TW201217450A - Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same - Google Patents

Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same Download PDF

Info

Publication number
TW201217450A
TW201217450A TW99136650A TW99136650A TW201217450A TW 201217450 A TW201217450 A TW 201217450A TW 99136650 A TW99136650 A TW 99136650A TW 99136650 A TW99136650 A TW 99136650A TW 201217450 A TW201217450 A TW 201217450A
Authority
TW
Taiwan
Prior art keywords
solid capacitor
solid
forming
capacitor
electrolyte composition
Prior art date
Application number
TW99136650A
Other languages
Chinese (zh)
Other versions
TWI412553B (en
Inventor
Kuo-Liang Yeh
Kung-Hsun Huang
Tz-Bang Du
Shyue-Ming Jang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW99136650A priority Critical patent/TWI412553B/en
Priority to JP2011199224A priority patent/JP2012094835A/en
Publication of TW201217450A publication Critical patent/TW201217450A/en
Application granted granted Critical
Publication of TWI412553B publication Critical patent/TWI412553B/en

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The invention discloses an oxidant for fabricating solid capacitor, electrolyte composition employing the same. Further, the invention also discloses a solid capacitor and method for manufacturing the same. The oxidant for fabricating solid capacitor includes a ferric sulfonate, wherein the ferric sulfonate is an ionic compound consisting of a Fe3+ and an organic sulfonate ion. The organic sulfonate ion has a structure represented by Formula (I), Formula (II), Formula (III), Formula (IV), or Formula (V), wherein R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R26, R27, R31, R32, R33, R34, R35, R36, R41, R42, R43, R44, R45, R46, R47, R48, R49, R51, R52, R53 are independent and include H, C1-18 alkyl, C1-18 ester group, C5-12 cycloalkyl, nitro group, sulfonate group, hydroxyl group, or aryl group; while the organic sulfonate ion is of Formula (I) and R13 is a methyl group, at least one of R11, R12, R14 and R15 is not H.

Description

201217450 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於形成固態電容的氧化劑,尤係 關於一種可提高固態電容崩潰電壓的用於形成固態電容的 氧化劑。 【先前技術】 新一代固態電容具有耐熱超過攝氏300度、高頻低阻抗 (ίο毫歐)、快速放電、體積小、無漏液以及壽命最高可達四 萬小時等特點。而現在中央處理器運算速度愈來愈快,傳 統液態電解電容因無法承受高溫而易產生容爆現象,因此 液態電解電容已無法滿足通訊、電腦及消費性電子等產品 的需求,而慢慢被固態電容所取代。而固態電容目前是以 單體如 3,4-乙烯一氧嗟吩(3,4-ethylenedioxythiophene,以 下簡稱EDOT)以及鐵鹽氧化劑如對曱苯績酸鐵(Ir〇n(in) p-t〇lUenesulfonate,以下簡稱FePTS)在固態電容器中進行 汆合,生成聚3,4-乙烯二氧喔吩(p〇iy_3,4 ethyienedi〇xy -thiophene,以下簡稱PED0T)做為固態電解質。以此原料 所得到之固態電容,超過30V之電壓將導致固態電容特性變 差、信賴度不穩定或甚至發生短路現象。 影響固態電容崩潰電壓的原因包含導電傳導層耐溫不 足、介電層穩定性不夠、隔離紙防穿刺效果不佳或其他原 因。由於固態電容中漏電流的存在,在高電壓下導電高分 子將會發熱,因而導致導電高分子材質劣化或甚至發生正 201217450 負電極短路現象,這些現象都會造成固態電容耐電壓不足 或是電容特性變差。文獻報導中,提升固態電容器而子電壓 特性可經由下列幾種手段達到:A.將EDOT進行預聚合;b. 改善隔離紙性能;C·於介電層鍵上保護層;D.使用新結構 PEDOT ; E·添力口離子傳導性物質;F:添力口試劑增強ped〇T 穩定性® A.將EDOT進行預聚合的優點及缺點:201217450 VI. Description of the Invention: [Technical Field] The present invention relates to an oxidant for forming a solid capacitor, and more particularly to an oxidant for forming a solid capacitor which can increase a breakdown voltage of a solid capacitor. [Prior Art] A new generation of solid-state capacitors has a heat resistance of more than 300 degrees Celsius, high frequency and low impedance (ίοohm), fast discharge, small size, no leakage, and a life expectancy of up to 40,000 hours. Nowadays, the CPU speed is getting faster and faster. Traditional liquid electrolytic capacitors are prone to explosion due to their inability to withstand high temperatures. Therefore, liquid electrolytic capacitors can no longer meet the needs of products such as communication, computer and consumer electronics. Replaced by solid capacitors. The solid capacitor is currently a monomer such as 3,4-ethylenedioxythiophene (EDOT) and an iron salt oxidant such as iridium (in) pt〇l Uenesulfonate , hereinafter referred to as FePTS), is kneaded in a solid capacitor to form poly 3,4-ethylene dioxin (p〇iy_3, 4 ethyienedi〇xy-thiophene, hereinafter referred to as PED0T) as a solid electrolyte. The solid capacitor obtained from this material, a voltage exceeding 30V, will cause the solid capacitor characteristics to deteriorate, the reliability is unstable, or even a short circuit occurs. The reasons for the breakdown voltage of the solid capacitor include insufficient temperature resistance of the conductive conductive layer, insufficient stability of the dielectric layer, poor puncture resistance of the release paper, or other causes. Due to the presence of leakage current in the solid capacitor, the conductive polymer will generate heat at high voltage, which may cause deterioration of the conductive polymer material or even a short circuit of the negative electrode of 201217450. These phenomena may cause insufficient voltage resistance or capacitance characteristics of the solid capacitor. Getting worse. In the literature report, the solid-state capacitors are boosted and the sub-voltage characteristics can be achieved by: A. pre-polymerizing EDOT; b. improving the performance of the release paper; C. protecting the layer on the dielectric layer; D. using the new structure PEDOT ; E · Timing port ion conductive material; F: Timing port reagent enhanced ped〇T stability ® A. Advantages and disadvantages of pre-polymerization of EDOT:

Udo Merker, Wilfried Lovenich, Klaus Wussow; Capacitor and Resistor Technology Symposium, 2006在研言才 中發表 【Conducting Polymer Dispersions for High-Capacitance Tantalum Capacitors】,將 EDOT進行預聚 合後再含浸到钽質固態電容中。以此方法製作鈕質固態電 容可降低ESR,也可提升耐電壓特性。Udo Merker, Wilfried Lovenich, Klaus Wussow; Capacitor and Resistor Technology Symposium, 2006, published in the research [Conducting Polymer Dispersions for High-Capacitance Tantalum Capacitors], pre-polymerized EDOT and then impregnated into tantalum solid capacitors. Making a button solid-state capacitor in this way reduces ESR and improves withstand voltage characteristics.

Yuri Freeman, William R. Harrell, Igor Luzinov, Brian Holman, and Philip Lessner; J. Electrochem. Soc. 2009, 156, 65.【Electrical Characterization of Polymer TantalumYuri Freeman, William R. Harrell, Igor Luzinov, Brian Holman, and Philip Lessner; J. Electrochem. Soc. 2009, 156, 65. [Electrical Characterization of Polymer Tantalum

Capacitors with Poly(3,4-ethylenedioxythiophene) Cathode 】發表在钽質固態電容製程中,原先利用EDOT與鐵鹽氧化 劑進行聚合得到PEDOT,若將EDOT先進行預聚合,再製作 成電容將可降低漏電流,並提高其耐電壓。 雖然EDOT進行預聚合可以提昇固態電容耐電壓特性 ’但是固態電容的生產設備需同步進行修改,需花費較大 的設備投資成本。此外,不同的製程方式需調整不同製程 條件,因此對於現階段固態電容廠來說並不適用。 201217450 B. 改善隔離紙性能的優缺點: JP2007059789中提到,控制隔離紙纖維長短、組成種 類或密度等性質,這些調整將會影響固態電容的ESR、漏 電流或耐電壓等特性。改善隔離紙特性雖然有助於耐電壓 的提升,但是隔離紙僅能降低正負電極間的磨擦,減少介 電層被破壞。導電高分子的特性若無法有效提升,終究無 法提升固態電容耐電壓特性。 C. 於介電層鍍上保護層的優缺點:Capacitors with Poly (3,4-ethylenedioxythiophene) Cathode 】 published in the tantalum solid capacitor process, the original use of EDOT and iron salt oxidant polymerization to obtain PEDOT, if the EDOT pre-polymerization, and then made into a capacitor will reduce leakage current, And improve its withstand voltage. Although pre-polymerization of EDOT can improve the withstand voltage characteristics of solid-state capacitors, the production equipment of solid-state capacitors needs to be modified simultaneously, which requires a large investment cost of equipment. In addition, different process methods need to adjust different process conditions, so it is not suitable for the current solid capacitor factory. 201217450 B. Advantages and Disadvantages of Improving the Performance of Separator Paper: JP2007059789 mentions the control of the length, composition or density of the separator paper. These adjustments will affect the ESR, leakage current or withstand voltage characteristics of the solid capacitor. Improving the properties of the release paper helps to increase the withstand voltage, but the release paper only reduces the friction between the positive and negative electrodes and reduces the damage of the dielectric layer. If the characteristics of the conductive polymer cannot be effectively improved, the voltage resistance characteristics of the solid capacitor cannot be improved after all. C. Advantages and disadvantages of plating the protective layer on the dielectric layer:

Katsunori Nogami, Kiyoshi Sakamoto, Teruaki Hayakawa, Masa-aki Kakimoto; Journal of Power Sources 2007, 166, 584. 【The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors】論文指出,利用高分子石夕烧化合物 做為介電層的保護膜,可提升固態電容之耐電壓。此保護 層方法可直接降低介電層被破壞的機率,因而提升耐電壓 特性。然而,保護層會填充到陽極多孔鋁箔的孔洞中,降 低多孔鋁箔的表面積,因而降低固態電容的電容量。 D. 使用新結構PEDOT的優缺點: JP2008091589專利中揭露,使用新結構含硫雜環高分 子 poly-(3-carboxylic acid thiophene alkyl ammonium)做為 電解質,可以提昇固態電容之耐電壓。使用新結構高分子 可以提升固態電容的耐電壓特性,但是此結構高分子合成 較困難,原料成本較高,若應用於固態電容生產將導致成 本過而。 201217450 Ε·添加離子傳導性物質的優缺點: JP2009158547揭露導電高分子中添加羧酸高分子,此 幾S变高分子可降低固態電容的漏電流,並可提升固態電容 之耐電壓特性。添加羧酸高分子雖可提升固態電容耐電壓 特性,但是因為羧酸高分子為不導電物質,添加後亦會影 響導電高分子的導電度,因此會降低電容中電阻特性表現 〇 F:添加試劑增強PEDOT穩定性的優缺點: 2009年中國專利CN1013851〇5報導中指出,使用不同 的添加劑可以提昇固態電容的耐電壓。添加劑包含聚合高 分子,如:PEG200, PEG400, PEG6_等;含氮分子,如乙 烯基咪唑;離子傳導性化合物,如:離子液體;矽烷偶連Katsunori Nogami, Kiyoshi Sakamoto, Teruaki Hayakawa, Masa-aki Kakimoto; Journal of Power Sources 2007, 166, 584. [The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors] The fired compound acts as a protective film for the dielectric layer to increase the withstand voltage of the solid capacitor. This protective layer method directly reduces the probability of damage to the dielectric layer, thereby improving the withstand voltage characteristics. However, the protective layer fills the pores of the anode porous aluminum foil, reducing the surface area of the porous aluminum foil, thereby reducing the capacitance of the solid capacitor. D. Advantages and Disadvantages of Using the New Structure PEDOT: JP2008091589 discloses that the new structure of the sulfur-containing heterocyclic poly-(3-carboxylic acid thiophene alkyl ammonium) can be used as an electrolyte to increase the withstand voltage of the solid capacitor. The use of new structural polymers can improve the withstand voltage characteristics of solid capacitors. However, this structure is difficult to synthesize, and the cost of raw materials is high. If it is applied to solid capacitor production, it will lead to cost. 201217450 优· Advantages and Disadvantages of Adding Ion Conductive Substance: JP2009158547 discloses the addition of a carboxylic acid polymer to a conductive polymer, which can reduce the leakage current of the solid capacitor and improve the withstand voltage characteristics of the solid capacitor. Adding a carboxylic acid polymer can improve the withstand voltage characteristics of the solid capacitor, but since the carboxylic acid polymer is a non-conductive substance, the conductivity of the conductive polymer is also affected after the addition, so that the resistance characteristic of the capacitor is lowered. :F: Adding a reagent Advantages and Disadvantages of Enhanced PEDOT Stability: In 2009, China Patent CN1013851〇5 reported that the use of different additives can increase the withstand voltage of solid capacitors. The additive comprises a polymeric high molecule such as: PEG200, PEG400, PEG6_, etc.; a nitrogen-containing molecule such as acetylimidazole; an ionically conductive compound such as an ionic liquid; a decane coupling

劑,如:KBM503 ’等。這些添加劑的使用雖可提升pED〇T 穩定性,但亦同時會降低導電高分子導電特性,使電阻上 升能耗上升。 上述專利及文獻雖揭露改善固態電容耐電壓的各種方 式’但卻必須改變現有製程、降低固態電容的電容量、合 成成本較高的導電高分子或影響導電高分子的導電特性, 而仍有相當大的改善空間。 【發明内容】 本發明揭露-種用於形成固態電容的氧化劑,主要藉 由改變鐵鹽氧化劑的陰離子結構,導人㈣核陰離子, 改變固.4電解質的摻雜現象,進而影響到其微結構與固態 電解質的特性。影響的特性包含導電度、熱穩定性等。由 201217450 本發明所述氧化劑所形成之固態電容,其固態電容的崩潰 電壓比一般磺酸鐵氧化劑形成之固態電容要高。這是因為 本發明所述之有機磺酸鐵鹽其耐熱性較佳,因此得到之固 態電解質耐熱性也隨之提升,進而提升固態電容的崩潰電 壓。此應用新績酸鐵鹽的方式將可直接套用⑨現階段固態 電令廠的生產’不需更改設備,在條件參數部分只需針對 現有參數進行微調即可開始生產。此外,上述方式亦不需Agent, such as: KBM503 ’ and so on. Although the use of these additives can improve the stability of pED〇T, it also reduces the conductive properties of the conductive polymer and increases the energy consumption of the resistor. Although the above patents and documents disclose various ways to improve the withstand voltage of solid capacitors, they must change the existing process, reduce the capacitance of the solid capacitor, and the conductive polymer with higher synthesis cost or affect the conductive properties of the conductive polymer. Great improvement space. SUMMARY OF THE INVENTION The present invention discloses an oxidant for forming a solid capacitor, mainly by changing the anion structure of the iron salt oxidant, guiding a (iv) nuclear anion, changing the doping phenomenon of the solid 4 electrolyte, thereby affecting its microstructure. Characteristics with solid electrolytes. The properties that are affected include electrical conductivity, thermal stability, and the like. The solid capacitor formed by the oxidant of the present invention of 201217450 has a solid capacitor having a higher breakdown voltage than a solid capacitor formed by a general sulfonic acid iron oxidant. This is because the organic sulfonic acid iron salt of the present invention has better heat resistance, so that the heat resistance of the obtained solid electrolyte is also increased, thereby increasing the collapse voltage of the solid capacitor. The application of the new acid iron salt method will directly apply to the production of the 9-stage solid-state electric power plant. No need to change the equipment. In the condition parameter section, it is only necessary to fine-tune the existing parameters to start production. In addition, the above methods do not need

降低固態電容的電容量,也不用合成成本較高的導電高分 子>甚至在不會影響固態電解質的導電特性的同時,而能 提咼固態電容的崩潰電壓。 、❿风^ %廿R'J和评J,巴含:一 績酸鐵鹽,# 1 、中該磺酸鐵鹽係由一三價鐵離子與至一 機磺酸離子所姐1 ’ - < …口似,§发> 式1、式2、放7 R,3飞、式4或式5所示之結構 R23 R-24 構成之離子化合物,該有機磺酸離子係具有 1 ' Λ 2 X ^ ^ ηReducing the capacitance of the solid capacitor does not require the synthesis of higher-cost conductive high-molecular weights. Even without affecting the conductive properties of the solid electrolyte, the collapse voltage of the solid-state capacitor can be improved. , Hurricane ^ % 廿 R'J and J, Ba: a good acid iron salt, # 1 , the iron sulfonate salt from a trivalent iron ion and to a machine sulfonate ion sister 1 ' < ... mouth-like, § hair > Formula 1, Formula 2, Release 7 R, 3 fly, Formula 4 or Formula 5 R19 R-24 constitutes an ionic compound having 1 ' Λ 2 X ^ ^ η

Ri〇 Λ 、式4或式5所示之結構 25Structure of Ri〇 、 , Equation 4 or Equation 25

式1Formula 1

只26 SO3 R27 式2 -10- 201217450Only 26 SO3 R27 type 2 -10- 201217450

、r2” r26、r27、r31、r32、r33、r34、R”、l 、R43、R44、R45、R46、R47、R48、R49、R”、R52及 R53係^ 自獨立並料H、Cl.18貌基' Cl.18醋基、C5 i2環絲、硝基, r2" r26, r27, r31, r32, r33, r34, R", l, R43, R44, R45, R46, R47, R48, R49, R", R52 and R53 are independent H and Cl. 18 appearance base 'Cl.18 vinegar, C5 i2 loop wire, nitro

、績酸基、經基、或芳香基;且當該有機確酸離子係為式i 之結構,R13為曱基時’〜、〜、‘及心中至少一者不為 Η。 本發明亦提供一種電解質組成物’包含:一溶劑;上述 用於形成固態電容的氧化劑,以及—導電高分子。 本發明亦提供一種固態電容製造方法,包含:形成一 :電層於-電谷素子之表面;對上述電解質組成物進形聚 口反應得到一固態電解質溶液;將該電容素子含浸於該 固態電解質溶液中;由該固態電解質溶液中取中該電容素 • 11 · 201217450 子並進行一烘乾製程; 電容。 以及,組裝該電容素子成為一固態 本發明亦提供一種固態電容 配而得。 係由上述製造方法所製 為讓本發明之上述和其他目的、祐料 n,、他曰的、将徵、和優點能更明 顯易〖董,下文特舉出實施方式,作詳細說明如下:【實施方式】And an acid group, a thiol group, or an aryl group; and when the organic acid ion is a structure of the formula i, and R13 is a fluorenyl group, at least one of the '~, ~, ‘ and the heart is not Η. The present invention also provides an electrolyte composition 'comprising: a solvent; the above-mentioned oxidizing agent for forming a solid capacitor, and - a conductive polymer. The invention also provides a method for manufacturing a solid capacitor, comprising: forming an electric layer on a surface of an electric glutinin; forming a solid electrolyte solution by forming a solid electrolyte solution on the electrolyte composition; and impregnating the solid electrolyte with the capacitor element In the solution; the capacitor is taken from the solid electrolyte solution and subjected to a drying process; capacitor. And, assembling the capacitor element into a solid state, the present invention also provides a solid capacitor. The above-mentioned and other objects, the benefits, the advantages, the advantages, and the advantages of the present invention are made by the above-described manufacturing method, and the advantages are more obvious. The following embodiments are specifically described as follows: [Embodiment]

本發明完成一種含有可提高固態電容崩潰電壓的磺酸 鐵鹽’並㈣上述續酸鐵鹽完成本發明的電解質組成物與 固態電容。若可開發高電壓固態電容,其市場可擴大到汽 車、電源供應器等應用’電容價格與利潤將可大幅上升。 先α成各式結構之有機續酸鐵氧化劑。合成方法為 淨J用氣化鐵與各式有機續酸分子於曱醇加熱後所產生的氫 «氣體’經過加熱共純讀可移除大部分氫氣酸雜質 ’最後各式結構有機磺酸鐵再經過三次再結晶即可得到相 對應之高純度有機姐鐵,如反應式(1):The present invention accomplishes an electrolyte composition and a solid capacitor which comprise an iron sulfonate salt which can increase the breakdown voltage of a solid capacitor and (d) the above-mentioned acid-reinforcing iron salt. If high-voltage solid-state capacitors can be developed, the market can be extended to applications such as automobiles and power supplies. Capacitance prices and profits will increase significantly. First, α is an organic acid-reinforcing iron oxidizing agent of various structures. The synthesis method is that the hydrogen produced by the use of gasified iron and various organic acid-reducting molecules in the heating of sterols can be removed by heating and co-purification. Most of the hydrogen acid impurities can be removed. After three times of recrystallization, the corresponding high-purity organic iron can be obtained, such as reaction formula (1):

FeCl3+3XH^FeX3+3HCl(g)................(1) 其中X係指有機磺酸離子,可具有式1、式2、式3、式 4 或式5所不之結播 Rl3FeCl3+3XH^FeX3+3HCl(g) (1) where X is an organic sulfonic acid ion, which may have Formula 1, Formula 2, Formula 3, Formula 4 or 5 does not broadcast Rl3

R 4 玖15R 4 玖15

SO 3SO 3

-12- ^47201217450 式1 式2-12- ^47201217450 Equation 1 Equation 2

^48 式3 式4^48 Equation 3 Equation 4

’其中 R"、R12、r13、r14、ri5、r21、r22、r23、1 AV24 R25 R26、R27、R31、R32、R33、R34、R35、R36、R4l、 、R43、R44、R45、R46、R47、R48、R49、R51、尺52及11534系各 自獨立並係為H、cK18烷基、CM8酯基、C:5」2環烷基、硝基 、續酸基、經基、或芳香基;且當該有機磺酸離子係為式i 之結構,r13為曱基時,Rn、Ru、Ri4及Ri5中至少一者不為 Η。 在上述中,”芳香基(aryl)”代表一單環或多環系統之碳 氫芳香環,例如:笨基,曱笨基,萘基,四氫化萘基 (teuahydronaphthyl),聯苯基(biphenyl),菲基(phenanthryl) 、蒽基(anthracyl)等。“環烷基(cycloalkyl)”代表一非芳香族 之破氫單環或多環,可含有3〜12個碳原子,例如環丙基、 -13 - 201217450 環丁基、環戊基、環己基、環辛基、二環[2.2.1]辛基等。 實施例1新結構有機磺酸鐵的合成 取10毫莫耳(mmol)氣化鐵,加入200毫升(mL)水以及30 mmol各式結構有機磺酸,之後加熱蒸餾移除100毫升(mL) 水及副產品氣化氫,並再補加100毫升mL純水,重複移除 並補加水3次,之後將水以減壓蒸餾移除。得到的固體再以 適量的水或甲醇進行再結晶3-5次,得到相對應有機磺酸鐵 5如表—°'where R", R12, r13, r14, ri5, r21, r22, r23, 1 AV24 R25 R26, R27, R31, R32, R33, R34, R35, R36, R4l, R43, R44, R45, R46, R47 , R48, R49, R51, 52 and 11534 are each independently H, cK18 alkyl, CM8 ester, C: 5" 2 cycloalkyl, nitro, acid group, trans group, or aryl; When the organic sulfonic acid ion is of the formula i and r13 is a fluorenyl group, at least one of Rn, Ru, Ri4 and Ri5 is not ruthenium. In the above, "aryl" represents a hydrocarbon aromatic ring of a monocyclic or polycyclic ring system, for example, stupid, nonyl, naphthyl, tetrahydronaphthyl, biphenyl ), phenanthryl, anthracyl, and the like. "Cycloalkyl" means a non-aromatic hydrogen-hydrogenated monocyclic or polycyclic ring which may contain from 3 to 12 carbon atoms, such as cyclopropyl, -13 - 201217450 cyclobutyl, cyclopentyl, cyclohexyl , cyclooctyl, bicyclo [2.2.1] octyl and the like. Example 1 Synthesis of New Structure Iron Iron Sulfate 10 mmoles (mmol) of iron oxide was added, 200 ml (mL) of water and 30 mmol of various organic sulfonic acids were added, followed by heating to remove 100 ml (mL). The water and by-products were hydrogenated, and 100 ml of mL pure water was added, and the water was repeatedly removed and added 3 times, after which the water was distilled off under reduced pressure. The obtained solid is recrystallized 3-5 times with an appropriate amount of water or methanol to obtain a corresponding organic iron sulfonate 5 as shown in the table.

表一不同結構有機磺酸鐵合成收率 績酸原料結構 (CAS編號) 相對應鐵鹽代號 純化前收率(%) 結晶後收率(%) ho3s^ 0 (5872-08-2) FeCS 95 61 ςο so3h (85-47-2) FeNS 97 63 so3h (88-61-9) FeDBS 93 54 οςο so3h (22582-76-9) FeAT 97 40 -14- 201217450Table 1 Different Structures of Organic Sulfonic Acid Iron Synthetic Yield Acid Acid Raw Material Structure (CAS No.) Corresponding Iron Salt Code Pre-purification Yield (%) Crystallization Yield (%) ho3s^ 0 (5872-08-2) FeCS 95 61 ςο so3h (85-47-2) FeNS 97 63 so3h (88-61-9) FeDBS 93 54 οςο so3h (22582-76-9) FeAT 97 40 -14- 201217450

N〇2 so3h (121-03-9) FeMNS 95 57 Cl2H25 Φ so3h (121-65-3) FeDB 99 67 OH Φ so3h (98-67-9) FeHB 96 38 0 so3h (2-04-5) FeBPA 93 41 so3h (85-48-3) FelQA 96 53N〇2 so3h (121-03-9) FeMNS 95 57 Cl2H25 Φ so3h (121-65-3) FeDB 99 67 OH Φ so3h (98-67-9) FeHB 96 38 0 so3h (2-04-5) FeBPA 93 41 so3h (85-48-3) FelQA 96 53

各式磺酸鐵鹽名稱如下,FeCS名稱為樟腦磺酸鐵鹽; FeNS名稱為萘磺酸鐵鹽;FeDBS名稱為二曱基苯磺酸鐵鹽 ;FeAT名稱為蒽磺酸鐵鹽;FeMNS名稱為2甲基-4硝基苯磺 酸鐵鹽;FeDB名稱為4-12烷基苯磺酸鐵鹽;FeHB名稱為4-羥基苯磺酸鐵鹽;FeBPA名稱為二苯基-4-磺酸鐵鹽;FelQA -15 - 201217450 名稱為喹琳-8 -續酸鐵鹽。 此外’本發明亦提供一種應用於高電壓固態電容的上 述續酸鐵鹽氧化劑之製造方法,其具體步驟包含提供上述 各式磺酸鐵鹽氧化劑的方法。 以 實施例2固態電容製作 將蝕刻陽極鋁箔與陰極鋁箔分別釘上導針,在兩電極 中間以隔離紙隔開,並將兩電極與隔離紙進行捲繞,最後 以膠γ固定,此元件稱之為素子⑷ement)。素子先於 己一酸二銨水溶液中施加5〇v電壓進行氧化處理該素子表 面,使表面形成介電層。接著在12〇=下烘乾3〇分鐘,並在 2 5 0 C將隔離紙進行碳化,冷卻後備用。 將上述各式磺酸鐵鹽氧化劑配製成1M甲醇溶液,在其 他實施例中,溶劑可為具有1至10個碳原子之醇類,例如乙 醇、丙醇、異丙醇、或正丁醇。取1〇mL上述溶液,並降溫 到〇 C (或〇 c以下),在低溫下加入〗丨8克ED〇T,形成電解 質組成物。 當磺酸鐵鹽氧化劑與EDOT攪拌均勻後,將上述處理過 之素子於此電解質組成物溶液中進行含浸,含浸時的溫度 乾圍為下列溫度範圍-20°C至-10°C、-lOt至-5〇C、-5°C至 10 c、5°C 至 25°C、10t:至 50°C、15°C 至 50°C、20°C 至 45 °C、25°C 至 35°C、35°C 至 50°C、45°C 至 65。(:、45°C 至 80°C 、5〇°C 至 115°C、65°C 至 120°C、8〇t 至 115°C、115°C 至 150 C ’或是上述任意溫度範圍之組合,例如_2〇。(:至-10°C、-10 C 至-5°C、-5°C 至 1(TC、1〇。(:至 50°C ' 50°C 至 115°C、115 201217450 。(:至150°C的梯度溫度範圍的組合。換言之,即是_2〇。(:至 15 0 C之間的梯度溫度範圍組合。在此電解質組成物溶液中 ,磺酸鐵鹽氧化劑的重量百分比濃度範圍為下列濃度範圍 中 5%至 40%、10〇/〇至 75%、12%至 5 5%、18%至 74%、25%至 48%、35%至 79% ' 5%至 80%、7%至 71%、28%至 68%、22% 至72°/。及65¼至76%中選其一。此外磺酸鐵鹽氧化劑與該導 電高分子之莫爾比範圍為下列範圍中5:1至0.5:1、4.5:1至 0.5:2、4.7:1 至 0.5 :1.5、4.8:1 至 0.6:1、4.9:1 至 0.3:1.5、4.1:1The names of various sulfonic acid iron salts are as follows. The FeCS name is iron salt of camphorsulfonate; the FeNS name is iron salt of naphthalenesulfonate; the name of FeDBS is iron salt of dimercaptobenzenesulfonate; the name of FeAT is iron salt of sulfonate; the name of FeMNS Is 2 methyl-4 nitrobenzenesulfonic acid iron salt; FeDB name is 4-12 alkylbenzenesulfonic acid iron salt; FeHB name is 4-hydroxybenzenesulfonic acid iron salt; FeBPA name is diphenyl-4-sulfonate Acid iron salt; FelQA -15 - 201217450 The name is quinoline-8 - continuous acid iron salt. Further, the present invention also provides a method for producing the above-described acid-reacting iron salt oxidizing agent applied to a high-voltage solid capacitor, the specific step of which comprises the method of providing the above-mentioned various sulfonic acid iron salt oxidizing agents. The etched anode aluminum foil and the cathode aluminum foil were respectively pinned to the guide pins by the solid capacitor of Example 2, separated by the separation paper between the two electrodes, and the two electrodes were wound with the release paper, and finally fixed by the glue γ. It is the prime (4) ement). The element is oxidized to a surface of the element by applying a voltage of 5 〇 v to the aqueous solution of diammonium monophosphate to form a dielectric layer on the surface. Then, it was dried at 12 Torr = 3 minutes, and the separator paper was carbonized at 250 ° C, and cooled for use. The above various sulfonic acid iron salt oxidizing agents are formulated into a 1 M methanol solution. In other embodiments, the solvent may be an alcohol having 1 to 10 carbon atoms, such as ethanol, propanol, isopropanol, or n-butanol. . Take 1 〇mL of the above solution, and cool to 〇 C (or 〇 c below), and add 克 8 g ED 〇 T at low temperature to form an electrolyte composition. After the sulfonic acid iron salt oxidizing agent and the EDOT are uniformly stirred, the above-mentioned treated element is impregnated in the electrolyte composition solution, and the temperature dryness in the impregnation is the following temperature range -20 ° C to -10 ° C, -lOt To -5〇C, -5°C to 10c, 5°C to 25°C, 10t: to 50°C, 15°C to 50°C, 20°C to 45°C, 25°C to 35 °C, 35°C to 50°C, 45°C to 65°. (:, 45 ° C to 80 ° C, 5 ° ° C to 115 ° C, 65 ° C to 120 ° C, 8 〇 t to 115 ° C, 115 ° C to 150 C ' or any of the above temperature ranges Combination, for example _2〇. (: to -10 ° C, -10 C to -5 ° C, -5 ° C to 1 (TC, 1 〇. (: to 50 ° C ' 50 ° C to 115 ° C , 115 201217450. (: combination of gradient temperature range up to 150 ° C. In other words, it is _2 〇. (: combination of gradient temperature range between 15 ° C. In this electrolyte composition solution, iron sulfonate The concentration percentage of the salt oxidant ranges from 5% to 40%, 10〇/〇 to 75%, 12% to 55%, 18% to 74%, 25% to 48%, 35% to 79% in the following concentration ranges. '5% to 80%, 7% to 71%, 28% to 68%, 22% to 72°/. and 651⁄4 to 76%. In addition, the sulfonic acid iron salt oxidant and the conductive polymer Moir The ratio ranges from 5:1 to 0.5:1, 4.5:1 to 0.5:2, 4.7:1 to 0.5:1.5, 4.8:1 to 0.6:1, 4.9:1 to 0.3:1.5, 4.1:1

至0.8:1、3.8:1至2.1:1及3.2:1至1.8:1選其一。相對應而言, 導電高分子的濃度範圍為下列範圍中0.3M至2M、0.3.2M至 1·8M、0·3 5M至2.5M、0.29M至2.2M、0·21M至1.5M、0.6M 至 1.2M、1.3M 至 1.7M、1.1M 至 1.9M 及 0.7M 至 1.1M 中選其 一。由上述含浸溫度範圍、磺酸鐵鹽氧化劑的重量百分比 濃度範圍、磺酸鐵鹽氧化劑與該導電高分子之莫爾比範圍 及導電高分子的濃度範圍等參數相互影響下,電容素子的 含浸時間較佳為5分鐘至300分鐘之間。 含浸完成後在40°C反應30分鐘,並以溫度60°C至200 °C範圍烘乾1小時,之後直接供給不同電壓直到電壓崩潰。 該崩潰電壓即為其耐電壓,不同結構其耐電壓結果如表二 所示。每一種鐵鹽氧化劑均製作三顆電容,並量測其特性 。在此實施例中’固態電解質組成物包含導電高分子與實 知例1中的各式績酸鐵鹽氧化劑。具體而言,導電高分子可 為3,4-乙烯二氧噻吩、苯胺、吡咯(pyrr〇ie)或其衍生物。此 外’本發明亦提供一種上述固態電解質組成物之製造方法 -17- 201217450 以應用於高電壓固態電,其具體步驟包含混合一種上述各 式導電高分子(較佳為乙烯二氧噻吩)與一種上述各式磺酸 鐵鹽氧化劑(較佳為蒽磺酸鐵鹽)的方法。Choose one from 0.8:1, 3.8:1 to 2.1:1, and 3.2:1 to 1.8:1. Correspondingly, the concentration of the conductive polymer ranges from 0.3M to 2M, 0.3.2M to 1.8M, 0·3 5M to 2.5M, 0.29M to 2.2M, 0·21M to 1.5M, and 0.6 in the following ranges. Choose one of M to 1.2M, 1.3M to 1.7M, 1.1M to 1.9M, and 0.7M to 1.1M. The impregnation time of the capacitor element is affected by the above impregnation temperature range, the concentration range of the weight percentage of the sulfonic acid iron salt oxidant, the molar ratio of the sulfonic acid iron salt oxidant to the Mobi ratio of the conductive polymer, and the concentration range of the conductive polymer. It is preferably between 5 minutes and 300 minutes. After the impregnation was completed, the reaction was carried out at 40 ° C for 30 minutes, and dried at a temperature of 60 ° C to 200 ° C for 1 hour, after which different voltages were directly supplied until the voltage collapsed. The breakdown voltage is its withstand voltage, and the withstand voltage results of different structures are shown in Table 2. Each of the iron salt oxidants is made up of three capacitors and their characteristics are measured. In this embodiment, the solid electrolyte composition contains a conductive polymer and various types of acid salt iron oxidizing agents in the known example 1. Specifically, the conductive polymer may be 3,4-ethylenedioxythiophene, aniline, pyrr〇ie or a derivative thereof. In addition, the present invention also provides a method for producing a solid electrolyte composition as described above, which is applied to a high-voltage solid-state electricity, the specific step of which comprises mixing a plurality of the above-mentioned conductive polymers (preferably ethylene dioxythiophene) with a kind A method of the above various sulfonic acid iron salt oxidizing agents, preferably iron sulfonate sulfonate.

表二由不同結構鐵鹽氧化劑所得之固態電容耐電壓 測試結果 鐵鹽氧化劑代號 No 耐電壓(V) FeCS 1 28 2 23 3 25 FeDBS 4 10 5 12 6 12 FeNS 7 ^40 8 ^40 9 ^40 FeAT 10 ^40 11 ^40 12 ^40 FeMNS 13 18 14 16 15 16 FeDB 16 24 17 25 18 26 FeHB 19 22 20 23 -18- 201217450 21 23 FeBPA 22 28 23 29 24 28 FelQA 25 25 26 24 27 26Table 2: Solid-state capacitance withstand voltage test results obtained from different structural iron salt oxidants. Iron salt oxidant code No. withstand voltage (V) FeCS 1 28 2 23 3 25 FeDBS 4 10 5 12 6 12 FeNS 7 ^40 8 ^40 9 ^40 FeAT 10 ^40 11 ^40 12 ^40 FeMNS 13 18 14 16 15 16 FeDB 16 24 17 25 18 26 FeHB 19 22 20 23 -18- 201217450 21 23 FeBPA 22 28 23 29 24 28 FelQA 25 25 26 24 27 26

若電容特性通過^ 40V耐電壓測試之電容,將進行漏電 流(LC)、電容值(Cs)、能耗係數(DF)以及等相串聯電阻(ESR) 等電容特性的量測,其結果整理於表三。 表三FeNS及FeAT電容特性結果 \規 LC(/zA) Cs(^F) DF(%) ESR(mQ) 鐵鹽氧化劑代號 V N〇\ <70 9〜10 <6.3 <75 7 1 9.535 1.10 31.09 FeNS 8 28 9.627 1.07 32.04 9 2 9.485 1.11 35.75 10 2 9.515 1.22 19.10 FeAT 11 1 9.931 1.10 19.40 12 2 9.913 1.14 18.60If the capacitance characteristic passes the capacitance of the 40V withstand voltage test, the capacitance characteristics such as leakage current (LC), capacitance value (Cs), energy consumption coefficient (DF), and isophase series resistance (ESR) will be measured. In Table 3. Table 3 FeNS and FeAT Capacitance Characteristics Results\Regulation LC(/zA) Cs(^F) DF(%) ESR(mQ) Iron salt oxidant code VN〇\ <70 9~10 <6.3 <75 7 1 9.535 1.10 31.09 FeNS 8 28 9.627 1.07 32.04 9 2 9.485 1.11 35.75 10 2 9.515 1.22 19.10 FeAT 11 1 9.931 1.10 19.40 12 2 9.913 1.14 18.60

從實施例數據中可發現,使用不同結構鐵鹽氧化劑影 響耐電壓特性很大。若使用萘環(FeNS)或蒽環(FeAT)磺酸 結構分子,其耐電壓可達40 V以上。除了耐電壓高的效果, 其漏電流、電容值、能耗係數以及等相串聯電阻的表現也 201217450 符合產品的規格。μμ -r .^ 因此,可直接應用於現階段固態電容設 備的生產。 tb較例1 #統鐵鹽氧化劑於固態電容财電壓測試 實施方式請參考實施例2。其中鐵鹽氧化劑使用對甲苯 橫酸鐵(FepTS),其餘做法與實施例2相同。耐電壓測試結 果如表四。 表四對由甲苯磺酸鐵所製備之固態電容進行耐電壓 測試結果 鐵鹽氧化劑 No 耐電壓(V) 對甲苯磺酸鐵 FepTS 28 27 29 28 30 —25_____ 在如表四所顯示之比較例數據中,可以發現現階段使 用之對甲苯磺酸鐵(FepTS)其耐電壓仍無法達到高電壓 4〇V)之需求。 本發明之技術内容及技術特點已揭示如上,然而熟悉 本項技術之人士仍可能基於本發明之教示及揭示而作種種 不背離本發明精神之替換及修飾。因此,本發明之保護範 圍應不限於實施例所揭示者,而應包括各種不背離本發明 之替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 益 【主要元件符號說明】 無 •20·It can be seen from the data of the examples that the use of different structural iron salt oxidants affects the withstand voltage characteristics. If a naphthalene ring (FeNS) or an anthracene ring (FeAT) sulfonic acid structural molecule is used, the withstand voltage can reach 40 V or more. In addition to the high voltage withstand voltage, its leakage current, capacitance value, energy consumption coefficient and the performance of the isophase series resistor are also 201217450. Μμ -r .^ Therefore, it can be directly applied to the production of solid-state capacitor devices at this stage. Tb is compared with the example 1#. The iron oxide oxidant is tested on the solid capacitor voltage. For the implementation, please refer to the embodiment 2. The iron salt oxidant used was p-toluic acid iron (FepTS), and the rest was the same as in Example 2. The withstand voltage test results are shown in Table 4. Table 4 for the withstand voltage test results of solid capacitors prepared from iron toluenesulfonate. Iron salt oxidizer No withstand voltage (V) p-toluenesulfonate FepTS 28 27 29 28 30 — 25_____ In the comparative data shown in Table 4 In the present, it can be found that the use of iron p-toluenesulfonate (FepTS) at this stage is still unable to reach a high voltage of 4 〇V). The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention is not limited by the scope of the invention, and the invention is intended to cover various alternatives and modifications. [Simple description of the diagram] Benefits [Main component symbol description] None • 20·

Claims (1)

201217450 七、申請專利範圍: 1. 一種用於形成固態電容的氧化劑,包含: 一磺酸鐵鹽,其中該磺酸鐵鹽係由一三價鐵離子與至 少一有機磺酸離子所構成之離子化合物,該有機磺酸離 子係具有式1、式2、式3、式4或式5所示之結構201217450 VII. Patent Application Range: 1. An oxidant for forming a solid capacitor, comprising: an iron sulfonate salt, wherein the sulfonic acid iron salt is an ion composed of a trivalent iron ion and at least one organic sulfonic acid ion. a compound having a structure represented by Formula 1, Formula 2, Formula 3, Formula 4 or Formula 5 R23 R24R23 R24 k11 SO 3 、R 15K11 SO 3 , R 15 SO^ R27 式1 R33 R34 式2 R3V^r^^R35 R31 N R36SO^ R27 Type 1 R33 R34 Type 2 R3V^r^^R35 R31 N R36 SO 3SO 3 R25、R26、R27、R31、R32、R33、R34 ' R35、R36、R41、 21 201217450 43 玟44、R45、R46、R”、、R52 及 =系各自獨立並係為H、Cl•基、%醋基、c_環 :土、确基、韻基、㈣、或芳香基;且當該有機續 酉文離子係為式1之結構, D ^ 〇傅Kl3為曱基時,Rm、R12、R14及 RlS中至少一者不為H。 2.如申請專利範圍第1項所述之用於形成固態電容的氧化 .廿丄 1R25, R26, R27, R31, R32, R33, R34 ' R35, R36, R41, 21 201217450 43 玟44, R45, R46, R", R52 and = are each independently H, Cl• base, % a vinegar group, a c_ring: a soil, a confirming group, a rhyme group, a (four), or an aromatic group; and when the organic hydrazine ion is a structure of the formula 1, when D ^ 〇 Fu Kl3 is a fluorenyl group, Rm, R12, At least one of R14 and RlS is not H. 2. Oxidation for forming a solid capacitor as described in claim 1 of the patent application. 申明專利範圍第1項所述之用於形成固態電容的氧化 齊有機磺酸離子之結構係為The structure of the oxidized homogeneous sulfonic acid ion for forming a solid capacitor according to the first aspect of the patent scope is 如申明專利範圍第1項所述之用於形成固態電容的氧化 劑’其中該有機續酸離子之結構係為 .如申請專利範圍第1項所述之用於形成固態電容的氧化 22 201217450 劑,其中該有機磺酸離子之結構係為 SO 3 6. 如申請專利範圍第1項所述之用於形成固態電容的氧化 劑,其中該有機磺酸離子之結構係為 no2 so; 〇 7. 如申請專利範圍第1項所述之用於形成固態電容的氧化 劑,其中該有機磺酸離子之結構係為 Ci2 H25 S〇3 ο 8·如申請專利範圍第1項所述用於形成固態電容的氧化 劑,其中該有機磺酸離子之結構係為 0Η SO 3 ο 23 201217450 9·如申請專利範圍第i項所述之用於形成固態電容的氧化 中該有機磺酸離子之結構係為 so; 〇An oxidizing agent for forming a solid capacitor according to the first aspect of the invention, wherein the organic acid ion is structured as the oxidation 22 201217450 agent for forming a solid capacitor according to claim 1 of the patent application, The structure of the organic sulfonic acid ion is SO 3 6. The oxidizing agent for forming a solid capacitor according to claim 1, wherein the structure of the organic sulfonic acid ion is no2 so; 〇 7. The oxidizing agent for forming a solid capacitor according to the first aspect of the invention, wherein the organic sulfonic acid ion has a structure of Ci2 H25 S〇3 ο 8 · an oxidizing agent for forming a solid capacitor as described in claim 1 , wherein the structure of the organic sulfonic acid ion is 0 Η SO 3 ο 23 201217450 9 · The structure of the organic sulfonic acid ion in the oxidation for forming a solid capacitor as described in the scope of claim ii is so; 1 〇 ·如申請專利範圍第1項所述之用於形成固態電容的氧化 有機磺酸離子之結構係為 SO; 一種電解質組成物,包含: —溶劑;1 〇 The structure of the oxidized organic sulfonic acid ion for forming a solid capacitor as described in claim 1 is SO; an electrolyte composition comprising: - a solvent; 如申請專利範圍第1項所述之用於形成固態電容的氧 化劑;以及 一導電高分子。 12. 如申請專利範圍第〗丨項所述之電解質組成物,其中該導 電同勿子係為3,4-乙烯二氧噻吩 (3,4-ethylenedioxythiophene)、苯胺、n各(pyrr〇le)。 13. 如申請專利範圍第11項所述之電解質組成物,其中該用 於形成固態電容的氧化劑之重量百分比濃度範圍“ 於5%至80%之間’以該用於形成固態電容的氧化劑及導 24 201217450 電高分子之總重為基準。 ’其中該用 之莫爾比係 14·如申請專利範圍第11項所述之電解質組成物 於形成固態電容的氧化劑與該導電高分子 介於5:1至0.5:1之間。 15.如申請專利範圍第丨丨項所述之電解質組成物,其中該導 電高分子的濃度係介於0.3M至2M之間。An oxidizing agent for forming a solid capacitor as described in claim 1; and a conductive polymer. 12. The electrolyte composition according to the scope of the patent application, wherein the conductive is the 3,4-ethylenedioxythiophene, aniline, and n (pyrr〇le) . 13. The electrolyte composition according to claim 11, wherein the oxidizing agent for forming a solid capacitor has a weight percentage concentration range of "between 5% and 80%" to the oxidizing agent for forming a solid capacitor and Guide 24 201217450 The total weight of the electric polymer is based on the benchmark. 'The Mohrby system used in the above 14 · The electrolyte composition as described in claim 11 of the invention relates to the oxidant forming the solid capacitor and the conductive polymer is between 5 Between 1 and 0.5: 1. 15. The electrolyte composition of claim 2, wherein the concentration of the conductive polymer is between 0.3 M and 2 M. 如申請專利範圍第叫所述之電解質組成物,其中該溶 劑係為具有1至10個碳原子之醇類。 人1 17. —種固態電容製造方法,包含: 形成一介電層於一電容素子之表面; 將該電容素子含浸於申請專利範圍第丨丨項所述之電 解質組成物中; 對吸附於電容素子上之電解質組成物進行一聚合反 應;以及 組裝該電容素子成為一固態電容。 _ 18,如申請專利範圍第17項所述之固態電容製造方法,其中 該電容素子含浸於申請專利範圍第丨丨項所述之電解質組 成物之溫度範圍係介於_2〇。〇至150°C之間。 i9_如申請專利範圍第17項所述之固態電容製造方法,其中 該電容素子含浸於申請專利範圍第丨丨項所述之電解質組 成物之時間係介於5分鐘至3〇〇分鐘之間。 2〇.如申請專利範圍第Π項所述之固態電容製造方法,在完 成該聚合反應後,更包含一對該電容素子進行一烘乾製 程。 25 201217450An electrolyte composition as described in the scope of the patent application, wherein the solvent is an alcohol having 1 to 10 carbon atoms. The method for manufacturing a solid capacitor includes: forming a dielectric layer on a surface of a capacitor element; impregnating the capacitor element with the electrolyte composition described in the scope of claim 2; adsorbing the capacitor The electrolyte composition on the element is subjected to a polymerization reaction; and the capacitor element is assembled to become a solid capacitor. The method of manufacturing a solid capacitor according to claim 17, wherein the capacitor element is impregnated with the electrolyte composition described in the scope of the patent application, wherein the temperature range is _2〇. 〇 to 150 ° C. The method of manufacturing a solid capacitor according to claim 17, wherein the time period in which the capacitor element is impregnated with the electrolyte composition described in the scope of the patent application is between 5 minutes and 3 minutes. . 2. The method of manufacturing a solid capacitor according to the invention of claim 2, further comprising a pair of the capacitors for performing a drying process after the polymerization is completed. 25 201217450 2 1.如申請專利範圍第2 1項所述之固態電容製造方法,其中 該烘乾製程之溫度係介於60°C至200°C之間。 22. —種固態電容,係由申請專利範圍第1 7項所述之固態電 容製造方法所製備而得。 26 201217450 四、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: (無) 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:2. The method of manufacturing a solid capacitor according to claim 2, wherein the temperature of the drying process is between 60 ° C and 200 ° C. 22. A solid capacitor produced by the solid state capacitor manufacturing method described in claim 17 of the patent application. 26 201217450 IV. Designation of representative drawings: (1) The representative representative of the case is: No (2) Brief description of the symbol of the representative figure: (None) 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention. : R44 R45 R46R44 R45 R46 R48 R41 SO3 R49R48 R41 SO3 R49
TW99136650A 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same TWI412553B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99136650A TWI412553B (en) 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same
JP2011199224A JP2012094835A (en) 2010-10-27 2011-09-13 Solid capacitor formation oxidant, electrolyte composition containing the same, solid capacitor, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99136650A TWI412553B (en) 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201217450A true TW201217450A (en) 2012-05-01
TWI412553B TWI412553B (en) 2013-10-21

Family

ID=46387809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99136650A TWI412553B (en) 2010-10-27 2010-10-27 Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2012094835A (en)
TW (1) TWI412553B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506031B (en) * 2014-11-05 2015-11-01 Ind Tech Res Inst Ferric salt oxidant, solid electrolytic capacitor, and method for fabricating the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2134439C (en) * 1992-06-03 2002-12-17 Lawrence W. Shacklette High electrically conductive polyaniline complexes having polar or polar and hydrogen bonding substituents
JP3076259B2 (en) * 1997-03-07 2000-08-14 富山日本電気株式会社 Oxidant solution for synthesis of heat-resistant conductive polymer and method for producing conductive polymer
JPH1187182A (en) * 1997-09-11 1999-03-30 Tdk Corp Organic solid electrolytic capacitor and its manufacture
DE69941050D1 (en) * 1998-05-21 2009-08-13 Showa Denko Kk FIXED ELECTROLYTE CONDENSER AND MANUFACTURING METHOD
JP2000299253A (en) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd Manufacture of capacitor
JP2001044079A (en) * 1999-07-27 2001-02-16 Matsushita Electric Ind Co Ltd Manufacture of capacitor
JP2001110683A (en) * 1999-08-03 2001-04-20 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor
JP3868202B2 (en) * 2000-11-01 2007-01-17 テイカ株式会社 Oxidizing agent for conductive polymer production
JP4035639B2 (en) * 2001-11-08 2008-01-23 日立エーアイシー株式会社 Solid electrolytic capacitor and manufacturing method thereof
TWI283877B (en) * 2002-11-21 2007-07-11 Showa Denko Kk Solid electrolytic capacitor and method for producing the same
JP4475669B2 (en) * 2006-08-14 2010-06-09 ニチコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2008186874A (en) * 2007-01-27 2008-08-14 Nippon Chemicon Corp Solid electrolytic capacitor
JP2009209259A (en) * 2008-03-04 2009-09-17 Nec Tokin Corp Electroconductive polymer and solid electrolytic capacitor using it

Also Published As

Publication number Publication date
TWI412553B (en) 2013-10-21
JP2012094835A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
Edberg et al. Boosting the capacity of all-organic paper supercapacitors using wood derivatives
JP5058389B2 (en) Method for manufacturing wound solid electrolytic capacitor
TWI567130B (en) Conductive polymer composite and preparation and use thereof
JP5745881B2 (en) Solid electrolytic capacitor
TW200539206A (en) Method for making a solid electrolytic capacitor
TWI460203B (en) Electrolyte material formulation, electrolyte material composition formed therefrom and use thereof
JP6154461B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
KR101499289B1 (en) Electrolytic material formulation, electrolytic material polymer formed therefrom and use thereof
TW201217450A (en) Oxidant for fabricating solid capacitor, electrolyte composition employing the same, solid capacitor and method for manufacturing the same
WO2011052237A1 (en) Solid electrolytic capacitor and method for producing same
JP2012191085A (en) Electrolyte composition and ionic liquid
KR20010023348A (en) Electroconductive polymer, Solid electrolytic capacitor and Manufacturing method thereof
TWI465503B (en) Electrolytic material formulation, electrolytic material composition formed therefrom and use thereof
JP7203580B2 (en) Electrode material, manufacturing method thereof, and hybrid capacitor
JP2012028709A (en) Oxidizing agent solution for manufacturing electroconductive polymer, and method for manufacturing solid electrolytic capacitor using the same
JP4204061B2 (en) Oxidizing agent and dopant for conductive polymer synthesis
JP2014225538A (en) Oxidant solution for manufacturing conductive polymer, and method for manufacturing solid electrolytic capacitor by use thereof
JP2014192423A (en) Oxidant solution for conductive polymer production, and method for producing solid electrolytic capacitor by use thereof
JP7072686B2 (en) Conductive polymer materials and their use
JP2012054258A (en) Electrolytic polymerization solution for forming conductive polymer, solid electrolytic capacitor, and method for manufacturing the same
JP2010037466A (en) Electrolytic solution for electropolymerization for forming electroconductive polymer, electroconductive polymer, solid electrolytic capacitor using the same, and method for manufacturing the capacitor
JP2013179292A (en) Oxidant solution for manufacturing electroconductive polymer and method of manufacturing solid electrolytic capacitor using the same
CN102464795A (en) Oxidant for forming solid capacitor, electrolyte composition comprising oxidant, solid capacitor and manufacturing method of solid capacitor
JP6100576B2 (en) Oxidant solution for producing conductive polymer, solid electrolytic capacitor using the same, and method for producing solid electrolytic capacitor
JP2014187222A (en) Method for manufacturing solid electrolytic capacitor