TW201217276A - Deep-sea active concentrated solution for decreasing blood lipid and manufacturing method thereof - Google Patents

Deep-sea active concentrated solution for decreasing blood lipid and manufacturing method thereof Download PDF

Info

Publication number
TW201217276A
TW201217276A TW99137071A TW99137071A TW201217276A TW 201217276 A TW201217276 A TW 201217276A TW 99137071 A TW99137071 A TW 99137071A TW 99137071 A TW99137071 A TW 99137071A TW 201217276 A TW201217276 A TW 201217276A
Authority
TW
Taiwan
Prior art keywords
manufacturing
concentrate
deep
concentration
concentrated liquid
Prior art date
Application number
TW99137071A
Other languages
Chinese (zh)
Other versions
TWI466832B (en
Inventor
Ching-Yuan Chen
Yi-Fa Lu
Zhao-Yang Fu
Original Assignee
Taiwan Yes Deep Ocean Water Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Yes Deep Ocean Water Co Ltd filed Critical Taiwan Yes Deep Ocean Water Co Ltd
Priority to TW99137071A priority Critical patent/TWI466832B/en
Publication of TW201217276A publication Critical patent/TW201217276A/en
Application granted granted Critical
Publication of TWI466832B publication Critical patent/TWI466832B/en

Links

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention discloses a deep-sea active concentrated solution for decreasing blood lipid and a manufacturing method thereof. The manufacturing method comprises following steps. (1) The deep sea water is withdrawn from a predetermined depth under the mean Sea Level. (2) The deep sea water is filtered through a microfiltration (MF) system, a hollow fiber ultrafiltration (UF) system and a seawater reverse osmosis (SWRO) system to obtain the first concentrated solution (1st CS). (3) The 1st CS is further concentrated by the low-temperature vacuum evaporation system to obtain the second concentrated solution (2nd CS). (4) The 2nd CS is to remove calcium sulfate and is centrifuged for obtaining the third concentrated solution (3rd CS) and natural deep-sea salt. (5) The 3rd CS is heated at a predetermined high temperature to precipitate crystalline salt therein thereby obtaining the fourth concentrated solution (4th CS). (6) After cooling, the 4th CS is filtered again by hollow fiber membranes with a predetermined molecular cut-off to remove some constituents and finally obtain the deep-sea active concentrated solution.

Description

201217276 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明是有關於一種濃縮液及其製造方法,特別是有關 於一種用於降低血脂之深層海水濃縮液及其製造方法。 【先前技術】 [0002] 隨著經濟的富裕與生活習慣的改變,慢性病(例如心血管 疾病)的罹患率大為增加。根據行政院衛生署統計顯示’ 近年來心臟疾病(10. 6%)與腦血管疾病(7. 3%) —直分伯 國内十大死因之第二位與第三位,而動脈粥狀硬化 (Atherosclerosis)為導致此些疾病之主要原因。動脈 粥狀硬化之危險因子包括膽.,固·醇濃度過高、低密度脂蛋 白-膽固酵(LDL-C)濃度過高、高密度脂蛋白-膽固酵 (HDL-C)濃度偏低、高血壓及糖尿病等。血脂異常更為動 脈粥狀硬化之元兇,而膽固醇為其重要之指標。血中膽 固醇過高的患者’經臨床之統計分析後得知其發生jk管 硬化的機率非常高。 : ... ·,::··· : ' . !:: .. : [0003] 水是人類生活所必需,日常主要來源是從飲用水、飲料 和含有水的食物(例如水果或湯品)而來。依據水中礦物 質含量多寡’水源有粗分為軟水和硬水兩種’其主要係 決定於飲用水中的妈與鎂含量。研究顯示,水的硬度與 動脈粥狀硬化發生率有相關性。當水質硬度每公升增加 10毫克’則可降低〇, 56%急性心肌梗塞發生率。此外,鎂 攝取缺乏亦與動脈粥狀硬化發生有關。鎂的攝取通常是 經由食物所獲得,而由飲水中獲得較少。然而’比起食 物中的鎂,飲水中的鎂呈現離子態,較易被人體所吸收 099丨37071 表單編號 Α0101 第 4 頁/共 21 頁 0992064652-0 201217276 Ο [0004] [0005] Ο [0006] Ο 099137071 因此,飲用水中若能具有適當之硬度及鎂離子,使得當 人們平日飲水時’就可降低體内血脂濃度,進而減低罹 患心血管疾病之機率,其係為本案申請人所欲達成之目 標。 【發明内容】 有鑑於上述習知技術之問題,本發明之目的就是在提供 一種用於降低血脂之深層海水濃縮液及其製造方法。飲 用者透過每日飲用含有適量本發明之濃縮液之飲用水’ 其血脂濃度則可降低’進而減低罹患心金管疾病之機率 〇 111::。;、’ 根據本發明之目的’係提出一種用於降低血脂之深層海 水濃縮液之製造方法’其包含以下步驟:首先’提供自 海平面一預定深度下之深層海水’依序利用纖維過濾系 統、超過濾系統及海水逆滲透系統過濾深廣海水,使得 到第一濃縮液及純赛本。再者’藉由低溫真空蒸發濃縮 系統濃縮第一濃縮液,則可獲得第二濃縮液及硫酸鈣。 低溫真空蒸發濃縮系統為一循環系統’故第二濃縮液可 持續地於此系統進行濃縮。在濃縮過程中,第二濃縮液 會產生結晶鹽類,故可經由離心方式可取得固體顆粒鹽( 即深海鹽)與第三濃縮液。以一預定高溫(90~12(TC)加 熱第三濃縮液,在加熱過程中,第三濃縮液會持續有結 晶鹽析出’經靜置後’所析出之結晶鹽會沉澱於下層, 進而汲取上清液,取得第四濃縮液。最後,利用具有一 預定孔徑(0· 5~1.5 #m)之過濾膜過濾經冷卻的第四濃 表單編號A0101 第5頁/共21頁 0992064652-0 201217276 縮液,以得到一深層海水濃縮液。 [0007] 其中’深層海水可取自海平面下200至1 500公尺之預定深 度,較佳可為海平面下500至700公尺之預定深度。 [00〇8] 其中’纖維過遽系統之過滤膜孔徑為〇. 1 ~ 1 〇 " m,以過 濾海水中之懸浮物質。超過濾系統之過濾膜孔徑為 〇. 〇 1〜0. 0 5以m,以過濾海水中之小分子微生物。而海 水逆滲透系統之過濾膜孔徑則為〇. 〇〇1 ~〇· 〇〇〇1 ,以 過濾海水中之所有礦物質鹽類。 [00〇9] 其中’深層海水之硬度為6G00…7000 mg/ι、鹽度為 30-40L、鎂濃度為1〇〇〇〜〗500 mg/1及納濃度為 1 0000〜12000 mg/1。第一濃縮液之硬度為 1 0000〜1 3000 mg/1、鹽度為45〜70&、鎂濃度為 2000〜3000 mg/1 及鈉濃度為 15〇〇〇~20〇00 mg/1。第三 濃縮液之硬度為160000~1900〇〇 mg/Ι、鹽度為 200〜250t、鎂濃度為4000Φ〜5〇職〇 hig/l及鈉濃度為 ΙΘΟΟΟ〜25〇〇〇 mg/Ι。深層海水濃嬙舨之硬度為 3800〇〇~420000 mg/Ι、鹽度為3H430t、鎂濃度為 89〇〇〇~11〇〇〇〇 mg/i及鈉濃度為78〇〇~95〇() mg/1。 [0010] 其中,低溫真空蒸發濃縮系統之溫度參數係為50〜70ΐ, 而其真空壓力參數係為10〜20 KPa。 [0011] 此外,本發明進一步提出一種用於降低血脂之深層海水 濃縮液,其係上述步驟所製得,此深層海水濃縮液之硬 度為380000~420000 mg/i、鹽度為38〇〜43〇1、鎂濃度 為 89000 〜1 1 0000 mg/i 及鈉濃度為 78〇〇〜95〇〇 mg/1。 099137071 表單編號A0101 第6頁/共21頁 0992064652-0 201217276 [0012] [0013] [0014] Ο [0015] [0016] Ο [0017] 且本發明之深層海水濃縮液富含多種礦物質其包括鈣 、鉀、鐵、鋅、鉬、錳、鋰、鳃、銅、矽等微量元素。 承上所述’本發明之用於降低端之深層海水濃縮液及 其製造方法,可具有一或多個下述優點: (1)藉由每日飲用含有本發明之濃縮液之飲用水可使飲 用者降低血脂濃度,進而可減低罹患心血管疾病之機率 (2) 本發明之》辰縮液含多種稀有之礦物質,例如鐵、鋅 、鉬、錳、鋰、锶、銅、矽等微量元素,其可維持人體 新陳代謝。 (3) 每日飲用含有本發明之濃縮液之飲用水,不但不影響 飲用者之肝腎功能,且可降低體内氧化壓力指標:硫代 巴比妥酸反應物質(TBARS)。 【實施方式】 實施例1 :本發明之深層海水濃縮液之製造方法 請參閱第1圖,其係為本發明之深廉海水濃縮液之製造方 法之流程圖,其步驟包含如下:步驟S11,提供自海平面 一預定深度下之深層海水。步驟S12,依序利用纖維過滤 系統、超過濾系統及海水逆滲透系統過濾深層海水,使 得到第一濃縮液及純淨水。步驟S13,藉由低溫真空蒸發 濃縮系統濃縮第一濃縮液,則可獲得第二濃縮液及硫酸 妈(石膏)。因低溫真空蒸發濃縮系統係為一循環系统’ 故可藉由其系統持續地濃縮第二濃縮液。步驟S14,第二 濃縮液在濃縮過程中會產生結晶鹽類,可經由離心方式 099137071 表單編號Α0101 第 7黃/共21頁 0992064652-0 201217276 可取得固體顆粒鹽類與第三濃縮液。步驟S15,以一預定 〜120C)加熱第三濃縮液,在加熱過程中會持續 有結晶鹽析出。步驟S16,靜置已加熱之第三濃縮液,使 結晶鹽沉澱於下層,並汲取其上清液,取得第四濃縮液 。步驟S17,冷卻第四濃縮液。步驟S18,利用具有一預 定孔徑(0· 5〜1. 5 //in)之過濾膜過濾第四濃縮液,以得 到一深層海水濃縮液。 [0018] [0019] 上述之深層海水可取自海平面下2〇〇至15〇〇公尺之預定深 度的海水,較佳可為海平面下5〇〇至7〇〇公尺之預定深度 之海水。於步驟12中,線維過濾系統、超過濾系統及海 水逆滲透系統之過濾膜孔徑可分別為〇. 1〜1() 、 〇.〇1~〇.〇5//11]及〇.〇〇1〜〇.〇〇〇101[1,以分別過濾海 水中之懸浮物質、小分子微生物及海水中之鹽類。 每一步驟所得之濃縮液之硬度、鹽度、鎂濃度及鈉濃度 皆不同。其中,從海平面下所取得之深層海水(未加工) 之硬度為6000~7000 mg/l·、鹽度為3〇〜401)、鎂濃度為 1 000〜1500 mg/1及納濃度身|⑽〇〇〜12000 mg/i。第一 濃縮液之硬度為1 0000〜1 3000 mg/l、鹽度為45~701、 錢濃度為2000〜3000 mg/1及鈉濃度為1 5000~20000 mg/1。第三濃縮液之硬度為160000〜19〇〇〇〇 mg/1、鹽 度為200~250!ϊ〇、鎮濃度為40000〜50000 mg/1及鈉濃度 為19000〜25000 mg/1。本發明之深層海水濃縮液之硬 度則為380000〜4200 00 mg/1、鹽度為380〜430t、鎂濃 度為89000〜1 1 0000 mg/l及鈉濃度為7800〜9500 mg/1 099137071 表單編號A0101 第8頁/共21頁 0992064652-0 201217276 [0020] 於步驟si 3中’低溫真空蒸發濃㈣統係為—循環系統, =溫度錄為50〜7(TC,主要係為了模擬天然曰晒。而低 咖真工蒸發浪縮系統之真空壓力參數係為〗〇〜2 〇 Kpa。 於循環㈣財’可擠壓出硫_(石t),並將硫酸妈 儲存於—儲存槽中,然後再進行離心之步驟(步驟⑷。 離心之步驟主要可將料鹽收集下來,因本發明係利用 低溫濃縮循環’故於深海針亦含有多種義質及微量 几素’並非與難-般縣有氣㈣。此外,較低溫度 Ο [0021] [0022] 可確保深海鹽㈣晶品質,使錄晶雖以、較為一致 〇 實施例2 :本發明之深層海水’濃縮液 本發明之深層海水濃縮液係由實施例1之製造方法所製得 ’故本發明之深層海水濃縮液之硬度為380000~420000 mg/卜鹽度為380〜4301、鎂濃度為89000〜1 1 0000 mg/ 1及納濃度為7800~9500 mg/1。且本發名之深層海水濃 縮液含多種礦物質,其包括鈉(Na)、鈣(Ca)、鉀(K)、 ❹ 鐵(Fe)、鋅(Zn)、鉬(Mo)、錳(Μη)、鋰(Li)、鋰(Sr) 、銅(Cu)、矽(Si)等〇因此,本發明之深層海水濃縮液 亦可應用於食品加工、農業發展、生技製藥、化妝保養 品製造、健康食品之開發、飲料生產等多種目標產業上 ,創造更多的附加價值。 [0023] [0024] 實施例3 :較佳實施例 本實施例係為證實本發明之深層海水濃縮液具有降低血 脂之功效,故將本發明之深層海水濃縮液介入高血脂受 099137071 表單編號Α01(Π 第9頁/共21頁 0992064652-0 201217276 試者,並作一系列血液生化檢測。 [0025] 受試者篩選 [0026] 受試者為來自北臺灣,並篩選高血脂之受試者42位,為 期六週試驗。受試者之條件為30至65歲,血液生化值為 總膽固醇> 200 mg/dl及低密度脂蛋白膽固醇(LDL-C) >130 mg/dl,無服用會影響血脂的保健食品(例如植醇 、紅麴、深海魚油等)及影響血脂藥物(以無使用藥物者 為佳),無心血管疾病、糖尿病、慢性發炎疾病、肝腎疾 病、特殊疾病(如曱狀腺低下)等之病史,無極端運動習 慣及暴飲暴食習慣(實驗期間避免應酬),飲酒小於25 g/ 天(即小於兩份酒精當量)。於試驗期間,所有受試者之 生活作息一律如常。篩選後之受試者,經告知實驗目的 與詳細流程,徵求受試者個人同意並簽署同意書後,進 入本試驗。 [0027] 本發明之深層海水濃縮液之給予方式 [0028] 採雙盲試驗,將受試者分為三組:控制組、實驗組及對 照組。控制組之飲用水為逆滲透(RO)水,實驗組之飲用 水為添加本發明之深層海水濃縮液之高礦物質水(硬度 1 400),而對照組為以化學氣化鎂(MgCl2)劑調和成硬度 1 400之飲用水。三組之飲用水皆經加熱殺菌、充填製成 瓶裝水。實驗組和對照組之受試者,其每天攝取的鎂約 相當於衛生署1. 0倍建議攝取量(RDA)劑量,且每天皆喝 3瓶水,每瓶為350 ml,共1050 ml。 [0029] 試驗設計 0992064652-0 099137071 表單編號A0101 第10頁/共21頁 201217276 [0030] [0031] Ο [0032] [0033] Ο 42位受試者 3、6週抽血 刀成三組後,試驗期間共為六週,第〇、 有血液皆需離,恢復期為2週,且於第8週再插血一次。所 礦物質濃度、Μ其血清’分析肝功能、腎功能、血清 &清脂質濃度及抗氧化分析。 以下试驗結果 並以SAS 9 i值以平均值Uean)±標準差(SD)表示, 8週,三&的.3统計軟體進行分析。試驗的第〇、3、6及 ANOVA)比較次值&以雙因子變異數分析(two-way 驗a>unca/s和時間兩個主因子,再以鄧肯氏多變域剛 性比較,當S mUltiple range_teSt)進行組間差異 〇5時’達顯著差異。血鎂濃度和血清膽 固酵的相關,f4; 檢疋則以皮爾森相關係數(pearson,s correlation + 、 ' est)進行分析。此外,,以下表格中所伊 示之abc表示文4 不 合組於第0、3、6及8週間文差異,而xy表 示於每週各組間之差異。 本發明之沐層海水濃縮液對脂蛋白脂質濃度之影響 丨:丨丨丨"丨 i 實驗組之$試者料伽時間之增加,相對於其他兩組 之父=者赢/月膽固醇有顯著修低之效果。而相對於第〇 週’實驗組之受試者總膽固醇濃度在第3週及第6週有降 低之現象,可分別降低7. 9%及13. 7%。此外,實驗組之 受試者’隨著飲用時間的增加,低密度脂蛋白-膽固醇 (LDL-C)有顯著減少,在第3週及第6週分別較第〇週者降 低11. 7%及15. 4%。各組之膽固醇及LDL-C之詳細數據如 表1所示。 表1 099137071 表單編號A0101 第11頁/共21頁 0992064652-0 [0034] 201217276 [0035] 第0週 第3週 膽固醇 (rag/dl) 控制組 241.2土 23. 3a 235. 0土 25. 3ab 實驗組 243. 9 + 15. 5a 224. 7士 17. 3b 對照組 242.0士 27. 9a 239. 9士 36. la LDL-C (rag/dl) . " ii,— 控制組 143.8士 26. 0ab 140.9土 25. 4bc 實驗組 154.4+ 26. 7a 136. 4士 23. 4b 對照組 156. 1士 33. 6a 152. 4士 31. iab .. :::::: 第6¾ 第8週201217276 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a concentrated liquid and a method for producing the same, and more particularly to a deep seawater concentrate for reducing blood fat and a method for producing the same. [Prior Art] [0002] With the economic affluence and changes in living habits, the prevalence of chronic diseases such as cardiovascular diseases has increased significantly. According to the statistics of the Department of Health of the Executive Yuan, 'heart disease (10.6%) and cerebrovascular disease (7. 3%) in recent years - directly ranked second and third in the top ten causes of death in Bo, and atherosclerosis Atherosclerosis is the leading cause of these diseases. Risk factors for atherosclerosis include gallbladder, excessive concentration of solid and alcohol, low concentration of low-density lipoprotein-cholesterin (LDL-C), and high density lipoprotein-cholesterase (HDL-C) concentration. Low, high blood pressure and diabetes. Dyslipidemia is the culprit of atherosclerosis, and cholesterol is an important indicator. Patients with high blood cholesterol levels have been clinically analyzed and found to have a very high chance of developing jk tube sclerosis. : ... ·,::··· : ' . !:: .. : [0003] Water is essential for human life, and the main daily source is from drinking water, beverages and foods containing water (eg fruit or soup) ) Come. According to the amount of minerals in the water, 'the water source is roughly divided into soft water and hard water.' The main reason is determined by the mother and magnesium content in drinking water. Studies have shown that the hardness of water is correlated with the incidence of atherosclerosis. When the water hardness increases by 10 mg per liter, it can reduce the incidence of sputum and 56% of acute myocardial infarction. In addition, the lack of magnesium intake is also associated with the development of atherosclerosis. Magnesium intake is usually obtained through food and less from drinking water. However, compared to magnesium in food, magnesium in drinking water is in an ionic state and is easily absorbed by the human body. 099丨37071 Form No. 1010101 Page 4 of 21 0992064652-0 201217276 Ο [0004] [0005] Ο [0006 ] Ο 099137071 Therefore, if the drinking water has the appropriate hardness and magnesium ions, when people drink water on a regular basis, it can reduce the blood lipid concentration in the body, thereby reducing the risk of cardiovascular disease. The goal achieved. SUMMARY OF THE INVENTION In view of the above problems of the prior art, it is an object of the present invention to provide a deep seawater concentrate for reducing blood fat and a method of manufacturing the same. Drinkers can reduce the risk of heart disease by reducing the concentration of blood lipids in drinking water containing the right amount of the concentrate of the present invention. 〇 111::. ;, according to the purpose of the present invention, a method for producing a deep seawater concentrate for lowering blood lipids is proposed, which comprises the steps of: first providing a deep-sea seawater at a predetermined depth from sea level. The ultra-filtration system and the seawater reverse osmosis system filter the deep sea water to the first concentrate and the pure match. Further, the second concentrated liquid and calcium sulfate can be obtained by concentrating the first concentrated liquid by a low-temperature vacuum evaporation concentration system. The low temperature vacuum evaporation concentration system is a one-cycle system so that the second concentrate can be continuously concentrated in this system. In the concentration process, the second concentrate produces crystalline salts, so that the solid particulate salt (i.e., deep sea salt) and the third concentrate can be obtained by centrifugation. The crystalline salt precipitated at a predetermined high temperature (90~12 (TC) is heated in the third concentrated liquid, and the third concentrated liquid will continue to precipitate after the crystal salt is precipitated in the lower layer, and then precipitated in the lower layer. The supernatant is taken to obtain a fourth concentrate. Finally, the filtered fourth membrane is used to filter the cooled fourth rich form number A0101, page 5 of 2192064652-0 201217276, using a filter membrane having a predetermined pore size (0·5~1.5 #m). The liquid is condensed to obtain a deep seawater concentrate. [0007] wherein the 'deep seawater may be taken from a predetermined depth of 200 to 1,500 meters below sea level, preferably at a predetermined depth of 500 to 700 meters below sea level. [00〇8] wherein the pore size of the filter membrane of the fiber-passing system is 〇. 1 ~ 1 〇" m to filter the suspended matter in seawater. The pore size of the filtration membrane of the ultrafiltration system is 〇. 〇1~0. 0 5 is used to filter small-molecule microorganisms in seawater, while the pore size of the filtration membrane of seawater reverse osmosis system is 〇. 〇〇1 ~〇· 〇〇〇1 to filter all mineral salts in seawater. 〇9] where 'the hardness of deep sea water is 6G00...7000 mg/ι, and the salinity is 30-40 L, magnesium concentration is 1〇〇〇~〗 500 mg / 1 and the nano concentration is 1 0000~12000 mg / 1. The hardness of the first concentrate is 1 0000~1 3000 mg / 1, the salinity is 45~70 & The magnesium concentration is 2000~3000 mg/1 and the sodium concentration is 15〇〇〇~20〇00 mg/1. The hardness of the third concentrated liquid is 160,000~1900〇〇mg/Ι, the salinity is 200~250t, magnesium The concentration is 4000 Φ~5 〇Hig/l and the sodium concentration is ΙΘΟΟΟ~25〇〇〇mg/Ι. The hardness of deep seawater is 3800〇〇~420,000 mg/Ι, the salinity is 3H430t, and the magnesium concentration is 89〇〇〇~11〇〇〇〇mg/i and sodium concentration is 78〇〇~95〇() mg/1. [0010] wherein the temperature parameter of the low-temperature vacuum evaporation concentration system is 50~70ΐ, and The vacuum pressure parameter is 10 to 20 KPa. [0011] Further, the present invention further provides a deep seawater concentrate for reducing blood fat, which is obtained by the above steps, and the hardness of the deep seawater concentrate is 380,000 to 420,000 mg. /i, salinity is 38〇~43〇1, magnesium concentration is 8900~1 1 0000 mg/i and sodium concentration is 78〇〇~95〇〇mg/1. 099137071 Form No. A0101 Page 6/ 21 pages 0992064652-0 201217276 [0012] [0014] [0016] [0017] The deep seawater concentrate of the present invention is rich in various minerals including calcium, potassium, iron, zinc, molybdenum Trace elements such as manganese, lithium, strontium, copper and strontium. The above-mentioned deep seawater concentrate for reducing the end of the present invention and the method for producing the same may have one or more of the following advantages: (1) Drinking drinking water containing the concentrated liquid of the present invention by daily consumption The drinker lowers the blood lipid concentration, thereby reducing the risk of suffering from cardiovascular disease. (2) The invention has a variety of rare minerals such as iron, zinc, molybdenum, manganese, lithium, strontium, copper, strontium, etc. Trace elements, which maintain the body's metabolism. (3) Drinking drinking water containing the concentrated liquid of the present invention daily not only does not affect the liver and kidney function of the drinker, but also reduces the oxidative stress index in the body: thiobarbituric acid reactive substance (TBARS). [Embodiment] Embodiment 1 : A method for producing a deep seawater concentrate according to the present invention, which is a flowchart of a method for producing a deep seawater concentrate according to the present invention, the steps of which include the following steps: Step S11, Provides deep seawater at a predetermined depth from sea level. In step S12, the deep seawater is sequentially filtered by the fiber filtration system, the ultrafiltration system and the seawater reverse osmosis system to obtain the first concentrated liquid and the purified water. In step S13, the second concentrated liquid and the sulfuric acid mother (gypsum) are obtained by concentrating the first concentrated liquid by a low-temperature vacuum evaporation concentration system. Since the low temperature vacuum evaporation concentration system is a one-cycle system, the second concentrate can be continuously concentrated by its system. In step S14, the second concentrated liquid will produce a crystalline salt during the concentration process, and the solid particle salt and the third concentrated liquid can be obtained by centrifugation method 099137071 Form No. 1010101 7th Yellow/Total 21 page 0992064652-0 201217276. In step S15, the third concentrate is heated at a predetermined temperature of -120 C), and crystal salt is continuously precipitated during the heating. In step S16, the heated third concentrated liquid is allowed to stand, the crystalline salt is precipitated in the lower layer, and the supernatant is extracted to obtain a fourth concentrated liquid. In step S17, the fourth concentrate is cooled. In step S18, the fourth concentrate is filtered using a filter membrane having a predetermined pore size (0·5 to 1.5/in) to obtain a deep seawater concentrate. [0019] The deep seawater described above may be taken from a predetermined depth of seawater at a depth of 2 to 15 square meters below sea level, preferably at a predetermined depth of 5 to 7 inches below sea level. Sea water. In step 12, the filter membrane apertures of the line dimension filtration system, the ultrafiltration system, and the seawater reverse osmosis system may be 〇. 1~1(), 〇.〇1~〇.〇5//11] and 〇.〇〇, respectively. 1~〇.〇〇〇101[1, to separately filter suspended matter, small molecule microorganisms and salts in seawater in seawater. The hardness, salinity, magnesium concentration and sodium concentration of the concentrate obtained in each step are different. Among them, the depth of seawater (unprocessed) obtained from sea level is 6000~7000 mg/l·, salinity is 3〇~401), magnesium concentration is 1 000~1500 mg/1 and nano-concentration body| (10) 〇〇~12000 mg/i. The first concentrated liquid has a hardness of 1 0000 to 1 3000 mg/l, a salinity of 45 to 701, a money concentration of 2000 to 3000 mg/1, and a sodium concentration of 15,000 to 20,000 mg/1. The hardness of the third concentrated liquid is 160,000 to 19 〇〇〇〇 mg / 1, and the salinity is 200 to 250! The concentration of strontium, town is 40,000 to 50,000 mg / 1 and the concentration of sodium is 19,000 to 25,000 mg / 1. The deep seawater concentrate of the present invention has a hardness of 380,000 to 4,200 00 mg / 1, a salinity of 380 to 430 t, a magnesium concentration of 89000 to 1 10,000 mg / l, and a sodium concentration of 7800 to 9500 mg / 1 099137071. A0101 Page 8 / 21 pages 0992064652-0 201217276 [0020] In step si 3 'low temperature vacuum evaporation concentrated (four) system is - cycle system, = temperature recorded as 50 ~ 7 (TC, mainly to simulate natural drying The vacuum pressure parameter of the low-cost real-life evaporation system is 〇~2 〇Kpa. In the circulation (four), the sulphur can be squeezed out _(stone t), and the sulphuric acid mother is stored in the storage tank. Then, the step of centrifugation is carried out (step (4). The step of centrifugation can mainly collect the salt of the salt, because the invention utilizes the low temperature concentration cycle, so the deep sea needle also contains various kinds of sense and trace elements. There is gas (4). In addition, the lower temperature Ο [0021] can ensure the quality of the deep sea salt (tetra) crystal, so that the crystal is more consistent, the second embodiment: the deep seawater 'concentrate of the present invention' The concentrate was prepared by the manufacturing method of Example 1. The deep seawater concentrate has a hardness of 380,000~420,000 mg/b salinity of 380~4301, a magnesium concentration of 89000~1 1 0000 mg/1, and a nano concentration of 7800-9500 mg/1. The concentrate contains a variety of minerals including sodium (Na), calcium (Ca), potassium (K), strontium iron (Fe), zinc (Zn), molybdenum (Mo), manganese (Mn), lithium (Li), Lithium (Sr), copper (Cu), bismuth (Si), etc. Therefore, the deep seawater concentrate of the present invention can also be applied to food processing, agricultural development, biotechnology pharmaceuticals, cosmetics and skin care products, health food development, and beverages. In the production of various target industries, etc., more added value is created. [0024] Example 3: Preferred Embodiments This example demonstrates that the deep seawater concentrate of the present invention has the effect of lowering blood fat, so The invention of the deep seawater concentrate is involved in hyperlipidemia by 099137071 Form No. Α01 (Π page 9/21 pages 0992064652-0 201217276, and a series of blood biochemical tests. [0025] Subject screening [0026] For 42 people from North Taiwan who screened for hyperlipidemia for a six-week trial Subjects were 30 to 65 years old, blood biochemical values were total cholesterol > 200 mg/dl and low-density lipoprotein cholesterol (LDL-C) > 130 mg/dl, no health foods that would affect blood lipids (eg phytol, red peony, deep sea fish oil, etc.) and drugs that affect blood lipids (except for those who do not use drugs), no cardiovascular diseases, diabetes, chronic inflammatory diseases, liver and kidney diseases, special diseases (such as hypothyroid glands) Medical history, no extreme exercise habits and overeating habits (avoiding entertainment during the experiment), drinking less than 25 g / day (ie less than two alcohol equivalents). During the trial, all subjects lived as usual. After screening, the subjects were informed of the purpose of the experiment and the detailed process, and after the individual consent of the subjects was obtained and the consent form was signed, the test was entered. [0027] Mode of Administration of Deep Seawater Concentrate of the Invention [0028] A double-blind trial was conducted to divide subjects into three groups: control group, experimental group, and control group. The drinking water of the control group is reverse osmosis (RO) water, the drinking water of the experimental group is high mineral water (hardness 1 400) added with the deep seawater concentrate of the present invention, and the control group is chemical magnesium hydride (MgCl2). The agent is blended into a drinking water with a hardness of 1 400. The three groups of drinking water are heat-sterilized and filled to make bottled water. The subjects in the experimental group and the control group received about 1.0 times the recommended intake (RDA) of the Department of Health, and drank 3 bottles of water per day, 350 ml each, for a total of 1050 ml. [0029] Experimental design 0992064652-0 099137071 Form number A0101 Page 10 of 21 201217276 [0030] [0031] 003 42 subjects 3, 6 weeks after blood knife into three groups During the trial period, there were a total of six weeks. Dijon and blood were required to leave. The recovery period was 2 weeks, and blood was inserted again at the 8th week. The mineral concentration, sputum serum, 'analysis of liver function, renal function, serum & lipid concentration and antioxidant analysis. The following test results were expressed as SAS 9 i values as mean Uean) ± standard deviation (SD), and 8 weeks, 3 & .3 statistical software were analyzed. The third, third, and sixth comparisons of the trials were compared with the two-factor variation (two-way test a> unca/s and time two principal factors, and then Duncan's multivariable stiffness comparison, when S mUltiple range_teSt) was significantly different when the difference between groups was 〇5. The correlation between blood magnesium concentration and serum bile, f4; was examined by Pearson correlation coefficient (pearson, s correlation + , ' est). In addition, the abc indicated in the table below indicates that the text 4 does not fit the difference between the 0th, 3rd, 6th and 8th week, and the xy indicates the difference between the groups in the week. The effect of the layered seawater concentrate of the present invention on the lipoprotein lipid concentration is: 丨丨丨"丨i The experimental group's increase in the time of the tester is compared with the other two groups of fathers = winner/month cholesterol Significantly low effect. The decrease in total cholesterol concentration in the third week and the sixth week of the experimental group was reduced by 7.9% and 13.7%, respectively. In addition, subjects in the experimental group had a significant decrease in low-density lipoprotein-cholesterol (LDL-C) with increasing drinking time, and decreased by 11.7% in the third and sixth weeks compared with the third week. And 15.4%. The detailed data of cholesterol and LDL-C of each group are shown in Table 1. Table 1 099137071 Form No. A0101 Page 11 / Total 21 Page 0992064652-0 [0034] 201217276 [0035] The third week of the third week of the cholesterol (rag / dl) control group 241.2 soil 23. 3a 235. 0 soil 25. 3ab experiment Group 243. 9 + 15. 5a 224. 7 士 17. 3b Control group 242.0 士 27. 9a 239. 9 士 36. la LDL-C (rag/dl) . " ii, - Control group 143.8 ± 26. 0ab 140.9土 25. 4bc experimental group 154.4+ 26. 7a 136. 4 士 23. 4b control group 156. 1 士 33. 6a 152. 4 士 31. iab .. :::::: 63⁄4 8th week

