TW201201303A - Measurement apparatus and measurement method - Google Patents

Measurement apparatus and measurement method Download PDF

Info

Publication number
TW201201303A
TW201201303A TW100120563A TW100120563A TW201201303A TW 201201303 A TW201201303 A TW 201201303A TW 100120563 A TW100120563 A TW 100120563A TW 100120563 A TW100120563 A TW 100120563A TW 201201303 A TW201201303 A TW 201201303A
Authority
TW
Taiwan
Prior art keywords
measurement
sample
wafer
unit
holding
Prior art date
Application number
TW100120563A
Other languages
Chinese (zh)
Inventor
Nataliya Nabatova-Gabain
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Publication of TW201201303A publication Critical patent/TW201201303A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67294Apparatus for monitoring, sorting or marking using identification means, e.g. labels on substrates or labels on containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders

Abstract

A measurement apparatus and a measurement method are provided, which can make the corresponding relationship between several samples, carried on sample tables of each sample processing device, and each measurement result clear. The measurement apparatus measures several wafers carried on a stage. The carrying positions of the several wafers on the stage, measurement ID, device ID and position ID for specifying each wafer are correspondingly stored in a storage portion. The carrying positions, stored in the storage portion, of the wafers are referred and several samples are measured. Measurement results are correspondingly stored in the measurement ID, device ID and position ID corresponding to each wafer. The stored measurement result of each wafer and the the measurement ID, device ID and position ID corresponding to the measurement result are correspondingly displayed in a display portion.

Description

201201303 六、發明說明: 【發明所屬之技術領域】 本發明疋有關於一種對载置在試樣臺上的多個試樣的 特性進行測量的測量裝置以及測量方法。 【先前技術】 以往,已揭示了一種使用光或電子射線來對試樣的特 性進行測量的測量裝置(例如參照專利文獻丨)。專利文 獻1所揭示的測量裝置是針對一個試樣上的多個點來進行 測量。另外,針對半導體晶圓等的試樣,已嘗試借由搬送 機械臂(robot)來將多個試樣載置於試樣台,接著一次性 地進行測量。 [先行技術文獻] [專利文獻] [專利文獻1]曰本專利特開2005_257475號公報 *然而’專利文獻i所揭示的測量裝置是對載置在試樣 宜上的-個試樣進行崎, = 樣進行測量的問題。另外,“干& T㈣夕個4 種尺寸的試樣進行驗證。例=發,’必須重複地對各 semiconductor)或半導體’在化5物半導體(C〇mP_d 英寸、3英寸的情況下,存在2 因此,也存在如下的問題央寸等各種驗證用的尺寸, 用僅可對—種尺寸的卜卩,無法如量產用裝置般,使 此外,還存在如下的門%仃搬送的機械臂來進行搬送。 樣,因此,載置’由於載置有多個尺寸的試 '料的試樣與測量結果的對應關係不 201201303 明確。 【發明内容】 本發明是繁於所述情況而成的發明。本發明的目的在 裝置以及測量方法,該測量裝置根據試 樣的尺寸來使多個保持部工作,借此,可效率良好地對尺 寸不同的絲進行測量。另外,本發_其他目的在於提 ,如下的測1:裝置以及測量方法,該測量I置可使載置於 試樣,理裝置的顺台❹個試樣與各測量結果的對應關 係變得明確。 本申請案所揭示的測量裝置對載置在試樣臺上的多個 試樣的特性進行測量’制量裝置的特徵在於.包括:記憶 部,相對應地存儲著多個試樣在試樣臺上的載置位置、與 用以確定各試樣的試樣識別信息;測量部,參照存儲於所 述記憶部的試樣的所述載置位置來對多個試樣進行測量; 記憶處理部,與對應於各試樣的試樣識別信息相對應地存 儲著所述測量部的測量結果;以及顯示處理部,將所述記 憶處理部所存儲的各試樣的測量結果、與對應於所述測量 結果的試樣識別信息相對應地顯示於顯示部。 本申請案所揭示的測量裝置的特徵在於包括:接受試 樣的尺寸的接受部,所述記憶部相對應地存儲著每個尺寸 的所述多個試樣在試樣臺上的載置位置、與用以確定每個 尺寸的各試樣的試樣識別信息,所述測量部參照與所述接 受部所接受的試樣的尺寸相對應的各試樣的载置位置來對 多個試樣進行測量。 201201303 個尺寸而存健著用以確=保;=二針對試樣的多 別信息予以讀出;以及輪出部 二2的保持部識 出的保持部識別信息相對應的::::: 在於:參照_於記憶她鍋特徵 ===::別信 、a,曰α田 隱的各试樣的測量結果、轉廡私路、+、 別信息相對應地顯示於顯神 試樣的特性進行測量,以在試樣臺上的多個 試樣的尺寸的接受部.触工特徵在於包括:接受 :讀,從針對試樣的==== 受的尺寸㈣應的保與所受部所接 別信息相對應的保持部工出的保持㈣ 本申請案所揭示的測錄置的特徵在於:所述記憶部 7 201201303 =:^=^別對應的保持部識別信息、與 裝置包括H 試樣的試樣識難息,且所述測量 測量;以二:’對所述保持部所保持的多個試樣進行 測量部對於:試=量3樣識別信息-起存儲著所述 理部本案ΓΓ的測量褒置的特徵在於包括:顯示處 測量結mi理部將所述記祕理部所存制各試樣的 地顯^於顯示部應於所述測量結果的試樣朗信息相對應 接受==的=置的特徵在於:所述接受部 的尺寸,所述讀出部根據所述接受部所接受 ‘所述接接,儲著保持部識別信息的記憶部, 識別二;讀:接受的多個不同的尺寸繼 試樣法借由測量裝置來對载置在 ^ 性進行測量,該測量方法的特徵 :存:^用以確疋多個保持部的保持部識別信息的記憶 Γ將與已接受的尺寸相對應的保持部識別信息予以^ :所述多個保持部進行卫作雜持所述試樣使多個保 而樣的尺寸,從針對試樣的多個尺寸 ^部内的與已讀丨的料部識㈣息相職的保持部工 對於本申請案而言,接受部接受試樣的尺寸。多 、部進行工作以保持試樣。記憶部針對試樣的多個尺寸而 201201303 存儲著用以確定保持部的 接受的尺寸相對應的保^=識職息。讀出部將與已 使多個保持部内的與已讀=別信息予以讀出。輸出部將 持部工作的信息予以輪出。、保持部識別信息相對應的保 【發明的效果】 置於的:個觀點,即使當將多個試樣載 、二摅:、+,、曰0顯不部中容易地確定對應的試樣。 寸的試檨:::貝:3置的-個觀點,即使當必須對不同尺 ㈣樣。仃/l s0 ’也可在顯示部巾確定與尺寸相對應 前,對試樣的特性進行測量時,必須依次 心更% j好u投人搬送機械臂無法對應於尺寸 根據所述測量裝置的—個觀點,借㈣保持部 進盯控制,可靈活地對各種尺寸的試樣進行測量。 根據所述測量裝置的一個觀點,即使當對各種尺寸的 試樣進行測量時,也可將試魏置於適當的位置,從而可 效率良好地進行測量。因此,可不設置特殊的搬送機械臂 而根據狀況來對各種尺寸的試樣進行測量。 根據所述測量裝置的一個觀點’即使當將多個試樣分 散地配置在試樣臺上時,也可獲得與錢樣相對應的測量 結果。 根據所述測量裝置的一個觀點,可在顯示部中,對分 散地配置在試樣臺上的多個試樣與對於各試樣的測量之間 的對應關係進行目視確認。另外,可使經多個試樣處理^ 201201303 ==試樣、與測量裝置對於各試樣的測量結 根據所述測量裝置的一個觀點,即使當 試樣载置械樣臺上時,也可將各試聽持在適當的位置。 為讓本發明之上述和其他目的、雜和伽能更明顯 =;下文鱗較佳實_,並配合所關式,作詳細說 奶如下。 【實施方式】 以下,參照附圖來對本發明的實施方式進行說明。圖 A、圖1B是表示分散地配置於試樣台的 載置於試樣台2(以下稱為平臺:= 试樣3柄測量。試樣3例如為半導體晶圓、化合 晶η圓(epitaxiaiwafer)或發光二極體⑴咖 D10de,LED)的晶圓等。以下,對晶圓 體晶圓(以下稱為晶圓3)的情況進行說明。晶 英寸、3射、4射、6射、8射、或㈣寸等 =寸(以下稱為尺寸)。為了對各種尺寸的晶圓3進行^ 變裝^接受該尺寸。在本實施方式中,為了使說明 變舉例說明使用有2英寸以及3英寸的晶圓3的 =°再者,本實施方式中所述的數值為一例,且並不限 測量襄置在接受了晶圓3的尺寸的情況下, 持部2〇工作。圓1Α是保持著2英寸的晶圓; 、月說明圖。圖1B是保持著3英寸的晶圓3的情況 201201303 的說明圖。在平臺2上分散地配置有可向上下方向 保持部20、20、20、...。在保持部2〇處於關閉(〇幻狀 態的情況下’該保持部20的頭部位於與平臺2的平面大致 -致的高度’或位於比平臺2的平面更下側處。在保持部 20處於接通(on)職的情況下,該簡部2()從 的平面突出一規定長度。 保持部20包括:2英寸用的保持部26、26、26、...(以 下根據情況由20代表)、與3英寸用的保持部28、28、28、.·. (以下根據情況由20代表)。再者’在本實施方式中 使說明變得㈣,舉例說明了兩種保持部2(),但不限於 此。此外’也可i設置4英相的保持部2()、及6英寸 用的保持部20。 、』 測量襄置在接受了 2英寸作為晶11 3的尺寸的情況 下’使處於關閉狀態的保持部26、26、26、…工作,將該 保持部26、26、26、…設為接通狀態。借此,如圖ia^ 示,保持部26、26、26、···突出。在此情況下,3英寸用 的保持部28不工作而處於關閉狀態。四個保持部%、%、 26、26的-組配置在具有規定半彳i關周上。使用者按照 四個保持部26、26、26、26的引導,將2英寸的晶圓3 载置在平臺2 h在本實施方式中,將四個保持部π、%、 26、26設為-組,但不限於此。將至少—個以上的保持部 2 6設為—組即可。另外,在圖1A的例子中突出有4組保 持部26,但根據設計來適#地決定組數即可。 另一方面,測量裝置在接受了 3英寸作為晶圓3的尺 20120130 异 寸的情況下’使處於關閉狀態的保持部28、28、28、.··工 作,將該保持部28、28、28、···設為接通狀態。借此,如 圖1B所示,保持部28、28、28、…突出。在此情況下,2 英寸用的保持部26不工作而處於關閉狀態。四個保持部 28、28、28、28的一組配置在具有規定半徑的圓周上。使 用者按照四個保持部28、28、28、28的引導,將3英寸的 晶圓3載置在平臺2上。以下對詳情進行說明。 圖2是表示測量裝置的硬體群的方塊圖。測量裝置是 使用有光、雷射或電子射線等的測量裝置,例如可使用光 譜橢偏儀(spectroscopic ellipsometer )、光致發光 (photoluminescence )測量裝置、拉曼光譜裝置(Raman spectroscopic device )、偏振器(p〇larimeter )、干涉儀 (interferometer)、掃描電子顯微鏡、χ射線分析裝置、電 子射線微量分析器(microanalyzer)、或將這些測量裝置加 以組合而成的測量裝置等。再者,在將多個測量裝置加以 組合而成的裝置的情況下,可同時進行測量,或可按照各 測量裝置的順序來進行測量。在本實施方式中,舉例說明 使用有光譜橢偏儀1的例子。另外,光譜橢偏儀1也可設 置於晶圓處理裝置内部或晶圓處理裝置的外部。在本實施 方式中,舉例說明將所述光譜橢偏儀1設置於晶圓處理裝 置外部的例子。另外,在本實施方式中,舉例說明將化學 氣相 /儿積(Chemical Vapor Deposition,CVD )裝置、物理 氣相沉積(Physical Vapor Deposition,PVD)裝置、旋塗 機(spin coater)等的成膜裝置、以及蝕刻(etching)裝置、 12 201201303 置、清洗裝置或研練置等的半導體製造裝置用作 =理褒置的例子。另外,以下,作為一例,舉例說明 鬥曰,個,膜裝置7从及成膜裝置來成膜之後的晶 進行測4的例子。成膜裝置例如使2英寸或6英 时的曰曰圓3成膜。成膜裝置7〇Β例如使2英寸的晶圓3成 :使用者使用光譜職儀丨來對已湘成膜裝置7〇α及 、膜裳置7GB (以下根據情況由7()代表)成膜的尺寸不同 的成膜之後的晶圓3進行測量。以下,將用以確定成膜裝 置7〇的識別信息稱為裝置標識Gdentity,ID),將成膜裝 巧裝置ID設為“A” ,將成膜裝置—的裝置1]〇 。又為B 。再者,成膜裝置70的數量不限於兩個。 。光”’日橢偏儀1包括:氤氣燈(xen〇n lamp) 8〇、光照 射器81、平臺2、光取得器5、分光器7、資料讀取機8、 馬達(motor )控制機9、升降控制部丨6、以及電腦(c〇mputer ) 1〇等。光譜橢偏儀1對載置在平臺2上的多個晶圓3進行 測里。在圖2中僅表示了—個晶圓3。再者,在晶圓3的 上側’也可積層有氧化石夕膜(Si〇2)等。而且,在該氧化 矽膜的上側,也可積層有非晶矽膜、多晶矽膜或氮化矽膜 (ShN4)等。光譜橢偏儀i將發生偏振的光照射至晶圓3, 並且取得由該晶圓3反射的光,對反射光的偏振狀態進行 測定,基於測定結果與對應於晶圓3的模型(m〇del)來對 晶圓3的各膜層的特性進行分析。再者,除了晶圓3以外, 也可將化合物半導體基板、單層或多層的磊晶膜 、絕緣體 膜、藍寶石(sapphire)基板、或玻璃基板等設為基板。 13 201201303. 光4橢偏儀1大致分為包括測定器的測定分析系統的 部分、與驅㈣統的部分,所制具有—對光照射器 81及光取得器5。光譜橢偏儀i是利用第一光纔(〇pticai fiber cable) 15a來連接著氙氣燈8〇以及光照射器81以作 為測定分析純的部分。光譜橢偏儀丨將偏振狀態的光照 射至載置在平臺2上的晶圓3,並且利用光取得器5來獲 取由晶圓3反射的光。光取得器5經由第二光纜⑼而連 接於分光II 7,該分光n 7針對每個波長來進行測定,並 將測定結果作為祕錢(analGg signal)而傳輸至資料讀 取機8。該資料讀取機8將類比信號轉換為所需值並傳輸 至電腦10。該電腦10進行分析。 光譜橢偏儀1在平臺2、光照射器81、光取得器5以 及分光器7上分別設置有第一馬達^^丨〜第六馬達M6作為 驅動系統部分。利用連接於電腦1G的馬達控制機9來對第 一馬達Ml〜第六馬達河6的驅動進行控制,借此,將平臺 2、光照射H 81、光取得H 5以及分光n 7變更至對應於 測定的適當的位置、姿勢。馬達控制機9基於從電腦&1〇 輸出的指示來對第一馬達M1〜第六馬達M6的驅動進行 控制。 氙氣燈80為光源,該氙氣燈8〇產生包含多個波長成 分的白色光’並將產生的白色光經由第一光纜l5a向光照 射器81傳送。光照射器81配置在半圓弧狀的轨道(rail^ 6上,在該光照射器81的内部具有偏振元件81a,利用該 偏振元件81a來使白色光發生偏振’將偏振狀態的光照^ 201201303 至晶圓3。另外,光照射器81因第四馬達M4被驅動而沿 著軌道6移動,從而可對照射的光相對於平臺2的平臺面 的垂線Η的角度(入射角度φ)進行調整。 平室2可滑動地配置於移動軌道部(未圖示),可借由 第-馬達Ml〜第三馬達Μ3的驅動來使平臺2分別向圖2 中的X軸方向、Y軸方向(與圖1A、圖m的紙面正交的 方向)以及作為高度方向的2方向移動。借由平臺2的移 動,適當地將使光朝晶圓3入射的部位予以變更,對晶圓 3進打面分析。再者,在本實施方式中,舉例說明使平臺2 向X軸方向以及γ軸方向移動的例子,但不限於此。例如 也可將平臺2予㈣定,使光照射II 81以及光取得器5 移動,從而使照射位置向X軸方向以及γ軸方向移動。此 外,也可使平臺2與光器81及光取得器5均向又轴 ^以及Y轴方向移動。另外,載置著平臺2的晶圓3的 平室面為黑色,以防止光的反射。 值振2得^ 5取得由晶圓3反射的光,對所取得的光的 / ^、音匕、進行測定。光取得器5與光照射器81同樣地配置 w 上,該光取得器5内置有光彈性調製器(Photo 將r=〇dUl晰,PEM) 5a以及分析儀(A— 5b, 日日圓3反射的光經由pEM5a而引導至分析儀北。光 取得器5可借氐、去Ayrc & 彳王刀斫儀Λ 刹由第馬達的驅動來沿著軌道6移動。 哭81的:制機9來進行控制’使得光取得器5與光照射 “户。^聯動地使反射角度Φ與人射角度Φ成為相同 内置於光取得器5的PEM5a以所需頻率(例 15 201201303. 如50 kHz)來對所獲取的光進行相位調製,借此,從直線 偏振光獲得橢圓偏振光。另外,分析儀5b從相位經PEM5a 調製的各種偏振光中,選擇性地取得偏振光並進行測定。 分光器7内置有反射鏡、繞射光柵、光電倍增管 (Photomultiplier,PMT)以及控制單元(unit)等,利用反 射鏡使從光取得器5經由第二光纜15b傳送而來的光反 射,將該光引導至繞射光柵。借由第六馬達M6來將繞射 光柵的角度予以變更,從而使出射的光的波長可變。進入 至分光器7的内部的光被PMT放大,即使在光量少的情 況下,也可使所測定的信號(光)穩定化。另外,控制單 元進行如下的處理,即,產生與所測定的波長相對應的類 比信號,將該類比信號送出至資料讀取機8。 資料讀取機8基於來自分光器7的信號,針對波長來 對反射光的偏振狀態(P偏振光、s偏振光)的振幅比0以 及相位差△進行計算,接著將計算出的結果送出至電腦 10 °再者’振幅比0以及相位差△相對於P偏振光的振幅 反射係數Rp以及s偏振光的振幅反射係數rs而言,以下 的數式(1)的關係成立。201201303 VI. Description of the Invention: [Technical Field] The present invention relates to a measuring device and a measuring method for measuring characteristics of a plurality of samples placed on a sample stage. [Prior Art] Conventionally, a measuring device that measures the characteristics of a sample using light or electron rays has been disclosed (for example, refer to Patent Document). The measuring device disclosed in Patent Document 1 is for measuring a plurality of points on one sample. Further, in the case of a sample such as a semiconductor wafer, it has been attempted to carry a plurality of samples on a sample stage by a transfer robot, and then perform measurement at one time. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-257475* However, the measuring device disclosed in Patent Document i performs the sampling of a sample placed on a sample. = The problem with the measurement. In addition, "dry" and "T" four samples of the size of the test were verified. Example = hair, 'must repeat for each semiconductor" or semiconductor 'in the case of 5 semiconductors (C〇mP_d inches, 3 inches, Therefore, there are the following problems, such as the size of the various types of verification, such as the size of the dip, and the same as the mass production device, and the following door Since the arm is transported, the correspondence between the sample on which the test material having a plurality of sizes is placed and the measurement result is not determined by 201201303. [Invention] The present invention is complicated by the above-mentioned situation. The object of the present invention is to provide a device and a measuring method for operating a plurality of holding portions in accordance with the size of a sample, whereby the wires having different sizes can be efficiently measured. The purpose is to provide the following measurement 1: device and measurement method, the measurement I can be placed on the sample, the correspondence between the sample of the device and the measurement results becomes clear. The disclosed measuring device measures the characteristics of a plurality of samples placed on the sample stage. The measuring device is characterized in that it comprises: a memory portion, correspondingly storing a plurality of samples on the sample table. Positioning and determining the sample identification information for each sample; the measuring unit refers to the mounting position of the sample stored in the memory unit to measure a plurality of samples; and the memory processing unit corresponds to The measurement result of the measurement unit is stored in correspondence with the sample identification information of each sample; and a display processing unit that compares the measurement result of each sample stored in the memory processing unit with the measurement result The sample identification information is correspondingly displayed on the display portion. The measurement device disclosed in the present application is characterized by comprising: a receiving portion that accepts a size of the sample, the memory portion correspondingly storing the size of each a sample placement position of the plurality of samples on the sample stage and sample identification information for determining each sample of each size, the measurement unit referring to the size of the sample received by the receiving portion Each sample The placement position is used to measure a plurality of samples. 201201303 dimensions are stored for confirmation = guarantee; = 2 for multiple information of the sample are read; and the holding portion of the wheel 2 is recognized The corresponding part of the holding part identification information::::: lies in: reference _ in memory her pot features ===:: Do not believe, a, 曰α田隐的 measurement results, turn private road, +, The other information is correspondingly displayed on the characteristics of the sacred sample to be measured, and the receiving portion of the size of the plurality of samples on the sample stage is characterized by: acceptance: reading, from == for the sample == Accepted size (4) Maintenance of the holding part corresponding to the information received by the receiving department (4) The recording set disclosed in the present application is characterized in that the memory unit 7 201201303 =: ^= ^Do not correspond to the holding portion identification information, and the device includes a sample of the H sample, and the measurement and measurement; and two: 'measure the portion of the plurality of samples held by the holding portion: = 3 kinds of identification information - the measurement device storing the information of the present embodiment is characterized by: display at the measurement The mi management unit displays the ground of each sample stored in the secret management unit on the display unit, and the sample information corresponding to the measurement result is correspondingly accepted by === in the display portion: The size, the reading unit receives the storage unit that stores the holding unit identification information according to the receiving unit, and recognizes two; the read: a plurality of different sizes received by the sample method by the measuring device The measurement is performed on the mounting property, and the feature of the measuring method is: a memory for confirming the holding portion identification information of the plurality of holding portions, and the holding portion identification information corresponding to the accepted size is given. : the plurality of holding portions perform the holding of the sample to maintain a plurality of sizes, and maintain the size of the plurality of sizes of the sample from the parts of the sample that have been read. For the purpose of this application, the receiving part accepts the size of the sample. More, the department works to maintain the sample. The memory unit stores a plurality of sizes of the sample, and 201201303 stores a job information corresponding to the size of the acceptance of the holding unit. The reading unit reads out the read/follow information in the plurality of holding units. The output unit rotates the information on the work of the holding unit.保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持. Inch test::: Bay: 3 set - a point of view, even when it is necessary to have different feet (four).仃/l s0 ' can also be used to measure the characteristics of the sample before the display portion is determined to correspond to the size, and must be in turn. The robot is not able to correspond to the size according to the measuring device. One point of view, by means of (4) the holding part of the marking control, flexible measurement of samples of various sizes. According to one aspect of the measuring apparatus, even when measuring samples of various sizes, the test can be placed at an appropriate position, so that the measurement can be performed efficiently. Therefore, it is possible to measure samples of various sizes depending on the situation without providing a special transfer robot. According to a viewpoint of the measuring apparatus, even when a plurality of samples are dispersedly arranged on the sample stage, measurement results corresponding to the money samples can be obtained. According to one aspect of the measuring apparatus, it is possible to visually confirm the correspondence relationship between the plurality of samples which are disposed on the sample stage and the measurement for each sample in the display unit. In addition, it is possible to process a plurality of sample treatments, and to measure the measurement of each sample according to a viewpoint of the measuring device, even when the sample is placed on the mechanical sample stage. Hold each audition in the proper position. In order to make the above and other objects, impurities and gamma energy of the present invention more obvious =; the following scales are better _, and in conjunction with the closed type, the milk is described in detail below. [Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. A and Fig. 1B show the sample placed on the sample stage 2 (hereinafter referred to as the platform: = sample 3 handle measurement). The sample 3 is, for example, a semiconductor wafer, a compound crystal η circle (epitaxiaiwafer) ) or a wafer of a light-emitting diode (1) coffee D10de, LED). Hereinafter, a case of a wafer wafer (hereinafter referred to as wafer 3) will be described. Crystal inch, 3 shot, 4 shot, 6 shot, 8 shot, or (four) inch, etc. = inch (hereinafter referred to as size). In order to perform wafer size 3 on various sizes, the size is accepted. In the present embodiment, in order to clarify the description, the use of the wafer 3 having 2 inches and 3 inches is used, and the numerical values described in the present embodiment are an example, and the measurement is not limited. In the case of the size of the wafer 3, the holding portion 2 is operated. The round 1Α is a wafer that holds 2 inches; Fig. 1B is an explanatory view of the case of holding the 3-inch wafer 3 201201303. The up-down direction holding portions 20, 20, 20, ... are arranged dispersedly on the stage 2. In the case where the holding portion 2 is closed (the head of the holding portion 20 is located at a height substantially equal to the plane of the platform 2) or at a lower side than the plane of the platform 2. At the holding portion 20 In the case of an on position, the flat portion 2() protrudes from the plane by a predetermined length. The holding portion 20 includes: holding portions 26, 26, 26, ... for 2 inches (hereinafter, depending on the situation) 20 represents), and the holding portions 28, 28, 28, . . . for 3 inches (hereinafter referred to as 20 by the case). In addition, in the present embodiment, the description is made (4), and two kinds of holding portions are exemplified. 2(), but not limited to this. In addition, 'the holding unit 2 () for 4 inches and the holding portion 20 for 6 inches can be provided. The measurement unit is placed at a size of 2 inches as the crystal 11 3 . In the case of the case, the holding portions 26, 26, 26, ... in the closed state are operated, and the holding portions 26, 26, 26, ... are placed in an ON state. Thereby, as shown in Fig. ia, the holding portion 26, 26, 26, ..... In this case, the holding portion 28 for 3 inches is not in operation and is in a closed state. Four holding portions %, %, The 26-26-group configuration has a predetermined half-turn period. The user places the 2-inch wafer 3 on the platform 2 h in accordance with the guidance of the four holding portions 26, 26, 26, 26 in this embodiment. In the embodiment, the four holding portions π, %, 26, and 26 are set as a group, but the present invention is not limited thereto. At least one or more holding portions 26 may be set as a group. Further, in the example of FIG. 1A Four sets of holding portions 26 are protruded, but the number of sets may be determined according to the design. On the other hand, the measuring device is in a closed state when 3 inches is accepted as the ruler 20120130 of the wafer 3. The holding portions 28, 28, 28, . . . operate, and the holding portions 28, 28, 28, ... are placed in an ON state. Thereby, as shown in FIG. 1B, the holding portions 28, 28, 28, ... In this case, the holding portion 26 for 2 inches is in a closed state. The set of the four holding portions 28, 28, 28, 28 is disposed on a circumference having a predetermined radius. The guides 28, 28, 28, and 28 guide the 3-inch wafer 3 on the platform 2. The details will be described below. A block diagram of a hardware group of devices. The measuring device is a measuring device using light, laser or electron beam, etc., for example, a spectroscopic ellipsometer, a photoluminescence measuring device, Raman spectroscopy can be used. Device (Raman spectroscopic device), polarizer (p〇larimeter), interferometer (interferometer), scanning electron microscope, xenon ray analysis device, electron ray microanalyzer, or measurement by combining these measuring devices Device, etc. Further, in the case of a device in which a plurality of measuring devices are combined, the measurement can be performed at the same time, or the measurement can be performed in the order of the respective measuring devices. In the present embodiment, an example in which the spectroscopic ellipsometer 1 is used will be exemplified. Alternatively, the spectroscopic ellipsometer 1 can be placed inside the wafer processing apparatus or external to the wafer processing apparatus. In the present embodiment, an example in which the spectroscopic ellipsometer 1 is disposed outside the wafer processing apparatus will be described as an example. Further, in the present embodiment, film formation by a chemical vapor/deposition (CVD) device, a physical vapor deposition (PVD) device, a spin coater, or the like is exemplified. A semiconductor manufacturing apparatus such as a device, an etching device, a 12201201303, a cleaning device, or a training device is used as an example of a device. In the following, as an example, an example in which the film is measured and the film is formed by the film forming device 7 from the film forming apparatus will be described as an example. The film forming apparatus forms, for example, a film of 2 inches or 6 inches of round. The film forming apparatus 7 is formed, for example, by a 2-inch wafer 3: the user uses the spectral spectroscopy to form a 7 〇α film and a 7 GB film (hereinafter referred to as 7()). The wafer 3 after film formation with different film sizes was measured. Hereinafter, the identification information for determining the film forming apparatus 7 is referred to as the device identification Gdentity, ID), the film forming apparatus ID is set to "A", and the film forming apparatus is set to "1". Also B. Furthermore, the number of film forming apparatuses 70 is not limited to two. . The light ellipsometer 1 includes: xenon lamp 8 〇, light illuminator 81, platform 2, light finder 5, beam splitter 7, data reader 8, motor control The machine 9, the elevation control unit 、6, and the computer (c〇mputer) 1〇, etc. The spectroscopic ellipsometer 1 measures the plurality of wafers 3 placed on the platform 2. As shown in Fig. 2, only On the upper side of the wafer 3, an oxide film (Si〇2) may be laminated, and an amorphous germanium film or polycrystalline germanium may be laminated on the upper side of the tantalum oxide film. a film or a tantalum nitride film (ShN4), etc. The spectroscopic ellipsometer i irradiates the polarized light onto the wafer 3, and obtains the light reflected by the wafer 3, and measures the polarization state of the reflected light based on the measurement result. The characteristics of each film layer of the wafer 3 are analyzed with a model corresponding to the wafer 3. Further, in addition to the wafer 3, a compound semiconductor substrate, a single layer or a plurality of layers of epitaxial crystals may be used. A film, an insulator film, a sapphire substrate, or a glass substrate is used as a substrate. 13 201201303. The light 4 ellipsometer 1 is roughly divided into The part of the measuring and analyzing system of the stator and the part of the driving system are provided with a light illuminator 81 and a light finder 5. The spectral ellipsometer i is a 〇pticai fiber cable 15a. A xenon lamp 8 〇 and a light illuminator 81 are connected as a portion for measuring analytical purity. The spectroscopic ellipsometer illuminates the polarized light to the wafer 3 placed on the stage 2, and is obtained by the light extractor 5. The light reflected by the wafer 3. The light extractor 5 is connected to the spectral beam II 7 via a second optical cable (9), and the light splitting n 7 is measured for each wavelength, and the measurement result is transmitted as an analGg signal to The data reader 8. The data reader 8 converts the analog signal to a desired value and transmits it to the computer 10. The computer 10 performs analysis. The spectral ellipsometer 1 is on the platform 2, the light illuminator 81, and the light finder 5. And the first motor 6 to the sixth motor M6 are respectively provided as part of the drive system. The driving of the first motor M1 to the sixth motor river 6 is controlled by the motor controller 9 connected to the computer 1G. Thereby, the platform 2, the light is irradiated with H 81, The acquisition H 5 and the splitting light 7 are changed to an appropriate position and posture corresponding to the measurement. The motor control unit 9 controls the driving of the first motor M1 to the sixth motor M6 based on an instruction output from the computer & 1〇. The lamp 80 is a light source, and the xenon lamp 8 generates white light containing a plurality of wavelength components and transmits the generated white light to the light irradiator 81 via the first optical cable 15a. The light irradiator 81 is disposed in a semi-arc shape. (The rail element 6 has a polarizing element 81a inside the light irradiator 81, and the white light is polarized by the polarizing element 81a', and the light of the polarization state is 201201303 to the wafer 3. Further, the light illuminator 81 is moved along the rail 6 by the fourth motor M4 being driven, so that the angle (incident angle φ) of the illuminating light with respect to the perpendicular 平台 of the land surface of the stage 2 can be adjusted. The flat chamber 2 is slidably disposed on a moving rail portion (not shown), and the platform 2 can be driven in the X-axis direction and the Y-axis direction in FIG. 2 by the driving of the first motor M1 to the third motor Μ3 ( 1A and m show the direction in which the paper faces are orthogonal to each other) and the two directions in the height direction. By the movement of the stage 2, the portion where the light is incident on the wafer 3 is appropriately changed, and the wafer 3 is subjected to face analysis. In the present embodiment, an example in which the stage 2 is moved in the X-axis direction and the γ-axis direction will be described as an example, but the invention is not limited thereto. For example, the stage 2 may be fixed (4), and the light irradiation II 81 and the light acquiring unit 5 may be moved to move the irradiation position in the X-axis direction and the γ-axis direction. Further, the platform 2, the optical device 81, and the light extractor 5 can be moved in the direction of the axis and the Y-axis. Further, the flat surface of the wafer 3 on which the stage 2 is placed is black to prevent reflection of light. The value of the vibration 2 obtains the light reflected by the wafer 3, and measures the /^ and the sound of the obtained light. The light absorbing device 5 is disposed in the same manner as the light illuminator 81. The light absorbing device 5 incorporates a photoelastic modulator (Photo: r=〇dUl, PEM) 5a and an analyzer (A-5b, Japanese yen 3 reflection The light is guided to the north of the analyzer via pEM5a. The light-receiving device 5 can be moved along the track 6 by the motor of the Ayrc & King's knife. The crying 81: Machine 9 The control is performed such that the light-receiving device 5 and the light-illuminating "users" are linked in such a manner that the reflection angle Φ and the human angle Φ are the same as the PEM 5a built in the light-receiving device 5 at a desired frequency (Example 15 201201303. For example, 50 kHz) The obtained light is phase-modulated, whereby elliptically polarized light is obtained from linearly polarized light, and the analyzer 5b selectively obtains polarized light from various polarized lights modulated by the phase PEM5a and measures the light. A mirror, a diffraction grating, a photomultiplier (PMT), a control unit, and the like are incorporated, and the light transmitted from the light extractor 5 via the second optical cable 15b is reflected by the mirror to guide the light. To the diffraction grating. By the sixth motor M6 The angle of the diffraction grating is changed to change the wavelength of the emitted light. The light entering the inside of the spectroscope 7 is amplified by the PMT, and the measured signal can be obtained even when the amount of light is small. In addition, the control unit performs a process of generating an analog signal corresponding to the measured wavelength, and sends the analog signal to the data reader 8. The data reader 8 is based on the light from the spectroscope 7. The signal is calculated for the amplitude ratio 0 of the polarization state (P-polarized light, s-polarized light) of the reflected light and the phase difference Δ, and then the calculated result is sent to the computer 10 ° and then the amplitude ratio is 0 and the phase The difference Δ is expressed by the following equation (1) with respect to the amplitude reflection coefficient Rp of the P-polarized light and the amplitude reflection coefficient rs of the s-polarized light.

Rp/Rs — tan 0 · eXp (i · a )…(1) 其中’ i為虛數單位(以下相同)。另外,Rp/Rs稱為 偏振光變化量p。 另外,電腦10基於由資料讀取機8獲得的偏振狀態的 201201303 振幅比0及相位差△、與對應於試樣的模型來對晶圓3進 行分析,並且對平臺2的移動等進行控制。電腦1〇包括中 央處理器(Central Processing Unit,CPU) 11、顯示部 14、 輸入部13、記憶部15、以及隨機存取記憶體(Rand〇mRp/Rs — tan 0 · eXp (i · a ) (1) where ' i is an imaginary unit (the same applies hereinafter). Further, Rp/Rs is referred to as a polarization change amount p. Further, the computer 10 analyzes the wafer 3 based on the 201201303 amplitude ratio 0 and the phase difference Δ of the polarization state obtained by the data reader 8, and the model corresponding to the sample, and controls the movement of the stage 2 and the like. The computer 1 includes a central processing unit (CPU) 11, a display unit 14, an input unit 13, a memory unit 15, and a random access memory (Rand〇m).

Access Memory,RAM) 12 等。CPU11 經由匯流排(bus) 而連接於電腦10的各個硬體部分。CPUU對硬體進行控 制並且根據存儲於兄憶部15的各種程式(program)來 執行各種軟體(software)處理。 RAM12為半導體元件等,該根據cpuu的 指示來進行必需的信息的寫入以及讀出。顯示部14例如為 液晶顯示器(display )或有機電致發光 (Electr〇iuminescence,EL)顯示器等。輸入部13為鍵盤 (^keyboard )以及滑鼠(mouse )、或觸控面板(t〇uch ) 等的輸入裝置。從輸人部I3輸人的晶圓3的尺寸等的信息 至CPU1卜記憶部15例如為硬碟(harddisk)或大容 里"己憶體,且預先存儲著分析用的電腦程式、以及平臺2 =移動控制用的電腦程式等的各種程式。另外,記憶部15 2儲著用以顯示於顯示部14的各種菜單(menu)圖像的 •貝料、與晶圓3相關的已知的資料、多 模型的多個色散公式U寧rsionformula)、已製成2 ^、與各賴樣相職的參考㈣(1>ef_eedata)、以及 與干涉條紋相關聯的比較處理巾所使用的基準值等。 此外,記憶部15存儲著保持部文件(file) 15卜結果 件(以下稱4 DB) 152以及圖像文件155等。再者,這 201201303 些文件也可存儲於未圖示的DB伺服器(se而)等。在此 情況下,CPU11進行如下的處理,即,從DB飼服器將必 需的信息予以讀出,或將必要的信息寫入至DB祠服器。 CPU11經由馬達控制機9來對平臺2進行控制,對晶圓3、 3、3、…的膜厚或光學常數等進行測量。 當根據所測定職幅比0錢相位^轉晶圓 周圍環境等的複折射率(complex refractive index )設為已 知時’電腦ίο的cpuii使用預先存儲於記憶部15的建模 程式(modeling pr〇gram)。對於複折射率N而言當將分 析的膜層的折射率設為n以及將消光係數(extfncti二 coefficient)設為k時,由以下的光學式表示的數式 的關係成立。 N=n—ik…(2) 另外,當將入射角度設為φ,且將光照射器81所照 射的光的波長設為λ時,從資料讀取機8輸出的由撕偏;^ 測定的振幅比0以及相位差△對於膜厚d、折射率η以及消 光係數k而言,以下的數式(3)的關係成立。 ' (d’n,k) =F(p) =F(0 (λ,φ),Δ(λ, ... (3) 以及具有 電腦10的CPU11使用分析的各層的膜厚、 201201303 多個參數(parameter )且表示複介電常數(c〇mplex permittivity)的波長依賴性的色散公式來進行如下的處理 (擬合(fitting)),該處理使膜厚、色散公式的參數等發生 變化’使得根據已記憶的模型以邏輯運算而獲得的模型光 谱(必Μ ( λί) ’ ΔΜ ( λί))(偏振狀態)、與從資料讀取機 8輸出的測定結果的測定光譜(0Ε Ui),ΔΕ (λ〇)(偏 振狀態)之差最小。再者,將所應用的色散公式的一例表 示為下述的數式(4)。此外’色散公式僅為一例,並不限 於此。 [數1] ω( -ω +ζΓ0ω -ω +ιΓ0ω #〜一必2···(斗) 在數式(4)中,左邊的ε表示複介電常數 ,ε°〇 ' ss 表示介電常數’ Γ0、rD、yj表示相對於粘性力的衰減係數 (damping factor ),cooj、(〇t、ωρ 表示固有角振動數(osciiiator frequency、transverse frequency、plasma frequency )。再者, ε〇〇 為高頻的介電常數(high frequency dielectric constant ),ss 為低頻的介電常數(static dielectric constant),fj= USj —ε〇〇 )。另外,對於複介電常數ε (相 當於ε (λ))、以及複折射率Ν (相當於Ν (λ))而言,下 述的數式(5)的關係成立。 ε (λ) =Ν2 (λ) ··· (5) 201201303 對擬合進行說明。在對晶圓3進行測定的情況下,當 將τ個測定資料對(pair)設為Exp (i= 1、2、…、T),將τ 個模型的計算資料對設為M〇d (i=l、2.....T)時,認 為測定誤差呈正態分佈(normal distribution),將標準偏差 (standard deviation)設為σί 時,最小平方法(least square method)的均方誤差χ2是由下述的數式(6)求出。再者, Ρ為參數的數量。當均方誤差χ2的值小時,意味著測定結 果與已製成的模型的一致度大,因此,在對多個模型進行 比較的情況下,均方誤差χ2的值最小的模型相當於最佳模 型。 [數2] (6) ’ =[1/(2Γ-Ρ)塔(卸广叫)2/彳 • · · 與所述電腦10的CPU11所進行的試樣分析相關的— 系列的處理是由存儲於記憶部15的分析用的電腦程式來 規定。本實施方式的光譜橢偏儀丨將晶圓3中的多個已預 先製成的模型的構造存儲於記憶部丨5賴型文件中。這些 模型的構造基於岭储於記㈣15的電腦程式(建模程 式;)所規定的處理而被讀出,並被用於分析。 圖3是表示平臺2以及保持部2 〇的剖面的模式性剖面 圖。在一部分為中空的平臺2内部,設置有將長度方向設 為錯垂方向的保持部2〇、20、20、…。該保持部20包括 第-保持部21以及第二保持部22。第—保持部21埋入於 平臺2内冑。第二保持部22支撐於第—保持部21,且在 201201303 接通狀態(工作味)丁,. 突出。突出量例如設為晶圓3:二平^上方 可突出至比晶圓3的厚度更 ^以上即可。再者,也 閉狀態下,下降至平臺2 :。第-保持部22在關 關閉狀態下,第一佯持邱=再者,進行控制,使得在 上即可。 保持^22的頭部位於與平臺2相同的面 的内部進形的圓柱即可。圓柱可在圓筒 為圓筒與圓柱的电人^方式中,說明了保持部加 棱柱與可在;中;: 呈弧狀=多型或剖面觀察時 槽,或_二;==r。面上形成 23 了根據用以確定保持部20的彳 ==稱為保持部1D)來確定各保持= 吏保持4 20工作的情況下,將對應 =持部1D以及接通狀態的信息輸出至升降::: 。自作為輸出部的升降控制部16將接通狀態或關閉狀綠的 U出至升降機構23。該升構‘ 態的信息的情況下,使第二保持部22上-:狀 在接受了關閉狀態的信息的情況下,使第二保持部2t下 21 201201303 的保持部了㈣糾及圓柱構成 也可在平臺2㈣朗補, 23來使螺針上升或T|^ ㈣使螺釘旋轉的升降機構 的:文件151的記錄佈局(_11_) ^ 、子又,保持坐標字段、測量ID字段、中心坐俨 :段:及測量區域字段等。在保持部ID 5中= :=定各保持部20的識別信息。在晶圓尺寸字段中: 保持。卩ID相龍地記财晶圓3的 二 段中,與簡部ID姆親記财轉。在保持从子 π在中心坐標字段中,記憶有晶圓3的中心坐標作為曰 置I*另外,在測量區域字段中,記憶有多: 置的中心坐標或測量區域相對應地,存 ^用以確定載置在平臺2上的晶圓3的測量位置的識別 = 測量1D)。例如,在測量1D確定為“1,, 的—下,關於2英寸的晶圓3,保持部仍為“2ιι”、 所料虛本213、以及214所確定的四個保持部20 Γΐί:υ11將接通狀態的信息輪出至升降控制部 16。該升降控制部16使所述四個保持部2〇上 先將測量ID雜在祕騎2〇吨 中,使得使用者能夠容易地確定該測量 22 201201303 寸的晶圓3載置於四個保持部2〇内。該晶圓3的測量ID 為 “1”。 同樣地,為了載置其他2英寸的晶圓3,保持部ID為 ‘221 、“222”、“223”以及“224”的四個保持部20 上升。保持於所述四個保持部2〇的晶圓3的測量ID為 “2”《CPU11在對測量ID “1”所確定的晶圓3進行測量 的情況下,將對應於測量ID的中心坐標予以讀出。CPU11 使平臺2向中心坐標移動,參照存儲於測量區域字段的坐 標並進行測量。再者,在本實施方式中,舉例說明了存儲 著中心坐標的例子,但不限於此。也可預先存儲著測量區 域内的坐標中的預先已成為初始位置的初始坐標。 同樣地,在3英寸的晶圓3的情況下,保持部m確 定為 “311’,、“312”、“313” 以及 “314” 的保持部 2〇 上,。再者,在本實施方式中,為了使說明變得容易而將 2英寸的保持部2G與3英寸的保持部2()分開,但也可彼 此^用-部分的保持冑2〇cCpuu將晶圓3的測量結果盘 測量ID以及坐標相對應地存儲於結果文件152。 、 令技?^,表不結果文件152的記錄佈局的說明圖。結果 文件2包括農置1D字段、位置ID字段、測量ID字^、 =字字段以及光學常數字段等。在裝置ID字 =置lift成為測量對象的晶圓3成膜的成膜裝置7〇 用峨二置T中= (以下稱為竹番f中曰圓的配置位置的識別信息 ID)。使用者在進行測量之前,從輸入部 23 201201303 入。CPU11將從輸入部13輸入的r 13中與測量ID相對應地將裝置iD以及位置^Access Memory, RAM) 12 and so on. The CPU 11 is connected to each hardware portion of the computer 10 via a bus. The CPUU controls the hardware and executes various software processes in accordance with various programs stored in the brother-remembering section 15. The RAM 12 is a semiconductor element or the like, and performs writing and reading of necessary information in accordance with an instruction of cpuu. The display unit 14 is, for example, a liquid crystal display or an organic electroluminescence (EL) display. The input unit 13 is an input device such as a keyboard (^keyboard), a mouse, or a touch panel (t〇uch). The information such as the size of the wafer 3 input from the input unit I3 to the CPU 1 memory unit 15 is, for example, a hard disk or a large memory, and a computer program for analysis is stored in advance, and Platform 2 = various programs such as computer programs for mobile control. Further, the storage unit 15 2 stores a plurality of menu materials for displaying various menu images on the display unit 14, known materials related to the wafer 3, and a plurality of dispersion formulas of the multi-model. The reference (4) (1 > ef_eedata), which is used for each of the samples, and the reference value used for the comparison processing towel associated with the interference fringe are prepared. Further, the storage unit 15 stores a file (file) (hereinafter referred to as 4 DB) 152, an image file 155, and the like. Furthermore, these 201201303 files may be stored in a DB server (se) or the like (not shown). In this case, the CPU 11 performs a process of reading out necessary information from the DB feeder or writing necessary information to the DB server. The CPU 11 controls the stage 2 via the motor controller 9, and measures the film thickness, optical constant, and the like of the wafers 3, 3, 3, . When the complex refractive index of the surrounding environment of the wafer is determined to be known according to the measured position ratio 0 money phase, the cpuii of the computer ίο uses the modeling program previously stored in the memory unit 15 (modeling pr) 〇gram). In the complex refractive index N, when the refractive index of the analyzed film layer is n and the extinction coefficient (extfncti two coefficient) is k, the relationship of the mathematical expression represented by the following optical formula is established. N=n—ik (2) Further, when the incident angle is φ and the wavelength of the light irradiated by the light irradiator 81 is λ, the output from the data reader 8 is determined by the tearing off; The amplitude ratio 0 and the phase difference Δ are related to the film thickness d, the refractive index η, and the extinction coefficient k, and the relationship of the following formula (3) is established. '(d'n,k) =F(p) =F(0 (λ,φ), Δ(λ, ... (3) and the thickness of each layer of the analysis using the CPU 11 of the computer 10, 201201303 A parameter and a wavelength-dependent dispersion formula indicating a complex dielectric constant (c〇mplex permittivity) are subjected to processing (fitting) which changes a film thickness, a parameter of a dispersion formula, and the like. A model spectrum (a λί) ' ΔΜ (λί) (polarization state) obtained by a logical operation based on the memorized model, and a measured spectrum (0 Ε Ui) of the measurement result output from the data reader 8 The difference between ΔΕ (λ〇) (polarization state) is the smallest. Further, an example of the applied dispersion formula is expressed by the following formula (4). The 'dispersion formula is only an example, and is not limited thereto. 1] ω( -ω +ζΓ0ω -ω +ιΓ0ω #〜一必2···(斗) In the equation (4), ε on the left represents the complex permittivity, and ε°〇' ss represents the dielectric constant. Γ0, rD, yj represent the damping factor with respect to the viscous force, cooj, (〇t, ωρ represents the number of natural angular vibrations (osciiiator f Requency, transverse frequency, plasma frequency. Further, ε〇〇 is a high frequency dielectric constant, ss is a low dielectric constant (static dielectric constant), fj= USj — ε〇〇) Further, for the complex permittivity ε (corresponding to ε (λ)) and the complex refractive index Ν (corresponding to Ν (λ)), the relationship of the following formula (5) holds. ε (λ) =Ν2 (λ) ··· (5) 201201303 Explain the fitting. When measuring the wafer 3, set τ measurement data pairs (pair) to Exp (i= 1, 2,... , T), when the calculated data pairs of the τ models are set to M〇d (i=l, 2.....T), the measurement error is considered to be normal distribution, and the standard deviation is (standard deviation). When σί is set, the mean square error χ2 of the least square method is obtained by the following equation (6). Furthermore, Ρ is the number of parameters. When the value of the mean square error χ2 is small, it means The measurement result is highly consistent with the model that has been made. Therefore, in the case of comparing multiple models, the mean square error The model with the smallest value of χ2 is equivalent to the best model. [Number 2] (6) ' = [1/(2Γ-Ρ) tower (unloading wide) 2/彳• · · Related to the sample analysis performed by the CPU 11 of the computer 10 - The series of processing is performed by The computer program for analysis stored in the storage unit 15 is defined. The spectroscopic ellipsometer of the present embodiment stores the structure of a plurality of pre-formed models in the wafer 3 in the memory unit. The construction of these models is read out based on the processing specified by the computer program (modeling method;) stored in (4) 15 and used for analysis. Fig. 3 is a schematic cross-sectional view showing a cross section of the stage 2 and the holding portion 2''. Inside a part of the hollow platform 2, holding portions 2A, 20, 20, ... which set the longitudinal direction in a staggered direction are provided. The holding portion 20 includes a first holding portion 21 and a second holding portion 22. The first holding portion 21 is embedded in the bottom of the platform 2. The second holding portion 22 is supported by the first holding portion 21, and is turned on at the 201201303 (work taste), and is highlighted. For example, the amount of protrusion may be set to be higher than the thickness of the wafer 3 by the wafer 3: the upper portion. Furthermore, in the closed state, it drops to platform 2:. When the first holding portion 22 is in the closed state, the first holding unit is again controlled, so that it can be controlled. It is sufficient to keep the head of the ^22 in the inner cylindrical shape of the same face as the platform 2. The cylinder may be in the form of an electric cylinder in which the cylinder is a cylinder and a cylinder, indicating that the retaining portion is added to the prism and can be in the middle;: in the form of an arc = polytype or section observation, or _2; ==r. In the case where the surface formation 23 determines that each of the hold = 吏 hold 4 20 is operated according to the 彳 == determined as the holding portion 1D for determining the holding portion 20, the information corresponding to the holding portion 1D and the ON state is output to Lifting :::. The elevating control unit 16 as the output unit outputs the ON state or the closed green U to the elevating mechanism 23. In the case of the information of the up-constructed state, when the information of the closed state is received in the second holding portion 22, the holding portion of the second holding portion 2t 21 201201303 is corrected (four) and the cylindrical structure is corrected. It can also be used in platform 2 (four) lang, 23 to make the screw up or T|^ (four) to make the screw rotate the lifting mechanism: file 151 record layout (_11_) ^, sub-, hold coordinate field, measurement ID field, center sit俨: Segment: and measurement area fields, etc. In the holding unit ID 5, === the identification information of each holding unit 20. In the Wafer Size field: Hold. In the second paragraph of the 卩ID 地 地 记 记 财 财 财 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 In the center coordinate field, the center coordinate of the wafer 3 is stored as the set I*. In addition, in the measurement area field, there are many memories: the center coordinate of the set or the measurement area correspondingly, and the memory is used. The identification of the measurement position of the wafer 3 placed on the platform 2 is determined = measurement 1D). For example, in the case where the measurement 1D is determined to be "1,", regarding the 2 inch wafer 3, the holding portion is still "2 ι", the imaginary 213, and 214 are determined by the four holding portions 20 Γΐ υ υ υ υ υ The information of the on state is rotated to the elevation control unit 16. The elevation control unit 16 causes the four holding units 2 to first mix the measurement ID in the secret ride, so that the user can easily determine the Measurement 22 The 201201303 inch wafer 3 is placed in the four holding portions 2A. The measurement ID of the wafer 3 is "1". Similarly, in order to mount the other 2 inch wafer 3, the holding portion ID is ' The four holding portions 20 of 221, "222", "223", and "224" rise. The measurement ID of the wafer 3 held in the four holding portions 2A is "2" "CPU11 is in the measurement ID "1 When the determined wafer 3 is measured, the center coordinate corresponding to the measurement ID is read. The CPU 11 moves the platform 2 toward the center coordinate, refers to the coordinates stored in the measurement area field, and performs measurement. In the present embodiment, an example in which the center coordinates are stored has been described as an example, but the present invention is not limited thereto. The initial coordinates which have been the initial positions in the coordinates in the measurement area are stored in advance. Similarly, in the case of the wafer 3 of 3 inches, the holding portion m is determined to be "311', "312", "313". And the holding portion of "314" is on the top. Further, in the present embodiment, the 2 inch holding portion 2G is separated from the 3 inch holding portion 2 () in order to facilitate the description, but it is also possible to use the -partial holding 胄2〇cCpuu to crystallize each other. The measurement result of the circle 3 and the coordinates are correspondingly stored in the result file 152. , the technique ^^, the description of the record layout of the result file 152. Result File 2 includes a farm 1D field, a location ID field, a measurement ID word ^, a = word field, and an optical constant field. In the film forming apparatus 7 in which the device ID word = the wafer 3 to be measured is formed, the film forming device 7 is used to determine the position of the wafer 3 (hereinafter referred to as the identification information ID of the arrangement position of the circle in the bamboo fan f). The user enters from the input unit 23 201201303 before taking the measurement. The CPU 11 sets the device iD and the position corresponding to the measurement ID from r 13 input from the input unit 13

在‘本’實施方式中舉例說 儲於結果文件152。再者,在本實 下的例子,即,對於測量ID “Γ 以及位置ID “Γ ,對於測量id “2” A以及位置ID 2”。同樣地,斜方 憶有裝置ID “B”以及位置ID “3”,對於測量出 而存儲著裝置ID “B”以及位置仍“4” 。 4 在測量ID字段中,與裝置ID以及位置仍 ,儲著用以確定載置在平臺2上的晶圓3的測量位置二 置ID。如此,用以確定各晶圓3的試樣識別信息是由 確定成膜裝置70的裝置ID、用以確定成膜裝置7〇 圓3的配置位置驗fID、以及用以確定晶圓3的測量位 置的測量ID構成。例如,當以測量ID “4” 、裝置① “3’’、位置仍“4”來確定晶圓3時,將晶圓3載置於平 臺2的由測量ID “4”確定的位置,光譜擴偏儀】根據測 ,gID “4”來對測量結果進行計算1著,該計算結果確 疋疋以裝置ID B的成膜裝置70B的位置ID “4”來成 膜的晶圓3。再者’位置ID為一例,也可使用“上’,、“右” 等來代替數值。另外,在本實施方式中,舉例說明了使用 裝置ID、位置ID以及測量ID這三個試樣識別信息的例 但不限於此。當無須確定成膜裝置70中的位置時’將 試樣識別信息設為裝置ID以及測量ID這兩個試樣識別信 息即可。另外’當對利用一個成膜裝置7〇來成膜的尺寸不 24 201201303 同^曰曰IB 3進仃測量時’或當對相同尺寸的晶圓 量時’僅將啦瓜用作試樣識別信息即可。 在本實知方式中,為了使說明變得容易,舉例說明了 對!1置仍確定為“1”、“2,,、“3”、以及“4”的四 個曰曰圓3進行測量的例子。在坐標字段中與測量IQ相 對應地記财測量時的坐標。在本實施方式中,舉例說明 作為測量項厚以及光學常數。再者,測量項目為一 例’根據測置的種類來設置適當的測量項目即可: 如,也可與坐標相對應地將試樣上的結晶产 (crystallin=、應力或内部的元素信息等作為測量項目Γ 在膜厚子段中’與坐標相對應地記憶有作為第-測量 項目的晶圓3的膜厚。另外,在光學常數字段中, 相對應地存儲著作為第二測量項目的晶圓3的光學常^ (=率、消光係數)。再者,本實施方式中所述的保持部 文件151以及結果文件⑸㈣料佈局為_例,並不限於 =只^_資料之間的關係,則根據設計來採用適當的 ° 可。另外’保持部文件151以及結果文件152 除了存儲於電腦Η)内的記憶部15以外 的資料庫,叫data base 一未圖示)存= 152存儲著在晶® 3上成朗各層賴厚以及光學常數。 施方式中在晶圓3上形成有兩個層,在圖5中顯 丁展1層的測量結果。再者’在晶圓3上成膜的層可為 一層,也可為三層以上。 圖6疋表不結果顯示影像(image)的說明圖。 25 201201303 基於結果文件152的測量妗果也 晝面。該顯示晝面包括第° · S_量絲記述於顯示The result file 152 is exemplified in the 'present' embodiment. Furthermore, in the actual example, that is, for the measurement ID "Γ and the position ID "Γ, for the measurement id "2" A and the position ID 2". Similarly, the oblique side recalls the device ID "B" and the position ID "3", for the measurement, the device ID "B" is stored and the position is still "4". 4 In the measurement ID field, the device ID and the location are still stored, to determine the crystal placed on the platform 2. The measurement position of the circle 3 is set to ID. Thus, the sample identification information for determining the wafer 3 is determined by determining the device ID of the film forming apparatus 70, and determining the position of the film forming apparatus 7 to determine the position fID, And a measurement ID for determining the measurement position of the wafer 3. For example, when the wafer 3 is determined by the measurement ID "4", the device 1 "3", and the position is still "4", the wafer 3 is placed. At the position determined by the measurement ID "4" of the platform 2, the spectral spreader calculates the measurement result according to the measurement, gID "4", and the calculation result is confirmed by the film forming device 70B of the device ID B. The position ID "4" is used to film the wafer 3. In addition, the position ID is an example, and "upper", "right", etc. may be used instead of numerical values. In addition, in the present embodiment, three sample identifications using the device ID, the position ID, and the measurement ID are exemplified. The example of the information is not limited to this. When it is not necessary to determine the position in the film forming apparatus 70, 'the sample identification information is set to the two pieces of identification information of the device ID and the measurement ID. The size of the film formed by the device is not 24 201201303. When the measurement is performed, or when the amount of wafer of the same size is used, only the melon is used as the sample identification information. In the embodiment, in order to facilitate the description, an example in which four rounds 3 which are determined to be "1", "2,", "3", and "4" are measured is exemplified. In the coordinate field, the coordinates at the time of the measurement are recorded in correspondence with the measurement IQ. In the present embodiment, the measurement term thickness and the optical constant are exemplified. In addition, the measurement item is an example of 'setting an appropriate measurement item according to the type of the measurement: For example, the crystal production (crystallin=, stress, or internal element information) on the sample may be used in correspondence with the coordinates. Measurement item 记忆 In the film thickness subsection, the film thickness of the wafer 3 as the first measurement item is stored in correspondence with the coordinates. In addition, in the optical constant field, the wafer in which the second measurement item is written is correspondingly stored. The optical constant (= rate, extinction coefficient) of 3, and the configuration of the holding unit file 151 and the result file (5) (4) described in the present embodiment are not limited to the relationship between the data and the data. According to the design, an appropriate value can be adopted. In addition, the data of the other part of the memory unit 15 stored in the computer 151 and the result file 152 is stored in the computer ,, and the data base is not shown. The crystal layer 3 has a layer thickness and an optical constant. In the embodiment, two layers are formed on the wafer 3, and the measurement results of one layer are shown in Fig. 5. Further, the layer formed on the wafer 3 may be one layer or three or more layers. Fig. 6 is an explanatory diagram showing an image. 25 201201303 The measurement results based on the result file 152 are also negative. The display surface includes the first ° · S_ filament described in the display

M2。在圖6的第—員 =⑷以及第二顯示部 “A”的顯示結果π、ρυ +顯7^ 了相對於裝置ID ID、位置ID、測量ID、坐子儲於結果文件152的裝置 出’並記述於第二顯示部、膜厚以及光學常數予以讀 文像文件155的記錄佈局的說明圖。圖像 文件155包括裂置ID字 ,像M2. The display result π, ρ υ + of the first member = (4) and the second display portion "A" of Fig. 6 is displayed with respect to the device ID ID, the position ID, the measurement ID, and the device stored in the result file 152. The description of the recording layout of the read image file 155 is described in the second display portion, the film thickness, and the optical constant. Image file 155 includes a split ID word, like

以及描繪位置信自字Μ ^像糾斗位置1D字段 相對應地記憶有;示成ΐ裝字=’與裝置ID 圖像資料。圖6的例=成置的晶 J1 j卞衣不成膜装置70A中的晶圓3的酋? 置位置。顯示有四個模式性地表示2英寸的晶圓3的圓。 而且’在四個圓的外側,顯示有—個模式性地表示6英 的晶圓3的圓。在描繪位置信息字段中,記憶有與位置1]0 相對應的圓的信息。例如,存在於圖6中的12點位置的模 式性地表不2英寸的晶圓3的小圓對應於位置ID “丨”。 另外’存紐圖6的3點位置的模式性地表示2英寸的晶 圓3的小圓對應於位置ID “2”。此外,模式性地表示6 英寸的晶圓3的大圓對應於位置1〇 “5” 。 cpuii從圖像文件155中將對應于裝置ID的圖像資 料予以讀出,並顯示於第一顯示部141。CPU11參照結果 文件152,將對應於裝置ID、位置ID以及測量ID的各坐 標的膜厚予以讀出。CPU11從圖像文件155中將對應于位 置ID的描繪位置信息予以讀出。CPU11在由描繪位置信 26 201201303 ^斤確定的模式性地表示晶圓3的_,顯示已讀出的各 $的膜厚_色變化。再者,對於顏色,預先將膜厚最 大值的顏色以及膜厚最小值的顏色存儲於記憶部15,根 膜厚以彩色或黑白來顯示對應的顏色即可。cpui 1參照 =仍以及描繪位置信息,與由顏色來顯示的膜厚相關 聯地顯示對應的測量ID、裝置以及位置ID。 在圖6的例子中,顯示了與由裝置id‘‘a” 、位置1〇 “1” 、測量ID “Γ所確定的晶圓3的膜厚相關的濃淡、 以及與由裝置ID “A” 、位置ID “2” 、測量ID “2”所 確定的晶圓3的膜厚相關的濃淡。 借此,可容易地把握各晶圓3的狀態。另外,由於一 併顯示了裝置ID以及位置ID,因此,可確定測量结果存 在問題的成膜裝置70以及相應的晶圓3,從而可提前對成 膜裝置70作出反饋(feedback)。在第一顯示部141的下 部顯示有膜厚按鈕(button) 143以及光學常數按鈕144。 這些按鈕是用以對測量項目進行切換的按鈕。 使用者在希望顯示膜厚的結果的情況下,點擊(dick) 膜厚按鈕143。使用者在希望顯示光學常數的結果的情況 下’點擊光學常數按纽144。CPU11在膜厚按紐143被點 擊的情況下,從結果文件152中將坐標以及膜厚予以讀 出’並顯不圖6所不的外形圖(contour figure)。CPU11 在光學常數按鈕144被點擊的情況下,接受操作輸入。 CPU11從結果文件152中將坐標以及光學常數予以讀出。 再者,對於光學常數而言,選擇並讀出折射率或消光係數 27 201201303And the drawing position letter from the word Μ ^ image matching position 1D field is correspondingly stored; shown as armored word = ' and device ID image data. The example of Fig. 6 = the position of the wafer 3 in the film forming apparatus 70A. There are four circles that schematically represent the 2-inch wafer 3. Further, on the outer side of the four circles, a circle schematically showing the wafer 3 of 6 inches is shown. In the drawing position information field, information of a circle corresponding to the position 1] 0 is memorized. For example, the small circle of the wafer 3 which is patterned at a 12 o'clock position in Fig. 6 and which is not 2 inches corresponds to the position ID "丨". Further, the three-point position of the map 6 schematically indicates that the small circle of the 2-inch crystal circle 3 corresponds to the position ID "2". Further, the large circle schematically representing the 6-inch wafer 3 corresponds to the position 1 〇 "5". The cpuii reads out the image data corresponding to the device ID from the image file 155, and displays it on the first display portion 141. The CPU 11 refers to the result file 152 and reads the film thickness of each of the coordinates corresponding to the device ID, the position ID, and the measurement ID. The CPU 11 reads out the drawing position information corresponding to the position ID from the image file 155. The CPU 11 schematically indicates the _ of the wafer 3 determined by the drawing position letter 26 201201303, and displays the film thickness_color change of each of the read $. Further, in the color, the color having the largest film thickness and the minimum color of the film thickness are stored in the memory unit 15 in advance, and the corresponding film may be displayed in color or black and white. The cpui 1 reference = still and the drawing position information, and the corresponding measurement ID, device, and position ID are displayed in association with the film thickness displayed by the color. In the example of FIG. 6, the shading associated with the film thickness of the wafer 3 determined by the device id''a", the position 1"1", the measurement ID "", and the device ID "A" are displayed. The position ID "2" is measured by the film thickness of the wafer 3 determined by the ID "2". Thereby, the state of each wafer 3 can be easily grasped. Further, since the device ID and the position ID are displayed together, the film forming apparatus 70 having the measurement result and the corresponding wafer 3 can be determined, so that the film forming apparatus 70 can be fed back in advance. A film thickness button 143 and an optical constant button 144 are displayed on the lower portion of the first display portion 141. These buttons are buttons for switching measurement items. When the user desires to display the result of the film thickness, the user clicks on the film thickness button 143. The user clicks on the optical constant button 144 if he wishes to display the result of the optical constant. When the film thickness button 143 is clicked, the CPU 11 reads the coordinates and the film thickness from the result file 152 and does not show the contour figure shown in Fig. 6. The CPU 11 accepts an operation input when the optical constant button 144 is clicked. The CPU 11 reads out the coordinates and optical constants from the result file 152. Furthermore, for optical constants, the refractive index or extinction coefficient is selected and read. 27 201201303

Ο U I 對將折射率讀出的情況進行 中的任一個即可。以下, 說明。 CPUU從圖像文件155中將對應作置ID的圖像資 料予以讀出,並顯示於第-顯示部⑷。CPU11參昭 文件152,將對應於裝i ID、位置ID以及測量Π3的^坐 標的折射率予以讀1 CPU11 _像文件155中將對廣于 位置m的描繪位置信息予以讀出。CPU11在由描繪位置 信息所確定的模式性地表示晶圓3的圓内,顯示已讀出的 各坐標的折射率的顏色變化^再者,對於顏色預先將折 射率最大值的色以及折料最小值的顏色存儲於記憶部 15 ’根據折射率,以彩色或黑白來顯示對應的顏色即可。 圖8是表示其他成膜裝置7〇的結果顯示影像的說明 f、。CPUU基於結果文件152的測量結果來將該測量結果 記述於顯不畫面。該顯示畫面包括第—顯示部ΐ4ι以及第 一顯不部‘U2。在圖8的第一顯示部141中顯示了相對於 裝置ID B的顯示結果。CPU11將存儲於結果文件152 的裝置ID、位置ID、測量ID、坐標、膜厚以及光學常數 予以讀出,並記述於第二顯示部142。 cpuii從圖像文件155中將對應于裝置ID的圖像資 料予以讀出,並顯示於第一顯示部141。CPU11參照結果 文件152,將對應於裝置ID、位置ID以及測量ID的各坐 標的膜厚予以讀出。CPU11從圖像文件155中將對應于位 置ID的為綠位置k息予以讀出。cpuii在由描績位置信 息所確定的模式性地表示晶圓3的圓内,顯示已讀出的各 28 201201303Ο U I may be any one of the cases in which the refractive index is read. The following is explained. The CPUU reads out the image data corresponding to the setting ID from the image file 155, and displays it on the first display unit (4). The CPU 11 reads the file 152 and reads the refractive index of the ^ coordinate corresponding to the i ID, the position ID, and the measurement Π3. The CPU 11 _ the image file 155 reads the drawing position information wider than the position m. The CPU 11 displays the color change of the refractive index of each of the read coordinates in a circle schematically indicating the wafer 3 determined by the drawing position information, and the color of the maximum refractive index and the folding material for the color in advance. The color of the minimum value is stored in the memory unit 15', and the corresponding color may be displayed in color or black and white depending on the refractive index. Fig. 8 is a view showing the result display image of the other film forming apparatus 7'. The CPUU describes the measurement result on the display screen based on the measurement result of the result file 152. The display screen includes a first display portion ΐ4ι and a first display portion ‘U2. The display result with respect to the device ID B is displayed in the first display portion 141 of Fig. 8 . The CPU 11 reads the device ID, the position ID, the measurement ID, the coordinates, the film thickness, and the optical constant stored in the result file 152, and describes it in the second display unit 142. The cpuii reads out the image data corresponding to the device ID from the image file 155, and displays it on the first display portion 141. The CPU 11 refers to the result file 152 and reads the film thickness of each of the coordinates corresponding to the device ID, the position ID, and the measurement ID. The CPU 11 reads out the green position k corresponding to the position ID from the image file 155. Cpuii shows the readout 28 in the circle of the wafer 3, which is determined by the position information of the pattern.

''· A 坐標的臈厚的顏色變化。 CPU11參照位置id以及描繪位置信息,與由顏色來 顯示的膜厚相關聯地顯示對應的測量ID、裝置仍以及位 置1D。在圖8的例子中’顯示了與由裝置π) “B” 、位置 ID “3” 、測量Π) “3”所確定的晶圓3的膜厚相關的濃 淡、以及與由裝置ID“B”、位置Π)“4”、測量仍“4” 所確定的晶圓3的膜厚相關的濃淡。再者,在本實施方式 中,在第二顯示部142中顯示了裝置id “a”以及“Β” 這兩個裝置ID的結果,但不限於此。也可僅顯示任一個 裝置ID的結果。 圖9是表示保持部20的控制順序的流程圖。使用者從 輸入。卩13將希望測量的晶圓3的尺寸予以輸入^ cpu 11 接文由輸入部13輸入的晶圓3的尺寸(步驟§71)。CPU11 從保持部文件151中將與所輸入的尺寸相對應的保持部仍 予以讀出(步驟S72)。CPU11將讀出的保持部ID以及接 通狀態的信息輸出至升降控制部16 (步驟S73)。升降控 制部16對與保持部ID相對應的升降機構23進行控制^ 使對應於保持部ID的保持部20上升(步驟S74)。 借此,每當將多個晶圓3載置在平臺2上時,成為記 號的保持部20會上升。使用者將晶圓3載置在形成為圓周 狀的保持部20、20、20、20的内部。CPU11從輪入部13 接受對應於測量ID的裝置ID以及位置π)(步驟S741)。 CPU11將對應於測量ID的裝置Π)以及位置ID存儲於鈇 果文件152 (步驟S742)。再者,在裝置ID為一個的情= 29 201201303 下,也可省略步驟S741以及步驟S742的處理。接著,進 行後述的測量處理。使用者在使測量結束的情況下,從輸 入部13將測量結束m以輸人。CPU11靖是否已從 輸入部13接受了測量結束信息(步驟S75>cpuil在判 斷為未接受測量結束信息的情況下(步驟S75為N〇),待 機直至接受了測量結束信息為止。 在CPU11判斷為已接受測量結束信息的情況下(步驟 S75為YES) ’ CPU11將存儲於記憶部15的警告信息予以 讀出’將讀出的警告信息予以輸出(步驟S751)。該警止 信息是表示應在保持冑20下降之前取下晶圓3的信息。二 如,CPU11也可將“由於保持部將要下降請收回全部的 晶圓3。”等的文字予以讀出,並顯示於顯示部M。此外, cpuii也可借由未圖_揚聲器(speato)來將聲音或邀 告音予以輸出。借此’可贱防止伴隨保持部2G下降而^ 曰:曰圓3產生的損傷。使用者從輸入部!3將表示對於警告作 =的予以輸人。CPU1!在從輸人部13接受了。 狀:的二2的情況下,將讀出的保持部1D以及關閉 ===部1D相對應的升降機㈣二ΤΙ ID的保持部2〇下降(步驟叫再者,也 可在下降時’將關閉狀態的信 部ID的升降機構23。 的對應於保持 程圖圖量結果的顯示處理順序的流 從保持部文件⑸_將對應于所輸入的尺寸 30 201201303 的測量ID予以讀出(步驟S81 )。cpuil從保持部文件 中將對應于測量ID的測量區域予以讀出(步驟S82)。 CPU11在讀出的測量區域内開始測量(步驟S83)。再者, 可僅對中心坐標進行測定,也可對由使用者從輸入部 指定的坐標進行測定。 cpu11在測量之後,將裝置ID、位置ID、測量ID、 坐標、膜厚以及光學常數對應地存儲於結果文件152 (步 驟S84>CPU11判斷對於在步驟;581中讀出的全部的測^ ID的處理是否已結束(步驟S85)。cpuil在判斷 全部的測量ID而言處理尚未結束的情況下(步驟s85為 NO) ’使處理返回至步驟別2,對與其他測量1〇相關的晶 圓3進行測定。借此,測定結果與裝置m、位置ID以及 測量ID相對應地存儲於結果文件152。 cpuii在躺為對於全㈣測量的處理已結束的 情況下(步驟S85為yes),轉移至步驟s86〇,執行顯示 處理。CPU11從輸入部^接受希望顯示的裝置仍的輸入 (步驟S860)。CPU11從圖像文件155中將對應于裝置ι〇 的圖像資料並顯示於顯示部14 (步驟 S86)。 CPU11從結果文件152中將裝置m、位置ID、測量ID、 坐標、膜厚以及光學常數^以讀出(步驟 將裝置ID、位置ID、測量ID、坐標、膜厚以及光學常數 記述於第二顯示部叫步則⑻❿而從圊像文件⑸ 中將對應于裝置ID的位置ID以及麟位置信息予以讀出 (步驟S89)。 201201303. CPUll判斷膜厚按143是否被操作(步驟s93)。 CPU11在判斷為膜厚按赵143已被操作的情況下(步驟映 為YES),轉移至步驟S94。 CPU11從結果文件152中將與在步驟S86〇中接受的 裝置ID、位置ID、測量ID相對應的各坐標的膜厚予以讀 出(步驟S94>CPU11決定對應於各坐標的膜厚的顏色(步 驟S95)eCPUll參照在步驟S89中讀出的對應於位置ID 的描繪位置信息,在由該描繪位置信息所確定的模式性地 表示晶圆3的圓内,顯示在步驟S95中決定的各坐標的臈 厚的顏色(步驟S96)。CPU11對於全部的位置1]〇來進行 顏色顯示的處理。再者,在本實施方式中,對於各測量ID, 按照坐標來顯示膜厚,但不限於此。CPU11也可求出各坐 才示的膜厚(或光學常數)的平均值,並顯示於第二顯示部 142。另外,CPU11也可將對應於平均值的顏色顯示在模 式性地表示晶圓3的圓内。此外,CPU11也可將與具有比 預定的閾值更大的平均值的膜厚或光學常數相關的裝置 ID、位置ID以及測量ID的信息,與表示異常的信息一起 輸出至顯示部14或未圖示的聲音輸出部。 CPU11在判斷為膜厚按鈕143未被操作的情況下(步 驟S93為NO),轉移至步驟;§97。CPU11從結果文件152 中將與在步驟S860中接受的裝置id、位置ID、測量ID 相對應的各坐標的光學常數予以讀出(步驟S97)。CPU11 決定對應於各坐標的光學常數的顏色(步驟S98)。CPU11 參照在步驟S89中讀出的對應於位置ID的描繪位置信 32 201201303 息’在由該描繪位置信息所確定的模式性地表示晶圓 圓内’顯不在步驟S98 t決定的各坐標的光學常數的 (步驟S99)。CPU11對於與在步驟S_中接受的裝置ID 相對應的全部的位置m來進行顏色顯示的處理。cpuu 參照在步驟S89中讀出的對應於位置ID的描繪位置信 息,在由該姆位置信息所確定的模式性地表示晶圓 圓的附近,顯示對應關量ID、裝置m以及位置 驟漏)。CPUU對於全部的位置ID來進行該顯示處理。 在接受了不同的裝置ID的情況下,同樣地進行步 驟S86以後的處理。再者’對於其他層也進行同樣的處理 ^可。借此,可在確定利用不同的成膜裝置7〇來成膜的晶 圓3之後,進行測量以及評價。 實施方式2 實施方式2是有關於其他保持部2〇的方式。圖^ 表示分散地配置於平臺2的保持部2()的平_。圖^ 表不,臺2以及保持部2G的剖面的模式性剖面圖。如本實 施方式所述,也可借由抽吸來保持晶圓3。在圖Η中,作 為-^ =示了對2英寸的晶圓3進行抽吸的保持部^、 = Ϊ=,ί可將保持部2〇配置在對應的晶圓3 的1 卜周上的多處。在保持部%、26、26、26的更外側,配 =有多個與3英寸的晶圓3相對應的保持部烈、28、μ、 作為抽吸裝置的保持部20包括栗(pump)等的抽吸 33 28 201201303 部32以及抽吸管31β該抽吸㈣的— 開口。抽吸管31的 +臺2上形成 31的另nL 向平臺2的下部延伸。抽吸管 持=、20於抽吸部32。抽吸控制部16連接於各保 Γ 持部2〇在從抽吸控制部16接受了接 兄下’使抽吸部32工作。抽吸部』Ϊ B的端即平臺2上的開口部24將空氣 入。保持部20在從抽吸控制部 的情況下,使抽吸部32停止丄作。又Γ關狀態私息 也可借由形成階差來保持晶圓3。圖以 表地配置於平臺2的保持部2()平面圖 =?以,部20的剖面的模式性剖面圖 = =式所不可借由形成階差來保持晶圓3。在圖Μ中, 箪:ί Ϊ 2英寸用的晶圓3的保持部2 6以及保持著3 的保持部28。保持部2G具有比晶圓3的 姓邱,n —夕形’且根據升降控制部16的控制而升降。保 … I括升降裝置36、38、以及升降平臺366、368。 升降裝置36包括馬達以及齒輪,且使升降平臺挪 上升或下降。升降平臺挪保持著2英寸用的晶圓3。升 降平臺366是具有比2英寸的晶圓3的外徑更大的外徑的 圓板。升降裝置36在從升降控制部16接受了接通狀態的 信息的情況下,使升降平臺366下降。升降裝置36在從升 降控制部16接受了關閉狀態的信息的情況下,使升降平臺 上升。升降平臺366在關閉狀態的情況下,上表面的 高度位於與平臺2的面相同的高度。 34 201201303 升降裳置38使升降平臺368上升或下降。升降平臺 368保持著3英寸用的晶圓3。升降平臺368是具有比3 英寸的晶圓3的外徑更大的外徑的圓板。升降裝置%在從 =降控制部16接受了接通狀態的信息的情況下,使升降平 。升降裝置38在從升降控制部16接受了關閉 狀悲的尨心的情況下,使升降平臺368上升。升降平臺 =閉^的情況下,上表面的高度位於與平臺2的面相 同的尚度。 儲於2中的保持部2G的保持部1D是與尺寸相對應地存 炎昭二Γ文件15卜CPUU在尺寸為2射的情況下, 敎件151,將對應於升降裝置36的保持部m 出至並將讀出的保持部1D以及接通狀態的信息輸 曰圓制部16 °升降控制部16為了保持2英寸用的 =公J升降平臺366下降。cpuu在尺寸為3英寸的 升降步/照保持部文件151 ’將對應於升降裝置36以及 以^保持部^予以讀出,並將讀出的保持部ID 為了 的信息輸出至升降控制部16。升降控制部16 3央寸用的晶圓3而使升降平臺μ以及_下 圓3 ‘子在f實施方式中’例舉了保持著兩種尺寸的晶 小晶::限於此。也可保持具有更大的直徑或更 此,t施方式2如上所述’其他與實施方式1相同,因 明。目對應的料附上綱的參縣號並省略詳細的說 35 201201303 實施方式3 可將保持位㈣方式。也 以能夠對保持部2〇的位置進行;持部2"附近, 散地配置於平臺2的保 16是表示分 平面圖。圖17是表示平喜9 G以及保持位置顯示部37的 37 ===:(^示部37為咖^''· A coordinate of the thick color change. The CPU 11 refers to the position id and the drawing position information, and displays the corresponding measurement ID, the device still, and the position 1D in association with the film thickness displayed by the color. In the example of FIG. 8 'shows the shading associated with the film thickness of the wafer 3 determined by the device π) "B", the position ID "3", the measurement Π) "3", and the device ID "B" ", position Π" "4", and the measurement of the film thickness of the wafer 3 determined by "4" is still dark. Furthermore, in the present embodiment, the results of the device IDs "a" and "Β" are displayed on the second display unit 142, but the present invention is not limited thereto. It is also possible to display only the result of any device ID. FIG. 9 is a flowchart showing a control procedure of the holding unit 20. User input from. The crucible 13 inputs the size of the wafer 3 to be measured, and the size of the wafer 3 input by the input unit 13 (step § 71). The CPU 11 reads out the holding unit corresponding to the input size from the holding unit file 151 (step S72). The CPU 11 outputs the read holding unit ID and the information of the ON state to the elevation control unit 16 (step S73). The lift control unit 16 controls the lift mechanism 23 corresponding to the holding unit ID to raise the holding unit 20 corresponding to the holding unit ID (step S74). Thereby, each time the plurality of wafers 3 are placed on the stage 2, the holding portion 20 which becomes a mark rises. The user places the wafer 3 inside the holding portions 20, 20, 20, 20 formed in a circumferential shape. The CPU 11 accepts the device ID corresponding to the measurement ID and the position π) from the rounding portion 13 (step S741). The CPU 11 stores the device corresponding to the measurement ID and the location ID in the result file 152 (step S742). Furthermore, in the case where the device ID is one = 29 201201303, the processing of steps S741 and S742 may be omitted. Next, the measurement processing described later is performed. When the user finishes the measurement, the measurement ends m from the input unit 13 to input. When the CPU 11 has received the measurement completion information from the input unit 13 (step S75 > cpuil determines that the measurement end information has not been received (step S75 is N〇), and waits until the measurement end information is received. The CPU 11 determines that When the measurement end information has been received (YES in step S75) 'The CPU 11 reads the warning information stored in the storage unit 15' and outputs the read warning information (step S751). The warning information indicates that it should be The information of the wafer 3 is removed before the 胄 20 is lowered. For example, the CPU 11 may read the characters such as "Retract all the wafers 3 due to the holding portion being lowered", and display them on the display portion M. The cpuii can also output the sound or the invitation sound by the speato (speato), thereby preventing the damage caused by the holding portion 2G and the damage caused by the circle 3. The user inputs from the input unit. !3, it is indicated that the warning is made =. The CPU1! is received from the input unit 13. In the case of the second: 2, the read holding unit 1D and the closed === part 1D are associated with each other. Lift (four) two ID protection The holding unit 2〇 is lowered (the step is called again, and the lowering unit 'will lower the position of the letter ID of the lowering unit 23. The stream corresponding to the display processing order of the holding pattern result is flowed from the holding unit file (5)_ The measurement ID corresponding to the input size 30 201201303 is read (step S81). The cpuil reads out the measurement area corresponding to the measurement ID from the holding unit file (step S82). The CPU 11 is within the read measurement area. The measurement is started (step S83). Further, only the center coordinates may be measured, or the coordinates specified by the user from the input unit may be measured. After the measurement, the device ID, the position ID, the measurement ID, the coordinates, The film thickness and the optical constant are correspondingly stored in the result file 152 (Step S84> The CPU 11 determines whether or not the processing of all the IDs read in the step 581 has been completed (Step S85). The cpuil judges all the measurement IDs. When the processing has not been completed (NO in step s85), the process returns to step 2, and the wafer 3 related to the other measurement 1 is measured. Thereby, the measurement result and the device m and the position ID are measured. And the measurement ID is stored in the result file 152 correspondingly. When cpuii is finished as the processing for the all-fourth measurement (yes in step S85), the process proceeds to step s86, and the display process is executed. The CPU 11 accepts from the input unit It is desirable that the displayed device is still input (step S860). The CPU 11 displays the image data corresponding to the device ι from the image file 155 and displays it on the display unit 14 (step S86). The CPU 11 sets the device m from the result file 152. The position ID, the measurement ID, the coordinates, the film thickness, and the optical constant are read (the step is to describe the device ID, the position ID, the measurement ID, the coordinates, the film thickness, and the optical constant in the second display portion (8). In the file (5), the position ID corresponding to the device ID and the position information of the lining are read (step S89). 201201303. The CPU 11 judges whether or not the film thickness press 143 is operated (step s93). When the CPU 11 determines that the film thickness pressing button 143 has been operated (step is YES), the CPU 11 proceeds to step S94. The CPU 11 reads out the film thickness of each coordinate corresponding to the device ID, the position ID, and the measurement ID accepted in step S86 from the result file 152 (step S94); the CPU 11 determines the color of the film thickness corresponding to each coordinate ( Step S95) The eCPU 11 refers to the drawing position information corresponding to the position ID read in step S89, and displays the coordinates determined in step S95 in the circle schematically indicating the wafer 3 determined by the drawing position information. The thick color of the CPU (step S96). The CPU 11 performs color display processing for all the positions 1]. In the present embodiment, the film thickness is displayed in accordance with the coordinates for each measurement ID, but is not limited thereto. The CPU 11 can also obtain an average value of the film thickness (or optical constant) of each sitting image and display it on the second display unit 142. The CPU 11 can also display the color corresponding to the average value to schematically represent the crystal. In addition, the CPU 11 may output information of the device ID, the position ID, and the measurement ID related to the film thickness or optical constant having an average value larger than a predetermined threshold value together with the information indicating the abnormality to The display unit 14 or a sound output unit (not shown). When the CPU 11 determines that the film thickness button 143 is not operated (NO in step S93), the CPU 11 proceeds to step §97. The CPU 11 sets the result from the result file 152. The optical constants of the coordinates corresponding to the device id, the position ID, and the measurement ID received in S860 are read (step S97). The CPU 11 determines the color of the optical constant corresponding to each coordinate (step S98). The CPU 11 refers to the step S89. The read position information 32 corresponding to the position ID read out is periodically indicated in the wafer circle by the optical position constant determined in step S98 t in the wafer circle (step S99). The CPU 11 performs color display processing for all the positions m corresponding to the device ID accepted in step S_. The cpuu refers to the drawing position information corresponding to the position ID read out in step S89, at the position of The information determined by the information schematically indicates the vicinity of the wafer circle, and the corresponding amount ID, the device m, and the positional leak are displayed. The CPUU performs this display processing for all position IDs. When a different device ID is accepted, the processing in and after step S86 is performed in the same manner. Furthermore, the same processing is performed for other layers. Thereby, measurement and evaluation can be performed after determining the crystal grains 3 formed by using different film forming apparatuses 7〇. Embodiment 2 Embodiment 2 is a mode related to another holding unit 2〇. FIG. 2 shows a flat _ that is dispersedly disposed on the holding portion 2 () of the stage 2. Fig. 2 is a schematic cross-sectional view showing the cross section of the table 2 and the holding portion 2G. As described in this embodiment, the wafer 3 can also be held by suction. In the figure, as the -^ = shows the holding portion of the 2 inch wafer 3, = Ϊ =, ί, the holding portion 2 〇 can be placed on the 1 week of the corresponding wafer 3 Multiple places. On the outer side of the holding portions %, 26, 26, and 26, a plurality of holding portions corresponding to the wafer 3 of 3 inches are provided, and 28, μ, and the holding portion 20 as a suction device includes a pump. The suction 33 28 201201303 part 32 and the suction tube 31β the suction (four) - opening. The other nL forming the 31 on the + stage 2 of the suction pipe 31 extends toward the lower portion of the platform 2. The suction pipe holds =, 20 in the suction portion 32. The suction control unit 16 is connected to each of the holding units 2, and receives the suction unit 32 from the suction control unit 16 to operate the suction unit 32. Air is introduced into the opening 24 of the platform 2, which is the end of the suction portion Ϊ B. When the holding portion 20 is from the suction control portion, the suction portion 32 is stopped. It is also possible to maintain the wafer 3 by forming a step. The figure is arranged in a plan view of the holding portion 2 of the stage 2, and the pattern cross-section of the section of the portion 20 = = The wafer 3 can not be held by forming a step. In the figure, the holding portion 26 of the wafer 3 for 2 inches and the holding portion 28 holding 3 are used. The holding portion 2G has a higher temperature than the surname of the wafer 3, n-e-' and is raised and lowered according to the control of the elevation control unit 16. The lifting device 36, 38 and the lifting platforms 366, 368 are provided. The lifting device 36 includes a motor and a gear and causes the lifting platform to be raised or lowered. The lifting platform holds the wafer 3 for 2 inches. The lift platform 366 is a circular plate having an outer diameter that is larger than the outer diameter of the 2 inch wafer 3. When the lifting device 36 receives the information of the ON state from the elevation control unit 16, the lifting platform 36 lowers the lifting platform 366. When the lifting device 36 receives the information of the closed state from the elevation control unit 16, the lifting device 36 raises the lifting platform. In the case where the lifting platform 366 is in the closed state, the height of the upper surface is at the same height as the surface of the platform 2. 34 201201303 The lifting and lowering device 38 raises or lowers the lifting platform 368. The lifting platform 368 holds the wafer 3 for 3 inches. The lifting platform 368 is a circular plate having an outer diameter larger than the outer diameter of the 3 inch wafer 3. When the information of the ON state is received from the =down control unit 16, the lifting device % is raised and lowered. When the lifting device 38 receives the closed sorrow from the elevation control unit 16, the lifting platform 38 raises the lifting platform 368. In the case of the lifting platform = closed ^, the height of the upper surface is the same as the surface of the platform 2. In the holding portion 1D of the holding portion 2G stored in 2, in the case where the size of the CPUU is 2 in accordance with the size, the CPU 151 is provided with the holding portion m corresponding to the lifting device 36. The holding portion 1D to be read and the information input/contracting portion 16° lifting and lowering control unit 16 in the ON state are lowered in order to hold the 2-J lifting/lowering platform 366 for 2 inches. The cpuu is read by the elevating device 36 and the holding unit ^ in the 3 inch-sized elevating step/photographing portion file 151', and the read information of the holding unit ID is output to the elevating control unit 16. The lifting and lowering control unit 16 has a wafer 3 for the liquid crystal 3, and the lifting platform μ and the lower circle 3 are described in the embodiment of the present invention. The crystal crystals of the two sizes are exemplified: It is also possible to maintain a larger diameter or more, and the second embodiment 2 is as described above, and the others are the same as in the first embodiment. The material corresponding to the item is attached to the semester number of the syllabus and the detailed description is omitted. 35 201201303 Embodiment 3 The holding position (4) can be maintained. It is also possible to carry out the position of the holding portion 2〇; the vicinity of the holding portion 2", which is disposed on the platform 2 in a scattered manner, is a sectional plan view. Fig. 17 is a diagram showing the flat display 9 G and the holding position display unit 37. 37 ===: (the display unit 37 is a coffee ^

开株。i 士杳* 體乙咖Dl〇de ’ LD)或有機EL 本實施方式中’舉例說明使用LED的例子。, 將保持位置顯示部37稱為LED37。 LED37 37、37、37呈環狀地配置在保持部2〇、、 20、20的附近。例如,配置在向外周側與環狀的保持部2〇 相距規定距離(例如0.5 0111至3 cm)的位置即可。在圖 16的例子中,以按照保持部2〇的外徑、晶圓3的外徑、 LED37的外徑的順序變大的方式來配置四個LED37、37、 37、37。再者’ LED37的配置位置為一例,並不限於此。 在圖16中,對應於保持著2英寸用的晶圓3的四個保持部 26而配置有四個LED376。另外,對應於保持著3英寸用 的晶圓3的四個保持部28而配置有四個LED378。Opened. i 杳 杳 体 咖 咖 或 ’ 或 或 或 或 或 或 或 或 或 或 或 。 。 。 。 。 。 。 。 。 。 。 。 。 The holding position display unit 37 is referred to as an LED 37. The LEDs 37, 37, 37, and 37 are arranged in a ring shape in the vicinity of the holding portions 2A, 20, and 20. For example, it may be disposed at a position spaced apart from the annular holding portion 2A by a predetermined distance (for example, 0.5 0111 to 3 cm) on the outer peripheral side. In the example of Fig. 16, the four LEDs 37, 37, 37, and 37 are arranged in such a manner that the outer diameter of the holding portion 2A, the outer diameter of the wafer 3, and the outer diameter of the LED 37 are increased. Further, the arrangement position of the LEDs 37 is an example, and is not limited thereto. In Fig. 16, four LEDs 376 are disposed corresponding to the four holding portions 26 of the wafer 3 for holding 2 inches. Further, four LEDs 378 are disposed corresponding to the four holding portions 28 of the wafer 3 for holding 3 inches.

如圖17所示’ LED37的發光面設置於朝向平臺2的 上方向的方向。LED37的上表面是以不會妨礙晶圓3的載 置的方式,位於與平臺2相同的平面或平臺2的下側。 LED37連接於LED控制部371以及抽吸控制部16。LED 36 201201303 控制部371對LED37的點燈進行控制。LED控制部371 在從抽吸控制部16接受了接通狀態的信息的情況下,與抽 吸部32同樣地使LED37點燈。LED控制部371在從抽吸 控制部16接受了關閉狀態的信息的情況下,使LED37熄 滅。除了個別地對應於抽吸管31來設置抽吸部32之外, 也可如圖17所示’將多個抽吸管31與一個抽吸部32予以 組合。抽吸控制部16將接通信息輸出至抽吸部32。在此 情況下,抽吸部32借由抽吸管31、31來進行抽吸。 圖18是表示保持部文件151的記錄佈局的說明圖。而 且設置有LEDID字段。在該LEDID字段中,與晶圓3的 尺寸以及保持部ID相對應地記憶有用以確定LED37的 H>CPU11在使LED37點燈的情況下,將對應於該LED37 的LEDED以及接通狀態的信息輸出至抽吸控制部μ。例 如在晶圓3的尺寸為2英寸的情況下,CHJ11將對應於2 英寸的晶圓3的保持部id以及LEDID予以讀出,並輸出 至抽吸控制部16。抽吸控制部16將接通狀態的信息輸出 至具有對應的LEDID的LED37的LED控制部371。該LED 控制部371使所連接的LED37點燈。 圖19是表示保持以及點燈控制的順序的流程圖。使用 者從輸入部13將希望測量的晶圓3的尺寸予以輸入。 CPU11接受由輸入部13輸入的晶圓3的尺寸(步驟 S171)»CPU11從保持部文件151中將與所輸入的尺寸相 對應的保持部ID予以讀出(步驟S172)°CPU11從保持部 文件151中將與所輸入的尺寸相對應的LEDID予以讀出 37 201201303 ~ …一 r — (步驟 S173)。 CPU11將讀出的保持部ID、LEDID以及接通狀態的 信息輸出至抽吸控制部16 (步驟S174)。抽吸控制部16 使對應於LEDID的LED37點燈(步驟S175)。具體而言, 抽吸控制部16將接通狀態的信息輸出至由LEDID所確定 的LED控制部371。該LED控制部371使所連接的LED37 點燈。抽吸控制部16借由對應於保持部id的保持部2〇 來進行抽吸(步驟S176)。具體而言,抽吸控制部16將接 通狀態的信息輸出至由保持部ID所確定的抽吸部32。該 抽吸部32經由抽吸管31而從開口部24開始抽吸。 借此’使用者能夠以LED37為記號而將晶圓3載置在 保持部20上。借由保持部20的抽吸來保持晶圓3。接著 進行測量處理。使用者在使測量結束的情況下,從輸入部 13將測量結束信息予以輸入eCPUll判斷是否已從輸入部 U接受了測量結束信息(步驟S177)。CPU11在判斷為未 接受測量結束信息的情況下(步驟S177為NO),待機直 至接受了測量結束信息為止。 CPU11在判斷為已接受了測量結束信息的情況下(步 驟S177為YES),將讀出的保持部id、LEDID以及關閉 狀態的信息輸出至抽吸控制部16 (步驟S178>抽吸控^ 16對與保持部ID相對應的抽吸部32進行控制,使抽 吸停止(步驟S179)。抽吸控制部16將關閉狀態的信自榦 出至對應於LEDID的LED控制部371。該LK)控制部H 使對應於LEDID的LED37熄滅(步驟sm〇)。借此使 38 201201303 用者能夠以LED37為記號而將晶圓3載置於適當的位置。 本實施方式3如上所述,其他與實施方式丨以及實施 方式2相同,因此,對相對應的部分附上相同的參照符號 並省略詳細的說明。 實施方式4 實施方式4是有關於對多個不同尺寸的晶圓3進行測 量的方式。圖20是表示實施方式4的光譜糖偏儀i的硬體 群的方塊圖。在記憶部15中更設置有組合文件153<>cpuii 從記憶部15中將組合輸入晝面予以讀出。圖21是表示組 合輸入畫面147的影像的說明圖。組合輸入畫面147是用 以將尺寸不同的多個晶圓3的組合予以輸入的晝面。具體 而言,將兩個以上的尺寸不同的晶圓3與各晶圓3的塊數 予以輸入。 在圖21的例子中,與組合仍相對應地列舉了複選框 (checkbox) 145、以及兩個以上的尺寸不同的晶圓3與各 晶圓3的塊數的組合。例如在組合ID為“c〇1 ”的情況 下,“5塊” 2英寸的晶圓3與“2塊” 3英寸的晶圓3該 兩種共計7塊晶圓3被載置於平臺2並被測量。另外,在 組合ID為“C03”的情況下,“3塊,,2英寸的晶圓3、1 塊” 3英寸的晶圓3與“1塊” 6英寸的晶圓3該三種共計 5塊晶圓3被載置於平臺2並被測量。 使用者借由對複選框145進行點擊,從輸入部13選擇 希望的組合。CPU11經由輸入部13而接受所述組合。再 者,在本實施方式中,舉例說明了對組合進行選擇的例子, 39 201201303 但不限於I也可由使用者從輸人部13將希 的多個尺寸與各塊數予以輸入。在此情況下,預: 3的尺寸與塊數的各組合的組合m ^ 文件⑸柯。CPU11在οκ按紐146被輸入的情況下, 決定組合ID。在本實施方式中,以選擇組合m “⑽ 。另外’在本實施方式中,成膜裂置70A例 寸的晶圓3成膜。成膜裝置_例如使 3夬寸的晶圓3成膜。 表示鱗敎件151的記錄佈局的說明圖。而 且权置有組合ID字段。在該組合m字段巾射 的:個尺寸與各晶圓3的塊數的組合的組合 1對應於組合1D地記憶有工作中的保 ⑽的# \ 22的例子中表示了組合ID為“C01,,的 =:二。在組合料“⑽,,的情況下,2英寸的 曰曰圓為5塊,3英寸的晶圓3為2塊。在保持部文件⑸ ‘?14,持2財的晶® 3且割铸ID DU”〜 林151 Γ保持部2G被記料測量ID “1,,。在保持部文 為“22Γ ’用以保持第二塊2英寸的晶圓3且保持部ID ?二Μ的保持部2〇被記憶為測量1D “2”。 同樣有從第三塊至第五塊為止的保持部m。 id4 314»7^1As shown in Fig. 17, the light-emitting surface of the LED 37 is disposed in a direction toward the upper direction of the stage 2. The upper surface of the LED 37 is located on the same plane as the stage 2 or on the lower side of the stage 2 so as not to hinder the placement of the wafer 3. The LED 37 is connected to the LED control unit 371 and the suction control unit 16. LED 36 201201303 The control unit 371 controls the lighting of the LED 37. When receiving the information of the ON state from the suction control unit 16, the LED control unit 371 turns on the LED 37 in the same manner as the suction unit 32. When the LED control unit 371 receives the information of the closed state from the suction control unit 16, the LED control unit 371 turns off the LED 37. In addition to the suction portion 32 being provided correspondingly to the suction pipe 31, a plurality of suction pipes 31 and one suction portion 32 may be combined as shown in Fig. 17 . The suction control unit 16 outputs the ON information to the suction unit 32. In this case, the suction portion 32 performs suction by the suction pipes 31, 31. FIG. 18 is an explanatory diagram showing a recording layout of the holding unit file 151. And the LEDID field is set. In the LEDID field, the H> which is useful for determining the LED 37 in correspondence with the size of the wafer 3 and the holding portion ID; the CPU 11 will turn on the LED ED corresponding to the LED 37 and the ON state in the case where the LED 37 is turned on. It is output to the suction control unit μ. For example, in the case where the size of the wafer 3 is 2 inches, the CHJ 11 reads out the holding portion id and the LED ID corresponding to the 2 inch wafer 3, and outputs it to the suction control portion 16. The suction control unit 16 outputs the information of the ON state to the LED control unit 371 of the LED 37 having the corresponding LED ID. The LED control unit 371 turns on the connected LED 37. Fig. 19 is a flow chart showing the procedure of holding and lighting control. The user inputs the size of the wafer 3 desired to be measured from the input unit 13. The CPU 11 accepts the size of the wafer 3 input by the input unit 13 (step S171). The CPU 11 reads out the holding unit ID corresponding to the input size from the holding unit file 151 (step S172). The CPU 11 reads from the holding unit file. In 151, the LED ID corresponding to the input size is read 37 201201303 ~ ... a r - (step S173). The CPU 11 outputs the read information of the holding unit ID, the LED ID, and the ON state to the suction control unit 16 (step S174). The suction control unit 16 turns on the LED 37 corresponding to the LED ID (step S175). Specifically, the suction control unit 16 outputs the information of the ON state to the LED control unit 371 determined by the LED ID. The LED control unit 371 turns on the connected LED 37. The suction control unit 16 performs suction by the holding unit 2〇 corresponding to the holding unit id (step S176). Specifically, the suction control unit 16 outputs the information of the ON state to the suction unit 32 determined by the holding unit ID. The suction portion 32 is sucked from the opening portion 24 via the suction pipe 31. Thereby, the user can place the wafer 3 on the holding portion 20 with the LED 37 as a symbol. The wafer 3 is held by the suction of the holding portion 20. Then perform measurement processing. When the user finishes the measurement, the user inputs the measurement end information from the input unit 13 to the eCPU 11 to determine whether or not the measurement end information has been received from the input unit U (step S177). When the CPU 11 determines that the measurement end information has not been received (NO in step S177), the CPU 11 waits until the measurement end information is received. When it is determined that the measurement end information has been received (YES in step S177), the CPU 11 outputs the read information of the holding unit id, the LED ID, and the closed state to the suction control unit 16 (step S178). The suction unit 32 corresponding to the holding unit ID is controlled to stop the suction (step S179). The suction control unit 16 self-drys the signal in the closed state to the LED control unit 371 corresponding to the LED ID. The control unit H turns off the LED 37 corresponding to the LED ID (step sm 〇). Thereby, the user of 38 201201303 can carry the wafer 3 in an appropriate position with the LED 37 as a symbol. The third embodiment is the same as the embodiment and the second embodiment. Therefore, the same reference numerals will be given to the corresponding parts, and the detailed description will be omitted. Embodiment 4 Embodiment 4 is a method for measuring a plurality of wafers 3 of different sizes. Fig. 20 is a block diagram showing a hardware group of the spectral sugar meter i of the fourth embodiment. Further, a combination file 153 <> cpuii is provided in the storage unit 15 to read out the combined input face from the storage unit 15. Fig. 21 is an explanatory diagram showing an image of the combined input screen 147. The combined input screen 147 is a face for inputting a combination of a plurality of wafers 3 having different sizes. Specifically, two or more wafers 3 having different sizes and the number of blocks of each wafer 3 are input. In the example of Fig. 21, a check box 145 and a combination of two or more wafers 3 having different sizes and the number of blocks of each wafer 3 are listed in association with the combination. For example, in the case where the combination ID is "c〇1", "5" 2" wafer 3 and "2" 3 inch wafer 3, the total of 7 wafers 3 are placed on the platform 2 And is measured. In addition, in the case where the combination ID is "C03", "3 blocks, 2 inches of wafer 3, 1 piece" 3 inch wafer 3 and "1 block" 6 inch wafer 3 3 total 5 pieces Wafer 3 is placed on platform 2 and measured. The user selects the desired combination from the input unit 13 by clicking on the check box 145. The CPU 11 accepts the combination via the input unit 13. Further, in the present embodiment, an example in which the combination is selected is exemplified, and 39 201201303 is not limited to I, and the user may input a plurality of sizes and the number of blocks from the input unit 13 by the user. In this case, the pre-composition of the combination of the size of 3 and the number of blocks m ^ file (5) Ke. When the οκ button 146 is input, the CPU 11 determines the combination ID. In the present embodiment, the combination m "(10) is selected. In the present embodiment, the wafer 3 of the film formation 70A is formed into a film. The film forming apparatus _, for example, the film 3 of the 3 inch film is formed. An explanatory diagram showing the recording layout of the scale element 151. And a combination ID field is set. The combination 1 of the combination of the size of the combination m-field and the number of blocks of each wafer 3 corresponds to the combination 1D. The memory has a working protection (10) # \ 22 example showing the combination ID is "C01,, == two. In the case of the combination material "(10),, the 2-inch round is 5 pieces, and the 3-inch wafer 3 is 2 pieces. In the holding part file (5) '?14, the 2's Crystal® 3 is cut and cast. ID DU"~ Lin 151 Γ Holding unit 2G is recorded with the measurement ID "1,". The holding portion is "22" for holding the second 2-inch wafer 3 and the holding portion ID? 2〇 is memorized as measuring 1D “2”. There is also a holding portion m from the third block to the fifth block. Id4 314»7^1

“6” 。η# 14的保持部20被記憶為測量ID 麟括邱"m地存儲著用以保持另一塊晶圓3的保持部20 ' ° 。CPUU參照組合ID以及保持部ID,使對應 201201303 的保持部20工作。 圖23是表示保持部20 #工作處理的順序的流程圖。 CPU11從記憶部15中將組合輸入晝面147予以讀出(步 驟S2H)。CPU11從輸入部13接受對於複選框145的點 擊,借此來接受對於组合的選擇(步驟S212)。cpuii接 受對於複選框U5的選擇、與〇κ按紐146的輸入,借此 來接受多個不同尺寸以及各尺寸的塊數(步驟幻13)。 CPU11基於與已接受軌合相職陳合ID,從保持 邛文件151中將對應的保持部ID予以讀出(步驟幻14)。 CPU11將接通狀態的信息予以輸出,借此來使與已讀出的 保持部ID相對應的保持部2〇工作(步驟S2i5)。cpmi 從輸入部13接受該組合ID的對應於測量仍的裝置m以 及位置ID (倾S216)。再者,為了容易地將該組合id 的對應於測量ID的裝置ID以及位置ω予哺人,cp而 也可將所選擇的組合ID的測量m、與用以針對每個測量 id而將裝置m位置ID^以輸人的晝面顯示於顯示部 14在此情況下,CPU11將存儲於記憶部ls的晝面予以 讀出並顯7F,接f針對每個測量ID而輸人的裝置以及 ID CPU11將裂置ID以及位置ID與測量ID相對應 =存儲於結果文件⑸(步驟咖)。由於也存在分別利 用^同的成膜裝置70來成_情況,因此,例如對於2 夬寸^晶圓3而存儲著裝置id“a”,對於3射的晶圓 ^曰存儲著裝置ID“B”。再者,在本實施方式中,舉例 s 了將裝置ID ^以輸人的例子,但也可預先將與晶圓3 201201303t"6". The holding portion 20 of η# 14 is stored as a measurement ID, and the holding portion 20' of the other wafer 3 is stored. The CPUU refers to the combination ID and the holding unit ID to operate the holding unit 20 corresponding to 201201303. Fig. 23 is a flowchart showing the procedure of the holding unit 20 #operation processing. The CPU 11 reads out the combined input face 147 from the storage unit 15 (step S2H). The CPU 11 accepts the click of the check box 145 from the input unit 13, thereby accepting the selection for the combination (step S212). The cpuii accepts the selection of the check box U5 and the input of the 〇κ button 146, thereby accepting a plurality of different sizes and the number of blocks of each size (step 13). The CPU 11 reads out the corresponding holding unit ID from the holding file 151 based on the matching ID with the accepted job (step 14). The CPU 11 outputs the information of the ON state, thereby operating the holding unit 2 corresponding to the read holding unit ID (step S2i5). The cpmi receives from the input unit 13 the device m corresponding to the measurement ID and the position ID (pipping S216). Furthermore, in order to easily feed the device ID and the position ω corresponding to the measurement ID of the combined id, cp may also measure the selected combination ID and use the device for each measurement id. The m position ID is displayed on the display unit 14 in the face of the input. In this case, the CPU 11 reads and displays the page stored in the memory unit ls, and displays the device for inputting each measurement ID. The ID CPU 11 associates the split ID and the location ID with the measurement ID = stored in the result file (5) (step coffee). Since the film forming apparatus 70 is separately formed by the same method, for example, the device id "a" is stored for the 2 wafers 3, and the device ID is stored for the 3 wafers. B". Furthermore, in the present embodiment, an example is given in which the device ID is input, but the wafer 3 may be previously used.

m/ I ^ I 的尺寸相對應的裝置ID存餘於記恨部15。 圖24是表示實施方式4的結果文件152的記錄佈 說明圖。結果文件152包括裝置ID字段、位置出字^免: 測量ID字段、坐標字段、膜厚字段以及光學常數字段^ '。 在裝置ID字段以及位置iD字段中,與測量ID相對應地 記憶有從輸入部13輸入的裝置ID以及位置ID。在圖u 以及圖24的例子(一部分未圖示)中,對於5塊2英寸的 晶圓3而言,裝置ID為“a” ^另外,記憶有位置ID “r, 與測量ID “Γ 、位置ID “2”與測量ID “2” 、位置ι〇 “3”與測量ID “3” 、位置ID “4”與測量ID “4” 、以 及位置ID “5”與測量ID “5”。另一方面,對於2塊3 英寸的晶圓3而言,裝置仍為“B” 。另外,記憶有位置 ID “1”與測量ID “6” '位置ID “2”與測量ID “7”。 CPU11對載置於平臺的各晶圓3進行測量,且將膜厚 以及光學常數與裝置ID、位置id、測量ID以及坐標相對 應地存儲於結果文件152。 圖25是表示結果顯示影像的說明圖。CPU11基於結 果文件152的測量結果來將測量結果記述於顯示晝面。顯 示畫面包括第一顯示部丨41以及第二顯示部142。在圖25 的第一顯示部141中,顯示有相對於裝置ID “a”的顯示 結果。CPUU將存儲於結果文件152的裝置ID、位置ID、 測量ID、坐標、膜厚以及光學常數予以讀出,並記述於第 二顯示部142。在圖像文件155中’與實施方式1同樣地 記憶有表示成膜裝置7〇A以及成膜裝置70B的晶圓3的配 42 201201303 置狀態的圖像資料。 CPU11從圖像文件155中將對應于裝置ID的圖像資 料予以讀出,並顯示於第一顯示部141。CKJ11參照結果 文件152,將對應於裝置ID、位置ID以及測量ID的各坐 標的膜厚予以讀出。CPU11從圖像文件155中將對應于位 置1D的描繪位置信息予以讀出。CPU11在由描繪位置信 息所確定的模式性地表示晶圓3的圓内,顯示已讀出的各 坐標的膜厚的顏色變化。CPU11參照位置以及描繪位 置信息,與由顏色來顯示的膜厚相關聯地顯示對應的測量 、裝置ID以及位置id。 在圖25的例子中’顯示了與由裝置ID “A” 、位置 ID “1”、測量Π) ‘‘丨”所確定的2英寸的晶圓3的膜厚相 關的濃淡、以及與由裝置nD “A” 、位置Π) “2,,、測量 ID 2所確定的2英寸的晶圓3的膜厚相關的濃淡。 圖26是表示其他成膜裝置7〇的結果顯示影像的說明 圖。cpmi基於結果文件152的測量結果來將測量結果記 述於顯不晝面。該顯示畫面包括第—顯示部141以及第二 顯示邛142。在圖26的第一顯示部141中,顯示了相對於 裝置1D “A”的顯示結果。CPU11將存儲於結果文件152 的裝置ID、位置Π3、測量ID、坐標、膜厚以及光學常數 予以讀出,並記述於第二顯示部142。 cpyii從圖像文件155中將對應于裝置ι〇的圖像資 料予以讀出H於第—顯示部14卜參照結果 文件152將對應於裝置ID、位置①以及測量ID的各坐 43 201201303 一 -〜r _工 標的膜厚予以讀出。CPU11從圖像文件155中將對應于位 置仍的描繪位置信息予以讀出。CPU11在由描繪位置信 息所確定的模式性地表示晶圓3的圓内,顯示已讀出的各 坐標的膜厚的顏色變化。 一 CPU11參照位置ID以及描繪位置信息,與由顏色來 顯不的膜厚相關聯地顯示對應的測量ID、裝置ID以及位 置1D。在圖26的例子中,顯示了與由裝置ID “B” 、位 置ID 1 、測量ID “6’’所確定的3英寸的晶圓3的膜 厚相關的濃淡、以及與由裝置ID “B” 、位置ID “2” 、 测量ID 7”所確定的晶圓3的膜厚相關的濃淡。 ,圖27是表示結果顯示的處理順序的流程圖。Cpuil 從保持部文件151中將對應于步驟S214中的組合仍的測 量ω予以讀出(步驟S241)。CPU11從輸入部13接受對 應於測量ID的裝置ID以及位置^)(步驟 將對應於測量ID的裝置ID以及位置ID存儲於結果文件The device ID corresponding to the size of m/I ^ I is stored in the hate portion 15. Fig. 24 is a diagram showing the recording of the result file 152 of the fourth embodiment. The result file 152 includes a device ID field, a location word: a measurement ID field, a coordinate field, a film thickness field, and an optical constant field ^'. In the device ID field and the position iD field, the device ID and the position ID input from the input unit 13 are stored in association with the measurement ID. In the example of FIG. 24 and FIG. 24 (partially not shown), the device ID is "a" for five 2-inch wafers 3. In addition, the position ID "r, and the measurement ID "Γ, Position ID "2" and measurement ID "2", position ι "3" and measurement ID "3", position ID "4" and measurement ID "4", and position ID "5" and measurement ID "5". On the other hand, for two 3 inch wafers 3, the device is still "B". In addition, the memory has the position ID "1" and the measurement ID "6" 'position ID "2" and the measurement ID "7". The CPU 11 measures the wafers 3 placed on the stage, and stores the film thickness and optical constants in the result file 152 in association with the device ID, the position id, the measurement ID, and the coordinates. Fig. 25 is an explanatory diagram showing a result display image. The CPU 11 describes the measurement result on the display surface based on the measurement result of the result file 152. The display screen includes a first display portion 41 and a second display portion 142. In the first display portion 141 of Fig. 25, a display result with respect to the device ID "a" is displayed. The CPUU reads the device ID, the position ID, the measurement ID, the coordinates, the film thickness, and the optical constant stored in the result file 152, and describes them in the second display unit 142. In the image file 155, image data indicating the state of the wafer 3 of the film forming apparatus 7A and the film forming apparatus 70B is stored in the same manner as in the first embodiment. The CPU 11 reads out the image data corresponding to the device ID from the image file 155, and displays it on the first display unit 141. The CKJ 11 refers to the result file 152, and reads the film thickness of each of the coordinates corresponding to the device ID, the position ID, and the measurement ID. The CPU 11 reads out the drawing position information corresponding to the position 1D from the image file 155. The CPU 11 displays the color change of the film thickness of each of the read coordinates in a circle schematically indicating the wafer 3 determined by the drawing position information. The CPU 11 refers to the position and the drawing position information, and displays the corresponding measurement, device ID, and position id in association with the film thickness displayed by the color. In the example of FIG. 25, 'the shading associated with the film thickness of the 2-inch wafer 3 determined by the device ID "A", the position ID "1", the measurement Π) ''丨", and the device are shown. nD "A", position Π) "2,,, and measure the film thickness associated with the film thickness of the 2-inch wafer 3 determined by ID 2. Fig. 26 is an explanatory view showing a result display image of another film forming apparatus 7A. The cpmi records the measurement results based on the measurement results of the result file 152. The display screen includes a first display portion 141 and a second display UI 142. In the first display portion 141 of Fig. 26, the display result with respect to the device 1D "A" is displayed. The CPU 11 reads the device ID, the position Π3, the measurement ID, the coordinates, the film thickness, and the optical constant stored in the result file 152, and describes them in the second display unit 142. Cpyii reads the image data corresponding to the device ι from the image file 155. The first display unit 14 refers to the result file 152 and the corresponding address corresponding to the device ID, the position 1 and the measurement ID 43 201201303 - The film thickness of the ~r _ beacon is read. The CPU 11 reads out the drawing position information corresponding to the position from the image file 155. The CPU 11 displays the color change of the film thickness of each of the read coordinates in a circle schematically indicating the wafer 3 determined by the drawing position information. The CPU 11 refers to the position ID and the drawing position information, and displays the corresponding measurement ID, device ID, and position 1D in association with the film thickness indicated by the color. In the example of FIG. 26, the shading associated with the film thickness of the 3-inch wafer 3 determined by the device ID "B", the position ID 1 , the measurement ID "6", and the device ID "B" are displayed. The position ID "2" and the measurement of the film thickness of the wafer 3 determined by the ID 7". 27 is a flow chart showing the processing procedure of the result display. The CPU extracts the measurement ω corresponding to the combination in the step S214 from the holding portion file 151 (step S241). The CPU 11 receives the device ID and the position corresponding to the measurement ID from the input unit 13 (the step stores the device ID and the position ID corresponding to the measurement ID in the result file).

152 (步驟S2411)。CPU11從保持部文件151中將測量ID 的測量區域f►以讀$ (步驟S242)。cpmi在測量區域内 開始測量(步驟S243广CPU11將裝置仍、位置m、測 量ID、坐標、膜厚以及光學常數存儲於結果文件⑸(步 ^ S244)〇CPUll騎對於全部的測量IDw處理是否已結 束(步驟S245)。 cpuii在判斷為對於全部的測量ID的處理尚未結束 ^情況下(步驟S245為NO),使處理返回至步驟S242。 接著’對未測量的晶圓3進行測量處理。借域以上的處 44 201201303 理重=可對利用不同的成崎置撤、观來成膜的不 同尺寸執行測量處理。 CPUU在判斷為對於全部的測量ID的處理已結束的 情况下(步驟S245為YES),接受希望將結果顯示於顯示 部14的裝置Π)的輪入(步驟S245〇)。由於以後的處理與 步驟S86以後的處理相同,因此,省略詳細的說明。借此, 也可迅速地對利用各成膜裝置7〇來成膜的各種晶圓3的尺 寸的組合進行測量。 本實施方式4如上所述,其他與實施方式1至實施方 式3相同,因此’對相對應的部分附上相同的參照符號並 省略詳細的說明。 實施方式5 圖28是表示實施方式5的光譜橢偏儀1的硬體群的方 塊圖。在記憶部15中’代替保持部文件151而設置有載置 文件154。圖29是表示平臺2的平面圖。在平臺2上,記 載有在載置不同尺寸的晶圓3時成為記號的標記(mark) 50。該標記50包括實線所示的標記52、虛線所示的標記 53、以及點劃線所示的標記56。標記52是在載置2英寸 的晶圓3時成為記號的標記。在圖29的例子中,共計可載 置36塊2英寸的晶圓3。 標記53是在載置3英寸的晶圓3時成為記號的標記。 在圖29的例子中,共計可載置16塊晶圓3。另外,也可 將四個標記52設為載置4英寸的晶圓3時的記號。在圖 29的例子中,共計可載置9塊晶圓3。標記56是載置6 45 201201303 英寸的晶圓3時成為記號的標記。在圖29的例子中丘 可載置4塊晶圓3。再者,代替標記56,也可牌9個^己 己號二此外,標記5〇也可配合晶圓3的形狀:顯 不為圓形。在本實施方式中,以黑白來表示各標記5〇, 也可以彩色來顯示各標記50。另外,也可將測量叻“1” 〜“36”顯示於由標記52所包圍的2英寸用的 同樣地,可將測量ID “丨,,〜“16,,顯示於由榡記幻所包 圍的3英寸用的載置位置’也可將測量ID ° 匕 一 1 〜“6”顯 示於由標記56所包圍的6英寸用的載置位置。 ·、 圖30是表示载置文件154的記錄佈局的說明圖。載置 文件154包括晶圓尺寸字段(field)、測量ID字段、中心坐 標字段以及測量區域字段。載置文件154與晶圓3的尺寸 相對應地記憶有測量ID。在中心坐標字段中,作為測量對 象而被載置的晶圓3的中心坐標與測量ID相對應地被記 憶為载置位置。另外,在測量區域字段中,對作為測量對 象的晶圓3進行測定的區域被記憶為載置位置。例如在測 量£域中’§己憶有應以中心坐標為中心而進行測定的半 徑、或多個坐標。CPU11參照載置文件154的中心坐標以 及測量區域來進行測量。CPU11將測量之後的圖6所示的 顯示晝面顯示於顯示部14。 圖31是表示測量處理的順序的流程圖。CPU11從輸 入部13接受尺寸的輸入(步驟S250)。使用者參照與已輸 入的尺寸相對應的標記50,將多個晶圓3載置於平臺2。 CPU11從載置文件154中將與已輸入的尺寸相對應的測量 46 201201303 - '' 1--- ID予以讀出(步驟S251)。cpuu從輸入部i3接受對應 於測量ID的裝置ID以及位置Π)的輪入(步驟S25u)。 (^Jll將已接&的裝置ID以及位置與測量①相對應 地存儲於結果文件152 (步驟S2512)。CPU11從载置讀 154中將對應于測量ID的測量區域予以讀出(步驟 S252 )。CPU11在已讀出的測量區域内開始測量(步驟 S2y3)再者,可僅對中心坐標進行測定,也可對由使用 者從輸入部13指定的坐標進行測定。 CPU11在測量之後,將裝置ID、位置ID、測量ID、 坐標、膜厚以及絲常數對應地存儲於絲文件152 (步 ,S254 )。CPU11判斷對於在步驟S25i中讀出的全部的測 量ID的處理是否已結束(步驟S255)。CPU11在判斷為對 於全部的測量ID而言處理尚未結束的情況下(步驟S255 為NO) ’使處理返回至步驟幻52,對與其他測量ι〇相關 的晶圓3進行測定。借此’測定結果對應於測量m地存 儲於結果文件152。 cpuii在判斷為對於全部的測量ID的處理已結束的 障況下(步驟S255為YES),轉移至步驟S256。CPU11 從輸入部13接受希望顯示的裝置ID (步驟幻56)。由於 以後的顯示處理與步驟S86以後的處理相同,因此,省略 詳細的說明。借此’即使#在平臺2上載置有多個晶圓3 時,也可知:照成膜襞置7〇的類別來對相對於多個晶圓3 的測量結果進行目視確認。再者,也可在記憶部15中設置 保持部文件15卜代替標記5〇而使所述實施方式中所述的 20120130¾ 保持部20工作。 本實施方式5如上所述,其他與實施方式丨至實施方 式4相同,因此,對相對應的部分附上相同的參照符號並 省略詳細的說明。 實施方式6 實施方式6是有關於將X射線分析裝置用作測量裝置 的例子。以下,將測量裝置稱為X射線分析裝置1。圖32 是表示實施方式6的X射線分析裝置1的硬體的方塊圖。 對於X射線分析裝置1而言,使用將掃描電子顯微鏡 (Scanning Electron Microscope,SEM)與能量色散 X 射線 分光計(Energy Dispersive X-ray Spectrometer,EDS)加 以組合而成的裝置作為一例。X射線分析裝置丨包括所述 實施方式中所述的電腦10、將電子射線(輻射束)照射至 載置在平臺2上的多個晶圓3的電子搶(electron gUn)61、 決定電子射線的方向的電子射線掃描線圈62、以及對電子 搶61及電子射線掃描線圈62的動作進行控制的SEM驅 動部65。 在記憶部15中記憶有載置文件154。圖33是表示載 置文件154的記錄佈局的說明圖。載置文件154包括晶圓 尺寸字段、測量ID字段以及測量區域字段等《在晶圓尺 寸字段中,記憶有成為測量對象的晶圓3的尺寸。測量ID 與晶圓尺寸相對應地存儲於測量ID字段。在本實施方式 中,在晶圓尺寸為2英寸的情況下,可將6塊晶圓3載置 於平臺2。在此情況下,測量ID為“Γ〜“6” 。另外, 48 201201303 f晶圓尺寸為3英寸的情況下,可將4塊晶圓3載置於平 臺2。在此情況下,測量ID為“丨,,〜“4” 。 在測量區域字段中’與晶圓尺相及測量ID相對康 地記憶有相對於各晶圓3的測量區域以作為載置位置。丄 體而言’記财表示X射線_射位置的坐標群。使用^ 將晶圓3載置在平臺2上。圖34是平臺2的平面圖。為了 容易地載置尺寸不同的晶圓3,在平臺2上記載有標記5〇。 在圖34的例子中,為了載置6塊2英寸用的晶旧,以實 線記載有由六個圓所示的標記56。另外,在各標記%的 圓★内,記載有測量^,,〜“6”。此外,為了載置4塊 央寸用的晶圓3’以虛線記載有由四個圓所示的標記^。 另外,在各標記58的圓内,記载有測量m “丨,,〜“4” 。152 (step S2411). The CPU 11 reads the measurement area f► of the measurement ID from the holding unit file 151 to read $ (step S242). The cpmi starts measurement in the measurement area (step S243) The CPU 11 stores the device still, the position m, the measurement ID, the coordinates, the film thickness, and the optical constant in the result file (5) (step S244). The CPU 11 rides whether or not the measurement is performed for all the measurement IDws. When it is determined that the processing for all the measurement IDs has not been completed yet (NO in step S245), the processing returns to step S242. Next, the measurement processing is performed on the unmeasured wafer 3. In the case of the above-mentioned area, the processing is performed on the different sizes of the different formations of the measurement IDs (step S245 is the case where it is determined that the processing for all the measurement IDs has been completed). YES), the round-up of the device Π) that wishes to display the result on the display unit 14 is accepted (step S245 〇). Since the subsequent processing is the same as the processing after step S86, the detailed description is omitted. Thereby, the combination of the sizes of the various wafers 3 formed by the respective film forming apparatuses 7A can be quickly measured. The fourth embodiment is the same as the first embodiment to the third embodiment, and the same reference numerals will be given to the corresponding portions, and the detailed description will be omitted. Embodiment 5 Fig. 28 is a block diagram showing a hardware group of the spectroscopic ellipsometer 1 of the fifth embodiment. In the storage unit 15, a placement file 154 is provided instead of the holding unit file 151. 29 is a plan view showing the stage 2. On the platform 2, a mark 50 which becomes a mark when the wafer 3 of a different size is placed is recorded. The mark 50 includes a mark 52 indicated by a solid line, a mark 53 indicated by a broken line, and a mark 56 indicated by a chain line. The mark 52 is a mark that becomes a mark when the wafer 3 of 2 inches is placed. In the example of Fig. 29, a total of 36 2 inch wafers 3 can be placed. The mark 53 is a mark that becomes a mark when the wafer 3 of 3 inches is placed. In the example of FIG. 29, a total of 16 wafers 3 can be placed. Alternatively, the four marks 52 may be used as marks when the wafer 3 of 4 inches is placed. In the example of Fig. 29, a total of nine wafers 3 can be placed. Reference numeral 56 is a mark that becomes a mark when the wafer 3 of 6 45 201201303 inches is placed. In the example of Fig. 29, four wafers 3 can be placed on the mound. Furthermore, instead of the mark 56, it is also possible to have a card of 9 hexagrams. In addition, the mark 5 〇 can also match the shape of the wafer 3: it is not circular. In the present embodiment, each mark 5 is indicated in black and white, and each mark 50 may be displayed in color. Alternatively, the measurement 叻 "1" to "36" may be displayed in the same manner as the 2 inch surrounded by the mark 52, and the measurement ID "丨,, ~", 16 may be displayed and surrounded by the 榡 幻 所The mounting position for '3" can also be displayed on the 6-inch mounting position surrounded by the mark 56 by the measurement ID °1 - "6". FIG. 30 is an explanatory diagram showing a recording layout of the placement file 154. The placement file 154 includes a wafer size field, a measurement ID field, a center coordinate field, and a measurement area field. The placement file 154 stores the measurement ID in correspondence with the size of the wafer 3. In the center coordinate field, the center coordinates of the wafer 3 placed as the measurement object are recorded as the placement position in correspondence with the measurement ID. Further, in the measurement area field, the area where the wafer 3 as the measurement object is measured is memorized as the placement position. For example, in the measurement range, the § has a radius or a plurality of coordinates that should be measured centered on the center coordinate. The CPU 11 performs measurement by referring to the center coordinates of the placement file 154 and the measurement area. The CPU 11 displays the display surface shown in Fig. 6 after the measurement on the display unit 14. Fig. 31 is a flow chart showing the procedure of the measurement process. The CPU 11 accepts the input of the size from the input unit 13 (step S250). The user places a plurality of wafers 3 on the stage 2 with reference to the mark 50 corresponding to the size that has been input. The CPU 11 reads out the measurement 46 201201303 - '' 1--- ID corresponding to the input size from the placement file 154 (step S251). The cpuu receives the rounding of the device ID corresponding to the measurement ID and the position Π) from the input unit i3 (step S25u). (^J11 stores the device ID and the location of the connected device in the result file 152 (step S2512). The CPU 11 reads out the measurement region corresponding to the measurement ID from the placement read 154 (step S252). The CPU 11 starts measurement in the already-measured measurement area (step S2y3). Further, only the center coordinates may be measured, or the coordinates specified by the user from the input unit 13 may be measured. After the measurement, the CPU 11 will The device ID, the position ID, the measurement ID, the coordinates, the film thickness, and the silk constant are correspondingly stored in the silk file 152 (step S254). The CPU 11 determines whether or not the processing for all the measurement IDs read in step S25i has ended (steps). S255) The CPU 11 determines that the processing has not been completed for all the measurement IDs (NO in step S255). The measurement result is stored in the result file 152 corresponding to the measurement m. When the cpuii determines that the processing for all the measurement IDs has ended (YES in step S255), the process proceeds to step S256. The CPU 11 inputs from the input. 13 Accepts the device ID desired to be displayed (step Fantasy 56.) Since the subsequent display processing is the same as the processing after step S86, detailed description is omitted. Thus, even if ## is placed on the platform 2 with a plurality of wafers 3 placed thereon It is also known that the measurement results with respect to the plurality of wafers 3 are visually confirmed in accordance with the type of the film formation 7 。. Further, the storage unit 15 may be provided with the holding portion file 15 instead of the mark 5〇. The 201201303⁄4 holding unit 20 described in the above embodiment is operated. The fifth embodiment is the same as the fourth embodiment as described above, and therefore the same reference numerals are attached to the corresponding parts, and the detailed description is omitted. (Embodiment 6) Embodiment 6 is an example in which an X-ray analyzer is used as a measuring device. Hereinafter, the measuring device will be referred to as an X-ray analyzing device 1. Fig. 32 is a view showing an X-ray analyzing device 1 according to Embodiment 6. For the X-ray analysis device 1, a Scanning Electron Microscope (SEM) and an Energy Dispersive X-ray Spectrometer (Energy Dispersive X-) are used. An example of a combination of ray Spectrometer (EDS) and an X-ray analysis apparatus includes the computer 10 described in the above embodiment, and irradiates an electron beam (radiation beam) to a plurality of crystals placed on the stage 2. The electron gun 61 of the circle 3, the electron beam scanning coil 62 that determines the direction of the electron beam, and the SEM driving unit 65 that controls the operation of the electron beam 61 and the electron beam scanning coil 62. The placement file 154 is stored in the storage unit 15. Fig. 33 is an explanatory diagram showing the recording layout of the placement file 154. The placement file 154 includes a wafer size field, a measurement ID field, and a measurement area field. In the wafer size field, the size of the wafer 3 to be measured is memorized. The measurement ID is stored in the measurement ID field corresponding to the wafer size. In the present embodiment, when the wafer size is 2 inches, six wafers 3 can be placed on the stage 2. In this case, the measurement ID is “Γ~“6”. In addition, 48 201201303 f When the wafer size is 3 inches, 4 wafers 3 can be placed on the platform 2. In this case, the measurement ID For "丨,, ~ "4". In the measurement area field, 'measured with the wafer scale and the measurement ID relative to the measurement area of each wafer 3 as the placement position. In the case of the body, the symbol indicates the coordinate group of the X-ray position. The wafer 3 is placed on the stage 2 using ^. Figure 34 is a plan view of the platform 2. In order to easily mount the wafer 3 having a different size, the mark 5 is indicated on the stage 2. In the example of Fig. 34, in order to mount six pieces of crystals for two inches, marks 56 indicated by six circles are indicated by solid lines. In addition, in the circle ★ of each mark %, the measurement ^, ~ "6" is described. Further, in order to mount the wafer 3' for three cells, a mark indicated by four circles is indicated by a broken line. Further, in the circle of each mark 58, the measurement m "丨,, ~ "4" is described.

再者,為了使說明變得容易,省略了其他尺寸的圓的記裁。 在本實施方式中’對使用者將4塊3英寸的晶圓3載置於 所述平臺2的情況進行說明。另外,在各實施方式中不 -定必須將晶圓3载置在全部的標記56内。在不載置晶圓 3的情況下,使用者從輸人部13將表示不進行載置的信息 與未載置晶圓3的測量π)予以輸入。cpuil從輸入部13 接受表示不進行載置的信息以及測量ID<sCpuil在接受了 表不不進行載置的信息的情況下,參照所輸入的測量ID 以及晶圓尺寸,從載置文件154中將對應的測量區域予以 讀出。CPU11省略與已讀出的測量區域相關的測量。 使用者從輸入部13中將晶圓3的尺寸予以輸入。另 外’在利用不同的成膜裝置70來使各晶圓3成膜的情況 49 201201303 下’從輸入部13中與測量ID相對應地將裝置ID以及位 置ID予以輸入。CPU11將對應於晶圓3的尺寸的測量ID 以及坐標予以讀出,並輸出至SEM驅動部65。該SEM驅 動部65對電子槍61以及電子射線掃描線圈62進行控制, 對各坐標進行照射。電子檢測器63檢測因對晶圓3進行照 射而產生的反射電子或二次電子’將對應於反射電子或二 次電子的計數數量的信號(以下稱為強度)作為數字資料 (digital data)而輸出至CPU11。該CPU11將強度與裝置 ID、位置ID、測量ID以及坐標相對應地存儲於結果文件 152。在與一個晶圓3相關的測量已結束的情況下,cpu 11 將其他晶圓3的測量ID以及全標予以讀出,並輸出至SEM 驅動部65。借此’對多個晶圓3執行測量。再者,在對其 他晶圓3進行測量的情況下,也可使電子搶61以及電子射 線掃描線圈62相對於平臺2而移動。此外,也可借由未圖 示的馬達來使平臺2移動。 X射線分析裝置1包括X射線檢測器66,該χ射線 檢測器66對因將電子射線照射至晶圓3而從該晶圓3產生 的特性X射線進行檢測。X射線檢測器66連接於多通道 分析器(Multi Channel Analyzer)(以下稱為 Mc a ) 67。χ 射線檢測器66使用Si元件等的半導體檢測元件作為檢測 元件。X射線檢測器66產生與檢測出的特性χ射線的能 量(energy)成比例的電流值的脈衝電流,將產生的脈^ 電流輸入至MCA67。該MCA67根據電流值來對來自χ射 線檢測器66的脈衝電流進行選出’並對各電流值的脈衝電 50 201201303 流進行計數。借由該MCA67 能量與計數數量的關係,即 (spectrum) ° 的處理來獲得特性χ射線的 ,獲得特性X射線的光譜 MCA67將特性χ射線的光譜輸出至 根據喊树於記‘_ I5的程絲對元錢彳^ 對ί元素:ΐ有量進行計算。具體而言,預先將針對每S 兀素而Α錄有雜料_鮮:#料㈣ 部15°CPU11對資料庫中的特性X射線的標準資料f 所獲得的特性χ射_光譜進行比較,基於與特性x射^ 的光譜中所含的峰值(peak)相對應的能量值,來對各粒 子中所含的元錢行敎。另外,cpuu基於對應於各元 素的峰值的計數數量’以重量百分比來對各粒子中所含的 各元素的含有量進行計算。CPU11將元素名以及各元素的 含有量與裝置id、似ID、測量ro以及坐標相對應地存 儲於結果文件152。在與-個晶圓3相_測量已結束的 情况下’ CPU11將其他晶圓3的測量ID以及坐標予以讀 出,並輸出至SEM驅動部65。對於其他晶圓3,'也同樣 地將元素名以及各元素的含有量與裝置m、位置1〇、測 量ID以及坐標相對應地存儲於結果文件152 ^Furthermore, in order to facilitate the description, the rounding of circles of other sizes is omitted. In the present embodiment, a case where the user places four three-inch wafers 3 on the stage 2 will be described. Further, in each embodiment, it is not necessary to place the wafer 3 in all of the marks 56. When the wafer 3 is not placed, the user inputs the information indicating that the placement is not performed and the measurement π) on which the wafer 3 is not placed, from the input unit 13. The cpuil receives the information indicating that the placement is not performed from the input unit 13 and the measurement ID<sCpuil refers to the input measurement ID and the wafer size when the information indicating that the display is not placed is received from the placement file 154. The corresponding measurement area is read out. The CPU 11 omits the measurement related to the already-measured measurement area. The user inputs the size of the wafer 3 from the input unit 13. In addition, when each of the wafers 3 is formed by a different film forming apparatus 70, the device ID and the position ID are input from the input unit 13 in correspondence with the measurement ID. The CPU 11 reads out the measurement ID and coordinates corresponding to the size of the wafer 3, and outputs it to the SEM driving unit 65. The SEM driving unit 65 controls the electron gun 61 and the electron beam scanning coil 62 to illuminate each coordinate. The electron detector 63 detects reflected electrons or secondary electrons generated by irradiation of the wafer 3 'as a digital data corresponding to the number of counts of reflected electrons or secondary electrons (hereinafter referred to as intensity). Output to the CPU 11. The CPU 11 stores the intensity in the result file 152 in association with the device ID, the position ID, the measurement ID, and the coordinates. When the measurement related to one wafer 3 has been completed, the CPU 11 reads out the measurement ID and the entire standard of the other wafer 3, and outputs it to the SEM driving unit 65. Thereby, measurement is performed on the plurality of wafers 3. Further, in the case where the other wafer 3 is measured, the electron grab 61 and the electron beam scanning coil 62 can be moved with respect to the stage 2. In addition, the platform 2 can also be moved by a motor not shown. The X-ray analysis apparatus 1 includes an X-ray detector 66 that detects characteristic X-rays generated from the wafer 3 by irradiating the electron beams onto the wafer 3. The X-ray detector 66 is connected to a Multi Channel Analyzer (hereinafter referred to as Mc a ) 67. The ray detector 66 uses a semiconductor detecting element such as a Si element as a detecting element. The X-ray detector 66 generates a pulse current of a current value proportional to the detected energy of the characteristic ray, and inputs the generated pulse current to the MCA 67. The MCA 67 selects the pulse current from the x-ray detector 66 based on the current value and counts the pulse current 50 201201303 of each current value. By the relationship between the energy of the MCA67 and the number of counts, that is, the processing of the spectrum °, the characteristic X-ray is obtained, and the spectrum of the characteristic X-ray is obtained, and the spectrum of the characteristic X-ray is output to the process according to the shouting tree '_I5 Silk on the yuan 彳 ^ on the ί element: ΐ quantity calculation. Specifically, the characteristic χ-spectrum obtained by the standard data f of the characteristic X-rays in the database is compared in advance for each S element. The money contained in each particle is performed based on the energy value corresponding to the peak contained in the spectrum of the characteristic x-ray. Further, cpuu calculates the content of each element contained in each particle by weight percentage based on the number of counts corresponding to the peaks of the respective elements. The CPU 11 stores the element name and the content of each element in the result file 152 in association with the device id, the ID, the measurement ro, and the coordinates. When the measurement is completed with the wafer 3 phase, the CPU 11 reads the measurement ID and coordinates of the other wafer 3, and outputs it to the SEM driving unit 65. For the other wafers 3, the element name and the content of each element are similarly stored in the result file 152 corresponding to the device m, the position 1〇, the measurement ID, and the coordinates.

圖35是表示結果文件152的記錄佈局的說明圖。結果 文件包括裝置ID字段、位置ID字段、測量π)字段、坐 才示子·^又、強度字段、元素名字段以及各元素的含有量字段。 在裝置ID字段以及位置ID字段中,與成為測量對象的各 晶圓3的測量id相對應地記憶有成膜裝置7〇的裝置ID 201201303. 以及表示該成膜裝置7 0中的對應晶圓3的配置位置的位置 ID。在測量ID字段中,與裝置m以及位置m相對應地 記憶有成為測量對象的測量ID,在坐標字段中,與測量ι〇 相對應地記憶有測量出的坐標。在強度字段中,與測量ι〇 以及坐標相對應地記憶有強度。在元素名字段中,與測量 ID以及坐標相對應地記憶有存在於該坐標的元素名。在各 元素的含有量字段中’與測量Π)以及坐標相對應地記憶 有各7C素的含有量。再者,元素的含有量字段的單位為%。 —CPU11在測量結束之後,基於結果文件152的記憶内 谷來將各晶圓3的測量結果顯示於顯示部14。圖36是表 示結果顯示影像的說明圖。CPU11基於結果文件152的測 量結果來將測量結果記述於顯示畫面。該顯示畫面包括第 一顯示部141以及第二顯示部142〇在圖36的第一顯示部 141中,顯示了相對於裝置ID “A”的顯示結果eCpuu 將存儲於結果文件152的裝置ID、位置m、測量m、坐 標、膜厚以及光學常數予m並記述於第二顯 142。 CPUU從圖像文件155中將對應于裝置11}的圖像 料予以讀出’並顯示於第一顯示部⑷。而參照結 文件152 ’將對應於裝置ID、位置ID以及測量的各 標的膜厚予以讀出。CPU11從圖像文件155帽對 的描缘位置信息予以讀出。cpuu在由描繪位置 了=確定的模式性地表不晶圓3的圓内,顯示已讀出的 坐“的膜厚的顏色變彳h CPU11參照該位置ID以及描 52 201201303 位置信息,與由顏色來顯示的膜厚相關聯地顯示對應的測 量ID、裝置ID以及位置id。 在圖36的例子中,顯示了與由裝置ID “A”、位置 ID “Γ、測量ID “Γ所確定的晶圓3的膜厚相關的濃 淡、以及與由裝置1D“A”、位置ID“2”、測量ID“2” 所確定的晶圓3的膜厚相關的濃淡。 圖37疋表不其他成膜裝置7〇的結果顯示影像的說明 圖。在圖37的第一顯示部14ι中顯示了相對於裝置ID B的顯示結果。CPU11將存儲於結果文件152的裝置 ID、位置ID、測量ID、坐標、膜厚以及光學常數予以讀 出,並記述於第二顯示部142。在圖37的例子中,顯示了 與由裝置ID “B” 、位置Π) “3” 、測量id “3”所確定 的晶圓3的膜厚相關的濃淡、以及與由裝置ID “B” 、位 置ID “4” 、測量ID “4”所確定的晶圓3的膜厚相關的 濃淡。 圖38以及圖39是表示測量處理的順序的流程圖。 CPU11從輸入部13接受晶圓3的尺寸(步驟S311 )〇CPUll 將從载置文件154接受的對應於晶圓3的尺寸的測量id 以及坐標予以讀出(步驟S312)〇CPUll從輸入部13接受 對應於測量ID的裝置ID以及位置ID的輸入(步驟 S3121)。CPU11將裝置ID以及位置ID與測量ID相對應 地存儲於結果文件152 (步驟S3122)。CPU11將測量ID 以及坐標輸出至SEM驅動部65 (步驟S313)。CPU11使 SEM驅動部65、電子檢測器63、X射線檢測器66以及 53 20120130¾ MCA67同步並開始測量(步驟S314)。cpuu從測量仍 為“1”起,依次進行測量。 CPU11基於從電子檢測器63輸出的強度,將強度與 裝置ID、位置ID、測量ID以及坐標相對應地存儲於結果 文件152(步驟S315),CPU11將從MCA67輸出的特性x 射線光譜與裝置ID、位置Π)、測量ID以及坐標相對應地 存儲於RAM12 (步驟S316)。CPU11基於特性χ射線光 譜來對元素名以及元素的含有量進行計算(步驟幻17)。 cpuii將元素名以及元素的含有量與裝置ID、位置仍、 /貝J里IE)以及坐標相對應地存儲於結果文件Μ?(步驟 S318)。對於作為測量區域的坐標群重複地進行以上的處 理,借此,對於一個晶圓3的處理結束。 cpuii判斷對於全部的測量ID而言所述測量處理是 否已^束(步驟S319)。CPU11在觸為對於全部的測量 ID而言測量處理尚未結束的情況下(步驟S319為NO), 理返回至步驟S3U。CPUU將未測量的測量以及 :不予以讀出,並重複地執行以上的處理。CPU11在判斷 為=於全部_量ID _量處理6結束的纽下(步驟 j為YES),轉移至步驟S32卜cpmi從輸入部13接 顯示的裝置1D的輸入(步驟S321)。由於以後的處 、’驟S86以後的處理相同,因此,省略詳細的說明。 ,實施方式6如上所述,其他與實施方式丨至實施方 同’因此’對相對應的部分附上相同的參照符號並 噌略#細的說明。 54 201201303 實施方式7 實施方式7是有關於使用光致發光 (photo-luminescence)的測量裝置。圖40是表示實施方式7 的測量裝置的硬體的方塊圖。除了所述實施方式中所述的 構成之外,該測量裝置包括光源71、分光器72、電荷耦合 裝置(Charge-Coupled Device’ CCD)檢測器 73、鏡(mirror) 75以及分束器(beam splitter) 76等。光源71是以規定的 間距(pitch)來發射激發光或照射光脈衝。該照射光脈衝 經由鏡75以及分束器76而照射至平臺2上的晶圓3。 載置在平臺2上的多個晶圓3是由保持部20(未圖示) 來保持。在本實施方式中,舉例說明借由實施方式2等中 所述的抽吸控制部16所產生的抽吸來保持晶圓3的例子。 如其他實施方式中所述,在平臺2上記載有標記5〇。使用 者參照根據尺寸而記载的標記5〇,將晶圓3載置在平臺2 上。使用者從輸入部13將晶圓3的尺寸予以輸入。cpmi 接受所輸入的尺寸。 d示符邵文件151 ID輸出至抽吸控制部16:’圖:1 ;尺寸的保持部 部文件151錄佑am 不實施方式7的保持 ID ^ Μ 〇 ^ 于仅明圓尺寸予段、以及 圓尺寸字段中記憶有晶圓3的尺寸 D予段等。在晶 憶有對應於晶圓財_4 ID。純字段中記 晶圓3的尺寸相對應地存儲著用以°卩1D字段中,與 的保持部ID。抽吸_卩16參_^^=部= 55 201201303 由對應於該保持部ID的保持部20來對晶圓3進行抽吸。 如實施方式6中所述,在載置文件154中,與晶圓尺 寸相對應地記憶有測量ID以及作為載置位置的測量區域 的,標。CPU11參照該載置文件154的對應於測量m的 測量區域的坐標來使平臺2移動,對各晶圓3進行測量。 馬達控制機9對CPU11所指示的構件與馬達M進行控制, 使平臺2向平面方向移動。再者,平臺2的移動在平面觀 察時並不限於縱方向或橫方向。也可借由設置在平臺2的 下部的轉臺(turntable)(未圖示)來使平臺2旋轉。晶圓 3所反射的反射光由分束器76反射之後,入射至分光器 72。經該分光器72分光之後的光入射至CCD檢測器73。 該CCD檢測器73將對應于發光強度的信號輸出至 cpui 1。該cpui 1在光譜信號已從CCD檢測器73輸出的 情況下’賴# ID 及光譜相對應地存儲於文 件152。即,mm對規定的波長(峰值)進行監^,確 定具有該波長的CCD檢測器73上的像素(pixel)。接著, CPU11將已確定的像素以可識別的狀態而二維地顯示在晝 面上。借此,可二維地對晶圓3的特性進行評價。相對ς 各晶圓3的測量結果的顯示處理如所述實施方式中所述, 因此,省略詳細的說a月。再者,在本實施方式中,列舉了 光致發光測疋的情况作為例子,但也可進行拉曼散射光 (Raman scattering light)的測定。 本實施方式7如上所述,其他與實施方式1至實施方 式5相同’鼠’對相對應的部分附幼關參照符號並 56 201201303 省略詳細的說明。 雖然本發明已以較佳實施例揭露如上然其並 =本發明’任何熟習此技藝者,在不脫離本發明之^神 ’當可作些許之更動與潤飾 = ^圍當視_之中請專魏_界定者鱗。保€ 【圖式簡單說明】 說明^ 1 A、圖1Β是表示分散地配置於試樣台的保持部的 圖2是表示測量裝置的硬體群的方塊圖。 示平臺以及保持部的剖面的模式性剖面圖。 圖4疋絲_部文件的·佈局的說明圖。 圖5是表示結果文件的記錄佈局的說明圖。 圖6是表示結果顯示影像的說明圖。 ^7是表示圖像文件的記錄佈局的說明圖。 裝置㈣果顯示影像的說 圖9疋表不保持部的控制順序的流程圖。 示,結果的顯示處理順序的流程圖。 圖= 結果的顯示處理順序的流程圖。 地配置於平臺的保持部的平面圖。 =示㈣平臺的保持部圖。 置顯Ξ部的=:散地配置於平臺的保持部以及保持位 57 201201303. 的模mr面表圖示平臺、保持部以及保持位置顯示部的剖面 Ξ 保持部文件的記錄佈局的說明圖。 圖20i表^持以及點燈控制的順序的流程圖。 圖。 — 貫施方式4的光谱擴偏儀的硬體群的方塊 表示組合輪入晝面的影像的說明圖。 圖23 Τ表,保持部文件的記錄佈局的說明圖。 圖24,表不保持部的工作處理的順序的流程圖。 圖。 疋表示實施方式4的結果文件的記錄佈局的說明 圖25疋表示結果顯示的影像的說明圖。 =26=表不其他成膜裝置的結果顯示影像的說明圖。 27疋表示結果顯示的處理順序的流程圖。 圖28疋表示實施方式5的光譜橢偏儀的硬體群的方塊 圖0 圖29是表示平臺的平面圖。 圖30是表示載置文件的記錄佈局的說明圖。 圖31是表示測量處理的順序的流程圖。 圖32是表示實施方式6的X射線分析裝置的硬體的 方塊圖。 圖33是表示載置文件的記錄佈局的說明圖。 圖34是平臺的平面圖。 圖35是表示結果文件的記錄佈局的說明圖。 58 201201303 疋衣不箝禾顯示,w豕的 圖37是表示其他成膜裝 月圖。 圖38是絲缝處理_序Γ =柯彡像的說明㈣是表示測量處理的顺二: 圖4国0是表示實施方式7的測量裝置的硬體的方塊圖。 圖41是表示實施方式7的保持部文件的記錄佈局的 明圖。 圖 【主要元件符號說明】 2 5 光譜橢偏儀 平臺/試樣台 晶圓/試樣 光取得器 5a :光彈性調製器(ΡΕΜ) 5b :分析儀 6 :軌道 7 ' 72 :分光器 8 :資料讀取機 9:馬達控制機 10 :電腦 11 :中央處理器(CPU) 12 :隨機存取記憶體(RAM) 13 ·輪入部 14 .顯示部 15 :記憶部 59 201201303 dfy typil 15a :第一光纜 15b :第二光纜 16 :升降控制部/抽吸控制部 20、26、28 :保持部 21 :第一保持部 22 :第二保持部 23 :升降機構 24 :開口部 31 :抽吸管 32 :抽吸部 36、38 :升降裝置 37 : LED/保持位置顯示部 50、52、53、56、58 :標記 61 :電子搶 62 :電子射線掃描線圈 63 :電子檢測器 65 : SEM驅動部 66 : X射線檢測器 67 :多通道分析器(MCA) 70、70A、70B :成膜裝置 71 :光源 73 :電荷耦合裝置(CCD)檢測器 75 :鏡 76 :分束器 201201303 80 :氙氣燈 81 :光照射器 81 a .偏振兀件 141 :第一顯示部 142 :第二顯示部 143 :膜厚按鈕 144 :光學常數按鈕 145 :複選框 146 : OK按鈕 147 :組合輸入晝面 151 :保持部文件 152 :結果文件 153 :組合文件 154 :載置文件 155 :圖像文件 366、368 :升降平臺 371 : LED控制部 376、378 : LED A、B :裝置ID Η :垂線 Μ :馬達FIG. 35 is an explanatory diagram showing a recording layout of the result file 152. The result file includes a device ID field, a position ID field, a measurement π) field, a sitting indicator, a strength field, an element name field, and a content field of each element. In the device ID field and the position ID field, the device ID 201201303 of the film forming apparatus 7 is stored in correspondence with the measurement id of each wafer 3 to be measured, and the corresponding wafer in the film forming apparatus 70 is shown. The location ID of the configuration location of 3. In the measurement ID field, a measurement ID to be measured is stored in correspondence with the device m and the position m, and in the coordinate field, the measured coordinates are stored in association with the measurement ι. In the intensity field, the intensity is stored in correspondence with the measurement ι〇 and the coordinates. In the element name field, the element name existing in the coordinate is memorized in correspondence with the measurement ID and the coordinates. The content of each 7C element is stored in the content field of each element as 'corresponding to the measurement Π) and the coordinates. Furthermore, the unit of the element content field is %. - After the measurement is completed, the CPU 11 displays the measurement result of each wafer 3 on the display unit 14 based on the memory valley of the result file 152. Fig. 36 is an explanatory diagram showing a result display image. The CPU 11 describes the measurement result on the display screen based on the measurement result of the result file 152. The display screen includes the first display unit 141 and the second display unit 142. The first display unit 141 of FIG. 36 displays the device ID stored in the result file 152 with respect to the display result eCpuu of the device ID "A". The position m, the measurement m, the coordinates, the film thickness, and the optical constant are given to m and described in the second display 142. The CPUU reads out the image corresponding to the device 11} from the image file 155 and displays it on the first display portion (4). The reference junction file 152' reads out the device ID, the position ID, and the measured film thickness of each target. The CPU 11 reads out the position information of the cap pair of the image file 155. Cpuu displays the color of the film thickness of the read "seat" in the circle of the pattern-formed surface of the wafer 3, which is determined by the drawing position = the CPU 11 refers to the position ID and the position information of the 201201303, and the color The corresponding measurement ID, device ID, and position id are displayed in association with the film thickness to be displayed. In the example of Fig. 36, the crystal determined by the device ID "A", the position ID "Γ, the measurement ID" is displayed. The shading associated with the film thickness of the circle 3 and the shading associated with the film thickness of the wafer 3 determined by the device 1D "A", the position ID "2", and the measurement ID "2". The result of the display of the device 7 is an explanatory view of the image. The display result with respect to the device ID B is displayed in the first display portion 14i of Fig. 37. The CPU 11 stores the device ID, the position ID, the measurement ID, and the coordinates stored in the result file 152. The film thickness and the optical constant are read and described in the second display unit 142. In the example of Fig. 37, the display is determined by the device ID "B", the position Π) "3", and the measurement id "3". The thickness of the wafer 3 is related to the shading, and the device ID "B" Position ID "4", measurement of the film thickness of the wafer 3 determined by the ID "4". Fig. 38 and Fig. 39 are flowcharts showing the procedure of the measurement process. The CPU 11 receives the wafer 3 from the input unit 13. Size (Step S311) The CPU 11 reads out the measurement id and coordinates corresponding to the size of the wafer 3 received from the placement file 154 (Step S312). The CPU 11 receives the device ID and the position corresponding to the measurement ID from the input unit 13. The input of the ID (step S3121) The CPU 11 stores the device ID and the position ID in the result file 152 in association with the measurement ID (step S3122). The CPU 11 outputs the measurement ID and coordinates to the SEM drive unit 65 (step S313). The SEM driving section 65, the electron detector 63, the X-ray detector 66, and the 53 201201303⁄4 MCA 67 synchronize and start measurement (step S314). The cpuu sequentially performs measurement from the measurement still being "1." The CPU 11 outputs based on the output from the electronic detector 63. The intensity is stored in the result file 152 in correspondence with the device ID, the position ID, the measurement ID, and the coordinates (step S315), and the CPU 11 outputs the characteristic x-ray spectrum and device ID, position Π) from the MCA 67, and measures I. D and the coordinates are correspondingly stored in the RAM 12 (step S316). The CPU 11 calculates the element name and the content of the element based on the characteristic χ ray spectrum (step phantom 17). cpuii sets the element name and the content of the element with the device ID, The position is still, and the coordinates are correspondingly stored in the result file (step S318). The above processing is repeatedly performed on the coordinate group as the measurement area, whereby the processing for one wafer 3 is completed. The cpuii judges whether or not the measurement processing has been completed for all the measurement IDs (step S319). When the CPU 11 touches that the measurement processing has not been completed for all the measurement IDs (NO in step S319), the process returns to step S3U. The CPUU will measure the unmeasured and : not read, and repeatedly perform the above processing. When the CPU 11 determines that the all-quantity ID_quantity processing 6 has ended (step j is YES), the CPU 11 shifts to the input of the device 1D that the cpmi receives from the input unit 13 in step S32 (step S321). Since the subsequent processing and the processing after the step S86 are the same, the detailed description will be omitted. The embodiment 6 is the same as the embodiment described above, and the same reference numerals will be given to the corresponding parts, and the description will be omitted. 54 201201303 Embodiment 7 Embodiment 7 relates to a measuring device using photo-luminescence. Fig. 40 is a block diagram showing the hardware of the measuring device of the seventh embodiment. In addition to the configuration described in the embodiment, the measuring device includes a light source 71, a beam splitter 72, a Charge-Coupled Device' CCD detector 73, a mirror 75, and a beam splitter (beam). Splitter) 76 and so on. The light source 71 emits excitation light or illumination light pulses at a predetermined pitch. The illumination light pulse is irradiated to the wafer 3 on the stage 2 via the mirror 75 and the beam splitter 76. The plurality of wafers 3 placed on the stage 2 are held by a holding portion 20 (not shown). In the present embodiment, an example in which the wafer 3 is held by suction by the suction control unit 16 described in the second embodiment or the like will be described as an example. As described in the other embodiments, the mark 5 is described on the platform 2. The user places the wafer 3 on the stage 2 with reference to the mark 5 记载 according to the size. The user inputs the size of the wafer 3 from the input unit 13. Cpmi accepts the entered size. The d-shower file 151 ID is output to the suction control unit 16: 'Fig. 1; the size of the holding portion file 151 is recorded, and the holding ID of the seventh embodiment is not ^ 〇 ^ The dimension D of the wafer 3 is memorized in the circle size field. The crystal has a corresponding _4 ID corresponding to the wafer. In the pure field, the size of the wafer 3 is correspondingly stored with the holding unit ID for the value in the 1D field. The suction _ 卩 16 _ ^ ^ ^ part = 55 201201303 The wafer 3 is sucked by the holding portion 20 corresponding to the holding portion ID. As described in the sixth embodiment, in the placement file 154, the measurement ID and the target of the measurement area as the placement position are stored in correspondence with the wafer size. The CPU 11 refers to the coordinates of the measurement area corresponding to the measurement m of the placement file 154 to move the stage 2, and measures each wafer 3. The motor controller 9 controls the member and the motor M instructed by the CPU 11 to move the platform 2 in the planar direction. Further, the movement of the stage 2 is not limited to the longitudinal direction or the lateral direction when viewed in plan. The platform 2 can also be rotated by a turntable (not shown) provided at the lower portion of the platform 2. The reflected light reflected by the wafer 3 is reflected by the beam splitter 76 and then incident on the beam splitter 72. The light split by the spectroscope 72 is incident on the CCD detector 73. The CCD detector 73 outputs a signal corresponding to the luminous intensity to cpui 1. The cpui 1 is stored in the file 152 correspondingly in the case where the spectral signal has been output from the CCD detector 73. That is, mm monitors a predetermined wavelength (peak) to determine a pixel (pixel) on the CCD detector 73 having the wavelength. Next, the CPU 11 displays the determined pixels two-dimensionally on the face in an identifiable state. Thereby, the characteristics of the wafer 3 can be evaluated two-dimensionally. The display processing of the measurement results of the respective wafers 3 is as described in the above embodiment, and therefore, a month is omitted in detail. Further, in the present embodiment, a case of photoluminescence measurement is exemplified, but measurement of Raman scattering light may be performed. The seventh embodiment is the same as the above-described first embodiment to the fifth embodiment, and the corresponding portions of the mouse are denoted by reference numerals and the detailed description thereof is omitted. Although the present invention has been disclosed in the preferred embodiments as described above, and the present invention is any skilled in the art, it is possible to make some changes and refinements without departing from the invention. Special Wei _ define the scales. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A and Fig. 1A show block diagrams of a holding unit that is dispersedly disposed on a sample stage. Fig. 2 is a block diagram showing a hardware group of the measuring device. A schematic cross-sectional view of the cross section of the platform and the holding portion. Fig. 4 is an explanatory diagram of the layout of the silk file. FIG. 5 is an explanatory diagram showing a recording layout of a result file. Fig. 6 is an explanatory diagram showing a result display image. ^7 is an explanatory diagram showing the recording layout of the image file. Device (4) Fruit display image Figure 9 is a flow chart showing the control sequence of the holding portion. A flowchart showing the processing sequence of the results. Figure = Flow chart showing the processing sequence of the results. A plan view of the holding portion of the platform. = Show (4) the map of the holding part of the platform.置 Ξ : : : : : : : 。 。 。 。 。 57 。 。 57 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Figure 20i is a flow chart showing the sequence of control and lighting control. Figure. — The square of the hardware group of the spectral spreader of the fourth embodiment shows an explanatory diagram of the image of the combined wheeled surface. Figure 23 is an explanatory diagram of the record layout of the holder file. Fig. 24 is a flow chart showing the sequence of the work processing of the holding unit. Figure.疋 shows an explanation of the recording layout of the result file of the fourth embodiment. Fig. 25A is an explanatory diagram showing an image displayed as a result. =26=Illustration of the image showing the results of other film forming apparatuses. 27疋 is a flow chart showing the processing sequence of the result display. Fig. 28A is a block diagram showing a hardware group of the spectroscopic ellipsometer of the fifth embodiment. Fig. 0 is a plan view showing the stage. FIG. 30 is an explanatory diagram showing a recording layout of a placement file. Fig. 31 is a flow chart showing the procedure of the measurement process. Fig. 32 is a block diagram showing the hardware of the X-ray analyzer of the sixth embodiment. Fig. 33 is an explanatory diagram showing a recording layout of a placed file; Figure 34 is a plan view of the platform. Fig. 35 is an explanatory diagram showing a recording layout of a result file. 58 201201303 疋衣不钳禾的,w豕 Figure 37 is a view showing other film formation. Fig. 38 is a block diagram of the silk stitching process. The fourth embodiment shows the hardware of the measuring device of the seventh embodiment. Fig. 41 is a perspective view showing a recording layout of a holding unit file in the seventh embodiment. Fig. [Explanation of main component symbols] 2 5 Spectral ellipsometer platform / sample stage wafer / sample light acquirer 5a : Photoelastic modulator (ΡΕΜ) 5b : Analyzer 6 : Track 7 ' 72 : Splitter 8 : Data reader 9: motor controller 10: computer 11: central processing unit (CPU) 12: random access memory (RAM) 13 • wheeling unit 14. display unit 15: memory unit 59 201201303 dfy typil 15a: first Optical cable 15b: second optical cable 16: elevation control unit/suction control unit 20, 26, 28: holding portion 21: first holding portion 22: second holding portion 23: lifting mechanism 24: opening portion 31: suction pipe 32 : suction unit 36, 38: lifting device 37: LED/holding position display portion 50, 52, 53, 56, 58: mark 61: electronic grab 62: electron beam scanning coil 63: electron detector 65: SEM driving portion 66 : X-ray detector 67: Multi-channel analyzer (MCA) 70, 70A, 70B: Film forming apparatus 71: Light source 73: Charge coupled device (CCD) detector 75: Mirror 76: Beam splitter 201201303 80: Xenon lamp 81 : Light illuminator 81 a. Polarization element 141 : First display portion 142 : Second display portion 143 : Film thickness button 144 : Optical constant Button 145: check box 146: OK button 147: combination input screen 151: holding unit file 152: result file 153: combination file 154: placement file 155: image file 366, 368: lifting platform 371: LED control unit 376, 378 : LED A, B : Device ID Η : Vertical line Μ : Motor

Ml〜Μ6 :第一馬達〜第六馬達 S71 〜S77、S81 〜S89、S93〜S99、S171 〜S179、S211 〜S217、S241 〜S245、S250〜S256、S311 〜S319、S321、 201201303 t ^ I ^ ^αΪ. S2411 、 S74卜 S742、S75 卜 S860、S910、S1710、S2410 S2450、S2511、S2512、S3121、S3122 :步驟 X、Υ、Ζ :轴方向 Φ :反射角度/入射角度 62M1 to Μ6: first to sixth motors S71 to S77, S81 to S89, S93 to S99, S171 to S179, S211 to S217, S241 to S245, S250 to S256, S311 to S319, S321, 201201303 t ^ I ^ ^αΪ. S2411, S74, S742, S75, S860, S910, S1710, S2410, S2450, S2511, S2512, S3121, S3122: Step X, Υ, Ζ: Axis direction Φ: reflection angle / incident angle 62

Claims (1)

201201303 ...... 一 七、申請專利範圍: i.一種測量裝置’對載置在試樣臺上的多個試樣的特 性進行測量,該測量装置包括: 記憶部,相對應地存儲著多個試樣在試樣臺上的載置 位置、與用以痛定各試樣的試樣識別信息; 測量部,參照存儲於所述記憶部的試樣的所述載置位 置來對所述多個試樣進行測量; 記憶處理部’與對應於所述各試樣的所述試樣識別信 息相對應地存儲著所述測量部的測量結果;以及 顯示處理部,將所述記憶處理部所存儲的所述各試樣 的所述測量結果、與對應於所述測量結果的所述試樣識別 信息相對應地顯示於顯示部。 2.如申請專利範圍第1項所述的測量裝置,包括 接受所述試樣的尺寸的接受部, 所述記憶部相對應地存儲著每個尺寸的所^多個試樣 在所述試樣臺上的所述載置位置、與用以確定每個尺寸的 所述各試樣的所述試樣識別信息, 所述測量部參照與所述接受部所接受的試樣的尺寸相 =的所述各離的所職置位置來對所料個試樣進行 测重。 凊專利範圍第1或2項所述的測量裝置,包括: 保持邰,進行工作以保持所述試樣; 定所針對所述試樣的多個尺寸而存儲著用以確 保持㈣簡職廳息的記憶部,將與所述接受 63 201201303 以及 =接受的尺寸相對觸所述保持部識難息予以讀出; 以 述保持部識別信息相對二 4.一種測量方法,借由測量装置來 的多個試樣的特性進行測量,在該在越臺上 ㈣ί照存儲於記憶部的試樣的載置位置來對多個試樣進 所叙憶部城應地存儲著所述多個試樣在試樣 -上的所述載置位置、與用以確定各 灰 相:==:述各試樣的所述= 性上丨t測量裝置’對載置在試樣臺上的多個試樣的特 II進仃測量,該測量裝置包括: 接受試樣的尺寸的接受部; 進行工作以保持所述試樣的多個保持部; 定所試樣的多個尺寸而存儲著用以確 二所迷保持部的保持部識難息的記憶部,躲所述 以及 補接受的尺寸相對應的所述保持部識難^以讀出· 所述 64 201201303 出。 6.如申請專利範圍第5項所述的測量裝置,其中 所述存儲著與試樣的多個尺寸分 Γ別與^確定每個尺寸的各試樣的試樣識別^ 息, 且所述測量裴置包括: 測量部,對所述保持部所保持的多個試樣進行測量; 記憶處理部’與戶斤述試樣識別信 量部對於所述各試樣的測量結果。 息一起存儲著所述測 7.如申請專利範圍第6項所述的測量裝置,包括 顯不處理部,該顯示處理部將所述記憶處理部所存儲 的所述各試樣的所述測量結果、與職於所述測量結果 所述試樣識廳息相對應地顯示於顯示部。 ' 置,=中睛專利範圍第5至7項中任一項所述的測量震 所述接受部接受多個不同的尺寸, 所述讀出部根據所述接受部所接受的多個不同 寸,從存儲著所述保持部識別信息的所述記憶部, ==的多個不同的尺寸相對應的所述保持部識 9.-種測量方法’借由測量裝置來對載置在試樣 的多個試樣的雜進行測量,在侧量方法中, 從輸入部接受試樣的尺寸, 65 201201303 L 從針對試樣的多個尺寸而存儲著用以確定多個保持部 的保持部識別信息的記憶部,將與已接受的尺寸相對應的 所述保持部識別信息予以讀出,所述多個保持部進行工作 以保持所述試樣, 使多個保持部内的與已讀出的所述保持部識別信息相 對應的保持部工作。 66201201303 ...... VII, the scope of application for patents: i. A measuring device 'measures the characteristics of a plurality of samples placed on the sample stage, the measuring device comprises: a memory unit, correspondingly stored a mounting position of the plurality of samples on the sample stage and sample identification information for pain-damping each sample; and the measuring unit refers to the mounting position of the sample stored in the memory unit The plurality of samples are measured; the memory processing unit 'stores measurement results of the measurement unit corresponding to the sample identification information corresponding to the respective samples; and a display processing unit that reads the memory The measurement result of each sample stored in the processing unit is displayed on the display unit in association with the sample identification information corresponding to the measurement result. 2. The measuring device according to claim 1, comprising a receiving portion that accepts a size of the sample, the memory portion correspondingly storing a plurality of samples of each size in the test The mounting position on the sample stage and the sample identification information for determining each sample of each size, the measuring unit refers to the size of the sample accepted by the receiving portion = The respective positions of the respective positions are used to measure the weight of the sample. The measuring device of claim 1 or 2, comprising: holding a weir, working to hold the sample; and storing a plurality of dimensions for the sample to secure (4) a brief office The memory portion of the information will be read out in response to the acceptance of 63 201201303 and the size accepted by the holding portion; the holding portion identification information is relative to the second. 4. A measurement method by the measuring device The characteristics of the plurality of samples are measured, and the plurality of samples are stored in the plurality of samples in the placement position of the sample stored in the memory portion on the cross table. The placement position on the sample-- and the determination of each gray phase: ==: the above-mentioned measurement of each sample 性t measuring device' pairs of multiple tests placed on the sample stage The measuring device comprises: a receiving portion that accepts the size of the sample; a working portion to hold the plurality of holding portions of the sample; and a plurality of sizes of the sample are stored for use in determining The memory department that keeps the inconvenience of the maintenance department of the two fans, hides the Complement received corresponding to the size of the holding portion identification · difficult to read out the ^ 64201201303 out. 6. The measuring device according to claim 5, wherein the storing the plurality of sizes of the sample and determining the sample identification of each sample of each size, and The measurement device includes: a measurement unit that measures a plurality of samples held by the holding unit; and a memory processing unit' and a measurement result of the sample identification unit for each sample. The measurement device according to claim 6, comprising a display processing unit that measures the measurement of each sample stored by the memory processing unit As a result, it is displayed on the display unit in correspondence with the measurement result of the measurement result. The measurement receiving unit according to any one of the items 5 to 7 of the present invention, wherein the receiving unit receives a plurality of different sizes, and the reading unit receives a plurality of different sizes according to the receiving unit. From the memory portion storing the holding portion identification information, the holding portion corresponding to a plurality of different sizes of == 9. The measuring method 'is placed on the sample by the measuring device In the side measurement method, the size of the sample is received from the input unit, and 65 201201303 L is stored from a plurality of sizes for the sample to identify the holding portion of the plurality of holding portions. The memory portion of the information reads the holding portion identification information corresponding to the accepted size, and the plurality of holding portions operate to hold the sample, and the plurality of holding portions are read out The holding portion corresponding to the holding portion identification information operates. 66
TW100120563A 2010-06-22 2011-06-13 Measurement apparatus and measurement method TW201201303A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141927A JP2012007912A (en) 2010-06-22 2010-06-22 Measuring device and measuring method

Publications (1)

Publication Number Publication Date
TW201201303A true TW201201303A (en) 2012-01-01

Family

ID=45483142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120563A TW201201303A (en) 2010-06-22 2011-06-13 Measurement apparatus and measurement method

Country Status (4)

Country Link
JP (1) JP2012007912A (en)
KR (1) KR20110139101A (en)
CN (1) CN102331271A (en)
TW (1) TW201201303A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433509B1 (en) * 2013-02-07 2014-08-22 (주)오로스 테크놀로지 Darkfield illumination device
CN103605065B (en) * 2013-10-23 2016-08-24 上海华力微电子有限公司 Automatic wafer acceptance test curve output system
CN103940340A (en) * 2014-05-08 2014-07-23 东莞市天勤仪器有限公司 Automatic image measuring apparatus and image measuring method
CN109434275A (en) * 2018-09-27 2019-03-08 广东工业大学 A kind of transparent material surface laser processing auxilary focusing method
JP6679049B2 (en) * 2018-09-28 2020-04-15 株式会社リガク Measuring device, program, and control method of measuring device
KR102053886B1 (en) * 2018-10-05 2019-12-09 케이맥(주) Sample analysis method using spectroscopic reflectometry

Also Published As

Publication number Publication date
CN102331271A (en) 2012-01-25
JP2012007912A (en) 2012-01-12
KR20110139101A (en) 2011-12-28

Similar Documents

Publication Publication Date Title
TW201201303A (en) Measurement apparatus and measurement method
US9075015B2 (en) Universal tool for automated gem and mineral identification and measurement
US10732116B2 (en) Hybrid metrology method and system
TWI391645B (en) Differential wavelength photoluminescence for non-contact measuring of contaminants and defects located below the surface of a wafer or other workpiece
CN102884609B (en) Testing fixture and inspection method
US7916281B2 (en) Apparatus for producing optical signatures from coinage
US20110292376A1 (en) Apparatus and method for detecting raman and photoluminescence spectra of a substance
US10036711B2 (en) Gemstone registration and recovery system, and systems for evaluating the light performance of a gemstone and capturing forensic characteristics of a gemstone
CN109900717A (en) Use the inspection method and check device for semiconductor substrate of slope data
CN105683741B (en) For determining the method and system of the Strain Distribution in sample
CN1377460A (en) Method and apparatus for characterization of microelectronic feature quality
TW200815731A (en) Measuring method and apparatus for measuring depth of trench pattern
JP3928656B2 (en) Energy dispersive X-ray diffraction / spectrometer
US11754506B2 (en) Imaging assisted scanning spectroscopy for gem identification
JP5713357B2 (en) X-ray stress measurement method and apparatus
CN110082297A (en) The detection method and spectral measurement system of two-dimensional layer material hetero-junctions stacking sequence
JP2018021760A (en) Thickness measurement device
JP7135795B2 (en) Fluorescent X-ray Analysis System and Fluorescent X-ray Analysis Method
JP6061031B2 (en) Spectroscopic analysis system and method
WO2014058908A1 (en) Gemstone registration and cut quality system
JP5248249B2 (en) Particle size measuring apparatus, particle size measuring method, and computer program
JP2007192552A (en) Spectral measuring instrument
CN110333223A (en) The recognition methods of black phosphorus crystal orientation and device
JP2006275901A (en) Device and method for crystal evaluation
JP2004045064A (en) Fluorescent x-ray analyzer