TWI422042B - Diode device and the fabrication method thereof - Google Patents

Diode device and the fabrication method thereof Download PDF

Info

Publication number
TWI422042B
TWI422042B TW99141058A TW99141058A TWI422042B TW I422042 B TWI422042 B TW I422042B TW 99141058 A TW99141058 A TW 99141058A TW 99141058 A TW99141058 A TW 99141058A TW I422042 B TWI422042 B TW I422042B
Authority
TW
Taiwan
Prior art keywords
oxide
diode
current
film
electrode
Prior art date
Application number
TW99141058A
Other languages
Chinese (zh)
Other versions
TW201222829A (en
Inventor
Tuo Hung Hou
Jiun Jia Huang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW99141058A priority Critical patent/TWI422042B/en
Priority to CN 201010610280 priority patent/CN102479824B/en
Publication of TW201222829A publication Critical patent/TW201222829A/en
Application granted granted Critical
Publication of TWI422042B publication Critical patent/TWI422042B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

二極體元件及其製作方法Diode element and manufacturing method thereof

本發明係關於一種二極體元件及其製作技術,特別是指一種以氧化物薄膜為基礎的二極體元件結構及其製法。The present invention relates to a diode element and a fabrication technique thereof, and more particularly to a diode element structure based on an oxide film and a method of fabricating the same.

傳統PN形式的二極體因為高溫摻雜製程的必要性,難以適用於需要低製程溫度的立體堆疊式積體電路及軟性電子等應用。另外,習知的氧化物薄膜二極體雖具有低溫製程的優勢,但其電性特徵如:順向電流密度及導通電壓等,則受限於材料選擇的限制,亦尚無法滿足產業所需。例如,對於金屬/N型氧化物/P型氧化物/金屬的MIIM(Metal/Insultor/Insultor/Metal)結構,其中兩層氧化物薄膜的組合有相當的特定性;對於金屬/氧化物/金屬的MIM(Metal/Insultor/Metal)結構,其中金屬與氧化物的組合亦要求相當特定的材料,方足以提供合理的整流特性。因此,現階段的氧化物二極體仍未臻成熟,其製程複雜且元件特性尚待提升等技術課題乃亟待發展,以期實現高性能的低溫製程之氧化物薄膜二極體。Due to the necessity of a high-temperature doping process, the conventional PN form of the diode is difficult to apply to applications such as a three-dimensional stacked integrated circuit requiring low process temperature and soft electronics. In addition, although the conventional oxide thin film diode has the advantage of low temperature process, its electrical characteristics such as forward current density and on-voltage are limited by the choice of materials, and cannot meet the needs of the industry. . For example, for a metal/N-type oxide/P-type oxide/metal MIIM (Metal/Insultor/Insultor/Metal) structure, the combination of two oxide films is quite specific; for metal/oxide/metal The MIM (Metal/Insultor/Metal) structure in which the combination of metal and oxide also requires a relatively specific material is sufficient to provide reasonable rectification characteristics. Therefore, the current stage of oxide diodes has not yet matured, and the technical problems such as complicated process and component characteristics have yet to be improved, in order to realize high-performance low-temperature process oxide thin film diodes.

有鑑於此,在本發明的一方面,第一實施例提供一種二極體元件,其包括:一二極體薄膜,其具有一第一表面及一第二表面,且包括:一第一導電區域,提供電流密度均勻的電流傳導,且該第一導電區域的成份包含一第一氧化物;及一第二導電區域,其包含複數個電流通道,提供電流密度不均勻的電流傳導,且該電流通道的成份包含一第二氧化物;其中,該第一氧化物不同於該第二氧化物;當一電流傳導於該第一表面與該第二表面之間時,該第二導電區域所流過的直流電流密度大於該第一導電區域的10倍以上;一第一電極,其係形成於該第一表面上;及一第二電極,其係形成於該第二表面上。In view of this, in an aspect of the present invention, a first embodiment provides a diode device including: a diode film having a first surface and a second surface, and including: a first conductive a region, providing a current density uniform current conduction, and the first conductive region component comprises a first oxide; and a second conductive region comprising a plurality of current channels to provide current conduction with non-uniform current density, and The composition of the current channel includes a second oxide; wherein the first oxide is different from the second oxide; and when a current is conducted between the first surface and the second surface, the second conductive region The DC current flowing through is greater than 10 times greater than the first conductive region; a first electrode is formed on the first surface; and a second electrode is formed on the second surface.

在本發明的另一方面,第二實施例提供一種二極體元件的製作方法,其包含下列步驟:提供一二極體結構,其包括:一二極體薄膜,其係由一第一氧化物所組成且具有一第一表面及一第二表面;一第一電極形成於該第一表面上;及一第二電極形成於該第二表面上;及藉由該第一與第二電極,施加一電氣應力於該二極體薄膜,以形成複數個電流通道於該二極體薄膜中;其中,該電流通道的成份包含一第二氧化物,且該第二氧化物不同於該第一氧化物。In another aspect of the present invention, a second embodiment provides a method of fabricating a diode element, comprising the steps of: providing a diode structure comprising: a diode film, which is subjected to a first oxidation The composition is composed of a first surface and a second surface; a first electrode is formed on the first surface; and a second electrode is formed on the second surface; and the first and second electrodes are Applying an electrical stress to the diode film to form a plurality of current channels in the diode film; wherein the current channel component comprises a second oxide, and the second oxide is different from the first Monooxide.

