201214841 六、發明說明: 【發明所屬之技術領域】 本發明係一種關於燃料電池混合電力系統,其特別係藉由 燃料電池模組、二次電池模組與負載間之電壓與功率匹配,·達 到無須電源轉換器之混合電力輸出之設計。 【先前技術】 燃料電池是一種將氫氣與氧氣經由氧化還原的方式反應 _ 而產生電力的裝置’由於其反應過程只產生熱和水,是一種具 有南效率、低污染的發電裝置。只要不斷地提供燃料電池所需 要的燃料(氫氣)及輔助性氣體(空氣),燃料電池理論上就 可以持續地提供電力。 由於燃料電池輸出的反應速度無法滿足動力系統負載的 快速變化’因此藉由外加超高電容或二次電池來提高混合電力 之動力系統的響應速度,以滿足動力系統負載之需求。在中華 鲁 民國專利號第200945724號中揭示了一種燃料電池混合電力 輸出之管理辦法。藉由二個切換器、感測單元及控制單元,並 根據燃料電池之電力狀態,控制切換器以選擇燃料電池模組單 獨供電或者燃料電池模組與二次電池模組混合供電。此外,在 中華民國專利號第200929656號及第200935641號的混合電力 裴置中燃料電池與二次電池供給迴路分別具有電壓轉換單 元,用以控制各迴路所輸出的電壓,以達成單一供電、混合供 電或燃料電池對二次電池充電之功能。中華民國新型專利號第 M330929號的混合技術使用一直流電壓轉換器,可限制燃料電 201214841 池之電流維持在-最大值選擇與二次電池並聯輸出電力。在 美國專利US6975091中的燃料電池混合電力系統中採用了二 個切換開關及在二次電池輸出端以—錢賴馳器來達成 混合之功用。201214841 VI. Description of the Invention: [Technical Field] The present invention relates to a fuel cell hybrid power system, which is specifically achieved by matching voltage and power between a fuel cell module, a secondary battery module and a load. There is no need to design a hybrid power output for the power converter. [Prior Art] A fuel cell is a device that reacts hydrogen and oxygen by means of redox _ to generate electricity. Since the reaction process generates only heat and water, it is a power generating device with south efficiency and low pollution. As long as the fuel (hydrogen) and auxiliary gas (air) required for the fuel cell are continuously provided, the fuel cell can theoretically provide power continuously. Since the reaction speed of the fuel cell output cannot meet the rapid change of the power system load, the response speed of the hybrid power system is increased by adding an ultra-high capacitance or a secondary battery to meet the demand of the power system load. A management method for hybrid electric power output of a fuel cell is disclosed in Chinese Patent No. 200945724. The switcher is controlled to select a single fuel cell module or a hybrid fuel cell module and a secondary battery module by means of two switches, a sensing unit and a control unit, and according to the power state of the fuel cell. In addition, in the hybrid power device of the Republic of China Patent No. 200929656 and the No. 200935641, the fuel cell and the secondary battery supply circuit respectively have voltage conversion units for controlling the voltage outputted by each circuit to achieve a single power supply and mixing. The function of charging a secondary battery by a power supply or a fuel cell. The hybrid technology of the Republic of China New Patent No. M330929 uses a DC voltage converter that can limit the fuel power. The current of the 201214841 pool is maintained at the maximum value and the secondary battery is connected in parallel with the output power. In the fuel cell hybrid power system of U.S. Patent No. 6,975,091, two diverter switches are used and a hybrid device is used at the output of the secondary battery to achieve the function of mixing.
在已發表之期刊論文中,jiang等人的論文[J〇_i〇f Power Sources 130 (2004) 163-171]^ Gao ^^x[J〇umaI MPower· S〇Urces 130 (2〇〇4) 202_2〇7]中均設計 了一主動式控 制器來控制燃料電池輸出端之直流電源轉換器,而達成與二次 電池混合輸出之目的。jossen等人發表的論文中 Power Sources 144 (2〇〇5) 提出 了燃料電池與二次電 池此合輸出之數學模型,在其模型中,燃料電池仍需經由一直、 流電源轉換器來達成與二次電池混合輸出之目的。 先丽發表之專利技術或論文為採用電力控制器來切換控 制燃料電池單娜電或與二次電池混合供電之方式;或者控制 直流電源轉換器,燃料電池可與二次電池混合輸出之方式。在 這些發表的專利技術或論文中仍需使用電源轉換器,而電源轉 換器的效率會降低整個混合電力系統的效率,無法使電力有效 地使用;再者,複雜的切換技術需要搭配準確的量測元件及可 迅速反應的切換開發,控制程式的開發也會增加混合電力系統 的成本。因此,本發明鑑於上述所提及之混合電力系統之缺 失,乃發明一種無需電源轉換器之燃料電池混合電力系統,亦 無需複雜的控制技術。 201214841 【發明内容】 本發明提供一無電源轉換器之燃料電池混合電力系統。其 可利用燃料電池模組與二次電池模組並聯以提供負載所需之 電力。在本無電源轉換器之燃料電池混合電力系統中,藉由燃 料電池模組、二次電池模組與負細之電壓與功率匹配,可無 須電源轉換器而達成混合電力輪出之目的。 ·… 本發明之無電源轉換n之燃料電池混合電力系統如應用 • 麵域具或車輛載具上’财祕電池模組之輸a功率足以 滿足飛仃載具或車喊具之定速巡航;破動瞬間或加速所需 之功率則由二次電池提供。由於無須電源轉換器,可減輕系絶 重量,節省電源轉換器之電力損失及簡化系統設計,可大幅提 幵能源效率。 為達成無電源轉換器之燃料電池混合電力系統之設計,需 利用燃料電池模組與二次電池之特性來配合所需之負載功 • #。燃料電池模組之特性為在安全工作範圍内,輸出功率由負 載端而求而決疋’輸出功率高時,輸出電壓低;輸出電功率低 時,輸出電壓高。而二次電池之特性為可瞬間大電流放電,輸 出電麼不易受負载功率而有大幅變動。 燃料電池模組之輸出電壓及功率需依據負載之可接受電壓 及作寺之功率來匹配。燃:料電池模組之輸出電壓需介於負載 之最大與最何接f電壓顧内。_電池模組之輸出功率需 滿足負載在低功率運作,在此低功率下,若欲使燃料電池模組 201214841 在此低功轉繼電,f設計二次電池模組哺$電壓小於 此燃料電缸作點之輸出電壓。由於燃料電池敝之輪出電壓 高於二次電池模組之電壓,故二次電池模組無法放電。當負載 需要高功率運料,秘燃料電賴組之輸出賴會隨輪出功 率增加而下降’當_二次電池之放電電壓範_時^棘 出電壓會相同而同時供電。 3 【實施方式】 /圖1係顯示本發明之無電源轉換器之燃料電池混合電力 系統。燃料電池模_二次電池模組之輸出端並未經由電源轉 換器,而是直接並聯後即與負載相連接,其中二極體是用 止燃料電池直接對二次電池充電。圖2穌發明之燃料電池模 組、-次電池模組及負載之電壓匹配示意圖。燃料電池模έ且之 輸出電壓有-最小工作電壓Vfci、與二次電池如輸出之初於 =合電壓〜及-未供電給負載時之最大·ν&3;二次魏 =組之輸出賴有-最似作麵%及—未供電給負載時之 ^大祕Vb2,·負載有一最低輸入電^及一最高輸入· 犯。燃枓電池模組之最小工作電璧、大於或等於負載之最 触之最大輸”壓〜小於或等 、 雨入電[、,一次電池模版未供電給負載時之 取大電壓%小於或軸料電池模組之初始混合輕〜。 當負載需求功率低時,燃料電池模組輸出電壓高於初始混 201214841 口電壓ν&2,即高於二次電池模組之最大電壓,故二次電 ’也模組無法輸出電力,此時由燃料電池模組單獨供電。當負載 品求功率尚於燃料電池模組在初始混合電壓Vf(:2下可提供之 功率時’燃料電池模組之輸出電壓會低於Vf。2而進入二次電池 模、、且之輸出電壓範圍區間,故燃料電池模組與二次電池模組合 共同供電。 9 貫施例一 t 將燃料電池模組(例如質子交換膜型燃料電池模組)、 一一-欠電池模組(例如磷酸鐵鋰電池模組)與一負載(例如直 流無刷馬達)按圖1所示之方式連接,其中二極體為防止燃料 電池模組對二次電池模組(例如磷酸鐵鋰電池直接充電)。燃 料電池模組之最小工作電壓Vfcl==20v,未供電給負載時之最 大電壓Vfc3 = 33V’最大輸出功率為150W;二次電池模組之 最小工作電壓Vbl = 21V,未供電給負載時之最大電壓= 23V ;負載之最低輸入電壓Vm] = 18v,最高輸入電壓= 33V ’最大消耗功率為450W。 將負載瞬間啟動至高功率運轉,同時記錄燃料電池模組、 鱗酸鐵鐘電池模組與負載之電流變化及燃料電池模組、鱗酸鐵 鋰電池模組輸出之電壓變化。圖3顯示燃料電池模組之輸出電 流無法滿足貞載賴啟動所需之大電流,因此*足的電流由磷 酸鐵鋰電池提供;啟動後馬達即穩定地維持在一電流值運轉。 201214841 此時燃料電池模組輸出6A,碟酸鐵鐘電池輸出9a,兩者共同 供電由電文化圖可看出在高功率下,燃料電池模組之輸出 電壓在_鐵㈣池之輸出電壓範圍内且二者相同, 至23V之間。 實施例二: 〃同實施例-之燃料電池模組(例如質子交換膜型燃料電池 模組)、二次電池模組(例如碟酸鐵鐘電池模組)及一負載(例 如直流無刷馬達)之連接方式。 將馬達瞬間啟動至低功率運轉—段時間再瞬間增加至大 功率運轉,同時記錄簡電池歡、=次電池模組(例如鱗酸 鐵链電賴組)與負載(例如直流無刷馬達)之電流變化及燃 料電池权組與二次f池模組輸出之電壓變化。圖4顯示馬達啟 動瞬間所需的大電流無法由燃料電池模组提供,而是由填酸鐵 鐘電池提供;雌完錢,燃料電池·本身可滿足馬達所需 之低功率。在此低功率下,燃料電池輸出電壓約為27V ’大於 鋰電池之放電電壓,因此鋰電池無法輸出電力。 虽馬達需求功率瞬間增大時’可看出磷酸鐵鐘電池之放電 電流瞬間增加,以滿足大電流之需求。紐魏流隨後又降回 -穩定值’與燃料電池模組制供電,如實施例—之狀態。 201214841 【圖式簡單說明】 圖1本發明之無電源轉換器之燃料電池混合電力系統架構圖。 圖2本發明之燃料電池模組、二次電池模組及負載之電壓匹配 示意圖。 圖3實施例一之燃料電池模組、二次電池模組及負載之電流與 電壓變化圖。 圖4實施例二之燃料電池模組、二次電池模組及負載之電流與 電壓變化圖。 【主要元件符號說明】 10燃料電池模組 11燃料電池模組之性能曲線 2〇二次電池模組 21二次電池模組之輸出電壓範圍 負載 31負載可接受之輸入電壓範圍。In the published journal papers, Jiang et al. [J〇_i〇f Power Sources 130 (2004) 163-171]^ Gao ^^x[J〇umaI MPower· S〇Urces 130 (2〇〇4 ) 202_2〇7] designed an active controller to control the DC power converter at the output of the fuel cell to achieve the purpose of mixing the output with the secondary battery. In a paper published by Jossen et al., Power Sources 144 (2〇〇5) proposed a mathematical model for the combined output of fuel cells and secondary batteries. In its model, the fuel cell still needs to be achieved through a constant current converter. The purpose of the secondary battery mixed output. The patented technology or paper published by Xianli is a method in which a power controller is used to switch between controlling the fuel cell single-phase or hybridizing with the secondary battery; or controlling the DC power converter, the fuel cell can be mixed with the secondary battery. Power converters are still required in these published patented technologies or papers, and the efficiency of the power converter will reduce the efficiency of the entire hybrid power system and will not enable the power to be used effectively; in addition, complex switching techniques need to be matched with accurate quantities. The development of measurement components and rapid response switching, the development of control programs will also increase the cost of hybrid power systems. Accordingly, the present invention has been made in view of the above-mentioned lack of a hybrid power system, and has invented a fuel cell hybrid power system that does not require a power converter, and does not require complicated control techniques. 201214841 SUMMARY OF THE INVENTION The present invention provides a fuel cell hybrid power system without a power converter. It can use a fuel cell module in parallel with the secondary battery module to provide the power required by the load. In the fuel cell hybrid power system without the power converter, by matching the voltage and power of the fuel cell module and the secondary battery module with the negative voltage, the purpose of the hybrid power rotation can be achieved without the power converter. · The fuel cell hybrid power system without power conversion n of the present invention, such as application • area area or vehicle vehicle, is capable of satisfying the constant speed cruise of the flying vehicle or the vehicle. The power required to break or accelerate is provided by the secondary battery. Since no power converter is required, the weight can be reduced, the power loss of the power converter can be saved, and the system design can be simplified, which can greatly improve energy efficiency. In order to achieve a fuel cell hybrid power system design with no power converter, the characteristics of the fuel cell module and the secondary battery are used to match the required load function. The characteristics of the fuel cell module are that in the safe operating range, the output power is determined by the load terminal. When the output power is high, the output voltage is low; when the output power is low, the output voltage is high. The characteristics of the secondary battery are that it can be discharged at a large current instantaneously, and the output power is not easily affected by the load power. The output voltage and power of the fuel cell module should be matched according to the acceptable voltage of the load and the power of the temple. The output voltage of the fuel cell module needs to be between the maximum and the most connected voltage of the load. _The output power of the battery module needs to meet the load at low power operation. At this low power, if the fuel cell module 201214841 is to be low-powered and relayed, the secondary battery module is designed to feed the voltage less than this fuel. The output voltage of the electric cylinder. Since the fuel cell has a higher voltage than the secondary battery module, the secondary battery module cannot be discharged. When the load requires high-power transportation, the output of the secret fuel-powered group will decrease as the output power increases. When the discharge voltage of the secondary battery is _, the voltage will be the same and the power will be supplied at the same time. [Embodiment] / Fig. 1 shows a fuel cell hybrid electric system of the powerless converter of the present invention. The output of the fuel cell module _ secondary battery module is not connected to the load through the power converter, but directly connected in parallel with the load, wherein the diode directly charges the secondary battery with the fuel cell. Fig. 2 is a schematic diagram showing the voltage matching of the fuel cell module, the secondary battery module and the load of the invention. The output voltage of the fuel cell module has a minimum operating voltage Vfci, a secondary battery such as an output at the beginning of the combined voltage ~ and - the maximum when the power is not supplied to the load · ν &3; the second Wei = group output There are - most like the face % and - the power is not supplied to the load when the big secret Vb2, · load has a minimum input power ^ and a maximum input · commit. The minimum operating voltage of the fuel cell module is greater than or equal to the maximum contact voltage of the load. The pressure is less than or less than or equal to, and the rain is charged. [, the large voltage % of the primary battery template is not supplied to the load. The initial mixing of the battery module is light ~ When the load demand power is low, the output voltage of the fuel cell module is higher than the initial mixed voltage of 201214841 ν & 2, which is higher than the maximum voltage of the secondary battery module, so the secondary electricity' The module can not output power, at this time, the fuel cell module is separately powered. When the load product is still at the fuel cell module at the initial mixed voltage Vf (2 can provide the power), the output voltage of the fuel cell module Will fall below Vf. 2 and enter the secondary battery mode, and the output voltage range range, so the fuel cell module and the secondary battery module combination to supply power. 9 Example 1 a fuel cell module (such as proton exchange) Membrane fuel cell module), one-to-under battery module (such as lithium iron phosphate battery module) and a load (such as DC brushless motor) are connected as shown in Figure 1, wherein the diode is prevented The battery module is used to charge the secondary battery module (such as lithium iron phosphate battery directly). The minimum operating voltage of the fuel cell module is Vfcl==20v, and the maximum voltage when the power is not supplied to the load Vfc3 = 33V' maximum output power is 150W. The minimum operating voltage of the secondary battery module is Vbl = 21V, the maximum voltage when no power is supplied to the load = 23V; the lowest input voltage of the load is Vm] = 18v, the maximum input voltage = 33V 'maximum power consumption is 450W. Start to high-power operation, and record the change of current of fuel cell module, strontium iron clock battery module and load, and the voltage change of fuel cell module and lithium iron silicate battery module output. Figure 3 shows the fuel cell module The output current cannot meet the large current required for starting, so the current of *foot is provided by lithium iron phosphate battery; after starting, the motor is stably maintained at a current value. 201214841 At this time, the fuel cell module outputs 6A, disc Acid iron clock battery output 9a, the two power supply together from the electric culture chart can be seen at high power, the output voltage of the fuel cell module in the _ iron (four) pool output voltage The same as the two, to between 23 V. Embodiment 2: The same as the embodiment - the fuel cell module (such as proton exchange membrane type fuel cell module), secondary battery module (such as the disc iron iron battery module Group) and a load (such as DC brushless motor) connection method. Instantly start the motor to low power operation - then increase it to high power operation for a while, and record the battery, = secondary battery module (such as scaly acid) The current change of the electric chain and the load (such as the DC brushless motor) and the voltage change of the fuel cell weight group and the secondary f pool module output. Figure 4 shows that the large current required for the motor starting moment cannot be used by the fuel cell. The module is provided, but is provided by an acid-filled iron clock battery; when the female is finished, the fuel cell itself can meet the low power required by the motor. At this low power, the fuel cell output voltage is about 27V' greater than the discharge voltage of the lithium battery, so the lithium battery cannot output power. Although the power demand of the motor increases instantaneously, it can be seen that the discharge current of the iron phosphate clock battery instantaneously increases to meet the demand of large current. The Neuwei flow then drops back to the -stability value and the fuel cell module power supply, as in the embodiment. 201214841 [Simplified Schematic] FIG. 1 is a structural diagram of a fuel cell hybrid power system of a powerless converter of the present invention. Fig. 2 is a schematic diagram showing the voltage matching of the fuel cell module, the secondary battery module and the load of the present invention. Fig. 3 is a graph showing current and voltage changes of the fuel cell module, the secondary battery module and the load of the first embodiment. Fig. 4 is a diagram showing current and voltage changes of the fuel cell module, the secondary battery module and the load of the second embodiment. [Main component symbol description] 10 Fuel cell module 11 Fuel cell module performance curve 2〇 Secondary battery module 21 Secondary battery module output voltage range Load 31 Load acceptable input voltage range.