[0036]本發明之深層海水濃縮液對血清鎂、 ^ 鉀和鈣之影響 [〇〇37]實驗期間,本發明之深層海水濃縮液對血清鎂、鈉、鉀 及舰度’皆無統計上之差異’其數據如下表2所示。此 外,於三組間比較’血清鎂濃度亦無統計上差異,且皆 屬正常範圍’並無鎂缺乏之情形發生,但在飲用含有本 發明之深層海水濃縮液之逆滲透水後,其第3週、第6週 及第8週之血清鎂濃度,皆比第〇週有較高之趨勢。此外 099137071 表單編號 A0101 第 12 頁/共 21 頁 0992064652-0 201217276 ,於第6週時,血清鎂濃度與企清膽固醇濃度有逆相關之 趨勢,如第2圖所示。 [0038]表 2[0036] Effect of deep seawater concentrate of the present invention on serum magnesium, potassium and calcium [〇〇37] During the experiment, the deep seawater concentrate of the present invention has no statistical data on serum magnesium, sodium, potassium and ship' The difference 'its data is shown in Table 2 below. In addition, there was no statistical difference in the serum magnesium concentration between the three groups, and all of them belonged to the normal range. There was no magnesium deficiency, but after drinking the reverse osmosis water containing the deep seawater concentrate of the present invention, The serum magnesium concentrations at 3 weeks, 6 weeks, and 8 weeks were all higher than those at week 3. In addition, 099137071 Form No. A0101 Page 12 of 21 0992064652-0 201217276, at the 6th week, there is a tendency for the serum magnesium concentration to be inversely related to the cholesterol concentration in the clearing, as shown in Figure 2. [0038] Table 2

第0週 第3週 第6週 第8週 鎂 (rag/dl) 控制組 2. 06土 2· 01 土 2. 07士 1. 97士 0.14 0. 17y 0.16 0. 16y 實驗組 2. 05土 2. 15土 2. 13土 2. 14土 0. 14 0. 14x 0. 15 0. 21xy 對照組 2. 15土 2. 21土 2. 07土 2. 14土 0.14 0. 12x 0.26 0. 22x 納 (mEq/1) 控制組 145. 3土 153·4土 150.1土 156.5土 17. 6y 19.3 9. 7X 13. 0 實驗組 158. 0土 156.7+ 150.8土 156. 1 + 15. 0X 19. 1 10. 9X 10.3 對照組 150.4土 148.5士 142.2土 148. 7土 8.8axy 10.0ab 12.2by 12.2ab 鉀 (mEq/1) 控制組 3. 90土 3. 83土 3. 73土 3. 85土 0.48xy 0.55 0. 30 0. 55y 實驗組 4. 16土 4. 27土 4· 10土 4. 33土 表單編號A0101 第13頁/共21頁 0992064652-0 099137071 201217276 0. 57x 0. 89 —--ο. 85 0. 83χ 對照組 3. 77土 3. 78士 —_ 3. 69土 —--- 3‘ 66± 0. 15y 0. 34 〇. 27 0. 19y 鈣 (rag/dl) 控制組 8. 88土 8. 99土 ^~~—-_ 9. 14士 8. 84土 0. 80 0. 52 〇. 77 0. 72 實驗組 8. 97± 9. 18土 -s--- 9. 20士 8. 94士 0. 80 0. 36 〇· 69 0. 79 對照組 8. 92土 9. 04士 8. 94± 8. 85土 0, 61 0· 50 i 〇. 36 0.50 [0040] 本發明之深層海水濃縮液對肝、腎功能之影響 [0041] 本實施例之肝功能係測定血清中谷丙轉氨酶^““⑽ aminotransferase, ALT)及聲草轉氨酶(Aspartate aminotransferase, AST),雨腎功能則測定血清中尿 素氮(Urea nitrogen)。於鳍攻抽血中,無論實驗組或 對照組之受試者,其對肝功能皆無差異。實驗期間,本 發明之深層海水濃縮液對腎功能亦無影響,皆在正常範 圍内。三組肝腎功能之數據如下表3所示。 [0042] 表3 [0043] 第0週 AST 1 (U/L) 表單編號A0J0】Week 3, Week 3, Week 8 Week 8 Magnesium (rag/dl) Control Group 2. 06 Soil 2· 01 Soil 2. 07士 1. 97士 0.14 0. 17y 0.16 0. 16y Experimental Group 2. 05 Soil 2. 15 soil 2. 13 soil 2. 14 soil 0. 14 0. 14x 0. 15 0. 21xy control group 2. 15 soil 2. 21 soil 2. 07 soil 2. 14 soil 0.14 0. 12x 0.26 0. 22x Nano (mEq/1) control group 145. 3 soil 153·4 soil 150.1 soil 156.5 soil 17. 6y 19.3 9. 7X 13. 0 experimental group 158. 0 soil 156.7 + 150.8 soil 156. 1 + 15. 0X 19. 1 10. 9X 10.3 Control group 150.4 soil 148.5 ± 142.2 soil 148. 7 soil 8.8axy 10.0ab 12.2by 12.2ab potassium (mEq / 1) control group 3. 90 soil 3. 83 soil 3. 73 soil 3. 85 soil 0.48xy 0.55 0. 30 0. 55y Experimental group 4. 16 soil 4. 27 soil 4 · 10 soil 4. 33 soil form number A0101 Page 13 / 21 pages 0992064652-0 099137071 201217276 0. 57x 0. 89 —--ο 85 0. 83χ Control group 3. 77 soil 3.78 士—_ 3. 69 soil—--- 3' 66± 0. 15y 0. 34 〇. 27 0. 19y calcium (rag/dl) control group 8 88土 8.99土^~~—-_ 9. 14士 8. 84土0. 80 0. 52 〇. 77 0. 72 Experimental group 8. 97± 9. 18 soil - s--- 9. 20 ± 8. 94 ± 0. 80 0. 36 〇 · 69 0. 79 Control group 8. 92 soil 9. 04 ± 8. 94 ± 8. 85 soil 0, 61 0 · 50 i 〇 36 0.50 [0040] Effect of deep seawater concentrate of the present invention on liver and kidney function [0041] The liver function of the present embodiment is used to determine serum alanine aminotransferase "" (10) aminotransferase, ALT) and Aspartate aminotransferase (Aspartate aminotransferase) , AST), rain and kidney function to determine the serum urea nitrogen (Urea nitrogen). In the blood of the fins, there was no difference in liver function between the subjects in the experimental group and the control group. During the experiment, the deep seawater concentrate of the present invention had no effect on renal function, and was within the normal range. The data of the three groups of liver and kidney function are shown in Table 3 below. Table 3 [0043] Week 0 AST 1 (U/L) Form No. A0J0]

第6週 第8週 099137071 0992064652-0 201217276 控制組 29. 7土 28. 2土 34. 1土 34. 6土 12. 1 21. 2 20.5 18. lx 實驗組 24.9±7·9 24. 0±7. 9 24.6±7.2 23. 9土 5. 7y 對照組 27. 6±7· 4 27. 7 + 9. 2 25. 9±8· 5 26. 8土 10.2xy ALT (U/L) 控制組 29· 9土 31. 9土 38. 3士 44. 5± 11. 8b 24. 6b 27.2ab 31. 5ax 實驗組 26.6±8.3 26. 0 + 9. 2 27. 8士 25. 0士 10. 5 6. ly 對照組 27. 7±6. 4 30.4+9.2 29. 1 + 28. 5士 12. 1 11.2y 尿素氮 (mg/dL) 控制組 11. 8土 13.1 士 12. 9土 14. 5士 2. 7by 2. 3ab 1 . 7by 1. 8a 實驗組 14. 9土 14.6+2.4 15. 9土 14. 2±2. 6 3. 5x 2. 4χ 對照組 12. 4士 14· 4土 13· 8士 14. 7土 3· 1 by 3. 3ab 2· 5aby 2. la [0044] 本發明之深層海水濃縮液對血清總抗氧化能力與脂質過 氧化能力之影響 099137071 表單編號A0101 第15頁/共21頁 0992064652-0 201217276 [0045] 本實施例係以血清硫代巴比妥酸(T B A R S )及總抗氧化力 (TEAC),評估人體内氧化壓力之狀態。結果顯示(表4) ’對於血清總抗氧化力於三組間並無顯著不同。而對於 TBARS濃度而言,實驗組之第3週與第6週的TBARS濃度低 於第0週之TBARS濃度。其顯示飲用含有本發明之深層海 水濃縮液之滲透水,其TBARS濃度可隨著飲水時間而降低 [0046]表 4 第0週 第3週 第6週 第8週 總抗氧化 力(TEAC, 1..! : .W::1 mM) 控制組 0. 86土 1· 04土 1. 04土 1. 03 + 0. 05b 0. 03ax 0. 06ax 0. 06a 實驗組 0. 84土 0. 90ί 1 · 0 2 土 1· 03土 0. 04c ¢. 03bl Q. 06ax 0. 07a 對照組 0. 86土 1. 03± 0. 99土 1.00土 卜 0. 06c 0. 08ax 0·05by 0. 07ab TBARS (nmol/ml ) 控制組 3. 86 + 4. 16士 3.42 + 4. 27 + 0· 86aby 1. 10a 0. 65by 0. 94a 實驗組 4· 80土 4. 31土 4. 07 + 4. 86土 0. 93ax 0. 72b 0. 51bx 0· 38a 表單編號A0101 第16頁/共21頁 0992064652-0 099137071 201217276 對照組 3. 75土 3. 9土 4. 3 + 4. 56土 ---- 0. 95cy 匕 0 · 97bc 1 · °5abx 0. 87a [0048] Ο [0049]Week 8 Week 8 099137071 0992064652-0 201217276 Control group 29. 7 soil 28. 2 soil 34. 1 soil 34. 6 soil 12. 1 21. 2 20.5 18. lx experimental group 24.9 ± 7. 9 24. 0 ± 7. 9 24.6±7.2 23. 9 soil 5. 7y control group 27. 6±7· 4 27. 7 + 9. 2 25. 9±8· 5 26. 8 soil 10.2xy ALT (U/L) control group 29·9土31. 9 soil 38. 3 persons 44. 5± 11. 8b 24. 6b 27.2ab 31. 5ax experimental group 26.6±8.3 26. 0 + 9. 2 27. 8士25. 0士10. 5 6. ly control group 27. 7 ± 6. 4 30.4 + 9.2 29. 1 + 28. 5 ± 12. 1 11.2y urea nitrogen (mg / dL) control group 11. 8 soil 13.1 ± 12. 9 soil 14. 5士 2. 7by 2. 3ab 1 . 7by 1. 8a Experimental group 14. 9 soil 14.6+2.4 15. 9 soil 14. 2±2. 6 3. 5x 2. 4χ Control group 12. 4 persons 14· 4 soil 13 · 8 士 14. 7土3· 1 by 3. 3ab 2· 5aby 2. la [0044] Effect of deep seawater concentrate of the present invention on serum total antioxidant capacity and lipid peroxidation capacity 099137071 Form No. A0101 Page 15 / Total 21 pages 0992064652-0 201217276 [0045] This example is based on serum thiobarbituric acid (TBARS) and total antioxidant capacity (TEAC) To assess the state of oxidative stress in the human body. The results showed (Table 4) that there was no significant difference in serum total antioxidant capacity between the three groups. For the TBARS concentration, the TBARS concentrations at weeks 3 and 6 of the experimental group were lower than the TBARS concentrations at week 0. It shows that drinking osmotic water containing the deep seawater concentrate of the present invention, its TBARS concentration can be reduced with the drinking time [0046] Table 4 Week 0 Week 3 Week 8 Week 8 Total antioxidant power (TEAC, 1 ..! : .W::1 mM) Control group 0. 86 soil 1 · 04 soil 1. 04 soil 1. 03 + 0. 05b 0. 03ax 0. 06ax 0. 06a experimental group 0. 84 soil 0. 90ί 1 · 0 2 土1· 03土0. 04c ¢. 03bl Q. 06ax 0. 07a Control group 0. 86 soil 1. 03± 0. 99 soil 1.00 soil 0. 06c 0. 08ax 0·05by 0. 07ab TBARS (nmol/ml) control group 3. 86 + 4. 16 ± 3.42 + 4. 27 + 0· 86aby 1. 10a 0. 65by 0. 94a experimental group 4 · 80 soil 4. 31 soil 4. 07 + 4. 86土0. 93ax 0. 72b 0. 51bx 0· 38a Form No. A0101 Page 16 of 21 0992064652-0 099137071 201217276 Control group 3. 75 soil 3. 9 soil 4. 3 + 4. 56 soil --- - 0. 95cy 匕0 · 97bc 1 · °5abx 0. 87a [0048] Ο [0049]

[0050]G[0050] G

[0051] 知合以上結果,本發明之深層海水濃縮液可有效降低高 血脂症受試者的血總膽固醇及LDL_C濃度。隨著飲用時間 增加,總膽固醇與LDL-c:降低效果越明顯,顯示持續飲用 的效果更佳,且不影響肝腎功能。此外,於抗氧化試驗 中’顯示本發明之深層海水濃縮液可降低高血脂症者血 π TBARS濃度。因此,藉由每曰飲用含有本發明之濃縮液 之飲用水,可使飲用者降抵血脂濃度,進而可減低罹患 心血管疾病之機率。 以上所述僅為舉例性,而非為限制性者,任何未脫離本 發明之精神與範_,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖係為本發明之课層海水濃縮液之製造方法之流程圖 Ο /'·:;' . ! 第2圖係為飲用本發明之深層海水濃縮液後,血_清鎮濃度 與血清膽固醇濃度之相關性。 【主要元件符號說明】 S11〜S18 :步驟。 099137071 表單編號A0101 第17頁/共21頁 0992064652-0[0051] In view of the above results, the deep seawater concentrate of the present invention can effectively reduce the blood total cholesterol and LDL_C concentration in subjects with hyperlipidemia. As drinking time increases, total cholesterol and LDL-c: the more effective the reduction, the better the effect of continuous drinking, and does not affect liver and kidney function. Further, in the antioxidant test, the deep seawater concentrate of the present invention was shown to lower the blood π TBARS concentration in hyperlipidemia patients. Therefore, by drinking drinking water containing the concentrated liquid of the present invention per serving, the drinker can be lowered to a blood lipid concentration, thereby reducing the risk of suffering from cardiovascular disease. The above description is intended to be illustrative, and not restrictive, and any equivalents and modifications may be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a flow chart of a method for producing a seawater concentrate of the present invention. /'·:; ' . . Fig. 2 is a blood after drinking the deep seawater concentrate of the present invention. _ Correlation between Qingzhen concentration and serum cholesterol concentration. [Main component symbol description] S11~S18: Step. 099137071 Form No. A0101 Page 17 of 21 0992064652-0

Claims (1)

201217276 七、申請專利範圍: 1 . 一種用於降低血脂之深層海水濃縮液之製造方法,其包含 以下步驟: 提供自海平面一預定深度下之—深層海水; 依序利用一纖維過濾系統、一超過濾系統及一海水逆滲透 系統過濾該深層海水,使得到一第一濃縮液及一純淨水; 藉由一低溫真空蒸發濃縮系統濃縮該第一濃縮液,使得到 一第二濃縮液及一硫酸鈣; 離心該第二濃縮液,使得到一深海發及—第三濃縮液; . ....... ...... 以一預定高溫加熱該第三濃縮液’以析出該第三濃縮液之 一結晶鹽; 靜置已加熱之該第三濃縮液,使該結晶鹽沉澱於下層,以 汲取上層液體使得到一第四濃縮液; 冷卻該第四濃縮液;以及 利用具有一預定孔徑之過濾膜過濾該第四濃縮液,以得到 一深層海水濃縮液。 2 ·如申請專利範圍第1項所述之製造方法’其中該預定深度 〆 .:.., ..... 係為200至1500公尺。 3 .如申請專利範圍第2項所述之製造方法’其中該預定深度 進一步係為500至700公尺。 4 ·如申請專利範圍第1項所述之製造方法,其中該纖維過渡 系統之過濾膜孔徑係為〇. 1〜1 〇 μ m,以過濾該海水中之 一懸浮物質。 5 .如申請專利範圍第1項所述之製造方法’其中該超過濾系 統之過渡膜孔徑為〇 〇 1〜〇 5 // m,以過濾該海水中之 099137071 表單編號A0101 第18頁/共21頁 0992064652-0 201217276 , 一小分子微生物。 6 .如申請專利範圍第1項所述之製造方法,其中該海水逆滲 透系統之過濾膜孔徑為0. 00卜0. 000 1 /zm,以過濾該海 水中之鹽類。 7 .如申請專利範圍第1項所述之製造方法,其中該深層海水 之硬度為6000〜7000 mg/1、鹽度為30〜401、鎂濃度為 1 000 〜1 500 mg/Ι 及鈉濃度為 1 0000~ 1 2000 mg/1。 8 .如申請專利範圍第1項所述之製造方法,其中該第一濃縮 液之硬度為1 0000~1 3000 mg/1、鹽度為45〜701、鎂濃 〇 度為2000〜3000 mg/l及鈉濃度為1 5000~20000 mg/卜 9 .如申請專利範圍第1項所述之製造方法,其中該第三濃縮 液之硬度為1 60000- 1 90000 mg/Ι、鹽度為200〜2501、 鎂濃度為40000~500 00 mg/1及鈉濃度為1 9000〜25000 mg/1 〇 10 .如申請專利範圍第1項所述之製造方法,其中該深層海水 濃縮液之硬度為380000~420000 mg/1、鹽度為380〜430 知、鎂濃度為89000~1 1 0000 mg/1及鈉濃度為 ❹ 7800〜9500 mg/1。如申請專利範圍第1項所述之製造方 法,其中該低溫真空蒸發濃縮系統之溫度參數係為50~70 °C。 11 .如申請專利範圍第1項所述之製造方法,其中該低溫真空 蒸發濃縮系統之真空壓力參數係為10〜20 KPa。 12 .如申請專利範圍第1項所述之製造方法,其中該預定高溫 係為90〜120°C。 13 .如申請專利範圍第1項所述之製造方法,其中該預定孔徑 係為0.5〜1.5 /zm。 099137071 表單編號A0101 第19頁/共21頁 0992064652-0 \ 201217276 14 . 15 . 一種用於降低血脂之深層海水濃縮液,其硬度為 380000~420000 mg/1、鹽度為380〜4301、鎂濃度為 89000~ 1 1 0000 mg/1 及鈉濃度為7800〜9500 mg/Ι。 如申請專利範圍第15項所述之深層海水濃縮液,其更包括 鉀、鈣、鐵、鋅、鉬、錳、鋰、勰、銅或矽之礦物質。 099137071 表單編號A0101 第20頁/共21頁 0992064652-0201217276 VII. Patent application scope: 1. A method for manufacturing a deep seawater concentrate for reducing blood lipids, comprising the steps of: providing deep seawater at a predetermined depth from sea level; sequentially using a fiber filtration system, The ultrafiltration system and a seawater reverse osmosis system filter the deep seawater to a first concentrate and a pure water; and concentrate the first concentrate by a low temperature vacuum evaporation concentration system to obtain a second concentrate and a Calcium sulfate; centrifuging the second concentrated liquid to a deep sea hair and a third concentrated liquid; . . ....... heating the third concentrated liquid at a predetermined high temperature to precipitate the a crystalline salt of one of the third concentrated liquid; the third concentrated liquid heated is allowed to stand, the crystalline salt is precipitated in the lower layer to extract the upper liquid to a fourth concentrated liquid; the fourth concentrated liquid is cooled; The fourth concentrate is filtered through a filter membrane of a predetermined pore size to obtain a deep seawater concentrate. 2. The manufacturing method as described in claim 1, wherein the predetermined depth 〆 .:.., ..... is 200 to 1500 meters. 3. The manufacturing method according to claim 2, wherein the predetermined depth is further 500 to 700 meters. 4. The manufacturing method according to claim 1, wherein the fiber transition system has a filtration membrane pore size of 〜. 1 to 1 〇 μ m to filter a suspended matter in the seawater. 5. The manufacturing method according to claim 1, wherein the transition membrane pore diameter of the ultrafiltration system is 〇〇1 to 〇5 // m to filter the 099137071 in the seawater. Form No. A0101 Page 18 / Total 21 pages 0992064652-0 201217276, a small molecule of microorganisms. 6. The manufacturing method according to claim 1, wherein the seawater reverse osmosis system has a filter membrane pore size of 0.000 Å 0. 000 1 /zm to filter salts in the sea water. 7. The manufacturing method according to claim 1, wherein the deep seawater has a hardness of 6000 to 7000 mg/1, a salinity of 30 to 401, a magnesium concentration of 1 000 to 1 500 mg/inch, and a sodium concentration. It is 1 0000~ 1 2000 mg/1. 8. The manufacturing method according to claim 1, wherein the first concentrated liquid has a hardness of 1,000,000 to 1 3000 mg/1, a salinity of 45 to 701, and a magnesium concentration of 2000 to 3000 mg/ l and the sodium concentration is 1 5,000 to 20,000 mg / gram. The manufacturing method according to claim 1, wherein the third concentrated liquid has a hardness of 1 60000 - 1 90000 mg / Ι and a salinity of 200 2501, a magnesium concentration of 40,000 to 500 00 mg / 1 and a sodium concentration of 1 9000 to 25000 mg / 1 〇10. The manufacturing method according to claim 1, wherein the hardness of the deep seawater concentrate is 380000~ 420000 mg / 1, salinity of 380 ~ 430 known, magnesium concentration of 89000 ~ 1 1 0000 mg / 1 and sodium concentration of ❹ 7800 ~ 9500 mg / 1. The manufacturing method according to claim 1, wherein the temperature parameter of the low temperature vacuum evaporation concentration system is 50 to 70 °C. 11. The manufacturing method according to claim 1, wherein the vacuum pressure parameter of the low temperature vacuum evaporation concentration system is 10 to 20 KPa. The manufacturing method according to claim 1, wherein the predetermined high temperature is 90 to 120 °C. The manufacturing method according to claim 1, wherein the predetermined aperture is 0.5 to 1.5 /zm. 099137071 Form No. A0101 Page 19 of 21 0992064652-0 \ 201217276 14 . 15 . A deep seawater concentrate for reducing blood fat, with a hardness of 380,000 to 420,000 mg / 1, salinity of 380 to 4301, magnesium concentration It is 8900~1 1 0000 mg/1 and the sodium concentration is 7800~9500 mg/Ι. The deep seawater concentrate as described in claim 15 further includes minerals of potassium, calcium, iron, zinc, molybdenum, manganese, lithium, cesium, copper or strontium. 099137071 Form No. A0101 Page 20 of 21 0992064652-0
TW99137071A 2010-10-28 2010-10-28 Manufacturing method of deep-sea active concentrated solution TWI466832B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99137071A TWI466832B (en) 2010-10-28 2010-10-28 Manufacturing method of deep-sea active concentrated solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99137071A TWI466832B (en) 2010-10-28 2010-10-28 Manufacturing method of deep-sea active concentrated solution

Publications (2)

Publication Number Publication Date
TW201217276A true TW201217276A (en) 2012-05-01
TWI466832B TWI466832B (en) 2015-01-01

Family

ID=46552162

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99137071A TWI466832B (en) 2010-10-28 2010-10-28 Manufacturing method of deep-sea active concentrated solution

Country Status (1)

Country Link
TW (1) TWI466832B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410285A (en) * 2019-12-13 2020-07-14 张全兴 Method for extracting concentrated solution rich in trace elements from meteorites and energy beverage thereof
TWI791587B (en) * 2017-12-08 2023-02-11 蘇珍儀 Deep sea water concentrate skin application kit and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585046B (en) * 2016-08-26 2017-06-01 A mixture of high magnesium content concentrate and high magnesium content of drinking water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732066B1 (en) * 2006-07-25 2007-06-25 (주)블루오션월드 Method for extracting minerals of high purity from deep ocean water by using low temperature vacuum crystallization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791587B (en) * 2017-12-08 2023-02-11 蘇珍儀 Deep sea water concentrate skin application kit and use thereof
CN111410285A (en) * 2019-12-13 2020-07-14 张全兴 Method for extracting concentrated solution rich in trace elements from meteorites and energy beverage thereof

Also Published As

Publication number Publication date
TWI466832B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
Vallée Marcotte et al. Health benefits of apple juice consumption: A review of interventional trials on humans
Bellassoued et al. Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activity
CN104643221B (en) A kind of production technology of sugarcane drinking water and compounding sugar cane juice beverage
Reig et al. Use of membrane technologies in dairy industry: An overview
JP2008541740A5 (en)
JP2002292371A (en) Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
Orellana-Palma et al. Improvement of centrifugal cryoconcentration by ice recovery applied to orange juice
CN107032519A (en) Mineral matter concentrate rich in trace element and its preparation method and application
CN112592315B (en) Method for preparing high-content tuna anserine by membrane separation and application thereof
TW201217276A (en) Deep-sea active concentrated solution for decreasing blood lipid and manufacturing method thereof
JP2003063969A (en) Functional goods using concentrated mineral solution obtained from deep sea water by separation
US2437080A (en) Fractionation of lacteal liquids
Bazinet et al. Electromigration of tobacco polyphenols
Kumar et al. Osmotic membrane distillation for retention of antioxidant potential in Nagpur mandarin (Citrus reticulata Blanco) fruit juice concentrate
Chu et al. Athermal concentration of blueberry juice by forward osmosis: Food additives as draw solution
CN103833840A (en) Method for extracting high-density lipoprotein and separating and purifying apolipoprotein apoA-I from human plasma
JPH11178553A (en) Drink compounded with bilberry and its production
Slominska et al. High plasma adenine concentration in chronic renal failure and its relation to erythrocyte ATP
Coskun et al. Performances of reverse osmosis membranes for treatment of olive mill wastewater
CN112868788A (en) High-protein and high-calcium milk and preparation method thereof
Shaikh et al. Utilisation of buttermilk for the preparation of carbonated fruit‐flavoured beverages
JP2009286697A (en) Functional drinking water
JP2005526829A (en) Method for producing potato juice products by food technology
KR102269675B1 (en) Method of separating mineral selectively from natural mineral resource and composition separated therefrom
Tange et al. Dialysate with high dissolved hydrogen facilitates dissociation of indoxyl sulfate from albumin