TW201209082A - Fabrication method of transparent resin substrate and transparent resin substrate - Google Patents

Fabrication method of transparent resin substrate and transparent resin substrate Download PDF

Info

Publication number
TW201209082A
TW201209082A TW99128465A TW99128465A TW201209082A TW 201209082 A TW201209082 A TW 201209082A TW 99128465 A TW99128465 A TW 99128465A TW 99128465 A TW99128465 A TW 99128465A TW 201209082 A TW201209082 A TW 201209082A
Authority
TW
Taiwan
Prior art keywords
transmittance
resin substrate
light
ppm
pigment
Prior art date
Application number
TW99128465A
Other languages
Chinese (zh)
Other versions
TWI567117B (en
Inventor
Sachiyuki Mizuno
Original Assignee
Tony Optical Entpr Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tony Optical Entpr Co Ltd filed Critical Tony Optical Entpr Co Ltd
Priority to TW99128465A priority Critical patent/TW201209082A/en
Publication of TW201209082A publication Critical patent/TW201209082A/en
Application granted granted Critical
Publication of TWI567117B publication Critical patent/TWI567117B/zh

Links

Abstract

A fabrication method of a transparent resin substrate and a transparent resin substrate are disclosed for the fabrication of transparent resin substrate formed by injection molding of the molten resin in a mold. Mixed with the resin are 0.1 to 50 ppm of phthalocyanine pigment (A) comprising a minimum value of a spectral transmission curve with a transmittance less than 10% within 800nm - 850nm wavelength; phthalocyanine pigment (B) comprising a minimum value of a spectral transmission curve with a transmittance less than 10% within 950nm - 1000nm wavelength; and phthalocyanine pigment (C) comprising a minimum value of a spectral transmission curve with a transmittance less than 10% within 875nm - 925nm wavelength, which are mixed with the resin and molten, followed by the injection molding to provide a minimum value of a spectral transmission curve with a transmittance less than 10% within 800nm - 1000nm wavelength.

Description

201209082 六、發明說明: 【發明所屬之技術領域】 本發明係有關於’作為眼鏡鏡片等材料之用的透光性樹脂基材;特別 疋有關於’在8G()nm〜lGGnm波長領域巾,具有透射率未滿5%的極小值區 的透光性樹脂基材製法及透光性樹脂基材。 【先前技術】 眼料魏触視力’還具有從紅外線或餅線_害紐中保護眼 籲睛的侧,IEJ此太祕鮮護目鏡創上,均有添加餘阻止料線透射 .的紫外線吸收劑、或阻止紅外線透射的紅外線吸收劑(例如,參閱日本特開 2007-271744號公報、特開2000—7871號公報)。 然而’在作為眼鏡鏡片用透紐樹脂基材上,雖以採用疆(甲基丙 稀酸曱酯(methyl methac_e)_)或 Acrylic 壓克力或 pc(p〇lycarb咖e, 聚碳酸醋樹脂)或Nylon(尼龍)等具卓越透明性者為佳,但耐衝擊性 較小’因歧作魏鏡鏡#用途而言,貞彳叫衝擊性較高的pc為佳;但 籲PC需要2耽以上的成形溫度,因此用習知的紅外線吸收劑會發生劣化、 分解情況,而無法獲得紅外線吸收性能和财衝擊性的鏡片。 【發明内容】 、 本&月之目的在於,有鑑於上述問題,而提供能有效阻斷太陽光之中 的特定領域波長’ _是可有雜斷邮〜麵肺紅外線賴的眼鏡鏡 片,可使用具卓越耐轉性㈣碳咖精脂,以低成本且輕鬆製造的透 光性樹脂基材製法、及藉此方法製造出透光性樹脂基材。 為了達成本判目的,本發明之發明人便駭即便在高溫,也不易分 的鈦花月系色素,鈦花青系色素憑藉其分子結構的不同,而得 3 201209082 800nm〜lOOOnm範圍内’讓吸收波長的極值產生各種變化,;但既有鈦花青系 色素的極值幅度相當狹窄’且其透射率也有約10%的限制;本發明之發明 ^ 人經過鑽研之下,透過適當混合分子結構不同的鈦花青系色素,即是在分 光透射率曲線上’適當混合在800nm〜lOOOnm範圍内極值位置不同的數種 鈦花青系色素後發現到,可製造出目標分光透射率曲線的透光性樹脂基材。 具體而言,申請專利範圍所記載之透光性樹脂基材的製法,在模具内 射出成型已熔融樹脂所形成的透光性樹脂基材製法上,前述樹脂内,各以 ® 〇.lppm〜50ppm重量範圍,混合在一 80〇nm〜850nm波長領域範圍内,具有 透射率未滿10%之分光透射率曲線極小值的鈦花青系色素(A);和在一 950nm〜lOOOnm波長領域範圍内,具有透射率未滿1〇%之分光透射率曲線 極小值的鈦花青系色素⑻;和在一 875nm〜925nm波長領域範圍内,具有 透射率未滿10%之分光透射率曲線極小值的鈦花青系色素(c),再連同前述 樹麟融後射出,使分光透射率曲線在波長領域,具有透 射率未滿5。/。的極小值區之方法;鈦花青系色素(A)、⑼、(〇皆各可為一種 ® 或多種類; 如申請專纖圍之域所示’在透絲翻旨騎上也可追加賦予偏光 功能及/或調光功能之卫程;另外,如”專利範圍之記載所示,亦可追加 賦予視力構正領域之校正功能工程; 前述樹脂之具體例而言’則可列舉如申請專利範圍所記載之聚碳酸 =再者’此時的鈦花㈣色素⑷、⑼、(C)的具體數值可列舉如下,敎 l6.0ppm.17.〇ppm 18.5ppm^9.5ppm ^(C)4 16.0ppm〜17·0ρριη 〇 201209082 以上述方法所製造的透紐樹脂基材’正如專辦請範圍$之記載所 不在模具内射出成型已炫融樹脂所形成的透光性樹脂基材上,各以 〇.1卿〜5〇Ppm f量範圍’包括在一 8〇〇nm〜85〇nm波長領域範圍内具有 透射率未滿10%之分光透射率曲線極小值的欽花青系色素(a);和在— .95Gnm〜lGGGnm波長賴細内,具有透射率未滿祕之分光透射率曲線 極小值的鈦花青系色素⑼;和在一 875nm〜925nm波長領域範圍内具有 透射率未滿10%之分光透射率曲線極小值的鈦花青系色素⑹,使分光透射 • 率曲線在8〇〇胞〜1〇〇〇細波長領域,具有透射率未滿5%的極小值區;鈦花 青系色素(A)、(B)、(C)皆各可為一種或多種類; 如申請專利範圍之記載所示,也可對前述透光性樹脂基材賦予偏光功 能及/或調光功能; 另外’前述樹脂之具體例方面,财列舉如中請專利細所記載之聚 .碳酸醋;再者,透光性樹脂基材所含鈦花青系色素㈧、⑼、⑹的具體量 可列舉如下,鈦花青系色素(A)為16.0ppm〜17.0ppm、同⑼為 # 18.5PPm〜19.5ppm、同(C)為 16.0ppm〜17.0ppm。 可藉本發明方法獲得有效阻斷太陽光所含之特定領域波長,特別是可 獲得能有效阻斷800nm〜lOOOnm紅外線波長領域之透光性樹脂基材。 【實施方式】 以下將參閱圖面’詳加贅述本發明之最佳實施態樣; 【樹脂】 可用於本發明透光性樹脂基材的樹脂可在溶融後,透過對模具内的模 穴(cavity)射出成型,以成形出透光性樹脂基材,且只要具備卓越的透明性, 201209082 便不特別拘泥其材料;雖可使用聚雙烯丙基二甘醇二碳酸(Diethyleneglyc〇1 bis_allyl ; CR-39)、聚甲基丙烯酸甲酯 methacrylate)(PMMA)、甲基丙稀酸甲賴(咖㈣ methacryiate)(MMA)等但 本發明以在25GC以上高溫縣之樹脂為最佳;其代表例為聚碳酸醋(pc); 在以下說明中,將以聚碳酸酯為例詳加贅述。 【鈦菁素系色素】 - 鈦花月系色素是眾所皆知的近紅外線吸收色素,且會因分子結構的不 鲁 @,而讓吸收波長的極值產生變化;因此如第i圖所示,市面上有銷售可 依用途而有不同吸收波長極值的各種鈦花青系色素; 可使用之市售鈦花青系色素例則有,株式會社日本觸媒㈣pp〇N SHOKUBAI CO” LTD.)製的「—工夕只力今—」; 上述欽花青系色素可以丁酮(methyl ethyl ket〇neM2_丁烷(butane)、甲 苯(toluene)等為溶劑予以溶解’在溶解於此溶劑中的狀態下雖可分析吸收光 譜(spectrum),但第1圖及第2圖屬於在甲苯(t〇luene)溶劑,中,以5重量%混 鲁合溶解分子結構不同的各種鈦花青系色素時的吸收光譜; 可用於本發明的鈦花青系色素,在目標800nm〜lOOOnm波長領域内, 具有透射率未滿10%之分光透射率曲線的極小值; 第1圖及第2圖為此鈦花青系色素例; 第1圖(a)之欽花青系色素,在82〇nm前後具有透射率未滿1〇%的極值; 第1圖(b)之鈦花青系色素,在85〇nm前後具有透射率未滿1〇%的極值;第 1圖(c)之鈦花青系色素’在880nm前後具有透射率未滿1〇%的極值;另外, 第2圖⑻之鈦菁素系色素,在970nm前後具有透射率未滿1〇%的極值$201209082 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a translucent resin substrate for use as a material such as an eyeglass lens, and particularly relates to a 'in the 8G () nm to lGGnm wavelength field, A method for producing a translucent resin substrate having a minimum value of 5% transmittance and a translucent resin substrate. [Prior Art] Eye Wei's visual acuity also has the side that protects the eye from the infrared rays or the pie line. The IEJ is too secretive goggles, and all of them have added UV rays to prevent the transmission of the material. For example, an infrared ray absorbing agent that prevents the transmission of infrared rays (for example, see JP-A-2007-271744, JP-A-2000-7871). However, 'on the surface of the lens resin for the lens, although using methyl (meth methac_e) _ or Acrylic acrylic or pc (p〇lycarb coffee e, polycarbonate resin) ) or Nylon (nylon) is excellent for excellent transparency, but the impact resistance is small. 'Because of the use of Wei Jingjing #, it is better to use a PC with a higher impact; but the PC needs more than 2 inches. Since the molding temperature is such that the conventional infrared ray absorbing agent is deteriorated or decomposed, it is impossible to obtain a lens having infrared absorbing performance and financial impact resistance. SUMMARY OF THE INVENTION The purpose of this & month is to provide a spectacle lens that can effectively block specific wavelengths in the sunlight, in view of the above problems. A translucent resin substrate is produced by using a method of producing a translucent resin substrate which is excellent in rotation resistance (IV), and which is easy to manufacture at a low cost. In order to achieve the purpose of the present invention, the inventors of the present invention have a titanium flower color pigment which is not easily separated even at a high temperature, and the titanium cyanine dye has a molecular structure of 3 201209082 800 nm to 100 nm. The extreme value of the absorption wavelength produces various changes; however, the extreme amplitude of the titanium cyanine pigment is quite narrow' and its transmittance is also limited by about 10%; the invention of the present invention has been thoroughly studied through thorough mixing. Titanium cyanine pigments with different molecular structures are found on the spectral transmittance curve by appropriately mixing several titanium cyanine pigments with different extreme positions in the range of 800 nm to 100 nm, and the target spectral transmittance can be produced. Curved translucent resin substrate. Specifically, in the method for producing a light-transmitting resin substrate described in the patent application, a method for producing a light-transmitting resin substrate formed by molding a molten resin in a mold is used, and each of the resins is made of ® l.lppm. a 50 ppm weight range, mixed in a wavelength range of 80 〇 nm to 850 nm, a titanium cyanine dye (A) having a minimum transmittance of a transmittance of less than 10%; and a wavelength range of 950 nm to 100 nm a titanium cyanine dye (8) having a minimum transmittance of a light transmittance curve of less than 1% by transmittance; and a light transmittance curve having a transmittance of less than 10% in a wavelength range of 875 nm to 925 nm. The titanium cyanine pigment (c) is injected together with the aforementioned tree lining to make the spectral transmittance curve in the wavelength range, and the transmittance is less than 5. /. The method of the minimum value area; the titanium cyanine pigments (A), (9), (the cockroaches can each be a kind of ® or more; as shown in the field of applying for the special fiber) A process of imparting a polarizing function and/or a dimming function; in addition, as shown in the description of the patent range, it is also possible to add a correction function to the field of vision correction; for a specific example of the resin, it may be cited as an application. Polycarbonate as described in the patent range = Further, the specific values of the titanium (tetra) dyes (4), (9), and (C) at this time are as follows, 敎l6.0ppm.17.〇ppm 18.5ppm^9.5ppm^(C) 4 16.0ppm~17·0ρριη 〇201209082 The translucent resin substrate manufactured by the above method is as described in the scope of the special application, and the non-transparent resin substrate formed by molding the fused resin is not in the mold. Each of the ranges of 〇.1 卿~5〇Ppm f includes a qinghuaqing pigment having a minimum value of a light transmittance curve of less than 10% in a wavelength range of 8 〇〇 nm to 85 〇 nm. a); and in the wavelength range of -95 Gnm~lGGGnm, having a transmittance of less than the secret spectral transmittance a titanium cyanine dye (9) having a minimum value of a line; and a titanium cyanine dye (6) having a minimum light transmittance curve having a transmittance of less than 10% in a wavelength range of 875 nm to 925 nm, so that the spectral transmittance curve is 8 cells ~ 1 〇〇〇 fine wavelength field, with a minimum transmittance of less than 5% of the region; titanium cyanine pigments (A), (B), (C) can each be one or more types; As described in the description of the patent application, the light-transmitting resin substrate may be provided with a polarizing function and/or a light-adjusting function. Further, the specific examples of the above-mentioned resin are listed in the patent application. The specific amount of the titanium cyanine dyes (8), (9), and (6) contained in the translucent resin base material is as follows. The titanium cyanine dye (A) is 16.0 ppm to 17.0 ppm, and the same (9) is # 18.5PPm~19.5ppm, the same (C) is 16.0ppm~17.0ppm. The method of the present invention can effectively block the specific wavelengths of sunlight, especially in the field of infrared wavelengths of 800nm~100onm. Translucent resin substrate. [Embodiment] The preferred embodiment of the present invention will be described. [Resin] The resin which can be used in the light-transmitting resin substrate of the present invention can be molded into a light-transmitting property by being molded into a cavity in a mold after melting. Resin substrate, as long as it has excellent transparency, 201209082 does not particularly restrict its materials; although it can use polybisallyl diglycol dicarbonate (Diethyleneglyc〇1 bis_allyl; CR-39), polymethyl methacrylate Methacrylate) (PMMA), methacryiate (MMA), etc., but the present invention is preferably a resin in a high temperature county of 25 GC or higher; a representative example thereof is polycarbonate (pc); In the description, polycarbonate will be described in detail as an example. [Titanocyanine pigment] - Titanium pigment is a well-known near-infrared absorbing pigment, and the extreme value of the absorption wavelength changes due to the molecular structure of the ink. Therefore, as shown in Figure i In the market, there are various kinds of titanium cyanine dyes that can be used in various types of absorption wavelengths depending on the application. Commercially available titanium cyanine pigments can be used. Japan Catalyst (4) pp〇N SHOKUBAI CO” LTD .) The "--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Although the absorption spectrum can be analyzed in the state of the solvent, the first and second figures belong to various kinds of titanium cyanine in which the molecular structure is different in a solvent of toluene (5% by weight). The absorption spectrum when the pigment is used; the titanium cyanine dye which can be used in the present invention has a minimum value of the spectral transmittance curve having a transmittance of less than 10% in the target wavelength range of 800 nm to 100 nm; Fig. 1 and Fig. 2 For this reason, the titanium cyanine pigment case; Figure 1 (a) The element has an extreme value of less than 1% by transmittance before and after 82 〇 nm; the titanium cyanine dye of Fig. 1(b) has an extreme value of less than 1% of transmittance before and after 85 〇 nm; 1 (c) The titanium cyanine dye 'has an extreme value of less than 1% by transmittance before and after 880 nm; and the titanium phthalocyanine dye of Fig. 2 (8) has a transmittance of less than 1 970 around 970 nm. % of the extreme value $

L ό J 6 201209082 2圖(b)之鈦花青系色素,在980nm前後則有透射率ι〇〇/0未滿的極值。 【決定鈦花青系色素的混合量】 第1圖及第2圖所示之各種鈦花青系色素之中,各以〇.ippm〜5〇ppm重 量範圍,讓具有不同極值的二種類以上,熔融且混合於250。(:〜300°C所溶融 的聚碳酸醋内;倘若小於O.lppm,便幾乎不呈現紅外線吸收效果,若超過 50ppm甚至會阻斷可見光線(Visible Light),而無法發揮太陽眼鏡的功能; 可見光線領域(大約500nm〜700nm波長領域)中,可容許的透射率下限值約 • 為 15% ; 可列舉之組合例如下,例如在820nm前後具有透射率未滿1〇%極值的 第1圖(a)鈦花青系色素;和980nm前後具有透射率未滿1〇%極值的第2圖 (a)或第2圖(b)鈦花青系色素;和880nm前後具有透射率未滿1〇%極值的第 1圖(c)鈦花青系色素。 藉由將可見光線領域的透射率確保在15%以上狀態的分光透射率曲線 麦化中’可透過實驗獲得標準混合量;例如,在〇 lppm〜5〇ppm重量範圍内, * 適當混合(例如各以15PPm)結構不同的多種鈦花青系色素,所得之透光性樹 脂基材透射光譜的分光透射率曲線,則如第3圖所示;在此透射光譜中, 從目標800nm到880nm附近之間、及在970nm附近會呈現未滿5%的高紅 外線吸收能,但在9〇〇nm前後則呈線約1〇%的波峰,從97〇nm附近開始會 轉為急速上升分光透射率曲線,因此整體上會形成波形。 此時,以總重量為O.lppm〜50ppm重量範圍,適量追加或增量在9〇〇nm 附近具有極值的鈦花青系色素、和在97〇nm附近具有極值的鈦花青系色 素,再針對所得之透光性樹脂基材求出透射光譜以分析分光透射率曲線; 7 201209082 經過重複進行後,再決疋最佳的鈦;匕青系色素組合量;再者,一般而言, 鈦花青系色素價格不斐’因此以達到目的之分光透射率曲線後,再逐量減 少使用之鈦花青系色素量,以獲得最低成本的組合為佳: 【熔融、射出】 將上述所決定的鈦花青系色素的組合及量,混合於25〇。匚〜3〇〇<>〇所熔融 的聚碳酸醋後,再將此混合溶液射出到模具模穴内;藉此便可獲得分光透 射率曲線在800nm〜l〇〇anm波長領域中,具有透射率未滿抓之平坦極小值 籲區的透光性樹脂基材;此透光性樹脂基材可用作鏡片或滤鏡等光學儀器材 料’但也可將前賴穴形狀,事先形成出例如眼鏡鏡片的大小及形狀,以 獲得透光性樹脂基材的同時,還可獲得具卓越紅外性吸收性的眼鏡鏡片。 【附加功能】 在本發明之透光性樹脂基材上,也可附加偏光功能或調光功能、視力 矮正功此,另外,除了鈦花青系色素之外,也可視其需要添加其他色素或 添加劑。 •【實施例1】 以下將說明本發明之具體實施例;使用之材料如下所示: 樹脂.聚碳酸醋(三菱合成化學株式會社製透明1〇〇kg 鈦化青系色素 (A):株式會社曰本觸媒(NIPPON SHOKUBAI C〇.,LTD·)製「彳一 工夕只力今一」; (在二氣甲烷(chloroform)溶劑中溶解5重量%時的最大吸收波長為 832nm,參閱第4圖⑷) 201209082 適量範圍:16.0g〜17.0g ⑼:同IR910 (在二乳甲炫溶劑中溶解5重量%時的最大吸收波長為977nm,參閱第 4 圖(b)) 適量範圍:18.5g〜19.5g (C):同 IR20 ' (在二乳曱炫溶劑中溶解5重量%時的最大吸收波長為904nm,參閱第 φ 4 圖(c)) 適量範圍:16.0g〜17.0g 在3〇〇 C溫度下炫融與混合上述,經過射出成形後便贿得透光性樹脂 基材; 第5圖是各將上述(八)、(印、((:),各定為幾乎在各適量範圍中央的 16.5g、19.0g、16.5g時的透光性樹脂基材(眼鏡鏡片)的透射光譜;如圖示所 不,此透光性樹脂基材在分光透射率曲線為8〇〇nm〜1〇〇〇nm波長領域具 • 有透射率未滿5°/❶(幾乎為〇)的平坦極小值區。 【賦予偏光功能】 第6圖是讓具有偏光功能的透光性樹脂基材(眼鏡鏡片),適用於本發明 之實施例; 以虛線表示一般附偏光功能之透光性樹脂基材的分光透射率曲線;偏 光功能可至少在透光性樹脂基材一面上黏貼偏光板;一般附偏光功能的透 光性樹脂基材,不具抑制紅外線透射功能,因此會透射90%以上的 800nm〜lOOOnm領域波長; ' 201209082 將本申請發明之紅外線吸收功能,適用於附此偏光功能的透光性樹脂 1基材後,便可獲得分光透射率曲線在800nm〜l〇〇〇nm波長領域上,具有透 射率未滿5%(幾乎〇)之平坦極小值區_偏光魏透級樹脂基材。 以上已說明本發明之實施態樣,但本發明並未限定於上述實施態樣; 例如,在本發明之透光性樹脂基材上,除了偏光功能之外還可賦予調 光功能’尤其對於眼鏡鏡片還可賦予視力矯正功能; 另外’在800nm〜850nm波長領域範圍内,具有透射率未滿10%之分光 _ 麵率曲線極小值的鈦花青彳、色素(A);在95〇nm〜lGGGnm波長領域範圍 内’具有透射率未滿10%分光透射率曲線極小值的鈦花青系色素(B);及在 875nm〜925nm波長領域範圍内,具有透射率未滿1〇%之分光透射率曲線極 小值的鈦花青系色素(C),屬於總量在O.lppm〜50ppm重量範圍内,皆可以 是一種或多種類; 再者’也可在樹脂中添加鈦花青系色素、及用於調色之其他色素、或 其他添加劑。 _ 本發明之透光性樹脂基材,除了可廣泛用作一般眼鏡、太陽眼鏡(含具 偏光功能或調光功能者)、前掛式眼鏡及護目鏡等眼鏡鏡片之外,也可適用 於濃鏡等其他光學儀器上。 201209082 【圖式簡單說明】 第i圖為⑷〜⑹表示在甲苯溶齡,以5重量%混合溶解分子結構 的各種鈦花青系色素時的吸收光譜例圖表。 5 第2圖為(a)、(b)表示在甲苯溶劑中,5重量%混合溶解分子結構不同的 ^各種鈦花青系色素時的吸收光譜例圖表。 第圖為在〇.lppm〜5〇Ppm重量範園内,適當混合結構不同的數種鈇花 月系色素,所得之透射光譜例之一。 _ 第4圖騎)〜⑷表不本發明實施例所贼花青系色素的吸收光譜圖表。 第5圖為本發明實施例所得之透紐細旨基_魏光譜圖表; 第6圖為對本發明實施例所得之透光性樹脂基材,賦予偏光功能時的 吸收光譜圖表。 【主要元件符號說明】L ό J 6 201209082 2 The titanium cyanine dye of the figure (b) has an extreme value of transmittance ι〇〇/0 not full before and after 980 nm. [Determining the amount of titanium cyanine dyes] In the various titanium cyanine pigments shown in Fig. 1 and Fig. 2, each of the two types having different extreme values is in the range of 〇.ippm to 5〇ppm. Above, it is melted and mixed at 250. (: ~300 ° C dissolved in the polycarbonate; if less than 0.1 ppm, it will almost no infrared absorption effect, if more than 50ppm will even block visible light (Visible Light), and can not play the role of sunglasses; In the visible light region (in the wavelength range of about 500 nm to 700 nm), the allowable lower transmittance limit is about 15%; for example, the combination may have a transmittance of less than 1% of the maximum value before and after 820 nm. 1 (a) Titanium cyanine pigment; and Fig. 2 (a) or Fig. 2 (b) Titanium cyanine pigment having a transmittance of less than 1〇% before and after 980 nm; and transmittance before and after 880 nm Figure 1 (c) Titanium Cyanine Pigment, which is less than 1% of the extreme value. By ensuring the transmittance in the visible light field to ensure the spectral transmittance curve in the state of 15% or more, the standard mixture can be obtained through experiments. For example, in the range of 〇lppm to 5〇ppm, * suitably mixed (for example, 15 ppm each) of various titanium cyanine dyes having different structures, and the spectral transmittance curve of the transmission spectrum of the obtained light-transmitting resin substrate, Then as shown in Figure 3; in this transmission spectrum, from the target 800nm There is a high infrared absorption energy of less than 5% between 880 nm and around 970 nm, but a peak of about 1% in the line around 9 〇〇 nm, and it will turn into a rapid rise spectrometry from around 97 〇 nm. Since the transmittance curve is formed as a whole, a waveform is formed as a whole. In this case, the total weight is in the range of 0.1 ppm to 50 ppm by weight, and an appropriate amount of titanium cyanine dye having an extreme value near 9 〇〇 nm is added or increased, and A titanium cyanine dye having an extreme value near 〇nm, and a transmission spectrum is obtained for the obtained light-transmitting resin substrate to analyze a spectral transmittance curve; 7 201209082 After repeating, the optimum titanium is determined; The amount of the pigment in the Qing Dynasty; in addition, in general, the price of the titanium cyanine pigment is not high. Therefore, after the spectral transmittance curve of the purpose is achieved, the amount of the titanium cyanine pigment used is reduced by the amount to obtain the lowest cost. The combination is preferably: [melting, injection] The combination and amount of the titanium cyanine dye determined above are mixed at 25 〇. 匚~3〇〇<> 熔融 melted polycarbonate, and then The mixed solution is injected into the mold cavity; It is possible to obtain a light-transmitting resin substrate having a spectral transmittance curve in the wavelength range of 800 nm to 1 manm, which has a flat minimum value of insufficient transmittance; the light-transmitting resin substrate can be used as a lens or An optical instrument material such as a filter can be used, but the shape and shape of the spectacle lens can be formed in advance to obtain a translucent resin substrate, and an eyeglass lens having excellent infrared absorption can be obtained. [Additional function] In the translucent resin substrate of the present invention, a polarizing function or a dimming function may be added, and the visual acuity may be short, and in addition to the titanium cyanine dye, other additives may be added as needed. Pigment or additive. [Example 1] Hereinafter, specific examples of the present invention will be described; the materials used are as follows: Resin. Polycarbonate (Mitsubishi Synthetic Chemical Co., Ltd. Transparent 1〇〇kg Titanium Cyanine Pigment (A): Strains The company's NIPPON SHOKUBAI C〇., LTD. system is based on the principle that the maximum absorption wavelength is 832 nm when dissolved in 5% of chloroform solvent. Figure 4 (4)) 201209082 Appropriate range: 16.0g~17.0g (9): Same as IR910 (maximum absorption wavelength is 977nm when 5% by weight is dissolved in the second emulsion, see Figure 4(b)) Appropriate range: 18.5 g~19.5g (C): same as IR20' (maximum absorption wavelength when dissolved in 5% by weight of emulsifier solvent is 904nm, see figure φ 4 (c)) Appropriate range: 16.0g~17.0g at 3 At the temperature of 〇〇C, the above-mentioned (eight), (printed, ((:), each is almost in each), after the injection molding, the brittle resin substrate is bribed. Transmission spectrum of a light-transmitting resin substrate (glass lens) at 16.5 g, 19.0 g, and 16.5 g in the center of an appropriate amount; No, the light-transmitting resin substrate has a flat minimum value region having a transmittance of less than 5 ° / ❶ (almost 〇) in the wavelength range of 8 〇〇 nm to 1 〇〇〇 nm. The polarizing resin substrate (glass lens) having a polarizing function is applied to the embodiment of the present invention; the spectral transmittance of the light-transmitting resin substrate having a general polarizing function is indicated by a broken line. Curve; the polarizing function can adhere to the polarizing plate at least on one side of the translucent resin substrate; generally, the translucent resin substrate with a polarizing function does not have the function of suppressing infrared transmission, and therefore transmits more than 90% of the 800 nm to 100 nm wavelength field; '201209082 The infrared absorption function of the invention of the present application is applied to the base material of the light-transmitting resin 1 with the polarizing function, and the spectral transmittance curve can be obtained in the wavelength range of 800 nm to 10 nm, and the transmittance is not a flat minimum value region of 5% (almost 〇) _ polarized Wei permeation resin substrate. The embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment; for example, in the present invention On the optical resin substrate, in addition to the polarizing function, it can also impart a dimming function. In particular, it can also provide vision correction function for the spectacle lens. In addition, it has a transmittance of less than 10% in the wavelength range of 800 nm to 850 nm. _ Titanium phthalocyanine, pigment (A) with a very small facet curve; Titanium cyanine pigment (B) with a minimum transmittance of less than 10% of the spectral transmittance curve in the range of 95 〇 nm to 1 GGGnm wavelength And a titanium cyanine dye (C) having a minimum transmittance of a light transmittance curve of less than 1% by transmittance in the wavelength range of 875 nm to 925 nm, and the total amount is in the range of 0.1 ppm to 50 ppm by weight. It may be one or more types; in addition, a titanium cyanine dye, a coloring matter for coloring, or other additives may be added to the resin. _ The translucent resin substrate of the present invention is applicable not only to general glasses, sunglasses (including those having a polarizing function or a dimming function), but also to eyeglass lenses such as front-mounted glasses and goggles. Concentrated mirrors and other optical instruments. 201209082 [Brief Description of the Drawings] Fig. i is a diagram showing an example of absorption spectra when various titanium cyanine dyes having a molecular structure are mixed at a concentration of 5% by weight in the toluene dissolution age. 5 (a) and (b) are graphs showing absorption spectra of 5% by weight of a mixture of various titanium phthalocyanine dyes having different molecular structures in a toluene solvent. The figure is one of the examples of transmission spectra obtained by appropriately mixing several kinds of eucalyptus pigments having different structures in the pm.lppm~5〇Ppm weight range. _ Figure 4 Ride) ~ (4) Table showing the absorption spectrum of the thief color pigment of the embodiment of the present invention. Fig. 5 is a graph showing the absorption spectrum of the light-transmitting resin substrate obtained in the examples of the present invention, which is obtained by the embodiment of the present invention. [Main component symbol description]

Claims (1)

201209082 七、申請專利範圍: 卜_種透光_脂基_製法’其特徵在於’依藉在模具崎出成型已溶 融樹脂所職的透級樹絲材製法上,係包括: 刖述樹脂内,各以0·1ρρηι〜5〇ppm重量範圍,混合在一 8〇幢〜85〇腿 皮長7員域範圍内’具有透射率未滿1〇%之分光透射率曲線極小值的欽花 月(p alocyamne)系色素(a),和在一 95〇麵〜ioooj^波長領域範圍内, 具有透射率未滿1〇%之分光透射率曲線極小值的欽花青系色素⑼;和 在- 875mn〜925nm》皮長領域範圍内,具有透射率未滿1〇%之分光透射 率曲線極小值的鈦花青系色素(C),再連同前述樹脂溶融後射出,使分光 透射率曲線在8G()nm〜刪nm波長領域,具有透射率未滿5%的極小值 區者。 2、 依申請專利範圍第丨項所述之__種透光性樹絲材的製法,其中,在前 述透光性樹脂基材上設有賦予偏光功能及/或調光功能之工程者。 3、 依申請專利範圍第i項或第2項所述之一種透光性樹脂基材的製法,其 中’在透光性樹脂基材製法上,賦予視力矯正領域之校正功能工程者。 4、 依申請專利範圍第i項或第3項所述之一種透光性樹脂基材的製法,其 中,則述樹脂為聚碳酸酯(p〇lycarb〇nate) ’將聚碳酸酯對鈦花青系色素的 重量定為,鈦花青系色素(A)16.0ppm〜n.Oppm、同(B)18.5ppm〜19.5ppm、 同(C)16.0ppm〜17.0ppm 者。 5、 一種透光性樹脂基材,其特徵在於,依藉在模具内射出成型已熔融樹脂 所形成的透光性樹脂基材上,係包括: 各以O.lppm〜50ppm重量範圍,包括在一 800nm、85〇nn^長領域 ί S] 12 201209082 減内’具有透射率未滿10〇/〇之分光透射率曲線極小值的欽花青系色素 (A);和在_ 95Gnm〜1G(K)邮波長領域範_,具有透神未滿·之 刀光透射率曲線極小值的欽花青系色素⑻;和在一奶肺〜奶細波長 械範圍内’具有透射率未滿10%之分光透射率曲線極小值的欽花青系 色素(c) ’使分光透射率曲線在800nm〜1〇〇〇nm波長領域具有透射率 未滿5%的極小值區者。 6、依申請專利範圍第5項所述之一種透光性樹脂基材,其中,對透光性樹 9 脂基材賦予偏光功能及/或調光功能者❶ 7'依申請專利範圍第5項或第6項所述之一種透光性樹脂基材,其中,前 述樹脂為聚碳酸醋’將聚碳酸醋對鈦花青系色素的重暈定為,欽花青系 色素(A)16.0ppm~17.0ppm、同(B)18.5ppm〜19.5ppm、同 (C)16.0ppm〜17.0ppm 者。 13201209082 VII. The scope of application for patents: 卜 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Each of the weight ranges from 0·1ρρηι to 5〇ppm, mixed in a range of 8 〜 〜 85 〇 85 〇 长 长 ' 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有 具有(p alocyamne) is a pigment (a), and a qinghuaqing pigment (9) having a minimum transmittance of a transmittance of less than 1% in a wavelength range of 95 Å to ioooj^; In the range of 875mn to 925nm, the titanium cyanine dye (C) having a minimum transmittance of a light transmittance curve of less than 1% by transmittance is injected together with the resin, so that the spectral transmittance curve is 8G. () nm ~ delete nm wavelength field, with a minimum transmittance of less than 5% of the region. 2. The method for producing a light-transmitting dendritic material according to the invention of claim 1, wherein the translucent resin substrate is provided with a function of imparting a polarizing function and/or a dimming function. 3. A method for producing a light-transmitting resin substrate according to item i or item 2 of the patent application, wherein in the method for producing a light-transmitting resin substrate, a correction function engineer in the field of vision correction is provided. 4. A method for producing a light-transmitting resin substrate according to item i or item 3 of the patent application, wherein the resin is polycarbonate (p〇lycarb〇nate) The weight of the cyanine dye was determined to be 16.0 ppm to n.Oppm for the titanium cyanine dye (A), 18.5 ppm to 19.5 ppm for the same (B), and 16.0 ppm to 17.0 ppm for the same (C). 5. A light-transmitting resin substrate, characterized in that: the light-transmitting resin substrate formed by injection molding the molten resin in the mold comprises: each in a range of 0.1 ppm to 50 ppm by weight, including A 800 nm, 85 〇 nn ^ long field S S] 12 201209082 minus 'the qinghuaqing pigment (A) with a minimum transmittance of 10 〇 / 透射 of the spectral transmittance curve; and at _ 95Gnm ~ 1G ( K) The wavelength field of the mail wavelength _, the qinghuaqing pigment (8) with a minimum value of the light transmission curve of the smear of the smear; and the transmittance of less than 10% in a milk-to-milk wavelength range The Chrysophanan pigment (c) which has a very small value of the light transmittance curve has a spectral transmittance curve having a minimum value of 5% of the transmittance in the wavelength range of 800 nm to 1 〇〇〇 nm. 6. A translucent resin substrate according to claim 5, wherein the translucent tree 9-fat substrate is provided with a polarizing function and/or a dimming function ❶ 7' according to the patent scope 5 The light transmissive resin substrate according to Item 6, wherein the resin is polycarbonate, and the color difference of the polycarbonate to the titanium cyanine dye is determined as the color of the phthalocyanine pigment (A) 16.0. Ppm~17.0ppm, same as (B) 18.5ppm~19.5ppm, and (C) 16.0ppm~17.0ppm. 13
TW99128465A 2010-08-25 2010-08-25 Fabrication method of transparent resin substrate and transparent resin substrate TW201209082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99128465A TW201209082A (en) 2010-08-25 2010-08-25 Fabrication method of transparent resin substrate and transparent resin substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99128465A TW201209082A (en) 2010-08-25 2010-08-25 Fabrication method of transparent resin substrate and transparent resin substrate

Publications (2)

Publication Number Publication Date
TW201209082A true TW201209082A (en) 2012-03-01
TWI567117B TWI567117B (en) 2017-01-21

Family

ID=46763440

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99128465A TW201209082A (en) 2010-08-25 2010-08-25 Fabrication method of transparent resin substrate and transparent resin substrate

Country Status (1)

Country Link
TW (1) TW201209082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875945A (en) * 2020-08-24 2020-11-03 嘉善精田精密机械制造有限公司 Method for preparing light-transmitting resin base material and light-transmitting resin base material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942396A1 (en) * 1999-09-06 2001-03-08 Bayer Ag Molding compounds
JP2009149741A (en) * 2007-12-19 2009-07-09 Idemitsu Kosan Co Ltd Thermoplastic resin composition and molded body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875945A (en) * 2020-08-24 2020-11-03 嘉善精田精密机械制造有限公司 Method for preparing light-transmitting resin base material and light-transmitting resin base material

Also Published As

Publication number Publication date
TWI567117B (en) 2017-01-21

Similar Documents

Publication Publication Date Title
US9207368B2 (en) Light shielding lens for protective eyeglasses
TWI413811B (en) Molded laminate for optical use and method for producing the same
CN103827734B (en) Polarised light glasses eyeglass
JP5996836B2 (en) Laminated glass lens for glasses
JP5166482B2 (en) Method for producing translucent resin substrate and translucent resin substrate
US20060033851A1 (en) Polarized optical elements enhancing color contrast and methods for their manufacture
CN108351537A (en) Function glasses eyeglass for block ultraviolet and blue light
US10823984B2 (en) Polarizing lens for spectacles
JP2006184596A (en) Lens for goggles
FR2428264A1 (en) PROTECTIVE MATERIAL AGAINST LIGHT
JP2011237625A5 (en)
JP2014032273A (en) Photochromic lens
TW201209082A (en) Fabrication method of transparent resin substrate and transparent resin substrate
US20040145701A1 (en) Solid color eyewear lenses
CN102898800A (en) Light-transmittance resin base material manufacturing method and light transmittance resin base material
JP6784914B2 (en) Manufacturing method of translucent resin base material, translucent resin base material and translucent molded product
JP3718185B2 (en) Eyeglass lenses
US20040145802A1 (en) Infrared filtering optical lenses and methods of manufacturing
CN111875945A (en) Method for preparing light-transmitting resin base material and light-transmitting resin base material
CN105892092A (en) Resin color-changing lens structure
JP2013228520A (en) Plastic spectacle lens
US20130321914A1 (en) Fabrication method of transparent resin substrate along with transparent resin substrate
JP2019070063A (en) Filling material dispersion
JP7088379B2 (en) Optical sheets and optics
WO2004070452A2 (en) Eye wear lenses and methods of manufacturing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees