TW201213240A - High refractive index TiO2 nano-composite optical film and production process thereof - Google Patents

High refractive index TiO2 nano-composite optical film and production process thereof Download PDF

Info

Publication number
TW201213240A
TW201213240A TW99132717A TW99132717A TW201213240A TW 201213240 A TW201213240 A TW 201213240A TW 99132717 A TW99132717 A TW 99132717A TW 99132717 A TW99132717 A TW 99132717A TW 201213240 A TW201213240 A TW 201213240A
Authority
TW
Taiwan
Prior art keywords
sol
titanium dioxide
coating
preparing
refractive index
Prior art date
Application number
TW99132717A
Other languages
Chinese (zh)
Inventor
Yu-Ching Fang
Chi-Fa Hsieh
Wei-Hong Wang
Tai-Kang Liu
Chao-Qin Zhang
Liao-Ping Zheng
Feng-Xi Huang
jia-ying Lin
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW99132717A priority Critical patent/TW201213240A/en
Publication of TW201213240A publication Critical patent/TW201213240A/en

Links

Abstract

A high-refractive-index titanium oxide nano-composite optical film and the preparation process are disclosed. Firstly, sol-gel process via hydrolysis and condensation reaction was employed for preparation of nano-scale titanium oxide particles. Then methacrylic acid, alkyloxysilyl compound etc. were grafted on the particle surface for improving compatibility, raising solid content, decreasing surface roughness, hindering particle growth in the organic resin structure, thus ensuring a stable and operative hybrid sol was obtained. To improve structure, mechanical property and hardness of titanium oxide hybrid optical film, acrylic monomer crosslinking in conjunction with UV cure were conducted on the plastic substrate. The produced film can exhibit the properties of refractive index of 1.75, colorless in visible region, good adherence to substrate and lower than 3.2nm of surface roughness, thus has potential for application to anti-reflection coating of optical devices.

Description

201213240 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種一氧化欽溶膠製程及其應用於光 學薄膜之製程’特別疋一種具尚折射率二氧化鈦奈米複材 光學薄膜與製程。 【先前技術】 . 製備奈米級有機-無機混成(hybrid)材料的各種製程中, 溶膠-凝膠(sol-gel)法是一種被廣泛使用的方法。溶膠-凝膠 法通吊以金屬院氧化物(alkyloxy compound )為起始原料或 前驅物,在酸或鹼的催化下與水進行水解反應生成金屬 醇,然後此醇基與另一醇基或烷氧基進行縮合(c〇ndensati〇n) 反應,產生具金屬-氧-金屬化學鍵之化學結構,無機粒子由 分子層級由小而大逐漸成長,透過反應條件的控制將奈米 粒子維持在溶膠狀態。有機成分則藉由偶合劑(c〇Upling agent)以化學鍵結方式與奈米溶膠粒子混成形成複合材料。 由於此種材料分子間作用力的強化(如共價鍵或氫鍵),改善 了傳統複合材料在微米層級「相分離」(phase separati〇n)的 缺點,使得各成分能發揮其特性,整體材料性能因而大幅 提昇。藉由調整無機與有機成分的種類及比例,可以精確 的調整材料的物理性、質。因所合成的無機顆粒大小在奈米 範圍且分佈均勻,所以複合材料的光學性質極佳。常見的 無機及金屬氧化物如二氧化矽與二氧化鈦等已被用來製備 有機-無機混成光學薄膜,並用於調整薄膜的折射率。以往 使用溶膠-凝膠法以鈦烧氧化物直接在有機單體或高分子溶 201213240 液中進行水解縮合反應,反應程度不易控制,並容易膠化 . 而缺乏實用性。 以光硬化製程製備高折射率光學薄膜可以簡化單體合 成的程序,兼具節能減碳的考量,同時可利用其來製備圖 案化(patterning)的光學元件,免除光阻的使用,值得進— 步研究。紫外線硬化(UV curing)目前已應用在塗料、油 墨、黏合劑、印刷電路板、半導體產業、民生產業等許多 ?頁域备、外光硬化反應疋藉由光起始劑(ph〇t〇initiator)在紫 • 夕卜光能量照射之下,經光解(ph_ySiS)反應|生自由基 (free radical)或陽離子(cati〇n)等反應活性基,與溶液之中的 預聚物或單體作用而起始聚合反應。對硬化程序而言,光 起始劑、預聚物、單體各自擔負了不同的責任,但彼此環 %相扣,共同完成了光聚合反應。比較各類型輻射硬化技 術,紫外光硬化技術擁有光源取得較易及設備經費投入較 低的優勢,在生產應用上顯示出強大的競爭力。和熱硬化 φ 才目比’务、外光硬化除了節能省時外,其最大優點為可於低 溫反應’對於暴露於高溫下會變質的材料,例如熱敏感性 的電子材料,光硬化有著絕對優勢。用uv光聚合可減少製 備程序並可使用光罩曝光’顯影後達到製作圖案化光學元 件。 綜言之,以溶膠-凝膠法製備高折射率叫光學薄膜時 常遭遇之問題為結構鬆散、機械性欠佳、财括性差、易脆 裂、與載體附著性差’部份源自於溶膠凝膠法製程中控制 光學粒子前驅物(precursor)反應❹之偶合劑 201213240 agem)無衫全由複合财齡與反應不完全。 【發明内容】 _於上述習知技術之缺點,本發明之主要 供一種二氧化鈦轉製程及其應用於光學薄私^ = 合一乳化鈦、反應溶劑、偶合劑、 劑算,A尤早體及光起始 專Λ解決而折射率Ti〇2光學薄膜常遭遇之 機械性欠佳、耐括性差、易·、與載體附著性差^問 為了達到上述目的,根據本發明所提出之一方案,提 供種一氧化鈦溶膠的製備方法,其步驟包括:⑴將一一 氧化鈦珂驅物與一反應溶劑混合成一反應溶液,201213240 VI. Description of the Invention: [Technical Field] The present invention relates to a process for producing an oxidized sol and its application to an optical film, in particular, an optical film and process having a refractive index of titanium dioxide nanocomposite. [Prior Art] The sol-gel method is a widely used method in various processes for preparing nano-organic-inorganic hybrid materials. The sol-gel method uses a metaloxy compound as a starting material or a precursor, and is hydrolyzed with water under the catalysis of an acid or a base to form a metal alcohol, and then the alcohol group and another alcohol group or The alkoxy group undergoes a condensation (c〇ndensati〇n) reaction to produce a chemical structure having a metal-oxygen-metal chemical bond, and the inorganic particles grow from a small and large molecular level, and the nanoparticle is maintained in the sol by controlling the reaction conditions. status. The organic component is chemically bonded to the nano sol particles by a coupling agent (c〇Upling agent) to form a composite material. Due to the strengthening of the intermolecular forces of such materials (such as covalent bonds or hydrogen bonds), the shortcomings of the conventional composites in the microphase "phase separat" are improved, so that the components can exert their characteristics, and the whole The material properties are thus greatly improved. By adjusting the type and proportion of inorganic and organic components, the physical and qualitative properties of the material can be precisely adjusted. The optical properties of the composite are excellent because the size of the inorganic particles synthesized is in the nanometer range and is evenly distributed. Common inorganic and metal oxides such as cerium oxide and titanium dioxide have been used to prepare organic-inorganic hybrid optical films and are used to adjust the refractive index of the films. In the past, the sol-gel method was used to directly hydrolyze and condense the titanium oxide oxide in the organic monomer or polymer solution 201213240, and the degree of reaction was not easily controlled, and it was easy to gel. However, it lacked practicality. The preparation of high refractive index optical film by photohardening process can simplify the process of monomer synthesis, and has the consideration of energy saving and carbon reduction. At the same time, it can be used to prepare patterned optical components, eliminating the use of photoresist, and it is worthwhile to enter- Step study. UV curing has been applied in many applications such as coatings, inks, adhesives, printed circuit boards, semiconductor industry, and civil production. The external light hardening reaction is based on photoinitiator (ph〇t〇initiator). a reactive group such as a photolysis (ph_ySiS) reaction, a free radical or a cation (cati〇n), or a prepolymer or monomer in a solution, under the irradiation of violet light The polymerization is initiated by the action. For the hardening process, the photoinitiator, prepolymer, and monomer each bear different responsibilities, but each other is interlocked to complete the photopolymerization reaction. Comparing various types of radiation hardening technology, UV hardening technology has the advantages of easy to obtain light source and low investment in equipment, and shows strong competitiveness in production and application. And the heat hardening φ is the best in addition to energy saving and time saving, the biggest advantage is that it can react at low temperature. For materials exposed to high temperature, such as heat sensitive electronic materials, light hardening has absolute Advantage. Polymerization with uv light can reduce the preparation process and can be used to produce patterned optical elements after exposure to the reticle. In summary, the problem of preparing a high refractive index called an optical film by a sol-gel method is that the structure is loose, mechanically poor, poorly conducive, brittle, and poorly adhered to the carrier. In the gel process, the optical particle precursor (recursor) reaction ❹ coupling agent 201213240 agem) all the shirts are not fully complex and the reaction is incomplete. SUMMARY OF THE INVENTION In view of the above disadvantages of the prior art, the present invention is mainly used for a titanium dioxide conversion process and its application to optical thin composites, titanium oxide, reaction solvents, coupling agents, agents, A especially early and Photorefractively, the refractive index of the Ti 2 optical film often encounters poor mechanical properties, poor tolerance, and poor adhesion to the carrier. In order to achieve the above object, according to one aspect of the present invention, The method for preparing a titanium oxide sol comprises the steps of: (1) mixing a monoiodine oxide crucible with a reaction solvent to form a reaction solution,

