TW201225053A - Liquid crystal display and driving circuit thereof - Google Patents
Liquid crystal display and driving circuit thereof Download PDFInfo
- Publication number
- TW201225053A TW201225053A TW99142983A TW99142983A TW201225053A TW 201225053 A TW201225053 A TW 201225053A TW 99142983 A TW99142983 A TW 99142983A TW 99142983 A TW99142983 A TW 99142983A TW 201225053 A TW201225053 A TW 201225053A
- Authority
- TW
- Taiwan
- Prior art keywords
- potential
- capacitor
- developing
- positive
- switch
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
201225053 六、發明說明: 【發明所屬之技術領域】 本發明係有關於液晶顯示器(LCD),且特別有關於驅動 該液晶顯不裔的驅動電路。 【先前技術】 液晶顯示器為薄型電子顯像裝置,利用的是液晶物質 的光調適功能。液晶物質本身並不會發射光線。影像的顯 示是藉控制液晶物質的穿透性(transmission)完成。 對每一個液晶像素,光線的穿透性是由施加於其上的 電壓大小決定。為了防止液晶物質被偏極化(polarization), 連續視訊晝面中,作用於同一像素的電壓需為相反極性。 目前已發展有多種極性反轉技術,包括線反轉(line inversion)、點反轉(dot inversion)以及行反轉(column inversion) ° 極性反轉技術通常需要參考一共模電位(common voltage)。若施加於像素上的電位高於該共模電位,則稱之 為正極性顯像。若施加於像素上的電位低於該共模電位, 則稱之為負極性顯像。以點反轉技術(參考第1A圖)、或行 反轉技術(參考第1B圖)為例,每切換到下一個晝面,各個 像素的極性就必須反轉,此外,同一列且相鄰行的相鄰兩 個像素(例如第一像素P1以及第二像素P2)必須彼此為相反 極性。由於如第一與第二像素P1與P2這樣位於同一列的 像素可能會共用同樣的共模電位來源,此共模電位必須被 201225053 固疋在固定值’通常稱之為定值共模電位(DC vc〇M)。铁 而,此定值共模電位可能使液晶顯示器的㈣電路產生益' 謂的能量雜。以下發_容所列舉的實施方式即是料 論此能量雜’並且揭料除所m肖耗的技術。 【發明内容】 以下揭露-種液晶顯示器以及其中驅動電路。 所述驅動電路是用於驅動所述液晶顯示器的一液 素陣列。該驅動電路至少包括一源極驅動器(s_ driver)、一共模電位驅動器 器(-一―)。味叫 所述源極驅動器包括一第一源極運算放大器。當 晶像素陣列内供應—第—顯像電容的—第—像素二 顯像、且-正極性顯像電位與該第-顯像電I: 一 正極IS:::時:源極運算放大器_ 电位以第―顯像電容的該第-端點。 =共模電位驅動器包括—共模電位運算放大器、 值=及—第二開關。該共模電位運算放大11輪出-定 值f該第-開關於導通時_ 一顯=容: :第二端點至-接地點。至於該第二開關,則是!::的 ::第時,值共模電峨共模運算放大器二於) 至該弟-顯像電容的該第二端點。 〈輸“) 該時序控制器之是設計將降低能量消耗。 為會判斷何時允件兮 Λ寺序控制 m極性顯像電位_該第1像電容 201225053 的該第一端,且更控制 在-種,m弟以及邊弟二開闕的狀態。 後雷—μ ^工申,當該正極性顯像電位鱼兮第一麵 -開關且不時序控制器導通該第 開關之導通狀態以及該第二開關之不導通狀離直= 一 性顯像電位與該第-顯像電容的該第_端之亥正極 開。在—些實施方式中,該時序 結被斷 …第—開關放電該第-顯像電容至零電位。 為了 _紅姉顯像電位至該第—顯像電 =第:源極運算放大器可由一正值供電電位以2 冤源也‘驅動。為了輸出該定值共模電位,該 大器可由該電源地端以及一負值供電電位驅動4運开放 為使本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉貫施例,並配合所附圖示,詳細說明如下。 【實施方式】 以下說明揭露本發明多種實施方式,内容是關於本發 明的主要精神’並非意圖限定本發明的範圍。本發明的範 驚應當要參考申請專利範圍的内容。 第2圖以一方塊圖圖解根據本發明一種實施方式所實 現的一液晶顯示器200。該液晶顯示器2〇〇包括一液晶像 素陣列202以及一驅動電路2〇4。該驅動電路204包括一 閘極驅動H 206、-源極驅動器2〇8、一共模電位驅動器 210以及一時序控制器212。閘極驅動器206是由該時序控 201225053 制器212控制,以逐列掃描該液晶像素陣列202。該源極 驅動,208由該時序控制器、212控制,以提供顯像電位給 正被掃描的像素。共模電位驅動器21〇是由該時序控制器 控制,以供應共模電位給該液晶像素陣列2〇2。在本發明 中,共模電位驅動器21〇的電路以及時序控制器2丨2所提 供的控制方案是特別設計來降低能量消耗。 為了方便5兒明,此處所討論的驅動電路著重於液晶 素陣列202上相鄰的兩個像素(在同一列、相鄰行然而, 适樣的簡化說明並不是意圖限定發明内容。所揭露的結 =照本技術領域所熟知技術擴展,以用於 ^ 像素陣列。 丨文日日 第3A ®圖解液晶像素陣列2〇2上兩個相鄰的 述兩個像素分別命名為-第-像素pi以及—第二像二 P2’且位在該液晶像素陣列搬同—列上相鄰兩行二201225053 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display (LCD), and more particularly to a driving circuit for driving the liquid crystal display. [Prior Art] A liquid crystal display is a thin electronic display device that utilizes a light-adjusting function of a liquid crystal material. The liquid crystal material itself does not emit light. The display of the image is done by controlling the transmission of the liquid crystal material. For each liquid crystal pixel, the penetration of light is determined by the amount of voltage applied to it. In order to prevent the liquid crystal material from being polarized, the voltage applied to the same pixel in the continuous video plane needs to be opposite in polarity. A variety of polarity inversion techniques have been developed, including line inversion, dot inversion, and column inversion. The polarity inversion technique typically requires reference to a common voltage. If the potential applied to the pixel is higher than the common mode potential, it is referred to as positive polarity development. If the potential applied to the pixel is lower than the common mode potential, it is called negative polarity development. Taking the dot inversion technique (refer to Figure 1A) or the row inversion technique (refer to Figure 1B) as an example, the polarity of each pixel must be inverted every time it is switched to the next facet. In addition, the same column and adjacent The adjacent two pixels of the row (for example, the first pixel P1 and the second pixel P2) must be of opposite polarities to each other. Since the pixels in the same column as the first and second pixels P1 and P2 may share the same common mode potential source, the common mode potential must be fixed at 201225053 at a fixed value 'commonly referred to as a fixed common mode potential ( DC vc〇M). Iron, this fixed-value common-mode potential may cause the (four) circuit of the liquid crystal display to generate energy. The embodiment cited in the following is a technique for predicting the energy miscellaneous and exposing the technique. SUMMARY OF THE INVENTION The following discloses a liquid crystal display and a driving circuit therefor. The drive circuit is a liquid crystal array for driving the liquid crystal display. The driving circuit includes at least a source driver (s_driver) and a common mode potential driver (-one). The source driver includes a first source operational amplifier. When the pixel-array array supplies the first-pixel two-image, and the positive-positive imaging potential and the first-image imaging I: a positive electrode IS:::: the source operational amplifier _ The potential is at the first end of the first-developing capacitance. = Common mode potential driver includes - common mode potential operational amplifier, value = and - second switch. The common mode potential operation is amplified by 11 rounds-set value f. The first switch is turned on _1 display = capacity: : second end point to - ground point. As for the second switch, it is :::: the first time, the value of the common mode electrical common mode operational amplifier 2) to the second end of the younger-developing capacitor. <Transmission" The design of the timing controller is to reduce the energy consumption. In order to determine when the component is controlled, the m-polar imaging potential _ the first image capacitor 201225053 of the first end, and more control - Kind, the state of the younger brother and the younger brother. The post-lei-μ^工申, when the positive-side imaging potential of the first side of the fish-switches and the timing controller does not turn on the conduction state of the switch and the The non-conducting of the two switches is straight = the monochromatic developing potential is turned on with the first terminal of the first developing capacitor. In some embodiments, the timing junction is broken... the first switch discharges the first - The developing capacitor is at zero potential. For the _ red 姊 developing potential to the first - developing power = the first: the source operational amplifier can be driven by a positive supply potential with 2 冤 source. In order to output the fixed value common mode The above-mentioned objects, features and advantages of the present invention can be more clearly understood from the power supply ground and a negative power supply potential, as will be described below with reference to the accompanying drawings. The details are as follows. [Embodiment] The following description discloses the present disclosure. The invention is not intended to limit the scope of the invention. The scope of the invention should be referred to the scope of the patent application. FIG. 2 is a block diagram illustrating an embodiment of the invention. A liquid crystal display 200 is realized. The liquid crystal display 2 includes a liquid crystal pixel array 202 and a driving circuit 2〇4. The driving circuit 204 includes a gate driving H 206, a source driver 2〇8, and a common mode. The potential driver 210 and a timing controller 212. The gate driver 206 is controlled by the timing control 201225053 to scan the liquid crystal pixel array 202 column by column. The source driver 208 is controlled by the timing controller, 212. To provide a developing potential to the pixel being scanned, the common mode potential driver 21 is controlled by the timing controller to supply a common mode potential to the liquid crystal pixel array 2 〇 2. In the present invention, the common mode potential driver 21 The circuit and the control scheme provided by the timing controller 2丨2 are specially designed to reduce energy consumption. For the convenience of 5, the discussion here The moving circuit focuses on two adjacent pixels on the liquid crystal array 202 (in the same column, adjacent rows, however, a simplified description is not intended to limit the invention. The disclosed junctions are expanded as is well known in the art. For the pixel array. The two adjacent pixels on the 3A ® graphic liquid crystal pixel array 2〇2 are named as -th-pixel pi and -second image two P2' and In the liquid crystal pixel array moving the same - two adjacent rows on the column
:個f:中,第—像素P1為負極性且第二像素P2為正: 刀二至新的晝面(目前晝面)後,第一像素P1切換為 極性且第二像素P2切換為負極性。 、傍 作正極性顯像、且驅動該第二像素?= 圖揭露—驅動電路,其所消耗的能量遠低=技 分二K 3圖’第一顯像電容C1以及第二顯像電容C2 戈表第3A ϋ的第一像素ρι以及第二像素 — 像電今ci可為第—像素ρι所提供的一液晶電容_ .,,、頁 像電容C2可為第二像素?2所提供的—液-顯 像電容的第-端標號為s_el,第二顯 201225053 第一端標號為Source2,且第一顯像電容Cl的第二端以及 第二顯像電容C2的第二端一同連結至一共模端點VCOM。 除了上述第一以及第二顯像電容C1以及C2,第3B圖 更顯示一第一源極運算放大器302、一第二源極運算放大 器304、一共模電位運算放大器306、一第一開關SW1以 及一第二開關SW2。 上述第一以及第二源極運算放大器302以及304是由 第2圖源極驅動器208供應。為了以正極性驅動供應該第 一顯像電容C1的第一像素P1,第一源極運算放大器302 可由正值供電電位VDDA以及電源地端VSSA供電,且一 正極性顯像電位Datal被傳送給該第一源極運算放大器 302。當掃描該第一像素P1、且該正極性顯像電位Datal 至該第一顯像電容C1之第一端Source 1的搞接被允許時, 正極性顯像電位Datal會經該第一源極運算放大器302耦 接到第一顯像電容C1的第一端Sourcel,以充電該第一顯 像電容C1提供正極性顯像。為了以負極性驅動供應該第二 顯像電容C2的該第二像素P2,,第二源極運算放大器304 可由電源地端VSSA以及負值供電電位nVDDA供電,且 一負極性顯像電位Data2被傳送給該第二源極運算放大器 304。當掃描該第二像素P2、且該負極性顯像電位Data2 至該第二顯像電容C2之第一端Source2的耦接被允許時, 該第二源極運算放大器304將該負極性顯像電位Data2耦 接到第二顯像電容C2的第一端Source2,以放電該第二顯 像電容C2實現負極性顯像。 第3B圖所示的共模電位運算放大器306、第一開關 201225053 SW1以及第二開關SW2是由第2圖所示之共模電位驅動哭 210所供應。參考第3B圖,以下討論共模電位運算放大= 306〜、第一開_ SW1以及第二開關顯的操作。共模電位 運异放大器306可由電源地端VSSA以及負值供電電位 nVDDA供電,用以輸出一定值共模電位DCVC〇M。該第 一開關swi於導通時將該第—以及該第二顯像電容ei以 及C2的第二端(又稱共模端點,標號vc〇M)接地qnd。In the f:, the first pixel P1 is negative and the second pixel P2 is positive: after the knife 2 to the new face (current face), the first pixel P1 is switched to the polarity and the second pixel P2 is switched to the negative Sex. , for positive polarity development, and drive the second pixel? = Figure reveals - the drive circuit, the energy consumed is far lower = technical division 2 K 3 map 'first development capacitor C1 and second development capacitor C2 The first pixel ρι and the second pixel of the 3A 戈 戈 — 像 像 像 can be the first pixel ρι provided by a liquid crystal capacitor _,,, the page image capacitance C2 can be the second pixel? The first end of the second liquid crystal capacitor is labeled s_el, the second end of the second display 201225053 is labeled Source2, and the second end of the first developing capacitor C1 and the second developing capacitor C2 are second. The ends are linked together to a common mode endpoint VCOM. In addition to the first and second developing capacitors C1 and C2, FIG. 3B further shows a first source operational amplifier 302, a second source operational amplifier 304, a common mode potential operational amplifier 306, a first switch SW1, and A second switch SW2. The first and second source operational amplifiers 302 and 304 are supplied from the source driver 208 of FIG. In order to drive the first pixel P1 of the first development capacitor C1 with a positive polarity, the first source operational amplifier 302 can be powered by the positive supply potential VDDA and the power supply ground VSSA, and a positive development potential Data1 is transmitted to The first source operational amplifier 302. When the first pixel P1 is scanned and the positive display potential Data1 is coupled to the first end Source 1 of the first development capacitor C1, the positive display potential Data1 passes through the first source. The operational amplifier 302 is coupled to the first end Source1 of the first developing capacitor C1 to charge the first developing capacitor C1 to provide positive polarity development. In order to drive the second pixel P2 of the second developing capacitor C2 with a negative polarity, the second source operational amplifier 304 can be powered by the power ground terminal VSSA and the negative value power supply potential nVDDA, and a negative polarity developing potential Data2 is It is transmitted to the second source operational amplifier 304. When the second pixel P2 is scanned and the coupling of the negative display potential Data2 to the first end Source2 of the second development capacitor C2 is allowed, the second source operational amplifier 304 images the negative polarity The potential Data2 is coupled to the first end Source2 of the second developing capacitor C2 to discharge the second developing capacitor C2 to achieve negative polarity development. The common mode potential operational amplifier 306, the first switch 201225053 SW1, and the second switch SW2 shown in Fig. 3B are supplied by the common mode potential driving cry 210 shown in Fig. 2. Referring to FIG. 3B, the operation of the common mode potential operation amplification = 306~, the first open_SW1, and the second switch display will be discussed below. The common mode potential shift amplifier 306 can be powered by the power supply ground VSSA and the negative power supply potential nVDDA for outputting a certain value common mode potential DCVC〇M. When the first switch swi is turned on, the first and second developing capacitors ei and the second end of C2 (also referred to as the common mode end point, vc 〇 M) are grounded to qnd.
第二開關SW2於導通時耦接該共模電位運算放大器3〇6所 供應的該定值共模電位DCVCOM至該第一以及該第二顯 像電容C1以及C2的第二端VCOM。 藉由安排該正極性顯像電位Datal與該第一顯像電容 C1之第一端S〇urcel耦接的時間點、該負極性顯像電位 Data2與該第二顯像f容C2之第—端—Μ〗㈣的時間 點、以及控制該第一以及該第二開關SW1以及⑽之狀 態,整體驅動電路的能量消耗可被大幅降低。帛2圖的時The second switch SW2 is coupled to the constant-value common-mode potential DCVCOM supplied from the common-mode potential operational amplifier 3〇6 to the second terminals VCOM of the first and second display capacitors C1 and C2. By arranging the positive polarity imaging potential Data1 to be coupled to the first end S〇urcel of the first developing capacitor C1, the negative imaging potential Data2 and the second imaging f-C2 At the time point of the terminal (Μ) and the state of controlling the first and the second switches SW1 and (10), the energy consumption of the overall driving circuit can be greatly reduced.帛2 graph time
序控制器212所提供的時序控制即是用來控制d咖以及 Sourcel之間的耦接、以及s〇_2之間 及開關SW1以及換。 ㈣ 參考第3B圖,第4圖以波形圖說明端點S〇urce:l、 Wce2以及VC0M的電位、該第—以及該第二開關SW1 與SW2之狀態、第—像素ρι之正極性充電時序、以 一像素P2之負極性放電時序。 如圖所不 ^ 剛關6W1大多數時間是不導 . ”"W2大多數時間是導通,且共模端點之 夕數時候疋固定在共模運算放大器遍所供應的定值去 201225053 模電位DCVCOM。由前一個晝面切換到新的晝面時,第一 開關SW1的導通以及第二開關SW2的不導通可將共模端 點VCOM調適至地端電位GND。以下詳述其内容。 在前一個畫面中’第一顯像電容C1的第一端Soucel 為負極性(電位低於共模端點VCOM之電位),且第二顯像 電容C2的第一端S〇urce2之電位為正極性(電位高於共模 端點VCOM之電位)。在顯示新的一個晝面前,第一以及 毒一顯像電谷C1以及C2之第一端Sourcel以及Souce2可 被接地以放電該第一以及該第二顯像電容C1以及C2,應 φ 付接續的極性反轉程序。同時,第一開關SW1可被導通且 第二開關SW2可切換為不導通,以使第一以及第二顯像電 容C1以及C2之第二端(共模端點,標號VC〇m)接地(調整 到GND) ’第一以及第二顯像電容ci與C2因而可放電至 零電位。The timing control provided by the sequence controller 212 is used to control the coupling between the dca and the sourcel, and between the s〇_2 and the switch SW1 and the switch. (4) Referring to FIG. 3B, FIG. 4 is a waveform diagram illustrating the potentials of the terminals S〇urce:1, Wce2, and VC0M, the state of the first and the second switches SW1 and SW2, and the positive charging timing of the first pixel ρι. The negative discharge timing of one pixel P2. As shown in the figure, the 6W1 is not turned off most of the time. ""W2 is turned on most of the time, and the common mode end point is fixed at the constant value of the common mode operational amplifier. 201225053 The potential DCVCOM, when switching from the previous kneading surface to the new kneading surface, the conduction of the first switch SW1 and the non-conduction of the second switch SW2 can adjust the common mode end point VCOM to the ground potential GND. In the previous picture, 'the first end of the first developing capacitor C1, Soucel, is negative (the potential is lower than the potential of the common mode end point VCOM), and the potential of the first end S〇urce2 of the second developing capacitor C2 is Positive polarity (potential is higher than the potential of the common mode end point VCOM). In front of displaying a new one, the first and the first end of the poison image C1 and C2, Source1 and Souce2, can be grounded to discharge the first And the second developing capacitors C1 and C2, φ should be connected to the polarity reversal procedure. Meanwhile, the first switch SW1 can be turned on and the second switch SW2 can be switched to be non-conducting, so that the first and second images are The second end of capacitor C1 and C2 (common mode end point, label VC m) ground (adjusted to GND) 'the first and second imaging capacitor C2 ci and thus discharged to zero potential.
在端點Sourcel、Source2以及VCOM全被調整到地j 電位GND後’供應該第一以及該第二顯像電容C1以及( :第以及第一像素P1以及P2被掃描,以顯像新的畫面 田該第T像素P1被掃描、且根據該正極性顯像電位 ,電該第—顯像電容C1的動作被致能時,正極性顯像電〆 以及第—顯像電容C1之第—端So繼i之轉接關: :由源極運算放大器3〇2建立。如圖所 ==被充電,且第1像電容C1之第-端8。_ 提升以作正極性顯像。當所述陣列掃描進行到_ :極性顯像電位Datai以及第—顯像電容^之彳 1 wcel斷開’端,點s〇urcel的電位可停止上升,此外 10 201225053 在某些實施方式中,此刻可用來斷開第一開關SW1所形成 的連結且導通第二開關SW2,以調整該共模端點VCOM回 到該定值共模電位DCVCOM。 此段討論耦接該負極性顯像電位Data2至該第二顯像 電容C2的第一端Source2之時機,以根據該負極性顯像電 位Data2放電該第二顯像電容C2。參閱第4圖最下方的波 形,負極性顯像電位Data2以及第二顯像電容C2的耦接關 係可在該正極性顯像電位Datal耦接該第一顯像電容C1之 • 第一端Sourcel —陣子後,由該第二源極運算放大器304 建立。如圖所示,端點Source2的電位被下拉以作負極性 顯示。總結之,當第一以及第二顯像電容C1以及C2被掃 描以顯像新的晝面時,正極性顯像電位Datal與端點 Source 1之間搞接關係的建立時機可早於負極性顯像電位 Data2與端點Source2之間的搞接動作。 以下段落討論為何第4圖所介紹的控制方案可顯著降 低能量耗損。以下以第一像素P1的第一顯像電容C1之充 II 電路徑為例,簡單說明之。 若正極性顯像電位Datal耦接第一顯像電容C1的第一 端Sourcel,第一開關SW1之導通以及第二開關SW2的不 導通會如第5A圖形成第一顯像電容C1的充電路徑,且第 一開關SW1的不導通以及第二開關SW2的導通會如第5B 圖形成第一顯像電容C1的充電路徑。 參考第5A圖,根據第4圖之時間區間T1,充電電流 自第一源極運算放大器302之正值供電電位VDDA流向第 一顯像電容C1,且最終流向地端電位GND。如此一來, 201225053 端點Sourcel自地端電位GND充電至正極性準位時,電流 路徑不涉及共模運算放大器306。因此,充電路後上戶斤經 歷的電位變化為(VDDA-GND) ’遠小於傳統技術所歷經的 電位變化(VDDA-nVDDA)。能量耗損因而降低。 在第5B圖的例子中,關於第4圖之時間區間T2,充 電路徑自第一源極運算放大器302正值供電電位VDDA流 向第一顯像電容ci,且最終流向共模電位運算放大器3〇6 至負值供電電位nVDDA。所幸,雖然這樣的電流路徑存在 相當大的電位變化(自第一源極運算放大器3〇2的正值供電 電位VDDA流向共模電位運算放大器3〇6的負值供電電位 nVDDA),此電容充電路徑仍然不至於消耗過多能量。原因 是共模端點VCQM此時僅需要—小量的電位調整(自地端 電位GND言周整至定值共模電位DCVC〇M)。因此,相較於 傳統技術’能量消耗被大幅改善。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明’任何#悉此項技藝者,在不脫離本發明之精 神和範圍内,當可做些許更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 201225053 【圖式簡單說明】 第1A圖說明—點反轉技術; 第1B圖說明一行反轉技術; ^第2圖為一方塊圖,圖解根據本發明一種實施方式所 貫現的一液晶顯示器200 ; 第3A圖圖解液晶像素陣列2〇2上兩個相鄰像素,位於 同一列且相鄰行; ” 、 鲁After the endpoints Source1, Source2, and VCOM are all adjusted to the ground potential GND, 'the first and second developing capacitors C1 are supplied and the first and second pixels P1 and P2 are scanned to display a new picture. The T pixel P1 is scanned, and according to the positive display potential, when the operation of the first image developing capacitor C1 is enabled, the positive display power and the first end of the first developing capacitor C1 So relays the relay:: It is established by the source operational amplifier 3〇2. As shown in the figure == is charged, and the first image capacitor C1 is at the end-end 8. _ is boosted for positive development. The array scan is performed until _: polarity development potential Datai and the first development capacitor 彳1 wcel disconnects the end, the potential of the point s〇urcel can stop rising, in addition 10 201225053 in some embodiments, now available The connection formed by the first switch SW1 is turned off and the second switch SW2 is turned on to adjust the common mode end point VCOM to return to the constant value common mode potential DCVCOM. This paragraph discusses coupling the negative polarity development potential Data2 to the The timing of the first terminal Source2 of the second developing capacitor C2 is based on the negative polarity developing potential Data2 Discharging the second developing capacitor C2. Referring to the waveform at the bottom of FIG. 4, the coupling relationship between the negative developing potential Data2 and the second developing capacitor C2 can be coupled to the first display at the positive developing potential Data1. Like the first terminal Source1 of the capacitor C1, it is established by the second source operational amplifier 304. As shown, the potential of the terminal Source2 is pulled down for negative polarity display. In summary, when the first and the first When the two developing capacitors C1 and C2 are scanned to develop a new surface, the timing of establishing the connection between the positive imaging potential Data1 and the end point Source 1 may be earlier than the negative imaging potential Data2 and the end point Source2. The following paragraphs discuss why the control scheme described in Figure 4 can significantly reduce the energy consumption. The following is a brief description of the charging path of the first developing capacitor C1 of the first pixel P1. If the positive development potential Data1 is coupled to the first terminal Source1 of the first development capacitor C1, the conduction of the first switch SW1 and the non-conduction of the second switch SW2 form a charging path of the first development capacitor C1 as shown in FIG. 5A. And the first switch SW1 does not The conduction and the conduction of the second switch SW2 form a charging path of the first developing capacitor C1 as shown in Fig. 5B. Referring to Fig. 5A, according to the time interval T1 of Fig. 4, the charging current is positive from the first source operational amplifier 302. The value supply potential VDDA flows to the first developing capacitor C1 and finally flows to the ground potential GND. Thus, when the 201225053 terminal Source1 is charged from the ground potential GND to the positive polarity, the current path does not involve the common mode operational amplifier 306. . Therefore, the potential change experienced by the charger after the charging path is (VDDA-GND)' much smaller than the potential change (VDDA-nVDDA) experienced by the conventional technology. Energy consumption is thus reduced. In the example of FIG. 5B, with respect to the time interval T2 of FIG. 4, the charging path flows from the first source operational amplifier 302 positive supply potential VDDA to the first development capacitor ci, and finally to the common mode potential operational amplifier 3〇. 6 to negative supply potential nVDDA. Fortunately, although there is a considerable potential change in such a current path (from the positive supply potential VDDA of the first source operational amplifier 3〇2 to the negative supply potential nVDDA of the common mode potential operational amplifier 3〇6), this capacitor is charged. The path still does not consume too much energy. The reason is that the common mode endpoint VCQM only needs a small amount of potential adjustment (from the ground potential GND to the fixed value common mode potential DCVC 〇 M). Therefore, the energy consumption is greatly improved compared to the conventional technology. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. 201225053 [Simplified Schematic Description] FIG. 1A illustrates a dot inversion technique; FIG. 1B illustrates a row inversion technique; and FIG. 2 is a block diagram illustrating a liquid crystal display 200 according to an embodiment of the present invention. Figure 3A illustrates two adjacent pixels on the liquid crystal pixel array 2〇2, in the same column and adjacent rows; ”, Lu
第3B圖採用兩個顯像電容C1以及c2代表第3八圖的 動::鄰像素P1以及p2,且圖解此二相鄰像素的基本驅Figure 3B uses two development capacitors C1 and c2 to represent the motion of the third diagram: adjacent pixels P1 and p2, and illustrates the basic drive of the two adjacent pixels.
^ * 4 ® Sourcel ^ Source2 ^ VC0M a ®開關s W1與第二開關S W2之狀態、第一像 ^1;之正極性充電時序、以及第二像素Μ之負極性充電 步圖圖解第 网Ί豕电谷 ^ SW1導通且第二開關SW2不導通、且正極性顯像電 atal與端點Wcel之間的麵接狀態成立;且 開關第^圖圖解第—顯像電容C1的充電路徑,其中第― 位D t 1 ^導通且第二開關則導通、且正極性顯像電 aa。端點S〇urcel之間的麵接狀態成立。 【主要元件符號說明】 200〜液晶顯示器; 202〜液晶像素陣列; 201225053 204〜驅動電路; 206〜閘極驅動器; 208〜源極驅動器; 210〜共模電位驅動器; 212〜時序控制器; 302、304〜第一、第二源極運算放大器; 306〜共模電位運算放大器;^ * 4 ® Sourcel ^ Source2 ^ VC0M a ® switch s W1 and second switch S W2 state, first image ^1; positive charge timing, and second pixel Μ negative charge step diagram diagram network豕电谷^ SW1 is turned on and the second switch SW2 is not turned on, and the surface connection state between the positive polarity image electric atal and the end point Wcel is established; and the switch diagram illustrates the charging path of the first image developing capacitor C1, wherein The first bit D t 1 ^ is turned on and the second switch is turned on, and the positive polarity display is aa. The facet state between the endpoints S〇urcel is established. [Main component symbol description] 200 ~ liquid crystal display; 202 ~ liquid crystal pixel array; 201225053 204 ~ drive circuit; 206 ~ gate driver; 208 ~ source driver; 210 ~ common mode potential driver; 212 ~ timing controller; 304~first and second source operational amplifiers; 306~ common mode potential operational amplifiers;
Cl、C2〜第一、第二顯像電容;Cl, C2~ first and second developing capacitors;
Datal、Data2〜正、負極性顯像電位; 癱 DCVCOM〜定值共模電位; GND〜接地; nVDDA〜負值供電電位; PI、P2〜第一、第二像素;Datal, Data2~ positive and negative development potential; 瘫 DCVCOM~ fixed value common mode potential; GND~ground; nVDDA~ negative value supply potential; PI, P2~ first and second pixels;
Sourcel、Source2〜第一、第二顯像電容C1、C2各自 的第一端; SW1、SW2〜第一、第二開關; Ή、T2〜時間區間; φ VC0M〜共模端點; VDDΑ〜正值供電電位; VSSA〜電源地端。 14Sourcel, Source2~ first and second developing capacitors C1, C2 respective first ends; SW1, SW2~ first and second switches; Ή, T2~ time interval; φ VC0M~ common mode end; VDDΑ~正Value supply potential; VSSA ~ power ground. 14
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99142983A TWI433129B (en) | 2010-12-09 | 2010-12-09 | Liquid crystal display and driving circuit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99142983A TWI433129B (en) | 2010-12-09 | 2010-12-09 | Liquid crystal display and driving circuit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201225053A true TW201225053A (en) | 2012-06-16 |
TWI433129B TWI433129B (en) | 2014-04-01 |
Family
ID=46726064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99142983A TWI433129B (en) | 2010-12-09 | 2010-12-09 | Liquid crystal display and driving circuit thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI433129B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110544460B (en) * | 2018-05-28 | 2022-02-22 | 奇景光电股份有限公司 | Liquid crystal display and dynamic compensation system of common electrode voltage thereof |
-
2010
- 2010-12-09 TW TW99142983A patent/TWI433129B/en active
Also Published As
Publication number | Publication date |
---|---|
TWI433129B (en) | 2014-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6590552B1 (en) | Method of driving liquid crystal display device | |
TWI283846B (en) | Display device, drive circuit for the same, and driving method for the same | |
JP3799308B2 (en) | Liquid crystal display | |
US5936598A (en) | Capacitive load drive circuit and method | |
EP1003151A3 (en) | Active matrix type semiconductor display device | |
US9966040B2 (en) | Display device and driving method thereof | |
JP4794542B2 (en) | Multi-grade electrical level drive | |
CN101783121A (en) | Liquid crystal display device, and driving method and integrated circuit used in same | |
JP2008158491A5 (en) | ||
TW201008115A (en) | Output stage circuit and operational amplifier | |
TW201225053A (en) | Liquid crystal display and driving circuit thereof | |
JP2007101570A (en) | Driving device, electrooptical apparatus, electronic equipment, and driving method | |
TWI408663B (en) | Driving circuit and lcd system including the same | |
CN101154365A (en) | Drive circuit, electrooptical device and electronic equipment | |
WO2015000273A1 (en) | Array substrate, display panel and display device | |
TW200912869A (en) | Image display device, display panel and method of driving image display device | |
JP2007206469A (en) | Liquid crystal display device | |
TWI291683B (en) | Output equipment and its driver | |
JP2002358050A (en) | Liquid crystal driving device | |
US7576735B2 (en) | Power circuit applying AC voltage and DC voltage to respective terminals of a capacitor, for outputting AC voltage shifted in accordance with the DC voltage | |
JP6632865B2 (en) | Semiconductor device having booster and booster circuit | |
TWI377549B (en) | Pixel, display panel and driving method thereof | |
JP4606577B2 (en) | Liquid crystal display device | |
TWI229312B (en) | Method and the circuit for driving a liquid crystal display | |
US8477128B2 (en) | Driving circuit for liquid crystal pixel array and liquid crystal display using the same |