在本發明的又另一方面,第三實施例提供一種二極體元件的製作方法,其包含下列步驟:提供一二極體薄膜,其係為一第一氧化物形成於一第一電極上;施加一熱退火製程於該二極體薄膜,以形成複數個電流通道於該二極體薄膜中;及形成一第二電極於該二極體薄膜上;其中,該電流通道的成份包含一第二氧化物,且該第二氧化物不同於該第一氧化物。In still another aspect of the present invention, a third embodiment provides a method of fabricating a diode device, comprising the steps of: providing a diode film formed on a first electrode by a first oxide Applying a thermal annealing process to the diode film to form a plurality of current channels in the diode film; and forming a second electrode on the diode film; wherein the current channel component comprises a a second oxide, and the second oxide is different from the first oxide.

以下將參照隨附之圖式詳細描述及說明本發明之特徵、目的、功能,及其達成所使用的技術手段;但所列舉之實施例僅為輔助說明,以利對本發明有更進一步的認知與瞭解,並不因此限制本發明的範圍及技術手段。在該等實施例的說明中,各層(膜)、區域、圖案或結構形成於基板、各層(膜)、區域、墊片或圖案之「上(on)」或「下(under)」的描述,該「上」及「下」係包括所有直接(directly)或間接(indirectly)被形成物。另外,對於各層之上或下,將以圖式為基準來進行說明。而為了說明上的便利和明確,圖式中各層的厚度或尺寸,係以概略的、誇張的、或簡要的方式表示,且各構成要素的尺寸並未完全為其實際尺寸。The features, objects, and functions of the present invention, as well as the technical means for achieving the same, are described in detail with reference to the accompanying drawings. It is understood that the scope and technical means of the invention are not limited thereby. In the description of the embodiments, the description of the "on" or "under" of each layer (film), region, pattern or structure formed on the substrate, layers (films), regions, spacers or patterns. The "upper" and "lower" systems include all direct or indirectly formed objects. In addition, the above or below each layer will be described based on the drawings. For the sake of convenience and clarity in the description, the thickness or size of each layer in the drawings is expressed in a rough, exaggerated or brief manner, and the dimensions of the constituent elements are not completely the actual size.

請參照圖1,為根據本發明第一實施例之二極體元件的結構示意圖。本實施例的二極體元件100包含:一基板110,一第一電極120,一第二電極140,及一二極體薄膜130;其中,該二極體薄膜130主要係由氧化物所組成,其特徵在於:該二極體薄膜130的橫截面上所傳導的電流面密度不均勻,其可以分成為不同的導電區域,或大致以所傳導電流面密度的均勻與否歸類為:第一導電區域131,提供電流密度均勻的電流傳導,及第二導電區域132/133/134提供電流密度不均勻的電流傳導,如圖2所示。1 is a schematic structural view of a diode element according to a first embodiment of the present invention. The diode device 100 of the present embodiment includes a substrate 110, a first electrode 120, a second electrode 140, and a diode film 130. The diode film 130 is mainly composed of an oxide. The characteristic is that the current surface density transmitted by the cross section of the diode film 130 is not uniform, and can be divided into different conductive regions, or roughly classified according to the uniformity of the conducted current surface density: A conductive region 131 provides current conduction with uniform current density, and the second conductive region 132/133/134 provides current conduction with non-uniform current density, as shown in FIG.

該基板110通常為適用於半導體製程的矽晶片,本實施例則選用沉積或磊晶氧化矽(SiO2 )為絕緣層的矽晶片作為基板110,使得本實施例的二極體元件可藉由矽製半導體製程來製作;但不以此為限,該基板110亦可以選用玻璃或軟性基板,端視實際的需求或後續的元件製程而定。The substrate 110 is generally a germanium wafer suitable for a semiconductor process. In this embodiment, a germanium wafer having deposited or epitaxial germanium oxide (SiO 2 ) as an insulating layer is selected as the substrate 110, so that the diode element of the embodiment can be used. The semiconductor process is fabricated by a semiconductor process; but not limited thereto, the substrate 110 may also be a glass or a flexible substrate, depending on actual needs or subsequent component processes.

該第一電極120及第二電極140係形成於該二極體薄膜130的兩側,用以在本實施例的後續製程藉以提供電氣應力(Stress)於該二極體薄膜130,或作為本二極體元件100的電氣信號外接點。本實施例的第一電極120的成份為鉑(Pt),第二電極140的成份為鈦(Ti),以提供良好的導電及薄膜特性;但不以此為限,該第一及第二電極的成份亦可以選用鉑、金(Au)、銀(Ag)、鉛(Pd)、釕(Ru)、銥(Ir)、氧化釕(RuOx )、氧化銥(IrOx )、釔(Y)、鎳(Ni)、銅(Cu)、鈦、鉭(Ta)、鋅(Zn)、鋯(Zr)、鉿(Hf)、鎢(W)、鉻(Cr)、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁錫(ATO)、及氧化鋁鋅(AZO),或其他導電材料,端視實際的狀況而定。The first electrode 120 and the second electrode 140 are formed on both sides of the diode film 130 for providing electrical stress to the diode film 130 in the subsequent process of the embodiment, or as a The electrical signal external contact of the diode element 100. The composition of the first electrode 120 of the present embodiment is platinum (Pt), and the composition of the second electrode 140 is titanium (Ti) to provide good electrical and film properties; but not limited thereto, the first and second The composition of the electrode can also be selected from platinum, gold (Au), silver (Ag), lead (Pd), ruthenium (Ru), iridium (Ir), ruthenium oxide (RuO x ), iridium oxide (IrO x ), yttrium (Y). ), nickel (Ni), copper (Cu), titanium, tantalum (Ta), zinc (Zn), zirconium (Zr), hafnium (Hf), tungsten (W), chromium (Cr), indium tin oxide (ITO) Indium zinc oxide (IZO), aluminum oxide tin (ATO), and aluminum zinc oxide (AZO), or other conductive materials, depending on the actual conditions.

該二極體薄膜130係由氧化物所組成,本實施例基本上選用二氧化鈦(TiO2 )製作該二極體薄膜130;就二極體電性上的考量,該二極體薄膜130的較佳厚度介於1nm至1μm之間,而本實施例所實際製作的薄膜平均厚度介於10nm至50nm之間。值得注意的是,該二極體薄膜130的成份並不限於二氧化鈦,亦可以是氧化鈦(TiOx )、氧化鉭(TaOx )、氧化物(VOx )、氧化鈮(NbOx )、氧化鎢(WOx )、氧化鋅(ZnOx )、氧化鎘(CdOx )、氧化鉿(HfOx )、氧化鋯(ZrOx )、氧化鎳(NiOx )、氧化銅(CuOx )、氧化鋅銦(InZnx Oy )、及其他類似氧化物材料的至少一種,端視實際的狀況或元件特性的需求而定,其中x及y代表原子百分比。The diode-based film 130 composed of an oxide, the present embodiment is basically the choice of titanium dioxide (TiO 2) film fabrication of the diode 130; on two considerations electrically polar substance, the relatively thin film diodes 130 The thickness is preferably between 1 nm and 1 μm, and the film actually produced in this embodiment has an average thickness of between 10 nm and 50 nm. It is to be noted that the composition of the diode film 130 is not limited to titanium dioxide, and may be titanium oxide (TiO x ), tantalum oxide (TaO x ), oxide (VO x ), niobium oxide (NbO x ), oxidation. Tungsten (WO x ), zinc oxide (ZnO x ), cadmium oxide (CdO x ), yttrium oxide (HfO x ), zirconia (ZrO x ), nickel oxide (NiO x ), copper oxide (CuO x ), zinc oxide At least one of indium (InZn x O y ), and other similar oxide materials, depending on actual conditions or requirements of component characteristics, where x and y represent atomic percentages.

如上所述,該二極體薄膜130所傳導的電流在整個橫截面上是不均勻的,依此並參照圖2而歸類為:第一導電 區域131,提供電流密度均勻的低電流傳導區,及第二導電區域132/133/134提供電流密度不均勻的高電流傳導區。該二極體薄膜130具有一第一表面137及一第二表面139,當施加一電壓於該第一電極120及第二電極140,則傳導於該第一表面137與該第二表面139之間的電流面密度,該第二導電區域所流過的直流電流密度大於該第一導電區域的10倍以上,同時亦展現出二極體的元件電氣特性。值得注意的是,該第二導電區域132/133/134可能包含複數個成份不同於原先的二氧化鈦或氧化物的電流通道,而造成傳導電流的密度不均勻。例如,該第一導電區域131的成份為原先形成該二極體薄膜130的二氧化鈦或氧化物(稱之為第一氧化物),而該第二導電區域132/133/134所包含的電流通道的成份則為不同於該第一氧化物的氧化鈦或氧化物(稱之為第二氧化物)。該第二氧化物也可能是在該二極體薄膜130的製作或加工過程中,所造成該第一氧化物中的氧含量逸失,而形成與該第一氧化物具有相同的化學組成元素,但不同氧含量原子百分比的類似材質。此外,該二極體薄膜並不限於單層薄膜的結構,其亦可以是多層的氧化物薄膜,或是多加一層氧化物薄膜於該二極體薄膜130與該第二電極140之間。As described above, the current conducted by the diode film 130 is non-uniform throughout the cross section, and is classified as follows: Region 131 provides a low current conduction region with uniform current density, and second conductive region 132/133/134 provides a high current conduction region with non-uniform current density. The diode film 130 has a first surface 137 and a second surface 139. When a voltage is applied to the first electrode 120 and the second electrode 140, the first surface 137 and the second surface 139 are conductive. The current surface density between the second conductive regions is greater than 10 times greater than the first conductive region, and also exhibits the electrical characteristics of the components of the diode. It should be noted that the second conductive region 132/133/134 may contain a plurality of current channels different from the original titanium dioxide or oxide, resulting in uneven density of the conduction current. For example, the first conductive region 131 is composed of titanium dioxide or oxide (referred to as a first oxide) that originally forms the diode film 130, and the current path included in the second conductive region 132/133/134 The composition is a titanium oxide or an oxide (referred to as a second oxide) different from the first oxide. The second oxide may also cause the oxygen content in the first oxide to be lost during the fabrication or processing of the diode film 130 to form the same chemical composition element as the first oxide. But similar materials with different atomic percentages of oxygen content. In addition, the diode film is not limited to the structure of a single layer film, and may be a multilayer oxide film or an additional oxide film between the diode film 130 and the second electrode 140.

圖3為該電流通道結構的剖面示意圖。如圖3所示,該電流通道的結構可能為基本上垂直於該第一或第二表面137/139的細長柱形通道,並具有不同的樣態,例如:電流通道160貫穿該二極體薄膜130、電流通道161/162/163則未完全貫穿該二極體薄膜130;但電流通道160/161/162/163 內的氧化物成份可能不同於電流通道外的二極體薄膜130的成分。3 is a schematic cross-sectional view of the current channel structure. As shown in FIG. 3, the structure of the current channel may be an elongated cylindrical channel substantially perpendicular to the first or second surface 137/139 and have different states, for example, the current channel 160 extends through the diode. The film 130 and the current channel 161/162/163 do not completely penetrate the diode film 130; but the current channel 160/161/162/163 The composition of the oxide within may be different from the composition of the diode film 130 outside the current path.

以下的實施例說明本發明二極體元件的製造方法。請參照圖4,為根據本發明第二實施例之製作方法的流程示意圖。請同時參照圖1,本實施例之製作方法200包含下列步驟:步驟210,提供一二極體結構包括:一二極體薄膜130,其係由一第一氧化物所組成且具有一第一表面137及一第二表面139;一第一電極120形成於該第一表面137上;及一第二電極140形成於該第二表面139上。步驟220,藉由該第一與第二電極120/140,施加一電氣應力(Stress)於該二極體薄膜130,以形成複數個電流通道於該二極體薄膜130中。其中,該電流通道的成份包含一第二氧化物,且該第二氧化物不同於該第一氧化物;或該第一及第二氧化物具有相同的化學組成元素,但不同的氧含量原子百分比。有關該第一電極120,該第二電極140,該二極體薄膜130,及該電流通道的相關技術特徵已於上文第一實施例的說明中描述,在此不再贅述。The following examples illustrate the method of producing the diode element of the present invention. 4 is a schematic flow chart of a manufacturing method according to a second embodiment of the present invention. Referring to FIG. 1 together, the manufacturing method 200 of the embodiment includes the following steps: Step 210, providing a diode structure includes: a diode film 130, which is composed of a first oxide and has a first a surface 137 and a second surface 139; a first electrode 120 is formed on the first surface 137; and a second electrode 140 is formed on the second surface 139. In step 220, an electrical stress is applied to the diode film 130 by the first and second electrodes 120/140 to form a plurality of current channels in the diode film 130. Wherein the composition of the current channel comprises a second oxide, and the second oxide is different from the first oxide; or the first and second oxides have the same chemical composition element, but different oxygen content atoms percentage. Related technical features of the first electrode 120, the second electrode 140, the diode film 130, and the current path are described in the description of the first embodiment above, and are not described herein again.

對於步驟220的施加電氣應力,可選自直流定偏電壓(Constant DC Voltage Bias)、直流電壓掃描(DC Voltage Sweep)、直流定偏電流(Constant DC Current Bias)、直流電流掃描(DC Current Sweep)、及交流電壓脈衝(AC Voltage Pulse)等方式,皆可達成本實施例二極體元件的製作。舉一實際製作的實驗做為例子,本第二實施例採用直流定偏電壓的方式,施加3V的直流電壓於該第一及第二電極120/140約5秒;但上述電壓及施加時間的選用並不以此為 限,亦可以是介於0.5V至50V之間的直流電壓施加小於10秒的時間,端視該二極體薄膜130的材料及實際厚度而定。For the applied electrical stress of step 220, it may be selected from a constant DC voltage bias (DC), a DC voltage Sweep, a constant DC current, and a DC current Sweep. And the AC voltage pulse, etc., can all be used to manufacture the diode components of the cost embodiment. As an example of an actual fabrication experiment, the second embodiment uses a DC bias voltage to apply a DC voltage of 3 V to the first and second electrodes 120/140 for about 5 seconds; but the above voltage and application time Use is not for this Alternatively, the DC voltage between 0.5V and 50V may be applied for less than 10 seconds, depending on the material and actual thickness of the diode film 130.

請參照圖5,為根據本發明第三實施例之製作方法的流程示意圖。請同時參照圖1,本實施例之製作方法300包含下列步驟:步驟310,提供一二極體薄膜130,其係為一第一氧化物形成於一第一電極120上;步驟320,施加一熱退火(Thermal annealing)製程於該二極體薄膜130,以形成複數個電流通道於該二極體薄膜130中;及步驟330,形成一第二電極140於該二極體薄膜130上;其中,該電流通道的成份包含一第二氧化物,且該第二氧化物不同於該第一氧化物;或該第一及第二氧化物具有相同的化學組成元素,但不同的氧含量原子百分比。對於步驟320的熱退火製程,可選自快速熱退火或多階段熱退火等習知的製程,皆可達成本實施例二極體元件的製作。選用的熱退火溫度以低於800℃為佳,並不以此為限,熱退火所需的溫度、階段、及施用時間視該二極體薄膜130的材料及實際厚度而定。有關該第一電極120,該第二電極140,該二極體薄膜130,及該電流通道的相關技術特徵已於上文第一實施例的說明中描述,在此不再贅述。Referring to FIG. 5, it is a schematic flowchart of a manufacturing method according to a third embodiment of the present invention. Referring to FIG. 1 together, the manufacturing method 300 of the embodiment includes the following steps: Step 310, providing a diode film 130 formed on a first electrode 120 by a first oxide; and step 320, applying a a thermal annealing process is performed on the diode film 130 to form a plurality of current channels in the diode film 130; and in step 330, a second electrode 140 is formed on the diode film 130; The component of the current channel comprises a second oxide, and the second oxide is different from the first oxide; or the first and second oxides have the same chemical composition element, but different atomic percentages of oxygen content . For the thermal annealing process of step 320, a conventional process such as rapid thermal annealing or multi-stage thermal annealing may be selected, and the fabrication of the diode element of the embodiment can be achieved. The thermal annealing temperature is preferably less than 800 ° C, and is not limited thereto. The temperature, stage, and application time required for thermal annealing depend on the material and actual thickness of the diode film 130. Related technical features of the first electrode 120, the second electrode 140, the diode film 130, and the current path are described in the description of the first embodiment above, and are not described herein again.

該二極體薄膜130在經過電氣應力或熱退火製程的前後,其電流-電壓特性產生相當的差異,這可由圖6的電流-電壓曲線(I-V curve)實驗量測圖得知:該二極體薄膜在經過電氣應力或熱退火製程後的順向電流610及逆向電流620大於其未受該電氣應力或熱退火製程前的順向電流630及逆向電流640,且該電流-電壓曲線具有二極體的元件電氣特性。The current-voltage characteristics of the diode film 130 before and after the electrical stress or thermal annealing process are quite different. This can be seen from the current-voltage curve (IV curve) experimental measurement chart of FIG. 6: the two poles The forward current 610 and the reverse current 620 of the bulk film after the electrical stress or thermal annealing process are greater than the forward current 630 and the reverse current 640 before the electrical stress or thermal annealing process, and the current-voltage curve has two The electrical characteristics of the components of the polar body.

另請再次參照圖2及圖3並請注意,第二導電區域132/133/134及其內部的電流通道161/162/163的形成係由製作程序中的電氣應力或熱退火所造成,該第二導電區域132/133/134及其內部的電流通道161/162/163的形成並沒有特定且固定的數量、形狀、或位置,端視製作當時的實際情況而定,惟實質上皆能藉此實現二極體元件的電氣特性。另外,藉由導電式原子力顯微鏡(Conductive AFM)量測二極體薄膜的表面導電性,有助於探知該第二導電區域132/133/134及其內部的電流通道161/162/163的形成狀況;圖7為根據本發明第二實施例所製作的二極體元件樣本的表面導電性量測圖,其中電流密度較高(或色度較淺)的區域可視為是第二導電區域,且亦呈現不規則的分布樣態。Please also refer to FIG. 2 and FIG. 3 again, and note that the formation of the second conductive region 132/133/134 and the internal current channel 161/162/163 thereof is caused by electrical stress or thermal annealing in the fabrication process, which The formation of the second conductive region 132/133/134 and its internal current channel 161/162/163 is not specific and fixed in number, shape, or position, depending on the actual situation at the time of manufacture, but substantially Thereby the electrical properties of the diode element are achieved. In addition, measuring the surface conductivity of the diode film by conducting atomic force microscopy (Conductive AFM) helps to detect the formation of the second conductive region 132/133/134 and its internal current channel 161/162/163. FIG. 7 is a surface conductivity measurement diagram of a sample of a diode element fabricated according to a second embodiment of the present invention, wherein a region having a higher current density (or a lighter chromaticity) may be regarded as a second conductive region. It also presents an irregular distribution pattern.

唯以上所述者,包含:特徵、結構、及其它類似的效果,僅為本發明之較佳實施例,當不能以之限制本發明的範圍。此外,上述各實施例所展示的特徵、結構、及其它類似的效果,亦可為該領域所屬的技藝人士在依本發明申請專利範圍進行均等變化及修飾,仍將不失本發明之要義所在,亦不脫離本發明之精神和範圍,故都應視為本發明的進一步實施狀況。The above description includes the features, structures, and other similar effects, which are merely preferred embodiments of the present invention, and the scope of the present invention is not limited thereto. In addition, the features, structures, and other similar effects shown in the above embodiments may be equally modified and modified by those skilled in the art in accordance with the scope of the present invention, and the meaning of the present invention will remain. Further, the present invention should be considered as further implementations of the present invention without departing from the spirit and scope of the invention.

此外,上述各實施例所描述者只能算是實施範例,並不能因此限制本發明的範圍。例如,各實施例所使用的元件或單元,可為該領域所屬的技藝人士進行修改及實現,仍將不失本發明之要義。Moreover, the embodiments described above are merely exemplary embodiments and are not intended to limit the scope of the invention. For example, the elements or units used in the various embodiments can be modified and implemented by those skilled in the art, without departing from the scope of the invention.

100...二極體元件100. . . Diode component

110...基板110. . . Substrate

120...第一電極120. . . First electrode

130...二極體薄膜130. . . Diode film

131...第一導電區域131. . . First conductive area

132/133/134...第二導電區域132/133/134. . . Second conductive area

137...第一表面137. . . First surface

139...第二表面139. . . Second surface

140...第二電極140. . . Second electrode

160/161/162/163...電流通道160/161/162/163. . . Current channel

200...製作方法200. . . Production Method

210/220...步驟210/220. . . step

300...製作方法300. . . Production Method

310/320/330...步驟310/320/330. . . step

610...經過電氣應力或熱退火後二極體薄膜的順向電流曲線610. . . Forward current curve of diode film after electrical stress or thermal annealing

620...經過電氣應力或熱退火後二極體薄膜的逆向電流曲線620. . . Reverse current curve of diode film after electrical stress or thermal annealing

630...未受電氣應力或熱退火前的二極體薄膜順向電流曲線630. . . Forward current curve of diode film before electrical stress or thermal annealing

640...未受電氣應力或熱退火前的二極體薄膜逆向電流曲線640. . . Reverse current curve of diode film before electrical stress or thermal annealing

圖1根據本發明第一實施例之二極體元件的結構示意圖。Fig. 1 is a schematic view showing the structure of a diode element according to a first embodiment of the present invention.

圖2二極體薄膜橫截面上的導電區域示意圖。Figure 2 is a schematic view of a conductive region on a cross section of a diode film.

圖3電流通道結構的剖面示意圖。Figure 3 is a schematic cross-sectional view of the current channel structure.

圖4根據本發明第二實施例之製作方法的流程示意圖。4 is a schematic flow chart of a manufacturing method according to a second embodiment of the present invention.

圖5根據本發明第三實施例之製作方法的流程示意圖。FIG. 5 is a schematic flow chart of a manufacturing method according to a third embodiment of the present invention.

圖6本實施例二極體元件樣本的電流-電壓曲線實驗量測圖。Fig. 6 is a graph showing the current-voltage curve of the sample of the diode of the present embodiment.

圖7本實施例二極體元件樣本的表面導電性量測圖。Figure 7 is a graph showing the surface conductivity of a sample of a diode of this embodiment.

100...二極體元件100. . . Diode component

110...基板110. . . Substrate

120...第一電極120. . . First electrode

130...二極體薄膜130. . . Diode film

137...第一表面137. . . First surface

139...第二表面139. . . Second surface

140...第二電極140. . . Second electrode

Claims (20)

一種二極體元件,其包括:一二極體薄膜,其具有一第一表面及一第二表面,且包括:一第一導電區域,提供電流密度均勻的電流傳導,且該第一導電區域的成份包含一第一氧化物;及一第二導電區域,其包含複數個電流通道,提供電流密度不均勻的電流傳導,且該電流通道的成份包含一第二氧化物;其中,該第一氧化物不同於該第二氧化物;當一電流傳導於該第一表面與該第二表面之間時,該第二導電區域所流過的直流電流密度大於該第一導電區域的10倍以上;一第一電極,其係形成於該第一表面上;及一第二電極,其係形成於該第二表面上。A diode device comprising: a diode film having a first surface and a second surface, and comprising: a first conductive region, providing current conduction with uniform current density, and the first conductive region The composition comprises a first oxide; and a second conductive region comprising a plurality of current channels, providing current conduction with non-uniform current density, and the composition of the current channel comprises a second oxide; wherein the first The oxide is different from the second oxide; when a current is conducted between the first surface and the second surface, the DC current flowing through the second conductive region is greater than 10 times greater than the first conductive region a first electrode formed on the first surface; and a second electrode formed on the second surface. 如請求項1之二極體元件,其中該第一及第二氧化物具有相同的化學組成元素,但不同的氧含量原子百分比。The dipole element of claim 1, wherein the first and second oxides have the same chemical composition element, but different atomic percentages of oxygen content. 如請求項1之二極體元件,更包括一氧化物薄膜,其係形成於該第二表面與該第二電極之間。The diode element of claim 1, further comprising an oxide film formed between the second surface and the second electrode. 如請求項1之二極體元件,其中該二極體薄膜的厚度介於1 nm至1 μm之間。The diode element of claim 1, wherein the thickness of the diode film is between 1 nm and 1 μm. 如請求項1之二極體元件,其中該第一及第二氧化物至少包含下列氧化物的其中一種:氧化鈦(TiOx )、氧化鉭(TaOx )、氧化物(VOx )、氧化鈮(NbOx )、氧化鎢(WOx )、氧化鋅(ZnOx )、氧化鎘(CdOx )、氧化鉿(HfOx )、氧化鋯(ZrOx )、氧化鎳(NiOx )、氧化銅(CuOx )、氧化鋅銦(InZnx Oy )、及其類似物;其中x及y代表原子百分比。The dipole element of claim 1, wherein the first and second oxides comprise at least one of the following oxides: titanium oxide (TiO x ), tantalum oxide (TaO x ), oxide (VO x ), oxidation Niobium (NbO x ), tungsten oxide (WO x ), zinc oxide (ZnO x ), cadmium oxide (CdO x ), hafnium oxide (HfO x ), zirconium oxide (ZrO x ), nickel oxide (NiO x ), copper oxide (CuO x ), indium zinc oxide (InZn x O y ), and analogs thereof; wherein x and y represent atomic percentages. 如請求項1之二極體元件,其中該第一及第二電極的成份至少包含下列導體材料的其中一種:鉑(Pt)、金(Au)、銀(Ag)、鉛(Pd)、釕(Ru)、銥(Ir)、氧化釕(RuOx )、氧化銥(IrOx )、釔(Y)、鎳(Ni)、銅(Cu)、鈦(Ti)、鉭(Ta)、鋅(Zn)、鋯(Zr)、鉿(Hf)、鎢(W)、鉻(Cr)、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁錫(ATO)、及氧化鋁鋅(AZO)。The dipole element of claim 1, wherein the components of the first and second electrodes comprise at least one of the following conductor materials: platinum (Pt), gold (Au), silver (Ag), lead (Pd), bismuth (Ru), iridium (Ir), yttrium oxide (RuO x ), yttrium oxide (IrO x ), yttrium (Y), nickel (Ni), copper (Cu), titanium (Ti), tantalum (Ta), zinc ( Zn), zirconium (Zr), hafnium (Hf), tungsten (W), chromium (Cr), indium tin oxide (ITO), indium zinc oxide (IZO), aluminum oxide tin (ATO), and aluminum zinc oxide (AZO) ). 一種二極體元件的製作方法,其包括:提供一二極體結構,其包括:一二極體薄膜,其係由一第一氧化物所組成且具有一第一表面及一第二表面;一第一電極形成於該第一表面上;及一第二電極形成於該第二表面上;及藉由該第一與第二電極,施加一電氣應力於該二極體薄膜,以形成複數個電流通道於該二極體薄膜中;其中,該電流通道的成份包含一第二氧化物,且該第二氧化物不同於該第一氧化物。A method for fabricating a diode element, comprising: providing a diode structure comprising: a diode film composed of a first oxide and having a first surface and a second surface; a first electrode is formed on the first surface; and a second electrode is formed on the second surface; and an electrical stress is applied to the diode film by the first and second electrodes to form a plurality of And a current channel in the diode film; wherein the component of the current channel comprises a second oxide, and the second oxide is different from the first oxide. 如請求項7之製作方法,其中該第一及第二氧化物具有相同的化學組成元素,但不同的氧含量原子百分比。The method of claim 7, wherein the first and second oxides have the same chemical composition element, but different atomic percentages of oxygen content. 如請求項7之製作方法,其中該施加電氣應力的方式選自直流定偏電壓、直流電壓掃描、直流定偏電流、直流電流掃描、及交流電壓脈衝。The method of claim 7, wherein the method of applying electrical stress is selected from the group consisting of a DC bias voltage, a DC voltage sweep, a DC bias current, a DC current sweep, and an AC voltage pulse. 如請求項8之製作方法,其中該直流定偏電壓係介於0.5V至50V之間,且施加的時間小於10秒。The method of claim 8, wherein the DC bias voltage is between 0.5V and 50V and the applied time is less than 10 seconds. 如請求項7之製作方法,其中受該電氣應力的該二極體薄膜的順向及逆向電流大於其未受該電氣應力前的順向及逆向電流。The method of claim 7, wherein the forward and reverse currents of the diode film subjected to the electrical stress are greater than the forward and reverse currents before the electrical stress is not affected. 如請求項7之製作方法,其中該二極體薄膜厚度介於1 nm至1 μm之間。The method of claim 7, wherein the diode film has a thickness of between 1 nm and 1 μm. 如請求項7之製作方法,其中該第一及第二氧化物至少包含下列氧化物的其中一種:氧化鈦(TiOx )、氧化鉭(TaOx )、氧化物(VOx )、氧化鈮(NbOx )、氧化鎢(WOx )、氧化鋅(ZnOx )、氧化鎘(CdOx )、氧化鉿(HfOx )、氧化鋯(ZrOx )、氧化鎳(NiOx )、氧化銅(CuOx )、氧化鋅銦(InZnx Oy )、及其類似物;其中x及y代表原子百分比。The method of claim 7, wherein the first and second oxides comprise at least one of the following oxides: titanium oxide (TiO x ), strontium oxide (TaO x ), oxide (VO x ), cerium oxide ( NbO x ), tungsten oxide (WO x ), zinc oxide (ZnO x ), cadmium oxide (CdO x ), hafnium oxide (HfO x ), zirconium oxide (ZrO x ), nickel oxide (NiO x ), copper oxide (CuO) x ), indium zinc oxide (InZn x O y ), and analogs thereof; wherein x and y represent atomic percentages. 如請求項7之製作方法,其中該第一及第二電極的成份至少包含下列導體材料的其中一種:鉑(Pt)、金(Au)、銀(Ag)、鉛(Pd)、釕(Ru)、銥(Ir)、氧化釕(RuOx )、氧化銥(IrOx )、釔(Y)、鎳(Ni)、銅(Cu)、鈦(Ti)、鉭(Ta)、鋅(Zn)、鋯(Zr)、鉿(Hf)、鎢(W)、鉻(Cr)、氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化鋁錫(ATO)、及氧化鋁鋅(AZO)。The method of claim 7, wherein the composition of the first and second electrodes comprises at least one of the following conductor materials: platinum (Pt), gold (Au), silver (Ag), lead (Pd), ruthenium (Ru) ), iridium (Ir), yttrium oxide (RuO x ), yttrium oxide (IrO x ), yttrium (Y), nickel (Ni), copper (Cu), titanium (Ti), tantalum (Ta), zinc (Zn) Zirconium (Zr), hafnium (Hf), tungsten (W), chromium (Cr), indium tin oxide (ITO), indium zinc oxide (IZO), aluminum oxide tin (ATO), and aluminum zinc oxide (AZO). 一種製作二極體元件的方法,其包括:提供一二極體薄膜,其係為一第一氧化物形成於一第一電極上;施加一熱退火製程於該二極體薄膜,以形成複數個電流通道於該二極體薄膜中;及形成一第二電極於該二極體薄膜上;其中,該電流通道的成份包含一第二氧化物,且該第二氧化物不同於該第一氧化物。A method of fabricating a diode element, comprising: providing a diode film formed on a first electrode by a first oxide; applying a thermal annealing process to the diode film to form a plurality of a current channel in the diode film; and forming a second electrode on the diode film; wherein the current channel component comprises a second oxide, and the second oxide is different from the first Oxide. 如請求項15之製作方法,其中該第一及第二氧化物具有相同的化學組成元素,但不同的氧含量原子百分比。The method of claim 15, wherein the first and second oxides have the same chemical composition element, but different atomic percentages of oxygen content. 如請求項15之製作方法,其中該熱退火製程的溫度低於800℃。The method of claim 15, wherein the temperature of the thermal annealing process is lower than 800 °C. 如請求項15之製作方法,其中受該熱退火製程的該二極體薄膜的順向及逆向電流大於其未受該熱退火製程前的順向及逆向電流。The method of claim 15, wherein the forward and reverse currents of the diode film subjected to the thermal annealing process are greater than the forward and reverse currents before the thermal annealing process. 如請求項15之製作方法,其中該二極體薄膜厚度介於1 nm至1 μm之間。The method of claim 15, wherein the diode film has a thickness of between 1 nm and 1 μm. 如請求項15之製作方法,其中該第一及第二氧化物至少包含下列氧化物的其中一種:氧化鈦(TiOx )、氧化鉭(TaOx )、氧化物(VOx )、氧化鈮(NbOx )、氧化鎢(WOx )、氧化鋅(ZnOx )、氧化鎘(CdOx )、氧化鉿(HfOx )、氧化鋯(ZrOx )、氧化鎳(NiOx )、氧化銅(CuOx )、氧化鋅銦(InZnx Oy )、及其類似物;其中x及y代表原子百分比。The method of claim 15, wherein the first and second oxides comprise at least one of the following oxides: titanium oxide (TiO x ), tantalum oxide (TaO x ), oxide (VO x ), cerium oxide ( NbO x ), tungsten oxide (WO x ), zinc oxide (ZnO x ), cadmium oxide (CdO x ), hafnium oxide (HfO x ), zirconium oxide (ZrO x ), nickel oxide (NiO x ), copper oxide (CuO) x ), indium zinc oxide (InZn x O y ), and analogs thereof; wherein x and y represent atomic percentages.
TW99141058A 2010-11-26 2010-11-26 Diode device and the fabrication method thereof TWI422042B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99141058A TWI422042B (en) 2010-11-26 2010-11-26 Diode device and the fabrication method thereof
CN 201010610280 CN102479824B (en) 2010-11-26 2010-12-16 Diode element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99141058A TWI422042B (en) 2010-11-26 2010-11-26 Diode device and the fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201222829A TW201222829A (en) 2012-06-01
TWI422042B true TWI422042B (en) 2014-01-01

Family

ID=46092381

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99141058A TWI422042B (en) 2010-11-26 2010-11-26 Diode device and the fabrication method thereof

Country Status (2)

Country Link
CN (1) CN102479824B (en)
TW (1) TWI422042B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034177A (en) * 2019-04-24 2019-07-19 深圳扑浪创新科技有限公司 A kind of photoelectricity laminated film and application thereof
CN113767068A (en) * 2019-09-26 2021-12-07 株式会社Lg化学 Tin oxide forming composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87107422A (en) * 1986-12-08 1988-07-20 美国无线电公司 diode with mixed oxide insulator
TW201003790A (en) * 2008-05-28 2010-01-16 Micron Technology Inc Diodes, and methods of forming diodes
TW201025619A (en) * 2008-09-29 2010-07-01 Sandisk 3D Llc MIIM diodes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007865A3 (en) * 1993-12-10 1995-11-07 Philips Electronics Nv Tunnel of permanent switch wiring element with different situations.
US7935951B2 (en) * 1996-10-28 2011-05-03 Ovonyx, Inc. Composite chalcogenide materials and devices
CN1725520A (en) * 2005-04-05 2006-01-25 王继文 Metal type diode and metal-type triode
KR100657966B1 (en) * 2005-08-11 2006-12-14 삼성전자주식회사 Manufacturing method of memory device for stablizing reset current
JP4967176B2 (en) * 2007-05-10 2012-07-04 シャープ株式会社 Variable resistance element, method of manufacturing the same, and nonvolatile semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87107422A (en) * 1986-12-08 1988-07-20 美国无线电公司 diode with mixed oxide insulator
TW201003790A (en) * 2008-05-28 2010-01-16 Micron Technology Inc Diodes, and methods of forming diodes
TW201025619A (en) * 2008-09-29 2010-07-01 Sandisk 3D Llc MIIM diodes

Also Published As

Publication number Publication date
CN102479824B (en) 2013-10-02
CN102479824A (en) 2012-05-30
TW201222829A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
Kumar et al. High-performance TiN/Al 2 O 3/ZnO/Al 2 O 3/TiN flexible RRAM device with high bending condition
KR101206034B1 (en) Nonvolatile memory device using oxygen-deficient metal oxide layer and the fabrication method
US9793473B2 (en) Memristor structures
CN101106171B (en) Non-volatile memory device including variable resistance material
US8692223B2 (en) Resistance variable memory device including nano particles and method for fabricating the same
WO2016176936A1 (en) Non-volatile resistive switching memory device and manufacturing method therefor
JP2010512018A (en) Memory device and manufacturing method thereof
US20220173315A1 (en) Rram crossbar array circuits with specialized interface layers for low current operation
US9502647B2 (en) Resistive random-access memory (RRAM) with a low-K porous layer
US8889478B2 (en) Method for manufacturing nonvolatile semiconductor memory element, and nonvolatile semiconductor memory element
CN103597597B (en) Variable resistor element and manufacture method thereof
CN109863607A (en) Structure, method for manufacturing the structure, semiconductor element, and electronic circuit
KR101570742B1 (en) Resistive random access memory and method of fabricating the same
WO2016114311A1 (en) Resistance change element and method for manufacturing same
US9450184B2 (en) Multilayer-stacked resistive random access memory device
US9281475B2 (en) Resistive random-access memory (RRAM) with multi-layer device structure
TWI422042B (en) Diode device and the fabrication method thereof
TWI431825B (en) Cross-point resistive memory array and method for manufacturing the same
TW201505219A (en) Resistive memory and fabricating method thereof
CN107749441B (en) Material with threshold resistance transformation function at low temperature and preparation method thereof
KR101568234B1 (en) Resistive change device and method of fabricating the same
KR102508548B1 (en) Thermoelectric composite, manufacturing method thereof, and thermoelectric and semiconductor device including thermoelectric composite
RU2470409C1 (en) Method of making niobium oxide-based diode
JP6910599B2 (en) Semiconductor device
TWI549326B (en) Resistive ram and method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees