TW201215715A - Non-woven farbric formed by cellulose fiber and separator for electric accumulator element - Google Patents

Non-woven farbric formed by cellulose fiber and separator for electric accumulator element Download PDF

Info

Publication number
TW201215715A
TW201215715A TW100127493A TW100127493A TW201215715A TW 201215715 A TW201215715 A TW 201215715A TW 100127493 A TW100127493 A TW 100127493A TW 100127493 A TW100127493 A TW 100127493A TW 201215715 A TW201215715 A TW 201215715A
Authority
TW
Taiwan
Prior art keywords
fiber
cellulose
woven
woven fabric
diameter
Prior art date
Application number
TW100127493A
Other languages
Chinese (zh)
Inventor
Masaya Omura
Original Assignee
Daicel Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chem filed Critical Daicel Chem
Publication of TW201215715A publication Critical patent/TW201215715A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The present invention is about processing paper manufacturing with cellulose fiber having average diameter within 0.1 to 20 μ m and cellulose nanofiber having average diameter less than 100nm to prepare non-woven farbric. The thickness of the non-woven farbric can be less than 20 μ m. Corresponding to cellulose fiber of 100 weight parts, the ratio of said cellulose nanofiber could be about 0.01 to 15 weight parts. The non-woven farbric of the present invention is fine by not having synthetic resin substantially as well. For example, even though the non-woven farbric does not have paper strength enhancer, such as polyacrylamide, and is a thin material, its mechanical strength is excellent. Futhermore, because its air permeability is excellent, the non-woven farbric can be used in a separator for electric accumulator element or filter, etc.

Description

201215715 六、發明說明: 未、含有合成樹脂所形成的紙力 以下之微小纖維直徑的纖維素 不織布所形成的蓄電元件用隔 【發明所屬之技術領域 本發明係有關實質± 增強劑’且由具有微米級 纖維所形成的不織布及言亥 離板。 【先前技術】 習知者 力增強 用對氣 件的隔 裝置等 極開發 維素纖 如,日 有一種 質以隔 板係以 濕紙上 成隔離 解之纖 ,並揭 左右。 按 劑或紙 ,且利 蓄電元 或行動 件的積 定之纖 例 中揭露 活性物 述隔離 在於該 作為構 力而分 纖維素 〇 ·4 μπι 纖难常.纖維所%成的不·織布係添加 作為紙而利用於印刷用紙或書籍等 體或液體等的穿透性,亦利用於過濾器或 離板等。di 5,丨a _ ^ 特別疋,近年來隨著混合動力車 冨中的電池或電容器(capacitor)等蓄電元 亦提出有將熱穩定性優良且呈電化學穩 維所形成的不織布用作隔離板的技術。 本特開平10-223 196號公報(專利文獻1} 非水系電池,其為將正極活性物質與負極 離板電子隔離而成的非水系電池,其中前 纖維素為原料來製造濕紙,並在保持有存 的空隙構造的狀態下經乾燥。該文獻中, 板的纖維素纖維,係記載有由高壓下剪切 維直徑1 μιη以下的微纖維化纖維素、細菌 示經打漿之微纖維化纖維素的纖維直徑為 又’作為在濕紙上保持空隙構造的狀態下 進行乾燥的方法’係記載有將水以有機溶媒取代來進行 ^燥的方法°再者’其記載隔離板的厚度較佳為 15〜ΙΟΟμηι ’且實施例中係調製約5〇μηι的隔離板。 201215715 又’日本特開2006-49797號公報(專利文獻2)中揭 露有一種蓄電裝置用隔離板,其為包含最大纖維粗度為 lOOOnm以下的纖維素纖維,且通氣度為5〜700秒/1〇〇cc 的隔離板’其在〇.8莫耳/升的四氟硼酸化四乙基銨鹽/ 丙烯碳酸S旨溶液含浸於該隔離板的狀態下,由交流雙端 子法所算出之20°C下的膜電阻値為l.OQcm2以下。該文 獻中記載’纖維素纖維之最大纖維直徑較佳為4〇〇nm以 下’更佳為1 5〇nm以下,作為纖維素纖維則記載有微纖 維化纖維素、細菌纖維素。其進一步記載隔離板的厚度 為5〜5〇μιη,較佳為1〇〜3〇μηι。 此等隔離板當中 .......…丨'入《 « ]-。。佩•娜哗π纖維素的 会 板其強度較低。此外,就紙而言,通常為了提高纖 =素纖維不織布的強度,一般作為紙力增強劑係摻合有 風丙烯醯胺。惟,若摻合聚丙烯醯胺時,則不僅呈電化 予不穩定’且聚丙烯醯胺亦為致癌性物質,因此由安全 而。亦不佳。另一方面,單獨包含細菌纖維素的隔離 不僅難以進行造紙、生產性低,且孔徑亦小,例如其 不適合於電容器等的隔離板,用途有限。 揭露右— “讯、寻刊文獻3) 種鋰電池用隔離板,該鋰電池包括正 .合金的負極、隔離板及電解液,其十前述隔離 :。為以天然紙聚20〜70重量%與細微合成纖維8〇〜3〇 合比例經混合造紙的薄,且前述細微合成 了作纖維直徑為5μιη以下。該文獻中,細微合成纖維 織布的孔徑微小化’作為薄板乾燥時未與天然 201215715 漿形成氫鍵的合成纖維係使用聚乙烯、聚丙烯、醢胺 (aramid)。進而’實施例中除天然紙漿及細微合成纖維外 ,還摻合有10%之熱熔融溫度70°C的維尼綸纖維,並於 8〇t:下進行處理,藉此即製造出厚50μιη左右的隔離板 然而,該隔離板中仍含有維尼論纖維等合成樹ρ所 形成的纖維,故呈電化學不穩定。更且,由於其含有厚 的天然紙漿,而難以使隔離板薄材質化。 [先前技術文獻] [專利文獻] [專利文獻1]曰本特開平10-223丨96號公報(申請專利範圍 、段落[0032][0043][0057]、實施例) [專利文獻2]日本特開2006_49797號公報(申請專利範圍 、段落[00 19] [0020] [0042]、實施例) 請專利範圍 [專利文獻3]曰本特開平8-17 1 893號公報(申 第1項、段落[0009]、實施例) 【發明内容】 [發明所欲解決之課題] 下之二本發明之目的在於提供一種由具有微米級以 下之Μ小纖維直徑的纖維素纖維所形成 耐熱性高的纖維素纖維不織布 '" 元件用隔離板。 Ψ /不織布所形成的蓄電 本發明之其他目的在於提供一種 w201215715 VI. Description of the invention: A storage element for a storage battery formed by a cellulose non-woven fabric having a microfiber diameter of less than a paper strength formed by a synthetic resin, the present invention relates to a substance ± an enhancer and has The non-woven fabric formed by the micron-sized fibers and the detached board. [Prior Art] The reinforcement of the conventional force is developed by using a separator for the gas element. For example, there is a kind of material which is separated by a separator on a wet paper, and is exposed. According to the agent or paper, and the accumulation of electricity cells or moving parts, the active matter is disclosed as the separation of the cellulose 〇·4 μπι as the mechanical force. The fiber is not woven. The penetrating property of a body such as printing paper, a book, or the like as a paper is added, and it is also used for a filter, a plate, or the like. Di 5, 丨a _ ^ Specially, in recent years, as a battery or a capacitor in a hybrid rut, a non-woven fabric which is excellent in thermal stability and electrochemically stable is also used as an isolation. Board technology. Japanese Laid-Open Patent Publication No. Hei 10-223-196 (Patent Document 1) A non-aqueous battery in which a positive electrode active material and a negative electrode are electrically separated from each other by a plate, wherein pre-cellulose is used as a raw material to produce wet paper, and It is dried in a state in which the existing void structure is maintained. In this document, the cellulose fibers of the sheet are described as microfibrillated cellulose having a diameter of 1 μm or less under high pressure, and microfibrillated by bacteria. The fiber diameter of cellulose is a method of drying as a state in which a void structure is maintained on a wet paper. A method of drying water with an organic solvent is described. Further, the thickness of the separator is preferably described. In the embodiment, a spacer of about 5 〇 μηι is prepared, and in the embodiment, a separator for a power storage device, which contains the largest fiber, is disclosed in Japanese Laid-Open Patent Publication No. 2006-49797 (Patent Document 2). Cellulose fiber having a thickness of less than 100 nm and a separator having a permeability of 5 to 700 sec / 1 cc cc. 其. 8 mol / liter of tetrafluoroborate tetraethylammonium salt / propylene carbonate S Purpose In the state where the liquid is impregnated into the separator, the film resistance 20 at 20 ° C calculated by the alternating current double terminal method is 1.0 Ω cm 2 or less. It is described in the literature that the maximum fiber diameter of the cellulose fiber is preferably 4 〇〇. The thickness of nm or less is more preferably 15 〇 nm or less, and the cellulose fiber is described as microfibrillated cellulose or bacterial cellulose. The thickness of the separator is further described as 5 to 5 μm, preferably 1 to 3 〇μηι. Among these separators.........丨' into '«--.. Peña Na 哗 cellulose board has a lower strength. In addition, in terms of paper, usually to improve Fiber = plain fiber non-woven fabric strength, generally used as a paper strength enhancer blended with wind acrylamide. However, if polypropylene decylamine is blended, it is not only electro-oxidized and unstable, and polypropylene decylamine is also carcinogenic. On the other hand, the separation of bacterial cellulose alone is not only difficult to carry out papermaking, but also has low productivity and a small pore size. For example, it is not suitable for a separator such as a capacitor, and has limited use. Exposing the right - "Xun, Ref. 3" The separator for the pool, the lithium battery comprises a positive electrode of the alloy, the separator and the electrolyte, and the foregoing isolation: the mixture is 20~70% by weight of the natural paper and 8〇3 to the fine synthetic fiber. The papermaking is thin, and the above-mentioned finely synthesized fibers have a diameter of 5 μm or less. In this document, the pore diameter of the fine synthetic fiber woven fabric is miniaturized. As a synthetic fiber which does not form a hydrogen bond with the natural 201215715 slurry when the sheet is dried, polyethylene is used. Polypropylene, aramid. Further, in the embodiment, in addition to natural pulp and fine synthetic fibers, 10% of vinylon fiber having a hot melting temperature of 70 ° C is blended and treated at 8 〇 t: Thereby, a separator having a thickness of about 50 μm is produced. However, the separator also contains fibers formed by synthetic trees ρ such as Venetian fibers, and thus is electrochemically unstable. Moreover, since it contains a thick natural pulp, it is difficult to make the separator sheet thin. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Patent Laid-Open No. Hei 10-223-96 (Patent Application, Paragraph [0032] [0043] [0057], Example) [Patent Document 2] Japan Japanese Laid-Open Patent Publication No. 2006_49797 (Patent Application No., Paragraph [0019] [0020] [0042], and Examples) Patent Range [Patent Document 3] 曰本特开平8-17 1 893 (Application No. 1, [0009], EMBODIMENT OF THE INVENTION [Problems to be Solved by the Invention] The second object of the present invention is to provide a cellulose fiber having a diameter of a microfiber having a micron order or less and having high heat resistance. Cellulose fiber non-woven fabric '&#; Storage of electricity formed by Ψ/non-woven fabrics Another object of the present invention is to provide a w

可兼具透氣性與機械強度的纖維素纖維不:二:: 布所形成的蓄電元件用隔離板。 Λ布及該不A 201215715 ,且Π = 的在於提供…電化學穩4 生產性及女王性亦咼的纖維素纖 布所形成的f電元件用隔離板。 _及該不織 本啦月之别的目的在於提供一種孔徑 電容器等的纖維素纖維不織布及大且適於 元件用隔離板。 +織布所形成的蓄電 [用以解決課題之手段] 本發明人為達前述課題而戮力進行研 ··藉由對平均纖維直徑〇 1 。寸的、,,。果發現 維古π 1〜20叩之纖維素纖維與平均纖 士直到、於100nm之纖維素奈米纖維近行造紙' 提 尚具有微米級以下之微小纖 之不織布的卿及機械強::維素纖維所形成 即,本發明之不織布::平;:二即:完成。 纖維素纖維與平均纖維直 γ l 之 維進行造紙的不織布^之纖維素奈米纖 可為叫…。前本發明之不織布其厚度 平均纖續异碎斟虫、義、准素奈米纖維可來自植物,且 =長度對平均纖維直#的比為2_以上。前述纖 ::二:纖維的平均纖維直徑可為15〜 徑分布的標準差為8〇nm 1 且,.戴·准直 為以包含以下㈣的m维素奈米纖維可 液調製步驟,使原料纖…所獲得的奈米纖維:分散 散液;及均質化步驟,=纖維分散於溶劑中來調製分 vaWe叫之均㈣具備破碎型均質閥座—g 理。前述原料纖維素纖唯心對前述分散液實施均質化處 維所形成之未乾燥紙it為來自木材纖維及/或種毛纖 ’、水的纖維素纖維,且卡帕值為30以 201215715 下。前述纖維素纖維之孚祕她泌士 十均纖維直徑可為0丨〜i 〇 μπ^前 述纖維素纖維之平均鑰給古^ 纖維直徑與前述纖維素奈米纖維之 平均纖維直徑的比可為針本 马則者/後者=10/1〜100/1左右。相 對纖維素纖維1 0 〇重晋Α ^ 里物’刖述纖維素奈米纖維的比例 可為0.01〜15重量份力士 石。本發明之不織布係以實質上 未含有合成樹脂為佳,你丨1 Β , ,Μ 例如即便未含有聚丙烯醯胺等紙 力增強劑,但仍為薄好@ 處且機械強度優良。即,本發明 之不織布於其紙張重 .XT/1< 里1〇g/m下的拉伸強度可為 6N/1 5mm以上。更且, ,isi 、# > μ· + 發明之不織布可保持機械強度 ’同時透氣性亦優良,组 1〇,ηΛ /1ΛΛ 、我張重置Wg/m2下的透氣度可為 10〜500 秒 /1 ooml 〇 本發明中亦包括俞 離板。 迷不織布所形成的蓄電元件用隔 [發明之效果] 本發明中’由於传拟_ τ 素纖維與平均纖維直二均纖維直徑ο·1〜之纖維 行造紙,故可提高具:=0nm之纖維素奈米纖維進 維素纖維所形成之卡級以下之微小纖維直徑的纖 其雖為薄材質,但仍η Μ機械強度及耐熱性。更且’ 用於過濾器或蓄電-:兼具透氣性與機械強度,故可利 穩定,而特別有=蓄:隔離板等。特別是因呈電化學 。再者,由於未含有取Α件之隔離板’生產性亦優良 安全性亦古 來丙烯醯胺等有害的紙力增強劑, U叼。又,因兑上 特別適用於電容器等了徑較大’在蓄電元件當中’亦 201215715 【實施方式】 [用以實施發明之形態] 本發明之不織布係A1 纖維素纖維與平均纖:為對平均纖維直徑ο.1〜20,之 維進行造紙% &的、、直杈小於i Ohm 2纖維素奈米纖 A而成的不織布。 [纖維素纖維] 纖維素纖維只要3 類則未特別限制,可:丨叛V-1,4-聚葡萄糖結構的多糠 例如木材纖唯Μ 來自高等植物之纖維素纖維[ 維、甘樹'闕葉㈣的木材紙㈣)、竹纖 勃皮纖維(例如麻 (棉賊、木棉、吉貝木棉等)、 麻、紐西蘭府g i構祕、結香等)、葉纖維(例如馬尼拉 q鬧厥4 )等天紗 動物之纖維素键维、 、·,、纖維(紙漿纖維)等]、來自 來自細菌之纖維素输雄、、素(asC1dian cellulose)等)、 素(醋酸纖維夸)化學合成纖維素纖維[乙酸纖維 纖維素、萨萨、、丙酸纖維素、丁酸纖維素、醋酸丙酸 酸纖維素:磷:I纖維素等有機酸酯;硝酸纖維素、硫 混酸H維素等無機酸8旨n醋酸纖維素等 基纖維素料.t纖維素(例如經乙基纖維素(HEC)、經丙 基纖唯素等/錢基纖維素㈣基纖料(CMC)、緩乙 :再生纖維= ί = (甲基纖維素、乙基纖維素等) 此等纖維素纖維可單璃紙等)等纖維素衍生物等]等。 此外作或兩種以上組合使用。 以機械方法二纖維素纖維’當使用紙聚時,紙衆可為 磨機械紙毁、二二'(碎木紙漿、精製-研磨紙渡、熱 予紙裝、化學研磨紙漿等),或為以化 201215715 學方法所得之紙漿(工蓺 視需求而為如播 7 亞硫酸紙漿等)等’亦可 打漿紙漿等)。 7 1預備打漿)處理的打漿纖維( 處理,例如脫脂處維也可為實施有常用之精製 纖維素纖維亦可盥$、+ 、維(例如脫脂缔等)。更且, …以下(it纖維素奈米纖維相同,為來自卡 、将別是0〜1〇力士、+丄 本發明中,输維去站 乾燥紙漿的纖維。 下之微小纖維直… 千均纖維直徑為微米級以 如0.1〜ΙΟμΓη,: Ρ ’平均纖維直經為0.1〜2〇μηΐ,例 為02 U : 為〇.15〜3陶(例如〇-2〜2_),更佳 為0.2〜1μηι(特別是〇 & μ J旯佳 纖維素纖維具有㈣左右°本發明中’由於 生產性優Ρ π ,、,戴維直牷,因而容易進行造紙、 生座f生優良’同時亦 薄材質化t f ~ 制短路,而能夠調製適於要求 存柯真化之電容器等蓄 更且,_ _ t畜電兀件或過濾器的不織布。 更且義,隹直徑分布 s 1ΠΛ 、 h 知+差為例如1 μηι以下(例如 5〜lOOrrn),較佳為8〜5〇〇nm, a* λα. *. 更佳為 10〜1 OOnm 左右。 再者,纖維素纖維的最小 〇.!〜0.»左右。本二維直佐可為〇_—以上(例如 纖維的纖維直徑均等,.故可構成不織布之纖維素 欠可使不織布的孔徑呈均等。 纖維素纖維的平均纖唯导片 纖、·隹長度並未特別限定,惟 使纖維彼此適當交纏而確 峰保不織布的強度之觀點而言, 車父佳為0 · 0 1 m m以上,你丨心Λ Λ < , Λ 上例如0.05〜10mm,較佳 ,更佳為0.3〜4mm(特別θ n 4 , m (㈣疋0.4〜3mm)左右。纖維素纖維 之相對平均纖維直徑的+ 十构纖維長度(平均長徑比Cellulose fiber which can combine both gas permeability and mechanical strength: 2:: A separator for a storage element formed by a cloth. Λ 及 该 2012 2012 2012 2012 Π 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 _ and the other purpose of this is to provide a cellulose fiber nonwoven fabric such as an aperture capacitor and a large separator suitable for components. + Storage by woven fabric [Means for Solving the Problem] The inventors of the present invention have made great efforts to achieve the above problems by using an average fiber diameter of 〇 1 . Inch,,,. It is found that the cellulose fibers of Vigo π 1~20叩 and the average fiber fiber until the cellulose nanofibers at 100nm are in close proximity to the papermaking fabrics, and the mechanical and mechanical strength of the microfibers with micron-sized fibers below: The non-woven fabric of the present invention is formed by the plain fiber: flat; The cellulose nanofiber of the non-woven fabric which is made of cellulose fiber and the average fiber straight γ l can be called... The thickness of the non-woven fabric of the present invention is average, and the ratio of the length of the non-woven fabric to the aphid, the sense, the semi-nanofiber can be from the plant, and the ratio of the length to the average fiber straight # is 2 or more. The fiber::2: the average fiber diameter of the fiber may be 15~ The standard deviation of the diameter distribution is 8〇nm 1 and the collimation is a liquid-liquid modulating step of the m-dimensional nanofiber comprising the following (4). The raw material fiber...the nanofiber obtained by the dispersion: the dispersion liquid; and the homogenization step, the fiber is dispersed in the solvent to prepare the fraction vaWe called (4) having the crushing type homogenizing valve seat. The undried paper which is formed by homogenizing the above-mentioned raw material cellulosic fiber to the above-mentioned dispersion liquid is a cellulose fiber derived from wood fiber and/or seed fiber, water, and has a Kappa number of 30 to 201215715. The cellulose fiber of the above-mentioned cellulose fiber may have a diameter of 0 丨 i i π π π 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述 前述The needle is the horse/the latter is about 10/1~100/1. The ratio of the cellulose fiber to the cellulose fiber 10 〇 Α Α 里 刖 刖 刖 刖 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素 纤维素The non-woven fabric of the present invention is preferably substantially free of synthetic resin. For example, even if it does not contain a paper strength enhancer such as polypropylene decylamine, it is still thin and has excellent mechanical strength. Namely, the nonwoven fabric of the present invention may have a tensile strength of 6 N/1 5 mm or more in a paper weight of .XT/1<1. Moreover, the isi, # > μ· + invention non-woven fabric can maintain mechanical strength' while the air permeability is also excellent, the group 1〇, ηΛ /1ΛΛ, I can adjust the air permeability under Wg/m2 can be 10~500 Seconds / 1 ooml 俞 This invention also includes Yu Yiban. Separation of the storage element formed by the non-woven fabric [Effect of the invention] In the present invention, the fiber can be made by the fiber of the average fiber diameter of the average fiber diameter ο·1~, which can be improved by =0 nm. The fine fiber diameter of the cardinal grade formed by the cellulose nanofibers is a thin material, but it is still η Μ mechanical strength and heat resistance. Furthermore, it is used for filters or electricity storage - it has both gas permeability and mechanical strength, so it can be stabilized, and particularly has a storage plate: a separator. Especially because it is electrochemical. Furthermore, since the separator which does not contain the pick-up member is also excellent in productivity, it is also a harmful paper strength enhancer such as acrylamide. In addition, it is particularly suitable for capacitors and the like, and has a large diameter 'in the storage element'. 201215715 [Embodiment] [Form of the invention] The nonwoven fabric of the present invention A1 Cellulose fiber and average fiber: average The fiber diameter is ο.1 to 20, and the nonwoven fabric of the papermaking % & is less than i Ohm 2 cellulose nanofiber A. [Cellulose fiber] Cellulose fiber is not particularly limited as long as it is classified into three categories. It can be: a fiber that is rebellious against V-1,4-polydextrose structure, such as wood fiber, only cellulose fiber from higher plants [V., 甘树'木材 leaf (four) wood paper (four)), bamboo fiber husk fiber (such as hemp (cotton thief, kapok, jibe kapok, etc.), hemp, New Zealand gi secret, fragrant, etc.), leaf fiber (such as Manila q厥4) Cellulose bond, etc., fiber (pulp fiber), etc. of Tianshi animal, from cellulose-derived bacteria, asC1dian cellulose, etc. Synthetic cellulose fiber [cellulose cellulose, Sassa, cellulose propionate, cellulose butyrate, cellulose acetate propionate: organic acid ester such as phosphorus: I cellulose; nitrocellulose, sulfur mixed acid H-dimensional The inorganic cellulose 8 is a base cellulose material such as cellulose acetate. t cellulose (for example, ethyl cellulose (HEC), propyl cellulose, etc. / ketone cellulose (tetra) based fiber (CMC), slow B: Regenerated fiber = ί = (methyl cellulose, ethyl cellulose, etc.) Glass paper) and cellulose derivatives and the like] and the like. In addition, it may be used in combination of two or more. Mechanically, the two cellulose fibers 'when using paper, the paper can be destroyed by mechanical paper, two or two' (ground wood pulp, refined - abrasive paper, heat to paper, chemically ground pulp, etc.), or The pulp obtained by the method of 201215715 can be used as a pulp such as sulfite pulp, etc. 7 1 pre-slurry) treated pulping fiber (treatment, such as degreasing, can also be used to implement commonly used refined cellulose fibers can also be 盥$, +, dimensional (such as degreased), etc. The same is the same as the sodium fiber, which is from the card, it will be 0~1〇力士,+丄In this invention, the fiber is sent to the station to dry the pulp. The tiny fiber is straight... The average fiber diameter is micron to 0.1. ~ΙΟμΓη,: Ρ 'The average fiber straight is 0.1~2〇μηΐ, for example 02 U: 〇.15~3 Tao (for example 〇-2~2_), more preferably 0.2~1μηι (especially 〇& μ J旯佳 cellulose fiber has (four) left and right. In the present invention, 'because of the superiority of production π π , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Further, it is possible to modulate a non-woven fabric suitable for storing a capacitor such as a capacitor, which is required to be stored in a capacitor, etc. Further, the diameter distribution s 1 ΠΛ , h know + difference is, for example, 1 μηι or less ( For example, 5~lOOrrn), preferably 8~5〇〇nm, a* λα. *. More preferably 10~ Further, the cellulose fiber has a minimum 〇.!~0.». This two-dimensional straight can be 〇_- above (for example, the fiber diameter of the fiber is equal, so the cellulose which can constitute the non-woven fabric can be owed. The pore diameter of the non-woven fabric is equal. The average fiber length of the cellulose fiber is not particularly limited, but the fiber is appropriately entangled with each other to ensure the strength of the non-woven fabric. · 0 1 mm or more, your heart Λ Λ < , Λ for example 0.05~10mm, preferably, more preferably 0.3~4mm (especially θ n 4 , m ((4) 疋 0.4~3mm). Cellulose fiber Relative average fiber diameter + ten fiber length (average aspect ratio)

如 100〜10000,較佳 Α 9ΛΛ ςΛΛΛ ^ J 為200〜5000,更佳為300〜3000(特 別是400〜2000)左右。 、付 -10- 201215715 此外’本發明中,前 * ΛΑ ^ π 千均纖維直徑、纖維直徑分 布的標準差、最小纖維直 紙’ 4刀 ^ ^ ^ ^ , k為由基於電子顯微鏡照片所 則疋之纖維直役(n = 2〇左右)而算出的値。 [纖維素纖維的製造方法] …纖維素纖維通常係藉由纖維化來製得,詳言之,直 可經由使原料纖維素織 。 " ?'、纖維/刀散於溶劑 分散液調製步驟、及針周M i 來調1刀政液的 微纖維化的精製機步驟來製造。冑、准貫鈿打漿而予以 (分散液調製步驟) 原料纖維的平均纖維長度為例如0 為〇·05〜1〇mm,更佳為0.06〜8mm左右,、s 、mm 乂佳 左右。又,原料敏维的 ^-常為0.1〜5mm 佳為0.05〜40〇μηι,更佳為 為0.01〜500μηι,較 左右。 為Ο」〜__(特別是〇·2〜25。_) 作為溶劑,只要未對原料纖維造 貝傷則未特別限制’可列舉例如水、有機:‘J物理性 醇、乙醇、丙醇、異丙醇等Ci4二:;二[醇類(甲 …異丙鍵等二Cl一 ?卜趟類(二乙 C4_6醚等))、 虱夫南專環狀醚(環妝 S日類(乙酸乙酯等烷酸酯 、衣狀 乙酮、甲丁嗣等^ ^ )酮類(丙蜩、甲 j寺—C丨-5烷基酮、環己蜩笤r a f )、芳香烴類(甲苯、二甲 寺(:4-1〇%烷_等 貌等)等]等。 本等)、齒化煙類(氯甲燒、氟甲 此等溶劑可單獨或兩種以上 劑中,由生產性、成本觀點而言較吏:二,此等溶 使用水與水性有機溶劑(C1 γ 為水,亦可視需求 叫n 1 -4況_、丙酮望、Α J #)的混合溶劑。 -11- 201215715 •供予精製機處理的原料纖維只要是至少共存於溶劑 中的狀態即可,亦可於精製機處理之前,使原料纖維分 散(或懸浮)於溶劑中。分散可使用例如常用的分散機(超 曰波分散機、均質分散器、Three-OneMotor(產品名)等) 等來進行。此外,前述分散機亦可具備機械式攪拌手段( 攪拌棒、攪拌子等)。 原料纖維於溶劑中的濃度可為例如〇.〇1〜2〇重量% ,較佳為0.05〜10重量°/。,更佳為〇丨〜5重量。/。(特別是 0.5〜3重量%)左右。 (精製機步驟) 精製機處理可使用圓盤精製機(disk re finer)(單圓盤 津月製機、雙圓盤精製機等)。前述圓盤精製機的圓盤間隙 可為 0_1〜0.3mm,較佳為 〇·12〜0.28mm,更佳為 〇·13〜〇_25mm(例如 0_14〜〇.23mm)左右。 圓盤的旋轉數並未特別限制,可選自 1,000〜10,000rpm之廣泛範圍’例如1,〇〇〇〜8,000rpm,較 佳為 1,300〜6,000rpm,更佳為 1,600〜4,000rpm 左右。 前述精製機處理中,處理次數(通過次數)可為丨〜“ 次’較佳為2〜1 5次,更佳為3〜10次(例如4〜9次)左右。 原料纖維的打漿處理程度可為例如加拿大標準排水 度値(Canadian Standard Freeness,CSF)為 1〇〇 〜3〇〇ml, 較佳為120〜280ml,更佳為150〜250ml左右之程度。此 外’加拿大標準排水度値(CSF)為根據曰本工業標準 p 8 1 2 1「紙漿之排水度試驗法;加拿大標準型」,使用 0.1重量%濃度的纖維漿所測定的值。 •12- 201215715 數來::’打漿處理程度可由圓盤間隙及精製機處理次 料纖堆14圓盤㈣:過小或處理次數過多,則會使原 :纖維承觉較大的剪切力而持續產生纖維化,並發生扭 得:糙’纖維彼此更容易交纏,由精製機處理所 ::化纖維的分散性便降低。又,若圓盤間隙過大 # a t ^ ^ # ^ ^ #J ^ 0 [纖維素奈米纖維] ,更維素奈米纖維為比起前述纖維素纖維 更八有極細之奈米尺寸纖維直徑的纖維, 。相對於前述纖料纖維其具有作為紙力增強劑之作用 纖維維可由與構成前述纖維素 算I准素同樣的纖維素形成。 ;米纖維的生產性高’並具有適當的纖維直=唯: 度之觀點而言,較佳為來自及纖維長 材纖維_、闊葉樹等的木材紙 絨紙漿等)等紙漿之纖維素。紙激可使用二Α毛織維(棉 纖維同樣的方法製得的紙漿,惟作為纖唯::述纖維素 由抑制原料纖維彼此的交缠,並 到有效的微纖維化,而劁锟且 主求違 觀點而-丄 有均勾纖維直徑的纖維之 特佳為未乾燥紙聚,即未經歷乾燥之紙二 未進订乾燥而保持溫潤狀態之紙漿)。 、、忒( ^2維素奈米纖維可視㈣而為μ i -的局純度纖維素,α'纖維素 素-里 0/〇(例如95〜100重量% Q ' 〜丨〇〇重量 室里/。),較佳為98〜100重量%左右。更 -13- 201215715 且,本發明中藉由使用木質素或 純度纖維素,即便使用木材纖 ” 3里杈少的局 夂丰r n 或種毛纖維,亦可調製 奈未尺寸且具有均句之纖維直徑 万了 μ 質素或半纖維素含量較特素:米纖維。木 ”。以下(例…0),較佳為。〜帕值(κ值 。〜”左右的纖維素。此外,κ值能以更::°〜1〇(特別是 Ρ 5 〇 , , ^ Γ 此以依據日本工鞏標準 紙漿Κ值試驗方法」的方法來 料纖維素可單獨或兩種以上組合使用。“疋 荨 種毛纖維素奈米纖維還可為來自木材纖維及/或 :本所形成,且κ值為3〇以下(特別是〇〜1〇左右) 之未乾燥紙漿的纖維。此種紙衆 種毛纖維以氯實施漂白處理來Γ製對木材纖維及/或 纖維素奈米纖維較前述纖維素纖維來得細,1平均 較佳= 小於⑽nm。平均纖維直徑為例如10〜9。㈣, 為15〜80nm,更佳為2〇〜6〇nm(特別是25〜5〇n㈣左 。更且’纖維直徑分布的標準差為例如8〇咖以下⑽ ^80nm),較佳為3〜5〇nm,更佳為5〜4〇叫特別是 …nm)左右。本發明中,由於其為奈米尺寸且均等, :均勻地補強纖維素纖維,並且亦可使不織布的孔徑呈 句等更且,纖維素奈米纖維具有均等的奈米尺寸,且 :大截維直徑亦小於1〇〇nm,例如為3〇〜,較佳為 4〇〜8〇nm,更佳為50〜7〇nm左右。 … ,纖維素纖維之平均纖維直徑與纖維素奈米纖維之平 二纖.准直徑的比可選自前者/後者1〜1 左右之範 圍,可為例如5/1〜500/1,較佳為1〇/1〜1〇〇/1,更佳為 -14- 201215715 8〇2(特別是25/1〜7〇/1)左右。兩者的纖維直徑比若 处j範圍,則纖維素奈米纖維便不會堵塞纖維素纖維 斤少成的1而能夠予以補強,因此可兼具透氣性與強 度。 纖維素奈米纖維的平均纖維長Μ選自^ 1QQq_ 左右之範圍’惟由提高不織布的機械特性之觀點而言, 可為例如100〜500_,較佳為ιι〇〜4 Γ〜则㈣(㈣是UG〜2—更且,平均纖維^For example, 100~10000, preferably Α9ΛΛ ςΛΛΛ ^ J is 200~5000, more preferably 300~3000 (especially 400~2000). , 付-10-201215715 In addition, in the present invention, the front * ΛΑ ^ π thousand fiber diameter, the standard deviation of the fiber diameter distribution, the minimum fiber straight paper '4 kn ^ ^ ^ ^ ^, k is based on electron micrographs値 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维 纤维. [Method for Producing Cellulose Fiber] The cellulose fiber is usually produced by fiberization, and in detail, it can be woven by the raw material cellulose. "?', the fiber/knife is dispersed in the solvent dispersion step, and the needle circumference M i is used to adjust the microfibrillation refiner step of the knife solution.胄 准 准 准 ( 分散 分散 分散 分散 分散 ( 分散 分散 ( ( 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散 分散Further, the raw material sensitive dimension of ^- is usually 0.1 to 5 mm, preferably 0.05 to 40 μm, preferably 0.01 to 500 μm, which is relatively large. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Isopropanol and other Ci4 two:; two [alcohols (a... isopropyl bond, etc., diCl?? diterpenoids (diethyl C4_6 ether, etc.)), wolfberry special cyclic ether (ring makeup S day (acetic acid) Ethyl esters such as ethyl ester, ketene, methyl ketone, etc. ^ ^) ketones (Bingyin, Jiajiji-C丨-5 alkyl ketone, cyclohexanyl raf), aromatic hydrocarbons (toluene, Dimethyl Temple (: 4-1〇% alkane_etc. etc.) etc. etc.), Toothed Tobacco (Chlorocarbyl, Fluorine, etc. These solvents may be used alone or in two or more agents, by productivity From the point of view of cost, it is more ambiguous: Second, the mixed solvent of water and aqueous organic solvent (C1 γ is water, also called n 1 -4 condition _, acetone hope, Α J #). -11- 201215715 • The raw material fibers to be processed by the refiner may be in a state of coexisting in at least a solvent, and the raw material fibers may be dispersed (or suspended) in a solvent before the refiner treatment. The dispersing machine (a super-clear wave dispersing machine, a homogenizing disperser, a Three-One Motor (product name), etc.) etc. are carried out, etc. Moreover, the said dispersing machine can also be equipped with the mechanical stirring means ( stirring rod, a stirring, etc.). The concentration of the raw material fiber in the solvent may be, for example, 〇.〇1 to 2% by weight, preferably 0.05 to 10% by weight, more preferably 〇丨5 to 5% by weight (particularly 0.5 to 3% by weight). (Refining machine step) The refiner processing may use a disk refiner (single disc refiner, double disc refiner, etc.). The disc refiner may have a disc gap of 0_1~0.3mm, preferably 〇12~0.28mm, more preferably 〇13~〇_25mm (for example, 0_14~〇.23mm). The number of rotations of the disk is not particularly limited and may be selected from 1, A wide range of 000 to 10,000 rpm 'for example, 〇〇〇 to 8,000 rpm, preferably 1,300 to 6,000 rpm, more preferably about 1,600 to 4,000 rpm. In the above refining machine processing, the number of times of processing (passing times) ) can be 丨 ~ "secondary" is preferably 2 to 1 5 times, more preferably 3 to 10 times (for example, 4 to 9 times). The degree of beating treatment of the raw material fiber may be, for example, a Canadian Standard Freeness (CSF) of 1 〇〇 to 3 〇〇 ml, preferably 120 to 280 ml, more preferably about 150 to 250 ml. The Canadian Standard Drainage (CSF) is a value determined using a 0.1% by weight strength fiber slurry according to the industry standard p 8 1 2 1 "Pulp Drainage Test Method; Canadian Standard Type". • 12- 201215715 Numbers:: 'The degree of beating treatment can be handled by the disc gap and the refiner. The secondary material pile 14 disc (4): too small or too many treatments will make the original: fiber feel a large shear force Sustained fibrosis and twisting: the rough fibers are more easily intertwined with each other and treated by the refiner: the dispersibility of the fibers is reduced. Also, if the disc gap is too large # at ^ ^ # ^ ^ #J ^ 0 [cellulose nanofiber], the vegetal nanofiber is a nanometer-sized fiber diameter which is extremely finer than the aforementioned cellulose fiber. Fiber, . It has a function as a paper strength enhancer with respect to the above-mentioned fiber fibers. The fiber dimension can be formed of the same cellulose as the above-mentioned cellulose material. The rice fiber has high productivity, and has a suitable fiber straightness. From the viewpoint of the degree of the degree, it is preferably cellulose derived from pulp such as fiber long fiber, hardwood pulp, or the like. The paper can be made using the same method as the cotton fiber weaving (the same method as the cotton fiber, but as the fiber: the cellulose is suppressed by the intertwining of the raw materials, and to the effective microfibrillation, and the main In view of the point of view - the fibers having a uniform fiber diameter are particularly undried paper, that is, pulp which has not undergone drying and which has not been ordered to dry and remains moist. , 忒 ( ^ 2 venetian nanofiber visible (four) and μ i - the purity of the cellulose, α 'cellulose - 0 0 / 〇 (for example, 95 ~ 100% by weight Q ' ~ 丨〇〇 weight room /.), preferably from about 98 to 100% by weight. Further -13 to 201215715 Moreover, in the present invention, by using lignin or pure cellulose, even if wood fiber is used, The wool fiber can also be prepared with a nano-size and a fiber diameter of a uniform sentence. The quality or hemicellulose content is higher than that of the element: rice fiber. Wood. The following (example...0), preferably. Value. ~" Cellulose. In addition, the K value can be more than:: ° ~ 1 〇 (especially Ρ 5 〇, , ^ Γ This is based on the Japanese Gonggong standard pulp Κ value test method) The pigments may be used singly or in combination of two or more. "The sputum hair cellulose nanofibers may also be formed from wood fibers and/or: the present invention, and the κ value is 3 〇 or less (especially 〇~1 〇 or so). The fiber of the undried pulp. The paper is made of bleaching with chlorine to make wood fiber and/or cellulose. The rice fiber is finer than the cellulose fibers, and the average is preferably less than (10) nm. The average fiber diameter is, for example, 10 to 9. (4), 15 to 80 nm, more preferably 2 to 6 nm (especially 25 to 5 Å). n (four) left. Further, the standard deviation of the fiber diameter distribution is, for example, 8 〇 or less (10) ^ 80 nm), preferably 3 to 5 〇 nm, more preferably 5 to 4 〇, especially about ... nm). Because it is nanometer size and equal, it can uniformly reinforce the cellulose fiber, and can also make the pore diameter of the non-woven fabric more uniform, and the cellulose nanofiber has an equal nanometer size, and the large cut diameter is also Less than 1 〇〇 nm, for example, 3 〇 ~, preferably 4 〇 ~ 8 〇 nm, more preferably about 50 ~ 7 〇 nm. ..., the average fiber diameter of cellulose fibers and cellulose nanofibers The ratio of the fiber to the quasi-diameter may be selected from the range of about 1 to 1 of the former/the latter, and may be, for example, 5/1 to 500/1, preferably 1〇/1 to 1〇〇/1, more preferably -14- 201215715 8〇2 (especially 25/1~7〇/1). If the fiber diameter ratio of the two is in the range of j, the cellulose nanofiber will not block the cellulose fiber. 1 can be reinforced, and therefore can have both gas permeability and strength. The average fiber length of the cellulose nanofiber is selected from the range of about 1QQq_', but it can be, for example, 100~ from the viewpoint of improving the mechanical properties of the nonwoven fabric. 500_, preferably ιι〇~4 Γ~ (4) ((4) is UG~2- and more, average fiber ^

=平均纖维直徑的比(平均纖維長度/平均纖維直J 平均長徑比)為2 〇 〇 0以上,你丨‘ YJ如為2000〜15000,較伟a 3000〜loooo,更佳A 為 更佳為4〇〇〇〜8000(特別是5〇〇〇〜7〇〇 。本發明中,盔論杲 石 味、 ‘' 疋否如此般具有奈米尺寸之平均直和 ’透過使用具有較長的纖 二 -ή- -T ^ ^ •戡名長度及長徑比的奈米纖維, ,、可使纖、准素纖維與奈米 $ . IS1 ^ -Τ ^ - 次不木纖維彼此適當地 乂纏因此可如向不織布的強度。 此外,本發明中,、Α. τ Ύ 剛述平均纖維直徑、鏞維古^、 布的標準差、最大總祕. 纖維直控分 纖維直徑係由基於電 測定之纖維直徑(n = 20 / # ^ @ & ·,·、員铽鏡照片所 υ左右)而算出的値。 古 検刀面形狀(與纖維長产方 直的剖面形狀)可為如4 '度方向垂 ~文細鹵纖維素之異方形Γ ,若為來自植物之奈米d ^ (扁千狀),惟 方形為例如正圓形等略 寺方形。略等 圓形、正多角形莖 形時,長徑對短徑的比 ,若為略等方 為1〜1.5 ,更佳為1Μ 3 女1〜2,較佳 Κ3(特別是1〜1.2)左右。 -15- 201215715 就纖維素奈米纖維的脫水時間而言,當依據Αρι規 ::脫水量相關的試驗方法而使,0.5 "%濃度的纖 …灸進仃测定時’係為例如100"少以上較佳為 〜_〇秒,更佳為·〜_秒(特別是_ ⑽右1水時間愈長’則愈易形成平均纖維長度/平 均纖維直徑比較高的纖維形狀’且保水力高,以少量即 可提南機械特性。 。.纖維素㈣纖㈣水的分散性高,可形成穩定的分 散液(或_液)。例如使纖維素奈米纖維懸浮於水中而 形成2重量%濃度之懸浮液的黏度為3_mPa· s以上, 較佳為4_〜15〇〇〇mPa. s,更佳為5〇〇〇〜職〇必· $ 左右。黏度為採用B型黏度計,並使用R〇t〇r & 4,在 旋轉數6〇rpm下測定為饥下之表觀黏度(ap — :isC〇S1ty)的値。此外,若纖維化的程度愈低或纖維直 控愈大’則對水的分散性會愈低而無法獲得均勻的懸浮 液,從而無法測定黏度。 “ [纖維素奈米纖維的製造方法] …纖維素奈米纖維可直接或分割使用細菌纖維素等奈 :尺,的纖維,惟使用來自植物之纖維素纖維時,由於 來自天然植物之纖維素纖維為奈米級,故通常藉由將原 料纖維素纖維微纖維化(分割)成奈米尺寸便可製得。 原料纖維素纖維的平均纖維長度為0 〇1〜5m 0·01〜3mm),較佳為〇 〇3〜4mm(例如〇 〇5〜2 5mm),更佳 為0‘〇6〜3賴(特別是〜2mm)左右,通常為左 右。又,原料纖維素纖維的平均纖維直徑為〇 〇ι〜5〇Μ_ -16- 201215715 例如0.03〜400μιη),較佳為〇·〇5〜45〇μηι(例如0.06〜4〇〇 μιη)’更佳為οι〜3〇〇μιη(例如〇2〜250μηι)左右。 微纖維化的方法詳言之係透過包含以下步驟的製造 方法來獲得:分散液調製步驟,使原料纖維分散於溶劑中 來調製分散液;及均質化步驟’以具備破碎型均質閥座之 ,質機,對前述分散液實施均質化處理。本發明令,特別 是猎由以下所示的製造方法使原料纖維微纖維化,即可碉 製平均纖維直徑小於lOOnm的纖維素奈米纖維。 ” 分散液調製步驟可由與前述纖維素纖維相同 來調製分散液。 軒對均貨化步驟,參照圖式來進行說明。第丨 :示以具備破碎型均質闊座的均質機對前述分為 均質化處理之步驟的示意圖’第2圖為破碎型 與均質閥之對向部分的放大剖面圖, 吐負間座 質閩座的立體圖。另一方面,第4 碎型均 座的立體圖。 4圖為非破碎型均質闊 叫冥機具備.T空圓筒狀碰揸環 、 5亥碰撞環6的上游側之均質閥座2 並配叹於 ;及與前述中空圓筒狀凸部2b對而空圓筒狀凸部2b 6的下游側之圓柱狀均質閥5,前、入至則述碰撞環 與前述圓柱狀均質閥5係具有相间Μ二_圓同狀凸部2b 荀狀凸部2b的下游側之内壁具有朝。 ,中空圓 錐形部(傾斜面)2d,中空圓筒狀凸邹月向下游方向擴徑的 具有内徑d及端面厚度t的薄壁環狀^的下游端則形成 由該環狀端面2c、前述均質閥5端面2c。進-步’ 徑孔口(orifice)(間隙)4。 引述碰揸環6形成小 -17- 201215715 本發明其主要特徵為 型均質閥座2為内部且有n · 玺均質閥座2。破碎 包含.# #、ώ 八圓筒狀流道3的中空部件,係 ? 中二圓盤狀本體部2a、及由該圓 I狀本體部2a的内壁向 …空圓筒狀凸部2b。更I :延伸’並具有流出口 述般藉由形成内徑擴大的錐:二型閥座2如前 升y邛2 d,相較於第4圖所示 之一般的(通常的)非破碎型 μ 2,形成流出口 3b 之衣狀縞面2c的厚度便可形成較薄。 =種均質機進行均質化處理時,如第^所示,= average fiber diameter ratio (average fiber length / average fiber straight J average aspect ratio) is 2 〇〇 0 or more, you 丨 'YJ such as 2000~15000, Weiwei a 3000~loooo, better A is more Preferably, it is 4〇〇〇~8000 (especially 5〇〇〇~7〇〇. In the present invention, the helmet is a stone-like taste, ''whether or not it has the average straightness of the nanometer size' and has a longer length through use. The fiber of the second-ή--T ^ ^ • the length and the aspect ratio of the nanofiber, , can make the fiber, the quasi-fibres and the nanometer $. IS1 ^ -Τ ^ - sub-wood fiber properly with each other The entanglement can therefore be as strong as non-woven. In addition, in the present invention, Α. τ 刚 just describes the average fiber diameter, 镛维古^, the standard deviation of the cloth, the maximum total secret. The fiber direct control fiber diameter is based on The diameter of the fiber measured by electric measurement (n = 20 / # ^ @ & ·, ·, 铽 照片 照片 ) 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値For example, the 4' degree direction hangs ~ the fine halo cellulose is different square Γ, if it is the plant from the nano d ^ (flat shape), but the square is for example positive The shape of the circle is equal to the square. When the shape is slightly round and positive, the ratio of the long diameter to the short diameter is 1~1.5, more preferably 1Μ3 female 1~2, preferably Κ3. (especially 1~1.2). -15- 201215715 In terms of the dehydration time of cellulose nanofibers, according to the test method related to Αρι:: dehydration, 0.5 "% concentration of moxibustion仃 仃 仃 系 系 系 系 系 系 系 系 系 系 系 系 系 系 系 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少 少High fiber shape' and high water retention capacity, with a small amount of mechanical properties. The cellulose (four) fiber (4) water has high dispersibility and can form a stable dispersion (or liquid). For example, cellulose nano The viscosity of the suspension in which the fiber is suspended in water to form a concentration of 2% by weight is 3_mPa·s or more, preferably 4 to 15 〇〇〇 mPa·s, more preferably 5 〇〇〇 〇 〇 · $ $ 。 。 。 。 。 。 。 In order to use a B-type viscometer and use R〇t〇r & 4, the apparent viscosity of hunger is measured at a rotation number of 6 rpm (ap - : In addition, if the degree of fibrosis is lower or the fiber is directly controlled, the dispersibility to water will be lower and a uniform suspension cannot be obtained, so that the viscosity cannot be measured. Method for producing rice fiber] ... Cellulose nanofibers can be directly or divided into fibers such as bacterial cellulose, but when cellulose fibers derived from plants are used, since cellulose fibers derived from natural plants are nano-grade Therefore, it is usually obtained by microfibrillating (dividing) the raw cellulose fibers into nanometer sizes. The average fiber length of the raw cellulose fibers is 0 〇1~5m 0·01~3mm), preferably 〇〇3~4mm (for example, 〇〇5~2 5mm), more preferably 0'〇6~3 赖( Especially around ~2mm), usually around. Further, the average cellulose fiber of the raw material cellulose fiber has a diameter of from 〇〇ι 5 to _16 to 201215715, for example, 0.03 to 400 μm, preferably 〇·〇5 to 45 〇μηι (for example, 0.06 to 4 〇〇μιη). Good for οι~3〇〇μιη (for example 〇2~250μηι) around. The method of microfibrillation is specifically obtained by a manufacturing method comprising the steps of: dispersing a dispersing liquid, dispersing a raw material fiber in a solvent to prepare a dispersion; and homogenizing step to have a crushing type homogenizing valve seat, The mass machine performs homogenization treatment on the dispersion. According to the present invention, in particular, the raw material fibers are microfibrillated by the production method shown below, whereby cellulose nanofibers having an average fiber diameter of less than 100 nm can be produced. The dispersion preparation step may be the same as the above-mentioned cellulose fibers to prepare a dispersion. The alignment of the homogenization step will be described with reference to the drawings. The third embodiment shows that the homogenizer with the fracture type homogeneous wide seat is divided into the above. Fig. 2 is an enlarged cross-sectional view of the opposing portion of the crushing type and the homogenizing valve, and a perspective view of the spoiler seat. On the other hand, a perspective view of the fourth broken seat. The non-broken type homogenous wide-mouthed mute has a T-shaped cylindrical ring-shaped ring, a homogenous valve seat 2 on the upstream side of the 5-Hui collision ring 6, and is sighed; and is opposed to the hollow cylindrical convex portion 2b. The cylindrical homogenizing valve 5 on the downstream side of the hollow cylindrical convex portion 2b 6 has a front-to-back collision ring and the cylindrical homogenizing valve 5 having a phase-to-circular convex portion 2b and a convex portion 2b. The inner wall of the downstream side has a hollow conical portion (inclined surface) 2d, and the downstream end of the thin-walled annular portion having the inner diameter d and the end surface thickness t which is expanded in the downstream direction by the hollow cylindrical convex shape is formed by The annular end surface 2c and the end surface 2c of the homogenizing valve 5. Step-by-step hole (orifice) 4. The contact ring 6 is formed to be small -17- 201215715 The main feature of the present invention is that the type homogenizing valve seat 2 is internal and has an n · 玺 homogenous valve seat 2. The crushing includes .# #,ώ八The hollow member of the cylindrical flow path 3 is a two-disc main body portion 2a and an inner cylindrical wall of the circular I-shaped main body portion 2a to the hollow cylindrical convex portion 2b. By way of venting, a cone having an enlarged inner diameter is formed: the second valve seat 2 is as long as y 邛 2 d, and the outflow port 3b is formed as compared with the general (normal) non-crushing type μ 2 shown in Fig. 4 The thickness of the garment-like surface 2c can be made thinner. = When the homogenizer is homogenized, as shown in Fig.

It "的分散液係由破碎型均質間座2的流入 過=入均質閥座内的流道3中,其通過流道3後再通 。 m,择京不水纖維7的分散液 坪舌之,由均質機進行處理時.,以高壓在均質機 送的原料纖維丨在通過間隙狹小的小徑孔口 $之際 與小徑孔口 4的壁面(特別是碰撞環6的壁面)碰撞,由 此便承党剪切應力或切斷作用而被分割而形成均勻的 寸纖維素奈米麟7。特別是在通過均質間座内 的〜道3的分散液通過由均質閥座2與均質閥5所形成 的間隙之際,隨著分散液的流速急遽上升,分散液的傳 送壓力係與流速的上升成反比而急遽下 Τ 田此,便可 增大分散液的壓力差,而使得通過前述間隙之分散液的 孔蝕(cavitation)更加劇烈,並可推知:歸因於小徑孔口 4内之與壁面的碰撞力的上升或氣泡的崩解,可達原料 纖維1的均勻微纖維化。 、 -18- 201215715 為有效進行此種微纖維化,則重要的是將形成破碎 型均質閥座的流出口之壁部的端面的厚度(中空圓筒狀 凸部的下游端之環狀端面)製成較薄,具體而言,係將破 碎型均質閥座之中空圓筒狀凸部的下游端的内徑d與下 游端的j哀狀端面的厚度t的比調整成前者/後者 100/1 5/1 ’較佳為go/ι〜6/1(例如50/1〜8/1),更佳為 30/1〜10/1 (特別是20/1〜12/1)左右。兩者的比例若處於此 範圍,便可使通過均質閥座與均質閥的間隙之分散液的 壓力急遽降低,而能夠將原料纖維分割成奈米尺寸且均 等的纖維直徑。形成流出口之壁部的端面的厚度可依流 出口的口椏來選擇,惟通常為〇〇1〜2爪爪,較佳為 更佳為〇」七m(特別是〇 2〜〇 8_)左右’、。 小徑孔口的間隔或間P宋(特別是均f閥座凸部的端 面與均質闊的間隔)為例如5〜5〇_,較佳為1〇〜4〇_, 更佳為15〜35_(特別是20〜30μηι)左右。 此種均質機中,用於通過小徑孔口的壓力(或向 機傳送分散液的| & 町&力(或處理壓力 30〜200MPa左右之範圍,可 自例如 佳為35〜150MPa,f #主 ^-MOMPa左右。本發明中, 更佳為 ΛΛ ^ ^ 針對具備破碎型均質閥座 機透過以此種高麗力來傳送分散 成奈米尺寸纖維直徑。 丨J刀割 又,藉由反覆通過小徑孔口及 當調整前述原料纖維的微纖維化^ 撞’即可適 處理次數(或通過次數)可選自王又。通過小徑孔口的 人更佳為12〜60次左右。 -19- 201215715 更且’前述處理壓力亦可依處理次數來選擇,例如 虽處理壓力為高壓處理(例如6〇〜2〇〇Mpa,較佳 80〜150MPa, # >f4 ^ ιλλ ι,λα/γγ» ^ 更佳為100〜130MPa左右)時處理次 例如5〜50次,較佳為1〇〜4〇次,更 .M μ A w 文佳為12〜30次(特別 -人)右。另一方面,當處理壓力為低壓處理 例如〜8〇 MPa,較佳為3〇〜7〇MPa,更佳為4〇〜6晴a 左右)時’處理次數為例如1〇〜1〇〇 :欠,較佳為2〇,次 ,更佳為30〜70次(特別是4〇〜6〇次)左右。 一般在均質化處理中,甚考 Ύ右處理壓力過高或處理次數 過多’則會使纖維承受較大的勢切力,發生纖維的切斷 ,、扭曲等而失去纖維的特性’並持續產生纖維化,纖维 彼此會產生牢固的交纏, 纏因此纖維的分散性便容易降低 。與此相對’本發明中将垃 "* 月甲係抓用破碎型均質閥座,因 可解決這些問題。特別县从& ,疋乍為原料纖維,使用未乾燥紙 衆時疋有效的。 均質化步驟中,亦可&人β 、、' &使用具備非破碎型均質間 座之均質機的均質化處理 羼理。特別是就由具備前述破碎型 均質閥座之均質機所進行 ^ 订之均質化處理(特別是60MPa 以上的尚壓處理)的前步驄「猫版卜 P’ (預借步驟)而言,亦可使用具 備非破碎型均質機之均晳她ι + 勺處機來進行均質化處理。均質化 步驟中,以具備非破碎刚 ^•句 > 閥座之均質機進行前處理 ,便可提高使用具備破碎刑 T ^均質閥座之均質機的處理效 率。 非 質閥座 破碎型均質閥座中 12的中空圓盤狀本 ’如第4圖所示,通常在由均 體部12a延伸的中空圓筒狀凸 -20- 201215715The dispersion of It " is passed through the flow path 3 in the homogenized valve seat by the inflow of the crushing type homogeneous compartment 2, which is then passed through the flow path 3. m, when the dispersion of the Beijing-based water-free fiber 7 is treated by a homogenizer, the raw material fiber fed by the homogenizer at a high pressure passes through the small-diameter orifice of the narrow gap and the small-diameter orifice The wall surface of the wall 4 (especially the wall surface of the collision ring 6) collides, thereby being divided by the party shear stress or the cutting action to form a uniform cellulose nanobelt. In particular, when the dispersion liquid passing through the channel 3 in the homogeneous compartment passes through the gap formed by the homogenizing valve seat 2 and the homogenizing valve 5, the conveying pressure of the dispersion liquid and the flow velocity are rapidly increased as the flow velocity of the dispersion liquid rises rapidly. When the rise is inversely proportional and the squat is squatting, the pressure difference of the dispersion can be increased, and the cavitation of the dispersion passing through the aforementioned gap is more severe, and it can be inferred that it is attributed to the small diameter opening 4 The increase in the collision force with the wall surface or the disintegration of the bubble can achieve uniform microfibrillation of the raw material fiber 1. -18-201215715 In order to effectively perform such microfibrillation, it is important to form the thickness of the end surface of the wall portion of the outflow port of the fracture type homogenizing valve seat (annular end surface of the downstream end of the hollow cylindrical convex portion) It is made thinner, specifically, the ratio of the inner diameter d of the downstream end of the hollow cylindrical convex portion of the crushing type homogeneous valve seat to the thickness t of the j-shaped end surface of the downstream end is adjusted to the former/the latter 100/1 5 /1 ' is preferably go/ι~6/1 (for example, 50/1~8/1), more preferably 30/1~10/1 (especially 20/1~12/1). When the ratio between the two is within this range, the pressure of the dispersion passing through the gap between the homogenizing valve seat and the homogenizing valve can be rapidly reduced, and the raw material fibers can be divided into nanometer sizes and uniform fiber diameters. The thickness of the end surface forming the wall portion of the outflow port can be selected according to the mouth of the outflow port, but is usually 〇〇1~2 claws, preferably more preferably 〇"7 m (especially 〇2~〇8_) about',. The interval of the small-diameter orifices or the interval P (especially the interval between the end faces of the convex portions of the valve seat and the uniform width) is, for example, 5 to 5 〇 _, preferably 1 〇 to 4 〇 _, more preferably 15 〜 35_ (especially 20~30μηι) or so. In such a homogenizer, the pressure used to pass the small-diameter orifice (or the | & machi & force to the machine (or the treatment pressure of 30 to 200 MPa or so, from, for example, preferably 35 to 150 MPa, f #主^-MOMPa or so. In the present invention, it is more preferable that ΛΛ ^ ^ is used for the crushing type homogenizing valve seat machine to transmit and disperse into a nanometer-sized fiber diameter by such a high force. Repeatedly passing through the small-diameter orifice and adjusting the microfibrillation of the raw material fiber, the number of times of treatment (or the number of passes) can be selected from Wang. The person passing through the small-diameter orifice is preferably about 12 to 60 times. -19- 201215715 Moreover, 'the aforementioned treatment pressure can also be selected according to the number of treatments, for example, although the treatment pressure is high pressure treatment (for example, 6〇~2〇〇Mpa, preferably 80~150MPa, # >f4 ^ ιλλ ι, When λα/γγ» ^ is more preferably about 100 to 130 MPa, the treatment time is, for example, 5 to 50 times, preferably 1 to 4 times, and more. M μ A w is 12 to 30 times (special-person) On the other hand, when the treatment pressure is low pressure treatment, for example, ~8 MPa, preferably 3 〇 to 7 MPa. More preferably, the number of times of treatment is, for example, 1〇~1〇〇: owed, preferably 2〇, times, more preferably 30~70 times (especially 4〇~6〇 times) Generally, in the homogenization treatment, even if the right treatment pressure is too high or the number of treatments is too high, the fiber will be subjected to a large potential shearing force, and the fiber is cut, twisted, etc., and the fiber characteristics are lost. And the fiber is continuously produced, and the fibers are strongly entangled with each other, so that the dispersibility of the fibers is easily reduced. In contrast, in the present invention, the "fractional" valve is used in the present invention. It can solve these problems. The special county from &, is the raw material fiber, and it is effective when using undried paper. In the homogenization step, it is also possible to use non-broken homogenization. Homogenization treatment of the homogenizer of the seat. In particular, the homogenization treatment (especially the pressure treatment of 60 MPa or more) performed by the homogenizer equipped with the above-mentioned crushing type homogenized valve seat is the first step of the cat version. Bu P' (pre-borrowing step) can also be used The crushing homogenizer is uniformed by her ι + scoop machine for homogenization. In the homogenization step, the homogenizer with non-broken steel and valve seat is pre-treated to improve the use of crushing The processing efficiency of the homogenizer of the T ^ homogeneous valve seat. The hollow disk shape of the 12 in the non-quality valve seat crushing type homogenizing valve seat is as shown in Fig. 4, usually in the hollow cylindrical shape extending from the uniform body portion 12a.凸-20- 201215715

部12b的内壁並未形忐從A 仏成錐狀部’且均質閥座之中空圓筒 狀凸部的下游端的内徑、與下游端的環狀端面的厚度的 比通常為前者/後者(特別是2 5/ι)左右。 具備非破判均質閥座之均f機中,用於通過小徑 孔口的壓力(或向均質機傳送分散液的壓力(或處理壓力 ))可為例如30〜i〇〇Mpa,較佳為35〜8〇Mpa,更佳為 4〇〜70MPa左右。通過次數可為例如ι〇〜4〇二欠,較佳為 12〜30次,更佳為15〜25次左右。The inner wall of the portion 12b is not shaped like a tapered portion, and the ratio of the inner diameter of the downstream end of the hollow cylindrical convex portion of the homogeneous valve seat to the thickness of the annular end surface at the downstream end is usually the former/the latter (special It is around 2 5/ι). In a machine having a non-breaking uniform valve seat, the pressure for passing the small-diameter orifice (or the pressure (or treatment pressure) for transferring the dispersion to the homogenizer) may be, for example, 30 to i 〇〇 Mpa, preferably It is 35~8〇Mpa, more preferably 4〇~70MPa. The number of passes may be, for example, ι 〇 4 〇 2 owing, preferably 12 to 30 times, more preferably 15 to 25 times.

此外,在纖維辛本4s· Μ、ΑΛ· ϋ U 取再京-未纖維的製造方法中,就前述均 負化步驟的前步驟(預備击_、二_ 掉如 1頂備步驟)而言,亦可對分散液實施 機處理’亦可進行與前述纖維素 、哉难的製造方法相同的精製機處理。 4織布及其製造方法] 本發明之不織布(或造紙體)中,相對纖維素纖維· 直份’纖維素奈米纖維的比例為例如〇 〇ι〜ΐ5重 重車?,為重量份(例如〇 5〜8重量份),更佳為二 纖二(特別疋3〜7重量份)左右。本發明中’僅藉由對 ,義維素纖維摻合少量纖維素奈米纖維,即可 由對 織布之透’氣度的情況下使不織布 氐不 從+戴布缚材質化,並 度。更且,纖維素奈米纖唯Λ太 円強 馮奈未尺寸且少量,可右土 ^由纖維素纖維構成之不織布的孔(網目) 故透軋性亦^另—方面,纖維素奈米纖維-過南’則透氣度會過高(例如超過200秒/m 列 用於隔離板。 而不適 -21- 201215715 本發明之不織布亦可視用途而含有常用的添加劑, 例如上漿劑、蠟、無機填充劑、著色劑、安定化劑(抗氧 化劑、熱女疋劑、紫外線吸收劑等)、可塑劑、抗靜電劑 、阻燃劑等。此外,本發明之不織布係如前述,摻合纖 維素奈米纖維即可提高不織布的強度,因此未含有合成 樹脂、澱粉、天然橡膠等紙力増強劑亦無妨。特別是其 貫質上未含有聚丙烯醯胺等合成樹脂,因此耐熱性及電 化學穩定性優良,且安全性亦高。 本發明之不織布其機械特性優良,雖為薄材質但強 度高,於紙張重量l〇g/m2下的拉伸強度為6N/15mm以 上’例如6〜20N/15mm,較佳為6 5〜15N/15mm,更佳為 7〜l〇N/15mm(特別是 7.2〜8N/15mm)左右。 ^本發明之不織布無論是否具有前述拉伸強度,其透 札!·生仍優良,於紙張重量1〇g/m2下的透氣度為ι〇〜5〇〇 ^ 〇〇ml,例如10〜200秒/10〇ml,較佳為30〜150秒 /100ml’更佳為5〇〜10〇秒/1〇〇m(特別是6〇〜8〇秒^㈧…) 左右。 本發明之不織布的平均孔徑為 ㈣),例如〇]〜1〇μΐη,較佳為0.15〜3μιη(例如 Λ ^ ° —〇^〇,μΐη)^ 〇 孔徑之不織布係適合作為電容器的隔離板。 質仍織布的厚度可為厚材質,但在雖為薄材 '、、 又的特點上有其特徵,則]皙為估 即,本發明之;^铀士 W以溥材質為佳。 之不織布的厚度可為2〇μηι以 ’較佳為5~19gm’更1〇〜 ; : 右。不織布亦可梘目的而積層複數艾:;1。2〜17—左 -22- 201215715 不織布的紙張重量可為例如〇丨〜⑼“^,較佳為 1〜3〇g/m2,更佳為3〜20g/m2(特別是5〜15g/m2)左右。不 織布的二隙率且為5 〇 Q/。以上,可較佳為5 〇〜9 〇 %,更佳為 60〜80%左右。 奉赞明之不織布的製 用方法’例如將纖維素纖維與纖維素奈米纖維混合,再 =濕式造紙或乾式造紙等造紙法來製造。濕式造紙可由 =方,進行’例如亦可採用具備手卫造紙器或多孔板 專的濕式造紙機等爽推彡_ i .寺來進仃造紙。乾式造紙亦可由常用方 法,例如採用氣流成網(aiMa 法等來進行造紙。更且〜“ 梳理(Cardlng)製 m S作為電池等蓄電裝置中的隔 離板而利用時,能以例如 知 更佳為5〜30MPa(特別是8〜 MPa 衝壓加工。本發明t a)左右的壓力來進行 纖維直控的纖維素纖維,由;有包二一上之適當大的 ,因而可簡便地進行造紐 匕3 ^量纖維素奈米纖維 [實施例] 、我’且生產性亦較高。 以下’基於實施例對本 本發明並未受此等實施例限定。=坪細地進行說明,惟 之不織布的評定係由以τ:疋。貫施例及比較例中所得 [纖維直徑] τ方法來測定。 、,對實施例及比較例中所得之鳙祕 米纖維拍攝50000倍的 ♦、准素纖維或纖維素奈 於所拍攝的照片上,在横 ”、'員微鏡(SEM)照片,並 線,再計數與線交又的士 ’、’、片的饪意位置處拉出2侔 %所有纖維直牺士 — I 條 罝L來昇出平均纖 -23- 201215715 :Γ20以上)。關於線的拉出方式,只要與線交叉的纖 、、…20以上則未特別限定。進-步由纖維直徑的測定 値來求取纖維直徑分布的標準差及最大纖維直f。此外 ’若為最大纖維直徑超過—纖維素纖維時,則使用 5000倍的SEM照片來算出。 [纖維長度] 公司製「 纖維長度係使用纖維長度測定器(Kajaani P S · 2 〇 〇」)來測定。 [平均孔徑] 5000倍的掃 孔徑擷取5 0 對實施例及比較例所得之不織布拍攝 描式電子顯微鏡(SEM)照片,僅對最表面的 點來求取平均孔徑。 [透氣度] 7 以哥雷法(Gurley method) 的時間。 依據曰本工業標準 來測定空氣100ml穿透 [拉伸強度] 依據日本工業標準Ρδ1η l5m ε 3將所得之不織布裁成寬 mm、長250mm的薄長方形製 ^ /叫取成樣本,並使用可變 迷抵伸試驗機(東洋精機製作所 間p (殳)製),以夾頭(chuck) 100mm、拉伸速唐/八+ 強许μ 逯度20mm/分來測定拉伸強度。拉伸 t的測定係於長度方向(或縱向)進行。 [貫施例1 ] 舌θ 从、〜υ队^衣,固體成分約 50 里% ’卡帕值約0.3),調驷7舌曰〇/ 沾Μ、 ;凋1以2重罝〇/〇的比例含有紙漿 的沒液10 0升。其次,利用圓般料制 不J用圓盤精製機(長谷川鐵工(股) -24- 201215715 製 SUPERFIBRATER 400-TFS),以間 , c 門隙〇.15mm、圓盤旋 轉數MOrpm實施打激處理1〇次,即製得_2〇_的 精製機處理物。該精製機處理物(纖維素纖維)之平均纖 維直徑為1.6μιη,平均纖維長度為2。 對該精製機處理物使用具備一般非破碎型均質閥座 (中空圓筒狀凸部的了游端之内徑/環狀端面的厚度 = 19/"之第-均質機(Gaulin公司M,15M8at),於處理 壓力5〇MPa下處王里20次。接著,使用具備破碎型均質 閥座(中空圓筒狀凸部的下游端之内徑/環狀端面的厚度 M6.8/1)之第二均質機(NIR0S0ABI& 司製,pANDA2K) ’於處理壓力120MPa下處理20次。進而,所得之纖維 素奈米纖維的平均纖維直徑為29nm,纖維直徑分布的標 準差為14_lnm,最大纖維直徑為64 3nm,平均纖維長度 為153μπι ’長徑比(平均纖維長度/平均纖維直徑)為5276Further, in the production method of the fiber sinusoidal 4s·Μ, ΑΛ· ϋ U, the re-Kyoto-fibres, the pre-step of the above-mentioned homogenization step (preparation _, _ _ _ off 1 step) Alternatively, the dispersion may be subjected to a machine treatment', or may be subjected to a refiner treatment similar to the above-described method for producing cellulose or dynamite. (4) Weaving cloth and its manufacturing method] In the nonwoven fabric (or papermaking body) of the present invention, the ratio of the cellulose fibers to the direct-part cellulose nanofibers is, for example, 〇 〇ι to ΐ5 heavy vehicles? It is about parts by weight (for example, 〜 5 to 8 parts by weight), more preferably about two fibers (particularly 疋 3 to 7 parts by weight). In the present invention, by simply blending a small amount of cellulose nanofibers with a pair of oryzanol fibers, the nonwoven fabric can be made of a material that is not woven from the fabric. Moreover, the cellulose nanofiber fiber is too strong and the von Naiwei is not small in size and can be used in the right soil. The non-woven pores (mesh) composed of cellulose fibers, so the through-rollability is also another aspect, the cellulose nanofiber -Over the south', the air permeability will be too high (for example, more than 200 seconds / m column for the insulation board. And the 21-201215715) The non-woven fabric of the present invention may also contain commonly used additives such as sizing agents, waxes, inorganics, depending on the application. a filler, a colorant, a stabilizer (antioxidant, hot tanning agent, ultraviolet absorber, etc.), a plasticizer, an antistatic agent, a flame retardant, etc. Further, the nonwoven fabric of the present invention is as described above, and the cellulose is blended. Nanofiber can improve the strength of non-woven fabrics, so it does not contain synthetic resin, starch, natural rubber and other paper strength agents. In particular, it does not contain synthetic resins such as polypropylene decylamine, so heat resistance and electrochemistry It has excellent stability and high safety. The non-woven fabric of the present invention has excellent mechanical properties, and although it has a thin material but high strength, the tensile strength at a paper weight of 10 g/m 2 is 6 N/15 mm or more 'for example, 6 to 20 N. /15m m, preferably 6 5 to 15 N/15 mm, more preferably 7 to 1 〇N/15 mm (particularly 7.2 to 8 N/15 mm). ^ The non-woven fabric of the present invention has a tensile strength regardless of whether or not it has the aforementioned tensile strength. ·The raw is still excellent, the air permeability under the paper weight of 1〇g/m2 is ι〇~5〇〇^ 〇〇ml, for example, 10~200 seconds/10〇ml, preferably 30~150 seconds/100ml' Preferably, it is 5 〇 10 10 sec / 1 〇〇 m (especially 6 〇 ~ 8 〇 seconds ^ (eight) ...). The average pore diameter of the non-woven fabric of the present invention is (4)), for example, 〇]~1〇μΐη, preferably 0.15~3μιη (for example, Λ ^ ° —〇^〇, μΐη) ^ 〇 Aperture non-woven fabric is suitable as a separator for capacitors. The thickness of the woven fabric can be a thick material, but although it has the characteristics of the thin material ', and the characteristics of the woven fabric, the 铀 皙 估 ; ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 铀 铀 铀 铀 铀 铀 铀The thickness of the non-woven fabric may be 2 〇 μηι to ''preferably 5 to 19 gm' more than 1 〇~; : right. Non-woven fabrics can also be laminated with a plurality of layers of AI:;1. 2~17-left-22-201215715 The weight of non-woven paper can be, for example, 〇丨~(9)"^, preferably 1~3〇g/m2, more preferably 3 to 20 g/m2 (especially 5 to 15 g/m2). The two-gap ratio of the non-woven fabric is 5 〇Q/. The above is preferably 5 〇 to 9 〇%, more preferably about 60 to 80%. The method of manufacturing non-woven fabrics is exemplified by, for example, mixing cellulose fibers with cellulose nanofibers, and then making papermaking methods such as wet paper making or dry paper making. Wet papermaking can be carried out by, for example, We use a wet paper machine such as a paper machine or a perforated plate to push the paper into a paper. The dry paper can also be made by a common method, such as airlaid (aiMa method, etc.). When it is used as a separator in a power storage device such as a battery, it is possible to carry out the fiber straightness at a pressure of, for example, 5 to 30 MPa (particularly 8 to MPa press working. ta) of the present invention. Controlled cellulose fiber, from the appropriate size of the package, so it can be easily carried out New Zealand 3 ^ cellulose nanofibers [Examples], I'm also highly productive. The following 'based on the examples are not limited by the examples. = 坪 Detailed description, but The evaluation of the non-woven fabric was measured by the method of [fiber diameter] τ obtained by the τ: 疋. and the comparative examples, and the 50,000 micrograms of the glutinous rice fiber obtained in the examples and the comparative examples were photographed. Fiber or cellulose on the photograph taken, in the horizontal "," micro-mirror (SEM) photographs, and the line, and then counted and lined with the taxi ', ', the piece of the intentional position pulled out 2侔%All fibers are straightforward - I 罝L to raise the average fiber -23- 201215715 : Γ20 or more.) Regarding the wire drawing method, as long as the fiber intersects with the line, ... 20 or more is not particularly limited. The step is to determine the standard deviation of the fiber diameter distribution and the maximum fiber straightness f from the measurement of the fiber diameter. In addition, if the maximum fiber diameter exceeds the cellulose fiber, the SEM photograph of 5000 times is used to calculate. [Fiber length] Company made "Fiber length using fiber length measuring device (K Ajaani P S · 2 〇 〇") to measure. [Average Aperture] 5,000-times of scanning aperture extraction 50 The non-woven fabrics obtained in the examples and the comparative examples were photographed with a scanning electron microscope (SEM) photograph, and the average pore diameter was obtained only for the point on the outermost surface. [Air permeability] 7 The time in the Gurley method. According to the industrial standard of 曰 测定 测定 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 The tensile strength test was carried out (p (殳) system manufactured by Toyo Seiki Co., Ltd.), and the tensile strength was measured with a chuck of 100 mm, a tensile speed of tang/eight + a strong μ degree of 20 mm/min. The measurement of the stretching t is carried out in the longitudinal direction (or in the longitudinal direction). [Example 1] The tongue θ is from the ~ υ team ^ clothing, the solid content is about 50 liters % 'Kappa value is about 0.3), the licking 7 tongue 曰〇 / Μ Μ, the wilting 1 to 2 罝〇 / 〇 The ratio contains 100 liters of pulp. Secondly, using a round-type material-free disc refiner (Hiroshigawa Iron Works Co., Ltd. -24-201215715 SUPERFIBRATER 400-TFS), with a c-gap 〇15mm, a disk rotation number MOrpm After 1 treatment, a refiner processed product of _2 〇 _ was obtained. The refiner treated product (cellulosic fiber) had an average fiber diameter of 1.6 μm and an average fiber length of 2. For the refiner processed product, a first homogenizer (Gaulin M, which has a thickness of the inner diameter/annular end face of the hollow end of the hollow cylindrical convex portion) 15M8at), 20 times in the king under the treatment pressure of 5 〇 MPa. Next, use a crushing type homogenizing valve seat (thickness M6.8/1 of the inner diameter/annular end surface of the downstream end of the hollow cylindrical convex portion) The second homogenizer (NIR0S0ABI & system, pANDA2K) was treated 20 times at a treatment pressure of 120 MPa. Further, the obtained cellulose nanofibers had an average fiber diameter of 29 nm, and the standard deviation of the fiber diameter distribution was 14 mm, the maximum fiber. The diameter is 64 3nm, and the average fiber length is 153μπι 'the aspect ratio (average fiber length / average fiber diameter) is 5276

進一步將混合有所得之纖維素纖維95重量份及纖 維素奈米纖維5重量份的漿液稀釋成〇 2重量%,使用附 有減壓裝置的造紙機(東洋精機製作所(股)製「標準四方 型片材機(standard square type sheet machine)」),並以 N ο. 5 C濾紙作為濾布來進行造紙。在所得之呈濕潤狀態 的紙的兩面上重合充當吸墨紙(blotting paper)的 N 〇 _ 5 C濾紙。次之’一面對造紙體實施超音波處理,一 面將其浸潰於異丙醇1 〇分鐘來進行溶劑置換。進一步以 新的No. 5 C濾紙包夾其兩面,並於丨〇MPa的壓力下進行 衝壓1分鐘。其後,將其貼附於表面溫度設定為1〇〇°C -25· 201215715 的筒形乾燥機(熊谷理機工業(股)製)乾燥]2〇秒。將所得 之不織布的紙張重量、厚度、平均孔徑、透氣度、拉伸 強度示於表1。Further, 95 parts by weight of the obtained cellulose fibers and 5 parts by weight of the cellulose nanofibers were mixed and diluted to 2% by weight, and a paper machine (Toyo Seiki Seisakusho Co., Ltd.) equipped with a pressure reducing device was used. A standard square type sheet machine was used, and paper was produced using N ο. 5 C filter paper as a filter cloth. N 〇 _ 5 C filter paper serving as blotting paper was superposed on both sides of the obtained paper in a wet state. In the second place, the papermaking body was subjected to ultrasonic treatment, and it was immersed in isopropyl alcohol for 1 minute to carry out solvent replacement. Further, the two sides of the new No. 5 C filter paper were sandwiched and punched for 1 minute under a pressure of 丨〇MPa. Thereafter, it was attached to a cylindrical dryer (manufactured by Kumagai Riki Co., Ltd.) whose surface temperature was set to 1 〇〇 ° C -25 · 201215715 for 2 seconds. The paper weight, thickness, average pore diameter, air permeability, and tensile strength of the obtained non-woven fabric are shown in Table 1.

[實施例2J 除對纖維素纖維99重量份與纖維素奈米纖維丨重量 合造紙以外’係以與實施例1同樣的方式來製 仔不織布。將評定結果示於表I。 [實施例3 ] 除使用市售纖維素纖維(DAICEL chemic 卿sTRIES(股)製「CellshKY1GGG」,平均纖維直柄 •降’平均纖維長度42〇μπι)作為纖維素纖維以外= 以”貫施们同樣的方式來製得不織布 : 於表1。 τ夂、、、。果不 [實施例4 ] 份進除素纖維5重量份與纖維素奈米纖維95重量 ”仃扣合造紙以外,係以與實施 得不織布。將評定結果示於表丨。 枚的方式來製 [實施例5 ] 除對市售纖維素纖維(Celish κγι 9 維素奈米纖維8重量份谁〜π ^ I里伤與纖 例1同樣的方式來f得不继士 f'以與貫施 _ , 水1付不織布。將評定結果示於表丨 [實施例6] "、衣ί。 除對市售纖維素纖維(Cdish κγι 維素奈米纖維8重旦&垔里仏與纖 , 里伤進行混合造紙以外,係以鱼者 例1同樣的方式來!^ θ χ址 于以與貫施 I侍不織布❶將評定結果示於表1。 -26- 201215715 [比較例1 ] 除單獨對纖維素纖維(Celish K*Y10〇G)進行造紙以外 ,係以與實施例1同樣的方式來製得不織布。將評定結 果不於表1。 [比較例2] 除使用纖維素纖維(Celish KYl〇〇G)來取代纖維素奈 米纖維以外,係以與實施例1同樣的方式來製得不織布 。將評定結果示於表1。 [表1 ] 實施例 比故5— 1 2 3 4 5 6 1 --- 2 纖 維 纖維素纖維(份) 95 99 - 5 論 _ ~95~ Celish KY100G(份) L - - 95 - 92 99.5 100 5 纖維素奈米纖維(份) 5 1 5 95 8 0.5 师 -—— 不 織 布 紙張重量(g/m2) 10 10 10 10 10 10 10 1〇 厚度〇xm) 14.3 15.8 13.2 12.8 12.8 13.9 15.4 23 5 平均孔徑〇im) 5.3 10.1 0.9 0.6 0.6 1.0 1.1 7.8 ~~ _ 63 透氣度 (秒/100ml) 加彳由%择ΓΜ/1 Stvi…、 65 69 71 480 93 69 67 -ί-ΐί- ιγ 7¾ 1 Dnuil) —----- U-8 7.5 8.1 13.2 8.3 6.9 5.3 4^ 拉伸強度高。另 W 4机/又久 面’比較例的不織布其拉伸強度低 [產業上之可利用性] 本發明之不織布 但因其電化學穩定性:利用於各種隔離板或過濾器, 電池、燃料電池 阿,亦有用於電池(鋰電池、鋰二次 ^ 、驗性-乂 電池、鉛蓄電池等)、一' -人電池、鎳氫二次電池、鎳鎘 。特別是其雖為薄材,令、電容器等蓄電元件的隔離板 但因透氣度及強度仍高且孔徑 -27- 201215715 亦較大,故可適用於電子裝置、電氣裝置、汽車(混合動 力車、大型汽車等)、電力儲存等電源或輔助電源等的電 容器。 【圖式簡單說明】 第1圖為表示使用均質機對含有纖維的分散液實施 均質化處理之步驟的示意剖面圖。 第2圖為破碎型均質閥座與均質閥之對向部分的放 大剖面圖。 第3圖為破碎型均質閥座的立體圖。 第4圖為非破碎型均質閥座的立體圖。 【主要元件符號說明】 1 原 料 纖 維 2 破 碎 型 均 質 閥 座 3 破 碎 型 均 質 閥 座之流道 4 小 徑 孔 σ 5 均 質 閥 6 碰 撞 環 7 纖 維 素 奈 米 纖 維 12 非 破 碎 型 均 質 閥座 -28-[Example 2J] A non-woven fabric was produced in the same manner as in Example 1 except that 99 parts by weight of cellulose fibers and cellulose nanofibers were used in the same manner as in Example 1. The evaluation results are shown in Table 1. [Example 3] Except for the use of commercially available cellulose fibers ("CellshKY1GGG" manufactured by DAICEL chemic sTRIES, the average fiber straight shank and the average fiber length of 42 〇μπι) were used as the cellulose fibers. In the same manner, a non-woven fabric was obtained: in Table 1. τ夂, , ,. [National Example 4] 5 parts by weight of the enteruin fiber and 95% by weight of the cellulose nanofiber "仃And implemented without weaving. The results of the assessment are shown in the table. In the same manner as in the case of commercially available cellulose fibers (Celish κγι 9 vegas nanofibers, 8 parts by weight, π ^ I, and fiber example 1 are obtained in the same manner. 'With and with _, water 1 is not woven. The results of the evaluation are shown in the table [Example 6] ", ί. In addition to the commercially available cellulose fiber (Cdish κγι 素 维 nanofiber 8 heavy den & In the same way as the fisherman's case 1 in the case of 垔 仏 纤 纤 纤 纤 造纸 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26 Comparative Example 1] A nonwoven fabric was obtained in the same manner as in Example 1 except that the cellulose fibers (Celish K*Y10® G) were separately subjected to papermaking. The evaluation results were not shown in Table 1. [Comparative Example 2] A non-woven fabric was obtained in the same manner as in Example 1 except that cellulose fibers (Celish KYl® G) were used instead of the cellulose nanofibers. The evaluation results are shown in Table 1. [Table 1] 5— 1 2 3 4 5 6 1 --- 2 Fibrous Cellulose Fibers (Parts) 95 99 - 5 Discussion _ ~95~ Celish KY100G (Parts) L - - 95 - 92 99.5 100 5 Cellulose Nanofibers (Parts) 5 1 5 95 8 0.5 Division - - Non-woven paper weight (g/m2) 10 10 10 10 10 10 10 1 〇 Thickness 〇 xm) 14.3 15.8 13.2 12.8 12.8 13.9 15.4 23 5 Mean Aperture 〇im) 5.3 10.1 0.9 0.6 0.6 1.0 1.1 7.8 ~~ _ 63 Air Permeability (sec/100ml) Twisted by %Selection/1 Stvi..., 65 69 71 480 93 69 67 -ί-ΐί- ιγ 73⁄4 1 Dnuil) —----- U-8 7.5 8.1 13.2 8.3 6.9 5.3 4^ High tensile strength. In addition, the W 4 machine/long-faced 'non-woven fabric of the comparative example has low tensile strength [industrial availability] The non-woven fabric of the present invention is electrochemically stable: it is used for various separators or filters, batteries, fuel Battery, also used in batteries (lithium batteries, lithium secondary ^, test - 乂 batteries, lead batteries, etc.), a 'human battery, nickel-hydrogen secondary battery, nickel cadmium. In particular, although it is a thin material, a separator for a storage element such as a capacitor or a capacitor is high in air permeability and strength, and has a large aperture -27-201215715, so it can be applied to electronic devices, electric devices, and automobiles (hybrid vehicles). , large vehicles, etc.), power storage and other power supplies such as auxiliary power supplies. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a step of homogenizing a dispersion liquid containing fibers using a homogenizer. Fig. 2 is an enlarged cross-sectional view showing the opposite portion of the crushing type homogenizing valve seat and the homogenizing valve. Figure 3 is a perspective view of a broken type homogenizing valve seat. Figure 4 is a perspective view of a non-crushing homogenizing valve seat. [Main component symbol description] 1 Raw material fiber 2 Broken homogenizing valve seat 3 Flow path of broken type homogenizing valve seat 4 Small diameter hole σ 5 Homogenizing valve 6 Collision ring 7 Cellulose nanofiber 12 Non-crushing homogenizing valve seat -28 -

Claims (1)

201215715 七、申請專利範圍: 不織布,其係對平均纖 纖維與平均鑣雉古广 直仅0.1〜2〇μιη之纖維素 、十均纖維直技小於j 〇〇 行造紙而成。 m之纖維素奈米纖維進 2.如申請專利範圍第丨項之 。 織布,其厚度為20μπι以下 3 ·如申請專利範圍第 或2項之不織布,盆 未纖維係來自植物,且 ,、中纖,准素- 的比為2_以上。 '1維長度對平均纖維直徑 4·如申請專利範圍第丨 纖維素夺乎繡不織布,其令 ::未纖維的平均纖維直徑$ 15〜8〇 直徑分布的標準差為8〇nm以下。 纖 5 .如申請專利範圍第丨 纖維辛夺平键㈣ 4項中任-項之不織布,其甲 :八i + G 3以下步驟的製造方法來獲得 刀政液έ周製步驟,使肩料输維丰_ &、 央钢制、 使原枓纖維素纖維分散於溶劑中 座 _質化步驟,以具備破碎型均質閥 6 : ,對刖述分散液實施均質化處理。 •如申請專利範圍笛ς τΕ ^ .., 項之不織布,其中原料纖維素纖 '、赛為來自木材纖维芬/ ―、 、 或種毛纖維所形成之未乾燥紙黎 的織維素纖維’且卡帕值為30以下。 丨至6項巾任―項之 纖維素纖維之平均纖維直徑為,、中 ^如申請專利範圍第1 至7項中任一項之不織布,其中 、继維素纖維之平均纖維直徑與纖維素奈米纖維之平均 、,維直徑的比為前者/後者=10/1〜100/1。 -29- 201215715 9.如申請專利範圍第1至8項中 相對纖維素纖維1 0 0重量份, 為0.01-15重量份。 10.如申請專利範圍第1至9項中 質上未含有合成樹脂。 1 1.如申請專利範圍第1至1 0項中 於紙張重量l〇g/m2下的拉伸強 12.如申請專利範圍第1至1 1項中 於紙張重量l〇g/m2下的透氣度 1 3 . —種蓄電元件用隔離板,其係 至1 2項中任一項之不織布所形 任一項之不織布,其中 纖維素奈米纖維的比例 任一項之不織布,其實 任一項之不織布,其中 度為6N/15mm以上。 任一項之不織布,其中 為 10〜500 秒 /100ml。 由如申請專利範圍第1 成0 -30-201215715 VII. Patent application scope: Non-woven fabric, which is made of paper with average fiber and average cellulose of only 0.1~2〇μηη, and ten-weight fiber with less than j 〇〇. m cellulose nanofibers 2. As claimed in the scope of the patent application. The woven fabric has a thickness of 20 μm or less. 3. If the non-woven fabric of the patent application range or the second item is used, the ratio of the non-fibrous fiber is from the plant, and the ratio of the medium fiber to the medium fiber is 2 or more. '1 dimension length versus average fiber diameter 4 · As claimed in the patent range 纤维素 cellulose occupies embroidered non-woven fabric, which makes :: average fiber diameter of fiber 15 15~8 〇 The standard deviation of diameter distribution is 8 〇 nm or less. Fiber 5 . As for the patent application range No. 丨 fiber 夺 夺 flat key (four) 4 items of any of the non-woven fabrics, its A: eight i + G 3 following steps of the manufacturing method to obtain the knife έ liquid έ weekly process steps, so that the shoulder material transmission and maintenance丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰 丰• For example, the patent application range ς ς Ε ς . , , , , , , , , , , , , , , , , , , , , , 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料 原料'And the Kappa value is below 30. The average fiber diameter of the cellulose fibers of the six items of the towel is the non-woven fabric of any one of the first to seventh aspects of the patent application, wherein the average fiber diameter of the cellulose fiber and the cellulose are The ratio of the average and the diameter of the nanofibers is the former/the latter = 10/1 to 100/1. -29-201215715 9. 0.01 to 15 parts by weight relative to 100 parts by weight of the cellulose fibers in the items 1 to 8 of the patent application. 10. The synthetic resin is not contained in the first to ninth aspects of the patent application. 1 1. The tensile strength under the paper weight l〇g/m2 in the range of the patent application range 1 to 10 is 12. In the case of the patent range 1 to 1 1 under the paper weight l〇g/m2 The air-permeable member is a non-woven fabric of any one of the non-woven fabrics of any one of the items 1 to 2, wherein the ratio of the cellulose nanofibers is not woven, The non-woven fabric of the item has a degree of 6N/15mm or more. Any one of them is not woven, which is 10~500 seconds / 100ml. According to the scope of the patent application, the first is 0-30-
TW100127493A 2010-08-04 2011-08-03 Non-woven farbric formed by cellulose fiber and separator for electric accumulator element TW201215715A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175657A JP2012036517A (en) 2010-08-04 2010-08-04 Nonwoven fabric comprising cellulose fiber and power storage element separator comprising the fabric

Publications (1)

Publication Number Publication Date
TW201215715A true TW201215715A (en) 2012-04-16

Family

ID=45559453

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100127493A TW201215715A (en) 2010-08-04 2011-08-03 Non-woven farbric formed by cellulose fiber and separator for electric accumulator element

Country Status (3)

Country Link
JP (1) JP2012036517A (en)
TW (1) TW201215715A (en)
WO (1) WO2012017953A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871341A (en) * 2012-11-20 2015-08-26 布莱恩·G·莫兰 Versatile single-layer lithium ion battery separators having nanofiber and microfiber components
CN104885257A (en) * 2012-11-20 2015-09-02 布莱恩·G·莫兰 Methods of making single-layer lithium ion battery separators having nanofiber and microfiber components
CN105009345A (en) * 2013-03-15 2015-10-28 布莱恩·G·莫兰 Direct electrolyte gelling via battery separator composition and structure
CN112074218A (en) * 2018-06-04 2020-12-11 大王制纸株式会社 Paper towel

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700326B2 (en) * 2012-11-14 2020-06-30 Dreamweaver International, Inc. Single-layer lithium ion battery separators exhibiting low shrinkage rates at high temperatures
FI126089B (en) 2012-12-20 2016-06-30 Kemira Oyj METHOD FOR THE PREPARATION OF MICROFIBRILLED CELLULOSE, Dehydrated
JP6100534B2 (en) * 2013-01-18 2017-03-22 日本製紙株式会社 Method for producing cellulose nanofiber
JP6046505B2 (en) 2013-01-29 2016-12-14 株式会社ダイセル Sheet mold, method for producing the same, and use thereof
JP6238176B2 (en) * 2013-03-06 2017-11-29 ハイキュー プロプライエタリー リミテッド Apparatus for forming nano-objects
JP2014198835A (en) * 2013-03-12 2014-10-23 特種東海製紙株式会社 Cellulose fine porous membrane and manufacturing method therefor, and electrochemical element
JP6286131B2 (en) * 2013-03-19 2018-02-28 株式会社ダイセル Fine cellulose fiber, production method thereof and dispersion
JP6326730B2 (en) * 2013-06-20 2018-05-23 王子ホールディングス株式会社 Nonwoven fabric and method for producing the same
JP6186982B2 (en) * 2013-07-24 2017-08-30 王子ホールディングス株式会社 Nonwoven fabric / resin composite and method for producing the same
EP3135488B1 (en) 2014-04-22 2023-12-06 Oji Holdings Corporation Composite and method for producing the same
PT3140454T (en) * 2014-05-07 2020-02-25 Univ Maine System High efficiency production of nanofibrillated cellulose
EP3149241B1 (en) * 2014-05-30 2020-12-16 Borregaard AS Microfibrillated cellulose
JP2015225844A (en) * 2014-05-30 2015-12-14 Jx日鉱日石エネルギー株式会社 Organic electrolyte battery
JP2016072309A (en) * 2014-09-26 2016-05-09 旭化成株式会社 Lithium ion capacitor
JP6462368B2 (en) * 2015-01-16 2019-01-30 帝人フロンティア株式会社 Wet nonwovens and shoji paper and products
EP3098880B1 (en) * 2015-05-27 2019-02-27 Samsung Electronics Co., Ltd. Separator including microbial cellulose, method of producing the separator, and use of the separator
CN107921343A (en) * 2015-07-16 2018-04-17 Fp创新研究所 Filter medium comprising cellulosic filaments
US20180347117A1 (en) 2015-10-27 2018-12-06 Oji Holdings Corporation Laminated sheet and laminate
JP6586892B2 (en) * 2016-01-15 2019-10-09 王子ホールディングス株式会社 Fine cellulose fiber-containing sheet and method for producing the same
EP3417103B1 (en) 2016-02-19 2023-06-07 Stora Enso Oyj Sheet having improved dead-fold properties
JP6747824B2 (en) * 2016-02-25 2020-08-26 クラレクラフレックス株式会社 Fiber sheet and method for manufacturing fiber sheet
JP6747825B2 (en) * 2016-02-25 2020-08-26 クラレクラフレックス株式会社 Fiber sheet
US11621422B2 (en) 2017-01-17 2023-04-04 Daicel Corporation Electrode slurry, electrode and process for producing the same, and secondary battery
JP6854135B2 (en) 2017-01-17 2021-04-07 株式会社ダイセル Slurry for electrodes, electrodes and their manufacturing methods, and secondary batteries
JP6755203B2 (en) * 2017-02-13 2020-09-16 富士フイルム株式会社 Sheet and sheet manufacturing method
JP6872149B2 (en) * 2017-07-20 2021-05-19 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP6617757B2 (en) * 2017-10-02 2019-12-11 王子ホールディングス株式会社 Fine cellulose fiber-containing sheet and adsorbent, filter, separator
JP7077575B2 (en) * 2017-10-25 2022-05-31 Jnc株式会社 Mixed non-woven fabrics, laminates, filter media for filters, and methods for manufacturing these
US11453728B2 (en) * 2018-03-30 2022-09-27 Nippon Paper Industries Co., Ltd. Carboxymethylated microfibrillated cellulose fibers and composition thereof
JP7346018B2 (en) * 2018-10-05 2023-09-19 大王製紙株式会社 Method for producing cellulose fiber slurry
JP7187243B2 (en) * 2018-10-05 2022-12-12 大王製紙株式会社 Molded body of cellulose fiber and method for producing the same
KR102128419B1 (en) * 2018-12-17 2020-06-30 한국조폐공사 Security paper containing nitrocellulose and manufacturing method therefo
JP6771713B2 (en) * 2018-12-25 2020-10-21 国立研究開発法人産業技術総合研究所 Thermoplastic resin composition
JP6617843B1 (en) * 2019-02-08 2019-12-11 王子ホールディングス株式会社 Sheet
JP7201170B2 (en) * 2019-02-21 2023-01-10 静岡県 towel paper
JP6741106B1 (en) * 2019-03-19 2020-08-19 王子ホールディングス株式会社 Sheet and method for manufacturing sheet
CN113795950A (en) 2019-05-08 2021-12-14 Jsr株式会社 Binder composition for electricity storage device, slurry for electricity storage device electrode, and electricity storage device
KR20220046628A (en) 2019-08-29 2022-04-14 제이에스알 가부시끼가이샤 Binder composition for electrical storage devices, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
US20230044329A1 (en) * 2019-12-25 2023-02-09 Kuraray Co., Ltd. Separator for electrochemical elements
JP7499593B2 (en) * 2020-03-31 2024-06-14 大王製紙株式会社 Cellulose fiber molded body and its manufacturing method
US20230275231A1 (en) 2020-04-28 2023-08-31 Eneos Materials Corporation Binder composition for power storage device, slurry for power storage device electrode, power storage device electrode, and power storage device
JPWO2022039002A1 (en) 2020-08-20 2022-02-24
WO2022186241A1 (en) * 2021-03-02 2022-09-09 東亞合成株式会社 Binder composition for non-woven fabric, and non-woven fabric
WO2022220169A1 (en) 2021-04-15 2022-10-20 株式会社Eneosマテリアル Binder composition for power storage devices, slurry for power storage device electrodes, power storage device electrode, and power storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753874B2 (en) * 2004-07-01 2011-08-24 旭化成株式会社 Cellulose nonwoven fabric
JP2007231438A (en) * 2006-02-28 2007-09-13 Daicel Chem Ind Ltd Microfibrous cellulose and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871341A (en) * 2012-11-20 2015-08-26 布莱恩·G·莫兰 Versatile single-layer lithium ion battery separators having nanofiber and microfiber components
CN104885257A (en) * 2012-11-20 2015-09-02 布莱恩·G·莫兰 Methods of making single-layer lithium ion battery separators having nanofiber and microfiber components
CN104871341B (en) * 2012-11-20 2018-04-10 梦想编织者国际股份有限公司 General single-layer lithium ion battery separator with nanofiber and micrometer fibers composition
CN105009345A (en) * 2013-03-15 2015-10-28 布莱恩·G·莫兰 Direct electrolyte gelling via battery separator composition and structure
CN112074218A (en) * 2018-06-04 2020-12-11 大王制纸株式会社 Paper towel

Also Published As

Publication number Publication date
JP2012036517A (en) 2012-02-23
WO2012017953A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
TW201215715A (en) Non-woven farbric formed by cellulose fiber and separator for electric accumulator element
TW201211331A (en) Non-woven farbric comprising cellulose fiber, production method thereof and separator
KR101702693B1 (en) Substrate for lithium secondary battery, and separator for lithium secondary battery
JP5612922B2 (en) Microfiber, method for producing the same, and non-woven fabric
JP5844067B2 (en) Non-woven fiber laminate, method for producing the same, and separator
JP2013104142A (en) Cellulosic nonwoven fabric and method for manufacturing the same, and separator
JP5846449B2 (en) Battery separator manufacturing method and battery separator
JP2008274525A (en) Nonwoven cellulose fabric having low basis weight
JP5948544B2 (en) Production method of composite sheet material
JP6326730B2 (en) Nonwoven fabric and method for producing the same
JP2014051767A (en) Separator for electricity storage device and production method of the same
JP2013206591A (en) Separator for power storage element and manufacturing method thereof
JP6356356B2 (en) Alkaline battery separator
JP7079267B2 (en) Separator and separator for alkaline manganese dry cell consisting of the separator
JP2014139903A (en) Method for manufacturing laminate for storage element and lithium ion battery
JP5594844B2 (en) Electrochemical element separator
WO2018199975A1 (en) Foam-formed fibrous sheets with crimped staple fibers
US6346168B1 (en) Process for making metal fiber/metal powder sheet
JP4098160B2 (en) Carbon fiber nonwoven fabric excellent in gas permeability and conductivity and method for producing the same
JP2015050043A (en) Lithium ion secondary battery separator
JP5485211B2 (en) Method for producing porous electrode substrate
JP2017168743A (en) Separator for electric double layer capacitor and electric double layer capacitor arranged by use thereof
JP2015060769A (en) Separator for lithium ion secondary battery