>*· '"Π > sZT 一軋化鈦耵驅物可為一四烷氧基鈦化合物,以及該反應六 劑可為正丁醇、曱乙料中選―;接著,⑻在上•驟ϋ 將該反應溶液襄加入一酸催化劑,利用緩慢的滴定法,將 忒反應溶液與該酸催化劑混合後靜置一第一時間間隔,其 中,該酸催化劑可是一鹽酸溶液,或該酸催化劑可是包含 鹽酸(谷液或疋一鹽酸溶液及等重量之反應溶劑(例如正丁 醇、甲乙酮)’而該第一時間間隔為一段反應時間,其範圍 可是一小時以上至十小時,視其反應物而決定該反應時間 長短’例如3小時或6小時;(即將在⑻中反應完畢的該反應 溶液中加入一偶合劑混合成一二氧化鈦溶膠,再利用一攪 拌法攪拌該二氧化鈦溶膠達一第二時間間隔,其中,該攪 拌法可為一磁石攪拌法,該偶合劑可為甲基丙烯酸 (MAA)、甲基丙烯酸甲酯(MMa)或4-乙烯苯甲酸VBZ(4- 201213240 add)其中選—,而該第二時間間隔為 :朝雁錢圍可是一小時以上至十小時,視其反應二 决疋反應%間長短’例如6小時。上述步驟⑼中,更包含一 步驟,其中’該反應溶液與賴催化舰合後,密= 應溶液’再將該密狀反應溶液靜置-段時如第: ,二。藉此經上述_⑽步驟後可得—種二氧化“ H减鈦溶膠驗長咖存放而顿變絲徑大小, 且該溶膠好表面_度糾降低、細微吨粒徑 被維持,因而提高該材料之機械性、耐括性。 為了達到上述目的,根據本發明所提出另—方案 供一種製備中折射或高折射率賴的方法,其步驟包括: 首先提供根據上述二氧化鈦溶膠製備方法所製備出的—二 t溶膠m氧灿_不輸貞的偶㈣ :掛;—减鈦粒子表面,並可加入環氧樹脂或壓克力樹 =有機感光單體及光起始劑等以提高該二氧化鈦溶膠的 …化性;接著’將該二氧化鈦溶膠均勻塗佈於一基板 /、中4基板可疋一玻璃基板或是各種軟性美拓η丨 塑最後將該基板以紫外光曝光與多段式烘;固(化J =高折射率光學薄膜’其中,該基板上塗料經紫外 反應而成一薄膜。在上述中“射率光 干相的組成中,樹脂或單體聚合後成為薄膜的主體 (二_ ’而二氧化錄子提供高折射率的物 ^劑負責二氧化鈦粒子朗社體之_赌。本發明2 別以不同偶合劑製造二氧化鈦混成溶膠,接下來不考慮使 201213240 合劑將二氧化鈦粒子間聯結聚合賴, 物性的影響並“:質的二氧化鈦粒子對光學薄膜各項 始劑等,經包覆°、、其次再添加壓克力單體、光起 更化I程因而製備出高折射率光學鍍 鈦結射 择Γ如阿固含量、減低奈米複材表面粗糙 、竹腺,ΡΊ I制粒子成長,獲得敎、具猶㈣性之混成 :Ϊ 相的結構、機械性質與硬度;而接績使用 亞力單體進订交聯反應,並以紫外光硬化製程在基材上 製備出光學薄膜折射率可達175之光學薄膜。 、以上之概述與接下來的詳細說明及附圖,皆是為了能 進-步說明本發明未達預定目的所採取的方式、手段及功 心而有關本發明的其他目的及優點,將在後續的說明及 圖示中加以闡述。 【實施方式】 以下係藉由特定的具體實例說明本發明之實施方式, 熟悉此技藝之人士可由本說明書所揭示之内容輕易地瞭解 本發明之其他優點與功效。 第一步:製備二氧化鈦溶膠(T-s〇l) 先將二氧化鈦前驅物-四烷氧基鈦化合物 TBOT(tetrabutoxyltitanium,ACROS)與溶劑 Ι-butanol(正丁 醇)依表1之配方置於反應瓶中,以攪拌混合均勻;接著把 稀釋後的鹽酸水溶液(18_5 %)於室溫下缓慢滴入,此時會因 水解縮合反應快速進行而產生放熱現象。持續反應3小時, 201213240 待反應趨於平衡,二氧化鈦混成溶膠(T-sol)製備完成。分 別以UV(UNICAM UV 500)、FTIR(Nicolet Magna—IR 550) 及動態光散射粒徑分析儀(DLS, Malvern Zetasizer-3000HS) 觀測溶膠的化學結構及粒子大小。 表1、二氧化鈦溶膠(T-sol)配方 ΤΒ0Τ (g) 1-butanol (g) HC1 (g) DI water (g) 270 288.16 16.79 28.59 註:T-sol溶膠固成分為1〇 wt.%。 第二步:二氧化鈦表面改質 分別將反應完成的二氧化鈦混成溶膠(T_S〇l)加入不同 比例的偶合劑-曱基丙稀酸酯基三曱氧基石夕MSMA [3- (trimethoxysilyl)propylmethacrylate,Aldrich],於室溫攪拌3 小時’待反應趨於平衡。除甲基丙烯酸酯基三曱氧基矽 (MSMA)外另可使用偶合劑甲基丙烯酸甲酯 MMA(methacrylic acid,Fluka)或 4-乙烯苯甲酸乂32(4- vinylbenzonic acid,TCI)。改質後以UV、FTIR及動態光散 射粒徑分析儀分別觀測混成溶膠的化學結構與粒子大小。 今設定樣品名中各單字代表意義如下:t:tb〇t; s:msma; M:MMA; B:VBZ;其中在S或·Μ後面的數字代表不同比例的 偶合劑添加量。如TS1 = 1/0.1 [TBOT/MSMA (莫爾 比)]’ TS2 = 1/0.2,TS3 = 1/0.5,TS4 = 1/1。圖2顯示二 氧化鈦溶膠粒徑成長未達平衡時加入偶合劑s與皿後動態光 散射粒徑分析儀測得結果,圖3顯示二氧化鈦溶膠粒徑成長 達平衡時加入偶合劑S與Μ後動態光散射粒徑分析儀測得結 201213240 果,皆顯不添加偶合劑會造成Ti〇2粒子變小,並隨著偶合 ^'曰加而更著。圖4顯示能提供一種具長期穩定性、操作 控制性之二氧化鈦混成轉以供後續配方制,在長達一 個月之儲存期耻徑可維持在55nm以下。 第三步:配製有機_無機混成感光性塗料 將第二步所製備的二氧化鈦溶膠與壓克力有機單體-聚 二季戊四醇五丙烯酸酯DPHA(dipentaerythrit〇丨 hexacrylate,>*· '"Π > sZT A rolled titanium ruthenium drive can be a tetraalkoxy titanium compound, and the reaction six agents can be selected from n-butanol and ruthenium; then, (8) The reaction solution is added to the monoacid catalyst, and the ruthenium reaction solution is mixed with the acid catalyst by a slow titration method, and then left to stand for a first time interval, wherein the acid catalyst may be a hydrochloric acid solution, or The acid catalyst may comprise hydrochloric acid (a solution of glutamic acid or hydrazine monohydrate and an equal weight of a reaction solvent (for example, n-butanol, methyl ethyl ketone)' and the first time interval is a reaction time, which may range from one hour to ten hours, depending on The reaction time is determined by the length of the reaction time, for example, 3 hours or 6 hours; (that is, a coupling agent is added to the reaction solution completed in (8) to form a titanium dioxide sol, and the titanium oxide sol is stirred by a stirring method. The second time interval, wherein the stirring method may be a magnet stirring method, and the coupling agent may be methacrylic acid (MAA), methyl methacrylate (MMa) or 4-vinylbenzoic acid VBZ (4-201213240 add) Wherein, the second time interval is: Chaoyan Qianwei is more than one hour to ten hours, depending on the reaction, the reaction time is between % and the length is, for example, 6 hours. In the above step (9), a step is further included, wherein After the reaction solution is combined with the catalytic catalyst, the dense solution should be allowed to stand still. When the reaction solution is allowed to stand still, the first step is as follows: 2. The second reaction can be obtained after the above-mentioned _(10) step. The titanium-coated sol is stored in the length of the coffee and the size of the wire is changed, and the surface of the sol is reduced, the particle size is maintained, and the mechanical properties and the durability of the material are improved. The invention provides a method for preparing a refractive or high refractive index lamella, the steps of which include: firstly providing an even (four) prepared according to the above titanium dioxide sol preparation method; Hanging; - reducing the surface of titanium particles, and adding epoxy resin or acrylic tree = organic photosensitive monomer and photoinitiator to improve the solubility of the titanium dioxide sol; then 'coating the titanium dioxide sol uniformly One substrate /, medium 4 substrate can be a glass substrate or a variety of soft Maxtor η 丨 plastic finally the substrate is exposed to ultraviolet light and multi-stage baking; solid (J = high refractive index optical film 'where the coating on the substrate is UV-reacted In the above-mentioned composition, in the composition of the light-transmitting dry phase, the resin or the monomer is polymerized to become the main body of the film (two _' and the oxidizing agent provides a high refractive index agent for the titanium dioxide particle body. In the present invention, the titanium dioxide mixed sol is produced by using different coupling agents, and then the 201213240 mixture is not considered to bond the titanium dioxide particles to each other, and the physical properties are affected: "the quality of the titanium dioxide particles on the optical film initiators, etc. After coating, and then adding acrylic monomer, the light is further improved, thereby preparing a high refractive index optical titanium plating, such as a solid content, reducing the surface roughness of the nano-composite, bamboo gland, ΡΊ I grows into particles, and obtains a mixture of yttrium and yttrium: the structure, mechanical properties and hardness of Ϊ phase; and the use of yili monomer to bind cross-linking reaction and UV-curing process on the substrate Up to an optical film refractive index of the optical film 175. The above summary, the following detailed description and the accompanying drawings are intended to further illustrate other ways and means and advantages of the present invention which are not intended for the purpose of the present invention. Explain in the description and illustration. [Embodiment] The embodiments of the present invention are described below by way of specific examples, and those skilled in the art can readily understand other advantages and effects of the present invention from the disclosure. Step 1: Preparation of titanium dioxide sol (Ts〇l) First, the titanium dioxide precursor-tetraalkoxy titanium compound TBOT (tetrabutoxyltitanium, ACROS) and the solvent Ι-butanol (n-butanol) were placed in the reaction bottle according to the formulation of Table 1. The mixture was uniformly stirred and stirred; then, the diluted aqueous hydrochloric acid solution (18_5%) was slowly dropped at room temperature, and an exothermic phenomenon was caused by the rapid progress of the hydrolysis condensation reaction. The reaction was continued for 3 hours, 201213240. The reaction was to be balanced, and the titanium dioxide mixed sol (T-sol) was prepared. The chemical structure and particle size of the sol were observed by UV (UNICAM UV 500), FTIR (Nicolet Magna-IR 550) and dynamic light scattering particle size analyzer (DLS, Malvern Zetasizer-3000HS). Table 1. Formulation of titania sol (T-sol) ΤΒ0Τ (g) 1-butanol (g) HC1 (g) DI water (g) 270 288.16 16.79 28.59 Note: The T-sol sol solid component is 1 〇 wt.%. The second step: the surface modification of titanium dioxide respectively, the reaction of the completed titanium dioxide mixed sol (T_S〇l) was added to different proportions of the coupling agent - mercapto acrylate-based trioxane oxime MSMA [3- (trimethoxysilyl) propylmethacrylate, Aldrich ], stirring at room temperature for 3 hours 'The reaction tends to balance. In addition to the methacrylate-based trimethoxy oxime (MSMA), a coupling agent methyl methacrylate (MMA) (MMA) (Fluka) or 4-vinylbenzonic acid (TCI) can be used. After modification, the chemical structure and particle size of the mixed sol were observed by UV, FTIR and dynamic light scattering particle size analyzer. The meaning of each word in the sample name is as follows: t: tb〇t; s: msma; M: MMA; B: VBZ; wherein the number after S or · 代表 represents the amount of coupling agent added in different proportions. For example, TS1 = 1/0.1 [TBOT/MSMA] TS2 = 1/0.2, TS3 = 1/0.5, TS4 = 1/1. Figure 2 shows the results of the dynamic light scattering particle size analyzer after adding the coupling agent s and the dish after the particle size growth of the titanium dioxide sol is not balanced. Figure 3 shows the addition of the coupling agent S and the dynamic light after the growth of the titanium dioxide sol. The scattering particle size analyzer measured the result of 201213240, and all of them showed that the addition of the coupling agent would cause the Ti〇2 particles to become smaller, and it became more and more with the coupling. Figure 4 shows that a titanium dioxide blend with long-term stability and operational control can be provided for subsequent formulation, and the shading diameter can be maintained below 55 nm during storage for up to one month. The third step: preparation of organic_inorganic hybrid photosensitive coating. The titanium dioxide sol prepared in the second step and the acrylic organic monomer-dipentaerythritan hexacrylate (DPHA)

Aldrich)、光起始劑_〇狀〇以^1173(2妨办〇>^2-«^1^1-1-phenyl-propan-l-cme,Ciba-Geigy)於不透光的封口瓶中混合 均勻以製備塗料’配方如表2至表4。樣品名中各單字代表 意義如下:T:TBOT; S:MSMA; B:VBZ; D:DPHA,其中在S或M後面的數字代表不同比例的偶合劑 添加量。如TBOT/MSMA (莫爾比)TS1 = 1/0.1,TS2 = 1/0.2,TS3 = 1/0.5,TS4 = 1/1 ; D後面的數字:20、40、 6〇 ’代表鑛膜中二氧化欽的理論重量百分比,理論值是假 設所使用的鈦烷氧化物完全反應成為二氧化鈦。 表2、TS-Sol混成感光性塗料配方 樣品名稱 T-sol (g) MSMA (g) DPHA (g) Darocure 1173 (g) T1O2 content (wt. %) TS1D20 5 0.13 1.52 0.1 20 TS1D40 5 0.13 0.59 0. 05 40 TS1D60 10 0.26 0.34 0.07 60 TS1D70 10 0.26 0.16 0.06 70 TS1D80 40 1.05 0. 05 0.2 80 TS2D20 5 0.22 1.19 0.08 20 TS2D40 10 0.44 0.69 0.08 40 201213240Aldrich), photoinitiator _ 〇 〇 to ^1173 (2 〇 〇 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ C 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于The bottles were uniformly mixed to prepare a coating' formulation as shown in Tables 2 to 4. The meaning of each word in the sample name is as follows: T: TBOT; S: MSMA; B: VBZ; D: DPHA, wherein the number after S or M represents the amount of coupling agent added in different proportions. For example, TBOT/MSMA (Malbi) TS1 = 1/0.1, TS2 = 1/0.2, TS3 = 1/0.5, TS4 = 1/1; the number after D: 20, 40, 6〇' represents the second film The theoretical weight percentage of oxidized oxime, the theoretical value is assumed to be the complete reaction of the titanium alkoxide to titanium dioxide. Table 2, TS-Sol Hybrid Photosensitive Coating Formulation Sample Name T-sol (g) MSMA (g) DPHA (g) Darocure 1173 (g) T1O2 content (wt. %) TS1D20 5 0.13 1.52 0.1 20 TS1D40 5 0.13 0.59 0 05 40 TS1D60 10 0.26 0.34 0.07 60 TS1D70 10 0.26 0.16 0.06 70 TS1D80 40 1.05 0. 05 0.2 80 TS2D20 5 0.22 1.19 0.08 20 TS2D40 10 0.44 0.69 0.08 40 201213240

TS2D60 20 0.88 0.26 0.11 60 表3 、TM-Sol混成感光性塗料配方 樣品名稱 T-sol (g) MAA (g) DPHA (g) Darocure 1173 (g) T1O2 content (wt. %) TM1D20 5 0.05 1.75 0.11 20 TM1D40 10 0. 10 1.25 0.11 40 TM1D60 15 0. 15 0.75 0.11 60 TM1D70 20 0.20 0.57 0.13 70 TM1D80 20 0.20 0.25 0.11 80 TM2D20 5 0. 09 1.54 0.10 20 TM2D40 10 0. 18 1.04 0. 10 40 TM2D60 10 0. 18 0.36 0.07 60 TM2D70 20 0.37 0.33 0. 12 70 TM2D80 45 0.83 0.09 0.23 80 TM3D20 5 0. 18 1. 10 0.08 20 TM3D40 10 0.36 0.60 0.08 40 TM3D60 20 0. 72 0. 13 0.11 60 TM4D20 10 0.53 1.34 0.12 20 TM4D40 10 0.53 0. 17 0.06 40 表4 、TB-Sol混成感光性塗料配方 樣品名稱 T-sol (g) VBZ (g) DPHA (g) Darocure 1173 (g) Ti〇2 content (wt. %) TB1D60 5 0.2 0.17 0.033 60 TB1D70 5 0.2 0.07 0.029 70 TB1-80 5 0.2 0 0.025 80 TB2D40 5 0.1 0.25 0.038 40 11 201213240 TB2D50 TB2-60 5 0.1 0.1 0 0.03 ).025 50 60 註:TB0T/繼(莫爾比)TB1 = 1/〇.丨3,ΤΒ2ΓΓ^Γ 第四步.製備高折射率光學錢膜 取感光II塗料置於聚甲基_酸甲_ (刚嫩)基板^ 央’接著設定旋轉塗佈機依先前建立不關成份塗料校_〇 圖(如圖5)控制轉速獲得需要膜厚範圍。-般而古以2〇〇| rpm與30秒的操作條件進行塗佈可控制膜厚在義:左右。 塗佈完成之_立刻置人机賴勒^進獅秒軟烤, 接著進订紫外光硬化,曝光能#約為5()(U/em2。.將曝光核 的鑛膜置人贼的烘箱硬烤6〇分鐘,得_烤後的有機-奔TS2D60 20 0.88 0.26 0.11 60 Table 3, TM-Sol Mixed Photosensitive Coating Formulation Sample Name T-sol (g) MAA (g) DPHA (g) Darocure 1173 (g) T1O2 content (wt. %) TM1D20 5 0.05 1.75 0.11 20 TM1D40 10 0. 10 1.25 0.11 40 TM1D60 15 0. 15 0.75 0.11 60 TM1D70 20 0.20 0.57 0.13 70 TM1D80 20 0.20 0.25 0.11 80 TM2D20 5 0. 09 1.54 0.10 20 TM2D40 10 0. 18 1.04 0. 10 40 TM2D60 10 0 . . . . . . . . . . . . . . . . . . . . . . . . 20 TM4D40 10 0.53 0. 17 0.06 40 Table 4, TB-Sol Hybrid Photosensitive Coating Formulation Sample Name T-sol (g) VBZ (g) DPHA (g) Darocure 1173 (g) Ti〇2 content (wt. %) TB1D60 5 0.2 0.17 0.033 60 TB1D70 5 0.2 0.07 0.029 70 TB1-80 5 0.2 0 0.025 80 TB2D40 5 0.1 0.25 0.038 40 11 201213240 TB2D50 TB2-60 5 0.1 0.1 0 0.03 ).025 50 60 Note: TB0T/继(莫尔Ratio) TB1 = 1/〇.丨3,ΤΒ2ΓΓ^Γ Step 4. Prepare high refraction The optical film takes the photosensitive II coating on the polymethyl _ acid _ (small) substrate ^ then 'rotate the coating machine according to the previous establishment of the non-component coating _ 〇 map (Figure 5) control speed to obtain the need Film thickness range. - General and ancient 2 〇〇 | rpm and 30 seconds of operating conditions can be controlled to control the film thickness in the right: left and right. Finished coating _ immediately set the machine Ryle ^ into the lion seconds soft bake, then set the UV hardening, exposure energy # about 5 () (U / em2.. will expose the core of the film to the thief's oven Hard roast for 6 minutes, get _ grilled organic-run

機混成賴。_厚度⑻、折射率⑻以功能光學檢測儀(MFS-630, Hong Ming,Taiwan)在450-750nm波長量度。薄 膜在基材之附著性依照ASTM D3359(Standard test meth〇d for measuring adhesion by tape test)百格附著度進行測試,The machine mixes up. The thickness (8) and the refractive index (8) were measured by a functional optical detector (MFS-630, Hong Ming, Taiwan) at a wavelength of 450-750 nm. The adhesion of the film to the substrate is tested in accordance with ASTM D3359 (Standard test meth〇d for measuring adhesion by tape test).

方法大致如下:將材料在不同基材上形成鍍膜,以密著度 計刻晝出100個方格(10x10),再以3M標準膠帶黏貼後迅速 撕掉,計算殘留於基材上的方格數,取其百分比即為密著 度。例如剩下80個方格,密著度即為8〇% ;殘留方格數越 多,表示密著性愈佳。薄膜硬度依ASTM D3363(Stamkrd test method for film hardness by pencil test)船筆硬度計測 試。以原子力電子顯微鏡(Veeco CP-II AFM)觀察薄膜表面 型態(morphology)、量測粗糙度(roughness)。圖6顯示原子 力電子顯微鏡對TM1D70膜之量測結果,平均表面粗糙度可 12 201213240 達小於3.2nm。 將表2 -4配方以PMM A為基材以紫外光熟化後測得結果 如表5-7。 表5、TS-sol鍍膜物性檢測結果 樣品名稱 外觀 百格附著度 厚度 (nm) 折射率 硬度 (H) TS1D20 平滑透明 100% 309 1.65 < 5H TS1D40 平滑透明 100% 350 1.68 4H TS1D60 平滑透明 100% 352 1.72 < 3H TS1D70 淡霧 100% 335 1.73 < Η TS1D80 淡霧 100% 380 1.76 < Η TS2D20 平滑透明 100% 382 1.66 5Η TS2D40 平滑透明 100% 352 1.69 < 4Η TS2D60 平滑透明 100% 366 1.73 < Η TS2D70 淡霧 100% 353 1.74 < Η 表6、TM-sol鍍膜物性檢測結果 樣品名柄· 外觀 百格附著度 厚度 (nm) 折射率 硬度 (H) TM1D20 平滑透明 100% 280 1.64 4H TM1D40 平滑透明 100% 318 1.69 < 2H TM1D60 平滑透明 100% 325 1.73 < Η TM1D70 平滑透明 100% 325 1.76 < Η TM1D80 淡霧 100% 341 1.77 < Η TM2D20 平滑透明 100% 284 .1.64 4Η TM2D40 平滑透明 100% 290 1.69 < 2Η TM2D60 平滑透明 100% 303 1.73 < Η TM2D70 平滑透明 100% 307 1.75 < Η TM2D80 淡霧 100% 303 1.77 < Η TM3D20 平滑透明 100% 256 1.64 4Η 13 201213240 TM3D40 平滑透明 100% 260 1.68 < 2H TM3D60 平滑透明 100% 225 1.73 <H TM4D20 平滑透明 100% 231 1.64 ~ ^-—-- 4H TM4D40 平滑透明 100% 182 1.68 <H 一· 」 --- 表7、ΤΒ鍍膜物性檢測結果 樣品名稱 外觀 百格附著度 厚度 折射率 硬度 (nm) (Η) TB1D60 平滑透明 100% 419 1.71 ---—-. <H TB1D70 淡霧 100% 424 1.71 <H ΤΒ1-80 淡霧 100% 437 1.74 <H TB2D40 平滑透明 100% 413 1.68 H TB2D50 淡霧 100% 438 1.70 11 H ΤΒ2-60 淡霧 100% 478 1.73 <H 註:TB0T/VBZ (莫爾比)ΤΒ1 =1/0.13 ,TB2 = --- =1/0.36 以塗膜的外觀、附著度及厚度來看,大部份皆可達到 光學錢膜的基本要求:平滑透明、百格測試100%、厚度小 於50〇nm。唯有部分無機含量高(6〇wt %以上)的鍍膜在 外觀上有些淡霧(light frosted)。當鍍膜厚度提升至15 , 混成溶膠所製備的鍍膜大部分可保持平滑透明性,但二5 化鈦含量較高(60 wt·%以上)的膜經硬烤後會產生微穸 痕’甚至局部白化成粉末狀(8〇 wt·%以上)。硬度測試矣士 果,加入越多的二氧化鈦,硬度從5H降為小於鉛筆硬度工 Η,顯示二氧化鈦的添加破壞高分子單體_聚二季戊四醇1 丙烯酸酯(DPHA)的交聯密度,並隨著添加量的增加而加 遽’但附著度仍可保持在100%。 201213240 ★比較不同/奋膠,可觀察出Ti〇2沒經過表面改質的鍍膜 在薄膜性質方面(外觀、硬度、折射率等)皆比經表面改 質的鑛膜略佳’但與塑膠的附著性差。比較表面改質的高 折射鏟膜’發現在無機物含量低時差別不大,唯TS1D40之 硬度車乂 TMIDAO^ ;在無機物含量高時,丁5系列的外觀會 較TM系列略具霧狀,成膜性也較差,舉例而言, 在後烤前已成碎裂狀態,但TM1D8(^p不會。 _ 圖7為聚曱基丙烯酸甲酯(pMM A)基材上丁皿鍍膜折射率 隨二氡化鈦含量變化圖,光學鍍膜的折射率和二氧化鈦的 添加有線性關係。折射率由164逐步提升,當二氧化鈦含量 達80 wt.%,折射率可達1 77。 圖8為聚曱基丙烯酸曱酯(pmma)基材上TS鍍膜折 射率隨二氧化鈦含量變化圖’從圖可知折射率和二氧化鈦 的添加亦有線性關係,折射率由164逐步提升,當二氧化鈇 含量達80 wt.% ?折射率可達1.77。 Φ 當艘膜在二氧化欽含量相等時比較不同偶合劑比例的 的折射率’發現偶合劑比例較高者折射率較低,尤其以甲 基丙烯酸酯基三甲氧基矽(MSMA)偶合劑更為明顯,此因偶 合劑本身的折射率較低的結果。由於曱基丙烯酸酯基三甲 氧基矽(MSMA)具有二氧化矽結構,使鍍膜的折射率較小。 右名人付到南折射率薄膜,在有機成分的選擇,不論是偶合 劑、樹脂,或是多官能基交聯單體都應以高折射率者為優 先考慮。 圖9為PMMA為基材上TB鍍膜折射率隨二氧化鈦含量 15 201213240 變化圖’ 4-乙烯笨曱酸(VBZ)偶合劑本身的折射率較高,硬 烤後TB1-80與TB2-60折射率分別為1.74與173。一般而 έ,TB1或TB2系列薄膜添加聚二李戊四醇五丙稀酸酯 DPHA後都能減少霧化的程度。 細§之,本發明利用溶膠凝膠法製備出以曱基丙稀酸 (ΜΑΑ)、曱基丙烯酸酯基三曱氧基矽(MSMA)44_6烯苯曱 酸(VBZ)表面改質之奈米級二氧化鈦溶膠,接著將壓克力有 機感光單體與溶膠結合,可在塑膠基材上以紫外光硬化製 成高折射、高附著性奈米鍍膜。以動態光散射粒徑分析儀鲁 長期觀察溶膠成長狀況,發現Ti〇2溶膠不易聚集’粒徑不 隨時間增長,增加存放與操作應用的期限。溶膠經紫外光 硬化製備的鑛膜其折射率在Tl〇2含量8〇 wt%以上時折射率 可至1.75以上,可視為高折射奈米鍍膜。 茲以下列實施例進一步說明本發明,但發明内容將不 局限於例子。 例一、二氧化鈦溶膠製備(曱乙酮MEK為溶劑) 取Π.98 g的MEK(反應溶劑)和2〇 _TB〇T(前驅物)滴鲁 入125 ml的錐形瓶中,加入攪拌時磁石,立即密封,以刈〇 rpm磁石攪拌速率混合均勻約2〇分鐘。 取3·36 g HC1 (37%)(酸催化劑)搭配等克數的MEK稀 釋’混合均勻後’以滴管慢慢滴人步驟1.的溶液中,密封後 反應六小時後(第一時間間隔)溶膠製備完成。 例一、一氧化鈦溶膠製備(正丁醇為溶劑) 16The method is roughly as follows: the material is formed on different substrates, and 100 squares (10×10) are engraved with a degree of adhesion, and then quickly peeled off by 3M standard tape, and the squares remaining on the substrate are calculated. The number, the percentage is the degree of adhesion. For example, if 80 squares are left, the adhesion is 8〇%; the more residual squares, the better the adhesion. The film hardness was measured in accordance with ASTM D3363 (Stamkrd test method for film hardness by pencil test). The surface morphology of the film and the roughness were measured by an atomic force electron microscope (Veeco CP-II AFM). Figure 6 shows the measurement results of the TM1D70 film by atomic force electron microscopy with an average surface roughness of 12 201213240 of less than 3.2 nm. The results of the Table 2 - 4 formulation using PMM A as a substrate after UV curing were measured as shown in Table 5-7. Table 5, TS-sol coating physical property test results Sample name Appearance Baige adhesion Thickness (nm) Refractive index hardness (H) TS1D20 Smooth and transparent 100% 309 1.65 < 5H TS1D40 Smooth and transparent 100% 350 1.68 4H TS1D60 Smooth and transparent 100% 352 1.72 < 3H TS1D70 Light fog 100% 335 1.73 < Η TS1D80 Light fog 100% 380 1.76 < Η TS2D20 Smooth and transparent 100% 382 1.66 5Η TS2D40 Smooth and transparent 100% 352 1.69 < 4Η TS2D60 Smooth and transparent 100% 366 1.73 < Η TS2D70 Light fog 100% 353 1.74 < Η Table 6, TM-sol coating physical property test results sample handle · Appearance 100 grid adhesion thickness (nm) Refractive index hardness (H) TM1D20 smooth and transparent 100% 280 1.64 4H TM1D40 Smooth and transparent 100% 318 1.69 < 2H TM1D60 Smooth and transparent 100% 325 1.73 < Η TM1D70 Smooth and transparent 100% 325 1.76 < Η TM1D80 Light fog 100% 341 1.77 < Η TM2D20 Smooth and transparent 100% 284 .1.64 4Η TM2D40 Smooth and transparent 100% 290 1.69 < 2Η TM2D60 Smooth and transparent 100% 303 1.73 < Η TM2D70 Smooth and transparent 100% 307 1.75 < Η TM2D80 Light fog 100% 303 1.77 < Η TM3D20 Flat Transparent 100% 256 1.64 4Η 13 201213240 TM3D40 Smooth and transparent 100% 260 1.68 < 2H TM3D60 Smooth and transparent 100% 225 1.73 <H TM4D20 Smooth and transparent 100% 231 1.64 ~ ^---- 4H TM4D40 Smooth and transparent 100% 182 1.68 <;H一· ” --- Table 7, ΤΒ coating physical property test results sample name appearance hundred grid adhesion thickness refractive index hardness (nm) (Η) TB1D60 smooth and transparent 100% 419 1.71 -----. <H TB1D70 Light fog 100% 424 1.71 <H ΤΒ1-80 Light fog 100% 437 1.74 <H TB2D40 Smooth and transparent 100% 413 1.68 H TB2D50 Light fog 100% 438 1.70 11 H ΤΒ2-60 Light fog 100% 478 1.73 <H Note: TB0T/VBZ (Malby) ΤΒ1 = 1/0.13, TB2 = --- =1/0.36 In terms of the appearance, adhesion and thickness of the coating film, most of the basic requirements of optical film can be achieved. : Smooth and transparent, 100% test, thickness less than 50〇nm. Only some of the coatings with high inorganic content (above 6 〇wt%) are light frosted in appearance. When the coating thickness is increased to 15, the coating prepared by the mixed sol can maintain a smooth transparency, but the film with a higher content of titanium and titanium (60 wt·% or more) will cause micro-scarring after hard baking. It is whitened into a powder (8 〇 wt·% or more). The hardness test of the gentleman fruit, the more titanium dioxide added, the hardness decreased from 5H to less than the pencil hardness process, indicating that the addition of titanium dioxide destroys the crosslink density of the polymer monomer _ polydipentaerythritol 1 acrylate (DPHA), and The amount of addition increases and is increased by 'but the adhesion can still be maintained at 100%. 201213240 ★Compared with different/exciting glues, it can be observed that Ti〇2 has not undergone surface modification. The film properties (appearance, hardness, refractive index, etc.) are slightly better than those of surface-modified mineral films. Poor adhesion. The high-refraction shovel film with surface modification is found to have little difference when the inorganic content is low. The hardness of TS1D40 is 乂TMIDAO^. When the inorganic content is high, the appearance of Ding 5 series will be slightly foggy compared with the TM series. Membrane properties are also poor. For example, it has been fragmented before post-baking, but TM1D8 (^p does not. _ Figure 7 shows the refractive index of the coating on the polymethyl methacrylate (pMM A) substrate. The change of titanium dioxide content, the refractive index of optical coating and the addition of titanium dioxide have a linear relationship. The refractive index is gradually increased from 164, when the content of titanium dioxide is 80 wt.%, the refractive index can reach 1 77. Figure 8 is a polyfluorene group. The refractive index of TS coating on pmma substrate is changed with the content of titanium dioxide. From the figure, the refractive index and the addition of titanium dioxide are also linear, and the refractive index is gradually increased from 164. When the content of cerium oxide reaches 80 wt.%. The refractive index can reach 1.77. Φ When the film is equal in the content of dioxins, the refractive index of the ratio of different coupling agents is relatively 'the ratio of the coupling agent is higher, and the refractive index is lower, especially the methacrylate-based trimethoxy group.矽 (MSMA) coupling agent is more Obviously, this is due to the lower refractive index of the coupling agent itself. Since the mercapto acrylate-based trimethoxy fluorene (MSMA) has a ruthenium dioxide structure, the refractive index of the coating is small. The right celebrity pays the south refractive index film. In the selection of organic components, whether it is a coupling agent, a resin, or a polyfunctional crosslinking monomer, the high refractive index should be preferred. Figure 9 shows the refractive index of TB coating on the substrate with PMMA as the content of titanium dioxide. 201213240 Change graph '4-ethylene alum acid (VBZ) coupling agent itself has a higher refractive index. After hard baking, the refractive indices of TB1-80 and TB2-60 are 1.74 and 173, respectively. Generally, έ1, TB1 or TB2 series film is added. Polydipentene pentaerythritol isopropyl acrylate DPHA can reduce the degree of atomization. § §, the present invention uses sol-gel method to prepare thiol acrylic acid (ΜΑΑ), thiol acrylate based曱 矽 矽 (MSMA) 44_6 ene benzoic acid (VBZ) surface modified nano-scale titanium dioxide sol, and then the acrylic organic photosensitive monomer combined with the sol, can be made on the plastic substrate by UV light hardening Highly refractive, highly adherent nano-coating. Dynamic light scattering The long-term observation of the sol growth condition of the diameter analyzer shows that the Ti〇2 sol is not easy to aggregate. The particle size does not increase with time, and the shelf life of storage and operation is increased. The refractive index of the sol prepared by ultraviolet light hardening is Tl〇2. The refractive index may be above 1.75%, and may be regarded as a high refractive nano coating. The invention is further illustrated by the following examples, but the invention is not limited to the examples. Example 1 Preparation of titanium dioxide sol (Ethyl ketone) MEK is solvent) Take 9898 g of MEK (reaction solvent) and 2〇_TB〇T (precursor) into a 125 ml Erlenmeyer flask, add magnet while stirring, and immediately seal to 刈〇 rpm magnet Mix at agitation rate for about 2 minutes. Take 3·36 g of HC1 (37%) (acid catalyst) with a few grams of MEK diluted 'mixed evenly' with a dropper slowly dripping into the solution of step 1. After sealing for six hours (first time) Interval) Sol preparation is complete. Example 1. Preparation of titania sol (n-butanol as solvent) 16

I 201213240 取17.98 g的l-butan〇l(正丁醇-反應溶劑)和2〇 g的 TBOT(前驅物)滴入125 ml的錐形瓶中,加入搜摔時磁石, 立即密封,以500 rpm磁石攪拌速率混合均勻,約2〇分鐘。 取3.36 g HC1 (37%)(酸催化劑)搭配等克數的l b福〇ι 稀釋’混合均勻後,以滴管慢慢滴入步驟!的溶液中,密封 後反應六小時後(第一時間間隔)溶膠製備完成。 例二、一,乳化欽混成溶膠-sol製備 取22.54 g的l-butanol(反應溶劑)和2〇 ^ΤΒ〇τ(前驅物) 滴入125 ml的錐形瓶中,加入攪拌時磁石,立即密封以 500 rpm磁石攪拌速率混合均勻,約2〇分鐘。 取3.36 g HC1 (37%)(酸催化劑)搭配等克數的 稀釋,混合均⑽,以辭慢慢滴人步驟⑼溶液中,密封 後反應三小時(第-時間間隔)後加人Q51g的maa(偶合 劑),繼續攪掉六小時(第二時間間隔)後溶膠製備完成。 例四、二氧化鈦混成溶膠TSl-s〇l製備 取2l.〇9 g的l_butan〇i(反應溶劑)和2〇碑丁⑽丁(前驅物) 滴入125 ml的錐形瓶中,加入攪拌時磁石,立即密封,以 500 rpm磁石攪拌速率混合均勻,約2〇分鐘。 取3.36 g HC1 (37%)(酸催化劑)搭配等克數的l butan〇1 稀釋’混合均勻後’以滴管慢慢滴入步驟丨的溶液中,密封 後反應三小時(第一時間間隔)。 將I.46 g MSMA(偶合劑)和等克數的心㈤混合均句 17 201213240 後,於二小時後丨艾’1¾滴入步驟2的溶液中,接著取4.29 e Ο HC1 (37%)搭配等克數的1-butanol稀釋,同樣慢慢滴入溶腰 中,繼續攪拌計時六小時(第二時間間隔)後溶膠製備完成。 例五、二氧化鈦混成鍍膜TD70製備(MEK為溶劑) 取實施例一的二氧化鈦溶膠溶液2〇 g於50 ml反應瓶 中,加入0.86 g DPHA(有機感光單體)和7 57 g MEK混合均 勻’確認DPHA溶解後將反應瓶遮住不透光,再加入〇 14笆 的光起始劑1173,塗料製備完成 以滴管取約5滴塗料’滴在5x5 cm大小PMMA基板中 央’接著設定旋轉塗佈機以2000 rpm、30秒的操作條件進 行塗佈’塗佈完成之鑛膜立刻置入8(rc的循環烘箱進行2〇 秒軟烤。 接著進行紫外光硬化,曝光能量為500 mJ/cm2。將曝 光後的鍵膜置入90 C的烘箱硬烤60分鐘得到硬烤後的有機-無機混成鍍膜。 例六、二氧化鈦混成鍍膜TD70製備(MEK為溶劑) 取實施例二的二氧化鈦溶膠溶液2〇 g於5〇 ml反應瓶 中’加入0.86 g DPHA(有機感光單體)和7 57 g心加⑴混 合均勻,確認DPHA溶解後將反應瓶遮住不透光,再加入 0.14 g的光起始劑1173,塗料製備完成。 以滴官取約5滴塗料,滴在5x5 cm大小之PMMA基板中 央’接著設定旋轉塗佈機以2000 rpm、30秒的操作條件進 18 201213240 行塗佈’塗佈完成之鍍膜立刻置入80 的德 秒軟烤。 从、相進行20 接著進行紫外光硬化,曝光能量為5〇〇 u mj/cm2。將曝 無機混成鍍膜 光後的鍍膜置入90 °C的烘箱硬烤60分鐘得到硬烤後的有機、 例七、二氧化鈦混成鍍膜TM1D7〇製備 取TMl-sol溶液20 g於於5〇 ml反應瓶中,加入〇 15 DPHA(有機感光單體)和〇 5 3 g 1 —butanol混合均勻,確巧 DPHA溶解後將反應瓶遮住不透光,再加入〇 13 g的光起2 劑 1173。 。 以滴管取約5滴塗料,滴在5x5 cm大小之ΡΜΜα基板中 央,接著设疋旋轉塗佈機以2000 rpm、3〇秒的操作條件進 行塗佈,塗佈完成鍍膜立刻置入8〇它的循環烘箱進行2〇秒 軟烤。 接著進行紫外光硬化,曝光能量為5〇〇 mJ/cm2。將曝 光後的鍍膜置入90 °C的烘箱硬烤6〇分鐘得到硬烤後的有機_ 無機混成鍍膜。 例八、二氧化鈦混成鍍膜TS1D70製備 取TSl-sol溶液20 g於於5〇 mi反應瓶中,加入〇.057 g DPHA(有機感光單體)和0 53 g 1 -butanol混合均勻,確認 DPHA溶解後將反應瓶遮住不透光,再加入〇 13 g的光起始 劑1173,塗料製備完成。 201213240 以滴官取約5滴塗料,滴在5x5 cm大小之pMMA基板中 央,接著設定旋轉塗佈機以2〇〇〇 φΐη、3〇秒的操作條件進 行塗佈,塗佈完成之鍍膜立刻置入8〇 t的循環烘箱進行 秒軟烤。 接著進行紫外光硬化,曝光能量為5〇〇 mJ/cm2。將曝 光後的鍍膜置入90 °C的烘箱硬烤60分鐘得到硬烤後的有機-無機混成鍍膜。 上述之實施例僅為例示性說明本發明之特點及其功 效,而非用於限制本發明之實質技術内容的範圍。任何熟 習此技蟄之人士均可在不違背本發明之精神及範疇下,對 上述實施例進行修飾與變化。因此,本發明之權利保護範 圍,應如後述之申請專利範圍所列。 【圖式簡單說明】 第1圖係為製造方法之流程圖; 第2圖係為二氧化鈦溶膠粒徑成長未達平衡時加入偶合劑$ 與Μ後動態光散射粒徑分析儀測得結果; 第3圖係為一氧化鈦溶膠粒徑成長達平衡時加入偶合劑$與 Μ後動態光散射粒徑分析儀測得結果; 第4圖係為丁“與丁河丨溶膠長時間以動態光散射粒徑分 測得結果; 儀 第5圖係為旋轉塗佈機10 Wt 〇/〇固成份溶膠塗料操作校正圖. 第6圖係為原子力電子顯微鏡對TM1D70膜之量測結果,平 201213240 均表面粗糙度可達小於3.2nm; 第7圖係為PMMA基材上TM鍍膜折射率隨二氧化鈦含量變 化圖; 第8圖係為PMMA基材上TS鍍膜折射率隨二氧化鈦含量變 化圖; 第9圖係為PMMA基材上TB鍍膜折射率隨二氧化鈦含量變 化圖; 【主要元件符號說明】 無 21I 201213240 Take 17.98 g of l-butan〇l (n-butanol-reaction solvent) and 2 〇g of TBOT (precursor) into a 125 ml Erlenmeyer flask, add the magnet during the search, immediately seal to 500 The rpm magnet stirring rate is evenly mixed for about 2 minutes. Take 3.36 g of HC1 (37%) (acid catalyst) and dilute the equal amount of l b Fukui to mix thoroughly, then slowly drip into the step with a dropper! In the solution, the sol preparation was completed six hours after the sealing (first time interval). Example 2, one, emulsified and mixed into a sol-sol preparation, taking 22.54 g of l-butanol (reaction solvent) and 2〇^ΤΒ〇τ (precursor) into a 125 ml Erlenmeyer flask, adding magnets while stirring, immediately The seal was mixed evenly at a magnet stirring rate of 500 rpm for about 2 minutes. Take 3.36 g of HC1 (37%) (acid catalyst) with the equivalent number of dilutions, mix (10), slowly drop the solution in step (9), seal for three hours (the first time interval) and add Q51g Maa (coupling agent), the sol preparation was completed after stirring for six hours (second time interval). Example 4: Titanium dioxide mixed sol TSl-s〇l Preparation 2l. 〇 9 g of l_butan〇i (reaction solvent) and 2 〇 丁 (10) butyl (precursor) were dropped into a 125 ml Erlenmeyer flask, and stirred. The magnet was immediately sealed and mixed evenly at a magnet stirring rate of 500 rpm for approximately 2 minutes. Take 3.36 g of HC1 (37%) (acid catalyst) with equal weight of l butan〇1 diluted 'mixed evenly' and slowly drip into the solution of step 以 with a dropper, and react for three hours after sealing (first interval) ). After I.46 g MSMA (coupler) and equal gram of heart (five) were mixed into the sentence 201220124040, after two hours, 丨艾'13⁄4 was dropped into the solution of step 2, followed by 4.29 e Ο HC1 (37%) Dilute with a similar number of 1-butanol, and slowly drip into the dissolution waist, and continue to stir for six hours (second time interval) after the sol preparation is completed. Example 5 Preparation of Titanium Dioxide Mixed Coating TD70 (MEK as Solvent) Take 2 〇g of the titanium oxide sol solution of Example 1 in a 50 ml reaction flask, and add 0.86 g of DPHA (organic photosensitive monomer) and 7 57 g of MEK to mix uniformly. After the DPHA was dissolved, the reaction flask was covered with opaque light, and then 〇14笆 of the photoinitiator 1173 was added. After the preparation of the coating was completed, about 5 drops of the coating were dropped by the dropper 'dropped in the center of the 5×5 cm-sized PMMA substrate'. Then the spin coating was set. The machine was coated at 2000 rpm for 30 seconds. The coated film was immediately placed in a circulating oven of 8 (rc oven for 2 sec. soft bake. Next, UV hardening was performed, and the exposure energy was 500 mJ/cm2. The exposed key film was placed in a 90 C oven for 60 minutes to obtain a hard-baked organic-inorganic hybrid coating film. Example 6 Preparation of Titanium Dioxide Mixed Coating TD70 (MEK as Solvent) The titanium dioxide sol solution of Example 2 was taken. gIn a 5〇ml reaction flask, add 0.86 g DPHA (organic photosensitive monomer) and 7 57 g heart plus (1) to mix well. After confirming that DPHA is dissolved, the reaction flask is covered with opacity, and then 0.14 g of light is added. Agent 1173, paint preparation completed Take about 5 drops of paint and drop it in the center of PMMA substrate of 5x5 cm size. Then set the spin coater to operate at 2000 rpm, 30 seconds. 18 201213240 Coating 'Coated coating is placed immediately. 80 seconds of soft baking. The phase is 20 and then UV hardened, the exposure energy is 5〇〇u mj/cm2. The coating after exposure to the inorganic mixed coating light is placed in an oven at 90 °C for 60 minutes. Hard-baked organic, VII, Titanium dioxide mixed coating TM1D7 〇 Prepare 20 g of TMl-sol solution in a 5 〇ml reaction flask, add 〇15 DPHA (organic sensitizing monomer) and 〇5 3 g 1 —butanol Evenly, it is confirmed that the DPHA is dissolved and the reaction bottle is covered with opacity, and then the light of 〇13 g is added to take 2 doses of 1173. Take about 5 drops of the paint with a dropper and drop it in the center of the 5x5 cm ΡΜΜα substrate, then set The 疋Rot coating machine was coated at 2000 rpm for 3 〇 seconds, and the coating was completed and immediately placed in a circulating oven for 2 sec. soft baking. Then UV hardening was performed, and the exposure energy was 5 〇. 〇mJ/cm2. Place the exposed coating at 90 °C The box is hard baked for 6 minutes to obtain the hard-baked organic _ inorganic mixed coating. Example VIII, titanium dioxide mixed coating TS1D70 preparation Take TSl-sol solution 20 g in 5 〇mi reaction bottle, add 〇.057 g DPHA (organic sensitization Monomer) and 0 53 g 1 -butanol were uniformly mixed. It was confirmed that the reaction flask was opaque after the DPHA was dissolved, and 13 g of photoinitiator 1173 was added to prepare the coating. 201213240 Take about 5 drops of paint from the drip, drop it on the center of the 5mm5 cm pMMA substrate, then set the coating machine to apply the coating conditions of 2〇〇〇φΐη, 3〇 seconds, and apply the coated coating immediately. Into 8 〇t of the circulating oven for a second soft bake. Subsequently, ultraviolet light hardening was performed, and the exposure energy was 5 〇〇 mJ/cm 2 . The exposed coating was placed in an oven at 90 ° C for 60 minutes to obtain a hard-baked organic-inorganic hybrid coating. The above-described embodiments are merely illustrative of the features and advantages of the present invention and are not intended to limit the scope of the invention. Modifications and variations of the above-described embodiments can be made by those skilled in the art without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the appended claims. [Simplified description of the drawings] Fig. 1 is a flow chart of the manufacturing method; Fig. 2 is a result obtained by adding a coupling agent $ and a dynamic light scattering particle size analyzer after the particle size growth of the titanium oxide sol is not balanced; 3 The graph is the result of adding the coupling agent $ and the dynamic light scattering particle size analyzer after the particle size growth of the titanium oxide sol reaches equilibrium. The fourth figure is the dynamic light scattering with the Dinghe sol for a long time. The particle size measurement results; the fifth picture is the rotary coating machine 10 Wt 〇 / tamping component sol coating operation correction chart. Figure 6 is the atomic force electron microscope on the TM1D70 film measurement results, flat 201213240 The roughness can be less than 3.2nm; Figure 7 is the change of the refractive index of TM coating on the PMMA substrate with the content of titanium dioxide; Figure 8 is the change of the refractive index of TS coating on the PMMA substrate with the content of titanium dioxide; The refractive index of TB coating on the PMMA substrate varies with the content of titanium dioxide; [Main component symbol description] No 21

Claims (1)

201213240 七、申請專利範圍: 1. 一種二氧化鈦溶膠的製備方法’其步驟包括: ⑴將一二氧化鈦前驅物與一反應溶劑混合成一反應溶液; (ii) 該反應溶液中加入一酸催化劑,其中,該反應溶液 與該酸催化劑混合後靜置一第一時間間隔; (iii) 該反應浴液中加入一偶合劑混合成一二氧化鈦溶 膠,其中,利用一攪拌法攪拌該二氧化鈦溶膠一第 二時間間隔。 2. 如申讀;專利範圍第〖項之二氧化鈦溶膠的製備方法,其 中,該二氧化鈦前驅物係為一四烷氧基鈦化合物。 3. 如申响專利範圍第1項之二氧化鈦溶膠的製備方法,其 中,5亥反應溶劑係為正丁醇或曱乙酮。 4. 如申請專利範圍第!項之二氧化鈦溶膠的製備方法,其 中’該酸催化劑包含一鹽酸溶液及等重量之該反應溶 5. 如申。月專利氣圍第!項之二氧化鈦溶膠的製備方法,其 中,該第一時間間隔範圍係為1-1〇小時。 6. 如申請專利範圍第1項之二氧化鈦溶膠的製備方法,其 中,該第一時間間隔係為3小時或6小時。 7. 如申請專利範圍第1項之二氧化鈦溶膠的製備方法,其 二二偶口4係為曱基丙烯酸(MAA)、甲基丙烯酸酷基 二曱氧基石夕(MSMA)或4-乙稀笨曱酸(VBZ)。 8. 如申。月專她圍第!項之二氧化鈦 中,該娜法係為一磁石授拌法。衣備方 22 201213240 9.如申睛專利範圍第〗讀夕—条# #、々咖 中的製備方法,其 中5亥第一時間間隔範圍係為1-10小時。 10二申請t利範圍第1項之二氧化鈦溶膠的製備方法,其 中’ έ玄第二時間間隔係為6小時。 11.如申請專概圍幻項之二氧化鈦轉的製備方法,步 驟()中更L 3 -步驟,其中,該反應溶液與該酸催化 劑混合後,密封該反應溶液。 I2·-種製備巾折射或高折射率賴的方法;其步驟包括: 將依申請專利範圍第1項製備之二氧化鈦溶膠與有機感 光單體及光起始劑混合成一塗料;將該塗料塗佈於一基 板上;以紫外光照射該塗料,其中,該塗料經紫外光照 射後行一聚合反應而成一薄膜。 13. 如申請專利範圍第12項之方法,其中,該有機感光單 體為聚二李戍四醇五丙烯酸酯(DPHA)。 14. 如申請專利範圍第12項之方法,其中,該光起始劑為2 hydroxy-2-meyhyl-1 -phenyl-propan-1 -one。 15. 如申請專利範圍第12項之方法,其中,該基板係為— 玻璃基板。 16. 如申請專利範圍第12項之方法,其中,該基板係為— 塑膠基板。 23201213240 VII. Patent application scope: 1. A method for preparing a titanium dioxide sol, the steps of which include: (1) mixing a titanium dioxide precursor with a reaction solvent to form a reaction solution; (ii) adding an acid catalyst to the reaction solution, wherein The reaction solution is mixed with the acid catalyst and allowed to stand for a first time interval; (iii) a coupling agent is added to the reaction bath to form a titanium dioxide sol, wherein the titanium oxide sol is stirred for a second time interval by a stirring method. 2. The method for preparing a titanium dioxide sol according to the scope of the patent, wherein the titanium dioxide precursor is a tetraalkoxy titanium compound. 3. The method for preparing a titania sol according to claim 1, wherein the reaction solvent is n-butanol or acetophenone. 4. If you apply for a patent scope! A method for preparing a titania sol, wherein the acid catalyst comprises a hydrochloric acid solution and an equal weight of the reaction solution. Monthly patent gas circumference! The method for preparing a titania sol, wherein the first time interval ranges from 1 to 10 hours. 6. The method for preparing a titanium oxide sol according to claim 1, wherein the first time interval is 3 hours or 6 hours. 7. The preparation method of the titanium dioxide sol according to claim 1 of the patent scope, wherein the second couple of the 4 is a methacrylic acid (MAA), a methacrylic acid, a bismuth oxide (MSMA) or a 4-ethyl Niobic acid (VBZ). 8. If you apply. She specializes in her monthly! In the titanium dioxide of the item, the Nafa method is a magnetization mixing method.衣备方22 201213240 9. For example, in the preparation method of the scope of the application of the patent scope, the first time interval of 5 hai is 1-10 hours. The preparation method of the titanium dioxide sol of the first item of the t-profit range, wherein the second time interval of the έ έ is 6 hours. 11. The method for preparing a titanium dioxide conversion for a specific phantom item, the step (3) of the step (), wherein the reaction solution is mixed with the acid catalyst, and the reaction solution is sealed. A method for preparing a refraction or a high refractive index of a towel; the steps comprising: mixing a titanium oxide sol prepared according to claim 1 of the patent application with an organic photosensitive monomer and a photoinitiator into a coating; coating the coating On a substrate; irradiating the coating with ultraviolet light, wherein the coating is subjected to ultraviolet light irradiation to form a film. 13. The method of claim 12, wherein the organic photosensitive monomer is polydithiopentaerythritol pentaacrylate (DPHA). 14. The method of claim 12, wherein the photoinitiator is 2 hydroxy-2-meyhyl-1 -phenyl-propan-1 -one. 15. The method of claim 12, wherein the substrate is a glass substrate. 16. The method of claim 12, wherein the substrate is a plastic substrate. twenty three
TW99132717A 2010-09-27 2010-09-27 High refractive index TiO2 nano-composite optical film and production process thereof TW201213240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99132717A TW201213240A (en) 2010-09-27 2010-09-27 High refractive index TiO2 nano-composite optical film and production process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99132717A TW201213240A (en) 2010-09-27 2010-09-27 High refractive index TiO2 nano-composite optical film and production process thereof

Publications (1)

Publication Number Publication Date
TW201213240A true TW201213240A (en) 2012-04-01

Family

ID=46786199

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99132717A TW201213240A (en) 2010-09-27 2010-09-27 High refractive index TiO2 nano-composite optical film and production process thereof

Country Status (1)

Country Link
TW (1) TW201213240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112558419A (en) * 2020-12-18 2021-03-26 中国科学院光电技术研究所 Processing method of large-caliber flexible optical super-structure surface structure
US11059740B2 (en) 2017-06-02 2021-07-13 Guardian Glass, LLC Glass article containing a coating with an interpenetrating polymer network
WO2022038161A1 (en) 2020-08-21 2022-02-24 Basf Se Uv-curable coatings having high refractive index

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11059740B2 (en) 2017-06-02 2021-07-13 Guardian Glass, LLC Glass article containing a coating with an interpenetrating polymer network
WO2022038161A1 (en) 2020-08-21 2022-02-24 Basf Se Uv-curable coatings having high refractive index
CN112558419A (en) * 2020-12-18 2021-03-26 中国科学院光电技术研究所 Processing method of large-caliber flexible optical super-structure surface structure

Similar Documents

Publication Publication Date Title
TWI316530B (en) Coating composition for film with low refractive index and film prepared therefrom
JP6943865B2 (en) Nanocomposite formulation for optical applications
Ding et al. Formation of supra-amphiphilic self-cleaning surface through sun-illumination of titania-based nanocomposite coatings
TWI486412B (en) Anti-reflection coating composition and process for preparing the same
WO2007097284A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
CN102220062A (en) Aqueous UV curing coating and preparation method thereof
CN102076723A (en) Hardening composition and resultant hardened material
TWI598416B (en) Coating composition, film made of the coating composition, and method for preparing the coating composition
US20040171743A1 (en) Hybrid organic-inorganic polymer coatings with high refractive indices
CN101120055A (en) Organic-inorganic composite body
TW201226167A (en) Gradient composite material and method of manufacturing the same
WO2012071969A1 (en) Optical hardening film and process for manufacturing same
CN101948561A (en) Organic/inorganic silicon hybrid resin for coating and preparation method thereof
TWI288165B (en) Anti-reflective coating composition, anti-reflective coating and fabrication method thereof
CN109897539A (en) A kind of flexibility high transparency high rigidity masking liquid composition and preparation method thereof
TW201213240A (en) High refractive index TiO2 nano-composite optical film and production process thereof
JP3848434B2 (en) Curable resin composition
TWI358429B (en) Nano paint and method for manufacturing the same
TW575523B (en) Inorganic film-forming coating composition and inorganic film-forming method by use of the same
JP5709706B2 (en) Paint for forming transparent film and substrate with transparent film
TW201908008A (en) Zirconia particle dispersion composition and cured product thereof
JP4759780B2 (en) Low refractive index composition, low refractive index film, optical multilayer film and antireflection film
TWI606101B (en) Coating composition and method of manufacturing the same
TWI291902B (en)
KR101445437B1 (en) Anti-Reflection Film and Method of Producing The Same