TW201225325A - Solar cell and manufacturing method thereof - Google Patents

Solar cell and manufacturing method thereof Download PDF

Info

Publication number
TW201225325A
TW201225325A TW099141947A TW99141947A TW201225325A TW 201225325 A TW201225325 A TW 201225325A TW 099141947 A TW099141947 A TW 099141947A TW 99141947 A TW99141947 A TW 99141947A TW 201225325 A TW201225325 A TW 201225325A
Authority
TW
Taiwan
Prior art keywords
type
electrode
solar cell
protective layer
semiconductor substrate
Prior art date
Application number
TW099141947A
Other languages
Chinese (zh)
Other versions
TWI497737B (en
Inventor
Cheng-Chang Kuo
Yen-Cheng Hu
Hsin-Feng Li
Tsung-Pao Chen
Jen-Chieh Chen
Zhen-Cheng Wu
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW099141947A priority Critical patent/TWI497737B/en
Priority to CN2011100267381A priority patent/CN102157612B/en
Priority to US13/038,388 priority patent/US20120138127A1/en
Publication of TW201225325A publication Critical patent/TW201225325A/en
Priority to US14/303,616 priority patent/US20140295612A1/en
Application granted granted Critical
Publication of TWI497737B publication Critical patent/TWI497737B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar cell and a manufacturing method thereof are provided. A laser doping process is adopted to form positive and negative doping regions for an accurate diffusion region control. None of metal contact coverage issue is arisen due to a contact opening is formed by later firing process. The solar cell is provided with a comb-like first electrode, a sheet-like second electrode and the corresponding doping region, to fully utilize the space in the semiconductor substrate and obtain high photoelectric conversion efficiency. Furthermore, the sheet-like second electrode can be formed by material with high reflectivity to improve the light utilization rate of the solar cell. The manufacturing process of the solar cell is simplified and the processing yield is improved.

Description

201225325 Λυιυν/〇υ27 36259twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種太陽能電池及其製造方法,且特 別是有關於一種背觸式太陽能電池(back contacted s〇lar cell)及其製造方法。 【先前技術】 太陽能是一種乾淨無污染的能源,在解決目前石化能 源所面臨的污染與短缺的問題時’一直是最受_目的焦 點。由於太陽能電池可直接將太陽能轉換為電能,因此成 為目前相當重要的研究課題。 石夕基太陽電池為業界常見的一種太陽能電池。石夕基太 陽能電池的原理是將P型半導體與η型半導體相人, 形成Ρ_η接面。當太陽光照射到具有此ρ_η結構的^導體 時,光子所提供的能量可把半導體中的電子激發出來而產 生電子-電洞對。電子與電洞均會受到内建電位的影響,使 得電洞往電場的方向移動,而電子則往相反的方向移動。 如果以導線將此太陽能電池與負載(1〇ad)連接起來,則可形 成一個迴路(loop),並可使電流流過負載,此即為太 池發電的原理。 € 現有矽基背接觸太陽能電池是採用含摻雜物之薄臈 而進行熱擴散的方式在石夕基板内形成P型與η型摻雜區。、 然而,反覆進行熱擴散製程容易降低製程產出,且須藉由 額外的網印(screen printing)製程來定義摻雜區。再者,曰習 201225325 AU1008027 36259twf.doc/n 知矽基背接觸太陽能電池的製程 接點時’容易輯料的階梯覆蓋率不佳而影響製程良率。 【發明内容】 。。本土月提七、帛太陽能電池及其製造方法,其製程簡 早,並且具有高製程良率。201225325 Λυιυν/〇υ27 36259twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a solar cell and a method of manufacturing the same, and more particularly to a back contacted solar cell (back contacted s) 〇lar cell) and its manufacturing method. [Prior Art] Solar energy is a clean and pollution-free energy source. It has always been the focus of the current pollution and shortage of petrochemical energy. Since solar cells can directly convert solar energy into electrical energy, it has become a very important research topic at present. Shi Xiji solar cells are a kind of solar cell commonly used in the industry. The principle of Shi Xiji Taiyang Battery is to form a P-type semiconductor and an n-type semiconductor to form a Ρ_η junction. When sunlight strikes a conductor having this ρ_η structure, the energy provided by the photon excites electrons in the semiconductor to produce an electron-hole pair. Both the electron and the hole are affected by the built-in potential, causing the hole to move in the direction of the electric field and the electron to move in the opposite direction. If the solar cell is connected to the load (1〇ad) by wires, a loop can be formed and current can flow through the load, which is the principle of power generation in the pool. The existing ruthenium-based back contact solar cells are formed by forming a P-type and an n-type doped region in a Shih-hs substrate by means of a thin diffusion of dopants. However, repeated thermal diffusion processes tend to reduce process throughput and the doping region must be defined by an additional screen printing process. Furthermore, bad habits 201225325 AU1008027 36259twf.doc/n Knowing the process of the solar cell in contact with the solar cell When the contact is not easy, the step coverage of the material is not good and the process yield is affected. SUMMARY OF THE INVENTION . The local monthly mention of seven solar cells and their manufacturing methods have a short process and high process yield.

為具體描述本發明之内容,在此提出—種太陽能電池 ^製造方法’包括下列步驟。提供_半導體基板,半導體 基板具有-第-表面以及相對於第—表面的—第二表面。 形成-第-保護層於半導體基板的第—表面上。進行一第 、雷射掺雜製程’以形成多個第_開孔於第―保護層内, 並且形成多個第-型摻雜區於第—開孔舰的半導體基板 中。形成一第一電極於部分第一保護層上。第一電極為梳 狀且具有相互平行的多個分支。第一電極填入第一開孔以 連接到第一型摻雜區。進行一第二雷射摻雜製程,以形成 多個第二開孔於第一保護層内,並且形成多個第二型摻雜 區於第二開孔對應的半導體基板中。依序形成一第二保護 層與一第二電極於第一保護層上。第二保護層覆蓋第一電 極,且第一保遵層具有多個第三開孔,其中第三開孔對應 第二型摻雜區。第二電極為片狀並且覆蓋第一電極的分 支。苐二電極填入第三開孔以連接到第二型摻雜區。 在一實施例中’所述第一雷射摻雜製程包括:形成一 第一型掺質材料層於第一保護層上’第一型掺質材料層内 具有一第一型摻質;提供一雷射光束於第一型掺質材料層 201225325 --------36259twf.doc/n 以及第—保護層上,以形成第—開孔並且將第-型掺質材 料層内的第-型摻質擴散到半導體基板巾,㈣成第一型 摻雜區;以及,移除第一型掺質材料層。 在一實施例巾,所述第二f射摻雜製程包括:形成一 第二型掺質材料層於第—保護層上,第二型掺質材料層内 具有一第一型摻質;提供一雷射光束於第二型掺質材料層 以及第一保護層上,以形成第二開孔並且將第二型掺質材 料層内的第二型摻質擴散到半導體基板中,而形成第二型 摻雜區;以及,移除第二型掺質材料層。 在一實施例中,形成所述第一電極的方法包括網版印 刷製程。 在一實施例中’所述太陽能電池的製造方法更包括在 形成第一電極之後,進行一回火製程。 在一實施例中,所述太陽能電池的製造方法更包括對 半導體基板的第二表面進行粗糙化處理。 在一實施例中’所述太陽能電池的製造方法更包括形 成一抗反射層(anti-reflection coating layer)於半導體基板的 第二表面上。 在此更提出一種太陽能電池,包括一爭導體基板、一 第一保護層、一第一電極、一第二保護層以及一第二電極。 半導體基板具有一第一表面以及相對於第一表面的一第二 表面。在第一表面之半導體基板中具有多個第一型換雜區 以及多個第一型換雜區。第一保護層配置於半導體基板的 第一表面上。第一保護層具有多個第一開孔以及多個第二 201225325 AU1008027 36259tAvf.doc/n 開孔u賊躲第—型軸區 π播雜區。第一電極配置於第-保護層上。第 且孔二,到第一型摻雜區。第-電極為梳狀且 有: 目互平行的多個分支。第二保護層配置於In order to specifically describe the contents of the present invention, a solar cell manufacturing method is proposed to include the following steps. A semiconductor substrate is provided, the semiconductor substrate having a - surface and a second surface opposite to the first surface. A -first protective layer is formed on the first surface of the semiconductor substrate. A first, laser doping process is performed to form a plurality of first openings in the first protective layer, and a plurality of first-type doped regions are formed in the semiconductor substrate of the first open-hole ship. A first electrode is formed on a portion of the first protective layer. The first electrode is comb-shaped and has a plurality of branches parallel to each other. The first electrode is filled in the first opening to be connected to the first type doped region. A second laser doping process is performed to form a plurality of second openings in the first protective layer, and a plurality of second type doped regions are formed in the corresponding semiconductor substrate of the second openings. A second protective layer and a second electrode are sequentially formed on the first protective layer. The second protective layer covers the first electrode, and the first bonding layer has a plurality of third openings, wherein the third opening corresponds to the second type doping region. The second electrode is in the form of a sheet and covers the branch of the first electrode. The second electrode is filled in the third opening to be connected to the second type doping region. In an embodiment, the first laser doping process includes: forming a first type dopant material layer on the first protection layer; the first type dopant material layer has a first type dopant; a laser beam is applied to the first type dopant material layer 201225325 -------- 36259 twf.doc/n and the first protective layer to form the first opening and the first type of dopant material layer The first type dopant is diffused into the semiconductor substrate, (4) into the first type doped region; and the first type dopant material layer is removed. In an embodiment, the second f-doping process includes: forming a second type dopant material layer on the first protective layer, and forming a first type dopant in the second type dopant material layer; a laser beam is applied to the second type dopant material layer and the first protection layer to form a second opening and the second type dopant in the second type dopant material layer is diffused into the semiconductor substrate to form a first a doped region of the second type; and removing the layer of the second type of dopant material. In one embodiment, the method of forming the first electrode comprises a screen printing process. In an embodiment, the method of fabricating the solar cell further includes performing a tempering process after forming the first electrode. In one embodiment, the method of fabricating the solar cell further includes roughening the second surface of the semiconductor substrate. In one embodiment, the method of fabricating the solar cell further includes forming an anti-reflection coating layer on the second surface of the semiconductor substrate. There is further provided a solar cell comprising a conductor substrate, a first protective layer, a first electrode, a second protective layer and a second electrode. The semiconductor substrate has a first surface and a second surface opposite the first surface. The semiconductor substrate of the first surface has a plurality of first type of alternating regions and a plurality of first type of alternating regions. The first protective layer is disposed on the first surface of the semiconductor substrate. The first protective layer has a plurality of first openings and a plurality of second 201225325 AU1008027 36259tAvf.doc/n open holes thief hiding the first-type axis region π-sorting region. The first electrode is disposed on the first protective layer. And the second hole, to the first type doping region. The first electrode is comb-shaped and has: a plurality of branches parallel to each other. The second protective layer is disposed on

t第二保護層覆蓋第—電極,料二㈣層具有多個i 。f二開孔對應第二型摻雜區。第二電極覆蓋第二 H極填人第三連制第二型換雜區。 第一電極為片狀並且覆蓋第一電極之分支。 面。在-實施财,半導體基_第二表面為_粗輪化表 池更包括一抗反射層, 在一實施例中,所述太陽能電 配置於半導體基板的第二表面上。 一負型輕摻雜半導體 在一實施例中,半導體基板包括 基板。 在一實施例中 在一實施例中 在一實施例中 在一實施例中 在一實施例中 在一實施例中 第一型摻雜區包括一負型重摻雜區。 第二型摻雜區包括一正型重摻雜區。 第一開孔包括多個溝槽。 第二開孔與第三開孔包括多個溝槽。 第一電極的材質包括銀。 第二電極的材質包括鋁。 暴於上述 麥f 5株用辑射摻雜製程來形成 =摻雜區,因此可準確定義摻雜區的位置。接 梯雷射形成的開孔’因此不存在習知金屬接點二皆 梯覆盘率不佳的問題。本發明的太陽能電池的製_^ 201225325 /\u ιυυ〇υ27 36259twf.doc/n 具有高製程良率。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1繪示依照本發明之一實施例的一種太陽能電池的 結構。圖2為圖1之太陽能電池的上視圖。為了清楚表達 元件關係,圖2的部份膜層以透視方式呈現。 如圖1與2所示,本實施例之太陽能電池1〇〇係架構 於半導體基板110上。半導縣板UG例如是負型^型) 輕摻雜半導體基板,例如具有磷或砷等N ㈣s—)基板。半導體基板i 1G具有—第2面° = 以及相對於第-表面11()a的一第二表面⑽卜在第一表 面U〇a的半導體基板110中具有多個第-型摻雜區112 以及多個第二型換雜區114。第—型掺雜區112例如是負 型重摻雜區’例如具有似_等N型摻質的摻雜區。第二 型摻雜區114例如是正型(P型)重摻雜區,例如具有棚或無 或鎵或銦之元素等P型摻質的摻雜區。 半導體基板110的第一表面11〇a覆蓋有第一保護層 跡第-保護層12G具有多個第—開孔122以及多個第二 開孔124。第-開孔122對應於第—型捧魏ιΐ2,而第二 開孔124對應於第二型摻雜區114。第一開孔122與第二 開孔124例如是多個溝槽、多個圓孔、多個方 他 可能的形狀或型態。第-電極13G配置於第—保護/12〇 201225325 AU1008027 36259twf.doc/n 上,且第一電極13〇填入第一開孔122以連接到第一型摻 雜區112。在本實施例中,第一電極13〇為梳狀且具有相 互平行的多個分支132以及連接該些分支132的連接部 134。第一型摻雜區H2例如是沿著分支132設置,而前述 溝槽狀的第一開孔122例如是位於分支132的下方,以使 分支132經由第一開孔122向下連接到第一型摻雜區 112。此外’第一電極13〇的材質例如是銀、紹、金、銅、 φ 鉬、鈦及其合金與疊層,或是其他合適的導電材質。 第一保護層140配置於第一保護層120上,以覆蓋第 一電極130的分支132,並且暴露第一電極13〇的連接部 134 ’以與外部電路連接。此外,第二保護層14〇具有多個 第三開孔142,其與對應的第二開孔124連通。第三開孔 142與第二開孔124的形狀可以是相同,均為條狀溝槽, 如圖2所示,或是均為圓孔、方孔等形狀。第三開孔142 與第二開孔124的形狀亦可是不相同,例如第二開孔124 為條狀溝槽’且第三開孔142為點狀圓孔,如圖4所示, 馨 上述僅用於舉例說明,並不限於此形狀與排列組合。當第 一開孔122與第二開孔124為溝槽,可以提供較大面積的 第一型摻雜區122與第二型摻雜區114,以獲得較大的電 流傳輸能力。而且,第三開孔142為圓孔時,可以使後續 形成的第二電極15〇更容易接觸下方的第二型摻雜區 114,避免階梯覆蓋率不佳而影響製程良率。 第二電極150覆蓋第二保護層14〇,並且填入第三開 孔142以及弟一開孔124,以連接到第二型摻雜區114。在 201225325 ^wiW〇o27 36259twf.doc/n 本實施例中’第二型摻雜區114例如是設置於分支132下 方的兩相鄰的第一型摻雜區112之間,且第二電極150為 片狀並且覆蓋第一電極丨3〇的分支132。第二電極15〇的 材質例如是鋁、銀等導電的高反射物質。由於第二電極M0 為片狀’全面覆蓋太陽能電池1〇〇的半導體基板11()且具 有南反射率,因此有助於入射光到達第二電極15〇反射, 使太陽能電池100再次進行吸收轉換,提高太陽能電池1〇〇 的光利用率。此外’藉由梳狀的第一電極130以及片狀的 第二電極150,搭配相應的第一型摻雜區112以及第二型 摻雜區114,可以充分利用半導體基板11〇的空間,提供 良好的光電轉換效率。 另一方面,半導體基板110的第二表面u〇b是作為 入光面。為了k局入光量與入光的均勻度,可以對第二表 面110b加工,使成為粗縫化(texture)表面。此外,本實施 例還可以在半導體基板1〇〇的第二表面1〇〇b上配置抗反射 層160 ’以提高太陽能電池1〇〇的入光量。 圖3A至3L進一步繪示前述太陽能電池的製造方法。 ★首先,如圖3A所示,提供半導體基板11〇,並且形 成第一保護層120於半導體基板ι10的第一表面11〇&上。 接著,如圖3B至3D所示,進行第一雷射摻雜製程, 以形成多個第一開孔122於第一保護層1〇〇内,並且形 多個第一型摻雜區U2於第一開孔122對應的半導體^ 更詳細而言,所述第-雷射摻雜製程例如是先二 所示,形成第一型掺質材料層112a於第一保護層12 上第一型掺質材料層112a内具有第一型(如負型)換質, 201225325 AU1008027 36259twf.d〇c/n 你J如荈或钟專N型摻質。接著,如圖3b所示,提供雷射 、束;苐型掺質材料層112a以及第一保護層12〇的 特性位置上’以形成第-開孔122並且將第-型掺質材料 層U2a内的第—型摻質擴散到半導體基板110中,而形成 f 一型摻純112。由於第—開孔122與第-型摻雜區112 =由同-iff射摻轉程卿成,因此會具有相同的圖 案。例如,第一開孔122包括多個溝槽,而第一型摻雜區 112為對應於該些溝槽的條狀圖案。之後,如圖3D所示, 移除第一型掺質材料層112a。 上然後,如圖3E所示,形成第一電極13〇於部分第一 保護層120上。第—電極13〇為梳狀且具有相互平行 個分支132。第—電極130的分支132填入第一開孔122, 以連接到下方的第—雜雜112。當然,所形成的第一 開孔122以及第—型摻雜區112也可以位於第一電極130 的連接部134下方。形成所述梳狀第—電極m的方法 ΐ;網版印刷製程。此外’在完成第-電極U㈣製作後, ,匕括以加熱方式進行回火製程,以增加第-電極與第一 型摻雜區之翻區域,並有效降健觸電阻。 ⑽圖3?至3Η所示,進行第二雷射摻雜製程, 第二開孔124於第一保護層120内,並且形成 f10中H雜區114於第二開孔124對應的半導體基板 〇_中。更相而言,所述第二雷射換雜製程是先如圖邛 ?成第二型掺質材料層114a於第—保護層i2〇上。 掺質材料層114a内具有第二型(如正型)摻質,例如 3爛或紹或鎵或銦之元料p型摻f。接著,如圖犯所 20122532577 36259twf.doc/n 示’提供雷射光束L2於第二型掺質材料層114a以及第一 保護層U0上’以形成第二開孔m並且將第二型接質材 料層^4a内的第二型摻質擴散到半導體基板ιι〇中,而形 成第二型摻雜區114。由於第二開孔124與第二型播雜區 114是由同—道雷射捧雜製程所形成’因此會具有相同的 圖,。例如,第二開孔124例如包括多個溝槽、圆孔、方 Ϊ等扯而第二型摻雜區114為對應於該些溝槽的條狀圖 案。以後,如圖3H所示,移除第二型掺質材料層U4a。 然後,如圖31所示,形成第二保護層140於第一保護 · 層120上’使第二保護層14〇覆蓋第-電極130的分支 132’接著在第二保護層_覆蓋第二電極15G。如圖3J 1不,進行雷射開孔敎製程,提供f射光束U於第二 =50與第二保護層⑽上,以在第二保護層_中形 成第二開孔142’對應下方的第二型摻雜區114,並且使第 ,極150經由第二開孔142接觸且電性連接至第二型摻 的iL”4。第,開孔142例如包括多個條狀的溝槽、點狀 製作。方孔等形狀。至此,大致完成太陽能電池100的 鲁 量文所述,為了提高太陽能電池⑽的入光 。其if 本實施例更可以選擇如圖3K所示對半 π ήΓ-、 10的第二表面U〇b進行粗糙化處理,並且如圖 #入擇在第二表面UGb上形成抗反射層16G,增加 九入射里,增進光轉換效率。 如圖3K與3L所示的步驟可安排在圖3A至3J的步 12 201225325 AU1008027 36259twf.doc/n 驟之間。例如,本實施例可在圖3J所示形成第二電極W ^措再進行圖3K與圖3L的步驟。或是,如圖3K所示 十半導體基板110的第二表面憑進行粗經化處理,並且 α圖3L所不選擇在第二表面u〇b上形成抗反射層⑽之 後,再進行圖3Λ至3J的步驟。 、练上所述,本發明的太陽能電池採用梳狀的第—電極 ,及片,的第二電極,搭配相應的第-型摻雜區以及第二 區’以充分_半導體基板的空間,提供良好“ ^換效率。此外,由於第4極為片狀似可由紹等高 =物質製作,因此有助於提高太陽能電池的光利用率。 換面,本發明採用雷射摻雜製程來形成太陽能電池的 ^吉品因此可準確定義摻雜區的位置。此外,接點材料 二ίΪΪ入雷射形成的開孔,因此不存在習知金屬接點之 ^ π率不佳的問題。換言之,本發明的太陽能電池的 間早,具有高製程良率。 本私日雖然本發明已以實施例揭露如上’然其並非用以限定 士 I明,任何所屬技術領域中具有通常知識者,在不脫離 ir月之精ϋ和範_,當可作些許之更動與潤飾,故本 χ之保5蔓範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 結構 圖1繪示依照本發明之一實施例的一種太陽能電池的 圖2為圖1之太陽能電池的上視圖。 月& 圖3Α至3L纟會示依照本發明之一實施例的一種太陽 13 201225325 w〇j27 36259twf.doc/n 電池的製造方法。 圖4為依照本發明之另一實施例的一種太陽能電池的 上視圖。 【主要元件符號說明】 100 :太陽能電池 110 :半導體基板 110a :半導體基板的第一表面 110b :半導體基板的第二表面 112 :第一型摻雜區 112a :第一型掺質材料層 114 :第二型摻雜區 114a :第二型掺質材料層 120 :第一保護層 122 ··第一開孔 124 :第二開孔 130 :第一電極 132 :分支 134 :連接部 140 :第二保護層 142 :第三開孔 150 :第二電極 160 :抗反射層 U、L2、L3 :雷射光束The second protective layer covers the first electrode, and the second (four) layer has a plurality of i. The f-opening corresponds to the second-type doping region. The second electrode covers the second H-pole and fills the third-connected second-type replacement region. The first electrode is in the form of a sheet and covers a branch of the first electrode. surface. In the implementation, the semiconductor substrate _ the second surface is a coarse wheeled cell further comprising an anti-reflection layer. In one embodiment, the solar power is disposed on the second surface of the semiconductor substrate. A Negative Lightly Doped Semiconductor In one embodiment, the semiconductor substrate includes a substrate. In one embodiment, in one embodiment, in one embodiment, in one embodiment, in one embodiment, the first type of doped region comprises a negative heavily doped region. The second type doped region includes a positive type heavily doped region. The first opening includes a plurality of grooves. The second opening and the third opening comprise a plurality of grooves. The material of the first electrode includes silver. The material of the second electrode includes aluminum. The above-mentioned wheat f 5 strain is formed by the injecting doping process to form a =doped region, so that the position of the doped region can be accurately defined. The opening formed by the ladder laser does not have the problem of poor coverage of the conventional metal contacts. The solar cell of the present invention has a high process yield of _^201225325 /\u ιυυ〇υ27 36259twf.doc/n. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] FIG. 1 illustrates a structure of a solar cell according to an embodiment of the present invention. 2 is a top view of the solar cell of FIG. 1. In order to clearly express the relationship of the components, the partial film layer of Fig. 2 is presented in a perspective manner. As shown in Figs. 1 and 2, the solar cell 1 of the present embodiment is mounted on a semiconductor substrate 110. The semi-conducting plate UG is, for example, a negative type) lightly doped semiconductor substrate, for example, an N (tetra) s-) substrate such as phosphorus or arsenic. The semiconductor substrate i 1G has a second surface ° = and a second surface ( 10 ) with respect to the first surface 11 ( ) a has a plurality of first-type doping regions 112 in the semiconductor substrate 110 of the first surface U 〇 a And a plurality of second type change regions 114. The first-type doping region 112 is, for example, a negative-type heavily doped region', for example, a doping region having an N-type dopant such as _. The second type doping region 114 is, for example, a positive (P-type) heavily doped region, such as a doped region of a P-type dopant having a shed or no element such as gallium or indium. The first surface 11A of the semiconductor substrate 110 is covered with a first protective layer. The first protective layer 12G has a plurality of first openings 122 and a plurality of second openings 124. The first opening 122 corresponds to the first type of the wafer, and the second opening 124 corresponds to the second type doping region 114. The first opening 122 and the second opening 124 are, for example, a plurality of grooves, a plurality of circular holes, and a plurality of possible shapes or patterns. The first electrode 13G is disposed on the first protection / 12 〇 201225325 AU1008027 36259 twf. doc / n, and the first electrode 13 〇 is filled in the first opening 122 to be connected to the first type doping region 112. In the present embodiment, the first electrode 13 is comb-shaped and has a plurality of branches 132 that are parallel to each other and a connecting portion 134 that connects the branches 132. The first doped region H2 is disposed, for example, along the branch 132, and the first trench-shaped first opening 122 is located, for example, below the branch 132 such that the branch 132 is connected downwardly to the first via the first opening 122. Type doped region 112. Further, the material of the first electrode 13A is, for example, silver, shovel, gold, copper, φ molybdenum, titanium, and alloys thereof, and other suitable conductive materials. The first protective layer 140 is disposed on the first protective layer 120 to cover the branch 132 of the first electrode 130, and exposes the connection portion 134' of the first electrode 13A to be connected to an external circuit. In addition, the second protective layer 14A has a plurality of third openings 142 that communicate with the corresponding second openings 124. The shape of the third opening 142 and the second opening 124 may be the same, and both are strip-shaped grooves, as shown in FIG. 2, or both are circular holes, square holes and the like. The shape of the third opening 142 and the second opening 124 may also be different. For example, the second opening 124 is a strip-shaped groove and the third opening 142 is a point-shaped circular hole, as shown in FIG. It is for illustrative purposes only and is not limited to this shape and arrangement combination. When the first opening 122 and the second opening 124 are trenches, a larger area of the first type doping region 122 and the second type doping region 114 may be provided to obtain a larger current transmission capability. Moreover, when the third opening 142 is a circular hole, the subsequently formed second electrode 15〇 can be more easily contacted with the lower second type doped region 114, thereby avoiding poor step coverage and affecting the process yield. The second electrode 150 covers the second protective layer 14A and is filled in the third opening 142 and the opening 124 to be connected to the second type doping region 114. In 201225325 ^wiW〇o27 36259twf.doc/n In the present embodiment, the second type doping region 114 is, for example, disposed between two adjacent first type doping regions 112 under the branch 132, and the second electrode 150 It is in the form of a sheet and covers the branch 132 of the first electrode 丨3〇. The material of the second electrode 15A is, for example, a highly conductive material such as aluminum or silver. Since the second electrode M0 is in the form of a sheet-like semiconductor substrate 11 that completely covers the solar cell and has a south reflectance, it contributes to the incident light reaching the second electrode 15 〇 reflection, so that the solar cell 100 is again absorbed and converted. To improve the light utilization rate of solar cells. In addition, by the comb-shaped first electrode 130 and the sheet-shaped second electrode 150, with the corresponding first-type doping region 112 and second-type doping region 114, the space of the semiconductor substrate 11 can be fully utilized, and Good photoelectric conversion efficiency. On the other hand, the second surface u〇b of the semiconductor substrate 110 serves as a light incident surface. In order to obtain the amount of light entering the light and the uniformity of the incident light, the second surface 110b can be processed to have a textured surface. Further, in this embodiment, the anti-reflection layer 160' may be disposed on the second surface 1b of the semiconductor substrate 1 to increase the amount of light entering the solar cell. 3A to 3L further illustrate a method of manufacturing the aforementioned solar cell. First, as shown in Fig. 3A, a semiconductor substrate 11A is provided, and a first protective layer 120 is formed on the first surface 11' of the semiconductor substrate ι10. Next, as shown in FIGS. 3B to 3D, a first laser doping process is performed to form a plurality of first openings 122 in the first protective layer 1 and a plurality of first doped regions U2 are formed. The semiconductor corresponding to the first opening 122. In more detail, the first-electrode doping process is, for example, shown in the first two, forming the first-type dopant material layer 112a on the first protective layer 12 The first type (such as negative type) is replaced in the material layer 112a, 201225325 AU1008027 36259twf.d〇c/n You J such as 荈 or Zhong N type dopant. Next, as shown in FIG. 3b, a laser, a beam, a germanium-type dopant material layer 112a, and a first protective layer 12A are provided at a characteristic position to form a first opening 122 and a first-type dopant material layer U2a. The first type-type dopant is diffused into the semiconductor substrate 110 to form the f-type doped pure 112. Since the first opening 122 and the first-type doping region 112 = are formed by the same-iff injection doping, they will have the same pattern. For example, the first opening 122 includes a plurality of trenches, and the first type doped regions 112 are strip patterns corresponding to the trenches. Thereafter, as shown in FIG. 3D, the first type dopant material layer 112a is removed. Then, as shown in Fig. 3E, the first electrode 13 is formed on a portion of the first protective layer 120. The first electrode 13 is comb-shaped and has parallel branches 132. The branch 132 of the first electrode 130 is filled in the first opening 122 to be connected to the lower first impurity 112. Of course, the formed first opening 122 and the first-type doping region 112 may also be located below the connecting portion 134 of the first electrode 130. A method of forming the comb-shaped electrode m; a screen printing process. Further, after the completion of the fabrication of the first electrode U (four), the tempering process is performed by heating to increase the turned-over region of the first electrode and the first type doped region, and effectively reduces the touch resistance. (10) As shown in FIG. 3 to FIG. 3, a second laser doping process is performed, the second opening 124 is in the first protective layer 120, and a semiconductor substrate corresponding to the H-cell 114 in the f10 is formed in the second opening 124. _in. More specifically, the second laser replacement process is as shown in the figure? A second type dopant material layer 114a is formed on the first protective layer i2. The dopant material layer 114a has a second type (e.g., a positive type) dopant, such as a 3 ruthenium or a gallium or indium material p-type doped f. Next, as shown in the figure 20122532577 36259twf.doc/n, 'provide the laser beam L2 on the second type dopant material layer 114a and the first protection layer U0' to form the second opening m and the second type of susceptor The second type dopant in the material layer ^4a is diffused into the semiconductor substrate to form the second type doping region 114. Since the second opening 124 and the second type of miscellaneous region 114 are formed by the same-channel laser-doping process, they will have the same pattern. For example, the second opening 124 includes, for example, a plurality of grooves, circular holes, squares, etc., and the second type doped regions 114 are strip patterns corresponding to the grooves. Thereafter, as shown in FIG. 3H, the second type dopant material layer U4a is removed. Then, as shown in FIG. 31, the second protective layer 140 is formed on the first protective layer 120 such that the second protective layer 14 is covered by the branch 132' of the first electrode 130 and then covers the second electrode at the second protective layer. 15G. As shown in FIG. 3J 1 , a laser aperture 敎 process is performed to provide a f-beam U on the second=50 and the second protective layer (10) to form a second opening 142 ′ in the second protective layer _ The second type doping region 114, and the first electrode 150 is contacted via the second opening 142 and electrically connected to the second type doped iL"4. The opening 142 includes, for example, a plurality of strip-shaped grooves, The shape of the square hole is formed in a dot shape. Thus, the light source of the solar cell 100 is substantially completed, and the light source of the solar cell (10) is increased. The present embodiment can also select a half π ήΓ as shown in FIG. 3K. The second surface U〇b of 10 is roughened, and the anti-reflection layer 16G is formed on the second surface UGb as shown in FIG. #3, which increases the incidence of light conversion, as shown in FIGS. 3K and 3L. The steps can be arranged between steps 12 201225325 AU1008027 36259 twf.doc/n of Figures 3A to 3J. For example, this embodiment can form the second electrode W shown in Figure 3J and then perform the steps of Figures 3K and 3L. Or, as shown in FIG. 3K, the second surface of the ten semiconductor substrate 110 is subjected to roughening treatment, and αFig. 3L After the anti-reflection layer (10) is formed on the second surface u〇b, the steps of FIGS. 3A to 3J are performed. As described above, the solar cell of the present invention adopts a comb-shaped electrode and a sheet. The second electrode, together with the corresponding first-type doped region and the second region', provides sufficient "mechanical substrate space" to provide good "changing efficiency." In addition, since the fourth extremely sheet-like shape can be made of material such as sorghum, it contributes to improving the light utilization efficiency of the solar cell. In other words, the present invention uses a laser doping process to form a solar cell, thereby accurately defining the position of the doped region. In addition, the contact material is inserted into the opening formed by the laser, so there is no problem that the conventional metal contact has a poor π rate. In other words, the solar cell of the present invention has a high process yield as early as possible. The present invention has been disclosed in the above embodiments by way of example. However, it is not intended to be limited to those of ordinary skill in the art, and may be modified without departing from the essence and scope of the ir month. And retouching, so the scope of this χ χ 蔓 蔓 蔓 蔓 范围 。 。 。 。 。 。 。 。 。 。 。 。 。 。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view of a solar cell of FIG. 1 in accordance with an embodiment of the present invention. FIG. Month & Figures 3A through 3L show a method of manufacturing a solar cell 13 201225325 w〇j27 36259 twf.doc/n battery in accordance with an embodiment of the present invention. Figure 4 is a top plan view of a solar cell in accordance with another embodiment of the present invention. [Description of main component symbols] 100: solar cell 110: semiconductor substrate 110a: first surface 110b of semiconductor substrate: second surface 112 of semiconductor substrate: first type doped region 112a: first type dopant material layer 114: Ditype doped region 114a: second type dopant material layer 120: first protection layer 122 · first opening 124: second opening 130: first electrode 132: branch 134: connection portion 140: second protection Layer 142: third opening 150: second electrode 160: anti-reflection layer U, L2, L3: laser beam

Claims (1)

201225325 AU1008027 36259twf.doc/n 七、申請專利範圍: 1.一種太陽能電池的製造方法,包括: 提供一半導體基板,該半導體基板具有一第一表面以 及相對於該第一表面的一第二表面;201225325 AU1008027 36259twf.doc/n VII. Patent application scope: 1. A method for manufacturing a solar cell, comprising: providing a semiconductor substrate having a first surface and a second surface opposite to the first surface; 形成一第一保護層於該半導體基板的該第一表面上; 進行-第-雷射摻雜製程,以形成多個第一開孔於該 第一保護層内,並且形成多個第一型摻雜區於該些 孔對應的該半導體基板中; 形成-第-電極於部分該第一保護層上,該第一電極 為梳狀且具有相互平行❹個分支,料—電極填入該些 第一開孔以連接到該些第一型摻雜區; 、仃—第二雷射摻雜製程’以形成多個第二開孔於該 ,-保護層内,並且形成多個第二型摻雜區於該第二開孔 對應的該半導體基板中; 形成-第二保護層於該第—保護層上,該第二保護層 覆蓋該第一電極的該些分支; 形成一第二電極於該第二保護層上,該第二電極為片 狀並且覆蓋該第―電極賴些分支;以及 ★進行一雷射開孔回火製程,於該第二保護層中形成多 個第三開孔,該些第三開孔對應該些第二型雜區,該第 二電極填入該些第三開孔,以連接到該些第二型摻雜區。 、2.如申請專利範圍第1項所述的太陽能電池的製造 其t該第-雷射摻雜製程包括: 开少成第一型掺質材料層於該第一保護層上,該第— 15 36259twf.doc/n 201225325 7 、厶1 型掺質材料層内具有一第一型摻質; 上提供一雷射光束於該第一型掺質材料層以及該第〆 保護層上,以形成該些第一開孔並且將該第一型掺質材科 層内的該第-型摻質擴散龍半導體基板中,而形成該第 一型摻雜區;以及 移除該第一型掺質材料層。 、3·如申請專利範圍第1項所述的太陽能電池的製造 方法’其中該第二雷射摻雜製程包括: 形成一第二型掺質材料層於該第一保護層上,該第二 型掺質材料層内具有一第二型摻質; 上提供一雷射光束於該第二型掺質材料層以及該第一 保濩層上,以形成該些第二開孔並且將該第二型掺質材料 層内的第二型摻質紐到該半導縣板巾,而形成該第二 型摻雜區;以及 移除該第二型掺質材料層。 4. 如申請專利範圍第1項所述的太陽能電池的製造 方法,形成該第一電極的方法包括網版印刷製程。 5. 如申睛專利範圍第4項所述的太陽能電池的製造 方法,更包括在形成該第一電極之後,進行一回火製程。 6. 如申請專利範圍第1項所述的太陽能電池的製造 方法’更包括對該半導體基板的該第二表面進行粗糙化處 理。 7. 如申請專利範圍第1項所述的太陽能電池的製造 方法更包括形成一抗反射層(anti-reflection coating layer) 201225325 AU1008027 36259twf.doc/n 於該半導體基板的該第二表面上。 8. —種太陽能電池,包括: 一半導體基板,具有一第一表面以及相對於該第一表 面的一第二表面,在該第一表面之該半導體基板中具有多 個第一型摻雜區以及多個第二型摻雜區; 一第一保護層,配置於該半導體基板的該第一表面 上,該第一保護層具有多個第一開孔以及多個第二開孔, 該些第一開孔對應於該些第一型摻雜區,而該些第二開孔 對應於該些第二型摻雜區; 一第一電極,配置於該第一保護層上,該第一電極填 入該些第一開孔以連接到該些第一型摻雜區,該第一電極 為梳狀且具有相互平行的多個分支; 一第二保護層,配置於該第一保護層上,該第二保護 層覆蓋該第一電極的該些分支,且該第二保護層具有多個 第三開孔,該些第三開孔對應該些第二型摻雜區;以及 一第二電極,覆蓋該第二保護層,該第二電極填入該 些第三開孔,以連接到該第二型摻雜區,該第二電極為片 狀並且覆蓋該第一電極之該些分支。 9. 如申請專利範圍第8項所述的太陽能電池,其中該 半導體基板的該第二表面為一粗糙化表面。 10. 如申請專利範圍第8項所述的太陽能電池,更包 括一抗反射層,配置於該半導體基板的該第二表面上。 11. 如申請專利範圍第8項所述的太陽能電池,其中 該半導體基板包括一負型輕摻雜半導體基板。 17 36259twf.doc/n 201225325 i wov27 12. 如申請專利範圍第8項所述的太陽能電池,其中 該第一型摻雜區包括一負型重摻雜區。 13. 如申請專利範圍第8項所述的太陽能電池,其中 該第二型摻雜區包括一正型重摻雜區。 14. 如申請專利範圍第8項所述的太陽能電池,其中 該些第一開孔包括多個溝槽。 15. 如申請專利範圍第8項所述的太陽能電池,其中 該些第二開孔與該些第三開孔包括多個溝槽。 16. 如申請專利範圍第8項所述的太陽能電池,其中 該第一電極的材質包括銀。 17. 如申請專利範圍第8項所述的太陽能電池,其中 該第二電極的材質包括鋁。Forming a first protective layer on the first surface of the semiconductor substrate; performing a -first-laser doping process to form a plurality of first openings in the first protective layer, and forming a plurality of first types Doping regions are formed in the semiconductor substrate corresponding to the holes; forming a first electrode on a portion of the first protective layer, the first electrode is comb-shaped and has two branches parallel to each other, and the material-electrode is filled in the a first opening for connecting to the first type doping regions; a second laser doping process to form a plurality of second openings in the protective layer, and forming a plurality of second types Doping a region in the semiconductor substrate corresponding to the second opening; forming a second protective layer on the first protective layer, the second protective layer covering the branches of the first electrode; forming a second electrode On the second protective layer, the second electrode is in the form of a sheet and covers the branches of the first electrode; and ★ performs a laser opening tempering process to form a plurality of third openings in the second protective layer. Holes, the third openings correspond to the second type of impurity regions, and the second electrode is filled The third openings are inserted to connect to the second type doping regions. 2. The manufacturing of the solar cell according to claim 1, wherein the first-laser doping process comprises: opening a first type of dopant material layer on the first protective layer, the first 15 36259twf.doc/n 201225325 7 , 厶 1 type dopant material layer has a first type of dopant; a laser beam is provided on the first type dopant material layer and the 〆 protection layer to form Forming the first type of doped region in the first type of doped region; and forming the first type of doped region; Material layer. 3. The method of manufacturing a solar cell according to claim 1, wherein the second laser doping process comprises: forming a second type dopant material layer on the first protective layer, the second The type of dopant material layer has a second type dopant; a laser beam is provided on the second type dopant material layer and the first protection layer to form the second openings and the first A second type dopant in the layer of the type II dopant material is added to the semi-conducting plate to form the second type doped region; and the second type dopant layer is removed. 4. The method of manufacturing a solar cell according to claim 1, wherein the method of forming the first electrode comprises a screen printing process. 5. The method of manufacturing a solar cell according to claim 4, further comprising performing a tempering process after forming the first electrode. 6. The method of manufacturing a solar cell according to claim 1, further comprising roughening the second surface of the semiconductor substrate. 7. The method of fabricating a solar cell according to claim 1, further comprising forming an anti-reflection coating layer 201225325 AU1008027 36259 twf.doc/n on the second surface of the semiconductor substrate. 8. A solar cell, comprising: a semiconductor substrate having a first surface and a second surface opposite to the first surface, the semiconductor substrate having a plurality of first type doped regions in the first surface And a plurality of second type doping regions; a first protective layer disposed on the first surface of the semiconductor substrate, the first protective layer having a plurality of first openings and a plurality of second openings, The first opening corresponds to the first type doped regions, and the second openings correspond to the second type doped regions; a first electrode is disposed on the first protective layer, the first The electrodes are filled in the first openings to be connected to the first type doping regions, the first electrodes are comb-shaped and have a plurality of branches parallel to each other; a second protective layer disposed on the first protective layer The second protective layer covers the branches of the first electrode, and the second protective layer has a plurality of third openings, and the third openings correspond to the second type doped regions; a second electrode covering the second protective layer, the second electrode filling the third openings In a second type connected to the doped region, the second electrode is a sheet-like cover the first electrodes and the plurality of branches. 9. The solar cell of claim 8, wherein the second surface of the semiconductor substrate is a roughened surface. 10. The solar cell of claim 8, further comprising an anti-reflection layer disposed on the second surface of the semiconductor substrate. 11. The solar cell of claim 8, wherein the semiconductor substrate comprises a negative type lightly doped semiconductor substrate. The solar cell of claim 8, wherein the first type doped region comprises a negative type heavily doped region. 13. The solar cell of claim 8, wherein the second doped region comprises a positive heavily doped region. 14. The solar cell of claim 8, wherein the first openings comprise a plurality of trenches. 15. The solar cell of claim 8, wherein the second openings and the third openings comprise a plurality of trenches. 16. The solar cell of claim 8, wherein the material of the first electrode comprises silver. 17. The solar cell of claim 8, wherein the material of the second electrode comprises aluminum.
TW099141947A 2010-12-02 2010-12-02 Solar cell and manufacturing method thereof TWI497737B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW099141947A TWI497737B (en) 2010-12-02 2010-12-02 Solar cell and manufacturing method thereof
CN2011100267381A CN102157612B (en) 2010-12-02 2011-01-20 Solar cell and method for manufacturing same
US13/038,388 US20120138127A1 (en) 2010-12-02 2011-03-02 Solar cell and manufacturing method thereof
US14/303,616 US20140295612A1 (en) 2010-12-02 2014-06-13 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099141947A TWI497737B (en) 2010-12-02 2010-12-02 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201225325A true TW201225325A (en) 2012-06-16
TWI497737B TWI497737B (en) 2015-08-21

Family

ID=44438936

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141947A TWI497737B (en) 2010-12-02 2010-12-02 Solar cell and manufacturing method thereof

Country Status (3)

Country Link
US (2) US20120138127A1 (en)
CN (1) CN102157612B (en)
TW (1) TWI497737B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506808B (en) * 2013-05-08 2015-11-01 Gintech Energy Corp Method for manufacturing solar cell and solar cell
TWI509826B (en) * 2013-10-09 2015-11-21 Neo Solar Power Corp Back-contact solar cell and manufacturing method thereof
TWI601303B (en) * 2012-12-21 2017-10-01 太陽電子公司 Metal-foil-assisted fabrication of thin-silicon solar cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664015B2 (en) * 2011-10-13 2014-03-04 Samsung Sdi Co., Ltd. Method of manufacturing photoelectric device
CN103531653B (en) * 2012-07-06 2016-02-10 茂迪股份有限公司 Back contact solar battery and manufacture method thereof
CN102800716B (en) * 2012-07-09 2015-06-17 友达光电股份有限公司 Solar battery and manufacturing method thereof
US8912071B2 (en) 2012-12-06 2014-12-16 International Business Machines Corporation Selective emitter photovoltaic device
US8642378B1 (en) 2012-12-18 2014-02-04 International Business Machines Corporation Field-effect inter-digitated back contact photovoltaic device
TWI488319B (en) * 2013-01-22 2015-06-11 Motech Ind Inc Solar cell, method of manufacturing the same and module comprising the same
WO2016025655A1 (en) * 2014-08-12 2016-02-18 Solexel, Inc. Amorphous silicon based laser doped solar cells
CN106252423B (en) * 2016-08-15 2017-12-29 国网山西省电力公司大同供电公司 A kind of novel photovoltaic battery and preparation method thereof
CN115101607B (en) * 2022-06-10 2023-11-14 青海黄河上游水电开发有限责任公司西宁太阳能电力分公司 Solar cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339110B1 (en) * 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture
DE102005033724A1 (en) * 2005-07-15 2007-01-18 Merck Patent Gmbh Printable etching media for silicon dioxide and silicon nitride layers
US20070137692A1 (en) * 2005-12-16 2007-06-21 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
US20070295399A1 (en) * 2005-12-16 2007-12-27 Bp Corporation North America Inc. Back-Contact Photovoltaic Cells
JP4663664B2 (en) * 2006-03-30 2011-04-06 三洋電機株式会社 Solar cell module
WO2009052511A2 (en) * 2007-10-18 2009-04-23 Belano Holdings, Ltd. Mono-silicon solar cells
US20100051085A1 (en) * 2008-08-27 2010-03-04 Weidman Timothy W Back contact solar cell modules
CN101614896B (en) * 2009-06-22 2011-08-31 友达光电股份有限公司 Thin film transistor array substrate, display panel, LCD device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601303B (en) * 2012-12-21 2017-10-01 太陽電子公司 Metal-foil-assisted fabrication of thin-silicon solar cell
TWI506808B (en) * 2013-05-08 2015-11-01 Gintech Energy Corp Method for manufacturing solar cell and solar cell
TWI509826B (en) * 2013-10-09 2015-11-21 Neo Solar Power Corp Back-contact solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
US20140295612A1 (en) 2014-10-02
TWI497737B (en) 2015-08-21
CN102157612B (en) 2013-04-24
CN102157612A (en) 2011-08-17
US20120138127A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
TW201225325A (en) Solar cell and manufacturing method thereof
US10573770B2 (en) Solar cell and method of manufacturing the same
CN109728103B (en) Solar cell
CN102403371B (en) There is the solar cell of the metallic grid of plating
US8759140B2 (en) Solar cell and method for manufacturing the same
CN103700713B (en) Solaode and manufacture method thereof
JP5833350B2 (en) Solar cell and manufacturing method thereof
CN105870215A (en) Rear surface passivation contact battery electrode structure and preparation method thereof
JP2015525961A (en) Solar cell
TW200910618A (en) Solar cell and method for manufacturing the same
US20140251423A1 (en) Solar cell and method of manufacturing the same
JP2017520928A (en) Solar cells
TWI424582B (en) Method of fabricating solar cell
JP2011061020A (en) Back contact solar cell element, and method of manufacturing the same
US8852990B2 (en) Method of fabricating solar cell
KR101038967B1 (en) Solar cell and method for manufacturing the same
KR101045859B1 (en) Solar cell and manufacturing method thereof
JP7453283B2 (en) Semiconductor substrates, solar cells and photovoltaic modules
JP6028982B2 (en) Manufacturing method of solar cell
JP2017045818A (en) Back electrode type solar battery cell and method of manufacturing the same
TWI470815B (en) Silicon-based solar cell and method of fabricating the same
KR20100136640A (en) Solar cell and mehtod for manufacturing the same
KR101212491B1 (en) Method for manufacturing solar cell
KR101588456B1 (en) Solar cell and manufacturing mehtod of the same
KR101212489B1 (en) Method for manufacturing solar cell