TW201219311A - Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same - Google Patents
Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same Download PDFInfo
- Publication number
- TW201219311A TW201219311A TW100131649A TW100131649A TW201219311A TW 201219311 A TW201219311 A TW 201219311A TW 100131649 A TW100131649 A TW 100131649A TW 100131649 A TW100131649 A TW 100131649A TW 201219311 A TW201219311 A TW 201219311A
- Authority
- TW
- Taiwan
- Prior art keywords
- cobalt
- particles
- liquid
- hydroxide
- particle
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/04—Oxides; Hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/52—Particles with a specific particle size distribution highly monodisperse size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
201219311 六、發明說明: 【發明所屬之技術領域】 本發明關於氫氧化鈷或氧化鈷,尤其是適合使用於鋰 充電電池之鋰鈷複合氧化物製造原料之氫氧化鈷或氧化 鈷,以及其製造方法。 【先前技術】 近年來,隨著家用電器的可攜化、無線化之急速發展, 作為筆記型電腦、行動電話、攝影機等小型電子機器電源 之裡充電電池也隨之實用化。自從鈷酸鋰(LiC〇〇〇可作為 經充電電池的陽極活性物質之相關報告以來,鋰過渡金屬 複合氧化物的研究進展活絡,至今已有許多研究報告提出。 鋰過渡金屬複合氧化物中以鈷酸鋰(Lic〇〇2)、鎳酸鋰 (LiNi0〇、錳酸鋰(LiMnOO常被使用,特別是在安全面以及 充放電容量具優勢的鈷酸鋰被廣為使用。 近年來,鋰充電電池的高容量化需求提高,也因此開 發高容量鋰充電電池用的鈷酸鋰系複合氧化物的需求也提 習知技藝中達到鋰充電電池高容量 的方法包括:(1) 大粒子鈷酸鋰與小粒子鈷酸鋰混合,葬 ^而陽極活性物 質的充填率,增加每單位體積的容 咬到容量化之方 法(例如,專利文獻υ; (2)如同LiNie L · 1 5 Q 2,變更名太 酸鋰的組成,增加每單位重量的容量以 ' 咬W向容晋仆之古 法(例如,專利文獻2)。 201219311 然而上述方法(1)中,小粒子對於電池的安全性,尤其 是反覆充放電時所發生與非水電解液反應所導致氣體增加 的問題。又,上述方法(2)中,製造LiNi。8<0。ls02所使用 的鋰化合物鹼塩殘存,對於電池的安全性,尤其是反覆充 放電時所發生與非水電解液反應所導致氣體增加的問題。 【前案技術文獻】 【專利文獻】 【專利文獻1】日本特開2004_1 82564號公報(專利申 請範圍) 【專利文獻2】日本特開平u_〇6〇243號公報(專利申 請範圍) L發明内容】 【發明欲解決之課題】 有鑑於上述習知方法之缺失,新的鋰充電電池高容量 化方法需要被開發。於是思及藉由將鈷酸鋰的粒徑調整為 15〜35微米、提升搖實密度,以增加每單位體積的電池容 量之方法。 -般而言,作為鈷酸鋰的製造原料的氫氧化鈷或氧化 銘之粒k大小介於〇· H5微米。而要得到粒徑15〜35微米 :鈷酸鋰,需要將〇.卜15微米之氫氧化鈷或氧化鈷與鋰化 二物反應,且必需增加經化合物的量以在反應時使顆粒成 長。 因此於該方法中,為使得到的銘酸鐘的_比為201219311 VI. Description of the Invention: [Technical Field] The present invention relates to cobalt hydroxide or cobalt oxide, and particularly to cobalt hydroxide or cobalt oxide suitable for use as a raw material for lithium-cobalt composite oxide production of lithium rechargeable batteries, and manufacture thereof method. [Prior Art] In recent years, with the rapid development of portable and wireless home appliances, rechargeable batteries have become practical as power sources for small electronic devices such as notebook computers, mobile phones, and video cameras. Since Lithium Cobaltate (LiC〇〇〇 can be used as a report on the anode active material of rechargeable batteries, the research progress of lithium transition metal composite oxides has been active, and many research reports have been made so far. Lithium transition metal composite oxides Lithium cobaltate (Lic〇〇2), lithium nickelate (LiNi0〇, lithium manganate (LiMnOO is often used, especially lithium cobalt oxide which is advantageous in safety surface and charge and discharge capacity). In recent years, lithium The demand for high capacity of rechargeable batteries has increased, and the demand for developing lithium cobalt oxide composite oxides for high-capacity lithium rechargeable batteries has also been proposed. The methods for achieving high capacity of lithium rechargeable batteries include: (1) Cobalt of large particles Lithium acid is mixed with small particles of lithium cobalt oxide, and the filling rate of the anode active material is increased, and the capacity per unit volume is increased (for example, Patent Document υ; (2) as LiNie L · 1 5 Q 2 Change the name of the composition of lithium silicate, increase the capacity per unit weight to 'bite the ancient method of 晋 仆 例如 (for example, Patent Document 2). 201219311 However, in the above method (1), small particles for the battery In addition, in the above method (2), the lithium compound alkali ruthenium used in the production of LiNi.8 <0.ls02 remains, in particular, in the case of repeated charge and discharge, the gas generated by the reaction with the non-aqueous electrolyte is increased. For the safety of the battery, in particular, the problem of the increase in the gas caused by the reaction with the non-aqueous electrolyte during the reversal of the charge and discharge is carried out. [Patent Literature] [Patent Document 1] Japanese Patent Laid-Open No. 2004_1 82564 (Patent Document 1) [Patent Document 2] [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei No. 243 (Patent Application Scope) L SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] In view of the above-described lack of the conventional methods, a new lithium rechargeable battery The high-capacity method needs to be developed. Therefore, a method of increasing the cell size per unit volume by adjusting the particle size of lithium cobaltate to 15 to 35 μm and increasing the tap density is considered. The raw material of lithium acid or cobalt oxide has a k-size of 〇·H5 μm. To obtain a particle size of 15 to 35 μm: lithium cobaltate, it is necessary to use a cobalt hydroxide of 15 μm. Or cobalt oxide reacts with the lithiated compound, and it is necessary to increase the amount of the compound to grow the particles during the reaction. Therefore, in the method, the ratio of the obtained acid clock is
4 201219311 1.060左右,必須使用鋰化合物才能夠達到15微米以上 鈷酸經。然而,當链的量過多時,又會發唯降 低以持率降 …做為製造原料的氫氧減或氧化狀粒徑増大後,與 氫氧化鈷或氧化鈷反應的鋰化合物量既不會剩餘太多,又 能得到粒徑ί 5〜35微米的鈷酸鋰。 夕 然而,以往的製造方法所製得的粒徑15~4〇微 粒徑氫氧化鈷或氧化鈷,由於其_ /'、 下,亦避泛“ — 人粒子之粒子強度弱(以 I物=二次粒子的凝集性弱”),在反應之前與鐘化 口士犯 二次粒子會產生分解,於是與鐘化合物反, 時粒徑便縮小。 氏應' 广於是,本發明之目的便在於開發能夠加大二次粒子的 粒徑並維持其粒子強度( ^ ^ 丌稱為一次粒子的凝集性 強)之虱氧化鈷或氧化鈷。 【解決問題之手段】 ::於以上問題,本發明者群努力研究之結果,發現 反^洛解的始水溶液(Α液)以及驗水溶液(Β液)的中和 :’使用含甘氨酸之録水溶液(α液),使始水溶液(Α 攻 '以及甘乱酸的莫耳比維持在特定範圍,且將Α液及 Β液加入甘氮酸水溶( 估甘Α 粒子會凝集成二次/r #和反應,則一次 M . f . y、子且組成該二次粒子之一次粒子經 過知描電子顯微鏡分析後, 其為長輕為15微米以上 之板狀、柱狀、或針狀之—次粒子 毫升以上之氫氧化鈷, 4又.80克/ 卜該虱虱化鈷之二次粒子不但 201219311 具有大粒挺且凝集性強,本發明於是完成。 亦即’本發明⑴提供一氫氧化鈷,其特 粒子凝集成之二次粒子,且組成 :::電子顯微鏡分析後,發現其為長二= :::上柱狀、或針狀之-次粒子,搖實密度為"… 另外,本發明⑵提供—氫氧化銘,其特徵在於:使用 Γ氨酸之銘水溶液’原子換算後相對於録!莫耳,甘 =之含量為O.OIOUO莫耳之銘水溶液(A液)與驗水 ^液)加入甘氨酸水溶液(C液),藉由於55〜75〇c產生 和反應,進行能得到氫氧化銘之中和工程。 再者,本發明⑶提供一製造氫氧化鈷之方法,其特徵 在含有甘氨酸之姑水溶液,原子換算後相對於銘1 …1 氨酸之含量為〇· °1。〜°· _莫耳之钻水溶液(A液) 洛液(β液)加入甘氨酸水溶液(C液),藉由於55^75 生中和反應’進行能得到氫氧化鈷之中和工程。 又纟發明⑷提供一氧化銘,其特徵在於:板狀、柱 :子或::的一次粒子凝集成之二次粒子,且組成該二次 I A粒子經過掃描電子顯微鏡分析後’發現其為長 徑平均值為1.5微米以上。 法^外’本發明(5)中’本發明(3)之製造氫氧化钻之方 。「植侍到的虱氧化鈷,其特徵在於:包含藉由於200〜1000 几成氧化’以得到氧化鈷之燒成氧化工程。 【發明功效】 201219311 本發明在於提供一氫氧 次粒子形狀,且二次粒子 化鈷與氧化鈷,其具備特有 的粒徑大且凝集性強。 的 【實施方式】 【發明實施態樣】 以下說明本發明之較佳實施態樣。 本發明之氫氧化始,其特徵在於:一次 二次粒子,且組成該二次粒子之— 丹,’、、之 微鏡分析後,發現其為長徑 ?子爾描電子顯 1二 霄密度為°·80克/毫升以上。 I明之氫氧化始的粒子 可藉由掃描電子顯微鏡進行觀冑::面狀態等粒子特性 電子顯微鏡影像進行影像解析,將二次二: 投影後,求出構成二·子的—次 ^子進 又。藉著參考圖21說明一 ’長徑長 度m為構成二次粒子長度以及短徑長 為構成二次粒子的板狀—·欠子的模式斜視圖。⑴ 二次粒子的角柱狀”, 式斜視圖。⑻為構成 子的針狀—次粒子的模式斜視圖。(C)為構成二次 圖21(A)所示之板狀—次粒子且 " 面1a以及與表面之側面la6,相交面:-:人粒子表面之側 側面la可全面表現於、欠粒子心23。二次粒子表面之 中,然而與表面之側面二=婦描電子顯微鏡影像 於二次教子的内部,因乂 :則因為大部分存在 有—部分出現於二次粒子的掃 201219311 描電子顯微鏡影傻φ 中。因此,本發明中,一次粒子的長徑 知描電子顯微鏡影像中所顯現的-次粒子的表面中 「次粒子表面之側面u的長徑X。另外,本發明中,—次 粒子的短徑長度為掃描電子顯微鏡 子的表面中二次粒子表面之側面㈣短徑”-人拉 圖22所示被姑 r . _ „ 板狀—次粒子凝集而成二次粒子的表面掃 Γ:::,鏡影像(A)中,框線部分為二次粒子表面之側^4 201219311 About 1.060, lithium compounds must be used to reach more than 15 microns of cobalt acid. However, when the amount of the chain is too large, the amount of the lithium compound which is reacted with cobalt hydroxide or cobalt oxide will not be reduced after the hydrogen hydroxide reduction or the oxidation particle size is large as the raw material for the production. Too much is left, and lithium cobaltate having a particle size of 5 to 35 μm can be obtained. However, the particle size of 15 to 4 〇 micro-particles of cobalt hydroxide or cobalt oxide produced by the conventional manufacturing method is also weak due to its _ / ', and the lower particle strength of the human particles. = the agglomerability of the secondary particles is weak)), and the secondary particles are decomposed with the bell of the bell before the reaction, so the particle size is reduced when the compound is reversed. It is widely known that the object of the present invention is to develop cobalt oxyhydroxide or cobalt oxide which can increase the particle diameter of secondary particles and maintain the particle strength ( ^ ^ 丌 is called agglomeration of primary particles). [Means for Solving the Problem] :: In the above problems, the inventors of the inventors have worked hard to find out the neutralization of the initial aqueous solution (sputum) and the aqueous solution (sputum) of the anti-Luo solution: 'Use of glycine-containing record The aqueous solution (α liquid) is used to maintain the molar ratio of the initial aqueous solution (the attack and the molar acid) to a specific range, and the sputum and sputum are added to the water solution of the glycerol acid. # and reaction, once M. f. y, sub-group and the primary particles constituting the secondary particle are analyzed by a known electron microscopy, which is a plate shape, a column shape, or a needle shape with a length of light of 15 μm or more - The secondary particles of more than 5% of cobalt hydroxide, 4.80 g / pp of the cobalt ruthenium secondary particles not only 201219311 have large particles and strong agglutination, the present invention is completed. That is, the invention (1) provides a hydroxide Cobalt, its special particles are condensed into secondary particles, and the composition::: After electron microscopy analysis, it is found to be long 2 = ::: upper column or needle-like particles, the density of the shake is " Further, the present invention (2) provides a hydrogen peroxide, which is characterized in that The aqueous solution of proline is 'Atom-converted relative to the record! Moer, Gan = the content of O.OIOUO Mo Erzhi aqueous solution (A liquid) and water test liquid) added glycine aqueous solution (C liquid), by The production and reaction of 55 to 75 〇c can be carried out to obtain the hydration and the engineering. Further, the invention (3) provides a method for producing cobalt hydroxide, which is characterized by a solution of glycine containing algium, which is relative to the The content of 1 ...1 is 〇· °1. ~ °· _ Moer's solution (A solution) Lo solution (β solution) is added to the aqueous solution of glycine (C solution), due to the neutralization reaction of 55^75 The process of obtaining a cobalt hydroxide neutralization process is carried out. Further, the invention (4) provides a oxidized crystal, characterized in that a plate-shaped, column: or primary particle of:: is condensed into secondary particles, and the secondary IA particles are composed. After the analysis by scanning electron microscopy, it was found to have an average diameter of 1.5 μm or more. In the invention (5), the method of producing the oxidized diamond of the invention (3). Cobalt, which is characterized by: inclusion of 200~1000 [Effect of Burning Oxidation of Cobalt Oxide] [Effect of Invention] 201219311 The present invention provides a shape of monohydrogen oxide secondary particles, and secondary particles of cobalt and cobalt oxide, which have a characteristic particle size and a strong aggregability. [Embodiment] [Brief Description of the Invention] Hereinafter, preferred embodiments of the present invention will be described. The hydrogenation start of the present invention is characterized by: primary secondary particles, and the composition of the secondary particles - Dan, ', After micro-mirror analysis, it was found to be a long-distance 子 描 电子 电子 电子 显 霄 霄 霄 霄 霄 霄 ° 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 霄 I I I I I 氢氧化 氢氧化 氢氧化 氢氧化 氢氧化 氢氧化 氢氧化 氢氧化Image analysis such as the state of the particle characteristics of the electron microscope image, the second two: after the projection, the second sub-subject of the second sub-child is obtained. A mode oblique view in which the major axis length m is a secondary particle length and a short diameter is a plate-shaped constituting secondary particles will be described with reference to Fig. 21 . (1) The angular columnar shape of the secondary particle, the oblique view of the equation. (8) is the mode oblique view of the acicular-secondary particle constituting the sub-particle. (C) is the slab-like particle of the second figure 21(A) and " ; face 1a and the side surface la6 of the surface, the intersection surface: -: the side surface la of the surface of the human particle can be fully expressed in the under-particle core 23. Among the surface of the secondary particle, however, the surface of the surface is the second The image is inside the second teaching, because 乂: because most of the existence exists - part of the secondary particle sweep 201219311 electron microscope shadow φ. Therefore, in the present invention, the long diameter of the primary particle electron microscope In the surface of the secondary particle appearing in the image, "the major axis X of the side surface u of the surface of the secondary particle. In addition, in the present invention, the minor axis length of the secondary particle is the side of the surface of the secondary particle in the surface of the scanning electron microscope. (4) Short-diameter"--------------------------------------------------------- Side of the surface ^
所表二W圖22(β)只顯示框線部份。圖22⑻的符號X 不,度為一次粒子的長徑長度,符號為— 的短徑長度。再者,园00 人拉子 圖23所不板狀一次粒子凝集而成二次 粒子的表面掃描電子3 人 子輕鏡W像⑴中,框線部分為二次粒 =面之側面u的輪靡’圖23⑻只顯示框線部份。圖2 勺付號X所表示的長产J Α m…長度為—次粒子的長徑長度,符號y為 -人粒子的紐徑長度。 门 又圖21(A)所示之板狀一次粒子 為該種形狀,只要是半而士 非,、限疋 限制式平面方向=也1形狀均可,另外也不 π之形狀,也可為彎曲形狀。 圖21(B)所示之柱狀_次粒 面1 h u 咖主 3 —-人粒子表面之側 及”表面之側面lb的相交面 _ 側面lb可全面表現於_ 一4工 一-人粒子表面之 中,然而與表面之側面二:人粒^的掃描電子顯微鏡影像 於二次粒子的 的:父面2b則因為大部分存在 圹Φ 因只有一部分出現於二次粒子的搞 電子顯微鏡影像中。因此,本發明中… 知 長度為掃描電子顯 ,一-人粒子的長徑 1微鏡影像中所顯現的-次粒子的表面中 201219311 二次粒子表面之側面lb 粒子的短種長声為… 。另外’本發明中’-次 長度為知描電子顯微鏡影 子的表S Φ - /> I 本丁尸叮顯現的一次粒 —-人粒子表面之側面lb的短徑乂。 又圖2UB)所*之柱狀 柱狀Μ日甘韭口 ™ τ于的形狀雖然為四角 狂狀仁並非只限定為該 的自飪壯f1 圓柱狀、四角柱狀以外 的角柱狀亦可,另外也可為彎曲形狀。 圖21(C)所示之針狀一, 中,顯干τ Α —人粒子之掃描電子顯微鏡影像 Τ .,,)(不了二次粒子表面 的相六面… 面之側面1C以及與表面之側面lc 的相又面2c。本發明中,—, 人拉子的長後長度為掃描雷子 顯微鏡影像中所顯現的二次 免从丄 才于表面之側面lc的長徑x。 ,發明中,一次粒子的短徑長度為掃描電子顯微鏡 影像中所顯現之二次粒子表面之側面W短徑7 ^ 另外’本發明藉由解析掃描電子顯微鏡影像,可求得 一次粒子的長徑長度以及短徑長度。一 -人粒子的長徑長度 以及短徑長度係指平視二次粒子表面又 守根據平面圖中的 一次粒子形狀而測定出的長徑與短徑。 本發明之氫氧化始為-次粒子凝集而成的二次粒子。 構成本發明氨氧化銘二次粒子的-次粒子,包含在掃描電 子顯微鏡影像解析下為長徑長度1 仅又i.b微未以上之板狀、柱 狀、或針狀一次粒子,以及其他一次 τ于亦即含有球狀、 不定形狀的-次粒子、掃描電子顯微鏡影像解析下長徑長 度不滿1.5微米之板狀、柱狀、或針狀一次粒子等。而構 成本發明之氫氧化鈷二次粒子的—次粒子必定包含長徑長 度1.5微米以上之板狀、柱狀、或針狀的—次粒子^ 201219311 本發明之氫氧化鈷為(1)掃描 長度1 · 5微米以上之板狀 ”、微鏡影像解析下長徑 心败狀、柱狀、 成的二次粒子,或⑴)掃描電子:粒子所凝集 度1.5微米以上之板狀、枝狀、或解析下長徑長 狀、不定形狀、掃描電+ —人拉子,以及球 1.5微米之板狀、柱狀、 斤下長役長度不滿 -又对狀一次粒子 次粒子。板狀、柱狀、或針狀—次粒子=集而成的二 粒子的掃描電子顯微鏡影像中,:該“ 二次 部份一次粒子的形狀得到確認。 斤員現之一 二次粒子的掃描電子顯微鏡影像 米以上之板狀、柱狀、或針狀一次粒子之=長度U微 相對於二次粒子全體的40%以上,更佳物 ……: 米以上之板狀、柱狀、或針狀 -粒子的存在比例在以上範圍内的話,可狀 鈷的壓縮強度以及搖x ^ 里風化 微鏡影像中,長秤导声丨ς ◊知描電子顯 狀欠粒…:米以上之板狀、柱狀、或針 狀-人粒子之存在比例 Τ 平視-A Μ 系表不U電子顯微鏡影像中, 二:二表面之平面圖中,相對於二次粒子的面積 位:: h5微米以上之板狀、柱狀、或針狀之--欠 粒子的面積比例。關於計算方法, -人 電子顯忾铲A @ , 首先進仃二次粒子掃描 二微鏡影像之解析’將二次粒子進行二次元投影,任 1 00個二次粒子。接著,測定抽 積盥兮-A , 7丄 山一 -人粒子的面 之面積“ 長徑長度為U微米以上之-次粒子 、接者汁异相對於抽出的100個二次粒子總面積與Table 2, Figure 22 (β) shows only the portion of the frame. The symbol X of Fig. 22 (8) is not, the degree is the length of the major axis of the primary particle, and the sign is the length of the short diameter of -. Furthermore, the surface of the 00 person pulls the non-plate-like primary particles agglomerated into the secondary particles, and the surface scan electrons 3 the human light mirror W image (1), the frame line portion is the secondary particle = the side of the surface u靡 'Figure 23 (8) shows only the line portion. Fig. 2 The length of the long product J Α m represented by the spoon X is the length of the long diameter of the secondary particle, and the symbol y is the length of the diameter of the human particle. The plate-shaped primary particles shown in Fig. 21(A) are of such a shape, and as long as they are half-reciprocal, the limited-convenient plane direction is also one-shape, and the shape is not π, and may be Curved shape. Figure 21 (B) shows the columnar_subgrain 1 hu café 3 - the side of the surface of the human particle and the "intersection of the side lb of the surface _ side lb can be fully expressed in _ a 4-work one - human particles In the surface, however, the surface of the surface is two: the scanning electron microscope image of the human particle is in the secondary particle: the parent surface 2b is because most of the 圹Φ exists because only a part of it appears in the electron microscope image of the secondary particle. Therefore, in the present invention, the length is a scanning electron display, and the long-diameter 1 micro-mirror image of the one-human particle appears in the surface of the secondary particle. The short-length sound of the surface of the secondary particle surface of the 201219311 secondary particle surface is In addition, in the present invention, the sub-length is the surface of the visible electron microscope shadow S Φ - /> I The primary granules of the cadaveric corpse - the short diameter 乂 of the side lb of the surface of the human particle. Figure 2UB The columnar columnar Μ 韭 韭 TM τ τ τ τ 四 四 τ τ τ τ τ τ 四 四 四 四 四 并非 并非 并非 并非 四 四 并非 并非 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四For the curved shape, the needle-like one, the middle, and the dry τ shown in Fig. 21(C) Α—Scanning electron microscopy image of human particles ,.,,) (The six sides of the surface of the secondary particle are not... The side 1C of the surface and the surface 2c of the side lc of the surface. In the present invention, —, the puller The length of the long length is the long diameter x of the lc exposed on the side of the surface of the surface of the scanning thunder microscope. In the invention, the short diameter of the primary particle is twice as observed in the scanning electron microscope image. The side surface of the particle surface has a short diameter of 7 ^. In addition, the long diameter length and the short diameter length of the primary particle can be obtained by analyzing the scanning electron microscope image. The long diameter and the short diameter length of the one-human particle are flat. The long-diameter and the short-diameter measured on the surface of the secondary particle according to the shape of the primary particle in the plan view. The hydrogen peroxide of the present invention is a secondary particle obtained by aggregating the secondary particle. Particle-sub-particles, including slab-like, columnar, or acicular primary particles with a long diameter of 1 and only ib micro or less, and other τ, ie, spheres, are analyzed by scanning electron microscopy. , indefinite shape-sub-particles, scanning electron microscope image analysis, plate-shaped, columnar, or needle-like primary particles having a long diameter of less than 1.5 μm, etc., and the secondary particles constituting the cobalt hydroxide secondary particles of the present invention must be a plate-like, columnar, or needle-shaped sub-particle having a long diameter of 1.5 μm or more ^ 201219311 The cobalt hydroxide of the present invention is (1) a plate shape having a scan length of 1 · 5 μm or more, and micromirror image analysis Long-distance heart-shaped, columnar, secondary particles, or (1) Scanning electrons: plate agglomerates with a degree of agglutination of 1.5 μm or more, long diameters and long shapes, indefinite shapes, scanning power + The human pulls, as well as the 1.5-micron plate, column, and the length of the ball under the length of the ball - is also the primary particle secondary particle. Scanning electron microscopy images of two particles of plate, column, or acicular-sub-particle = set: "The shape of the secondary partial primary particle is confirmed. One of the secondary particles is scanned. Electron microscopy image of plate-shaped, columnar, or needle-shaped primary particles above the meter = length U is slightly more than 40% of the total secondary particles, more excellent...: plate, column, or needle above m If the ratio of the presence of the particles-particles is within the above range, the compressive strength of the corrugated cobalt and the image of the weathered micromirror in the shaking x ^, the long scale guide sound 丨ς ◊ 描 电子 电子 电子 电子 电子 ... ... ... ... ...... , columnar, or acicular-human particle presence ratio Τ head-up A Μ 不 不 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U Plate-like, columnar, or needle-like area ratio of under-particles. Regarding the calculation method, - human electron shovel A @, first enter the secondary particle scanning two micro-mirror image analysis 'to carry the secondary particles The quadratic projection, any 100 secondary particles. Next, Pumping the given volume wash Xi -A, 7 Shang a hill - a surface area of the particles person "long path length of less than U m - secondary particles, then it was extracted juice heterologous with respect to the total area of the secondary particles 100 and
10 201219311 長徑長度為1. 5微米以上之一次粒子 人祖于之總面積之比例百分 比0 構成本發明之氫氧化鈷二次粒子之板狀、柱狀、 狀之一次粒子的長徑平均值為15微米以上,較 2· 0〜5. 0微米,尤其更佳為2 5〜4 4.b微未。板狀、柱狀' 或針狀之-次粒子的長徑平均值在上述範圍内,可提Μ 氫氧化鈷的壓縮強度以及搖實密度。 〇 ^ -次粒子長徑平均值之求法, 電子顯微鏡影像之解析,將…欠位子^ 丁―人拉子知描 九 种一-人粒子進行二次元投影 思抽出1 00個一次粒子。接著 6Α Ε 接者測疋抽出的一次粒子各自 的長徑長度…吏將抽出之i jn ,, ^ ^ τ 人粒子長徑長度進行 +均後,其平均值即為構成二 均值。 心·人粒子的長徑平 據本發明者群所知,含# 複人巧顏介物夕& 3銘的風乳化物係為含始與鎳的 複。風軋化物之板狀或桎壯 ^ , 丸的一 一人粒子而凝集成為女物 子(日本特開平1〇_29 成為一人粒 工★ E 報)4複合氧化物的一戈抽 子之長徑最大值不滿〇.5 物的一人板 次粒子凝集成:次粒子,且u發明之氫氧化録由一 微米以上之板狀、柱狀、:人:子:含有長徑長度15 ., A針狀的一次粒子。-+私工士 板狀、柱狀、或針狀的_ a —-人粒子中 料丰 勺_人粒子的長徑平均值較佳為i 5 微未以上,更佳為2 衩佳為1.5 米。 ..〇微米,尤其更佳為2.5〜4.5微 本發明之氫氧化钍 n 7 話之—次粒子的短徑平的估& 0.1微米以上’更佳為 …較佳為 微未以上,尤其更佳為10 201219311 Percentage of the total area of the primary particle ancestors of the long diameter of 1.5 μm or more 0 The long diameter average of the plate-like, columnar, and primary particles constituting the cobalt hydroxide secondary particles of the present invention More than 15 microns, more than 2. 0 to 5. 0 microns, especially more preferably 2 5 to 4 4. b micro. The average value of the long diameter of the plate-like, columnar or needle-like sub-particles is within the above range, and the compressive strength and the tap density of the cobalt hydroxide can be improved. 〇 ^ - The method of calculating the average value of the minor particle diameter, the analysis of the electron microscope image, the owing position ^ Ding - human puller knowing nine kinds of one - human particle for the second element projection thinking out of 100 primary particles. Then, the 6Α 者 疋 疋 疋 疋 疋 疋 一次 一次 一次 一次 一次 一次 一次 一次 一次 i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i The long-term flatness of the heart and human particles According to the inventors' group, the wind emulsion containing #复人巧颜介物& 3 is a complex with nickel and nickel. The shape of the rolled metal is slab-like or sturdy ^, and the particles of the pill are integrated into a female object (Japanese special Kaiping 1〇_29 becomes a human grain worker ★ E newspaper) 4 long composite oxide The diameter of the maximum is less than 〇.5 One-piece particle secondary aggregation: secondary particles, and the hydroxide of the invention is recorded in a plate shape or column shape of one micron or more, and: human: sub: contains a long diameter of 15 ., A Needle-like primary particles. -+ Private craftsmanship plate, columnar, or needle-shaped _ a —- human particles in the material spoon _ human particles have a long-axis average value of preferably i 5 micro or less, more preferably 2 衩 good for 1.5 Meter. .. 〇 micron, especially more preferably 2.5 to 4.5 micro Å 本 7 7 7 — — — — 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次 次Better
II 201219311 二Γ·2微米。—次粒子短徑的平均值只要於上述範圍内, 可提高其氨氧化始的I縮強度以及搖實密度。另外,— 粒子短徑的平均值的求法,除測定 人 B ^ m m ^ ^ 田-人粒子的長徑 又爻更為一。人粒子的短徑長度之 〆Ύ L 具餘與一次粒子長 徑平均值的求法相同。 丁长 本發明之氫氧化鈷之二次粒子 1 η Λη ,.. , j十吟粒子徑較佳為 10〜40微米,更佳為15〜4〇 ^ ? τ 下将別疋虱氧化鈷的二次 粒子平均粒子徑若於上述 μ 微水乾圍内的話,氫氧化 鈷/、鋰化合物反應所得到的鈷酸 ]十均粒子徑為15〜35 微水,可以得到高單位濟藉交旦 … 早體積合里的銘酸鐘。另外’本發明 之氲氧化銘的二次粒子的单朽* Α位千的千均粒子控以及氧化銘的二次粒II 201219311 Two Γ · 2 microns. When the average value of the minor diameter of the secondary particles is within the above range, the initial strength and the tap density of the ammoxidation can be increased. In addition, the method of calculating the average value of the short diameter of the particle is determined by measuring the long diameter of the human B ^ m m ^ ^ field-human particle. The short diameter length of human particles 〆Ύ L has the same effect as the average of the primary particle length. Ding Chang, the secondary particles of cobalt hydroxide of the present invention, 1 η Λη , .. , j, the tenth particle diameter is preferably 10 to 40 μm, more preferably 15 to 4 〇 ^ τ When the average particle diameter of the secondary particles is within the above-mentioned μ micro water dry circumference, the cobalt oxide obtained by the reaction of the cobalt hydroxide/lithium compound] has a ten-average particle diameter of 15 to 35 micro water, and a high unit can be obtained. ... The acid clock in the early volume. In addition, the single particle of the secondary particle of the present invention is oxidized and the thousand particles of the secondary particle are controlled.
Μτ#可利用日機裝公司所製MICR〇mCK MT330G EX II以雷射微分散射法敎而得。 本發明之氫氧化鈷之搖實密声 你厪為0.80克/毫升以上, 較佳為1.00〜2.50克/毫升,更佳A〇 c h V更佳為l 50-2. 50克/毫升。 虱氧化録的搖實密声太W & 缺 ^在Μ⑽内’可提昇氫氧化始與鈷 酉夂鐘的生產性,且本發明中 β r间徭貝密度表示二次粒子中具 有較多長徑為1 5料半,ν !_ .m上的板狀、柱狀或針狀的一次粒 〇 本發明之虱氧化鈷的二次粒子的壓縮強度為5,兆 帕,較佳為8〜30死帕。氫氧化始的二次粒 述範圍内的話,可以防μ e 7 、 以防止虱虱化鈷與鋰化合物反應前兩者 >昆合時,氫氧化鉢的-兮 扪一-人粒子分解形成小粒徑的二次粒 子。本發明之氫氧化4士 Φ m 、中错由使用平均粒徑為1 5〜40微米 12 201219311 的大粒子可以得到平均粒徑為15〜35微米的鈷酸鋰。另外 本發明之二次粒子的壓缩強度卩島津冑少壓縮試驗機 MTC-W測定而得。 …尤其是藉由適當使用壓縮強度在上述範圍内的本發明 氫氧化鈷的平均粒徑在15〜4〇微米的大粒徑粒子,可以得 到平均粒子# 15〜35微米的始酸鐘,以俾提高Μ充電電池 的單位體積容量。 本I明的氫氧化鈷可以使 1、叫π f π徵微桎厪的剪 斷力進行粉碎處理,粉碎處理前後二次粒子的粒度分佈變 ^少/較佳為粉碎處理後的二次粒子平均粒子徑的低下在 .〇微米以τ。因此,製造始酸鐘時,將本發明的氣氧化 銘以及貍化合物混合時,氣氧化始的二次粒子不容易分 解,因此可以得到平均粒徑大的鈷酸鋰。 本發明的氫氧化#較佳利用以下本發明之 造方法製造。 於本發明之氫氧化録的製造方法,其特徵在於: 含有甘氨酸的鈷水溶液,甘氨酸的含量以原子換算後 ί於鈷1莫耳為0010〜〇3〇。莫耳的鈷水溶液(Α液) 。切水溶液(Β液),添加至甘氨酸水溶液(c液),於^ 中進行中和反應以得到氫氧化始之包含中 化鈷製造方法。 虱; 本發明之氳氧化鈷的製造方法之中和工程,係藉由 液與β液加入C液,將A y & Α ’、 夜將Α液中的鈷塩與Β液中的鹼塩在 /文1Ρ進行中和之工程。 13 201219311 A液為含甘氨酸⑽2CH2C_)的銘水溶液 氛酸以及姑塩溶解於水中調製而成。 今將甘 A液中的姑塩並無 塩、;e笪 、 义制,可為鈷的氣化物 '硝酸 ^ 硫酸杈等。這兑中3?丨、,任m产 、甲又以使用氣避免不純物混入的硫酸 I為較佳。另外,亦可 + 叮朴六 視而要與少量其他金屬塩類並存。 可共存的金屬塩類,例如 螺錳、鎂、鋁、鈦等金屬塩。 A液中的銘離子道择 又並無特別限制,較佳為原子換算 後為1.0〜2.2莫耳/升,更佳 、 .^ ^ 灵佳為I 5〜2.0莫耳/升。A液中 的鈷離子濃度在上述範圍 — 舌,可以有較良好的生產 且車父不谷易發生錯讫你& 货玍鈷塭攸八液中析出的現象。另-方面, A液中的鈷離子濃度若未 達述乾圍,則容易生產性降低, 另外如超出上述範圍,則容 — · 象。 生姑迄從A液中析出的現 n n相對於A液中的始,甘氨酸的含量經原子換算為 莫耳,較佳為q q5㈣2q 換异為Μτ# can be obtained by laser differential scattering method using MICR〇mCK MT330G EX II manufactured by Nikkiso Co., Ltd. The turbidity of the cobalt hydroxide of the present invention is 0.80 g/ml or more, preferably 1.00 to 2.50 g/ml, more preferably A 50 h.摇 虱 录 的 W W W W W W W W W W W Μ Μ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 The primary diameter of the plate, the columnar or the needle-shaped primary particle on the ν!_.m is a compressive strength of the secondary particles of the cobalt oxyhydroxide of the present invention of 5, MPa, preferably 8 ~30 dead par. In the range of the second granules of the initial stage of hydration, it is possible to prevent μ e 7 and prevent the formation of bismuth hydroxide and bismuth-human particles when the reaction between bismuth cobalt and lithium compounds is prevented. Secondary particles of small particle size. The lithium hydroxide of the present invention has a lithium hydroxide of an average particle diameter of 15 to 35 μm by using a large particle having an average particle diameter of 15 to 40 μm 12 201219311. Further, the compressive strength of the secondary particles of the present invention was measured by MTC-W. In particular, by appropriately using large-sized particles having an average particle diameter of the cobalt hydroxide of the present invention having a compressive strength within the above range of 15 to 4 μm, an average acid particle of 15 to 35 μm can be obtained.俾 Increase the unit volume capacity of the rechargeable battery. The cobalt hydroxide of the present invention can pulverize the shearing force of 1, π f π, and the particle size distribution of the secondary particles before and after the pulverization treatment is less/preferably the secondary particles after the pulverization treatment. The average particle diameter is low at .〇 microns at τ. Therefore, when the gasification ring and the raccoon compound of the present invention are mixed in the production of the start acid clock, the secondary particles from the gas oxidation are not easily decomposed, and thus lithium cobalt oxide having a large average particle diameter can be obtained. The hydroxide # of the present invention is preferably produced by the following method of the present invention. The method for producing a hydroxide of the present invention is characterized in that the content of glycine in the cobalt-containing aqueous solution containing glycine is 0010 to 〇3 以 in terms of atomic conversion of cobalt 1 mol. Moore's cobalt solution (sputum). The aqueous solution (sputum) is cut, added to an aqueous solution of glycine (c liquid), and subjected to a neutralization reaction to obtain a method for producing cobalt-containing cobalt.之中; The method and method for producing cobalt ruthenium oxide according to the present invention is to add A y & Α ', the cobalt ruthenium in the sputum and the alkali sputum in the sputum by adding the liquid C and the β solution. In the / text 1Ρ to carry out the project of neutralization. 13 201219311 Liquid A is an aqueous solution containing glycine (10) 2CH2C_). The acid is prepared by dissolving it in water. Nowadays, there is no sputum in the sputum in the liquid A; e笪, the system of the right, can be the vapor of cobalt 'nitric acid ^ barium sulfate. This is better than the use of gas to avoid the incorporation of impurities into the sulfuric acid I. In addition, you can also coexist with a small amount of other metal mites. Metal ruthenium that can coexist, such as metal ruthenium such as snail manganese, magnesium, aluminum, or titanium. The ion channel in the liquid A is not particularly limited, and is preferably 1.0 to 2.2 mol/liter after atomic conversion, more preferably, .^ ^ is preferably 1.5 to 2.0 mol/liter. The concentration of cobalt ion in the liquid A is in the above range - the tongue can be produced in a good manner, and the car is not prone to occur in the case of the sputum. On the other hand, if the cobalt ion concentration in the liquid A does not reach the dry circumference, the productivity is liable to be lowered, and if it exceeds the above range, the image is contained. The raw n n precipitated from the A liquid relative to the beginning of the A liquid, the glycine content is converted to Mohr by atom, preferably q q5 (four) 2q
液中的録,甘氨酸的含量在上' 目對於A 述範圍内的話,即便氫氧化 •的一、粒子粒徑大,也可以捭 鋰的制、▲ ^ e強其旋集性,因此在鈷酸 鋰的I造工程中與鋰化合物混 因而可以維持粒子大小,一 人杻子不會分解’ 丁八』付幻+均粒徑在15~35微 粒徑鈷酸鋰。另一方面,如相 、大 仰子目對於A液中的鈷,甘崩 含量未達上述範圍時’氫氧化鈷 -夂的 „ 0 —夂粒子的凝集性合诘 4,又右超出上述範圍,會有Α卩八+ = _ 廡^ & 有。卩分未反應的鈷塩殘存於反 應液中,使生產性惡化。 反 B液為鹼水溶液。且B液為將驗 勺竹軚坫洛解於水中調製而 201219311 * 成。 用於B液相關的鹼塩,並無特別限制,可以為氫 納、氫氧化鉀等驗金屬氫氧化物,又其 : 濟之點,較佳為氫氧化納。 ^格緩 Β液的濃度以及加入C液的鹼塩總量,可視Α液 鈷離子濃度以及總量而適當選擇。 、 B液濃度較佳為5〜15莫耳/升,尤其是 耳/升。 J 冥 C液為甘氨酸水溶液。且c液為將甘氨酸 調製而成。 肝、中 中和工程中’將Α液與6液加入。液時的反應液( 中的甘氨酸濃度較佳為0.010〜0.25。莫耳/升, ::〜°.17°莫耳/升。亦即’為使中和工程中,反應前的 液之甘氨酸濃度以及反應中的反應液(c液)之甘氨酸濃 又達到較佳0.010~0.250莫耳/升’更佳為〇〇3〇〜〇17〇莫 耳/升」須事先調節反應前C液中的甘氨酸濃度以及A液中 :甘氨酸濃度。將A液與B液加入c液時的反應液(C液) 的甘氨酸濃度如在上述範圍内的話,較容易得到較大平 均粒徑的二次粒子。另-方面…液與b液加入c液時 的反應液α液)中的甘氨酸漠度如未達上述範圍,則容易 传到較小平均粒徑的二次粒子,或者是凝集力降低。又如 =出—上述範圍,則未反應的㈣將有部分殘存於反應液 中’谷易導致生產性降低。 Α液與Β液添加入c液的量’經原子換算後,相對於a 15 201219311 液中的钻離子總莫耳數,B液中氫氧離子總莫耳數比^液 中的總0H離子莫耳數/A液中總c〇原子換算的莫耳數)較 佳為1.8~2」,更佳為mo。相對於八液中的銘離子總 莫耳數,B ;夜中氫氧離子總莫耳數比如在上述範圍内,將 不會發生反應液(C液)中未反應的鈷離子殘存的情形,容 易得到目標物之氩氧化銘。 且於中和工程中,事先在反應容器中加入甘氨酸水溶 液(C液)’然後再加入a液與b液。 中和工程之反應溫度為55〜75t,較佳為6㈠代, 更佳為65〜75t。亦即,中和卫程中,將Α液與β液加入c 液時,反應液(C液)的溫度,即反應前c液的溫度以及中 和反應中反應液(C液)的溫度為…75t,較佳為6〇〜75 更佳Γ5〜7m液與B液加W液時,反應液 …液)的皿度如在上述範圍内,則可得到較大平均粒徑的 虱氧化钻二次粒子。另一 士二 , 千另方面’將A液與β液加入c液時, =液(C液)的溫度,如不滿上述範圍内,則容易得到較 =養的二次粒子,或者是凝集力降低。又如將Α液 的入C液時’反應液(〇液)的溫度,超出上述範圍 亦谷易得到較小平均粒徑的氫氧化始二次粒子。 ::工程中,將A液與B液加入c液時,反應液(C液) =值Η即反應前。液的抑值以及中和反應中反 液)的ΡΗ值為9.〇〜11〇,較佳 9.8〜10.2。將A液與w 0夺反廊’5,更佳為 值於上述範圍内的話,則可得到2 =應液(C液)的的 平均粒徑且凝集性強 201219311 的氫氧化鈷二次粒子。另—古 口主 . 方面,將A液與β液加入c液 夺,反應液(C液)的ΡΗ值如未達 降低,且得到的氯氧化始容易y’則生產性容易 又,將…: 有硫酸根等塩類不純物。 又將A液與B液加入C液時,反庫 過Ji、f r m , 應液(C液)的pH值如超 過上述耗圍,則容易得到較 子。再者,中和工程中,將化錯二次粒 、 液與Β液加入C液時,反應 幻的ΡΗ值可藉由,例如,Β液中氫氧離子濃度二 對於Α液之録離子漠产之R ^ _ D ,辰度之β液風氧離子之濃度比、相對於 液之β液加入C液的添加速度 、 ,, 又比專條件進行選擇與調節。 中和工程中,將Α液與Β液加入c液時,相對 鈷離子的添加速度,8液中氫氧 ;次In the liquid, the content of glycine is in the range of the above, and even if the particle size of the particle is large, it can be made of lithium, ▲ ^ e is strong, and therefore in cobalt. Lithium acid I is mixed with a lithium compound to maintain the particle size, and one person does not decompose the 'Ding Ba』 Fantasy + average particle size of 15 to 35 micro-particles of lithium cobalt oxide. On the other hand, if the content of the cobalt in the liquid A is less than the above range, the agglutination of the cobalt-cobalt-based 0 0-夂 particles is 4, and the right is beyond the above range. There will be +8 + = _ 庑^ & Yes. The unreacted cobalt ruthenium remains in the reaction solution, which deteriorates the productivity. The reverse B solution is an aqueous alkali solution, and the B liquid is the test spoon. The solution is prepared in water and 201219311 * into. The alkali hydrazine used for the liquid B is not particularly limited, and may be a metal hydroxide such as hydrogen hydride or potassium hydroxide, and further preferably: hydroxide. The concentration of the sputum sputum and the total amount of alkali strontium added to the liquid C can be appropriately selected depending on the concentration of the sputum cobalt ion and the total amount. The concentration of the liquid B is preferably 5 to 15 m/l, especially the ear. J. C liquid is an aqueous solution of glycine, and c liquid is prepared by modulating glycine. In the liver, middle and middle engineering, the sputum and the 6 liquid are added. The reaction liquid in the liquid (the glycine concentration in the liquid is preferably 0.010~0.25. Moule/L, ::~°.17° Moule/L. That is, 'for the neutralization project, before the reaction The concentration of glycine and the concentration of glycine in the reaction solution (c liquid) in the reaction are preferably 0.010 to 0.250 m/l 'more preferably 〇〇3〇~〇17〇m/liter". The concentration of glycine in the liquid and the concentration of glycine in the liquid A. When the glycine concentration of the reaction liquid (liquid C) when the liquid A and the liquid B are added to the liquid c are within the above range, it is easier to obtain a larger average particle diameter. If the concentration of glycine in the reaction solution α liquid in the case where the liquid is mixed with the liquid b and the solution c is not in the above range, it is easy to pass to the secondary particles having a smaller average particle diameter, or the cohesive force. reduce. If the range is the same as above, the unreacted (4) part will remain in the reaction solution. The amount of sputum and sputum added to c liquid 'after atomic conversion, relative to the total molar number of drill ions in a 15 201219311 liquid, the total molar ratio of hydrogen and oxygen ions in liquid B to the total 0H ion in liquid The molar number of the total c〇 atom in the molar number/A liquid is preferably 1.8 to 2", more preferably mo. Compared with the total number of moles of the ionic ions in the eight liquids, B; in the case where the total number of hydrogen ions in the night is within the above range, the unreacted cobalt ions in the reaction liquid (liquid C) do not remain, and it is easy. Obtain the argon oxidation of the target. In the neutralization process, a glycine aqueous solution (C solution) was previously added to the reaction vessel, and then a liquid and a liquid b were added. The reaction temperature of the neutralization process is 55 to 75 t, preferably 6 (one) generation, more preferably 65 to 75 t. That is, in the neutralization process, when the sputum and the β liquid are added to the c liquid, the temperature of the reaction liquid (liquid C), that is, the temperature of the liquid c before the reaction and the temperature of the reaction liquid (liquid C) in the neutralization reaction are 75t, preferably 6〇~75, more preferably 5~7m liquid and B liquid plus W liquid, the reaction liquid liquid) if the degree of the liquid is within the above range, a larger average particle diameter bismuth oxide drill can be obtained. Secondary particles. Another second, thousands of other aspects 'When the liquid A and the β liquid are added to the liquid c, the temperature of the liquid (the liquid C) is less than the above range, and it is easy to obtain the secondary particles, or the cohesive force. reduce. Further, when the temperature of the reaction liquid (sputum) in the case where the mash is introduced into the liquid C is out of the above range, it is easy to obtain the primary primary particles of the hydroxide having a smaller average particle diameter. ::In the project, when the liquid A and the liquid B are added to the liquid c, the reaction liquid (liquid C) = value Η before the reaction. The enthalpy of the liquid and the reaction in the neutralization reaction are 9. 〇 11 11 , preferably 9.8 〜 10.2. When the liquid A and the W 0 are in the above range, the cobalt hydroxide secondary particles having an average particle diameter of 2 = liquid (C liquid) and having a strong aggregability 201219311 can be obtained. . In addition, in the case of the ancient mouth. In the aspect, the liquid A and the β liquid are added to the liquid c, and the enthalpy of the reaction liquid (C liquid) is not lowered, and the chlorine oxidation obtained is easy to be y', the productivity is easy, and... There are steroidal impurities such as sulfate. When the liquid A and the liquid B are added to the liquid C, the pH of the liquid (the liquid C) is excessively exceeded, and the pH of the liquid (the liquid C) exceeds the above-mentioned consumption. Furthermore, in the neutralization project, when the wrong secondary particles, liquid and sputum are added to the C solution, the ambiguous value of the reaction can be obtained by, for example, the concentration of hydrogen and oxygen ions in the sputum is two for the sputum The concentration ratio of R ^ _ D produced by the product, the concentration ratio of the liquid oxygen ion of the liquid phase β, and the addition rate of the liquid C added to the liquid solution of the liquid, are selected and adjusted according to the special conditions. In the neutralization project, when the sputum and sputum are added to the c solution, the relative rate of cobalt ion addition, the oxyhydrogen in the 8 liquids;
.广、± 乳離子的添加速度比(B液/A 液)較佳為1.8〜2. 1 ’更佳為丨9〜2 離子的WD .9 2·0。又,相對於A液鈷 速度,B液氯氧離子的添加速度比係指相對於 二=:…的'離子之添加速度(莫〜 耳/分;之比至反應W中的β液的氫氧離子之添加速度(莫 從開始添加 特別限制, 更佳為1〜5 中和工程中’將Α液與Β液加入C液時, :液與Β液至C液,至添加完成之添加時間並無 攸有利工業之觀點來看’較佳為0.5〜10小時, 小時。 Τ 中和工程中, 速度,即反應前的 (c液)的攪拌速度 反應液的量等適當 Α液與Β液混合時,反應液(c液)的授拌 C液攪拌速度以及中和反應中的反應液 ’可視反應容器的大小、㈣翼的直徑、 選擇,攪拌翼的轉速較佳為〇. 5〜4. 〇公 17 201219311 尺/秒,更佳為0.5〜2·0公尺/秒。再者’中和工程中,A 液與B液加入C液的添加時間,剛開始時’較佳為授掉開 始至一小時之間的攪拌速度較緩慢’其後加速攪拌速度, 較容易得到平均粒徑大的氫氧化鈷二次粒子, J 且亦具有高 填充度。 本發明之氫氧化鈷製造方法可藉由上述中和工程得到 氫氧化始(二次粒子)。 中和工程後,將反應液中生成的氫氧化鈷(二次粒子) 進行減壓過渡、離心分離,以從反應液分離出氣氧化姑, 並視需要進行洗淨、乾燥。 利用本發明之氩氧化鈷製造方法所得到之氫氧化鈷, 即本發明之氫氧化钻’為一次粒子所凝集得到的二次粒 子,其長徑為L 5微米以上的板狀、柱狀、或針狀的一次 粒子’搖實密度為〇· 8〇克/毫升以上’具有特殊的粒子形 狀,且二次粒子的平均粒徑為15〜4〇微米,相較於習知= 粒子大並且具有強凝集力。 利用本發明氫氧化銘製造方法所製得的氯氧化銘,亦 即^發明之氫氧化銘在銘酸鐘的製造工程中,與鐘化合物 混合時,二次粒子的平均粒徑的即便為15〜40微米的大粒 二次粒子也不容易分解’因此與鐘化合物没合 :、准持15’微米的大粒徑。利用本發明氫氧化鈷 :所製得的氣氧化始,亦即本發明之氮氧化銘, 研磨機程度的剪斷力進行粉碎處理,且二次粒子 4不太變小,較佳為粉碎處理後的二次粒子平均粒子 18 201219311 徑的低下在7.0微米以下 化少。 且粉碎混合前後的粒度分佈變 利用本發明氫氧化鈷製造方法所製得的氫氧化 二亦即利用本發明之氫氧化錯,適當使用二次粒子平均 =在…4〇微米之本發明氫氧化錄,使其與經化合物反 f時、:為使粒子成長不需使用多量的鐘化合物,因而可以 仔到平均❹在15〜35微米的輯鐘,另外相對銘的經原 :㈣:莫耳比(經/幻為。惠1惠比較以往的大粒徑 馱鐘,可以在鐘過剩量少的情況下得到㈣鐘。 利用本發明虱氧化钻製造方法所製得的氯氧化銘,亦 :制本發明之氫氧化銘,可提供高單位體積容量且高容 置維持率之鋰充電電池正極活性物質。 g另外,本發明之氫氧化钻為利用前述本發明氫氧化結 製造方法之中和工程所得到的氫氧化録十本發明之氫 ^化錯其特徵找:利用含有甘氨酸之#水溶液,相對始 -莫耳,其甘氨酸含量經原子換算後為0。10〜。30。莫耳 之鈷水溶液(4液)以及鹼水溶液(8液)加入C液,於5卜乃 °C下進行中和反應之中和工程所得到之氫氧化始。 本發明之氧化銘製造方法,其特徵包含利用本發明之 氫氧化銘製造方法所得到的氫氧化钻,經由在2Q(M〇〇『c 下進行燒成氧化,以得到氧化鈷之氧化燒成工程。 本發明之氧化鈷製造方 的燒成溫度為200〜1 000°C, 時間為2〜20小時,較佳為 法的氧化燒成工程,氫氧化鈷 車乂佳為300〜900 °C,另外燒成 2〜10小時,另外燒成環境可為 19 201219311 空氣令或氧氣中等氧化環境。 本發明之氧化鈷製造方法 粉碎、解碎、分級。 斤仔到的氧化銘可適當進行 本發明之氧化鈷為一次趣 M , 人枝子喊集而成的二次粒子’且 構戚該—〕人粒子的一次粒子士 r 妞直基π ΛΑ E 小,於電子掃描顯微鏡下解 析其長輕的長為1>5微米 抑;„从一 之板狀、柱狀或針狀的一次 拉子’且搖實密度為0.80方 ^fb ^ it f}4- + 以上。構成本發明之氧 化始之柱狀、或針狀之一 以卜. 粒子的長徑平均值為1.5微米 上較佳為2.〇~5.〇微米, ^ , 兀具更佳為2. 5〜4. 5微米。 另外’本發明之氧化鈷二 米,較佳…微米。且:=的平均粒子徑為1〇,微 較佳為8〜30兆帕。-:人粒子的壓縮強度5,死帕’ 本發明的氧化鈷可以使 力進彳f # π # » 豕用咖啡研磨機程度的剪斷 進仃杨碎處理,粉碎處理 少,車交ίέΑΜ南 Η曼—-人粒子的粒度分佈變化 微米:下 後的二次粒子平均粒子徑的低下在7_。 本發^氧化料作為輯”“補 虱氧化鈷同檨可担糾> _ 供间早位體積容量且高容量維持率之鋰 充電電池正極活性物質。 、、=發明之氧化鈷,例如將本發明之氫氧化鈷之製造方 ::得到之氫氧化鈷於2〇〇,〇t,較佳為3〇〇〜,進 行氧化燒成而致得。 '接著說明利用本發明之氫氧化鈷或本發明之氧化銘製 造钻酸經之方法。The ratio of the addition rate of the galvanic ion is preferably 1.8 to 2. 1 ' is more preferably WD 9 9 of the 丨 9 〜 2 ion. Further, with respect to the cobalt velocity of the liquid A, the ratio of the addition rate of the chlorine oxygen ions of the liquid B is relative to the addition rate of the ions of the two =: ... (mole ~ ear / minute; the ratio to the hydrogen of the beta liquid in the reaction W) The rate of addition of oxygen ions (no special restrictions from the beginning, more preferably 1~5 in the neutralization project) when adding sputum and sputum to the C solution, the liquid and sputum to the C solution, until the addition time is added It is not preferable from the viewpoint of favorable industry. 'It is preferably 0.5 to 10 hours, hour. Τ In the neutralization project, the speed, that is, the stirring speed of the liquid before the reaction (c liquid), the amount of the reaction liquid, etc. When mixing, the stirring speed of the reaction liquid (c liquid) and the reaction liquid in the neutralization reaction are the size of the reaction vessel, and the diameter of the (four) wing is selected. The rotation speed of the stirring blade is preferably 〇. 5~4 〇公17 201219311 ft / sec, more preferably 0.5 ~ 2 · 0 m / s. In addition, in the 'neutralization project, the addition time of liquid A and liquid B added to C liquid, at the beginning 'better The stirring speed between the start and the one hour is slower. Then the stirring speed is accelerated, and it is easier to obtain the hydroxide with a large average particle diameter. The secondary particles, J, also have a high degree of filling. The method for producing cobalt hydroxide of the present invention can obtain the initial (secondary particles) of hydrogenation by the above neutralization process. After the neutralization process, the hydroxide formed in the reaction liquid Cobalt (secondary particle) is subjected to a pressure reduction transition and centrifugal separation to separate the gas oxidation from the reaction liquid, and if necessary, to be washed and dried. The cobalt hydroxide obtained by the method for producing cobalt argon according to the present invention is The oxidized drill of the invention is a secondary particle obtained by agglomerating primary particles, and has a plate-shaped, columnar, or needle-like primary particle having a long diameter of L 5 μm or more. The shaking density is 〇·8 gram/ml. The above 'has a special particle shape, and the secondary particles have an average particle diameter of 15 to 4 μm, which is larger than the conventional = particles and has a strong cohesive force. The chlorine obtained by the method of the present invention Oxidation Ming, that is, the invention of the hydroxide in the manufacture of the acid clock, when mixed with the bell compound, the average particle size of the secondary particles even if the large secondary particles of 15~40 microns are not easy to decompose' because Inconsistent with the bell compound: a large particle size of 15' micron. With the cobalt hydroxide of the present invention: the initial oxidation of the gas, that is, the nitrogen oxide of the present invention, the shearing force of the grinder is pulverized. The treatment and the secondary particles 4 are not so small, and it is preferable that the secondary particles of the secondary particles 18 after the pulverization treatment have a diameter of less than 7.0 μm, and the particle size distribution before and after the pulverization mixing is changed by using the cobalt hydroxide of the present invention. The oxidized hydroxide obtained by the production method also utilizes the hydrolytic oxidization of the present invention, and the secondary particles averaged = 4 〇 micrometers of the oxidized hydroxide of the present invention, and the compound is reversed with the compound: Particle growth does not require the use of a large number of clock compounds, so you can get to the average ring of 15 ~ 35 microns, and the relative Ming of the original: (four): Mo Erbi (经经/幻化. Hui 1 Hui compares the large particle size of the past, and can get (four) clocks when the amount of the clock is too small. The chlorine oxidation prepared by the method for producing a ruthenium oxide drill of the present invention also produces a positive electrode active material for a lithium rechargeable battery having a high capacity per unit volume and a high capacity retention. In addition, the oxime drill of the present invention is characterized by using the above-described hydrogen oxyhydroxide production method of the present invention and the hydrogen hydride of the invention obtained by the invention. - Moer, its glycine content after atomic conversion is 0. 10~. 30. The aqueous cobalt solution (4 liquids) and the aqueous alkali solution (8 liquids) were added to the liquid C, and the neutralization reaction was carried out at 5 °C and the initial oxidation of the obtained product was carried out. The method for producing Oxidation of the present invention, characterized in that the hydroxide drill obtained by the method for producing a hydroxide of the present invention comprises oxidizing and sintering by oxidation at 2Q (M〇〇『c) to obtain cobalt oxide. The preparation of the cobalt oxide of the present invention has a firing temperature of 200 to 1 000 ° C and a time of 2 to 20 hours, preferably a oxidative firing process of the method, and the cobalt hydroxide ruthenium is preferably 300 to 900 ° C. In addition, the firing may be carried out for 2 to 10 hours, and the firing environment may be 19 201219311 air or oxygen. The oxidized cobalt production method of the present invention is pulverized, pulverized, and classified. The cobalt oxide is a secondary particle of the interest M, and the secondary particle of the human branch is composed of the same particle. The first particle of the human particle is a small particle, and the small particle is analyzed by an electron scanning microscope. The length is 1 > 5 micrometers; „ from a plate, column or needle-like puller' and the tap density is 0.80 square ^fb ^ it f} 4- + or more. Forming the oxidation of the present invention One of the columnar or needle-shaped ones. The value of 1.5 μm is preferably 2. 〇~5. 〇 micron, ^, and the cooker is more preferably 2. 5 to 4. 5 μm. Further, the cobalt oxide of the present invention is preferably two micrometers, and preferably: The average particle diameter of = is 1 〇, preferably 8 to 30 MPa. -: The compressive strength of human particles is 5, dead pat'. The cobalt oxide of the present invention can force 彳f # π # » 咖啡 with coffee grinding The cutting degree of the machine is cut into the smashing and smashing treatment, and the pulverizing treatment is less. The car's particle size distribution changes in the micro-particles: the average particle diameter of the secondary particles after the lower is 7_. As a series "" 虱 虱 虱 虱 檨 & & & _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Cobalt production: The obtained cobalt hydroxide is obtained by oxidative firing at 2 Torr, 〇t, preferably 3 Torr. 'Next, the cobalt hydroxide of the present invention or the oxidation of the present invention will be described. Ming made the method of drilling acid.
20 201219311 使用本發明之氫氧化鈷或本發明之氧化鈷製造鈷酸鋰 之方法包含將本發明之氫氧化姑或本發明之氧化姑與 鋰化合物混合之粒子混合工程,以及將粒子混合工程所得 到之粒子混合物於80(Ml5(rc進行燒成以得到鈷酸鋰之燒 成反應工程。 粒子混合工程為將本發明之氫氧化鈷或本發明之氧化 鈷與鋰化合物混合之工程。 粒子犯口卫矛王使用的鐘化合物只要為一般銘酸鐘的製 造用原料即可,並無特別限制,㈣氧化物、氫氧化物、 碳酸塩、硝酸塩以及有機酸塩等均可,在這其中考量工業 上經濟的觀點,又以碳酸經較佳。 ' 經化合物的平均粒子徑為0.H00微米,較佳為2〜50 微米’其反應性良好因此合適。 粒子混合工程中’將本發明之氫氧化鈷或本發明之氧 化始與链化合物混合時’相對於經原子換算後之姑與鐘的 莫耳數比(混合莫耳比經⑷$ Q 9g(m划、 〇.95〇〜更佳為原子換算後之錄= 的莫耳數比在上述範可提高㈣經的容量維持率。 另外’若是未達上述範圍,則鋰 的銘,因此會造成每單位重量的放電=二二存在剩餘 里日]孜電奋里有顯著減少 ::又若是超出上述範圍1導致姑酸鐘的容量維持率降 鈷與鋰 丁…程中’本發明之氫氧化姑或本發明之 化合物的混合方法’可為例如:螺旋攪拌器、, 21 201219311 攪拌器、超級攪拌器、諾塔授拌器等。 燒成反應工程為將粒子混合工程所得到的,本發明之 氫氧化链或本發明之氧化始與鐘化合物的粒子混合物藉由 加熱使本發明之氫氧化録或本發明之氧化姑與純合物的 粒子混合物進行反應而得到鈷酸鋰之工程。 燒成反應工程中,本發明之氫氧化鈷或本發明之氧化 姑與鐘化合物的粒子混合物進行燒成反應時其溫度較佳 於_]15代,更佳為卜燒成反應時間為 小時’更佳為5〜20小時°另外燒成反應環境可為空 氣中或氧氣中等氧化環境。 進行燒成反應工程後,可視需要將生成的鈷酸鋰進行 解碎或分級以得到鈷酸鋰。 利用本發明之氫氧化鈷或本發明之氧化鈷所得到之鈷 酸鋰的平均粒子徑較佳為15〜35微米,更佳為18〜3〇微米, 因此可進行高填充。正因如此M吏用本發明之氫氧化鈷或 本發明之氧化鈷所製得之鈷酸鋰可以得到單位體積高容量 之鋰充電電池。另夕卜本發明之鈷酸鋰的平均粒子徑可利 用曰機裝公司所製MICROTRACK MT3300 ΕΧ ΐ τ " + ^ la u以雷射微分 散射法測定而得。 丹考’利用本發 到之鈷酸鋰,經原子換算後,鋰鈷的莫耳比(鋰/鈷)為 〇·9〇(Μ.040’比起習知的大粒徑鈷酸鋰,剩餘鋰的含量較 少’因而可保有鋰充電電池的高容量維持率。 Χ 又’利用本發明之氫氧化鈷或本發明条 乃夂虱化鈷所得到 22 201219311 之始酸鐘之搖實密度 2.^.2克/毫升。佳為2·4克^升以上’更佳為 下藉由本發明之實施例詳細制,唯 實施例所限制。 乃X不又 〈反應用原料水溶液之調製〉 (1 )鈷水溶液1 解於=硫酸録7水和物425.5克與甘氨酸5.7克溶 ^ 再添加水直到全量為1升,調製成銘水溶液b 此時,始水溶液彳φ #祕 中的鈷離子浪度經原子換算後為丨5莫 耳/升。甘氨酸濃度為0.075莫 、 开开原子換异後相對於 鈷1莫耳甘氨酸為0.050莫耳。 (2) 鈷水溶液2 將工業用硫酸始7水和物425 5克與甘氨酸U克溶 解於水中’再添加水直到全量為1升’調製成財溶液2。 此時’銘水溶液2中的銘離子濃度經原子換算後為工5莫 耳/升。甘氨酸漠度為0.015莫耳/升。原子換算後相對於 銘1莫耳甘氨酸為〇. 010莫耳。 (3) 始水溶液3 將工業用硫酸始7水和物425· 5克溶解於水中,再添 加水直到全量為1彳’調製成錯水溶液3。此時,姑水溶 液3中的鈷離子濃度經原子換算後為15莫耳/升。 (4) 鈷水溶液4 將工業用硫酸钻7水和物425. 5克與甘㈣〇·9克溶 解於水中,再添加水直到全量為!升,調製成銘水溶液〇 23 201219311 此時’姑水溶液4中的钴齙早、,曲 旦/44_ 的鈷離子,辰度經原子換算後A 1. 5莫 耳/升。甘氨酸濃度為〇 〇 、 马.2 4耳/升。原子換算後相對於 鈷1莫耳甘氨酸為0. 008莫耳。 (5)鹼水溶液1 百分比的氫氧化鈉 此時鹼水溶液1的 將氫氧化鈉溶於水中形成25質量 水溶液,調製& 0.5升的鹼水溶液貝二 濃度為7.9莫耳/升。 (6)初期添加液1 再加水至全量為〇. 35公 初期添加液1中的甘氨 升, 酸濃 將甘氨酸1.4克溶解於水中, 以調製成初期添加液1。此時 度為0. 054莫耳/升。 (7)初期添加液2 將甘氨酸0. 3克溶解於水 升’以調製成初期添加液2。 酸濃度為〇· 011莫耳/升。 (8)初期添加液3 中’再加水至全量為0.35公 此時初期添加液2中的甘氨 將0.35公升的水做為初 3不含有甘氨酸。 、加液3。亦即初期添加液 (9)初期添加液4 將甘氨酸0. 2克溶解於水中 升,以調製成初期添加液4。此再加水至全量為〇· 35公 酸濃度為〇. 008莫耳/升》 夺初期添加液4中的甘氨 (貫驗例1 ~ 5、比較例1、4) 〈氫氧化鈷的製造〉20 201219311 A method for producing lithium cobalt oxide using the cobalt hydroxide of the present invention or the cobalt oxide of the present invention comprises mixing a hydroxide of the present invention or a particle of the present invention with a lithium compound, and a mixing plant for particles The obtained particle mixture is subjected to a firing reaction process of 80 (Ml5 (rc is calcined to obtain lithium cobaltate). The particle mixing process is a process of mixing the cobalt hydroxide of the present invention or the cobalt oxide of the present invention with a lithium compound. The compound of the bell used by the Guardian Spear King is not particularly limited as long as it is a raw material for the manufacture of a general acid clock. (4) Oxides, hydroxides, cesium carbonate, cerium nitrate, and organic acid cesium may be considered. From the viewpoint of industrial economy, it is preferred to use carbonic acid. The average particle diameter of the compound is 0. H00 μm, preferably 2 to 50 μm, and the reactivity is good, so it is suitable. When the cobalt hydroxide or the oxidation start of the present invention is mixed with the chain compound, the molar ratio of the aquarium to the clock after the atom conversion (mixed molar ratio (4) $ Q 9g (m plan, .95〇~more preferably, after the atomic conversion, the molar ratio of the atomic ratio can be increased by the above-mentioned range (4). The capacity retention rate of the fourth is not included in the above range, so the meaning of lithium is caused by the unit weight. Discharge = 22 has the remaining days] 孜 奋 里 有 有 有 : : : : : : : : : : : : : : : : : : : : 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显 显The mixing method of the compound ' can be, for example, a spiral agitator, 21 201219311 agitator, a super agitator, a Notta agitator, etc. The firing reaction process is a hydrogenation chain of the present invention obtained by mixing the particles. Or the particle mixture of the oxidation start and the bell compound of the present invention is obtained by heating the hydroxide of the present invention or the particle mixture of the oxide and the complex of the present invention to obtain a lithium cobaltate. When the cobalt hydroxide of the present invention or the particle mixture of the oxidized guar and the bell compound of the present invention is subjected to a calcination reaction, the temperature thereof is preferably _] 15 generations, more preferably the bubbling reaction time is hour 'more preferably 5 〜 20 hours ° The additional firing reaction environment may be air or oxygen oxidation environment. After the firing reaction process, the generated lithium cobaltate may be pulverized or classified as needed to obtain lithium cobaltate. The cobalt oxide or the cobalt oxide obtained by the cobalt oxide of the present invention preferably has an average particle diameter of 15 to 35 μm, more preferably 18 to 3 μm, so that high filling can be performed. Thus, the hydrogen of the present invention is used. The lithium cobalt oxide obtained by the cobalt oxide or the cobalt oxide of the present invention can obtain a lithium rechargeable battery having a high capacity per unit volume. Further, the average particle diameter of the lithium cobalt oxide of the present invention can be obtained by using MICROTRACK MT3300 manufactured by Nippon Machine Co., Ltd. ΐ τ " + ^ la u is determined by laser differential scattering method. Dan Kao's use of lithium cobalt oxide, atomic conversion, lithium cobalt molar ratio (lithium / cobalt) is 〇·9 〇(Μ.040' is less than the conventional large-diameter lithium cobaltate, and the remaining lithium content is small', so that the high capacity retention rate of the lithium rechargeable battery can be maintained. Χ And using the cobalt hydroxide of the present invention or the strip of the present invention to obtain cobalt oxide, the solid density of the acid clock of 22 201219311 is 2.^2 g/ml. Preferably, it is more than 2 gram per liter. More preferably, it is made by the embodiment of the present invention in detail, but is limited by the embodiment. X is not <Preparation of aqueous solution for reaction> (1) Cobalt aqueous solution 1 Solution = Sulfuric acid recorded 7 water and 425.5 g of glycine and 5.7 g of glycine dissolved ^ Add water until the total amount is 1 liter, and prepare into the aqueous solution b At the time of the atomic conversion, the cobalt ion wave in the initial aqueous solution 彳φ# secret is 丨5 mol/liter. The concentration of glycine was 0.075 moles, and after opening the atomic exchange, it was 0.050 moles relative to cobalt 1 molar glycine. (2) Cobalt aqueous solution 2 Industrial sulfuric acid starting water 7 and water 425 5 g and glycine U g were dissolved in water 're-added water until the total amount was 1 liter' to prepare a solution 2. At this time, the concentration of the ion in the aqueous solution 2 was converted to 5 m/L after atomic conversion. The glycine indifference was 0.015 mol/l. After atomic conversion, it is relative to Ming 1 mol glycine. 010 mol. (3) Starting aqueous solution 3 Industrial sulfuric acid starting water 7 and 425. 5 g were dissolved in water, and water was added until the total amount was 1 彳' to prepare a wrong aqueous solution 3. At this time, the cobalt ion concentration in the aqueous solution 3 was 15 mol/liter after atom conversion. (4) Cobalt aqueous solution 4 Industrial sulfuric acid drill 7 water and material 425. 5 grams and Gan (tetra) 〇 · 9 grams dissolved in water, and then add water until the full amount is!升, modulated into a solution of 〇 23 201219311 At this time, the cobalt 龅 in the aqua solution 4, the cobalt ion of the radix / 44_, the atomic conversion of A 1. 5 mol / liter. The concentration of glycine was 〇 〇, horse. 2 4 ears / liter. 008摩尔。 Relative to cobalt 1 molar glycine after the atomic conversion is 0. 008 mole. (5) Aqueous alkali solution 1% sodium hydroxide At this time, sodium hydroxide was dissolved in water to form a 25 mass aqueous solution, and a 0.5 liter aqueous alkali solution having a concentration of 7.9 mol/liter was prepared. (6) Initial addition liquid 1 Further, water was added until the total amount was 〇. 35 liters of glycine in the initial addition liquid 1, acid concentration 1.4 g of glycine was dissolved in water to prepare an initial addition liquid 1. The degree is 0. 054 m / liter. (7) Initial addition liquid 2 0.3 g of glycine was dissolved in water to make an initial addition liquid 2. The acid concentration is 〇·011 mole/liter. (8) In the initial addition liquid 3, 'addition of water to the total amount is 0.35 liters. At this time, the ammonia in the initial addition liquid 2 is 0.35 liters of water as the initial 3 and does not contain glycine. Add liquid 3. That is, the initial addition liquid (9) Initial addition liquid 4 0.2 g of glycine was dissolved in water to prepare an initial addition liquid 4. This additional water is added to the total amount of 〇·35 male acid concentration is 〇. 008 Moer/Leng. The glycine in the initial addition liquid 4 (test examples 1 to 5, comparative examples 1, 4) <Manufacture of cobalt hydroxide 〉
24 201219311 ' 2升的反應容器中加入〇. 3 5公升的初期添加液,加熱 到如表1所示的反應溫度。 接著’將反應谷器中的反應液(初期添加液)以表1所 記載的攪拌速度一邊進行授拌’一邊依表1所示的反應溫 度以及滴下時間加入鈷水溶液以及鹼水溶液以進行中和反 應,將反應液的pH值調整至如表1所示的pH值。 中和反應後’冷卻反應液,接著將生成物過濾以及水 洗,之後於7 0 °C乾燥,得到氫氧化鈷。 測量得到的氫氧化鈷的二次粒子的平均粒徑、壓縮強 度、粉碎特性以及搖實密度,結果如表2所示。 (實施例6) 〈氫氧化鈷的製造〉 於表1所示的反應條件以外,其他均與實施例卜5相 同條件進行反應以得到氫氧化鈷。 測量得到的氫氧化鈷的二次粒子的平均粒徑、壓縮強 度、粉碎特性以及搖實密度,結果如表2所示。 (實施例6) 〈氧化鈷的製造〉 將實施例3所得到的氫氧化鈷於大氣中500°C燒成5 小時,以得到氧化鈷(C〇3〇4)。 測量得到的氧化鈷的二次粒子的平均粒徑、壓縮強 度、粉碎特性以及搖實密度,結果如表2所示。 (實驗例8〜11、比較例5 ~ 8) 〈鈷酸鋰的製造〉 25 201219311 將上述付到的氫氧化鈷與碳酸鋰依照表3所示鋰/鈷 莫耳比混合,接著如表3所示燒成反應溫度進行加熱以得 到始酸鋰。 測量得到的始酸鐘的平均粒徑、搖實密度、容量維持 率、初期放電容量(罩仿舌曰、、u , 里〈早位重$)、初期放電容量(單位體積) 以及平均動作電壓’結果如表3所示。 ' 〈評價〉 ⑴以雷射微分散射法測定氫氧化鈷或氧化鈷的二次 粒子平均粒徑、始酸鐘的平均粒徑。利用曰機裝公司所製 MICROTRACK MT3300 EX u 進行測定。 ⑺以島津微少壓縮試驗機MTC_w測定本發明之二次 粒子的壓縮強度。 (3 )粉碎特性 使用家庭用授拌器(IFM侧、岩谷公司製)進行1〇 秒鐘粉碎處理氮氧化姑或氧化結二次粒子⑷,測定處理過 後的二次粒子(b)的平均粒徑。 乃r貫鉍例1、實施例5、 實施例6以及比較例丨〜3的二 、 人粒子粕碎處理前後之粒度 分布圖如圖1〜1〇、24、25所示。 (4) 搖實密度 依據JIS-K-510所記載的表觀 七、土 ^ 紙在度、表觀比容的測量 方法’於50毫升的量筒中加入 A兄的§式樣,驴設至所 淺離子公司所製的DUAIj AUT〇TA " 碎衝—旦*丄— 裝置,進行5〇〇次搖實, δ貝取谷里並計异表觀密度,作為搖實密度。 (5) —次粒子的長徑與短徑之測定24 201219311 'Into a 2 liter reaction vessel, add 3 liters of the initial addition solution and heat to the reaction temperature as shown in Table 1. Then, the reaction liquid (initial addition liquid) in the reaction cell was mixed while stirring at the stirring rate shown in Table 1, and the cobalt aqueous solution and the aqueous alkali solution were added for neutralization according to the reaction temperature and the dropping time shown in Table 1. The reaction was adjusted to adjust the pH of the reaction liquid to the pH shown in Table 1. After the neutralization reaction, the reaction liquid was cooled, and then the product was filtered and washed with water, and then dried at 70 ° C to obtain cobalt hydroxide. The average particle diameter, compression strength, pulverization characteristics, and tap density of the secondary particles of cobalt hydroxide obtained were measured, and the results are shown in Table 2. (Example 6) <Production of cobalt hydroxide> Other than the reaction conditions shown in Table 1, the reaction was carried out under the same conditions as in Example 5 to obtain cobalt hydroxide. The average particle diameter, compression strength, pulverization characteristics, and tap density of the secondary particles of cobalt hydroxide obtained were measured, and the results are shown in Table 2. (Example 6) <Production of Cobalt Oxide> The cobalt hydroxide obtained in Example 3 was fired at 500 ° C for 5 hours in the air to obtain cobalt oxide (C〇3〇4). The average particle diameter, compression strength, pulverization characteristics, and tap density of the secondary particles of the obtained cobalt oxide were measured, and the results are shown in Table 2. (Experimental Examples 8 to 11 and Comparative Examples 5 to 8) <Production of Lithium Cobaltate> 25 201219311 The above-mentioned cobalt hydroxide and lithium carbonate were mixed according to the lithium/cobalt molar ratio shown in Table 3, and then as shown in Table 3 The firing reaction temperature shown is heated to obtain lithium acid hydride. The average particle size, the tap density, the capacity retention rate, the initial discharge capacity (the masking tongue, the u, the inner weight of the front), the initial discharge capacity (unit volume), and the average operating voltage of the initial acid clock obtained by the measurement. 'The results are shown in Table 3. <Evaluation> (1) The average particle diameter of the secondary particles of the cobalt hydroxide or cobalt oxide and the average particle diameter of the initial acid clock were measured by a laser differential scattering method. The measurement was carried out using a MICROTRACK MT3300 EX u manufactured by 曰 装. (7) The compressive strength of the secondary particles of the present invention was measured by a Shimadzu Miniature Compression Tester MTC_w. (3) The pulverization characteristics were measured by using a household agitator (IFM side, manufactured by Iwatani Co., Ltd.) for 1 sec., nitrous oxide or oxidized secondary particles (4), and the average particle of the treated secondary particles (b) was measured. path. The particle size distribution diagrams before and after the human particle mashing treatment are shown in Figs. 1 to 1B, 24, and 25, respectively. (4) The density of the solid is based on the appearance of the seventh, the paper, the degree of measurement, and the apparent specific volume as described in JIS-K-510, and the § pattern of the A brother is added to the 50 ml measuring cylinder. The DUAIj AUT〇TA " shredded 旦 旦 丄 丄 装置 浅 浅 浅 浅 浅 浅 浅 浅 浅 浅 浅 浅 浅 DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU DU (5) Determination of long diameter and short diameter of secondary particles
26 201219311 4思抽出1 0 0個一次粒子,於 影像解龢 ,^ ν描電子顯微鏡上進杆 〜像解析,測量掃描電子顯微 兄上進仃26 201219311 4 thoughts to extract 100 primary particles, into the image solution, ^ ν trace electron microscope into the rod ~ image analysis, measurement scanning electron microscopy
且"Α 所觀察到的一今抽2 U 長徑與短徑。接著,計算所抽出 -杻子的 平均值以;5 4- 工Α 個一次粒子的長徑 J值U及短徑平均值。又實施 仅 以及比較例卜3戶斤得之氮氧化麵、實^例5、實施例6 圖11〜20、26、27所示。 田電子顯微鏡影像如 (6)量測長徑長度為1.5微米 比例 上的一次粒子的存在 任意抽出100個二次粒子,屯 上抽出的_ A i /出知描電子顯微鏡影像 4的一-人粒子的總面積以 _ U微米以μ 及該—次粒子長徑長度為 、乂上的板狀、柱狀以及針狀 Λ 計算相對於_ 卞狀的—次粒子之總面積。 子於—次粒子總面積之1 R斜止 以及針妝沾 、之L5微未以上的板狀、柱狀 十狀的一次粒子之總面積之比例。 如下所述進行電池性能試驗。 實施例8〜11以及比較例 百分+ ^ ^ b 8所侍到的鈷酸鋰91重量 J ”石墨粉末6重量百分卜 > 比進杆-、?人从 比1鼠乙烯3重量百分 订芯s作為正極劑。盆八 調掣士、日人 、,、刀散於N—甲基-2-吡咯烷酮 、战〜合糊。將該混合 打樣 州土佈於鋁泊上使其乾燥、壓平、 _ 直徑1 5毫米的圓盤正極板。 C極板、隔離裝置、負極、正極、集電板、裝 電電池H 解以各兀件,以製成圓型的鐘充 m ^ ^ 5 j用金屬鋰箔、電解液使用碳酸乙烯 $兔酸尹乙酯之丨日 (LipP + .1匕合液1升中溶解六氟磷酸鋰 6莫耳所形成之溶液。 2Ί 201219311 〈電池的性能評價> 將製作的圓型鋰充電電池於室溫中依下述試驗條件使 其動作,以§平估下述電池性能。 (1) 充電循環特性平價的試驗條件 首先,於0. 5C以進行2小時充電至4. 5伏,再於4. 5 伏進行3小時保持電壓以定電流定電壓充電(cccv充電)。 之後以0.2C定電流放電至2 7伏((:(:放電)進行充放電, 這樣作為人循環。母一循環測量其放電容量。如此重複 20循環。 (2) 初期放電容量(每單位重量) 充電循裒特(·生s平價中第丄次循環的放電容量為初期放 電容量。 ^ (3) 初期放電容量(每單位體積) 製做正極板時所量測的電極密度以及初期放電容量 (每重量體積)相乘而得。 (4) 容量維持率 次循環以及第20次循環其各 根據下式計算出容量維持率。 循環的放電容量/第1次循環 充電循環特性評價的第1 自的放電容量(每重量單位), 容量維持率U) = (第20次 的放電容量)*丨〇 〇 (5)平均動作電壓 充電循環特性評價的第 作平均動作電壓。 2 〇次循%的平均動作 電壓當 28 201219311 表1 鈷7 溶液 驗水溶液 初期添加液 滴下時間 (小時) pH 攪拌轉速 (公尺/秒) 反應溫 度(。〇 種類 量(升) 種類 量(升) 種類 量(升) 實施例1 1 1 1 0.5 1 0.35 5 10.1 2 70 實施例2 1 1 1 0.5 1 0.35 5 10 2 70 實施例3 1 1 1 0.5 1 0.35 5 10 1.0-2.0° 70 實施例4 1 1 1 0.5 1 0.35 5 9.9 1.0-2.0° 70 實施例5 2 1 1 0.5 2 0.35 5 10 2 60 實施例6 1 1 1 0.5 1 0.35 5 9.9 1.5 70 比較例1 3 1 1 0.5 3 0.35 10 10 2 60 比較例2 4 1 1 0.5 4 0.35 5 10 2 70 比較例3 1 1 1 0.5 1 0.35 5 10 2 50 比較例4 1 1 1 0.5 1 0.35 5 10 2 80 1)攪拌轉速“1.0〜2.0”為混合開始後1小時1.0公尺/ 秒,之後為2. 0公尺/秒速度攪拌。 表2 1 i氧化鈷或氧化鈷 二次粒 子(a) 的平均 粒徑 壓縮 強度 二次粒 子⑹ 的平均 粒徑 搖實 密度 一次粒子 粒子形狀 微米 兆帕 微米 克/毫升 長徑 (微米) 短徑 (微米) 存在比 例⑻ 實施例1 15.3 9.6 15 1.53 2.7 0.5 100 板狀一次粒子形成球 狀二次粒子 實施例2 21.2 10.9 20.8 1.71 3.3 0.7 100 板狀一次粒子形成球 狀二次粒子 實施例3 25.8 18.2 24.5 1.73 3.1 0.8 100 板狀一次粒子形成球 狀二次粒子 實施例4 32.2 23.1 30.4 1.81 3.0 0.6 100 板狀一次粒子形成球 狀二次粒子 實施例5 20.8 8.3 15.1 0.88 2.7 0.3 83 板狀一次粒子形成球 狀二次粒子 實施例6 32.4 6.7 28.0 0.85 1.7 0.2 53 板狀一次粒子形成球 狀或不特定形狀之二 次粒子 實施例7 25.0 8.4 19.8 2.10 2.9 0.8 100 板狀一次粒子形成球 狀二次粒子 29 201219311 比較例1 7.7 0.8 0.4 0.4 0.1以 下 0.1以 下 0 微細的一次粒子形成 不特定形狀二次粒子 比較例2 15.9 2.2 11.2 0.79 1.4 0.2 37 板狀一次粒子形成不 特定形狀二次粒子 比較例3 15.7 0.7 7.3 0.48 0.1以 下 0.1以 下 0 微細的一次粒子形成 橢圓形狀二次粒子 比較例4 6.9 3.2 2.6 0.65 0.9 0.2 8 板狀一次粒子形成球 狀二次粒子 *表2中,二次粒子(a)的平均粒徑係指家用攪拌器粉 碎處理前的平均粒徑,二次粒子(b)的平均粒徑係指家用授 拌器粉碎處理後的二次粒子平均粒徑。 **表2中,存在比例為相對二次粒子總面積長徑1. 5 微米以上的一次粒子總面積的比例。 表3 氫氧化鈷 之種類 鈷酸鋰之製造條件 鈷酸鋰 之物性 鈷酸經的性能(電池特性) 鋰/鈷 莫耳比 燒成反應 溫度 (°C) 平均 粒徑 (微米) 初期放電 容量(重 量單 位)(毫安 時/克) 初期放電 容量(體積 單位)(毫 安時/毫 升) 容量維 持率 (%) 平均動 作電壓 (伏) 實施例8 實施例1 1.02 1050 16.5 185.5 506.5 97.5 3.8 實施例9 實施例2 1.02 1050 19.8 186.1 508.1 96.9 3.82 實施例10 實施例3 1.02 1050 24.4 187.4 514.4 95.5 3. 82 實施例11 實施例6 1.02 1050 22.1 189.2 505.2 95.0 3.82 比較例5 比較例1 1.02 1100 9.8 188.2 483.6 93.4 3.81 比較例6 比較例1 1.06 1100 21.3 188.6 516.3 89.8 3. 54 比較例7 比較例2 1.02 1050 12.1 187.2 483.8 97.6 3. 85 比較例8 比較例2 1.06 1100 18.9 186.9 508.9 90.2 3. 66 【產業上利用可能性】 利用本發明可以得到平均粒徑大且剩餘鋰量少之鈷酸 鋰,因此可用來製作高單位體積容量且高容量維持率之鋰 充電電池。 30 201219311 【圖式簡單說明】 圖1為本發明實施例1所得到的氫氧化鈷粒子(二次粒 子(a))的粒度分布圖。 圖2為本發明實施例1所得到的氫氧化鈷粒子(二次粒 子(a))經粉碎處理後的氫氧化鈷粒子(二次粒子(b))之粒 度分布圖。 圖3為本發明實施例5所得到的氫氧化鈷粒子(二次粒 子(a))的粒度分布圖。 圖4為本發明實施例5所得到的氫氧化鈷粒子(二次粒 子(a))經粉碎處理後的氫氧化鈷粒子(二次粒子(b))之粒 度分布_。 圖5為本發明比較例丨所得到的氫氧化鈷粒子(二次粒 子(a))的粒度分布圖。 圖6為本發明比較例丨所得到的氫氧化鈷粒子(二次粒 子(a))經粉碎處理後的氫氧化鈷粒子(二次粒子之粒 度分布圖。 圖7為本發明比較例2所得到的氫氧化鈷粒子(二次粒 子(a))的粒度分布圖。 圖8為本·發明比較例2所得到的氫氧化鈷粒子(二次粒 子(a))紅粕碎處理後的氫氧化鈷粒子(二次粒子〇))之粒 度分布圖。 圖9為本發明比較例3所得到的氫氧化鈷粒子(二次粒 子(a))的粒度分布圖。 圖1 0為本發明比較4列3所得到的氫氧化鈷粒子(二次 31 201219311 粒子(a))經粉碎處理後的氣氧化鈷粒子(二次粒子(b))之 粒度分布圖。 圖11為本發明實施例1所得到的窬 丁〜的虱氧化鈷粒子之掃描 電子顯微鏡照片(3000倍)。 圖12為本發明實施例1所得到的氫氧縫粒子之掃描 電子顯微鏡照片(1 0000倍)。 圖13為本發明實施例5所得至,丨沾备匕 丨付巧的氫氧化鈷粒子之掃描 電子顯微鏡照片(3000倍)。 圖14為本發明實施例5所得到的氫氧㈣粒子之掃描 電子顯微鏡照片(10000倍)。 圖1 5為本發明比較例1所得至丨 丨付到的氫氧化鈷粒子之掃描 電子顯微鏡照片(3000倍)。 圖1 6為本發明比較例!所得 传到的氫氧化鈷粒子之掃描 電子顯微鏡照片( 1 0000倍)。 圖1 7為本發明比較例2所得到 帝7 付^的風氧化鈷粒子之掃描 電子顯微鏡照片(3 0 0 0倍)。 圖18為本發明比較例2所 Φ ^ θ 付判的虱氧化鈷粒子之掃描 電子顯微鏡照片(1 〇 〇 〇 〇倍)。 圖19為本發明比較例3 Φ 7 巧的虱氧化鈷粒子之掃描 電子顯微鏡照片(3000倍)。 電子广比較例3所得到的氫氧化㈣子之掃描 電子顯微鏡照片(10000倍)。 圓 圖21(A)〜(C)為構成二次教子 之 次粒子的模式斜視 32 201219311 圖22(A)、(B)為一次粒子長徑與短徑之說明圖。 圖23(A)、(B)為一次粒子長徑與短徑之說明圖。 圖24為本發明實施例6所得到的氫氧化鈷粒子(二次 粒子(a))的粒度分布圖。 圖25為本發明實施例6所得到的氫氧化鈷粒子(二次 粒子U))經粉碎處理後的氫氧化鈷粒子(二次粒子(b))之 粒度分布圖。 圖26為本發明實施例6所得到的氫氧化钻粒子之掃描 電子顯微鏡照片(3000倍)。 圖27為本發明實施例6所得到的氣氧化钻粒子之掃描 電子顯微鏡照片( 1 0000倍)。 【主要元件符號說明】 33And "Α I have observed 2 U long and short diameters. Next, the average value of the extracted - scorpion is calculated; 5 - 4 long diameter J value U and short diameter average of the primary particles. Further, only the comparative examples, the nitrogen oxide surface of the household, the actual example 5, and the sixth embodiment are shown in Figs. 11 to 20, 26 and 27. The field electron microscope image (6) measures the presence of primary particles on a ratio of 1.5 micrometers in length and length, and randomly extracts 100 secondary particles, and extracts the _A i / the one-person of the electron microscope image 4 The total area of the particles is calculated as the total area of the sub-particles relative to the _-like shape in terms of _ U micron with μ and the length of the primary particle, and the plate-like, columnar, and acicular enthalpy on the raft. The ratio of the total area of the plate-like, columnar-like primary particles of the total area of the secondary particles to the R of the 1st particle and the needle makeup. The battery performance test was performed as described below. Examples 8 to 11 and Comparative Examples Percent + ^ ^ b 8 Lithium cobaltate served as 91 J J "Graphite powder 6 wt% b" than the rod -, the person from the 1 rat ethylene 3 weight The core s is divided into a positive electrode. The pottery eight gentleman, Japanese, and the knife are scattered in N-methyl-2-pyrrolidone, and the mixture is mixed with the paste. , flattening, _ 15 mm diameter disc positive plate. C plate, isolation device, negative electrode, positive electrode, collector plate, charged battery H to solve each piece, to make a round bell charge m ^ ^ 5 j using lithium metal foil, electrolyte using ethylene carbonate $ yoghurt yin yin (LipP + .1 lysate 1 liter dissolved in lithium hexafluorophosphate 6 mole solution. 2Ί 201219311 <Battery performance evaluation And the test conditions for the charging cycle characteristics are the first, at 0. 5C for the above-mentioned test conditions. Charged to 2.5 volts for 2 hours, and then held at a voltage of 4.5 volts for 3 hours to charge at a constant current (cccv charge). Discharge at a constant current of 0.2C to 27 volts ((::: discharge) for charge and discharge, thus as a human cycle. The mother's cycle measures its discharge capacity. This repeats 20 cycles. (2) Initial discharge capacity (per unit weight) The discharge capacity of the first cycle of the charging cycle is the initial discharge capacity. ^ (3) Initial discharge capacity (per unit volume) The electrode density and initial discharge capacity measured when the positive plate is made ( (4) The capacity retention rate of the sub-cycle and the 20th cycle are calculated according to the following formula: The discharge capacity of the cycle / the first cycle of the first cycle charge cycle characteristic evaluation Discharge capacity (per unit of weight), capacity retention rate U) = (20th discharge capacity) * 丨〇〇 (5) Average operating voltage of the average operating voltage charging cycle characteristics evaluation. Average operating voltage when 28 201219311 Table 1 Cobalt 7 solution initial solution in the initial addition of droplets (hours) pH stirring speed (meters / sec) reaction temperature (. 〇 species amount (liter) species amount (liter) species Amount (liter) Example 1 1 1 1 0.5 1 0.35 5 10.1 2 70 Example 2 1 1 1 0.5 1 0.35 5 10 2 70 Example 3 1 1 1 0.5 1 0.35 5 10 1.0-2.0° 70 Example 4 1 1 1 0.5 1 0.35 5 9.9 1.0-2.0° 70 Example 5 2 1 1 0.5 2 0.35 5 10 2 60 Example 6 1 1 1 0.5 1 0.35 5 9.9 1.5 70 Comparative Example 1 3 1 1 0.5 3 0.35 10 10 2 60 Comparative Example 2 4 1 1 0.5 4 0.35 5 10 2 70 Comparative Example 3 1 1 1 0.5 1 0.35 5 10 2 50 Comparative Example 4 1 1 1 0.5 1 0.35 5 10 2 80 1) Stirring speed "1.0 to 2.0" is 1 hour after the start of mixing, 1.0 m/s, followed by agitation at 2.0 m/s. Table 2 1 Average particle diameter of i-cobalt oxide or cobalt oxide secondary particles (a) Compressive strength Secondary particle (6) Average particle size Shake density Primary particle shape Micron megapascal μg/ml Long diameter (μm) Short diameter (μm) Existence ratio (8) Example 1 15.3 9.6 15 1.53 2.7 0.5 100 Plate-shaped primary particles to form spherical secondary particles Example 2 21.2 10.9 20.8 1.71 3.3 0.7 100 Plate-like primary particles to form spherical secondary particles Example 3 25.8 18.2 24.5 1.73 3.1 0.8 100 plate-like primary particles to form spherical secondary particles Example 4 32.2 23.1 30.4 1.81 3.0 0.6 100 Plate-shaped primary particles to form spherical secondary particles Example 5 20.8 8.3 15.1 0.88 2.7 0.3 83 Plate-shaped primary particles Formation of spherical secondary particles Example 6 32.4 6.7 28.0 0.85 1.7 0.2 53 Plate-shaped primary particles to form spherical or unshaped secondary particles Example 7 25.0 8.4 19.8 2.10 2.9 0.8 100 Plate-like primary particles form spherical secondary Particles 29 201219311 Comparative Example 1 7.7 0.8 0.4 0.4 0.1 or less 0.1 or less 0 Fine primary particles form non-specific shape secondary particles Comparative Example 2 15.9 2.2 11.2 0.79 1.4 0.2 37 Plate-shaped primary particles forming non-specific shape secondary particles Comparative Example 3 15.7 0.7 7.3 0.48 0.1 or less 0.1 or less 0 Fine primary particles forming elliptical shape secondary particles Comparative Example 4 6.9 3.2 2.6 0.65 0.9 0.2 8 Plate-shaped primary particles form spherical secondary particles * In Table 2, the average particle diameter of the secondary particles (a) refers to the average particle diameter before the pulverization treatment of the household agitator, and the average particle diameter of the secondary particles (b) Refers to the average particle size of secondary particles after pulverization of household agitator. ** In Table 2, there is a ratio of the total area of primary particles with a relative diameter of 1.5 μm or more relative to the total area of the secondary particles. Table 3 Types of Cobalt Hydroxide Manufacturing Conditions of Lithium Cobaltate Properties of Cobalt Acid of Lithium Cobalt (Battery Characteristics) Lithium/Cobalt Mohr Ratio Reaction Temperature (°C) Average Particle Size (μm) Initial Discharge Capacity (weight unit) (milliampere/gram) Initial discharge capacity (volume unit) (milliampere/ml) Capacity retention rate (%) Average operating voltage (volt) Example 8 Example 1 1.02 1050 16.5 185.5 506.5 97.5 3.8 Example 9 Example 2 1.02 1050 19.8 186.1 508.1 96.9 3.82 Example 10 Example 3 1.02 1050 24.4 187.4 514.4 95.5 3. 82 Example 11 Example 6 1.02 1050 22.1 189.2 505.2 95.0 3.82 Comparative Example 5 Comparative Example 1 1.02 1100 9.8 188.2 483.6 93.4 3.81 Comparative Example 6 Comparative Example 1 1.06 1100 21.3 188.6 516.3 89.8 3. 54 Comparative Example 7 Comparative Example 2 1.02 1050 12.1 187.2 483.8 97.6 3. 85 Comparative Example 8 Comparative Example 2 1.06 1100 18.9 186.9 508.9 90.2 3. 66 INDUSTRIAL APPLICABILITY According to the present invention, lithium cobalt oxide having a large average particle diameter and a small amount of remaining lithium can be obtained, and thus can be used for producing a high unit volume capacity and a high capacity dimension. Rate of lithium rechargeable batteries. 30 201219311 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a particle size distribution diagram of cobalt hydroxide particles (secondary particles (a)) obtained in Example 1 of the present invention. Fig. 2 is a graph showing the particle size distribution of cobalt hydroxide particles (secondary particles (b)) after the pulverization treatment of the cobalt hydroxide particles (secondary particles (a)) obtained in Example 1 of the present invention. Fig. 3 is a graph showing the particle size distribution of cobalt hydroxide particles (secondary particles (a)) obtained in Example 5 of the present invention. Fig. 4 is a graph showing the particle size distribution of cobalt hydroxide particles (secondary particles (b)) after the pulverization treatment of the cobalt hydroxide particles (secondary particles (a)) obtained in Example 5 of the present invention. Fig. 5 is a graph showing the particle size distribution of cobalt hydroxide particles (secondary particles (a)) obtained in Comparative Example of the present invention. Fig. 6 is a view showing the particle size distribution of the cobalt hydroxide particles (secondary particles) after the pulverization treatment of the cobalt hydroxide particles (secondary particles (a)) obtained in the comparative example of the present invention. Fig. 7 is a comparison example 2 of the present invention. The particle size distribution map of the obtained cobalt hydroxide particles (secondary particles (a)). Fig. 8 is a hydrogen after the red mashing treatment of the cobalt hydroxide particles (secondary particles (a)) obtained in Comparative Example 2 of the present invention. Particle size distribution map of cobalt oxide particles (secondary particle enthalpy). Fig. 9 is a particle size distribution diagram of cobalt hydroxide particles (secondary particles (a)) obtained in Comparative Example 3 of the present invention. Fig. 10 is a graph showing the particle size distribution of the cobalt oxychloride particles (secondary particles (b)) after the pulverization treatment of the cobalt hydroxide particles (secondary 31 201219311 particles (a)) obtained in the fourth column. Fig. 11 is a scanning electron micrograph (3000 magnifications) of the cobalt ruthenium oxide particles obtained in Example 1 of the present invention. Fig. 12 is a scanning electron micrograph (10,000 times) of the hydroxide flap particles obtained in Example 1 of the present invention. Fig. 13 is a scanning electron micrograph (3000 magnifications) of cobalt hydroxide particles obtained in Example 5 of the present invention. Fig. 14 is a scanning electron micrograph (10000 times) of the hydroxide (IV) particles obtained in Example 5 of the present invention. Fig. 15 is a scanning electron micrograph (3000 magnifications) of the cobalt hydroxide particles obtained in Comparative Example 1 of the present invention. Figure 16 is a comparative example of the present invention! Scanning electron micrograph (10,000 times) of the obtained cobalt hydroxide particles. Fig. 17 is a scanning electron micrograph (300 times) of the cobalt oxychloride particles obtained in Comparative Example 2 of the present invention. Fig. 18 is a scanning electron micrograph (1 〇 〇 〇 )) of cobalt oxyhydroxide particles which were evaluated by Φ ^ θ in Comparative Example 2 of the present invention. Fig. 19 is a scanning electron micrograph (3000 magnifications) of Φ 7 bismuth cobalt oxide particles of Comparative Example 3 of the present invention. Scanning electron micrograph (10000 times) of the hydroxide (tetra) obtained in Comparative Example 3. Fig. 21 (A) to (C) are mode squints of secondary particles constituting the second teaching 32 201219311 Fig. 22 (A) and (B) are explanatory diagrams of the primary particle long diameter and the short diameter. 23(A) and (B) are explanatory diagrams of the primary particle long diameter and the short diameter. Fig. 24 is a graph showing the particle size distribution of cobalt hydroxide particles (secondary particles (a)) obtained in Example 6 of the present invention. Fig. 25 is a particle size distribution diagram of cobalt hydroxide particles (secondary particles (b)) after the pulverization treatment of the cobalt hydroxide particles (secondary particles U) obtained in Example 6 of the present invention. Fig. 26 is a scanning electron micrograph (3000 magnifications) of the hydroxide drill particles obtained in Example 6 of the present invention. Figure 27 is a scanning electron micrograph (10,000 times) of the gas oxidized drill particles obtained in Example 6 of the present invention. [Main component symbol description] 33
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010196899 | 2010-09-02 | ||
JP2011183780A JP5758743B2 (en) | 2010-09-02 | 2011-08-25 | Cobalt hydroxide and method for producing the same, and cobalt oxide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201219311A true TW201219311A (en) | 2012-05-16 |
TWI508923B TWI508923B (en) | 2015-11-21 |
Family
ID=45772815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100131649A TWI508923B (en) | 2010-09-02 | 2011-09-02 | Cobalt hydroxide and its production method and cobalt oxide and its manufacturing method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5758743B2 (en) |
CN (1) | CN103201222B (en) |
TW (1) | TWI508923B (en) |
WO (1) | WO2012029729A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5961004B2 (en) * | 2012-02-21 | 2016-08-02 | 日本化学工業株式会社 | Method for producing cobalt hydroxide, method for producing cobalt oxide, and method for producing lithium cobaltate |
CN103964514A (en) * | 2013-01-29 | 2014-08-06 | 宁波科博特钴镍有限公司 | Preparation method of regular octahedron-type cobaltosic oxide |
JP6179374B2 (en) * | 2013-11-27 | 2017-08-16 | 住友金属鉱山株式会社 | Cobalt hydroxide particles, method for producing the same, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
JP6233175B2 (en) * | 2014-02-05 | 2017-11-22 | 住友金属鉱山株式会社 | Cobalt hydroxide particles and method for producing the same, and positive electrode active material and method for producing the same |
KR102426251B1 (en) * | 2015-04-28 | 2022-07-28 | 삼성에스디아이 주식회사 | Cobalt oxide for lithium secondary battery, lithium cobalt oxide for lithium secondary battery formed from the same, preparing method of the lithium cobalt oxide, and lithium secondary battery including positive electrode comprising the lithium cobalt oxide |
CN105923659B (en) * | 2016-05-30 | 2017-11-10 | 衢州华友钴新材料有限公司 | A kind of preparation method of LITHIUM BATTERY superfine sheet cobalt hydroxide |
CN105870441B (en) | 2016-06-01 | 2018-07-31 | 湖南杉杉能源科技股份有限公司 | A kind of high-rate type lithium cobaltate positive electrode and preparation method thereof |
CN118016977A (en) | 2016-07-05 | 2024-05-10 | 株式会社半导体能源研究所 | Lithium ion secondary battery |
KR20220038810A (en) | 2016-10-12 | 2022-03-29 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
WO2018207049A1 (en) | 2017-05-12 | 2018-11-15 | 株式会社半導体エネルギー研究所 | Positive electrode active material particles |
KR102591354B1 (en) | 2017-05-19 | 2023-10-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
KR102223712B1 (en) | 2017-06-26 | 2021-03-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Method for manufacturing positive electrode active material, and secondary battery |
CN113196528B (en) * | 2018-12-19 | 2024-04-30 | 尤米科尔公司 | Cobalt oxide as precursor for positive electrode material of rechargeable lithium ion battery |
JP6961152B1 (en) | 2020-07-07 | 2021-11-05 | 東洋インキScホールディングス株式会社 | Carbon nanotubes, carbon nanotube dispersion liquid, non-aqueous electrolyte secondary battery using it |
CN111825125B (en) * | 2020-09-16 | 2020-12-22 | 金驰能源材料有限公司 | Doped basic cobalt carbonate/cobalt carbonate composite precursor and preparation method and application thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5057299A (en) * | 1989-12-08 | 1991-10-15 | Minnesota Mining And Manufacturing Company | Method for making beta cobaltous hydroxide |
TW412505B (en) * | 1995-05-26 | 2000-11-21 | Starck H C Gmbh Co Kg | Process for producing spheroidally agglomerated basic cobalt (II) carbonate |
JP3394364B2 (en) * | 1995-07-04 | 2003-04-07 | 松下電器産業株式会社 | Cobalt hydroxide and tricobalt tetroxide as raw materials for non-aqueous electrolyte battery active material LiCoO2 and method for producing the same |
US6071489A (en) * | 1996-12-05 | 2000-06-06 | Samsung Display Device Co., Ltd. | Methods of preparing cathode active materials for lithium secondary battery |
JPH11292549A (en) * | 1998-04-13 | 1999-10-26 | Ishihara Sangyo Kaisha Ltd | Cobalt hydroxide and its production |
JP2002060225A (en) * | 2000-08-18 | 2002-02-26 | Ishihara Sangyo Kaisha Ltd | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate |
JP4194027B2 (en) * | 2002-12-05 | 2008-12-10 | 日本化学工業株式会社 | Method for producing lithium cobalt oxide for positive electrode active material of lithium secondary battery |
JP4276442B2 (en) * | 2003-01-14 | 2009-06-10 | Agcセイミケミカル株式会社 | Positive electrode active material powder for lithium secondary battery |
CN101486494B (en) * | 2009-02-20 | 2010-09-08 | 武汉理工大学 | Method for synthesizing cobalt carbonate hydroxide nano material |
-
2011
- 2011-08-25 JP JP2011183780A patent/JP5758743B2/en active Active
- 2011-08-30 WO PCT/JP2011/069507 patent/WO2012029729A1/en active Application Filing
- 2011-08-30 CN CN201180053002.1A patent/CN103201222B/en active Active
- 2011-09-02 TW TW100131649A patent/TWI508923B/en active
Also Published As
Publication number | Publication date |
---|---|
WO2012029729A1 (en) | 2012-03-08 |
CN103201222A (en) | 2013-07-10 |
CN103201222B (en) | 2015-05-06 |
TWI508923B (en) | 2015-11-21 |
JP2012072050A (en) | 2012-04-12 |
JP5758743B2 (en) | 2015-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201219311A (en) | Cobalt hydroxide, method for producing same, cobalt oxide, and method for producing same | |
TW523958B (en) | Nickel-rich and manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries | |
Liu et al. | Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: part I. Two-step lithiation method for Al-or Mg-doped LiNiO2 | |
CN114050257B (en) | Manganese-iron-copper positive electrode precursor material and preparation method and application thereof | |
Kim et al. | Ultrasound assisted synthesis of nano-sized lithium cobalt oxide | |
TW201222955A (en) | Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery | |
JP2014129188A5 (en) | ||
JP2012123909A (en) | Positive electrode material for lithium ion secondary battery, and method of manufacturing the same, positive electrode active substance for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
WO2016148096A1 (en) | Method for producing lithium metal complex oxide having layered structure | |
JP6479634B2 (en) | Method for producing nickel lithium metal composite oxide | |
WO2007000075A1 (en) | Method for preparing spherical nickelous hydroxide which is dopped and multiple metal oxides, and lithium ion secondary battery | |
JP2013180917A (en) | Nickel-containing hydroxide and method for producing the same | |
WO2018015207A1 (en) | A method for the precipitation of particles of a metal carbonate material without use of a chelating agent | |
JP2008156163A (en) | Spinel type lithium manganese oxide and method for manufacturing the same | |
CN101072731A (en) | Process for producing lithium transition metal oxides | |
CN110350162B (en) | Multiplying power type nickel-cobalt-aluminum positive electrode material and preparation method and application thereof | |
JP7220849B2 (en) | Nickel-containing hydroxide and its production method | |
JP4172622B2 (en) | Lithium-containing composite oxide and method for producing the same | |
JP4628704B2 (en) | Positive electrode material for lithium secondary battery and method for producing the same | |
JPH0986933A (en) | Spinel type lithium manganese oxide, its production and use | |
JP6655282B2 (en) | Method for producing nickel-lithium metal composite oxide, nickel-lithium metal composite oxide obtained by the production method, and positive electrode active material comprising the same | |
CN105895907B (en) | A kind of graphene complex ternary positive electrode and its preparation method and application | |
JP2013170099A (en) | Method for producing cobalt hydroxide, method for producing cobalt oxide and method for producing lithium cobaltate | |
KR100668050B1 (en) | Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same | |
JPH1179752A (en) | Nickel oxide particles and their production |