TW201216483A - Method for manufacturing nanometer grain flexible substrate having photo absorption function and solar cell applying the same and manufacturing method thereof - Google Patents

Method for manufacturing nanometer grain flexible substrate having photo absorption function and solar cell applying the same and manufacturing method thereof Download PDF

Info

Publication number
TW201216483A
TW201216483A TW099135240A TW99135240A TW201216483A TW 201216483 A TW201216483 A TW 201216483A TW 099135240 A TW099135240 A TW 099135240A TW 99135240 A TW99135240 A TW 99135240A TW 201216483 A TW201216483 A TW 201216483A
Authority
TW
Taiwan
Prior art keywords
nano
light absorbing
light
substrate
absorbing function
Prior art date
Application number
TW099135240A
Other languages
Chinese (zh)
Other versions
TWI424577B (en
Inventor
run-wen Zhong
Original Assignee
Heliohawk Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliohawk Optoelectronics Corp filed Critical Heliohawk Optoelectronics Corp
Priority to TW099135240A priority Critical patent/TWI424577B/en
Publication of TW201216483A publication Critical patent/TW201216483A/en
Application granted granted Critical
Publication of TWI424577B publication Critical patent/TWI424577B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides a method for manufacturing nanometer grain flexible substrate having photo absorption function and solar cell applying the same and its manufacturing method. With a spinning step and weaving, rolling or solvent casting, composite material colloid particles formed by the crystallization nanometer powder having photo absorption function and polymer material are formed into a piece-like or film-like flexible substrate. A rear metal electrode and a transparent electrode are respectively formed on a surface of the substrate. A solar cell is further produced through the packaging. Moreover, photo absorption thin layers are formed on two surfaces of the substrate in advance to continue the photo absorption effect. The process time can be reduced by speeding up the nucleation growth. Alternatively, the process can also be performed at low temperature, and the expansion coefficient difference between the rear metal electrode and the transparent electrode. The conventional material can also be applied to perform the packaging to achieve effects of quick process and cost reduction.

Description

201216483 β 六、發明說明: 【發明所屬之技術領域】 ,本發明涉及一種具有光吸收功能的奈米晶粒之軟性基板 的製作方法,以及應用該軟性基板之太陽能電池的製作方法。 【先前技術】 在先前技術中,在軟性基板上製作太陽能電池,通常是市 面上常用的各種軟性基板,並在其上鍍覆光吸收層、金屬層、 接觸窗。層等於鑛覆該等層需要高溫化合及晶粒成長,需要 籲如300C或更局的溫度,目前耐受溫度超過3〇〇。匸的軟性通常 與金屬層之間的熱膨脹差異太大,而容易產生裂痕而使得太陽 能電池的壽命減低。 另外’當採用金屬薄板的軟性勤反,又具有彎折曲度不夠 大、金屬與封裝材料之間的接著強度不夠良好、封裝材料的選 =生受到關等缺點,因此需要—種能触善現存缺點的軟性 基板。 【發明内容】201216483 β VI. Description of the Invention: [Technical Field] The present invention relates to a method for producing a soft substrate having a nanocrystal having a light absorbing function, and a method for fabricating a solar cell using the same. [Prior Art] In the prior art, a solar cell is fabricated on a flexible substrate, usually a variety of flexible substrates commonly used in the market, and a light absorbing layer, a metal layer, and a contact window are plated thereon. The layer is equal to the mineral deposit. These layers require high temperature combination and grain growth. It is required to call a temperature of 300 C or more, and the current temperature is more than 3 耐受. The softness of the crucible is usually too different from the thermal expansion between the metal layers, and cracks are easily generated to reduce the life of the solar cell. In addition, when using the softness and reversal of the metal sheet, the bending strength is not large enough, the bonding strength between the metal and the packaging material is not good enough, and the selection of the packaging material is closed, so it is necessary to A soft substrate with existing defects. [Summary of the Invention]

本發明的目的是在於提供一種具有光吸收功能的奈米晶 t权性基板的製作方法及翻該軟性基板之太陽能電池的 二作方法。本發明具有光吸收魏的m粒之軟性基板的製 作方法可以藉由原料製備步驟、抽絲步驟及紡織步驟、原料f ,步驟以及軋延步驟,或是原料製備步驟及溶 :=功柄結晶奈練末如銅__(CIGS)結晶奈米粉SUMMARY OF THE INVENTION An object of the present invention is to provide a method for fabricating a nanocrystalline t-weight substrate having a light absorbing function and a method for fabricating a solar cell using the flexible substrate. The method for preparing the soft substrate having the light absorption Wei of the m particles can be prepared by the raw material preparation step, the spinning step and the weaving step, the raw material f, the step and the rolling step, or the raw material preparation step and the dissolution: = handle crystallization Nai Ning is like copper __(CIGS) crystal nano powder

S 七=__CIGSS)結晶奈米粉末與高分子材料所形成複 成布匹狀或是膠片狀的具有光吸收功能的奈米 =1主軟纟基板。將·有光吸收魏的奈米晶粒之軟性基板 面ί別形成背部金屬電極及透明電極,再藉由封裝隔絕 κ乳及魏而縣太陽能電m瑪—步_先在該軟性基 3 201216483 板的兩表面以蒸鐘或频各軸光吸㈣層 能能夠在整個基板上均勻且連續。 尤及收的功S VII = __CIGSS) A composite cloth or a film-like nano-1 = soft 纟 substrate with a light absorption function. The soft substrate surface of the nanocrystals of the light absorption Wei will form the back metal electrode and the transparent electrode, and then encapsulate the κ milk and the Weier County solar power m _ step _ first in the soft base 3 201216483 The two surfaces of the plate can be uniformly and continuously throughout the substrate by a vapor or a light-axis (four) layer. Especially

本發明的躲在於,能射接將具有如CIGS結 末或是CIGSS結晶奈米粉末等能夠吸收攻能的結晶奈米末 直接摻入紐基板巾’藉由財式使得基板本身就具有光吸收 的,分,可直接作為光吸收層,或是只需鍍上光吸收薄層,可 以藉由加速成核或晶粒成長,進一步在減少製程時間,或是能 在較低的溫度下進行光吸收薄層的製程、進一步改善軟性基板 與光吸收薄層之間的晶格介面,而減少與金屬電極之間的膨脹 係數差異,並且能夠應用習用阻絕水氧的封裝材料進行封裝, 以達到製程快速、減少成本的效果。 、 【實施方式】 以下配合圖式及元件符號對本發明之實施方式做更詳細 的說,,俾使熟習該項技藝者在研讀本說明書後能據以實施。 第一圖係具有光吸收功能的奈米晶粒之軟性基板的製作 方法第一實施例的流程圖。如第一圖所示,本發明具有光吸收 功能的奈米晶粒之軟性基板的製作方法S1包含原料製備步驟 S11、抽絲步驟S13以及紡織步驟S15,該原料製備步驟S11 係具有光吸收功能的結晶奈米粉末如銅銦鎵硒(CIGS)結晶奈 米粉末或是銅銦鎵硒硫(CIGSS)結晶奈米粉末與高分子材料形 成複合材料膠粒,抽絲步驟S13將複合材料膠粒進行抽絲,而 形成複合材料纖維,紡織步驟S13將該等複合材料纖維進行紡 織’而形成布匹狀的一具有光吸收功能的奈米晶粒之軟性基 板’其中高分子材料是聚醯胺(polyamide,PA)、聚醯亞胺 (polyimide ’ PI)、聚謎醯亞胺(polyetherimide,PEI)、聚醢胺醯 亞胺(polyamideimide,PAI)以及聚苯胺(polyaniline,PANI)的至 少其中之一。 第二圖係具有光吸收功能的奈米晶粒之軟性基板的製作 方法第二實施例的流程圖。如第二圖所示,本發明具有光吸收 201216483 功能的奈米晶粒之紐基板的製作方法S2包含祕製備步驟 S21以及乳延步驟S23。原料製備步驟奶與第一實施例相 同’在此不在贅述。而軋延步驟S23 _複合材料膠粒加溫, 並進行軋延,_彡娜片狀的-具有光吸收魏的奈米晶粒之 軟性基板。 第三圖係具有光吸收功能的奈米晶粒之軟性基板的製作 方法第二實闕麟糊。如第二騎示,本發明具有光吸收 功能的奈米晶粒之軟性基板的製作綠S2包含原料製備步驟 S31以及溶劑鑄造步驟S33。原料製備步驟S31與第一實施例 相同’在此不在贅述。而溶劑鱗造步驟幻3將該複合材料膠粒 和溶劑的混合溶液倒人-蚊形狀容器㈣成複合膠體薄 板’當溶劑揮發後,將複合膠體薄板與容器分離,而形成膠片 狀的一具有光吸收功能的奈米晶粒之軟性基板。 / ,於第- Λ ^例至第二貫施例,該等具有光吸收功能的結 晶奈米粉末位於該等具有光魏魏的奈米晶粒之軟性基板 的表面’且該料分子材料的官能基沿—魏方向次序排列, 且該等具有光吸收魏的結晶奈綠末與該優選方向具有同 向性。 八 f四圖係為翩第-至第三實施例之具有光吸收功能的 T米日日粒之軟性基板的太陽能電池之結構示意圖,如第四圖所 不’太陽能電池1包含具有光吸收功能的奈米晶粒之軟性基板 10、背部金屬電極20、透明電極3〇、封膠層4〇,由於具有光 吸收功能的奈米晶粒之紐基板1G包含由於具有光吸&功能 的奈米晶粒’因此可以直接作為光吸收層,背部金屬電極2〇 係以鉬(Mo)所形成,堆疊於該具有光吸收功能的奈米晶粒之軟 性基板10 #-表面’透明電極3〇堆疊於該具有光吸收功能的 奈米0曰粒之軟性絲10的另一表面,可由硫化錦(Cds)、硫化 鋅(ZnS)、硒化銦(ln2Se3)、硫化銦(In2S3)、氧化辞(Zn 化,鋅(A1 : ZnO)、其他的透明導電氧化物扣⑽印脱付 conductive 0Xygen),以及鋁鎳合金等形成,而作為一接觸窗。 5 201216483 封膠層40堆疊於該背部金屬電極20及透明電極3〇之上,以 n __及魏。進—步地,太陽能電池 的ii3日5G’該光吸收薄層堆疊於具有光吸收功能 二半Ίt性基板1G的兩表面,也就是具有光吸收功能 的不未日日粒之I人性基板10和背部金屬電極20之間以及具 光及收功肖b的奈米晶粒之軟性基板⑴和透明電 =,個具有光吸收功能的奈米晶粒之軟心The hiding of the present invention is that the crystal nano-ends capable of absorbing energy such as CIGS or CIGSS crystalline nano powder can be directly injected into the new substrate towel, and the substrate itself has light absorption. , can be directly used as a light absorbing layer, or only need to be coated with a light absorbing layer, which can further reduce the process time or accelerate the light absorption at a lower temperature by accelerating nucleation or grain growth. Thin layer process, further improve the lattice interface between the flexible substrate and the light absorbing thin layer, and reduce the difference in expansion coefficient between the metal electrode, and can be packaged by using a sealing material which is resistant to water and oxygen, so as to achieve fast process And reduce the cost effect. [Embodiment] The embodiments of the present invention will be described in more detail below with reference to the drawings and the components and symbols, and can be implemented by those skilled in the art after studying this specification. The first figure is a flow chart of a first embodiment of a method for fabricating a soft substrate having a light absorbing function. As shown in the first figure, the method S1 for fabricating a soft substrate having a nano-crystal having a light absorbing function comprises a raw material preparation step S11, a spinning step S13, and a weaving step S15, wherein the raw material preparation step S11 has a light absorbing function. The crystalline nano powder such as copper indium gallium selenide (CIGS) crystalline nano powder or copper indium gallium selenide (CIGSS) crystalline nano powder forms a composite rubber particle with the polymer material, and the spinning step S13 combines the composite rubber particles The spinning is performed to form a composite fiber, and the textile step S13 is to woven the composite fiber to form a cloth-like soft substrate having a light absorbing function of nanocrystals, wherein the polymer material is polyamine ( Polyamide, PA), polyimide 'PI, polyetherimide (PEI), polyamideimide (PAI), and polyaniline (PANI) . The second figure is a flow chart of a second embodiment of a method for fabricating a soft substrate having a light absorbing function. As shown in the second figure, the method S2 for fabricating a nanocrystal substrate having a function of light absorbing 201216483 of the present invention comprises a secret preparation step S21 and a milk extension step S23. The raw material preparation step milk is the same as in the first embodiment' and will not be described herein. The rolling step S23_the composite rubber particles are heated and rolled, and the flaky-like soft substrate having the light-absorbing Wei nanocrystals. The third figure is a method for fabricating a soft substrate of a nanocrystal having a light absorbing function. As in the second riding, the preparation of the soft substrate of the nanocrystal having the light absorbing function of the present invention, green S2, comprises a raw material preparation step S31 and a solvent casting step S33. The raw material preparation step S31 is the same as that of the first embodiment' and will not be described herein. The solvent scale forming step 3 is to pour the mixed solution of the composite colloidal particles and the solvent into a human-mosquito-shaped container (4) into a composite colloidal sheet. When the solvent is volatilized, the composite colloidal sheet is separated from the container to form a film-like one. A soft substrate of nanocrystals with light absorbing function. / , in the first to the second embodiment, the light-absorbing functional crystalline nano-powder is located on the surface of the soft substrate having the nano-grain of the Wei Wei-wei and the material of the material The functional groups are arranged in the order of the -Wei direction, and the crystalline green tails having the light absorption Wei have the same orientation as the preferred direction. 8 f is a structural diagram of a solar cell of a soft substrate of a T-meter solar particle having a light absorbing function according to the third to third embodiments, as shown in the fourth figure, the solar cell 1 includes a light absorbing function. The soft substrate 10, the back metal electrode 20, the transparent electrode 3〇, and the sealant layer 4 of the nanocrystal grains, the nano-substrate 1G having a light-absorbing function, including the light-absorbing & The rice grain ' can therefore be directly used as a light absorbing layer, and the back metal electrode 2 is formed of molybdenum (Mo), which is stacked on the soft substrate 10 having a light absorbing function, and the surface of the transparent substrate 3 is transparent. The other surface of the soft filament 10 stacked on the nano-particles having the light absorbing function may be composed of sulfide (Cds), zinc sulfide (ZnS), indium selenide (ln2Se3), indium sulfide (In2S3), and oxidized words. (Zn, zinc (A1: ZnO), other transparent conductive oxide buckles (10), conductive aluminum oxide alloys, etc.), and formed as a contact window. 5 201216483 The sealing layer 40 is stacked on the back metal electrode 20 and the transparent electrode 3〇, with n __ and Wei. Further, the solar cell ii3 5G' light absorbing thin layer is stacked on both surfaces of the light-absorbing functional two-semiconducting substrate 1G, that is, the I human substrate 10 having the light absorbing function. Soft substrate (1) between the metal electrode 20 and the back metal electrode 20 and the nano crystal having the light and the recovery b, and the soft electric core of the nano crystal having the light absorbing function

士炫ίΐΐ係f用具有光吸收功能的奈米晶粒之軟性基板的 太電池之製作方法的流程圖。如第五_示,應用具有光The flow chart of the method for manufacturing a solar cell using a soft substrate having a light absorbing function of a nanocrystal. As shown in the fifth _, the application has light

吸收功旎的奈米晶粒之軟性基板的太陽能電池之製作方法S 包含基板製備步驟S41、背部金屬電極成膜步驟S43、透 極成膜步驟S45以及封裝步驟S47。基板製備步驟⑷準備具 有光吸收功能的結晶奈米粉末之—軟性基板。背 膜步,S43,在該軟性基板的任一面以蒸鑛或_的方式4 -金屬膜,以作為背部金屬電極,該金屬膜的成分之之功函 (work fimction)與軟性基板中具有光吸收功能的結晶奈米粉 相匹配’該金屬膜的成分通常為鉬(M〇)。透 S45在該軟性基板的另一表面形成以蒸鑛或雜的 -透明導賴,而作為-透明電極或接職,該透明電極 料係硫化鎘(CdS)、硫化鋅(ZnS)、硒化銦(in2Se3)、硫化鈿 (jn2S3)、氧化鋅(ZnO)、氧化鋁鋅(A1 : Zn〇)、其他的透明導電 氧化物(transparent conductive oxygen),以及紹鎳合金等。封步 步驟S47係在該背部金屬電極以及該透明電極的表面.二 透明塑膠層,以阻絕水氣及氧氣。更進一步地,$以包‘士^ 吸收薄層成膜步驟S49,在背部金屬電極成膜步驟以3及 電極成膜步驟S45之前,預先在該軟性基板的兩面各以aG 靶材或CIGSS靶材濺鍍而形成一光吸收薄層,以使光吸收 功能能夠在整個基板上均勻且連續,在使背部金屬電極和 電極,分別形成於兩個光吸收薄層之上。The solar cell manufacturing method S for absorbing the hard crystal nanocrystals includes a substrate preparation step S41, a back metal electrode film forming step S43, a polar film forming step S45, and a packaging step S47. The substrate preparation step (4) prepares a soft substrate of a crystalline nanopowder having a light absorbing function. a back film step, S43, on the surface of the flexible substrate, in the form of a vapor or a 4-metal film, as a back metal electrode, the work fimction of the composition of the metal film and the light in the flexible substrate The crystalline nanoparticle of the absorption function is matched. The composition of the metal film is usually molybdenum (M〇). S45 is formed on the other surface of the flexible substrate by steaming or impurity-transparent conduction, and as a transparent electrode or a post, the transparent electrode material is cadmium sulfide (CdS), zinc sulfide (ZnS), selenization Indium (in2Se3), strontium sulfide (jn2S3), zinc oxide (ZnO), aluminum oxide zinc (A1: Zn〇), other transparent conductive oxides, and smelting nickel alloys. Sealing step S47 is on the back metal electrode and the surface of the transparent electrode. A transparent plastic layer is used to block moisture and oxygen. Further, $ is a thin layer film forming step S49, and before the back metal electrode film forming step 3 and the electrode film forming step S45, an aG target or a CIGSS target is previously provided on both sides of the flexible substrate. The material is sputtered to form a light absorbing thin layer so that the light absorbing function can be uniform and continuous over the entire substrate, and the back metal electrode and the electrode are formed on the two light absorbing thin layers, respectively.

S 6 201216483 ,發明的特點在於,能夠直接將具有如CIGS結晶夺 直奈雜料能夠魏攻能的結晶奈米粉末 ^入倾基射,藉由此方式使縣板本身就具有光吸收 、、^^ ’可直接作為紐收層,或是只需鏟上光吸收薄層,可 加速成核或晶粒成長,進一步在減少製程時間, 在較低的溫度下進行光吸收騎的餘、進—步改 j "f收薄層之間的晶格介面,而減少與金屬電極之間的i脹 係數差異’並且麟細制阻絕水氧的封裝材料進行, 以達到製程快速、減少成本的效果。 、 以上所述者僅為用以解釋本發明之較佳實施例,並非企圖 據以對本卿做任何形式上之關,是以,凡有在相同之精神 下所作有關本創作之任何修飾或變更,皆仍應包括在本 圖保護之齡。 【圖式簡單說明】 第一圖係具有光吸收功能的奈米晶粒之軟性基板的製作 方法第一實施例的流程圖。 巧二圖係具有光吸收功能的奈米晶粒之軟性基板的製作 方法第二實施例的流程圖。 第二圖係具有光吸收功能的奈米晶粒之軟性基板的製作 方法第三實施例的流程圖。 第四圖係應用具有光吸收功能的奈米晶粒之軟性基板的 太陽能電池之結構示意圖。 第五圖係應用具有光吸收功能的奈米晶粒之軟性基板的 太陽能電池之製作方法的流程圖。 【主要元件符號說明】 1太陽能電池 1〇具有光吸收功能的奈米晶粒之軟性基板 20背部金屬電極 201216483 30透明電極 40封膠層 5〇光吸收層 S1具有光吸收功能的奈米晶粒之軟性基板的製作方法 S11原料製備步驟 S13抽絲步驟 S15紡織步驟 S2具有光吸收功能的奈米晶粒之軟性基板的製作方法 S21原料製備步驟 S23 軋延步驟S 6 201216483, the invention is characterized in that the crystal nano-nano powder having the Wei attack energy of the CIGS crystal straightening can be directly injected into the tilting base, thereby making the county plate itself have light absorption, ^^ ' can be used directly as a retraction layer, or just shovel the light absorption thin layer to accelerate nucleation or grain growth, further reduce the process time, and carry out the absorption of light absorption at a lower temperature. - Step-by-step j "f to reduce the lattice interface between the thin layers, and reduce the difference between the i-expansion coefficient between the metal electrodes and the fine-grained water-blocking encapsulation material to achieve rapid process and reduce cost effect. The above description is only for the purpose of explaining the preferred embodiments of the present invention, and is not intended to be in any form to the present invention, so that any modifications or changes relating to the present invention made in the same spirit. , should still be included in the age of protection of this figure. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a flow chart of a first embodiment of a soft substrate having a light absorbing function. Fig. 2 is a flow chart showing a second embodiment of a soft substrate having a light absorbing function. The second figure is a flow chart of a third embodiment of a method for fabricating a soft substrate having a light absorbing function. The fourth figure is a schematic structural view of a solar cell using a soft substrate of a nanocrystal having a light absorbing function. The fifth drawing is a flow chart of a method of fabricating a solar cell using a soft substrate of a nanocrystal having a light absorbing function. [Description of main components] 1 solar cell 1 软 soft substrate with light absorption function, substrate 20, back metal electrode 201216483 30 transparent electrode 40, sealing layer 5, light absorbing layer S1, nanocrystal having light absorption function Method for producing flexible substrate S11 Raw material preparation step S13 Spinning step S15 Textile step S2 Preparation method of soft crystal substrate having light absorption function S21 Raw material preparation step S23 Rolling step

S3具有光吸收功能的奈米晶粒之軟性基板的製作方法 S31原料製備步驟 S33溶劑鑄造步驟 S4應用具有光吸收功能的奈米晶粒之軟性基板之太陽能電 池的製作方法 S41基板製備步驟 S43背部金屬電極成膜步驟 S45透明電極成膜步驟 S47封裝步驟 S49光吸收層成膜步驟S3 Preparation method of soft substrate of nanocrystal having light absorption function S31 Raw material preparation step S33 Solvent casting step S4 Manufacturing method of solar cell using soft substrate of light crystal absorption function S41 Substrate preparation step S43 Back Metal electrode film forming step S45 transparent electrode film forming step S47 packaging step S49 light absorbing layer film forming step

Claims (1)

201216483 七 、申請專利範圍 1 包含了種具有光讀魏的奈米晶粒之軟絲板的製作方法, 複將複數個具有光吸收功能的結晶奈米粉末與 一個同77子材料形成複數個複合材料膠粒; :等複合材料膠粒進行抽絲,而形成複數個複 而形成布匹狀 ❿ 、’方織步驟’將該等複合材料纖維先進行纺織 的一具有光吸收功能的奈米晶粒之軟性基板。 ^含了種具妓吸收功能的奈米晶粒之軟性基板的製作方法, ,將複數個具有光吸收功能的結晶奈米粉末盘 是數個⑽子材料形成複數個複合材娜粒;以及 將轉複合材料膠粒加溫,並進行概,而形成 >片狀的一具有光吸收功能的奈米晶粒之軟性基板。 3包含T種具有光吸收魏的奈米晶粒之紐基板_作方法, if „驟,將複數個具有光吸收功能的結晶奈米粉末盘 硬數個子材料形成複數個複合材料膠粒;以及 〃 二 =鑄造步驟’ 等複合材娜粒和賴的混合溶液倒入 形成複合膠體薄板’當溶劑揮發後,將複合 ===離,而形細狀的—具有光吸收功能的奈 4.如申請專利範圍第!項至第3項任一項所述之方法, =具有光吸收功能的結晶奈米粉末位於該具.有光吸收功月ς 奈米晶粒之軟性基板的表面。 S 9 201216483 5二=請專利範圍第丨項至第3項任—項所述之方法, ,:材料的官能基沿一優選方向次序排列,且該等具有;: 收功此的結晶奈米粉末與該優選方向具有同向性。 t,專利範圍第1項至第3項任—項所述之方法,i中 射Μ子材料是親胺、亞胺、㈣ ^ 亞胺以及聚苯_至少其巾之―。 妝仏祕 7. 請專利範圍第1項至第3項任-項所述之方法,並中 该專具有光吸收功能的結晶奈米粉末係為銅銦鎵砸 ^ 末或是銅銦鎵硒硫結晶奈米粉末。 不木杨 8. —種太陽能電池,包含: 具有光吸收功旎的奈米晶粒之軟性基板,包含複 吸收功能的奈μ粒,而具有光魏舰;mm先 ^部金屬電極’堆疊賊具有光吸收魏的奈米晶粒之軟性 基板的一表面,以錮所形成; -透明電極,堆疊於該具有光吸收魏的奈米 的另一表面,而作為一接觸窗;以及 秋旺丞板 複數個封膠層,堆疊於該背部金屬電極及該透明電極之上, 一透明塑膠形成’以隔絕水氣及氧氣。 9. 如申請專利範圍第8項所述太陽能電池,其中該透明電極 係以硫化鎘、硫化鋅、硒化銦、硫化銦、氧化鋅、 以及鋁鎳合金的至少其中之一所形成。 .’ 10. 如申請專利範圍第8項所述太陽能電池,進一步包 吸收薄層’該二光吸收薄層係分別形成於該具有光吸收功能的 奈米晶粒之軟性基板和該背部金屬電極之間,以及該具有光吸 201216483 • ㈣能的奈米晶粒之軟性基板和該翻電極之間。 j 1L如巾I,專利細第第8項所述太陽能電池, 光吸收功能的結晶奈米粉末係為鋼 ^ ^ ^ 銦鎵硒硫結晶奈米粉末。 豕…日曰不水叔末或疋銅 12 · -種應用具有光吸收魏 電池的製作方法,包含·· 日日租疋氙『生基板之太%月b 軟性基板; ^板製備步驟,顿具有歧收魏·晶奈絲末之一 板表面以蒸鍵 膜的成分 奈米粉末函數與該軟性基板中能 —透明塑膠層,以阻^明電極的表面形成 專利範’12項所述之方法,進—步包含-光吸收 步ί之前1先_成膜步驟及該透日卿成膜 硒硫靶材濺2念开4 ίΐ兩面以銅銦鎵硒靶材或銅銦鎵 15. 如申請專職_ 9項所述之方法,其中形成該透明 電極 S 11 201216483 • 的材料係硫化編、硫化鋅、砸化銦、硫化銦、氧化鋅、氧化铭 -鋅以及鋁鎳合金的至少其t之一。201216483 VII. Patent application scope 1 includes a method for fabricating a soft wire plate with a nano-grain of optical reading Wei, and a plurality of crystalline nano-powders having a light absorbing function are combined with a composite material of 77 sub-materials. Material colloidal particles; : a composite material colloidal particle is drawn, and a plurality of nanocrystals having a light absorbing function are formed by forming a plurality of complexes to form a cloth-like ❿, 'square weave step' to sew the composite fibers first. Soft substrate. ^ A method for preparing a soft substrate having a nano-grain having a absorbing function, wherein a plurality of crystalline nano-powder disks having a light absorbing function are a plurality of (10) sub-materials to form a plurality of composite materials; The composite composite rubber particles are heated and subjected to a general structure to form a soft substrate having a light absorbing function of nanocrystal grains. 3 comprising a T-type substrate having a light absorption of nanocrystals as a method, if „, a plurality of crystalline nano-powders having a light absorbing function are hardly formed into a plurality of composite rubber particles; 〃 2 = casting step 'When the composite solution of the composite material Na and lai is poured into a composite colloidal sheet', when the solvent is volatilized, the composite === away, and the shape is fine - the light absorption function of the nai 4. The method of any one of the above-mentioned items, wherein the crystal nano-powder having a light absorbing function is located on the surface of the flexible substrate having the light absorbing power of the nanocrystals. 201216483 5二=Please refer to the method described in the third to third items of the patent scope, : the functional groups of the materials are arranged in a preferred direction order, and the materials have the following:: Crystallized nano powder with The preferred direction has the same orientation. t, the method of claim 1 to 3, wherein the scorpion material is nucleophilic, imine, (tetra)imine, and polyphenylene_at least巾之.. Makeup Secret 7. Please patent range 1 to 3 The method according to any one of the preceding claims, wherein the crystalline nanopowder powder having a light absorbing function is copper indium gallium ruthenium or copper indium gallium selenide sulphur crystalline nano powder. , comprising: a soft substrate with a nano-grain of light absorption work, comprising a nano-particle of a re-absorption function, and having a light Wei ship; a first metal electrode of the 'pre-metal electrode' stacking thief has a nanocrystal of light absorption Wei a surface of the flexible substrate is formed by ruthenium; a transparent electrode stacked on the other surface of the nanometer having light absorption Wei as a contact window; and a plurality of sealant layers of the autumn slab On the back metal electrode and the transparent electrode, a transparent plastic is formed to 'separate water vapor and oxygen. 9. The solar cell according to claim 8, wherein the transparent electrode is cadmium sulfide, zinc sulfide, selenium. Forming at least one of indium, indium sulfide, zinc oxide, and an aluminum-nickel alloy. 10. The solar cell of claim 8 further comprising an absorption thin layer 'the second light absorbing thin layer system respectively Between the flexible substrate of the nanocrystal having the light absorbing function and the metal electrode of the back, and the soft substrate having the nanocrystal of the light-absorbing 201216483 • (IV) energy and the flip electrode. Towel I, the solar cell described in the eighth item of the patent, the crystalline nano-powder of the light absorbing function is steel ^ ^ ^ indium gallium selenide sulfur crystal nano powder. 豕 曰 曰 曰 叔 叔 叔 疋 疋 疋 疋 疋 疋- A method for fabricating a light-absorbing Wei battery, including ····································································· The constituent nano-powder function of the vaporized key film and the energy-transparent plastic layer in the flexible substrate form a method for preventing the surface of the electrode from forming the patent described in the '12 item, and the step-by-step includes - the light absorption step ί _ film forming step and the transparent film forming selenium-sulfur target splashing 2 ΐ 4 ΐ ΐ 以 以 以 铜 铜 铜 铜 铜 铜 铜 铜 铜 铜 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Electrode S 11 201216483 • The material is vulcanized, Zinc, indium hit, indium sulfide, zinc oxide, Ming - zinc, and aluminum-nickel alloy at least one of t. 1212
TW099135240A 2010-10-15 2010-10-15 A method for producing a flexible substrate having a nanocrystalline crystal having a light absorption function and a solar cell using the same, and a method of manufacturing the same TWI424577B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099135240A TWI424577B (en) 2010-10-15 2010-10-15 A method for producing a flexible substrate having a nanocrystalline crystal having a light absorption function and a solar cell using the same, and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099135240A TWI424577B (en) 2010-10-15 2010-10-15 A method for producing a flexible substrate having a nanocrystalline crystal having a light absorption function and a solar cell using the same, and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201216483A true TW201216483A (en) 2012-04-16
TWI424577B TWI424577B (en) 2014-01-21

Family

ID=46787215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099135240A TWI424577B (en) 2010-10-15 2010-10-15 A method for producing a flexible substrate having a nanocrystalline crystal having a light absorption function and a solar cell using the same, and a method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI424577B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI372805B (en) * 2005-09-15 2012-09-21 A method for making fiber products with absorbed odor, anti-bacteria, thermal diffusive and cooling performances
AU2007314229A1 (en) * 2006-03-23 2008-05-08 Solexant Corp. Photovoltaic device containing nanoparticle sensitized carbon nanotubes

Also Published As

Publication number Publication date
TWI424577B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
TWI420681B (en) A solar cell and a manufacturing method thereof, and a solar cell module
US7605328B2 (en) Photovoltaic thin-film cell produced from metallic blend using high-temperature printing
Saadi et al. Recent developments and applications of nanocomposites in solar cells: a review
US20120067408A1 (en) Sintered CZTS Nanoparticle Solar Cells
Mucha et al. Electrical and optical properties of titanium oxynitride thin films
JP2009528681A (en) High-throughput semiconductor layer formation using chalcogen and intermetallic materials
CN101443892A (en) High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
TW201033382A (en) Copper delafossite transparent p-type semiconductor: methods of manufacture and applications
US9831361B2 (en) Method of fabricating nanocone texture on glass and transparent conductors
US10714648B2 (en) Solar cell with graphene-silicon quantum dot hybrid structure and method of manufacturing the same
Su et al. The surface-plasmon-resonance and band bending effects on the photoluminescence enhancement of Ag-decorated ZnO nanorods
TW200919751A (en) Distributed coax photovoltaic device
Xu et al. Flexible perovskite solar cells: material selection and structure design
Min et al. Flexible high-efficiency CZTSSe solar cells on diverse flexible substrates via an adhesive-bonding transfer method
US9735294B2 (en) Solar cell and manufacturing method thereof
TW201507180A (en) Photovoltaic device and fabrication thereof
Tang et al. Preparation of silver nanowire/AZO composite film as a transparent conductive material
Song et al. Aqueous synthesis of alloyed CdSexTe1-x colloidal quantum dots and their In-situ assembly within mesoporous TiO2 for solar cells
CN105742390B (en) A kind of overlapping thin film solar battery and preparation method thereof
Yu et al. Facile boosting light-scattering of ZnO nanorods in broadband spectrum region
Cheng et al. Boosted electroluminescence of perovskite light-emitting diodes by pinhole passivation with insulating polymer
Li et al. Fabrication and application of indium-tin-oxide nanowire networks by polystyrene-assisted growth
Ke et al. Changing the thickness of two layers: i-ZnO nanorods, p-Cu 2 O and its influence on the carriers transport mechanism of the p-Cu 2 O/i-ZnO nanorods/n-IGZO heterojunction
US20120060922A1 (en) Layered inorganic nanocrystal photovoltaic devices
TW201216483A (en) Method for manufacturing nanometer grain flexible substrate having photo absorption function and solar cell applying the same and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees