TW201222829A - Diode device and the fabrication method thereof - Google Patents

Diode device and the fabrication method thereof Download PDF

Info

Publication number
TW201222829A
TW201222829A TW99141058A TW99141058A TW201222829A TW 201222829 A TW201222829 A TW 201222829A TW 99141058 A TW99141058 A TW 99141058A TW 99141058 A TW99141058 A TW 99141058A TW 201222829 A TW201222829 A TW 201222829A
Authority
TW
Taiwan
Prior art keywords
oxide
diode
current
yttrium
film
Prior art date
Application number
TW99141058A
Other languages
Chinese (zh)
Other versions
TWI422042B (en
Inventor
Tuo-Hung Hou
Jiun-Jia Huang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW99141058A priority Critical patent/TWI422042B/en
Priority to CN 201010610280 priority patent/CN102479824B/en
Publication of TW201222829A publication Critical patent/TW201222829A/en
Application granted granted Critical
Publication of TWI422042B publication Critical patent/TWI422042B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The invention discloses a diode device and the fabrication method thereof, the diode device includes: a diode layer with a first and a second surfaces comprising: a first conduction area formed of a first oxide and conducting an electrical current of uniform current density; and a second conduction area comprising a plurality of conduction paths, the conduction paths formed of a second oxide and each conducting an electrical current of non-uniform current density; wherein the first oxide is different from the second one, and the DC current density through the second conduction area is more than ten times of the one through the first conduction area, when a current flows between the first and second surfaces; a first electrode formed on the first surface; and a second electrode formed on the second surface.

