錄於表格中。 然後,再經過一連串的實驗建立了各種Μ值與最佳的φ2 值的對應關係,並將此對應關係記錄與表格中。而當光學 k測裝置l〇〇e出廠後使用時,控制單元31〇可透過致動器 將第二旋轉臂124驅動至特定的夾角中丨,且以查表的方式 找到對應的φ2值,並使感光面23如旋轉至此角度。 一,11Α為本發明的再一實施例的光學檢測裝置的結 構示意圖,而圖11Β為圖11Α的局部放大圖。請參照圖 11Α與圖11Β’本實施例的光學檢測裝置100f類似於圖1〇 籲❾光學檢測裝置100e,而兩者的差異如下所述。在本實施 例中’光學檢測裝置100f還包括基板鹽,其中第一旋轉 # 110e與第二旋轉臂12〇6通過旋轉中心、14〇才區設於基板 150f上。在本實施例中,控制單元遍為機構式控制單 凡。具體而言’控制單元肅包括曲線形溝槽312f及限 制栓314f。曲線形溝槽312f設於基板窗上,限制检请 連接至光偵測器230,例如是透過控制單元3應的旋轉盤 316f連接至光倩測器23()。此外,限制检賣滑設於曲線 201226880 36089twf.doc/n 形溝槽3l2f中。當第-#絲 進而帶動咸氺品u 仕曲綠形溝槽312f中滑動, 轉而進而使光侧Cl轉卩:亦即通過帶動旋轉盤贿旋 的轨跡經過適當的設計德,二之旋轉。當曲線形溝槽31打 當的對;田又。 ,夾角中1與夾角φ2便能夠有適 =應_ ’㈣提升絲檢測結果的正確性。 示意圖。施例的光學檢測裝置的結構 似於圖^ …、圖2,本貫施例的光學檢測裝置1〇此類S 20 201226880 ^Diyyuus8TW 36089twf.doc/n When the photosensitive surface 234e is rotated, the hollow light-shielding elastic sleeve 33 is deformed, and the stray light does not run to the photodetector while keeping the process. The control unit 31 finds the normal vector V2 of the photosensitive surface 234e with respect to the second rotating arm 12〇e according to the angle φ1 between the second rotating arm 12〇e and the inverse vector of the normal vector VI of the bearing surface 59 in a table lookup manner. The corresponding angle φ2 of the extending direction. Specifically, it can be experimentally found that when the angle φ ΐ is a certain value, the angle φ2 of which size is used can obtain the best φ detection effect, and the φ ΐ value and the φ 2 value at this time are recorded in In the table. Then, after a series of experiments, the correspondence between various Μ values and the best φ2 values is established, and the correspondence is recorded in the table. When the optical k measuring device 10e is used after leaving the factory, the control unit 31 can drive the second rotating arm 124 to a specific angle through the actuator, and find the corresponding φ2 value by looking up the table. The photosensitive surface 23 is rotated to this angle as it is. 1 and 11 are schematic views showing the configuration of an optical detecting apparatus according to still another embodiment of the present invention, and Fig. 11A is a partially enlarged view of Fig. 11A. Referring to Fig. 11A and Fig. 11A, the optical detecting device 100f of the present embodiment is similar to Fig. 1 for the optical detecting device 100e, and the difference between the two is as follows. In the present embodiment, the optical detecting device 100f further includes a substrate salt, wherein the first rotating #110e and the second rotating arm 12〇6 are disposed on the substrate 150f through the center of rotation. In this embodiment, the control unit is a mechanical control unit. Specifically, the control unit includes a curved groove 312f and a limit pin 314f. The curved groove 312f is disposed on the substrate window, and the limit detection is connected to the photodetector 230, for example, to the optical detector 23() via the rotating disk 316f of the control unit 3. In addition, the limit slip is set in the curve 201226880 36089twf.doc/n-shaped groove 3l2f. When the ##丝 further drives the salty u u 仕 仕 仕 仕 仕 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 Rotate. When the curved groove 31 is played, the field is again. In the angle between the angle 1 and the angle φ2, the correctness of the detection result of the lifting wire can be determined. schematic diagram. The structure of the optical detecting device of the embodiment is similar to that of Fig. 2, Fig. 2, the optical detecting device of the present embodiment 1

實施例的iGGe,*兩者的差異在於在本 圖10由先予榀測裝置100h中是以遮光殼體330h來取代 像朵幾4的中空遮光彈性套筒330。遮光殼體330h包覆成 路秤了模組240與光偵測器23〇之間的感測光214的傳遞 23〇且包覆部分成像光學模組240與至少部分光偵測器 來,圖12中是以包覆整個光偵測器230為例)。如此— 卜界的雜散光便較不會射入光偵測器230中以造成對 置測結果的干擾。The difference between iGGe and * of the embodiment is that in the preliminary detecting device 100h of Fig. 10, the hollow light-shielding elastic sleeve 330 is replaced by the light-shielding casing 330h. The light-shielding shell 330h is wrapped into a road scale to transmit the sensing light 214 between the module 240 and the photodetector 23A, and covers part of the imaging optical module 240 and at least part of the photodetector, FIG. For example, the entire photodetector 230 is covered. In this way, the stray light of the boundary is less likely to enter the photodetector 230 to cause interference with the measurement result.

圖10、圖11A與圖12的實施例的概念也可應用於上 述圖]、1SI、 中、圖2A、圖2B、圖4、圖5及圖6的光學檢測裝置 ’以下舉出一實施例作為代表來說明。 _ 土圖丨3為本發明的又一實施例的光學檢測裝置的結構 不思、圖。請參照圖13,本實施例的光學檢測裝置100g為 ,1的光學檢測裝置100及圖10的光學檢測裝置100e的 合體’其中與圖1及圖10相同標號的元件代表相同或類 似的元件’其功用在此不再重述。在光學檢測裝置100gThe concept of the embodiment of FIG. 10, FIG. 11A and FIG. 12 can also be applied to the optical detecting device of the above-mentioned FIG. 1 , 1SI, the middle, FIG. 2A, FIG. 2B, FIG. 4, FIG. 5 and FIG. As a representative to explain. _ FIG. 3 is a structure of an optical detecting device according to still another embodiment of the present invention. Referring to FIG. 13, the optical detecting device 100g of the present embodiment is a combination of the optical detecting device 100 of FIG. 1 and the optical detecting device 100e of FIG. 10, wherein the same elements as those of FIGS. 1 and 10 represent the same or similar elements. Its function is not repeated here. In the optical detecting device 100g

S 22 201226880 χ v i^^vuu8TW 36089twf. doc/n 中,致動320連接至光偵測器230以驅使光谓測器230 著第一方疋轉臂120的旋轉而旋轉,其中旋轉的方式與旋 轉的量請參照圖10的實施例,在此不再重述。在本實施例 中’光偵測器230配置於致動器320與第二旋轉臂12〇之 間。此外,控制單元310電性連接至致動器18〇與致動器 320。當控制單元31〇命令致動器18()將第二旋轉臂12〇 推動至某特定角度時,亦通過查表而得知光偵測器23〇應S 22 201226880 χ vi ^ ^ vuu8TW 36089twf. doc / n, the actuating 320 is connected to the photodetector 230 to drive the optical predator 230 to rotate the rotation of the first rotating arm 120, wherein the rotation is performed in a manner Please refer to the embodiment of FIG. 10 for the amount of rotation, which will not be repeated here. In the present embodiment, the photodetector 230 is disposed between the actuator 320 and the second rotating arm 12A. Further, the control unit 310 is electrically connected to the actuator 18A and the actuator 320. When the control unit 31 commands the actuator 18() to push the second rotating arm 12' to a certain angle, the photodetector 23 is also known by looking up the table.

轉動至何種角度,並命令致動器32〇將光偵測器23〇旋轉 至此角度。 圖14為本發明的一實施例的光學檢測方法的流程 圖。凊參照圖14,本實施例的光學檢測方法適用於圖1至 圖9的光學檢職n以下是採關w光學檢測裝置 1〇〇為例來說明。首先,執行步驟S110,#為提供上述光 學檢測裝置1GG。接著,執行步驟S12Q,將待測物質52 置於㈣巾^ 140附近。魄,執行步驟S13Q,開啟光源 21〇’以使光源210所發出的照明光束212(如圖3所繪示) …射在待測物$ 52上,其中待測物質52將照明光束212 感測光214。之後’執行步驟sl4〇,以光情測器23〇 =軸4。再來,執行步驟⑽,移動推桿⑽, 靜122 ^36與第一检138分別在第一溝槽112與第二 彳: 滑動’進而改變照明光束212入射待測物質52 的二ΐ同時改變光偵測器230所偵測到的感測光214 的反身通過使推桿⑽上下移動,便㈣使入射角 產生魏,進吨料測物f 52的共則。以上步驟 23 201226880 中所產生的機構連動及步驟的細節請參照圖 施例,再此不再重述。 1至圖9的實 圖15為本發明的另—實 —實施例的光學檢測方法的流程Turn to the angle and command the actuator 32 to rotate the photodetector 23 to this angle. Fig. 14 is a flow chart showing an optical detecting method according to an embodiment of the present invention. Referring to Fig. 14, the optical detecting method of the present embodiment is applied to the optical inspection apparatus of Figs. 1 to 9 and is described below by taking the optical inspection apparatus 1 as an example. First, step S110 is executed to provide the above-described optical detecting device 1GG. Next, step S12Q is performed to place the substance to be tested 52 near the (four) towel 140. In other words, step S13Q is performed to turn on the light source 21〇' to cause the illumination beam 212 (shown in FIG. 3) emitted by the light source 210 to be incident on the object to be tested, wherein the substance to be tested 52 senses the illumination beam 212. 214. Thereafter, the step sl4 is performed to the photosensor 23 〇 = axis 4. Then, step (10) is performed to move the push rod (10), the static 122 ^ 36 and the first check 138 are respectively changed in the first groove 112 and the second 彳: sliding 'to change the illumination beam 212 incident on the substance to be tested 52 simultaneously. The reflex of the sensed light 214 detected by the photodetector 230 causes the incident angle to be generated by moving the push rod (10) up and down, and (4) the common angle of the incident angle f. For details of the mechanism linkage and steps generated in the above steps 23 201226880, please refer to the figure, and we will not repeat them here. 1 to 9 of Fig. 9 is a flow chart of an optical detecting method of another embodiment of the present invention

可應用於圖10至圖13的光學檢測裝置1〇〇e l〇〇f i〇〇g、 i〇〇h。在本實施例的步驟S150,中,當改變照明光束212 入射待測物質52的角度,且改變光偵測器23〇所偵測到的 φ 感測光214的反射角度的同時,根據第二旋轉臂12〇e與承 載面59的法向量VI的反向量的夾角,來調整感光面234e 的法向量V2相對於第二旋轉臂120e的延伸方向的夾角。 當夾角φΐ從一第一角度遞增至一第二角度時,使夾角φ2 對應地從一第三角度遞減至一第四角度,其中第一角度、 第二角度、第三角度與第四角度皆大於〇度且小於90度。 或者,當夾角φΐ從第二角度遞減至第一角度時,使夾角φ2 對應地從第四角度遞增至第三角度。在另一實施例中,亦 ^ 可以是當夹角φΐ從一第一角度遞增至一第二角度時,使 夹角φ2對應地從一第三角度遞增至一第四角度,其中第 一角度、第二角度、第三角度與第四角度皆大於0度且小 於90度。或者,當夾角φΐ從第二角度遞減至第一角度時, 使夾角φ2對應地從第四角度遞減至第三角度。上述步驟 的詳細細節與功用請參照圖10至圖12的實施例,在此不 再重述。此外,當採用圖13的光學檢測裝置100g時,步It can be applied to the optical detecting devices 1〇〇e l〇〇f i〇〇g, i〇〇h of FIGS. 10 to 13 . In step S150 of the embodiment, when the angle of the illumination beam 212 incident on the substance to be tested 52 is changed, and the reflection angle of the φ sensing light 214 detected by the photodetector 23 is changed, according to the second rotation The angle between the arm 12〇e and the inverse vector of the normal vector VI of the bearing surface 59 adjusts the angle of the normal vector V2 of the photosensitive surface 234e with respect to the extending direction of the second rotating arm 120e. When the angle φ 递增 is increased from a first angle to a second angle, the angle φ2 is correspondingly decreased from a third angle to a fourth angle, wherein the first angle, the second angle, the third angle, and the fourth angle are both Greater than twist and less than 90 degrees. Alternatively, when the angle φ 递 is decreased from the second angle to the first angle, the angle φ2 is correspondingly increased from the fourth angle to the third angle. In another embodiment, when the angle φ 递增 is increased from a first angle to a second angle, the angle φ2 is correspondingly increased from a third angle to a fourth angle, wherein the first angle The second angle, the third angle, and the fourth angle are both greater than 0 degrees and less than 90 degrees. Alternatively, when the angle φ 递 is decreased from the second angle to the first angle, the angle φ2 is correspondingly decreased from the fourth angle to the third angle. For details and functions of the above steps, please refer to the embodiment of FIG. 10 to FIG. 12, which will not be repeated here. Further, when the optical detecting device 100g of Fig. 13 is employed, the step

S 24 201226880 r^iyyuu68TW 36089twf.d〇c/n 驟S150’中的改變照明光束212入射待測物質52的角度且 改變光偵測器230所偵測到的感測光214的反射角度可由 移動推桿130來達成,詳細的細節與功用請參照圖13的實 施例,在此不再重述。 綜上所述,在本發明的實施例的光學檢測裝置及光學 檢測方法中,由於當第一栓與第二栓分別在第一溝槽與第 二溝槽中滑動時,第一栓至旋轉中心的距離維持實質上等 於第二栓至旋轉中心的距離,因此無論第一旋轉臂與第二 旋轉臂旋轉至何種角度,第一旋轉臂與第二旋轉臂的角平 分線的位置維持不變。如此一來,便可達到較佳的光學量 測效果。 此外’本發明的實施例的光學檢測裝置通過較簡易的 機構作動,就能夠使照明光束的光軸的入射角維持與感測 光的光轴的反射角實質上相等,因此本發明的實施例的光 學檢測裝置能夠兼具較低的製造成本與較佳的量測準確 性。再者’本發明的實施例的光學檢測裝置由於通過致動 器驅動推桿,因此光學檢測裝置可不斷地作即時量測。 再者’在本發明的實施例的光學檢測裝置及光學檢測 方法中’當第二旋轉臂與承載面的法向量的反向量的夾角 遞增或遞減時,可使感光面的法向量相對於第二旋轉臂的 延伸方向的夾角遞增或遞減,如此一來,便可有效降低在 光偵测器中所成的像的透視變形與影像壓縮,進而提升光 學檢測裝置與光學檢測方法的檢測準確度。 雖然本發明已以實施例揭露如上,然其並非用以限定 25 201226880 irji77wv〇8TW 36089twf.doc/n 本發明’任何所屬技術領域中具有通常知識者,在不脫離 本發明之精神和範圍内,當可作些許之更動與潤飾,故本 發明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1為本發明的一實施例的光學檢測裝置的分解圖。 圖2A為圖1中的第一旋轉臂、第二旋轉臂、推桿、 致動器及基板的立體示意圖。 圖2B為圖2 A的結構的背面。 圖3為圖1的光學檢測裝置的光路示意圖。 圖4為本發明的另一實施例的光學檢測裝置中的第— 旋轉臂、第二旋轉臂、推桿、致動器及基板的立體示意圖。 圖5與圖6為本發明的又一實施例的光學檢測裝置中 的第一旋轉臂、第二旋轉臂、推桿、致動器及基板的兩個 不同視角的立體示意圖。 圖7為本發明的再-實施例的光學檢測裝置的光路示 意圖。 圖8與圖9為本發明的另二實施例的光學檢測裝置的 光路示意圖。 -立圖1G為本發明的又—實施例的光學檢測裝置的結構 不意圖。 圖11A為本發明的再_實施例的光學檢測裝置的結 構示意圖。 圖11B為圖11A的局部放大圖。 201226880 J^MyyuusSTW 36089twf.doc/n 圖12為本發明的另一實施例的光學檢測裝置的結構 示意圖。 圖13為本發明的又一實施例的光學檢測裝置的結構 示意圖。 圖14為本發明的一實施例的光學檢測方法的流程圖。 圖15為本發明的另一實施例的光學檢測方法的流程 圖。 【主要元件符號說明】 50、50c :表面電漿共振檢測部 51 :稜鏡 52、52d :待測物質 54 :生物探針 54c :光柵結構 56 :金屬膜 5 8 :透明板 59、59c :承載面 100、100e、100f、100g、100h :光學檢測裝置 110、110e :第一旋轉臂 112 :第一溝槽 120、120e :第二旋轉臂 122 :第二溝槽 124 :光軸 130、130a、130b :推桿 27 36089twf.doc/n 201226880S 24 201226880 r^iyyuu68TW 36089twf.d〇c/n In step S150', the angle of the illumination beam 212 incident on the substance to be tested 52 is changed and the reflection angle of the sensing light 214 detected by the photodetector 230 is changed. The rod 130 is used for the details. For details and functions, please refer to the embodiment of FIG. 13 , which will not be repeated here. In summary, in the optical detecting device and the optical detecting method of the embodiment of the present invention, since the first plug and the second plug slide in the first groove and the second groove, respectively, the first pin is rotated. The distance of the center is maintained substantially equal to the distance of the second pin to the center of rotation, so the position of the angle bisector of the first rotating arm and the second rotating arm is maintained regardless of the angle at which the first rotating arm and the second rotating arm are rotated. change. In this way, a better optical measurement can be achieved. Further, the optical detecting device of the embodiment of the present invention can maintain the incident angle of the optical axis of the illumination beam substantially equal to the reflection angle of the optical axis of the sensed light by a relatively simple mechanism, and thus the embodiment of the present invention The optical detecting device can combine both lower manufacturing cost and better measurement accuracy. Further, since the optical detecting device of the embodiment of the present invention drives the pusher by the actuator, the optical detecting device can continuously perform the instantaneous measurement. Furthermore, in the optical detecting device and the optical detecting method of the embodiment of the present invention, when the angle between the second rotating arm and the inverse vector of the normal vector of the bearing surface is increased or decreased, the normal vector of the photosensitive surface can be made relative to the first The angle of the extending direction of the two rotating arms is increased or decreased, so that the perspective distortion and image compression of the image formed in the photodetector can be effectively reduced, thereby improving the detection accuracy of the optical detecting device and the optical detecting method. . Although the present invention has been disclosed in the above embodiments, it is not intended to limit the scope of the present invention, and it is intended to be within the spirit and scope of the present invention. The scope of protection of the present invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded view of an optical detecting apparatus according to an embodiment of the present invention. 2A is a perspective view of the first rotating arm, the second rotating arm, the push rod, the actuator, and the substrate of FIG. 1. Figure 2B is the back side of the structure of Figure 2A. 3 is a schematic view of the optical path of the optical detecting device of FIG. 1. 4 is a perspective view showing a first rotating arm, a second rotating arm, a push rod, an actuator, and a substrate in an optical detecting device according to another embodiment of the present invention. 5 and 6 are perspective views of two different viewing angles of a first rotating arm, a second rotating arm, a push rod, an actuator, and a substrate in an optical detecting apparatus according to still another embodiment of the present invention. Fig. 7 is a view showing the optical path of the optical detecting device of the re-embodiment of the present invention. 8 and 9 are schematic views of optical paths of an optical detecting device according to another embodiment of the present invention. - Figure 1G is a schematic view of the structure of an optical detecting device of still another embodiment of the present invention. Fig. 11A is a schematic view showing the configuration of an optical detecting apparatus according to still another embodiment of the present invention. Fig. 11B is a partial enlarged view of Fig. 11A. 201226880 J^MyyuusSTW 36089twf.doc/n FIG. 12 is a schematic view showing the configuration of an optical detecting apparatus according to another embodiment of the present invention. Fig. 13 is a view showing the configuration of an optical detecting apparatus according to still another embodiment of the present invention. Figure 14 is a flow chart of an optical detecting method in accordance with an embodiment of the present invention. Figure 15 is a flow chart showing an optical detecting method according to another embodiment of the present invention. [Main component symbol description] 50, 50c: surface plasma resonance detecting portion 51: 稜鏡52, 52d: substance to be tested 54: biological probe 54c: grating structure 56: metal film 5 8: transparent plate 59, 59c: bearing Surfaces 100, 100e, 100f, 100g, 100h: optical detecting devices 110, 110e: first rotating arm 112: first grooves 120, 120e: second rotating arm 122: second groove 124: optical axes 130, 130a, 130b: putter 27 36089twf.doc/n 201226880

J:^177UU〇8TW 132 :第一端 134 :第二端 135、137 :第三栓 135b :連接部 136 :第一栓 138 :第二栓 140 :旋轉中心 150、150f :基板 152、152b、154、154b :第三溝槽 160 :滑軌 170 :滑動部 180、320 :致動器 210、210d :光源 212、212d :照明光束 214、214d :感測光 220 :偏振器 222d ··第一偏振器 224d :相位延遲器 230、230d :光偵測器 232e :影像偵測元件 234e :感光面 235e :中心線 240 :成像光學模組 242d :第二偏振器J: ^177UU 〇 8TW 132: first end 134: second end 135, 137: third plug 135b: connecting portion 136: first plug 138: second plug 140: center of rotation 150, 150f: substrate 152, 152b, 154, 154b: third groove 160: slide rail 170: sliding portion 180, 320: actuator 210, 210d: light source 212, 212d: illumination beam 214, 214d: sensing light 220: polarizer 222d · · first polarization 224d: phase retarder 230, 230d: photodetector 232e: image detecting element 234e: photosensitive surface 235e: center line 240: imaging optical module 242d: second polarizer

S 28 201226880 myytX)ii8TW 36089twf.doc/n 250 :遮片 252 :孔 260 :透鏡組 270 :帶通濾光器 310、310f :控制單元 312f:曲線形溝槽 314f:限制栓 316f :旋轉盤 330 :中空遮光彈性套筒 330h :遮光殼體 E:角平分線 S110〜S150、S150’ :步驟 VI、V2 :法向量 Θ1 :入射角 Θ2 :反射角 φΐ、φ2 :夾角 29S 28 201226880 myytX)ii8TW 36089twf.doc/n 250 : mask 252 : hole 260 : lens group 270 : band pass filter 310 , 310f : control unit 312f : curved groove 314f : restriction pin 316f : rotating disk 330 : Hollow shading elastic sleeve 330h: light shielding housing E: angle bisector S110~S150, S150': step VI, V2: normal vector Θ1: incident angle Θ2: reflection angle φ ΐ, φ2 : angle 29

Claims (1)

201226880 P51990088TW 36089twf.doc/n 七、申請專利範圍: 1.一種光學檢測裝置,適於量測待測物質,所述光風 檢測裝置包括: 千 第一旋轉臂; 第二旋轉臂,經由旋轉中心與所述第一旋轉臂樞接; 光源’配置於所述第一旋轉臂上; 光偵測器,配置於所述第二旋轉臂上,其中所述待 物質適於配置於所述旋轉中心附近; 承載器,配置於所述旋轉中心上,其中所述承载器具 有承載面L且所述承載關以承載所述待測物f;以及、 控制單元’其情述光_器具有感光面,且所述控 =用崎據所述第二旋轉臂與所述承載面的法向量的 反向1的夾角,來調整所述感光面 向的夹角,當所述第二ΐ :==;:向量相對於所述第二旋轉臂的延伸方 當所述第第1項所述之光學檢測裝置,其中 從第“ 口面的法向量的反向量的央角 所述承角ΐ ’或者當所述第二旋轉臂與 至所述第—角^里6、反向1的夾角從所述第二角度遞減 角度時’所述控制單元使所述感光面的法向量 S 30 36〇89twf.doc/n 201226880 r3iyyuu»8TW 相對於所述第二旋轉臂的延伸方向的夾角對應地從所述第 四角度遞增至所述第三角度,其中所述第一角度、所述第 二角度、所述第二角度與所述第四角度皆大於〇度且小於 90 度。 ' 3. 如申請專利範圍第1項所述之光學檢測裝置,其中 當所述第二旋轉臂與所述承載面的法向量的反向量的夾角 從第一角度遞增至第一角度時,所述控制單元使所述感光 面的法向量相對於所述第二旋轉臂的延伸方向的夾角對應 地從第二角度遞增至第四角度,或者當所述第二旋轉臂盘 所述承載面的法向量的反向制失角從所述第二角度遞減 至所述第-肖麟,所魅鮮元使所贼光面的法向量 相對於所述第二旋轉臂的延伸方向的夾角對應地從所述第 四角度遞減至所述第三角度,其中所述第_角度、所述第 二角度、所述第三角度與所述第四角度皆大於。度且小於 90度。 4. 如申請專利範㈣丨項所述之光學檢峨置,還包 括致動II,連接輯述光细❻,朗轉使所述感光面 旋轉。’。其帽述致動H紐連接至所述控鮮元,且所述 控制單it適於命令所述致動H驅使所述感光面旋轉。 5. 如申請專利範圍第4項所述之光學檢職置,兑中 所述感光面位於所述致動器與所述第二旋轉臂之間。八 6. 如申請專利翻第4項所述之光學檢職^,其中 所述致動ϋ位於所述感光面與所述第二旋轉臂之間。 7. 如申請專利範圍第丨項所述之絲檢測裝置,其中 31 201226880 r^^woSTW 36〇89twf.doc/n 所述控制單元以查表的方式根據所述第二旋轉臂與所述承 f面的法向量的反向量的夾角,來找到所述感光面的法向 里相對於所述第二旋轉臂的延伸方向的對應的夾角。 8. 如申請專利範圍第1項所述之光學檢測裝置,還包 括基板,其中所述第一旋轉臂與所述第二旋轉臂通過所述 方疋轉中心樞設於所述基板上,所述控制單元包括: 曲線形溝槽,設於所述基板上;以及 、限制栓,連接至所述光偵測器,且滑設於所述曲線形 溝槽中,當所述第二旋轉臂旋轉時,所述曲線形溝槽的執 鲁 跡迫使所述限制栓在所述曲線形溝槽中滑動,進而帶動所 述感光面旋轉。 9. 如申請專利範圍第1項所述之光學檢測裝置,其中 所述光源適於發出照明光束,所述待測物質配置於所述照 =光束的傳遞路徑上,所述照明光束在照射於所述待測^勿 質後,產生攜帶有待測物質的資訊的感測光,所述光偵測 器配置於所述感測光的傳遞路徑上,所述光學檢測裝置還 包括: 成像光學模組,配置於所述感測光的傳遞路徑上,且 鲁 位於所述光偵測器與所述待測物質之間;以及 中空遮光彈性套筒’連接所述成像光學模組與所述光 偵測器,其中所述中空遮光彈性套筒將所述成像光學模組 與所述光偵測器之間的所述感測光密閉於所述中空遮光彈 性套筒中,且當所述光偵測器轉動以帶動所述感光面轉動 時,所述中空彈性套筒隨之變形。 32 201226880 rji^^uu〇8TW 36089twf.doc/n 10. 如申凊專利範圍第9項所述之光學檢測裝置,其中 所述感光面具有通過所述感光面的中心的中心線,所述感 光面繞所述中心線旋轉,且所述中心線與所述成像光學模 組的光軸相交。 11. 如申请專利範圍第1項所述之光學檢測裝置,其中 所述光源適於發出照明光束,所述待測物質配置於所述照 明光束的傳遞路徑上’所述照日肤束在縣賴述待測物 質後’產生攜帶有待測物質的資訊的感測光,所述光偵測 器配置於所述感測光的傳遞路徑上,所述光學檢測穿置還 包括: 、、&lt; 成像光學模組,配置於所述感測光的傳遞路徑上,且 位於所述光偵測器與所述待測物質之間;以及 遮光5又體,包覆所述成像光學模組與所述光彳貞測哭之 間的所述感測光的傳遞路徑,且包覆部分所述成像光學模 組與至少部分所述光偵測器。 ' 12_如申請專利範圍第1項所述之光學檢測裝置,其中 所述感光面具有通過所述感光面的中心的中心線,所述残 光面繞所述中心線旋轉,且所述中心線垂直於所述第—旋 轉臂與所述第二旋轉臂的旋轉平面。 13.如申請專利範圍第1項所述之光學檢測裳置,其中 所述第二旋轉臂與所述承載面的法向量的反向量的失角的 變動範圍是落在大於0度且小於90度的範圍内,且所述残 光面的法向量相對於所述第二旋轉臂的延伸方向的失角的 變動範圍是落在0度至70度的範圍内。 33 201226880 .38TW 36089twf.doc/n 所- 而/、弟一鸲,且包括配置於所 及配置於所述第二端的第二為的苐一栓 一溝样,日%—栓所述弟一栓滑設於所述第 «所迹第二栓滑設於所述第二溝槽, h所述第二栓分別在所述第—溝槽與^持 動時,所述第-栓至所述旋轉中心的距離 所述第二栓至所述旋轉中心的距離。㈣貫為上專於 包二第二項所述之光學檢測裝置,還 -4入\ /'有個弟二溝槽,且所述推桿還包括多個第 :匕义別滑設於所述第三溝槽中,其中所述第三溝 了於所述第—旋轉臂與所述第二旋轉臂的^分 =如申請專利範圍第14項所述之光學檢測裝置,還 ^括基板,具有兩個第三溝槽,其巾所述第—检與 =栓分別滑設於所述第三溝槽,且所述第三溝^上 仃於所述第-旋轉臂與所述第二旋轉臂的肖平^線、 包括1:7.如中請專利範圍第14項所述之光學檢二裝置,還 基板;以及 心滑執’配置於所述基板上,其巾所述推桿不可 ,月叹於所述滑轨上,且所述滑軌實質上平行於 a 轉臂與所述第二旋轉臂的角平分線。 34 £ 201226880 8TW 36089twf.doc/n 18·如申請專利範圍第17項所述之光學檢測裝置,其 中所述滑軌與所述第一旋轉臂分別設於所述基板的相對兩 側,且所述滑軌與所述第二旋轉臂分別設於所述基板的相 對兩側,所述光學檢測裝置還包括滑動部,且所述推桿通 過所述滑動部滑設於所述滑轨上。201226880 P51990088TW 36089twf.doc/n VII. Patent application scope: 1. An optical detecting device suitable for measuring a substance to be tested, the light wind detecting device comprising: a thousand first rotating arm; a second rotating arm, via a rotating center The first rotating arm is pivotally connected; the light source 'is disposed on the first rotating arm; the photodetector is disposed on the second rotating arm, wherein the to-be-substance is adapted to be disposed near the rotating center a carrier disposed on the rotation center, wherein the carrier has a bearing surface L and the bearing is closed to carry the object to be tested f; and the control unit has a photosensitive surface And controlling the angle of the photosensitive surface according to the angle between the second rotating arm and the inverse 1 of the normal of the bearing surface, when the second ΐ:==; An optical detecting device according to the first item, wherein the angle is from the central angle of the inverse vector of the "normal vector of the orbital surface" or the Said second rotating arm and to said first angle 6 When the angle of the reverse 1 is decremented from the second angle, the control unit causes the normal vector S 30 36 〇 89 twf. doc / n 201226880 r3 iyyuu » 8TW of the photosensitive surface to extend relative to the second rotating arm The angle of the direction is correspondingly increased from the fourth angle to the third angle, wherein the first angle, the second angle, the second angle, and the fourth angle are both greater than a degree and less than 90 3. The optical detecting device of claim 1, wherein when an angle between the second rotating arm and an inverse vector of a normal vector of the bearing surface is increased from a first angle to a first angle The control unit increases the angle of the normal vector of the photosensitive surface relative to the extending direction of the second rotating arm from the second angle to the fourth angle, or when the second rotating arm disk carries the bearing The reverse declination of the normal vector of the face is decremented from the second angle to the first - xiao lin, the angle of the normal vector of the sinus light relative to the extending direction of the second rotating arm Correspondingly from the fourth angle Decreasing to the third angle, wherein the _ angle, the second angle, the third angle, and the fourth angle are both greater than and less than 90 degrees. 4. As disclosed in the patent application (4) The optical inspection device further includes an actuation II, which is connected to the series of light, and the rotation of the photosensitive surface is rotated. The cap is actuated to connect the H button to the control element, and the The control unit is adapted to instruct the actuation H to drive the photosensitive surface to rotate. 5. The optical inspection apparatus according to claim 4, wherein the photosensitive surface is located in the actuator and the Between the second rotating arms. The optical inspection device of claim 4, wherein the actuating jaw is located between the photosensitive surface and the second rotating arm. 7. The wire detecting device according to claim 5, wherein the control unit according to the second rotating arm and the bearing is in a table lookup manner. An angle between the inverse vectors of the normal vectors of the f-plane to find a corresponding angle in the normal direction of the photosensitive surface with respect to the extending direction of the second rotating arm. 8. The optical detecting device of claim 1, further comprising a substrate, wherein the first rotating arm and the second rotating arm are pivotally disposed on the substrate through the square rotation center. The control unit includes: a curved groove disposed on the substrate; and a limiting bolt connected to the photodetector and slidably disposed in the curved groove, when the second rotating arm When rotating, the curved groove of the curved groove forces the limiting pin to slide in the curved groove, thereby driving the photosensitive surface to rotate. 9. The optical detecting device of claim 1, wherein the light source is adapted to emit an illumination beam, and the substance to be tested is disposed on a transmission path of the illumination beam, the illumination beam being illuminated After the test is performed, the sensed light carrying the information of the substance to be tested is generated, and the photodetector is disposed on the transmission path of the sensed light, and the optical detecting device further includes: the imaging optical module Arranging on the transmission path of the sensing light, and lying between the photodetector and the substance to be tested; and a hollow shading elastic sleeve connecting the imaging optical module and the light detecting The hollow light-shielding elastic sleeve seals the sensing light between the imaging optical module and the photodetector in the hollow shading elastic sleeve, and when the photodetector When the rotation is rotated to drive the photosensitive surface to rotate, the hollow elastic sleeve is deformed accordingly. The optical detecting device according to claim 9, wherein the photosensitive surface has a center line passing through a center of the photosensitive surface, and the photosensitive The face rotates about the centerline and the centerline intersects the optical axis of the imaging optics module. 11. The optical detecting device of claim 1, wherein the light source is adapted to emit an illumination beam, and the substance to be tested is disposed on a transmission path of the illumination beam. Detecting the substance to be tested and then generating a sensing light carrying the information of the substance to be tested, the photodetector being disposed on the transmission path of the sensing light, the optical detecting insertion further comprising: , , &lt; imaging An optical module disposed on the transmission path of the sensing light and located between the photodetector and the substance to be tested; and a light shielding body that covers the imaging optical module and the light The transmission path of the sensing light between the crying is measured, and the imaging optical module is covered with at least part of the photodetector. The optical detecting device of claim 1, wherein the photosensitive surface has a center line passing through a center of the photosensitive surface, the residual light surface is rotated around the center line, and the center The line is perpendicular to a plane of rotation of the first rotating arm and the second rotating arm. 13. The optical detection skirt according to claim 1, wherein a variation range of a declination of an inverse vector of the normal vector of the second rotating arm and the bearing surface is greater than 0 degrees and less than 90 degrees. Within a range of degrees, the range of variation of the normal angle of the residual surface relative to the extending direction of the second rotating arm is in the range of 0 to 70 degrees. 33 201226880 .38TW 36089twf.doc/n - and /, a younger brother, and includes a second type of 栓 栓 一 一 , , , , , , , , , , , , , The second slip is disposed on the second groove, and the second plug is held by the first groove and the second pin respectively. The distance from the second pin to the center of rotation of the center of rotation. (4) For the optical detection device described in the second item of the package 2, there is also a 4-channel groove, and the putter also includes a plurality of the first: In the third groove, wherein the third groove is formed by the first rotating arm and the second rotating arm, and the optical detecting device according to claim 14 of the patent application, further including a substrate Having two third grooves, the first detecting and the lowering pins are respectively slidably disposed on the third groove, and the third groove is mounted on the first rotating arm and the first The second flat wire of the two rotating arms includes: 1:7. The optical detecting device according to claim 14 of the patent scope, and the substrate; and the heart slippery portion are disposed on the substrate, and the towel is pushed The rod is not sighed on the slide rail, and the slide rail is substantially parallel to the angle bisector of the a-turn arm and the second swivel arm. The optical detecting device of claim 17, wherein the slide rail and the first rotating arm are respectively disposed on opposite sides of the substrate, and The slide rail and the second rotating arm are respectively disposed on opposite sides of the substrate, and the optical detecting device further includes a sliding portion, and the push rod is slidably disposed on the sliding rail through the sliding portion. 19.如申請專利範圍第18項所述之光學檢測裝置,其 中所述基板具有至少一第三溝槽,所述滑動部與所述推桿 分別设於所述基板的相對兩側,所述光學檢測裝置還包括 連接部,所述連接部穿過所述第三溝槽,並連接所述滑動 部與所述推桿’且所述連接部適於在所述第三溝槽中移動。 2〇.如申請專利範圍第19項所述之光學檢測裝置,還 包括致動ϋ ’其連接至所述滑動部,以驅使所述滑 所述滑軌上滑動。 21·如申睛專利範圍第14項所述之光學檢測裝置,還 包括致動H,其連接至所述轉,以驅使所馳桿移動而The optical detecting device of claim 18, wherein the substrate has at least one third groove, and the sliding portion and the push rod are respectively disposed on opposite sides of the substrate, The optical detecting device further includes a connecting portion that passes through the third groove and connects the sliding portion with the push rod 'and the connecting portion is adapted to move in the third groove. The optical detecting device of claim 19, further comprising an actuating jaw </ RTI> connected to the sliding portion to drive the sliding of the sliding rail. The optical detecting device of claim 14, further comprising an actuation H coupled to the turn to drive the lever to move 使所述第—检與所述第二栓分別在所述第-溝槽與所述第 二溝槽中滑動。 合22.如申請專利範圍第14項所述之光學檢測裴置,其 2所述第—栓與所述第二栓分別逐漸往所述第^ 的一端與所述第二溝槽的靠近所述i轉 間的C所述第一旋轉臂與所述第二旋轉臂之 晋於所^ 大,所述光學檢測裝置還包括承載器,配 =田斤4_中心上,所述承制具有承載面,所 以承載所述待測物質,當所述第一旋轉臂與所述第二 35 201226880 .......-^STW 36089twf.doc/n 旋轉臂之間的夾角產生變化時 a 二旋轉臂的角平分線與所述承:碇轉臂與所述第 23如申士主糞剎梦固哲 々夹角雉持不變。 仏如甲明專利範圍第22項所个文 令當所述第-旋射朗述第二旋轉臂$檢測裝置,其 化時,所述第-旋轉臂與所述第二旋轉臂二:夾角產生變 與所述承載面垂直。 疋锝#的角平分線保持 24.如申請專利範圍第丨項所 風 =中所述承載器為表面賴共振檢置 漿共振現象。 以產生表面電The first detecting and the second plug are slid in the first groove and the second groove, respectively. The optical detecting device of claim 14, wherein the first plug and the second plug gradually approach the end of the second end and the second groove respectively. The first rotating arm and the second rotating arm are the same as the second rotating arm, and the optical detecting device further includes a carrier, which is provided on the center of the field, and the bearing has Carrying surface, so carrying the substance to be tested, when the angle between the first rotating arm and the second 35 201226880 . . -^STW 36089twf.doc/n rotating arm changes The angle bisector of the two rotating arms and the bearing: the turning arm and the 23rd, such as the Shenshi main dung brake Meng Guzhe, remain unchanged. For example, as described in the 22nd paragraph of the patent scope of the patent, when the first-rotational second rotating arm $ detecting device is formed, the first rotating arm and the second rotating arm are at an angle The resulting deformation is perpendicular to the bearing surface. The angle bisector of 疋锝# is maintained 24. As described in the scope of the patent application, the carrier is a surface resonance resonance phenomenon. To generate surface electricity '25.如專利!&amp;圍第24項所述之光學檢測裝置,1 中所述承載器接觸所述待測物質。 、'^ /、 26.士申%專利範圍第24項所述之光學 部 中所述表面錢共振檢測部為稜鏡式表面電聚共振感測 JZK Λ 27. 如申$專利範圍第24項所述之光學檢測裝置,其'25. The optical detection device of claim 24, wherein the carrier is in contact with the substance to be tested. The surface surface resonance detecting portion of the optical portion described in the '^ /, 26. Shishen% patent range item 24 is a 稜鏡-type surface electro-convergence resonance sensing JZK Λ 27. Patent application No. 24 The optical detecting device, 中所述表面㈣共振檢測部為光柵式表面㈣共振感測 部。 28. 如申請專利範圍第24項所述之光學檢測裝置,其 中所述光源適於發出照明光束,所述表面電漿共振檢測部 配置於所述照明光束的傳遞路徑上,所述照明光束在照射 於所述表面電漿共振檢測部後,產生攜帶有表面電漿共振 資訊的感測光’且所述光偵測器配置於所述感測光的傳遞 路徑上。 29·如申請專利範圍第28項所述之光學檢測裝置,還 S 36 J8TW 3 6089twf.doc/n 201226880 包括偏振器’配置於所述照明光束的傳遞路徑上,且位於 所述光源與所絲Φ電料錄測部之㈤。 ; 30.如申5月專利耗圍第28項所述之光學檢測裝置 包括帶通濾、光器,其配置於所述照明光束的傳遞路經上, 且位於所述統與所述表面電衆共振檢測部之間。 31·如申請專利範圍帛28項所述之光學檢測裝置,复 中所述光源為發光二極體或雷射發射器。 ” .32.如申4專他圍第丨項所述之光學檢測裝置,還 括: 第-偏振裔’其中所述光源適於發出照明光束,且 述照明光束照射在所述待測物質上,所述第__偏振器配 於所述照明光束的傳遞路徑上,且位於所述光 測物質之間;以及 K寺 、第-偏振器’其中所述待測物質將所述照明光束反射 成感測光’所述感測紐向所述絲測^,所述第二偏振 器配置於麟錢光的傳遞路彳1上,且位射_ X 與所述光偵測器之間。 貝 33·—種光學檢測方法,包括: 提供如申請專利範圍第丨項所述之光學檢測裴置; 將待測物質置於所述旋轉中心附近; 開啟所述光源,以使所述光源所發出的照明光束照射 在所述待測物質上,其中所述待測物質將所述照 射成感測光; 束反 以所述光偵測器偵測所述感測光;以及 37 ^ 3 8T W 36089twf. doc/n 201226880 改憂所述照明光束入射所述待測物質的角度,且同 改變所述光偵測器所偵測到的所述感測光的反射角度,^ 根據所述第二旋轉臂與所H載面的法向量的反向量的央 角,來調整所述感光面的法向量相對於所述第二旋轉臂= ^申方向的夾角,當所述第二旋射與所述承載面的法向 里的反向塁的炎角遞增或遞減時,使所述感光面的法向思 相對於所述第二旋轉臂的延伸方向的夾角遞增或遞減。里 34. 如申請專利範圍第33項所述之光學檢測方法,发 中當所述第二旋轉臂與所述承载面的法向量的反向量的次: 角從第-角度遞增至第二角度時,使所述感絲的法向量 相對於所糾二旋轉臂的延伸方向的夾肖對應地從第三 度遞減至第四角度’或者當所述第二旋轉臂與所述承裁 ^法向量的反向量的Μ從所&quot;二角度遞減至所述第一 度時’使所述感光面的法向量相對於所述第二旋轉臂的 L伸方向的爽㈣應地從所述第四角度遞增至所述第三角 度’其中所述第―角度、所述第二角度、所述第三角度盘 所述第四角度皆大於〇度且小於9〇度。 /、 35. 如_ μ專利範HJ第33項所述之光學檢測方法,其 ^斤述第—旋轉臂與所述承載面的法向量的反向量的夹 攸第-驗遞增至第二肖度時,所述控制單元使所述感 :,的法向i相對於所述第二旋轉臂的延伸方向的夹角對 ^從第三角度遞增至第四角度,或者當所述第二旋轉臂 =所述承載_法向量岐向量料舰麻第二角度遞 /至所述第-角度時,所述控制單元使所述感光面的法向 S 38 201226880 .36089twf.doc/n 量相對於所述第二旋轉臂的延伸方向的夾角對應地從所述 第四角度遞減至所述第三角度,其中所述第一角度、所述 第二角度、所述第三角度與所述第四角度皆大於0度真小 於90度。 36.如申請專利範圍第33項所述之光學檢測方法,其 中根據所述第二旋轉臂與所述承載面的法向量的反向量的 夹角來調整所述感光面的法向量相對於所述第二旋轉臂的The surface (four) resonance detecting portion is a grating type surface (four) resonance sensing portion. 28. The optical detecting device of claim 24, wherein the light source is adapted to emit an illumination beam, and the surface plasma resonance detecting portion is disposed on a transmission path of the illumination beam, wherein the illumination beam is After the surface plasma resonance detecting portion is irradiated, the sensing light carrying the surface plasma resonance information is generated and the photodetector is disposed on the transmission path of the sensing light. The optical detecting device of claim 28, further comprising a polarizer 'disposed on the transmission path of the illumination beam, and located at the light source and the wire Φ electric material recording department (5). 30. The optical detecting device according to claim 28, wherein the optical detecting device comprises a band pass filter and an optical device disposed on the transmission path of the illumination beam, and located at the system and the surface. Between the resonance detection units. 31. The optical detecting device of claim 28, wherein the light source is a light emitting diode or a laser emitter. The optical detecting device of the fourth aspect of the invention, further comprising: a first-polarized person, wherein the light source is adapted to emit an illumination beam, and the illumination beam is irradiated on the substance to be tested And the __polarizer is disposed on the transmission path of the illumination beam and located between the photo-detecting substances; and the K-ji, the first-polarizer, wherein the substance to be tested reflects the illumination beam The sensed light is sensed by the wire, and the second polarizer is disposed on the transmission path 1 of the Lianqian light, and between the spot_X and the photodetector. 33. An optical detecting method comprising: providing an optical detecting device as described in the scope of claim 2; placing a substance to be tested near the center of rotation; turning on the light source to cause the light source to emit Irradiating an illumination beam on the substance to be tested, wherein the substance to be tested irradiates the sensing light; the beam is opposite to the sensing light by the photodetector; and 37 ^ 3 8T W 36089twf. Doc/n 201226880 Change the illumination beam incident to the test a qualitative angle, and changing a reflection angle of the sensed light detected by the photodetector, according to a central angle of an inverse vector of a normal vector of the second rotating arm and the H-plane Adjusting an angle between a normal vector of the photosensitive surface and a direction of the second rotating arm, when the second rotation is opposite to or decreasing from the angle of the reverse 塁 in the normal direction of the bearing surface The angle between the normal direction of the photosensitive surface and the extending direction of the second rotating arm is increased or decreased. 34. The optical detecting method according to claim 33 of the patent application, The inverse of the inverse vector of the normal vector of the two rotating arms and the bearing surface: when the angle is increased from the first angle to the second angle, the normal vector of the sensing wire is compared with the extending direction of the two rotating arms Correspondingly decreasing from the third degree to the fourth angle 'or when the second rotating arm and the inverse vector of the inverse vector of the normal vector are decremented from the two angles to the first degree The normal vector of the photosensitive surface is relatively cool with respect to the direction of the L of the second rotating arm. The fourth angle is incremented to the third angle 'where the first angle, the second angle, and the fourth angle of the third angle disc are both greater than a degree and less than 9 degrees. The optical detection method according to Item 33 of the method of the invention, wherein the first-to-test of the inverse vector of the normal vector of the carrier surface of the bearing surface is increased to the second degree, The control unit increases the angle i of the normal i with respect to the extending direction of the second rotating arm from a third angle to a fourth angle, or when the second rotating arm=the carrying The control unit makes the normal direction of the photosensitive surface S 38 201226880 .36089 twf.doc/n relative to the second rotation when the second angle of the vector vector is transferred to the first angle An angle of the extending direction of the arm correspondingly decreases from the fourth angle to the third angle, wherein the first angle, the second angle, the third angle, and the fourth angle are both greater than 0 degrees Really less than 90 degrees. 36. The optical detection method of claim 33, wherein the normal vector of the photosensitive surface is adjusted according to an angle between an inverse vector of a normal vector of the second rotating arm and the bearing surface Second rotating arm 延伸方向的夾角的步驟包括以查表的方式根據所述第二旋 與所述承载面的法向量的反向量的夾角,來找到所述 感光面的法向量相對於所述第二旋轉臂的延伸方向的對應 的失角。 37.如申請專利範圍第33項所述之光學檢測方法,其 中所述光學檢測裝置還包括基板,其中所述第一旋轉臂與 ^述第二旋轉臂通過所述旋轉中心樞設於所述基板上,且 ^ t述第二旋轉臂與所述承載面的法向量的反向量的夾 =調整所述感光面的法向量相對於所述第二旋轉臂的延 甲方向的失角的步驟包括: 溝样L所述第二旋轉臂旋轉時,利用所述基板上的曲線形 形i二=使連接至所述光偵測器的限制检在所述曲線 再僧中滑動’進而帶動所述感光面旋轉。 中所請專利第33項所述之先學檢測方法,立 旋射具有第―賴,所 屢钇,且所述光學檢測裝置更包括推桿,:/、有弟 子的第1與第二端,且包括配置於所述第—端== 39 38TW 36〇89twf.doc/n 201226880 於所述第二端的第二栓,所述第一拴滑設於所述第 二槽、,、且所述第二栓滑設於所述第二溝槽,當所述第-王^所述第二栓分別在所述第一溝槽與所述第二溝槽中滑 日’,所述第一栓至所述旋轉中心的距離維持實質上 所述第=栓至所述旋轉令心的距離,且改變所述照明光束 質的角度且同時改變所述光偵測器所偵測 ’述感測光的反射角度的步驟包括: 所述述一栓與所述第二栓分別在 所偵測到的所St:二=時改變所述光偵測器 中^斤9过如第申專,利範圍第38項所述之光學檢測方法,其 逃第二检分別逐漸往魏第-溝槽的 中心的二端滑動時的所2J所述:二溝槽的靠近所述旋轉 間的夾角逐漸變大,臂與所述第二旋轉臂之 往所述第-溝槽的遠:二ΐ:,所述ΐ二栓分別逐漸 槽的遠離所述旋轉中、轉中〜的一鈿與所述第二溝 所述第二旋轉臂之心;:臂與 還包括承載H,配置 測裝置 承載面,所述承載面用中心上’所述承戴器具有 旋轉臂與所述第二旋待測物質’當所述第--旋轉臂與所述第間的失角產生變化時,所述第 角維持不變。 ㈣平讀與魏錢面的失 ^8TW 36089twf.doc/n 201226880 中㈣39顿述之光學_方法,i 化時’所述第-旋轉臂與所述第二旋轉臂二= 與所述承載面垂直。 j月十刀綠保持 中所33項所狀光學檢測方法,1 中所述承載4表面㈣共振檢測部, _ 質,並產生表面電聚共振現象。 _所4待測物 42. :申請專利範圍第41項所述之 中所速表面電t共振檢測部為棱鏡式表=^'法 部。 凌共娘感、、、 43. 如申請專利範圍第41項所述之光 州 中所述表面錢共振檢測部為光栅式表〇 部。The step of extending the angle of the direction includes finding the normal vector of the photosensitive surface relative to the second rotating arm according to the angle between the second rotation and the inverse vector of the normal vector of the bearing surface in a look-up manner The corresponding missing angle of the extension direction. The optical detecting method of claim 33, wherein the optical detecting device further comprises a substrate, wherein the first rotating arm and the second rotating arm are pivoted through the rotating center And the step of adjusting the inverse vector of the normal vector of the second rotating arm and the bearing surface on the substrate=the step of adjusting the deviation of the normal vector of the photosensitive surface with respect to the armor direction of the second rotating arm The method includes: when the second rotating arm rotates, the curved shape on the substrate is used to make the limit detection connected to the photodetector slide in the curve and then drive The photosensitive surface is rotated. The method for detecting the prior art described in the 33rd patent of the patent, the vertical rotation has a first-order, and the optical detection device further includes a push rod, :/, the first and second ends of the disciple And including a second plug disposed at the second end of the first end == 39 38TW 36〇89 twf.doc/n 201226880, the first slid is disposed in the second slot, and The second pin is disposed on the second groove, and when the second pin is in the first groove and the second groove respectively, the first The distance from the center of the rotation is substantially the distance from the first pin to the rotation center, and the angle of the illumination beam is changed and the sensed light detected by the photodetector is changed The step of reflecting the angle includes: the said first plug and the second plug respectively change the photodetector in the detected St:=== The optical detecting method according to Item 38, wherein the second inspection is gradually moved to the two ends of the center of the Wei-trench, respectively, as described in 2J: the proximity of the two grooves The angle between the rotations gradually becomes larger, and the distance between the arm and the second rotating arm toward the first groove: two turns: the second pin is gradually separated from the rotation and the middle of the groove And the second groove of the second rotating arm; the arm and the bearing H further comprise a measuring device bearing surface, the bearing surface is centered on the said carrier has a rotating arm and a The second rotation test substance 'when the change angle of the first-rotating arm and the first portion changes, the first angle remains unchanged. (4) Reading and Wei Qian's loss ^8TW 36089twf.doc/n 201226880 (4) 39 tons of optical _ method, i-time 'the first-rotating arm and the second rotating arm two = with the bearing surface vertical. In the j-month, the optical detection method of 33 items in the middle of the ten-footed green, the bearing 4 surface (four) resonance detection part, _ quality, and the surface electro-convergence phenomenon. _4th object to be tested 42. : The medium-speed surface t-resonance detecting unit described in item 41 of the patent application scope is a prism type table = ^' method. Ling's mother-in-law,, 43. The surface money resonance detecting unit described in Gwangju, as described in claim 41, is a grating type surface.
TW100106498A 2010-12-31 2011-02-25 Optical detection apparatus and optical detection method TWI420092B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080620 WO2012088714A1 (en) 2010-12-31 2010-12-31 Optical detecting device and method

Publications (2)

Publication Number Publication Date
TW201226880A true TW201226880A (en) 2012-07-01
TWI420092B TWI420092B (en) 2013-12-21

Family

ID=46382230

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106498A TWI420092B (en) 2010-12-31 2011-02-25 Optical detection apparatus and optical detection method

Country Status (2)

Country Link
TW (1) TWI420092B (en)
WO (1) WO2012088714A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600896B (en) * 2015-07-08 2017-10-01 國立屏東科技大學 Biochips inspecting auxiliary module
CN110346303A (en) * 2019-08-05 2019-10-18 东莞南玻太阳能玻璃有限公司 A kind of glare proof glass glistening intensity measuring instrument
TWI720166B (en) * 2017-03-27 2021-03-01 聯華電子股份有限公司 Process control method for use in a semiconductor manufacturing apparatus control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522899B1 (en) * 2016-02-05 2023-04-19 (주)테크윙 Apparatus for inspecting loaded status of electronic components
CN110596052B (en) * 2019-09-05 2021-02-19 北京化工大学 Small-size multi-angle scanning surface plasma resonance biochemical analyzer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2712987B2 (en) * 1991-12-28 1998-02-16 株式会社島津製作所 Adjustment method of polarization measuring device
US6979123B2 (en) * 2003-04-18 2005-12-27 General Electric Company Medical Systems Group Method and apparatus for balancing a statically unbalanced arm in an X-ray system
TWI259277B (en) * 2004-12-28 2006-08-01 Hon Hai Prec Ind Co Ltd Optical detector and detecting method
KR100794563B1 (en) * 2005-08-08 2008-01-17 주식회사바텍 The combined panoramic and computed tomography photographing apparatus
CN100480681C (en) * 2005-12-16 2009-04-22 浙江大学 Plant growth information acquisition device based on near infrared spectrum
CN101051022B (en) * 2007-04-06 2011-02-09 华南师范大学 Elliptical bias detector
TWM388639U (en) * 2007-06-15 2010-09-11 King Yuan Electronics Co Ltd Automatic optical inspection device
CN201434829Y (en) * 2009-07-15 2010-03-31 长沙楚天科技有限公司 Device for synchronously tracking and acquiring images of automatic inspector by adopting bottom light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI600896B (en) * 2015-07-08 2017-10-01 國立屏東科技大學 Biochips inspecting auxiliary module
TWI720166B (en) * 2017-03-27 2021-03-01 聯華電子股份有限公司 Process control method for use in a semiconductor manufacturing apparatus control system
CN110346303A (en) * 2019-08-05 2019-10-18 东莞南玻太阳能玻璃有限公司 A kind of glare proof glass glistening intensity measuring instrument

Also Published As

Publication number Publication date
WO2012088714A1 (en) 2012-07-05
TWI420092B (en) 2013-12-21

Similar Documents

Publication Publication Date Title
JP6605074B2 (en) Portable spectrometer
US10642056B2 (en) Multispectral or hyperspectral imaging and imaging system based on birefringent subwavelength resonating structure
US10060849B2 (en) Optical analyzer for identification of materials using transmission spectroscopy
CN105022160B (en) Variable-wavelength interference filter, optical module and optical analysis equipment
EP2831565B1 (en) Optical analyzer for identification of materials using reflectance spectroscopy
CN102798972B (en) Light filter, filter module and light analytical equipment
Heuberger The extended surface forces apparatus. Part I. Fast spectral correlation interferometry
CN105334561B (en) Variable-wavelength interference filter, optical module and electronic equipment
TW201226880A (en) Optical detection apparatus and optical detection method
JP6413325B2 (en) Actuator device, electronic device, and control method
US10107748B2 (en) Optical sensing device for surface plasmon resonance (SPR) and optical sensing method using surface plasmon resonance (SPR)
CN107407598A (en) Glass waveguide spectrophotometer
US20150377780A1 (en) Plasmonic projected diffraction sensor
TW200827709A (en) Apparatus for wafer inspection
EP2901115A1 (en) Multi-function spectrometer-on-chip with a single detector array
CN107479182A (en) Optical module, electronic equipment, food analysis device and three-strip camera
TW201901312A (en) Advanced optical sensor, system, and methodologies for etch processing monitoring
CN103913836B (en) Variable-wavelength interference filter and manufacture method, optical module and electronic equipment
US20150362427A1 (en) Optical Sensing Array Architectures for Spatial Profiling
CN103217732A (en) Interference filter, optical module, and electronic apparatus
JP2015200640A (en) Imaging apparatus and analyzer using the same
JP2005321385A (en) Wavelength tuning intensity measurement for surface plasmon resonance sensor
JP5786518B2 (en) Wavelength variable interference filter, optical filter module, and optical analyzer
TW201201303A (en) Measurement apparatus and measurement method
CN115003981A (en) Method and system for combining OCD and light reflection

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees