TW201223690A - Method and apparatus of machine tools for intelligently compensating thermal error - Google Patents

Method and apparatus of machine tools for intelligently compensating thermal error Download PDF

Info

Publication number
TW201223690A
TW201223690A TW99142950A TW99142950A TW201223690A TW 201223690 A TW201223690 A TW 201223690A TW 99142950 A TW99142950 A TW 99142950A TW 99142950 A TW99142950 A TW 99142950A TW 201223690 A TW201223690 A TW 201223690A
Authority
TW
Taiwan
Prior art keywords
thermal error
machine
thermal
warm
error
Prior art date
Application number
TW99142950A
Other languages
Chinese (zh)
Other versions
TWI448353B (en
Inventor
Jui-Yiao Su
Ching-Shun Chen
yan-chen Liu
Feng-Ming Ou
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099142950A priority Critical patent/TWI448353B/en
Priority to CN2010106062709A priority patent/CN102540884A/en
Publication of TW201223690A publication Critical patent/TW201223690A/en
Application granted granted Critical
Publication of TWI448353B publication Critical patent/TWI448353B/en

Links

Landscapes

  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Feedback Control In General (AREA)

Abstract

A method and apparatus of machine tools for intelligently compensating thermal error is disclosed. It comprises capturing heat behavior data, selecting warming-up stable situation by experts, constructing warming-up characteristic description with method of support vector data description with stable temperature information, screening by warming-up characteristic description to conform to the heat behavior in stable situation, constructing thermal error model with method of support vector regression, and detecting warming-up on line and computing thermal error.

Description

201223690 六、發明說明: 【發明所屬之技術領域】 =發明係與工具機熱誤差調適有關,特別是關於 具暖機判斷與自適應學習的且 、種 其方法。 u予㈣工具機熱誤差智慧調適裝置及 【先前技術】 機械進Γί卫過程’無論馬達、液I系統和 丁能量轉換’不論轉換途徑為何’大多 i導致:’ ΐ些熱1造成機體内部與周遭的溫度變化,最 尺彻轉蝴,_誤差(圖 的課題熱誤上的問題是精密機械研發過程令永遠必須面對 _是由熱誤差所貢獻,:見差量約有 影響,扮演著絕對關鍵的角色〜機加工精度之 狀能ϋ ’為減少熱誤差干擾,需使機11溫升達到稃定 ,(或稱瞻態)之後,再開始進行 達二疋 夕仰賴/广驗判斷暖機與否,如圖3、圖4所。示 方式^種差的因應策略主要可分為兩種 預測模型,以軟體;弋方式,猎由建構工具機熱誤差 則是採用主動誤差量晴 制方式’於設計階段即設法绩士e廷立山田201223690 VI. Description of the invention: [Technical field to which the invention belongs] = The invention is related to the thermal error adjustment of the machine tool, especially regarding the method of warm-up judgment and adaptive learning. u (4) tool machine thermal error intelligent adjustment device and [prior art] mechanical advancement 卫 wei process 'regardless of motor, liquid I system and Ding energy conversion' regardless of the conversion path 'most of the i caused: ' ΐ some heat 1 caused inside the body and The temperature changes around it, the most accurate, _ error (the problem of the hot problem of the figure is that the precision machine development process must always face _ is contributed by the thermal error: see the difference has an impact, play Absolutely critical role ~ machining accuracy can be 'in order to reduce thermal error interference, the machine 11 temperature rise must be reached, (or called the state), then start to go to the second eve of the reliance / extensive judgment to warm up Whether or not, as shown in Fig. 3 and Fig. 4. The response strategy of the method is mainly divided into two kinds of prediction models, which are soft and squatting, and the thermal error of the construction tool is based on the active error quantity. In the design stage, I will try my best to e-Ting Li Shan

降低’其目的在於控制或避免熱誤差 .°、產生I 制與被動補償之研而偽 、、成。關於主動抑 貝之研九與技術概況,分別歸納如表-與表二 201223690 所列。 表 工 採取手段 代表文獻 __ 熱流控制 1·外部熱源:環境恆溫控制與結構熱隔絕[2]、結構主動冷卻[3,4]。 ------------ 一冷部[2,5,6]與熱源溫度控制[7]。 1其他材料選擇[8]。 結構最佳化設計 2.誤差分析與對稱構型設計[5,9,1〇]。 --------- 土兔^配置與硬體補償設計[11 j 21。 表二、工具機熱誤差被動補償 |取手段 内涵與代表文獻 _5歸分析補償模型 數學統計模型,適合穩態熱誤差的補償「13141。 土辞經網路模型 數學統計模型’適合穩態熱誤差的補償C13 151。 素分析模型 _^型縫含工具機結構之物理眘訊,實際應用仍豆困難度丨13]。 __^態模型 可適應不同運作條件或環境變異的誤差模型[丨6_丨9]。 業界技術 '----- OKUMA熱親和概念[5]、MAZAK智慧熱防護[1〇]、MIKRON 制[20]、FANUC人工智慧熱補償[21]。 鲁 相較於主動熱抑制的設計方式,採取熱誤差軟體補償 之手丨又更具有便利性且符合經濟效益,它並非直接移除或 ,少工具機產生之熱誤差,而是利用實驗量測結果進行運 异分析,藉由軟體方式來彌補誤差之影響,此種方法也廣 乂國外工具機廠使用’例如曰本Mazak與〇kUma、瑞士 Mikrcm等。因此,如何改善現有補償技術,研發更精確、 4 201223690 更可靠的熱誤差補償方法,乃是工具機業者長期以來持續 投入的目標。 然而,從過去之研究成果發現,對於工具機穩態的熱 誤差問題,採用數學統計之靜態補償模型雖可獲得不錯之 效果,但是對於暫(動)態之熱誤差問題,卻是相當棘手、 不易處理,至今國内業者對於此類問題仍是無法解決。 基於上述問題,發明人提出了一種工具機熱誤差智慧 調適裝置及其方法,以克服現有技術的缺陷。 Φ 文獻參考: [1] Bryan,J. B,,1990, “International status of thermal error research,55 Annals of the CIRP 39/2, pp.645-656.Reduced' is intended to control or avoid thermal errors. °, to produce I and passive compensation research and pseudo-, and. The research and technical overview of the active anti-Bei-Jie and the technical overview are summarized in Table- and Table 2 201223690. Table Workers Take the means to represent the literature __ Heat flow control 1 · External heat source: environmental thermostatic control and structural thermal insulation [2], structural active cooling [3, 4]. ------------ A cold part [2, 5, 6] and heat source temperature control [7]. 1 Other material selection [8]. Structural optimization design 2. Error analysis and symmetrical configuration design [5,9,1〇]. --------- Soil rabbit ^ configuration and hardware compensation design [11 j 21. Table 2, tool machine thermal error passive compensation | taking means connotation and representative literature _5 return analysis compensation model mathematical statistical model, suitable for steady-state thermal error compensation "13141. Earth lexical network model mathematical statistical model" suitable for steady-state heat Error compensation C13 151. Prime analysis model _^ type seam contains the physical caution of the machine tool structure, the actual application is still difficult 丨13]. __^ state model can adapt to different operating conditions or environmental variation error model [丨6 _丨9]. Industry technology '----- OKUMA thermal affinity concept [5], MAZAK smart thermal protection [1〇], MIKRON system [20], FANUC artificial intelligence thermal compensation [21]. Lu Xiang is more active than The design of thermal suppression is more convenient and economical by adopting the thermal error software compensation. It is not directly removing or less thermal error generated by the machine tool, but using the experimental measurement results for the analysis of the difference. By means of software to compensate for the impact of errors, this method is also widely used in foreign tool machine factories, such as 曰本Mazak and 〇kUma, Switzerland Mikrcm, etc. Therefore, how to improve the existing compensation technology, research and development more accurate 4 201223690 The more reliable thermal error compensation method is the long-term goal of the tool machine industry. However, from the past research results, it is found that the static compensation model using mathematical statistics can be used for the thermal error of the steady state of the machine tool. Obtaining good results, but the thermal error of the temporary (moving) state is quite tricky and difficult to handle. So far, the domestic industry is still unable to solve such problems. Based on the above problems, the inventor proposed a tool machine heat. Error intelligence adapting device and method thereof to overcome the defects of the prior art. Φ References: [1] Bryan, J. B,, 1990, "International status of thermal error research, 55 Annals of the CIRP 39/2, pp. 645-656.

[2] MAKIN0 website www.makino.co.ip [3] Muto,A·, 200.5,“Machine tool with a feature for preventing a thermal deformation,” U.S. Patent, No. 6,923,603.[2] MAKIN0 website www.makino.co.ip [3] Muto, A·, 200.5, “Machine tool with a feature for preventing a thermal deformation,” U.S. Patent, No. 6,923,603.

[4] YASDA website www.vasda.co.ip 丨· [5] OKUMA website www.okuma.co.ip [6] 銀泰科技股份有限公司網頁 www. pmi-amt. com [7] M0RISEIKI website www.moriseiki.com/dixi/en2lish/products/control.html [8] Rahman, M., Mansur, M.A., and Karim, M.B., 2001, “Non-conventional materials for machine tool structures,” JSME Int. J., Series C, Vol. 44, No. 1, pp.1-11 · [9] Slocum, A.H., 1992, Precision Machine Design, Society 201223690 of Manufacturing Engineers, 1st Edition.[4] YASDA website www.vasda.co.ip 丨· [5] OKUMA website www.okuma.co.ip [6] Yintai Technology Co., Ltd. www.pmi-amt.com [7] M0RISEIKI website www.moriseiki .com/dixi/en2lish/products/control.html [8] Rahman, M., Mansur, MA, and Karim, MB, 2001, “Non-conventional materials for machine tool structures,” JSME Int. J., Series C , Vol. 44, No. 1, pp.1-11 · [9] Slocum, AH, 1992, Precision Machine Design, Society 201223690 of Manufacturing Engineers, 1st Edition.

[10] MAZAK website www.mazak.com [11] Kobari, T. and Takada, R., 1999,“Shuttle table device,,5 Japan patent, No. 11-267938.[10] MAZAK website www.mazak.com [11] Kobari, T. and Takada, R., 1999, "Shuttle table device,, 5 Japan patent, No. 11-267938.

[12] Kato, K. and ITO, T., 2006, "Machine tool and posture maintenance device,5, Japan patent, No. 2006-341328.[12] Kato, K. and ITO, T., 2006, "Machine tool and posture maintenance device,5, Japan patent, No. 2006-341328.

[13] Ramesh, R.,Mannan, M.A. and Poo A.N.,2000, “Error Compensation in Machine Tools - A Review Part II: Thermal Errors,55 Int. J. Mach. Tools Manufact., Vol. 40, pp.1257-1284.[13] Ramesh, R., Mannan, MA and Poo AN, 2000, “Error Compensation in Machine Tools - A Review Part II: Thermal Errors, 55 Int. J. Mach. Tools Manufact., Vol. 40, pp.1257 -1284.

[14] Yang, J.G., Ren, Y.Q., Liu, G.L., Zhao, H.T., Dou, X.L., Chen, W.Z., and He, S.W., 2005, "Testing, variable selecting and modeling of thermal errors on an INDEX-G200 turning center,,5 Int. J. Adv. Manuf. Technol., Vol. 26, pp.814-818.[14] Yang, JG, Ren, YQ, Liu, GL, Zhao, HT, Dou, XL, Chen, WZ, and He, SW, 2005, "Testing, variable selection and modeling of thermal errors on an INDEX-G200 Turning center,,5 Int. J. Adv. Manuf. Technol., Vol. 26, pp.814-818.

[15] Kang, Y” Chang,C.W.,Huang, Y” Hsu,C丄.,Nieh, I.F., 2007,“Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools,” Int. J. Mach. Tools Manufact., Vol. 47, pp.376-387.[15] Kang, Y" Chang, CW, Huang, Y" Hsu, C丄., Nieh, IF, 2007, "Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools," Int. J Mach. Tools Manufact., Vol. 47, pp.376-387.

[16] Ramesh, R., Mannan, M.A. Poo, A.N., and Keerthi, S.S., 2003, “Thermal error measurement and modelling in machine tools. Part I. Influence of varying operating conditions,” Int. J. Mach. Tools Manufact., Vol. 43, 201223690 pp.391-404.[16] Ramesh, R., Mannan, MA Poo, AN, and Keerthi, SS, 2003, “Thermal error measurement and modelling in machine tools. Part I. Influence of varying operating conditions,” Int. J. Mach. Tools Manufact ., Vol. 43, 201223690 pp.391-404.

[17] Ramesh, R., Mannan, M.A. Poo, A.N., and Keerthi, S.S., 2003, “Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian Network—support vector machine model,5, Int. J. Mach. Tools Manufact., Vol. 43, pp.405-419.[17] Ramesh, R., Mannan, MA Poo, AN, and Keerthi, SS, 2003, “Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian Network—support vector machine model, 5, Int. J. Mach. Tools Manufact., Vol. 43, pp.405-419.

[18] Yang,H. and Ni, J.,2005, “Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy,’’ Int. J. Mach. Tools Manufact., Vol. 45, pp.1-11.[18] Yang, H. and Ni, J., 2005, “Adaptive model estimation of machine-tool thermal errors based on recursive dynamic modeling strategy,'' Int. J. Mach. Tools Manufact., Vol. 45, pp. 1-11.

[19] Yang, H. and Ni, J., 2005, "Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error/5 Int. J. Mach. Tools Manufact., Vol. 45, pp.455-465.[19] Yang, H. and Ni, J., 2005, "Dynamic neural network modeling for nonlinear, nonstationary machine tool, thermally induced error/5 Int. J. Mach. Tools Manufact., Vol. 45, pp.455- 465.

[20] MIKRON website www.mikron.com [21] FANUC website www.fanuc.co.ip 鲁[22] Vapnik,V., Golowich, S. and Smola, A. J., 1997, “Support vector method for function approximation, regression estimation, and signal processing, ’’ in Advances in Neural Information Processing Systems, Vol. 9, pp. 281-287 [23] D. Tax and R. Duin, “Support vector data description,” Machine Learning, vol. 54, pp. 45-66, 2004 [24] Yi-Hung Liu, Yu-Kai Huang, and Ming-Jui Lee, 201223690 “Automatic inline-defect detection for TFT-LCD array process using locally linear embedding and support vector data description,Measurement Science and Technology, vol. 19, August 2008 [25] Yi-Hung Liu, Szu-Hsein Lin, Yi-Ling Hsueh, and Ming-Jiu Lee, Automatic target defect identification for TFT-LCD array process inspection using kernel fuzzy c-means based fuzzy SVDD ensemble”,Expert Systems with Applications, vol. 40, 2008 【發明内容】 本發明目的在於提供一種以支持向量迴歸(Support Vector Regression,SVR)[22]當做熱誤差模型,利用支持向 量資料描述(Support Vector Data Description,SVDD)[23] 建構穩態模式範圍,以即時進行線上調整熱誤差的工具機 熱誤差智慧調適裝置及其方法。 本發明的另一目的,在於提供一種可針對不同外部環 土兄之溫度變化’以進行增量學習的工具機熱誤差智慧調適 裝置及其方法。 為達上述目的,本發日㈣提供_種工具祕誤差智慧調 適裝置,包含:-暖機特徵描述建構單心建立該工具機 ^機體溫度分佈向量的—穩態模式範圍;-熱誤差模型 建構早兀’訓練出-非線性熱誤差模型;以及一暖機判斷 與熱誤差運算單元,藉由綠南# 由5貝取该工具機上若干溫度感測訊 k以及紅具機之-運轉條件資訊,判斷該工具機之暖機 201223690 狀態,計算出至少一節點之熱誤差補償量。 „„ Ί。玄"1*具機熱§吳差智慧5周適裝置更包括-增量學習 早兀’可適應地作參數調整,以確保熱誤差模型之準確性。 適方目的,本發㈣提供—種工具频誤差智慧調 f IP、乂驟包合.萃取熱行騎料;由專家選定暖機 疋狀悲,以穩定狀態溫度資訊建 ::咖述筛選符合穩定狀態之熱定:: 誤差、運丁=訊建構熱誤差模型;線上暖機判斷並且進㈣ -Λ中’f工具機熱誤差智慧調適方法更包括增量學習, 猎以適應環境改變與機台史數 文獻[24][25]。 ,數飄移’類似概綠參考引用 【實施方式】 雖然本發明使用了幾個較佳實施例進行 方式的僅僅是本發明的較佳實施例5說 ㈣疋下面所揭不的具體實施方式僅僅 子於下列圖式及具體實施方工 方塊圖。 具機熱衫智慧調適裳置的 本實施例的工具機熱誤差智慧調適裝置 八機10上主要包含-暖機特徵描述建構單元2、—^一 ?型建構單元3、熱縣 二、= 量學習單元5。 早凡4及一增 請參考圖6,暖機特徵γ + — 射 田述建構早兀2以支持向量資料 201223690 描述(SVDD)建立工具機之一機體溫度分佈向量的一穩態 模式範圍,即以支持向量資料描述(SVDD)確認在工具機的 各節點a〜d的溫度狀態達到穩定狀態,直到支持向量資料 描述(SVDD)之咼維度空間特徵向量分布與預設之穩態模 式範圍的相同。 ^ 以下對支持向量資料描述(SVDD)作詳細說明。 SVDD之目的:由訓練資料估算出判斷函數D(x),其 中,[20] MIKRON website www.mikron.com [21] FANUC website www.fanuc.co.ip Lu [22] Vapnik, V., Golowich, S. and Smola, AJ, 1997, “Support vector method for function approximation, Regression estimation, and signal processing, ''in Advances in Neural Information Processing Systems, Vol. 9, pp. 281-287 [23] D. Tax and R. Duin, “Support vector data description,” Machine Learning, vol. 54 , pp. 45-66, 2004 [24] Yi-Hung Liu, Yu-Kai Huang, and Ming-Jui Lee, 201223690 "Automatic inline-defect detection for TFT-LCD array process using locally linear embedding and support vector data description, Measurement Science and Technology, vol. 19, August 2008 [25] Yi-Hung Liu, Szu-Hsein Lin, Yi-Ling Hsueh, and Ming-Jiu Lee, Automatic target defect identification for TFT-LCD array process inspection using kernel fuzzy c -means based fuzzy SVDD ensemble", Expert Systems with Applications, vol. 40, 2008 [Invention] The present invention aims to provide a support vector regression (Support Vector R) Egression, SVR) [22] as a thermal error model, using Support Vector Data Description (SVDD) [23] to construct a steady-state mode range, to instantly adjust the thermal error of the machine tool thermal error smart adaptation device and Its method. Another object of the present invention is to provide a machine tool thermal error smart adaptation apparatus and method thereof that can perform incremental learning for different external temperature changes. In order to achieve the above objectives, this issue (4) provides a tool-intelligence error adjustment device, including: - warm-up feature description to construct a single-hearted machine tool body temperature distribution vector - steady-state mode range; - thermal error model construction Early 兀 'training out - nonlinear thermal error model; and a warm-up judgment and thermal error calculation unit, by Green South # 5 from the machine tool on the temperature sensing signal k and the red machine - operating condition information Determine the state of the warm-up 201223690 of the machine tool and calculate the thermal error compensation amount of at least one node. „„ Ί. Xuan"1* has a machine heat § Wu difference wisdom 5 week suitable device also includes - incremental learning early 兀 'adaptable parameter adjustment to ensure the accuracy of the thermal error model. For the purpose of the appropriate party, this issue (4) provides a tool frequency error wisdom adjustment f IP, sudden inclusion. Extraction hot riding; selected by the expert warm-up sorrow, to stabilize the state temperature information:: coffee screening The heat setting in accordance with the steady state:: error, transport = signal construction thermal error model; online warm-up judgment and advance (4) - Λ中 'f machine tool thermal error wisdom adjustment method includes incremental learning, hunting to adapt to environmental changes and Machine history literature [24] [25]. Number drifting 'similar to green reference' [Embodiment] Although the present invention uses several preferred embodiments, only the preferred embodiment of the present invention is described. (4) The specific embodiment disclosed below is only a sub- The following figures and specific implementation block diagrams. The machine tool thermal error intelligent adjustment device of the present embodiment with the smart sweater smart adjustment skirt is mainly included - the warm-up feature description construction unit 2, the -1 type construction unit 3, the hot county 2, = quantity Learning unit 5. For the 4th and 1st increase, please refer to Figure 6. The warm-up feature γ + — 射田述建早兀2 to support vector data 201223690 Description (SVDD) establishes a steady-state mode range of the body temperature distribution vector of the machine tool, ie The support vector data description (SVDD) confirms that the temperature state of each node a~d in the machine tool reaches a steady state until the support vector data description (SVDD) has the same dimensional feature vector distribution and the preset steady state mode range. . ^ The support vector data description (SVDD) is described in detail below. Purpose of SVDD: The judgment function D(x) is estimated from the training data, wherein

D(x) = 1 -及2 + Ζ α凡 exp, ί ιί ——. |xf-xf 丫、 “μ 2 s V ά J -2£a,expD(x) = 1 - and 2 + Ζ α where exp, ί ιί ——. |xf-xf 丫, “μ 2 s V ά J -2£a,exp

SVE>D模型使用:給輪入變數x,判斷x是否落入過往 資料可解釋之範圍之中;Z)(x)S〇表示可適用,_D(x)>〇則 否。 建模過程: 1) .訂定參數σ、C欲驗證範圍中的所有組合,挑選其 中一組&,C); 2) ·進行k-fold,將穩態的實驗資料隨機均分為I组, 取其中々―1組作為模型訓練(training)資料(記為The SVE>D model uses: for the round-in variable x, to determine whether x falls within the range that can be explained by the past data; Z)(x)S〇 means applicable, _D(x)>〇No. Modeling process: 1) . Set parameters σ, C to verify all combinations in the range, select one of the groups &, C); 2) · Perform k-fold, randomly divide the steady-state experimental data into I Group, take 々1 group as model training data (marked as

ixU ’另一組加上暫態資料作為驗證(testing)之 用(記為{X;H 3) .對於第a組的訓練與驗證組合,解二次規劃問題 L , subject t0 ~x')、|2^2 Η, ^, >0, V/= 等價於解其對偶問題, 201223690ixU 'the other group plus transient data for testing (denoted as {X; H 3). For the training and verification combination of group a, solve the quadratic programming problem L, subject t0 ~ x') ,|2^2 Η, ^, >0, V/= is equivalent to solving its dual problem, 201223690

Max m 1 ~ Σ a>ai εχρ* f if I train v/rom| ' \x' ~xj 1 2 σ L 、 / 7) .對所有參數組合重複步驟丨〜6,挑選分類表現最 佳的參數組合((? e); 8) .完成SVDD建模。 叫參考圖7,在機器達到穩定狀態後再進行預測,熱誤 模型建構單元3以支持向量迴歸(SVR)訓練出-非線性Max m 1 ~ Σ a>ai εχρ* f if I train v/rom| ' \x' ~xj 1 2 σ L , / 7) . Repeat steps 丨~6 for all parameter combinations to select the best performing parameters. Combine ((? e); 8) . Complete SVDD modeling. Referring to FIG. 7, after the machine reaches a steady state, prediction is performed, and the thermal error model construction unit 3 trains out with a support vector regression (SVR)-nonlinearity.

Σ«,=1> /=1 〇<α,. <C,V,= 1,...,W 決定出{xf}(支持向量’ SVs’定義為『其對應的 0』)、7VSK (支持向量個數)與% 4).選擇任一 $^0的支持向量xfK,計算 subject toΣ«,=1> /=1 〇<α,. <C,V,= 1,...,W determines {xf} (the support vector 'SVs' is defined as 'the corresponding 0'), 7VSK (support vector number) and % 4). Select any support vector xfK of $^0, calculate subject to

R 1-2^]^. exp 7=1 σ ^ 1 ^2lajak exPi'- »1 5夂將「螂試資jj雙入模型測試,得到 單Ί 立:個數 穴 貝 穩態 模 D(x) < 〇 tp (true positive) 型 結 D(x) > 〇 fn (false negative) 果 暫態 fp (false positive) 資 R sy ν5Κ||λ2 X — σ 料 tn (true negative)R 1-2^]^. exp 7=1 σ ^ 1 ^2lajak exPi'- »1 5夂 "The test of jj double-into the model test, get a single 立 stand: a few points of the steady state mode D (x < 〇tp (true positive) type knot D(x) > 〇fn (false negative) fruit transient fp (false positive) R sy ν5Κ||λ2 X — σ material tn (true negative)

fn + 2-tp + fp ).對於*組不同的訓練與驗證組合重複步驟3〜5,平 均所有的誤差,定義F((T,c)q之&amp;為此參數組合的 分類表現; A=l 201223690 熱誤差模型,支持向量迴歸(SVR)的運算參數少,在預測精 準度方面,可以得到較低的MAPE(mean absolute percentage error),其核心精神為核方法(kernel method)。 以下對支持向量迴歸(SVR)作詳細說明。。 SVR目的:由訓練資料估算出函數:μ = /(χ),其中: + b /(x)=Z(a&lt;*_a&lt;)'exp&lt; 在上式中,每個training instance都有其對應的6 及 &lt;,用來決定該training instance是否可以落在ε的 範圍之外。而 C的作用則是用來調整訓練模型 (training model)是否過份或不足調適資料(overfitting 或underfitting)。當核心定義清楚後,有下列三個參數可 以調整:Fn + 2-tp + fp ). Repeat steps 3 to 5 for the different training and verification combinations of the * group, averaging all the errors, and defining the classification performance of F((T, c)q &amp; =l 201223690 Thermal error model, support vector regression (SVR) has fewer operational parameters, and in terms of prediction accuracy, a lower MAPE (mean absolute percentage error) can be obtained, and its core spirit is the kernel method. Support Vector Regression (SVR) is described in detail. SVR Objective: Estimate the function from the training data: μ = /(χ), where: + b /(x)=Z(a&lt;*_a&lt;)'exp&lt; In the formula, each training instance has its corresponding 6 and <; to determine whether the training instance can fall outside the scope of ε. The role of C is to adjust whether the training model has passed. Insufficient or insufficient information (overfitting or underfitting). When the core definition is clear, the following three parameters can be adjusted:

Gamma :調整高斯kernel函數之std,即上式裡之σ。 C :用來調整訓練過程中誤差項之權衡量,可決定 overfitting 或 underfitting。Gamma: Adjust the std of the Gaussian kernel function, which is σ in the above equation. C: The weighting measure used to adjust the error term during training can determine overfitting or underfitting.

Epsilon :誤差寬容帶之大小,即上式裡之e。 SVR模型使用:給輸入變數X,預測出對應的輸出變 數的值/⑷。 建模過程: Ϊ)·玎定參數σ、c、f在欲驗證範圍中的所有組合, 挑選其中一組(σ,〇,£·); 2)·進行k-fold,將實驗資料隨機均分為Α組,取其中 灸-1組作為模型訓練(training)資料(記為 12 201223690 {(〇厂)丨”3 ; 一組作為驗證(testing)之用(記為 min 、第‘且練,證組合’解二次規劃問題 如 I Kw;Epsilon: The size of the error tolerance band, which is e in the above equation. The SVR model uses: For the input variable X, the value of the corresponding output variable /(4) is predicted. Modeling process: Ϊ)·Determining all combinations of parameters σ, c, and f in the range to be verified, select one of them (σ, 〇, £·); 2)·K-fold, randomize experimental data Divided into the sputum group, taking the moxibustion-1 group as the model training (recorded as 12 201223690 {(〇厂)丨) 3; one group for testing (denoted as min, the first 'and practiced , the certificate combination 'solution quadratic planning problem such as I Kw;

Jfain subject to ,Jfain subject to ,

Max a;,% r等「價於解其對偶問 («;-«,)(«*-α)εχρ (〈w,&lt;,屮乂〜Η·,ν/=1 一 ζχΛΐ ^ 〇5 V/ = 題 :Σ subject to m Σ(α; '〇:,) = 0 /=1 7 ,m t,TOin — x她丨丨、2 σ £Σ(α&lt; + α&lt;)+ Σ )&gt;ί (a. + a ) /:1 1 、疋{^{:}(支持向量’定義為『其對應的a,、〆。』)、 SK (支持向量個數)、《;與% ; )垃^任個6=0或〇0的支持向量X厂,計算έ, Vsv SV l!\2' &gt;*ι a;)*exp &lt;1 σ ,sv iVsv Σ(泛/ -%).exp&lt; f\\xsv -.sy\\\2 -ni σ ε if 0&lt;〇:.&lt; C/ k-^s if 0&lt;a* &lt;C/ 5) ,計算誤差 e_·, j|;|/(xm|; 6) ·對於l組不同的訓練與驗證組合重複步驟3〜5,平Max a;, % r, etc. "Price is solved by its dual question («;-«,) («*-α) εχρ (<w,&lt;,屮乂~Η·,ν/=1 一ζχΛΐ ^ 〇5 V/ = Title: Σ subject to m Σ(α; '〇:,) = 0 /=1 7 , mt, TOin — x her 丨丨, 2 σ £Σ(α&lt; + α&lt;)+ Σ )&gt; ί (a. + a ) /:1 1 , 疋{^{:} (the support vector is defined as "the corresponding a, 〆."), SK (the number of support vectors), "; and % ; ) Any ^ support vector X factory with 6=0 or 〇0, calculate έ, Vsv SV l!\2' &gt;*ι a;)*exp &lt;1 σ , sv iVsv Σ (pan / -%). Exp&lt; f\\xsv -.sy\\\2 -ni σ ε if 0&lt;〇:.&lt; C/ k-^s if 0&lt;a* &lt;C/ 5) , calculation error e_·, j| ;|/(xm|; 6) · Repeat steps 3 to 5 for a different set of training and verification combinations.

均所有的誤差’定義匿㈣㈡=|i&gt;%為此組參數 組合的預測誤差; A=I ).對所有參數組合重複步驟1〜6,挑選預測誤差最 小時的參數組合⑹巳幻; 13 201223690 8)·完成SVR建模。 且/青參考圖8,暖機判斷與熱誤差運算單元4藉由讀取工 二機上=設在各節點的若干溫度感測訊號以及工具機之運 資訊列斷工具機之暖機狀態,計算出其中至少一節 '''」,、、誤差補償量後再進行加工。 他 建構單 圖9,在外部環境溫度變化,如工具機移動至盆 -單元^操作時,增量學習單元5可針對暖機特徵描述 熱誤差支持向量資料描述(SVDD)之原始資料,以及 度變化構單元3之支持向量迴歸(SVR)接收環境⑺ 知的預〜貪料,藉由暖機判斷與熱誤差運算單元4與2 地作參資料比較確認是否進行增量學習’以適應 政▲、,π整確保熱誤差模型之準確性。 *、 二砰細操作流程將於後詳述。 清參考&quot;Jg| 1。 , 其步驟包含.本發明的工具機熱誤差智慧調適方法, 步驟S1 : 步驟S2 : 步驟S3 : 步驟S4 : 萃取熱行為資料; 由專家選定暖機穩定狀態; 以穩定狀態溫度資訊建構暖機特徵描述;All errors 'define (4) (2) = |i>% is the prediction error of this group of parameter combinations; A = I). Repeat steps 1 to 6 for all parameter combinations, and select the parameter combination when the prediction error is the smallest (6) illusion; 13 201223690 8)·Complete SVR modeling. Referring to FIG. 8, the warm-up determination and thermal error calculation unit 4 breaks the warm-up state of the machine tool by reading a plurality of temperature sensing signals provided at each node and the information of the machine tool. Calculate at least one of the ''', and the error compensation amount before processing. He constructs a single picture 9, in the external environment temperature change, such as the machine tool moves to the basin-unit ^ operation, the incremental learning unit 5 can describe the thermal error support vector data description (SVDD) of the original data for the warm-up feature, and Support Vector Regression (SVR) receiving environment of the constitutive unit 3 (7) Knowing the pre-material, the warm-up judgment and the thermal error computing unit 4 and 2 are used as reference data to confirm whether to perform incremental learning to adapt to the government. π, to ensure the accuracy of the thermal error model. *, the second detailed operation process will be detailed later. Clear reference to &quot;Jg| 1. The step includes: the tool error thermal error adjustment method of the present invention, step S1: step S2: step S3: step S4: extracting thermal behavior data; selecting the warm state of the warm-up state by the expert; constructing the warm-up feature with the steady state temperature information description;

以暖機特徵描述篩選符合穩定狀態之 資訊; 步驟S 5 ·以_ a以 牛 .物疋狀態之熱行為資訊建構熱誤差楔切. 二驟S6 •線上暖機#彳斷並且進行熱誤差運算; v鄉S7 :增晉舉抑 曰里予白’藉以適應環境改變與參數 驟S? + 乂〃 中之熱行為包括溫度及定位誤差等,i ζτ的專家谐贪丁步 兮豕k疋係可為在歷史資料中進行分類 14 201223690 取,步驟S3中的暖機特徵描述係以支持向量資料描述 (SVDD)方式建構,步驟S5的熱誤差模型係以支持向量回 歸(SVR)所建構,步驟S6的線上暖機判斷係以讀取工具機 上若干溫度感測訊號以及工具機運轉條件等資訊之方式進 行。 請參考圖11,以單軸進給工具機11進行說明;在工具 機各部件設置溫度感測器T1〜丁24,分部位置如圖12〜圖18 所示;熱行為資訊萃取規劃如下: 行程規劃:全行程ll〇〇mm運轉。 進給速度規晝:共分9m/min、18m/min、27m/min及 36m/min等四種進給速度。 量測時間規晝:為利於分析系統暫態與穩態之熱誤差行 為模式,開機後每隔15分鐘量測一次,擷 取暫態資訊,待長時間(以150分鐘為例)運 轉後,改以每30分鐘量測一次,擷取系統 穩態資訊。 請參考圖19,係表示熱行為資料萃取方法之流程圖。 本發明之熱行為資料萃取方法步驟包括: 步驟SA1 :選定進給速度; 步驟SA2:設定工具機參數及在工具機的若干節點佈設 °溫度感測器; 步驟SA3 :工具機開機並進入運轉模式; 步驟SA4 :運轉模式是否達到150分鐘(預定運轉時 間),若否,則進入每15分鐘(第一時間間隔) 15 201223690 若是,則進人每 SA42);—時間間隔)之量测模式(步驟 步驟SA5 :對工且她AA办 步驟SA6 :儲存^的各節點進行溫度量測;以及 程式二=SA6可以手動填寫表格或者是以溫度麻 請參考圖U〜18,工具機 軌13、伺服馬達14 ^括鞍座11、螺桿12、滑 眘邙拇嵌, 座15、地腳螺絲16,溫度變數的 Μ擷取包括外部熱源( 度釔數的 溫度變數的記錄,丑有一度)與内部熱源,故對於 以及二十四個結構個為外部環境溫度、 度包含:五_座u之^4 ^—十四個結構本體溫 π鬼知,皿度、一個螺帽座(螺桿12 處W度、十一個底座15兩側執道(㈣13)溫度、四個底 f 15」:腳端結構(地腳螺絲16)溫度、一個馬達座軸承端溫 度、-個尾座轴承端溫度、以及一個馬達介面座溫度,亦 即-十四個溫度感測器T1〜T24的各節點處;另外,根據 熱力學動_觀點,應將溫度變化率(導數)列入參考。 關於熱炙位相關變數則是根據載具之行程進行規劃,為 配合虛擬感測所建構之分割模型中節點的位置,實驗設定 每間隔125 mm進行定位精度的量測,量測位置(mm)為: 131,256,381,506,631,756,881,以及 1006,如圖 u 所示。 本發明採用支持向量迴歸(SVR)當作熱誤差預測模 型’利用支持向置資料描述(support vector data description,SVDD)來建構工具機之機體溫度分佈向量穩 16 201223690 恶模式範圍,用以界定熱誤差預測模型之適用性。,SVDD 是一個新穎的機器學習演算法,其目的在於建構一個最小 超球體(minimum-volume hypersphere)來包圍訓練集合, 由於超球體是在特徵空間中建構,因此在輸入空間中此球 體的表面變的非常有彈性。對於一個新進的工具機機體溫 度分佈向量變數,我們只需要計算它到球心的距離,便可 計算出此筆輸入相對應的暖機狀態之信心指數:距離越 大,代表此筆輸入與訓練集合的相異程度越大,則輸出之 φ 信心指數就越小。利用SVDD的優勢有兩點:1)它的解 不會有local minimum的問題,因為它的dual problem也 是一個QP問題,因此不需要人為設定門檻值,2)無論輸 入數據訓練集合的分布為何,利用SVDD都可以找到一 個可以緊緊包圍它的邊界。其洋細技術細節已揭露如前。 藉由上述結構及方法’透過在工具機各部件設置之溫度 感測器擷取熱變位行為資料,建立穩態模式支持向量迴歸 (SVR)熱誤差模型與支持向量資料描述超球體,能 φ 在環境溫度變異下判斷暖機狀態,直接在線上預測補償資 訊以進行熱誤差的補償。 雖然本發明以相關的較佳實施例進行解釋,但是這並 不構成對本發明的限制。應說明的是,本領域的技術人員 根據本發明的思想能夠構造出很多其他類似實施例,均在 本發明的保護範圍之中。 17 201223690 圖l 圖2 圖3 圖4 圖5 圖6 圖7 圖8 圖9 圖1〇 圖11 【圖式簡單說明】 表不習知工具機之一熱誤差示意圖。 表不習知工具機之另一熱誤差示意圖。 表不習知工具機熱誤差之曲線圆。 表示習知工具機以操作員判斷熱誤差之曲線圖。 表示本發明工具機熱誤差智慧調適裝置的方^圖 表示本發明工具機熱誤差智慧調適裝置以姓。 資料描述進行穩態描述的示意圖。 、向量 表示本發明工具機熱誤差智慧調適裝置以 迴歸描述進行穩態預測誤差量的曲線圖。…置 =本。發日匕具機熱誤差智‘慧調㈣置,暖 誤差運算單元的判斷運算示意圖。 表。示本發日紅具機熱誤差智慧調適裝置t增量學習 早元的判斷示意圖。 日紅具機熱誤差智慧調適方法的流程圖。 圖不。^明叫轴進給工具機為例的行程規劃示意 I; ^示本發明以單軸進給工具機為例的結構圖。 在早軸進給卫具機佈設溫度感測器的分 ^圖^發月。在單轴進給工具機佈設溫度感測器的分 ^圖^:月。在單軸進給卫具機佈設溫度感測器的分 &quot; 丁本么月在單軸進給工具機佈設溫度感測器的分 18 201223690 布圖之四。 圖17表示本發明在單軸進給工具機佈設溫度感測器的分 布圖之五。 圖18表示本發明在單軸進給工具機佈設溫度感測器的分 布圖之六。 圖19表示本發明工具機熱誤差智慧調適方法中萃取熱行 為貢料步驟的流程圖。 【主要元件符號說明】 1 工具機熱誤差智慧調適裝置 10 工具機 11 鞍座 12 螺桿 13 滑執 14 伺服馬達 15 底座 16 地腳螺絲 2 暖機特徵描述建構單元 3 熱誤差模型建構單元 4 暖機判斷與熱誤差運算單元 5 增量學習單元 a〜d 節點 T1〜T24 溫度感測器 步驟S1〜S7 依據本發明的工具機熱誤差智慧調 適方法 19 201223690 步驟SA1〜SA6依據本發明之萃取熱行為步驟 20The warm-up feature description is used to filter the information that meets the steady state; Step S 5 · Construct the thermal error wedge by _ a with the thermal behavior information of the cattle. The second step S6 • The online warming machine # breaks and performs thermal error calculation v Township S7: Zeng Jinjue 曰 曰 予 ' ' 借 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应 适应For the classification in the historical data 14 201223690, the warm-up feature description in step S3 is constructed by the support vector data description (SVDD), and the thermal error model of step S5 is constructed by support vector regression (SVR). The S6's online warm-up judgment is performed by reading information such as temperature sensing signals on the power tool and operating conditions of the machine tool. Please refer to FIG. 11 for description of the single-axis feed tool machine 11; temperature sensors T1 to D24 are disposed in each part of the machine tool, and the position of the branch is as shown in FIG. 12 to FIG. 18; the thermal behavior information extraction plan is as follows: Itinerary planning: full stroke ll〇〇mm operation. Feed speed gauge: Four feed speeds of 9m/min, 18m/min, 27m/min and 36m/min. Measuring time gauge: In order to facilitate analysis of the system's transient and steady-state thermal error behavior mode, it is measured every 15 minutes after power-on, and the transient information is retrieved. After a long time (in 150 minutes as an example), Change it to measure every 30 minutes and retrieve the steady state information of the system. Please refer to FIG. 19, which is a flow chart showing a method for extracting thermal behavior data. The step of the thermal behavior data extraction method of the present invention comprises: Step SA1: selecting the feed speed; Step SA2: setting the machine tool parameters and setting the temperature sensor at several nodes of the machine tool; Step SA3: the machine tool is turned on and enters the operation mode Step SA4: Whether the operation mode reaches 150 minutes (predetermined operation time), if not, enter every 15 minutes (first time interval) 15 201223690 If yes, then enter each SA42); - time interval) measurement mode ( Step SA5: Perform temperature measurement on each node of the work and her AA step SA6: store ^; and program 2 = SA6 can manually fill in the form or use the temperature to please refer to the figure U~18, the tool track 13, the servo The motor 14 includes a saddle 11, a screw 12, a slippery thumb, a seat 15, a foot screw 16, and the temperature variable includes an external heat source (a record of the temperature variable of the number of turns, a ugly degree) and the inside. The heat source, so for the twenty-four structures, the external environment temperature, the degree includes: five _ seat u ^ 4 ^ - fourteen structure body temperature π ghost know, the degree, a nut seat (screw 12 at W Degree, eleven The base 15 has two sides ((4) 13) temperature, four bottoms f 15": foot end structure (foot screw 16) temperature, one motor seat bearing end temperature, - tailstock bearing end temperature, and a motor interface seat temperature , that is, at each node of the fourteen temperature sensors T1 to T24; in addition, according to the thermodynamics, the temperature change rate (derivative) should be included in the reference. The thermal clamp correlation variable is based on the vehicle. The stroke is planned. In order to match the position of the nodes in the segmentation model constructed by the virtual sensing, the experiment sets the measurement of the positioning accuracy at intervals of 125 mm. The measurement positions (mm) are: 131, 256, 381, 506, 631, 756, 881, and 1006, as shown in Fig. u. The present invention uses support vector regression (SVR) as a thermal error prediction model to construct a machine body temperature distribution vector with support vector data description (SVDD). 16 201223690 The range of evil modes is used to define the applicability of the thermal error prediction model. SVDD is a novel machine learning algorithm whose purpose is to construct a minimum hypersphere (minimum-volum) e hypersphere) to surround the training set. Since the hypersphere is constructed in the feature space, the surface of the sphere becomes very elastic in the input space. For a new machine tool body temperature distribution vector variable, we only need to calculate it. The distance to the center of the sphere can be used to calculate the confidence index of the warm-up state corresponding to the input: the greater the distance, the greater the difference between the input and the training set, the smaller the output φ confidence index . There are two advantages to using SVDD: 1) its solution does not have a local minimum problem, because its dual problem is also a QP problem, so there is no need to manually set the threshold, and 2) regardless of the distribution of the input data training set, With SVDD you can find a boundary that can tightly surround it. Its fine technical details have been revealed as before. Through the above structure and method 'acquiring the thermal displacement behavior data through the temperature sensors set in each part of the machine tool, the steady state mode support vector regression (SVR) thermal error model and the support vector data are described to describe the hypersphere, the energy φ The warm-up state is judged under the variation of the ambient temperature, and the compensation information is directly predicted on the line to compensate the thermal error. Although the present invention has been explained in connection with the preferred embodiments, it is not intended to limit the invention. It should be noted that many other similar embodiments can be constructed in accordance with the teachings of the present invention, and are within the scope of the present invention. 17 201223690 Figure l Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 1 Figure 11 [Simple diagram of the diagram] A schematic diagram of the thermal error of a conventional tool machine. Another schematic diagram of the thermal error of the conventional machine tool is shown. The curve circle of the thermal error of the tool machine is not known. It shows a graph of the conventional tool machine to judge the thermal error by the operator. The figure showing the thermal error intelligent adjustment device of the machine tool of the present invention represents the last name of the thermal error intelligent adjustment device of the machine tool of the present invention. The data describes a schematic representation of the steady state description. The vector represents the graph of the steady-state prediction error amount of the tooling machine thermal error smart adaptation device of the present invention. ...set = this. The Japanese version of the machine is equipped with a thermal error wise 慧 慧 (4), the judgment of the operation of the warm error calculation unit. table. Show this day red machine thermal error wisdom adjustment device t incremental learning early yuan judgment diagram. A flow chart of the method for adjusting the thermal error of the Japanese red machine. Figure no. ^The stroke planning machine shown as an example of the stroke feeding machine is shown in the figure; I show the structure diagram of the uniaxial feeding machine as an example. In the early axis feed guard machine, the temperature sensor is arranged. The temperature sensor is arranged in the single-axis feed tool machine. In the single-axis feed guard machine, the temperature sensor is distributed. &quot; Ding Ben Mouyue distributes the temperature sensor in the single-axis feed tool machine 18 201223690 Layout 4. Fig. 17 is a view showing the fifth layout of the present invention for arranging a temperature sensor in a single-axis feed tool. Fig. 18 is a view showing the distribution of the temperature sensor of the present invention in a single-axis feed tool machine. Fig. 19 is a flow chart showing the steps of extracting heat behavior in the thermal error intelligent adjustment method of the machine tool of the present invention. [Main component symbol description] 1 Tool machine thermal error intelligent adjustment device 10 Machine tool 11 Saddle 12 Screw 13 Slipper 14 Servo motor 15 Base 16 Foot screw 2 Warm-up feature description Construction unit 3 Thermal error model construction unit 4 Warm-up Judgment and thermal error computing unit 5 Incremental learning unit a~d Nodes T1 to T24 Temperature sensor steps S1 to S7 The machine tool thermal error smart adaptation method according to the present invention 19 201223690 Steps SA1 to SA6 According to the extraction thermal behavior of the present invention Step 20

Claims (1)

201223690 七、申請專利範圍: 工具機中包 卜:種工具機熱誤差智慧調適裳置,設置在 機 ^徵描述建構單元,建立該工 , 皿度刀佈向量的一穩態模式範圍; 型;T差模型崎元,彻—編熱誤差模 一暖機判斷與熱誤差運算單元, 上若干溫度感測訊號以及該工具機“;:ζ具: 具機之暖機狀態,物至少差: 『述的工具機熱誤差智慧調適裝 確保熱二可適應地作參數調整,以 ㈣1項所述的卫域驗騎慧調適裝 '、,該暖機特徵描述建構單元以支# 述(sv_來建構該穩態模式範圍。线白里貝科描 ㈣1項所述打具機熱誤差智慧調適裝 = 該熱誤差模型建構單元以支持向量迴歸(SVR) 訓、、東出該非線性熱誤差模型。 申明專利範圍第丨項所述的工具機熱誤差智慧調適裝 6 其中’該工具機上之各部件佈設有若干溫度感測器。 :種工具機熱誤差智慧調適其方法,其步驟包含: 萃取熱行為資料; 由專家選定暖機穩定狀態; 21 201223690 以穩定狀態溫度資訊建構暖機特徵描述; 以暖機特徵描述篩選符合穩定狀態之熱行 以穩定狀態之熱行m建構熱誤差模型γ ° 線上暖機判斷並且進行熱誤差運瞀。 申第7項所述的工“熱誤差智慧調適方 μ _^=里學習’藉由參數飄移以適應環境改變。 t申tt議7項所述的工具機熱誤差智慧調適方 m ,該熱行為至少包括溫度及定位誤差。 :利範圍.第7項所述的工具機熱誤差智慧調適方 / Ί ’ $萃取熱行為資料之步驟更包括: 選定進給速度; 測器設定工具機參數及在工具機的若干節點佈設溫度感 工具機開機並進入運轉模式; -第運一 否達到一預定運轉時間,若否,則進入 第-時間間隔之量測模式;若是,則進入一 ;:隔之量測模式;其中’第-時間間隔小於第二時間間 對工具機的各節點進行溫度量測;以及 儲存資料。 方、去申°月1專由利乾圍第1〇項所述的工具機熱誤差智慧調適 是以4==存資料步驟包含填寫表格手動記錄或 X/凰度擷取程式自動記錄。 22201223690 VII. Scope of application for patents: In the machine tool package: the tooling machine thermal error wisdom adjustment skirt, set in the machine to describe the construction unit, establish the work, the degree of steady-state mode of the knife cloth vector; type; T-differential model Kawasaki, T-Korean thermal error mode, a warm-up judgment and thermal error calculation unit, a number of temperature sensing signals and the machine tool ";: cookware: with machine warm-up state, at least the difference: " The tool machine thermal error wisdom adapts to ensure that the thermal two can be adapted to the parameter adjustment, and the maintenance of the warm-up feature is described in (4). The steady-state mode range. Line Bai Libei Ke (4) 1 item of the machine tool thermal error wisdom adjustment = the thermal error model construction unit to support vector regression (SVR) training, east out of the nonlinear thermal error model. The utility model relates to the machine tool thermal error intelligent adjustment device 6 of the patent scope. [The various components on the machine tool are provided with a plurality of temperature sensors. The tooling machine thermal error wisdom adapts its method, and the steps thereof include Extracting thermal behavior data; Experts select warm-up state of the warm-up; 21 201223690 Constructing a warm-up feature description with steady-state temperature information; Filtering the hot-line with stable state by a warm-up feature description to construct a thermal error model γ ° On-line warm-up judgment and thermal error operation. The work described in item 7 of the “thermal error wisdom adjustment method μ _^= learning” is adapted to the environmental change by parameter drift. The tooling machine thermal error intelligent adjustment square m, the thermal behavior includes at least the temperature and positioning error. The profit range: the tooling machine thermal error intelligent adjustment method described in item 7 / Ί '$ extraction hot behavior data step further includes: The feed rate is selected; the tester sets the machine tool parameters and sets the temperature sense tool on several points of the machine tool to start up and enter the operation mode; - the first transport reaches a predetermined running time, if not, the first time interval is entered. Measurement mode; if yes, enter one;: separate measurement mode; wherein 'the first time interval is less than the second time to warm the nodes of the machine tool Measurement; and storage of data. Fang, go to Shen ° 1 1 special tool for the machine tool thermal error as described in the first paragraph of the Liganwei wisdom adjustment is 4 == save the data step including filling out the form manual record or X / 撷 撷The program automatically records. 22
TW099142950A 2010-12-09 2010-12-09 Method and apparatus of machine tools for intelligently compensating thermal error TWI448353B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099142950A TWI448353B (en) 2010-12-09 2010-12-09 Method and apparatus of machine tools for intelligently compensating thermal error
CN2010106062709A CN102540884A (en) 2010-12-09 2010-12-24 Intelligent adjustment device and method for thermal error of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099142950A TWI448353B (en) 2010-12-09 2010-12-09 Method and apparatus of machine tools for intelligently compensating thermal error

Publications (2)

Publication Number Publication Date
TW201223690A true TW201223690A (en) 2012-06-16
TWI448353B TWI448353B (en) 2014-08-11

Family

ID=46347982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099142950A TWI448353B (en) 2010-12-09 2010-12-09 Method and apparatus of machine tools for intelligently compensating thermal error

Country Status (2)

Country Link
CN (1) CN102540884A (en)
TW (1) TWI448353B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932427A (en) * 2015-05-19 2015-09-23 西安交通大学 Compensation instrument and compensation method for compensating thermal error of Huazhong Eight type numerical control machine tool
TWI645341B (en) * 2017-12-19 2018-12-21 財團法人工業技術研究院 Method for estimating temperature of rotating machine
TWI701100B (en) * 2019-05-07 2020-08-11 上銀科技股份有限公司 Warm-up method
CN113156822A (en) * 2021-04-22 2021-07-23 重庆大学 Thermal error prediction system and thermal error compensation system based on Mist-edge-fog-cloud computing
US11493900B2 (en) 2019-08-19 2022-11-08 Hiwin Technologies Corp. Warm-up method for machine system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729625A (en) * 2017-09-25 2018-02-23 江苏英索纳智能科技有限公司 The method and device that thermometric error caused by a kind of operation heating to equipment compensates
TWI649648B (en) 2017-12-05 2019-02-01 財團法人工業技術研究院 Processing machine thermal compensation control system and method thereof
CN109623489B (en) * 2018-12-10 2020-05-19 华中科技大学 Improved machine tool health state evaluation method and numerical control machine tool
CN113219901B (en) * 2021-05-06 2022-06-24 玉林师范学院 Intelligent thermal error compensation method for numerical control machine tool
CN114800529B (en) * 2022-06-07 2023-07-18 北京航空航天大学 Industrial robot error compensation method based on fixed-length memory window increment learning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178641A (en) * 1981-04-27 1982-11-02 Shin Nippon Koki Kk Correcting method of machining error from thermal displacement or the like
SE530573C2 (en) * 2006-11-16 2008-07-08 Hexagon Metrology Ab Method and apparatus for compensating geometric errors in processing machines
KR100848854B1 (en) * 2008-04-21 2008-07-30 주식회사 탑 엔지니어링 Scribing apparatus of fragile substrate and method thereof
TW201021959A (en) * 2008-12-11 2010-06-16 Ind Tech Res Inst A thermal error compensation method for machine tools
CN101446994A (en) * 2008-12-18 2009-06-03 浙江大学 Modeling method of thermal error least squares support vector machine of numerically-controlled machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932427A (en) * 2015-05-19 2015-09-23 西安交通大学 Compensation instrument and compensation method for compensating thermal error of Huazhong Eight type numerical control machine tool
TWI645341B (en) * 2017-12-19 2018-12-21 財團法人工業技術研究院 Method for estimating temperature of rotating machine
TWI701100B (en) * 2019-05-07 2020-08-11 上銀科技股份有限公司 Warm-up method
US11493900B2 (en) 2019-08-19 2022-11-08 Hiwin Technologies Corp. Warm-up method for machine system
CN113156822A (en) * 2021-04-22 2021-07-23 重庆大学 Thermal error prediction system and thermal error compensation system based on Mist-edge-fog-cloud computing

Also Published As

Publication number Publication date
TWI448353B (en) 2014-08-11
CN102540884A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
TW201223690A (en) Method and apparatus of machine tools for intelligently compensating thermal error
Xu et al. Advanced data collection and analysis in data-driven manufacturing process
CN109996615A (en) The abnormality diagnostic method and device of rolling equipment
Zhang et al. Machine tool thermal error modeling and prediction by grey neural network
CN103926874B (en) The selection optimization method of numerical control machine heat error compensation modeling temperature point combination
CN108214087A (en) The temperature estimation method of lathe and thermal displacement correction method
Krulewich Temperature integration model and measurement point selection for thermally induced machine tool errors
CA2937228C (en) Method, apparatus, and program for determining casting state in continuous casting
CN104778358B (en) The partly overlapping extension method for tracking target in monitored area be present in multisensor
Wang et al. Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method
CN102652961B (en) Control device and control method
Yang et al. Modified Elman network for thermal deformation compensation modeling in machine tools
CN104950808B (en) Machine tool thermal error compensation method based on augmented naive Bayes network
CN105478490B (en) The control device and control method of tandem mill
CN101983111A (en) Steel plate quality assurance system and equipment therefor
CN102179725A (en) Arrangement method of heat characteristic monitoring measurement points of numerical control machine
CN104439142A (en) Method used for detecting liquid level of liquid steel and protecting thickness of slag layer of slag liquid in crystallizer
El Ouafi et al. An integrated modeling approach for ANN-based real-time thermal error compensation on a CNC turning center
CN115121626A (en) Hot-rolled strip steel transient hot roll shape forecasting method based on error compensation
TWM364561U (en) Thermal deformation compensating device for processing device
WO2018181120A1 (en) Information processing device, information processing method, and program
Zhi-Kun et al. Application of weighted multiple models adaptive controller in the plate cooling process
Dian-yao et al. Self-learning and its application to laminar cooling model of hot rolled strip
CN105069214B (en) A kind of reliability of technology appraisal procedure based on nonlinear correlation analysis
Laciak et al. Utilization of indirect measurement in the annealing process of the steel coils