Description

201222829 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種二極體元件及其製作技術,特別是 指一種以氧化物薄膜為基礎的二極體元件結構及其製法。 【先前技術】 傳統PN形式的二極體因為高溫摻雜製程的必要性, 難以適用於需要低製程溫度的立體堆疊式積體電路及軟性 電子等應用。另外,習知的氧化物薄膜二極體雖具有低溫 製程的優勢,但其電性特徵如:順向電流密度及導通電壓 等,則受限於材料選擇的限制,亦尚無法滿足產業所需。 例如,對於金屬/N型氧化物/P型氧化物/金屬的MIIM (Metal/Insultor/Insultor/Metal)結構,其中兩層氧化物薄膜 的組合有相當的特定性;對於金屬/氧化物/金屬的MIM (Metal/Insultor/Metal)結構,其中金屬與氧化物的組合亦要 求相當特定的材料,方足以提供合理的整流特性。因此, 現階段的氧化物二極體仍未臻成熟,其製程複雜且元件特 性尚待提升等技術課題乃亟待發展,以期實現高性能的低 溫製程之氧化物薄膜二極體。 【發明内容】 有鑑於此,在本發明的一方面,第一實施例提供一種 二極體元件,其包括:一二極體薄膜,其具有一第一表面 及一第二表面,且包括:一第一導電區域,提供電流密度 201222829 均勻的電流傳導,且該笫—道带π , ^ 邊弟導電區域的成份包含一第一氧 化物;及-第二導電區域,其包含複數個電流通道,提供 勾的電流傳導,且該電流通道的成份包含- 第一氣^其令,該第一氧化物不同於該第二氧化物; 當一仏傳導於該第一表面與該第二表面之間時,該第二 所^過的直流電流密度大於該第—導電區域㈣ 一第一電極’其係形成於該第-表面上;及一第 二電極,其係形成於該第二表面上。 ,本《明的另—方面,第二實施例提供 =製作方:去’其―提供-二極體結構其 -第-表面及一第:第一氧化物所組成且具有 ㊉第—表面,—第一電極形成於該第一表面 ㈣表面上;及藉由該第-與 包極體薄膜中;其中,該電流通道的成份 在本;=另且該方第面二, 元件的製作方、rt入第三實施例提供一種二極體 其係為—第一氧化物列:驟:提供-二極體薄膜, 製程於該二搞第一電極上;施加一熱退火 薄膜中;及妒成成複數個電流通道於該二極體 電流通道的成份包:一 ΓΓ二極體薄膜上;其中,該 於該第—氧=第二氧化物’且該第二氧化物不同 【實施方式】 201222829 以下將參照隨附之圖式詳細描述及說明本發明之特 徵、目的、功能,及其達成所使用的技術手段;但所列舉 之實施例僅為辅助說明,以利對本發明有更進一步的認知 與瞭解,並不因此限制本發明的範圍及技術手段.。在鲸 實施例的說财,各層(膜)、輯、圖案或結構形成=基 板、各層(膜)、區域、塾片或圖案之「上(〇n)」或「$ (仙㈣」的描述,該「上」及「下」係包括所有直接(此吻) 或間接(indirectly)被形成物。另外,對於各層之上或下, 將以圖式為基準來進行說明。而為了說明上的便利和明 確,圖式中各層的厚度或尺寸,係以概略的、誇張的、或 簡要的方式麵’且各構成要素的尺寸並未完全為其實際 尺寸。 x' 請參照圖1,為根據本發明第一實施例之二極體元件 的結構示意圖。本實施例的二極韙元件1〇〇包含:一基 110 ’ -第-電極12〇,一第二電極刚,及一二極體^膜 13〇 ;其中,該二極體賴13〇主要係由氧化物所組成,其 =徵在於:該二極體薄膜13〇的橫截面上所傳導的電流面 不均勻,其可以分成為不同的導電區域,或大致以所 傳導電流面密度的均勻與否歸類4 :第一導電區域⑶, 提供電流密度均句的電流傳導,及第二導電區 132/U3/134提供電流密度不均勻的電流傳導,如圖2所示。 該基板110通常為適用於半導體製程的矽晶片,本 施例則選用沉積或蟲晶氧化石夕(si02)為絕緣層的石夕晶片作 為基板11G,使得本實施例的二極體元件可藉由 體製程來製作;但不以此為限,該基板110亦可以選用玻 201222829 璃或軟性基板,端視實際的需求或後續的元件製程而定。 該第一電極120及第二電極140係形成於該二極體薄 膜130的兩側,用以在本實施例的後續製程藉以提供電氣 應力(Stress)於該二極體薄膜130,或作為本二極體元件1〇〇 ‘的電氣信號外接點。本實施例的第一電極丨2〇的成份為始 (Pt),第二電極140的成份為鈦(Ti),以提供良好的導電及 薄膜特性;但不以此為限,該第一及第二電極的成份亦可 以選用鉑、金(Au)、銀(Ag)、鉛(Pd)、釕(RU)、銥⑻、氧 •化釕(Ru〇x)、氧化銥(JrOx)、釔(Y)、鎳(Ni)、銅(Cu)、鈦、 组(Ta)、鋅(Zn)、錯(Zr)、給(Hf)、鶴(W)、鉻(Cr)、氧化銦 錫(ITO)、氧化銦鋅(ιΖ〇)、氧化鋁錫(AT〇)、及氧化鋁鋅 (ΑΖ0),或其他導電材料,端視實際的狀況而定。 該二極體薄膜130係由氧化物所組成,本實施例基本 上選用二氧化鈦(Ti〇2)製作該二極體薄膜13〇;就二極體電 性上的考量,該二極體薄膜13〇的較佳厚度介於〗nm至i μηι之間,而本實施例所實際製作的薄膜平均厚度介於忉 • Μ至5〇nm之間。值得注意的是,該二極體薄膜120的成 伤並不限产於1氧化欽,亦可以是氧化欽⑺〇x)、氧化纽 (TaOx)、氧化物(ν〇χ)、氧化鈮(Nb〇x)、氧化鎢(w〇x)、氧 化鋅(Zn〇x)、氧化锅(Cd〇x)、氧化給(Hf〇x)、氧化錯(z叫、 氧化錄(Nl〇x)、氧化銅(Cu〇x)、氧化鋅銦(InZnxOy)、及其他 類A氧化物材料的至少一種,端視實際的狀況或元件特性 的需求而定’其t X及y代表原子百分比。 如^所述,垓二極體薄膜130所傳導的電流在整個橫 面上是不均勻的,依此並參照圖2而歸類為:第一導電 201222829 區域131,提供電漭分— 電區域132Π33/134^度均勾的低電流傳導區,及第二導 區。該二極體薄祺l3n f士電流密度不均勻的高電流傳導 U9,當施加-電壓於上有一—第-表面137及-第二表面 傳導於該第一表面13 °Λ電極120及第二電極140,則 度,該第二導電區域p f該第二表面I39之間的電流面密 電區域的10倍以上過的直流電流密度大於該第一導 性。值得注意的是,兮同_時亦展現出二極體的元件電氣特 複數個成份不同於原I第—導電區域132/133/134可能包含 而造成傳導電流的密^的二氧化鈦或氧化物的電流通道, 的成份為原先刑Α β又不均勻。例如,該第一導電區域131 (稱二鋪薄膜13G的二氧減或氧化物 含的二該第二導電區域一4所包 氧化物(稱之為第二V為不同於該第一氧化物的氧化鈦或 二極體薄膜m 物)°該第二氧化物也可能是在該 物中的氧含量_ 或加玉過程中’所造成該第一氧化 風知Λ…主, 而形成與該第一氧化物具有相同的化 膜?同氣含量原子百分比的類似材質。此外, ^ ° 、w不限於單層薄膜的結構’其亦可以是多層 10Λ ^ 4疋多加一層氧化物溥膜於該二極體薄膜 130與該第二電極12〇之間。 # 、3為°亥電流通道結構的剖面示意圖。如圖3所示, 能為基本上11直於該第—或第二表面 ii、f 1 π -細長杈形通道,並具有不同的樣態,例如:電流 通道160貫穿兮-& ._ °Λ一極體薄膜120、電流通道161/162/163則 凡王貝穿該一極體薄臈120;但電流通道160/161/162/163 201222829 内的氧化物成份可能不同於電流通道外的二極體薄膜120 的成分。 以下的實施例說明本發明二極體元件的製造方法。請 參照圖4 ’為根據本發明第二實施例之製作方法的流程示 意圖。請同時參照圖1,本實施例之製作方法200包含下 列步驟:步驟210,提供一二極體結構包括:一二極體薄 膜130,其係由一第一氧化物所組成且具有一第一表面137 及一第二表面139; —第一電極120形成於該第一表面137 φ 上;及一第二電極140形成於該第二表面139上。步驟220, 藉由該第一與第二電極120/140,施加一電氣應力(Stress) 於該二極體薄膜130,以形成複數個電流通道於該二極體 薄膜130中。其中,該電流通道的成份包含一第二氧化物, 且該第二氧化物不同於該第一氧化物;或該第一及第二氧 化物具有相同的化學組成元素,但不同的氧含量原子百分 比。有關該第一電極120,該第二電極140,該二極體薄膜 130,及該電流通道的相關技術特徵已於上文第一實施例的 修 說明中描述,在此不再贅述。 對於步驟220的施加電氣應力,可選自直流定偏電壓 (Constant DC Voltage Bias)、直流電壓掃描(DC Voltage Sweep)、直流定偏電流(Constant DC Current Bias)、直流電 流掃描(DC Current Sweep)、及交流電麼脈衝(AC Voltage Pulse)等方式,皆可達成本實施例二極體元件的製作。舉一 實際製作的實驗做為例子,本第二實施例採用直流定偏電 壓的方式,施加3V的直流電壓於該第一及第二電極 120/140約5秒;但上述電壓及施加時間的選用並不以此為 201222829 限’亦可以是介於0.5V至50V之間的直流電壓於 10秒的時間’端視該二極體薄膜130的材粗 也σ小於 定。 材枓及實際厚度而 請參照圖5,為根據本發明第三實施例之努、 流程示意圖。請同時參照圖1,本實施例之製^ 方法的 包含下列步驟:步驟310,提供一二極體薄膜""13〇,法300 一第一氧化物形成於一第一電極120上.牛、趣,’、係為 ’ ν鄉320,施加 一熱退火(Thermal annealing)製程於該二極體薄膜13 〇 形成複數個電流通道於該二極體薄膜130 φ . n二 以 υ T ’及步驟330, 形成一第二電極140於該二極體薄膜13〇 μ ·廿山 ’ 具-中 ’ 流通道的成份包含-第二氧化物,且該第二氧化物不同、 該第-氧化物;或該第-及第二氧化物具有相同的化學詛 成元素,但不同的氧含量原子百分比。對於步驟32〇的埶 退火製程’可選自快速熱退火或多階段熱退火等習知的製 程,皆可達成本實施例二極體元件的製作。選用的埶退火 溫度以低於800°C為佳’並不以此為限,熱退火所需的溫 度、階段、及施用時間視該二極體薄膜13〇的材料及實二 厚度而定。有關該第-電極12 0,該第二電極i 4 〇,該二極 體薄膜130 ’及該電流通道的相關技術特徵已於上文第一 實施例的說明中描述,在此不再贅述。 該二極體薄膜130在經過電氣應力或熱退火製程的前 後,其電流-電壓特性產生相當的差異,這可由圖6的電流 -電壓曲線(I-V curve)實驗量測圖得知:該二極體薄膜在經 過電氣應力或熱退火製程後的順向電流61〇及逆向電流 620大於其未受該電氣應力或熱退火製程前的順向電流 201222829 630及逆向電流640,且該電流-電壓曲線具有二極體的元 件電氣特性。 另請再次參照圖2及圖3並請注意,第二導電區域 132/133/134及其内部的電流通道161/162/163的形成係由 製作程序中的電氣應力或熱退火所造成,該第二導電區域 132/133/134及其内部的電流通道161/162/163的形成並沒 有特定且固定的數量、形狀、或位置,端視製作當時的實 際情況而定,惟實質上皆能藉此實現二極體元件的電氣特 φ 性。另外’藉由導電式原子力顯微鏡(Conductive AFM)量測 二極體薄膜的表面導電性,有助於探知該第二導電區域 132/133/134及其内部的電流通道161/162/163的形成狀 況·’圖7為根據本發明第二實施例所製作的二極體元件樣 本的表面導電性量測圖,其中電流密度較高(或色度較淺) 的區域可視為是第二導電區域,且亦呈現不規則的分布樣 態。 7201222829 VI. Description of the Invention: [Technical Field] The present invention relates to a diode element and a fabrication technique thereof, and more particularly to a diode element structure based on an oxide film and a method of fabricating the same. [Prior Art] Conventional PN-type diodes are difficult to apply to applications such as three-dimensional stacked integrated circuits and soft electronics that require low process temperatures because of the necessity of high-temperature doping processes. In addition, although the conventional oxide thin film diode has the advantage of low temperature process, its electrical characteristics such as forward current density and on-voltage are limited by the choice of materials, and cannot meet the needs of the industry. . For example, for a metal/N-type oxide/P-type oxide/metal MIIM (Metal/Insultor/Insultor/Metal) structure, the combination of two oxide films is quite specific; for metal/oxide/metal The MIM (Metal/Insultor/Metal) structure, in which the combination of metal and oxide also requires a relatively specific material, is sufficient to provide reasonable rectification characteristics. Therefore, the current oxide diodes are still not mature, and the technical problems such as complicated process and component characteristics have yet to be improved, and it is urgent to develop high-performance low-temperature process oxide thin film diodes. SUMMARY OF THE INVENTION In view of this, in an aspect of the present invention, a first embodiment provides a diode device, including: a diode film having a first surface and a second surface, and comprising: a first conductive region providing uniform current conduction at a current density 201222829, and the 笫-channel π, ^ a component of the conductive region of the bismuth comprises a first oxide; and - a second conductive region comprising a plurality of current channels Providing a current conduction of the hook, and the component of the current channel includes - a first gas, the first oxide is different from the second oxide; and is conductive to the first surface and the second surface During the interval, the second DC current density is greater than the first conductive region (four), a first electrode ' is formed on the first surface; and a second electrode is formed on the second surface . In the other aspect of the present invention, the second embodiment provides that the producer: goes to the 'providing-providing-diode structure, its - surface and a first: first oxide and has a tenth surface, a first electrode formed on the surface of the first surface (four); and by the first and the encapsulation film; wherein the composition of the current path is in the present; and the second side of the side, the component is fabricated The third embodiment provides a diode which is a first oxide column: a cathode-providing-diode film, the process is performed on the first electrode; a thermal annealing film is applied; Forming a plurality of current channels in the component of the diode current channel: a diode film; wherein the first oxygen = second oxide and the second oxide is different [embodiment] 201222829 The features, objects, and functions of the present invention, and the technical means for achieving the same are described in detail with reference to the accompanying drawings. Cognition and understanding do not limit the scope of the invention Technology .. In the case of the whale embodiment, the description of each layer (film), series, pattern or structure = "upper (〇n)" or "$ (sin)" of the substrate, each layer (film), region, enamel or pattern The "upper" and "lower" systems include all direct (this kiss) or indirectly formed objects. In addition, for each layer above or below, the description will be based on the drawings. Conveniently and clearly, the thickness or size of each layer in the drawings is in a rough, exaggerated or brief manner and the dimensions of the constituent elements are not completely the actual dimensions. x' Please refer to Figure 1 for A schematic diagram of the structure of the diode element of the first embodiment of the present invention. The diode device of the present embodiment includes a base 110' - a first electrode 12, a second electrode, and a diode. Membrane 13〇; wherein the diode 13赖 is mainly composed of an oxide, which is characterized in that the current surface of the diode film 13〇 is not uniform, and can be divided into Different conductive areas, or approximately uniform in the conducted current density Classification or not 4: The first conductive region (3) provides current conduction of current density uniformity, and the second conductive region 132/U3/134 provides current conduction with uneven current density, as shown in FIG. 2. The substrate 110 is usually For the germanium wafer suitable for the semiconductor process, in this embodiment, a stone wafer of deposited or serpentine oxide (si02) is used as the insulating layer as the substrate 11G, so that the diode element of the embodiment can be obtained by the system process. The substrate 110 can also be made of glass 201222829 glass or a flexible substrate, depending on actual needs or subsequent component processes. The first electrode 120 and the second electrode 140 are formed on the second Both sides of the polar film 130 are used to provide electrical stress to the diode film 130 in the subsequent process of the embodiment, or as an electrical signal external contact of the diode element 1'. The composition of the first electrode 丨2〇 of the embodiment is the beginning (Pt), and the composition of the second electrode 140 is titanium (Ti) to provide good electrical and film properties; but not limited thereto, the first and the first The composition of the two electrodes can also be selected from platinum and gold (Au). Silver (Ag), lead (Pd), ruthenium (RU), ruthenium (8), ruthenium (Ru〇x), ruthenium oxide (JrOx), yttrium (Y), nickel (Ni), copper (Cu), titanium , group (Ta), zinc (Zn), wrong (Zr), give (Hf), crane (W), chromium (Cr), indium tin oxide (ITO), indium zinc oxide (ITO), alumina tin ( AT〇), and aluminum oxide zinc (ΑΖ0), or other conductive materials, depending on the actual situation. The diode film 130 is composed of an oxide, and titanium dioxide (Ti〇2) is basically selected in this embodiment. The diode film 13 is formed; in terms of electrical considerations of the diode, the preferred thickness of the diode film 13 is between 〖nm and i μηι, and the film actually produced in this embodiment is average. The thickness is between 忉• Μ and 5〇nm. It is worth noting that the damage of the diode film 120 is not limited to 1 oxidizing, and may also be oxidized (7) 〇 x), oxidized ruthenium (TaOx), oxide (ν〇χ), yttrium oxide ( Nb〇x), tungsten oxide (w〇x), zinc oxide (Zn〇x), oxidation pot (Cd〇x), oxidation (Hf〇x), oxidation error (z called, oxidation record (Nl〇x) At least one of copper oxide (Cu〇x), indium zinc oxide (InZnxOy), and other A-like oxide materials, depending on actual conditions or requirements of component characteristics, where t X and y represent atomic percentages. ^, the current conducted by the erbium diode film 130 is non-uniform across the entire lateral surface, and is categorized according to FIG. 2 as follows: the first conductive 201222829 region 131 provides an electrical enthalpy - the electrical region 132 Π 33 a low current conduction region of the /134^ degree hook, and a second conduction region. The diode has a high current conduction U9 with a non-uniform current density, and when the voltage is applied to the upper-first surface 137 - the second surface is conducted on the first surface 13 ° Λ electrode 120 and the second electrode 140, then the second conductive region pf of the second surface I39 between the current surface of the dense area More than 10 times the DC current density is greater than the first conductivity. It is worth noting that the same electrical component of the diode is different from the original I-conductive region 132/133/134. The current path of the titanium dioxide or oxide, which may be caused to cause a current to conduct, is originally inconsistent with β. For example, the first conductive region 131 (referred to as a dioxane or oxide of the second film 13G) Included in the second conductive region 4 is an oxide (referred to as a second V is a titanium oxide or a diode film m different from the first oxide). The second oxide may also be The oxygen content in the material _ or the first oxidizing wind caused by the addition of the jade process is formed, and a similar material having the same chemical film and atomic percentage of the same gas content as the first oxide is formed. ^ ° , w is not limited to the structure of a single-layer film. It may also be a plurality of layers of 10 Λ ^ 4 疋 plus an oxide film between the diode film 130 and the second electrode 12 。. # 3, 3 is ° Schematic diagram of the current channel structure, as shown in Figure 3, can The upper surface 11 is perpendicular to the first or second surface ii, f 1 π - elongated meandering channel, and has different states, for example, the current channel 160 runs through the 兮-& The current channel 161/162/163 is the same as the one of the body thin film 120; however, the oxide component in the current channel 160/161/162/163 201222829 may be different from the composition of the diode film 120 outside the current channel. The following embodiment illustrates a method of manufacturing a diode element of the present invention. Please refer to FIG. 4' for a schematic flow chart of a manufacturing method according to a second embodiment of the present invention. Referring to FIG. 1 together, the manufacturing method 200 of the embodiment includes the following steps: Step 210, providing a diode structure includes: a diode film 130, which is composed of a first oxide and has a first a surface 137 and a second surface 139; a first electrode 120 is formed on the first surface 137 φ; and a second electrode 140 is formed on the second surface 139. Step 220, applying an electrical stress to the diode film 130 by the first and second electrodes 120/140 to form a plurality of current channels in the diode film 130. Wherein the composition of the current channel comprises a second oxide, and the second oxide is different from the first oxide; or the first and second oxides have the same chemical composition element, but different oxygen content atoms percentage. Related technical features of the first electrode 120, the second electrode 140, the diode film 130, and the current path have been described in the above description of the first embodiment, and are not described herein again. For the applied electrical stress of step 220, it may be selected from a constant DC voltage bias (DC), a DC voltage Sweep, a constant DC current, and a DC current Sweep. And AC voltage pulse, etc., all of which can be used to manufacture the diode components of the cost embodiment. As an example of an actual fabrication experiment, the second embodiment uses a DC bias voltage to apply a DC voltage of 3 V to the first and second electrodes 120/140 for about 5 seconds; but the above voltage and application time The choice is not to use the 201222829 limit 'may also be a DC voltage between 0.5V and 50V in 10 seconds'. The material thickness of the diode film 130 is also less than σ. Referring to Figure 5, there is shown a schematic diagram of a flow chart according to a third embodiment of the present invention. Referring to FIG. 1 together, the method of the present embodiment includes the following steps: Step 310, providing a diode film "<13, a method 300 is formed on a first electrode 120. Niu, interest, ', is ' ν 乡 320, applying a thermal annealing process on the diode film 13 〇 forming a plurality of current channels in the diode film 130 φ. n two to υ T ' And step 330, forming a second electrode 140 in the diode film 13〇·廿山's - the middle of the flow channel component comprises a second oxide, and the second oxide is different, the first oxide Or the first and second oxides have the same chemical constituent elements, but different atomic percentages of oxygen content. For the conventional annealing process of step 32, which may be selected from rapid thermal annealing or multi-stage thermal annealing, the fabrication of the diode element of the embodiment can be achieved. The annealing temperature of the ruthenium selected is preferably less than 800 ° C, and is not limited thereto. The temperature, stage, and application time required for the thermal annealing depends on the material and the thickness of the diode film 13 。. Regarding the first electrode 120, the second electrode i 4 〇, the diode film 130' and the related technical features of the current path have been described in the description of the first embodiment above, and will not be described again. The current-voltage characteristics of the diode film 130 before and after the electrical stress or thermal annealing process are quite different. This can be seen from the current-voltage curve (IV curve) experimental measurement chart of FIG. 6: the two poles The forward current 61〇 and the reverse current 620 of the bulk film after the electrical stress or thermal annealing process are greater than the forward current 201222829 630 and the reverse current 640 before the electrical stress or thermal annealing process, and the current-voltage curve Electrical characteristics of components with diodes. Please also refer to FIG. 2 and FIG. 3 again, and note that the formation of the second conductive region 132/133/134 and the internal current channel 161/162/163 thereof is caused by electrical stress or thermal annealing in the fabrication process, which The formation of the second conductive region 132/133/134 and its internal current channel 161/162/163 is not specific and fixed in number, shape, or position, depending on the actual situation at the time of manufacture, but substantially Thereby, the electrical characteristics of the diode element are achieved. In addition, measuring the surface conductivity of the diode film by conducting atomic force microscopy (Conductive AFM) helps to detect the formation of the second conductive region 132/133/134 and its internal current channel 161/162/163. [FIG. 7] FIG. 7 is a surface conductivity measurement chart of a sample of a diode element fabricated according to a second embodiment of the present invention, wherein a region having a higher current density (or a lighter chromaticity) may be regarded as a second conductive region. And also presents an irregular distribution pattern. 7

唯以上所述者,包含:特徵、結構、及其它類似的效 a,僅為本發明之較佳實施例,當不能以之限制 :此外,上述各實施例所展示的特徵、結構、及其它 果’亦可為該領域所屬的技藝人士在依本發明申 所在,^圍進行均等變化及修飾,仍將不失本發明之要義 的進it脫離本發明之精神和範圍,故都應視為本發明 步實施狀況。 不能H =述各實施例所描述者只能算是實施範例,並 件或單制本發明的範圍。例>,各實施例所使用的元 兀,可為該領域所屬的技藝人士進行修改及實現, 201222829 仍將不失本發明之要義。 12 201222829 【圖式簡單說明】 圖1根據本發明第一實施例之二極體元件的結構示意圖。 圖2二極體溥膜橫截面上的導電區域不意圖。 圖3電流通道結構的剖面示意圖。 - 圖4根據本發明第二實施例之製作方法的流程示意圖。 -圖5根據本發明第三實施例之製作方法的流程示意圖。 圖6本實施例二極體元件樣本的電流-電壓曲線實驗量測 圖。 ® 圖7本實施例二極體元件樣本的表面導電性量測圖。 【主要元件符號說明】 100二極體元件 110基板 . 120第一電極 . 130二極體薄膜 φ 1M第一導電區域 132/133/134第二導電區域 137第一表面 139第二表面 140第二電極 160/161/162/163 電流通道 200製作方法 210/220 步驟 13 201222829 300製作方法 310/320/330 步驟 610經過電氣應力或熱退火後二極體薄膜的順向電流曲線 620經過電氣應力或熱退火後二極體薄膜的逆向電流曲線 <530未受電氣應力或熱退火前的二極體薄膜順向電流曲線 640未受電氣應力或熱退火前的二極體薄膜逆向電流曲線 14Only the above, including: features, structures, and other similar effects a, are merely preferred embodiments of the present invention, and are not limited thereto: in addition, the features, structures, and other features exhibited by the above embodiments It is also possible for those skilled in the art to make equal changes and modifications in accordance with the present invention, and it is still possible to deny the spirit and scope of the present invention without departing from the spirit and scope of the present invention. The implementation steps of the present invention. It is not possible to describe the embodiments of the present invention as an example of implementation, and the scope of the invention may be combined. For example, the elements used in the various embodiments can be modified and implemented by those skilled in the art, and 201222829 will remain without losing the essence of the present invention. 12 201222829 [Schematic Description of the Drawings] Fig. 1 is a schematic view showing the structure of a diode element according to a first embodiment of the present invention. The conductive area on the cross section of the diode bismuth film of Fig. 2 is not intended. Figure 3 is a schematic cross-sectional view of the current channel structure. - Figure 4 is a flow chart showing a manufacturing method according to a second embodiment of the present invention. - Figure 5 is a flow chart showing a manufacturing method according to a third embodiment of the present invention. Fig. 6 is a graph showing the current-voltage curve of the sample of the diode of this embodiment. ® Figure 7. Surface conductivity measurement of a sample of a diode of this embodiment. [Main component symbol description] 100 diode element 110 substrate. 120 first electrode. 130 diode film φ 1M first conductive region 132/133/134 second conductive region 137 first surface 139 second surface 140 second Electrode 160/161/162/163 Current Channel 200 Fabrication Method 210/220 Step 13 201222829 300 Fabrication Method 310/320/330 Step 610 After electrical stress or thermal annealing, the forward current curve 620 of the diode film is electrically stressed or The reverse current curve of the diode film after thermal annealing <530 is not subjected to electrical stress or the forward current curve 640 of the diode film before thermal annealing is not subjected to electrical stress or the reverse current curve of the diode film before thermal annealing 14

Claims (1)

201222829 七、申清專利乾圍: 1. -種二極體元件,其包括: 一二極體薄膜’其具有-第-表面及-第二表面,且包 括: 第導電區域’提供電流密度均勻的電流傳導, 一且該第—導電區域的成份包含一第一氧化物;及 =二導電區域’其包含複數個電流通道,提供電 密度不均勻的電流傳導’且該電流通道的成份 • &含一第二氣化物; JL中,古歹莖〜 ^、 μ木〜氣化物不同於該第二氧化物;當一電 流傳導,該第一表面與該第二表面之間時,該第 一導電區域所流過的直流電流密度大於該第一導 電區域的ι〇倍以上; 第電極,其係形成於該第-表面上;及 -第二電極,其係形成於該第二表面上。 2. 如睛求項1之二極體元件,其中該第—及第二氧化物具 • 有相同的化學組成元素,但不同的氧含㈣子百分比。 如清求項1之—極體元件’更包括—氧化物薄膜,其係 形成於該第二表面與該第二電極之間。 4. 如睛求項1之二極體元件,其中該二極體薄膜的厚度介 於1 nm至1 μηι之間。 5. 如請求項i之二極體元件,其中該第一及第二氧化物至 少包含下列氧化物的其中一種:氧化鈦⑽χ) 、氧化鈕 (Ta〇x)、氧化物(v〇x)、氧化鈮(Nb〇x)、氧化鎢(w〇x)、 氧化鋅(ZnOx)、氧化鎘(Cd〇x)、氧化铪(Hf〇x)、氧化錯 15 201222829 (ZrOx)、氧化鎳(Ni〇x)、氧化銅(CuOx)、氧化鋅銦 (InZnxOy)、及其類似物,其中χ及y代表原子百分比。 6. 如請求項1之二極體元件’其中該第一及第二電極的成 份至少包含下列導體材料的其中一種:鉑(Pt)、金(Au)、 銀(Ag)、鉛(Pd)、釕(Ru)、銥(Ir)、氧化釕(ru〇x)、氧化 欽 O〇x)、釔(Y)、鎳(Ni)、銅(Cu)、鈦(Ti)、鈕(Ta)、鋅(Zn)、 結(Zr)、铪(Hf)、鎢(W)、鉻(Cr)、氧化銦錫(ΓΓΟ)、氧化 銦辞(ΙΖ0)、氧化鋁錫(ΑΤ0)、及氧化鋁鋅(ΑΖ0)。 7. 一種二極體元件的製作方法,其包括: 提供一二極體結構,其包括:一二極體薄膜,其係由一 第一氧化物所組成且具有一第一表面及一第二表面; 一第一電極形成於該第一表面上;及一第二電極形成 於該第二表面上;及 藉由該第一與第二電極,施加一電氣應力於該二極體薄 膜’以形成複數個電流通道於該二極體薄膜中; 其中’該電流通道的成份包含一第二氧化物,且該第二 氧化物不同於該第一氧化物。 8. 如請求項7之製作方法,其中該第一及第二氧化物具有 相同的化學組成元素,但不同的氧含量原子百分比。 9. 如請求項7之製作方法’其中該施加電氣應力的方式選 自直流定偏電壓、直流電壓掃描、直流定偏電流、直流 電流掃描、及交流電壓脈衝。 1〇.如請求項8之製作方法,其中該直流定偏電壓係介於 0.5V至50V之間,且施加的時間小於1〇秒。 如請求項7之製作方法,其中受該電氣應力的該二極體 16 201222829 向及逆向電流大於其未受該電氣應力前 及逆向電流。 12. 如明求項7之製作方法,其中該二極體薄膜厚度介於1 nm至1 之間。 13. 如二青求項7之製作方法’其中該第一及第二氧化物至少 i各下列氧化物的其中一種:氧化鈦(Ti〇x)、氧化鈕 (TaOx)、氧化物(ν〇χ)、氧化鈮(Nb〇j、氧化鎢(w〇x)、 氧化鋅(2:nOx)、氧化鎘(cd〇x)、氧化姶(Hf〇x)、氧化鍅 • (Zr〇x)、氧化鎳(Ni〇x)、氧化銅(CuOx)、氧化鋅銦。 (InZnx〇y)、及其類似物;其中X及y代表原子百分比。 14. 如請求項7之製作方法,其中該第一及第二電極的成份 至少包含下列導體材料的其中一種:鉑(Pt)、金(Au)、銀 (Ag)、錯(Pd)、釕(Ru)、銥(Ir)、氧化釕(Ru〇x)、氧化銥 (Ir〇x)、釔(Y)、鎳(Ni)、銅(Cu)、鈦(Ti)、钽(Ta)、鋅(Zn)、 結(Zr)、給(Hf)、鎢(W)、鉻(Cr)、氧化銦錫(ΓΓΟ)、氧化 銦辞(ΙΖ0)、氧化鋁錫(ΑΤ0)、及氧化鋁鋅(ΑΖ0)。 籲 15.—種製作二極體元件的方法,其包括: 提供一二極體薄膜’其係為一第一氧化物形成於一第一 電極上; 施加一熱退火製程於該二極體薄膜,以形成複數個電流 通道於該二極體薄膜中;及 形成一第二電極於該二極體薄膜上; 其中’該電流通道的成份包含一第二氧化物,且該第二 氧化物不同於該第一氧化物。 16.如請求項15之製作方法,其中該第一及第二氧化物具 17 201222829 於800¾。之製作方法,其中該熱退火製程的溫度低 18. 如請求項] 極體之製作方法,其中受該熱退火製程的該二 的順向及順及逆向電流大於其未受該熱退火製程前 19. 如請求項、丨,電〇 ηηι . , 5之製作方法,其中該二極體薄膜厚度介於i nm至1 μιη之間。 ^項15之製作方法,其中該第—及第二氧化物至 〉03下列氣化物的其中一種:氧化鈦(TiOx)、氧化鈕 (Ta〇x)、氧化物(ν〇χ)、氧化鈮(NbOx)、氧化鎢(w〇x)、 .氧化辞(Zn〇x)、氧化鎘(Cd〇x)、氧化铪(Hf〇x)、氧^鍅 (ZrOx)、氧化鎳(Ni〇x)、氧化銅(cu〇x)、氧化鋅銦 (InZnxOy)、及其類似物;其中χ及y代表原子百分比。201222829 VII. Shenqing Patent Drying: 1. A diode component comprising: a diode film having a -first surface and a second surface, and comprising: a first conductive region providing uniform current density Current conduction, wherein the composition of the first conductive region comprises a first oxide; and = the second conductive region 'which includes a plurality of current channels, providing current conduction with non-uniform electrical density' and the composition of the current channel Containing a second vaporization; in JL, the ancient stolon stem ~ ^, μ wood ~ vapor is different from the second oxide; when a current is conducted, between the first surface and the second surface, the first a DC current flowing through a conductive region is greater than ι times the first conductive region; a first electrode formed on the first surface; and a second electrode formed on the second surface . 2. The dipole element of claim 1, wherein the first and second oxides have the same chemical composition, but the different oxygen contains (four) sub-percentage. The polar body element as claimed in claim 1 further includes an oxide film formed between the second surface and the second electrode. 4. The diode element of claim 1, wherein the thickness of the diode film is between 1 nm and 1 μm. 5. The diode element of claim i, wherein the first and second oxides comprise at least one of the following oxides: titanium oxide (10) χ), oxidation button (Ta〇x), oxide (v〇x) , yttrium oxide (Nb〇x), tungsten oxide (w〇x), zinc oxide (ZnOx), cadmium oxide (Cd〇x), yttrium oxide (Hf〇x), oxidized error 15 201222829 (ZrOx), nickel oxide ( Ni〇x), copper oxide (CuOx), indium zinc oxide (InZnxOy), and the like, wherein χ and y represent atomic percentages. 6. The dipole element of claim 1 wherein the components of the first and second electrodes comprise at least one of the following conductor materials: platinum (Pt), gold (Au), silver (Ag), lead (Pd). , ruthenium (Ru), iridium (Ir), ruthenium oxide (ru〇x), oxidized 〇O〇x), yttrium (Y), nickel (Ni), copper (Cu), titanium (Ti), button (Ta) , zinc (Zn), junction (Zr), hafnium (Hf), tungsten (W), chromium (Cr), indium tin oxide (yttrium), indium oxide (ΙΖ0), aluminum oxide tin (ΑΤ0), and alumina Zinc (ΑΖ0). A method of fabricating a diode device, comprising: providing a diode structure comprising: a diode film composed of a first oxide and having a first surface and a second a first electrode is formed on the first surface; and a second electrode is formed on the second surface; and an electrical stress is applied to the diode film by the first and second electrodes Forming a plurality of current channels in the diode film; wherein 'the component of the current channel comprises a second oxide, and the second oxide is different from the first oxide. 8. The method of claim 7, wherein the first and second oxides have the same chemical composition element, but different atomic percentages of oxygen content. 9. The method of claim 7, wherein the method of applying electrical stress is selected from the group consisting of a DC bias voltage, a DC voltage sweep, a DC bias current, a DC current sweep, and an AC voltage pulse. 1) The method of claim 8, wherein the DC bias voltage is between 0.5V and 50V and the applied time is less than 1 second. The method of claim 7, wherein the diode and the reverse current of the diode 16 201222829 are greater than the electrical stress before and the reverse current. 12. The method of claim 7, wherein the diode film has a thickness between 1 nm and 1. 13. The method for producing a second embodiment, wherein the first and second oxides are at least one of the following oxides: titanium oxide (Ti〇x), oxidation knob (TaOx), oxide (ν〇) χ), yttrium oxide (Nb〇j, tungsten oxide (w〇x), zinc oxide (2:nOx), cadmium oxide (cd〇x), yttrium oxide (Hf〇x), yttrium oxide (Zr〇x) Nickel oxide (Ni〇x), copper oxide (CuOx), zinc indium oxide (InZnx〇y), and the like; wherein X and y represent atomic percentages. 14. The method of claim 7, wherein The components of the first and second electrodes comprise at least one of the following conductor materials: platinum (Pt), gold (Au), silver (Ag), erbium (Pd), ruthenium (Ru), iridium (Ir), yttrium oxide ( Ru〇x), yttrium oxide (Ir〇x), yttrium (Y), nickel (Ni), copper (Cu), titanium (Ti), tantalum (Ta), zinc (Zn), knot (Zr), give ( Hf), tungsten (W), chromium (Cr), indium tin oxide (yttrium), indium oxide (ΙΖ0), aluminum oxide tin (ΑΤ0), and aluminum oxide zinc (ΑΖ0). A method of a body member, comprising: providing a diode film formed by forming a first oxide on a first electrode Applying a thermal annealing process to the diode film to form a plurality of current channels in the diode film; and forming a second electrode on the diode film; wherein the component of the current channel comprises a The second oxide, and the second oxide is different from the first oxide. The method of claim 15, wherein the first and second oxides are in the form of The temperature of the thermal annealing process is as low as 18. The method of claim 2, wherein the forward and forward reverse currents of the two of the thermal annealing processes are greater than before the thermal annealing process is 19.丨, 电〇ηηι . , 5, wherein the thickness of the diode film is between i nm and 1 μιη. ^ The production method of Item 15, wherein the first and second oxides are below - 03 One of the compounds: titanium oxide (TiOx), oxide (Ta〇x), oxide (ν〇χ), yttrium oxide (NbOx), tungsten oxide (w〇x), oxidized (Zn〇x), Cadmium oxide (Cd〇x), yttrium oxide (Hf〇x), oxygen yttrium (ZrOx), nickel oxide (Ni 〇x), copper oxide (cu〇x), indium zinc oxide (InZnxOy), and the like; wherein χ and y represent atomic percentages.
TW99141058A 2010-11-26 2010-11-26 Diode device and the fabrication method thereof TWI422042B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99141058A TWI422042B (en) 2010-11-26 2010-11-26 Diode device and the fabrication method thereof
CN 201010610280 CN102479824B (en) 2010-11-26 2010-12-16 Diode element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99141058A TWI422042B (en) 2010-11-26 2010-11-26 Diode device and the fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201222829A true TW201222829A (en) 2012-06-01
TWI422042B TWI422042B (en) 2014-01-01

Family

ID=46092381

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99141058A TWI422042B (en) 2010-11-26 2010-11-26 Diode device and the fabrication method thereof

Country Status (2)

Country Link
CN (1) CN102479824B (en)
TW (1) TWI422042B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034177A (en) * 2019-04-24 2019-07-19 深圳扑浪创新科技有限公司 A kind of photoelectricity laminated film and application thereof
EP4036059A4 (en) * 2019-09-26 2022-12-07 Lg Chem, Ltd. Composition for forming tin oxide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI91575C (en) * 1986-12-08 1994-07-11 Rca Corp Diode with mixed oxide insulation
BE1007865A3 (en) * 1993-12-10 1995-11-07 Philips Electronics Nv Tunnel of permanent switch wiring element with different situations.
US7935951B2 (en) * 1996-10-28 2011-05-03 Ovonyx, Inc. Composite chalcogenide materials and devices
CN1725520A (en) * 2005-04-05 2006-01-25 王继文 Metal type diode and metal-type triode
KR100657966B1 (en) * 2005-08-11 2006-12-14 삼성전자주식회사 Manufacturing method of memory device for stablizing reset current
JP4967176B2 (en) * 2007-05-10 2012-07-04 シャープ株式会社 Variable resistance element, method of manufacturing the same, and nonvolatile semiconductor memory device
US7811840B2 (en) * 2008-05-28 2010-10-12 Micron Technology, Inc. Diodes, and methods of forming diodes
US20100078758A1 (en) * 2008-09-29 2010-04-01 Sekar Deepak C Miim diodes

Also Published As

Publication number Publication date
CN102479824A (en) 2012-05-30
CN102479824B (en) 2013-10-02
TWI422042B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
Nagashima et al. Intrinsic mechanisms of memristive switching
TWI469338B (en) Resistive random access memory and method for fabricating the same
JP5603193B2 (en) Gas sensor
TW201834288A (en) Switching device formed from correlated electron material
TW200845155A (en) Method of forming a carbon nanotube-based contact to semiconductor
CN103283042B (en) Light-emitting component and its manufacture method
Lee et al. Forming-free resistive switching behaviors in Cr-embedded Ga2O3 thin film memories
JP5415650B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
TW200529303A (en) RRAM memory cell electrodes
TW200832525A (en) Ohmic electrode for SiC semiconductor, method for manufacture of ohmic electrode for SiC semiconductor, semiconductor device, and method for manufacture of semiconductor device
Kim et al. Effect of nanopyramid bottom electrodes on bipolar resistive switching phenomena in nickel nitride films-based crossbar arrays
TW201214673A (en) Resistive switching memories and the manufacturing method thereof
CN109863607A (en) Structure, method for manufacturing the structure, semiconductor element, and electronic circuit
CN103597597B (en) Variable resistor element and manufacture method thereof
TW200824046A (en) Resistive random access memory (RRAM) and method for fabricating the same
Milano et al. Junction properties of single ZnO nanowires with asymmetrical Pt and Cu contacts
JP6144011B2 (en) Semiconductor element
Ashery et al. Heterostructure device based on graphene oxide/TiO2/n-Si for optoelectronic applications
TWI538270B (en) Transistor structure and manufacturing method thereof
TWI377606B (en)
TW201222829A (en) Diode device and the fabrication method thereof
JP5344484B2 (en) Schottky electrode in diamond semiconductor device and manufacturing method thereof
CN107204397B (en) Selector and preparation method thereof for bipolar resistance transformation
CN103794621A (en) Bidirectional current-limiting device and preparation method thereof
TW201135221A (en) Hydrogen sensor and fabrication method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees