TW201208897A - Method and apparatus for reliably laser marking articles - Google Patents

Method and apparatus for reliably laser marking articles Download PDF

Info

Publication number
TW201208897A
TW201208897A TW100109644A TW100109644A TW201208897A TW 201208897 A TW201208897 A TW 201208897A TW 100109644 A TW100109644 A TW 100109644A TW 100109644 A TW100109644 A TW 100109644A TW 201208897 A TW201208897 A TW 201208897A
Authority
TW
Taiwan
Prior art keywords
laser
anodized
mark
color
article
Prior art date
Application number
TW100109644A
Other languages
Chinese (zh)
Other versions
TWI549836B (en
Inventor
Haibin Zhang
Original Assignee
Electro Scient Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/871,588 external-priority patent/US8451873B2/en
Application filed by Electro Scient Ind Inc filed Critical Electro Scient Ind Inc
Publication of TW201208897A publication Critical patent/TW201208897A/en
Application granted granted Critical
Publication of TWI549836B publication Critical patent/TWI549836B/en

Links

Abstract

Disclosed is a method for creating a mark desired properties on an anodized specimen and the mark itself. The method includes providing a laser marking system having a controllable laser pulse parameters, determining the laser pulse parameters associated with the desired properties and directing the laser marking system to mark the article using the selected laser pulse parameters. Laser marks so made have optical density that ranges from transparent to opaque, white color, texture indistinguishable from the surrounding article and durable, substantially intact anodization. The anodization may also be dyed and optionally bleached to create other colors.

Description

201208897 六、發明說明: 【發明所屬之技術領域】 本發明係有關於經過陽極氧化處理(anodized)之物品之 雷射標記(laser marking)。特別是關於利用雷射處理系統以 一種具持久性且符合商業需求之方式標記维過陽極氧化處 理之物品。具體言之,其係有關於使紫外線、可見光及紅 外線波長雷射與經過陽極氧化處理之物品之間的交互作用 具備獨特特徵’以可靠地並可重複地在經過陽極氧化處理 之物品上建立具持久性且符合商業需求之白色標記。 【先前技術】 市面上的產品基於商業、管控、裝飾或功能上的目的, 常需要在其上有某種形式的標記。所需的標記特性包含一 致ϋ的外%肖久性以及施加的容易性。外觀係指可靠地 並可重複地以選定之形狀、顏色及光學密度(_eai 呈現標記的能力。持久性係儘管經過標記的表面有所磨 耗’仍此維持不冑之品f。施加的容易性係指製做具有可 編程性(programmability)之標記的材料、時間及f源上的成 本。可編程性係指藉由改變軟體以新的待標記圖案編程標 記裝置,而非改變諸如篩版或遮罩等硬體。 經過陽極氧化處理之金屬物品,其質輕、堅固、易於 形塑、.且擁有耐久的表面拋光,故在工業及商業貨品上均 有午夕應用陽極氧化意味多種電解鈍化處理中的任何一 種’其中-天然氧化層被增生於一諸如鋁、鈦(ti —卜 201208897 鋅、鎂、鈮(niobium)或鈕(tantalum)的金屬之上,以增進對 於腐#或磨損的抵抗力以及獲得裝飾之目的。此等表面疊 層事實上可以被著上或染上任何顏色,而在金屬上製造出 個永久性的、不褪色的.、耐久性表面。許多此等金屬可 以利用本發明之特色被有效益性地進行標記。此外,諸如 抗腐蝕之不銹鋼等金屬均可以使用此方式加上標記。諸如 此等的許多金屬製成品均需要永久性的、清楚可見的、符 合商業需求之標記。經過陽極氧化之鋁係具有此需求之一 典型材料。 以雷射脈衝使經過陽極氧化處理之鋁質物品的表面上 產生顏色變化已行之多年。在p. Maja、M. Autric、P. Delaporte'P. Alloncle 等人的一篇標題為"Dry laser cleaning of anodized aluminum(經過陽極氧化之鋁的乾式雷射清潔)" 的論文中(COLA'99 -5th International Conference on Laser201208897 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to laser marking of an anodized article. In particular, it relates to the use of a laser processing system to mark an anodized article in a manner that is durable and commercially desirable. Specifically, it has a unique feature of making the interaction between ultraviolet, visible, and infrared wavelength lasers and anodized articles' features to reliably and reproducibly build on anodized articles. A white mark that is persistent and meets commercial needs. [Prior Art] Products on the market are often based on commercial, regulatory, decorative or functional purposes and often require some form of marking on them. The desired marking characteristics include the external % of the crucible and the ease of application. Appearance refers to the ability to reliably and reproducibly select the shape, color, and optical density (_eai exhibits the mark. Persistence is the wear of the marked surface.) Refers to the cost of material, time, and f-sources that are marked with programmability. Programmability refers to programming a marking device with a new pattern to be marked by changing the software, rather than changing such as a screen or A hardened body such as a mask. The anodized metal object is light, strong, easy to shape, and has a durable surface finish. Therefore, there is a midnight application of anodizing in industrial and commercial goods. Any of the processes in which - the natural oxide layer is proliferated on a metal such as aluminum, titanium (ti - 201208897 zinc, magnesium, niobium or tantalum) to enhance the corrosion or wear Resistance and the purpose of decoration. These surface laminates can in fact be colored or dyed to create a permanent, non-fading color on the metal. Long-lasting surfaces. Many of these metals can be marked efficiently using the features of the present invention. In addition, metals such as corrosion-resistant stainless steel can be labeled in this manner. Many metal products such as these require A permanent, clearly visible mark that meets commercial needs. Aluminized aluminum has a typical material for this requirement. Laser color changes have been made on the surface of anodized aluminum articles. For many years, in a paper titled “Dry laser cleaning of anodized aluminum” by p. Maja, M. Autric, P. Delaporte'P. Alloncle et al. (COLA'99 -5th International Conference on Laser

Ablation(雷射燒蝕國際會議),1999年7月19-23日, GSttingen,德國,發行於 Appl. Phys. A 69 [Suppl·], S343-S346 (1999),pp S43-S346),其描述自鋁的表面移除 陽極氧化區’但應注意’其顏色變化係發生於雷射能量低 於自表面移除陽極氧化區所需雷射能量之處。 被提出以解釋金屬表面之光學密度或顏色變化的機制 之一係雷射誘發週期表面微結構(laser_induced periodic surface structures; LIPSS)之產生。Α_ Υ· Vorobyev 和 Chunlei Guo 之論文"Colorizing metals with femtosecond laser pulses(利用飛秒雷射脈衝對金屬著色)”(AppUed physics 201208897Ablation (International Conference on Laser Ablation), July 19-23, 1999, GSttingen, Germany, published in Appl. Phys. A 69 [Suppl·], S343-S346 (1999), pp S43-S346), Describe the removal of the anodization from the surface of the aluminum 'but it should be noted that its color change occurs where the laser energy is lower than the laser energy required to remove the anodization from the surface. One of the mechanisms proposed to explain the optical density or color change of the metal surface is the generation of laser-induced periodic surface structures (LIPSS). Α_ Υ·Vorobyev and Chunlei Guo's paper "Colorizing metals with femtosecond laser pulses” (AppUed physics 201208897)

Letters(應用物理快報)92,(041914) 2008,第 41914-1 頁到 第141914-3頁)描述可以利用飛秒雷射脈衝(femt〇sec〇nd laser pulse)在鋁或類鋁金屬上製造出的各種不同顏色。此論 文描述在金屬上製造出黑色或灰色標記並在金屬上建立一 金黃的顏色。其亦提到一些其他顏色,但不多加贅述。Lipss 係其對於在金屬表面產生標記所提供的唯一說明。此外, 其僅教不或提議具有65飛秒時序脈衝寬度之雷射脈衝以建 立該等結構。並且’其並未提及在雷射處理之前,紹質樣 品是否經過陽極氧化處理或者表面是否曾經過清潔。該論 文亦未討論對於氧化層的可能損傷。 續 狀 當論及雷射脈衝持續時間(durati〇n)之時,量測脈衝持 時間的方法應該加以定義。時序脈衝形狀可以從簡單的 斯脈衝(Gaussian pulse)到更複雜的與個別作業有關之形 。對於特定型態處理之有利的示範性非高 斯雷射脈衝描 述於編號7,126,746的美國專利GENERATIN(3 sets 〇f TAIL0RED LASER PULSES(產生經過裁製的雷射脈衝群組 之中’發明人Sun #,該專利授讓於本發明之受讓人,此 處以參照之形式納人本文。該專利揭示產生具.有時間波形 (temP〇ral profile)異於二極體激發固態(di〇de state; DPSS)雷射所製造出的典型高斯時間波形之雷射脈衝 的方法及裝置。這些非高斯型態之脈衝被稱為,,㈣裁製的" 脈衝’因為其時間波形係藉由結合一個以上的脈衝以產生 單一脈衝及/或光電式地調變脈衝而改變自典型的高斯波 形。此產生一脈衝,其脈衝能量隨時間改變’通常包含一 201208897 或多個功率峰^會, 分婵加至— 其中瞬間功率在脈衝持續時間的一小部 衝“迷==均功率之數值,經過裁製的脈 造成碎片七土材枓中可以有所效用,其不會在材料周遭 斯rr衝/㉟熱的問題。問題在於利用基本上應用於高 所脈衝的標進t、、±_ Θ ^ γ里測諸如該等複雜脈衝的持續時間可能 吊的'、、Q果。咼斯脈衝持續時間之量測通常是使用持 續時間的半峰全幅 史用持 θ 值width at half maximum ; FWHM) 、’J相對於此,利用積分平方法,如描述於編號ό,058,739 :美國專利 L〇NG LIFE FUSED SILICA ULTRAVIOLET CAL· ELEMENTS(長壽命熗融石英紫外線光學元件)之 者毛明人M〇rton等’允許複雜的時序形狀被量測並以 較具意義之方式進行比較。在此專利之中,其利用以下 公式量測脈衝持續時間 其中T(t)係一代表雷射脈衝時序形狀之函數。 關於可靠地並可重複地在經過陽極氧化之鋁上產生出 八有預定顏色及光學密度的標記的另一問題在於,以極易 取知·的奈秒脈衝寬度固態雷射製造極深色標記所需的能量 足以對陽極氧化區造成損傷,此係一無法接受的結果。,,黑 暗度”或"明亮度”或顏色名稱均係相對性的用詞。以數量表 不顏色的一個標準方法係參考色度量測(c〇1〇rimetry)之cIE 系統。此系統描述於 〇hn〇,.Y·的 MCIE Fundamentals f〇r c〇1〇r 201208897Letters 92, (041914) 2008, pages 41914-1 through 141914-3) descriptions can be fabricated on aluminum or aluminum-like metals using femt〇sec〇nd laser pulses Out of a variety of different colors. This paper describes the creation of black or gray markings on metal and the creation of a golden color on the metal. It also mentions some other colors, but it is not mentioned. Lipss is the only description provided for marking on metal surfaces. Moreover, it only teaches or suggests laser pulses having a pulse width of 65 femtoseconds to establish such structures. And it does not mention whether the sample is anodized or the surface has been cleaned before laser treatment. Nor does the discussion discuss possible damage to the oxide layer. Continued When discussing the duration of a laser pulse (durati〇n), the method of measuring the pulse duration should be defined. Timing pulse shapes can range from simple Gaussian pulses to more complex shapes associated with individual operations. An exemplary exemplary non-Gaussian laser pulse for a particular type of processing is described in US Patent GENERATIN No. 7,126,746 (3 sets 〇f TAIL0RED LASER PULSES (in the production of a tailored laser pulse group) inventor Sun The patent is assigned to the assignee of the present application, the disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in the the the the the the the the the the ; DPSS) methods and apparatus for laser pulses of typical Gaussian time waveforms produced by lasers. These non-Gaussian modes of pulses are called, (4) tailored "pulses' because their time waveforms are combined by More than one pulse is generated to produce a single pulse and/or a photoelectrically modulated pulse that changes from a typical Gaussian waveform. This produces a pulse whose pulse energy changes over time 'usually containing a 201208897 or multiple power peaks,婵加到—where the instantaneous power is rushed in a small part of the pulse duration. The value of the fan == average power The problem is that the srr/35 heat problem is around. The problem is that the metrics such as the duration of the complex pulses can be measured using the indicia t, ± _ Θ ^ γ which are basically applied to the high pulse. The measurement of the duration of the Muse pulse is usually the use of the duration of the half-peak full-scale θ value of the width at half maximum; FWHM), 'J relative to this, using the integral flat method, as described in the number ό, 058, 739: The US patent L〇NG LIFE FUSED SILICA ULTRAVIOLET CAL· ELEMENTS (the long-life fused silica optical component) Mao Mingren M〇rton et al. 'allow complex timing shapes to be measured and compared in a more meaningful way. In this patent, it measures the pulse duration using the following formula where T(t) is a function of the shape of the laser pulse timing. About the reliable and reproducible generation of eight on the anodized aluminum Another problem with the marking of color and optical density is that the energy required to make very dark marks with a nanosecond pulse width solid state laser that is readily available is sufficient to cause damage to the anodization zone. An unacceptable result., Darkness or "brightness" or color name is a relative term. A standard method of measuring the color of a quantity is a reference color measurement (c〇1〇rimetry) cIE system. This system is described in 〇hn〇, .Y·MCIE Fundamentals f〇rc〇1〇r 201208897

Measurements(色彩量測的CIE基礎)·' 一文之中(is&t NIP 1 6 Conf,Vancouver,CN,2000 年 10 月 16-20 日,第 540-545 頁)。在此量測系統之中,達成一符合商業需求的黑色標記 需要小於或等於L*=40、&* = 5以及b* = l〇之參數。此產生 無可見灰度或彩度的中性黑色8在編號6,777,098的美國專 利 MARKING OF AN ANODIZED LAYER OF AN ALUMINIUM OBJECT(鋁質物件陽極氧化層之標記)之中, 發明人Keng Kit Yeo描述一種以黑色標記對經過陽極氧化 之鋁質物品進行標記的方法,該黑色標記位於介於陽極氧 化區及鋁之間的疊層之中,·因而與陽極氧化表面同樣耐 久。其中所述之標記被描述成具有深灰色或黑色之彩度, 且相較於未利用奈秒級紅外線雷射脈衝標記過的部分顯得 稍為較不具光澤。此外’其必須清除鋁的所有表面微粒, 例如,在磨光之後而在陽極氧化之前殘留的微粒。依據該 專利所凊求的方法製做標記其不利性有以下二個原因:第 一,以奈秒級脈衝建立符合商業需求的黑色標記傾向於對 氧化層造成破壞;其次,磨光或其他處理之後跟隨的鋁的 /月潔在流程中加入額外步驟,增加相關費用,並可能干擾 其它處理所需要的表面拋光。 所需要的,但前述技術未揭示的,係在經過陽極氧化 之鋁上製造出黑色、白色或位於其間之灰色或彩色之標記 的可靠且可重複之方法,其不需要昂貴的飛秒雷射或者在 製程中干擾到氧化層或在表面備妥之後需要清潔。此外, 其並未提供如何在經過陽極氧化之鋁的表面上可重複性地 201208897 建立各種不同顏色的資訊,亦未徹底追查對於陽極氧化片 的脫色或損傷效應。故其有必要提出一種利用較低成本雷 射可靠地並可重複地在經過陽極氧化之鋁上建立具有預定 光學密度或灰階及顏色之標記的方法,其不會對其上的氧 化物造成不良的傷害,且在陽極氧化之前不需要清潔。 【發明内容】 本發明之一特色係以各種不同光學密度之可看見白色 標記加諸於經過陽極氧化之鋁質物品之上。此等標記係耐 用且具有符合商業需求之外觀。此係藉由利用雷射標記系 統建立該等標記而達成。該等標記被建立於氧化層之内或 其下方,因此被氧化物所保護。該等雷射脈衝建立符合商 =需求之標記且未對氧化層造成實質損傷,從而使得:等 標:記經久耐用。其藉由控制產生及導控雷射脈衝之雷射參 數而在經過陽極氧化之銘上建立耐久且符合商業需求之標 ,己。在本發明的一特色之中,雷射處理系統被調構成以可 編程之方式產生具有適當參數之雷射脈衝。 可選擇以增進雷射標記經過陽極氧化之紹的可靠性及 :=二示範性雷射脈衝參數包含雷射種類、波長、脈 此旦只、B脈衝重複率(repetition me)、脈衝數目、脈衝 =脈衝時序形狀、脈衝空間形狀以及焦斑 尺寸及形狀。進—牛沾不6丄 物品表面之位晉、 參數包含指定焦斑相對於 以及導控雷射脈衝相對於物品的相對運動 I迷度。 9 201208897 本發明之特色藉由利用取決於所用特定雷射脈衝參數 之耗圍從肉眼幾乎無法察覺到明亮白色的光學密度使金屬 物品上層的氧化層變白而建立耐久且符合商業需求之, 記。本發明之其他特色藉由對染色或著色之陽極氧化區: 订脫色或局部脫色,同時對下方的鋁加上或不加上標圮, 以在經過陽極氧化之紹上建立耐久且符合商業需求之標 記。本發明之另一特色係對散射光線之陽極氧化層建立微 .觀尺寸之改變’並在未完全移除陽極氧化區下,建立外觀 上從一輕微"霜狀"或漫射外觀到不透明、明亮、自&外觀之 不同標記。 為了達成依據本發明目的之前述及其他特色,以本文 所實施並寬廣陳述之形式,揭示—種用於在經過陽極氧化 的鋁質樣品上建立顏色及光學密度可選擇之可見標記的方 法’以及調構以執行該方法之裝[本發明之特色係在經 過陽極氧化之銘質物品上建立具有可選擇顏色及光學密度 之可見標記。該方法包含提供一雷射標記系統,其具有雷 射、雷射光學模組(laser optics)以及有效連接至肖雷射以控 制雷射脈衝參數的控制器以及具有儲存雷射脈衝參數之控 制器、選擇關聯預定顏色及光學密度之儲存雷射脈衝參 數、導控該雷射標記系統以產生具有關聯預定顏色及光學 密度之雷射脈衝參數之雷射脈衝,其包含大於大約丨皮秒 且小於大I勺1000奈秒之時序脈衝寬度,或者是連續波 (C W),以照射至該經過陽極氧化的鋁之上。 10 201208897 【實施方式】 本發明之實施例以各種不同光學密度及顏色之可看見 標記’耐久性地、可選擇性地、可預測性地且可重複性地 :記經過陽極氧化處理之鋁質物品。以有利之方式,其使 得該等標記出現於鋁的表面或其附近或是位於陽極氧化區 並維持陽極氧化層大致完整無損以保護該表面和該 等標記。α此方式做出的標記被稱為夾層標記(interia^ mark),因為其被製做於形成陽極氧化區的氧化層下方的鋁 的表面處或表面上,或者位於氧化層本身之内。本發明之 T施例在標記之後維持氧化物之表面大致完整無損以保護 標:記並提供一機械性地毗連於相鄰標記及非標記區域間之 表:面。人體的觸覺對於此等標記之紋路(texture)基本上與周 圍標記之陽極氧化區無法區分。此外,料標記應能夠 可罪且可重複性地產生,意味若需要具有特定顏色及光學 密度之標記,則其知悉當以雷射處理系統處理該經過陽極 氧化之鋁時將會產生預定結果之一組雷射參數。其亦應理 解,在某些情況卞,利用雷射處理藉由修改陽極氧化層而 建立的白色標記藉由在陽極氧化區添加螢光或磷光染劑進 行進一步之處理,可能在雷射處理之前或之後進行。. 本發明之一實施例使用經過調構之雷射處琿系統以標 »己經過陽極氧化之鋁質物品。可以被調構成用以標記經過 陽極氧化之鋁質物品之一示範性雷射處理系統係由位於 97229 ’ OR,portland 之 Electro Scientific Industries 公司所 產製的 ESI MM5330 微加工系統(micromachining syStem) 〇 201208897 此系統書面說明於ESI發行之"Model 5330ns ServiceMeasurements (CIE basis for color measurement)·' in the article (is&t NIP 1 6 Conf, Vancouver, CN, October 16-20, 2000, pp. 540-545). Among the measurement systems, a black mark that meets commercial requirements is required to have parameters less than or equal to L*=40, &*=5, and b*=l〇. This produces a neutral black 8 with no visible grayscale or chroma. In the US patent MARKING OF AN ANODIZED LAYER OF AN ALUMINIUM OBJECT No. 6,777,098, the inventor Keng Kit Yeo describes a The black mark marks the anodized aluminum article, which is located in the stack between the anodization zone and the aluminum, and thus is as durable as the anodized surface. The indicia described therein are described as having a dark gray or black chroma and appear slightly less glossy than portions that have not been marked with nanosecond infrared laser pulses. In addition, it must remove all surface particles of aluminum, for example, particles that remain after anodization after polishing. There are two reasons for the disadvantages of marking according to the method sought by the patent: First, the creation of a black mark that meets commercial requirements with a nanosecond pulse tends to cause damage to the oxide layer; secondly, polishing or other processing The subsequent aluminum/moon cleaning adds additional steps to the process, adding to the associated costs and possibly interfering with the surface finishes required for other processing. What is required, but not disclosed in the foregoing, is a reliable and repeatable method of producing black, white or gray or colored markings between the anodized aluminum, which does not require expensive femtosecond lasers. Or it may interfere with the oxide layer during the process or after the surface is ready. In addition, it does not provide information on how to reproducibly create various colors on the surface of anodized aluminum 201208897, nor does it thoroughly trace the discoloration or damage effects on anodized sheets. Therefore, it is necessary to propose a method for reliably and reproducibly establishing a mark having a predetermined optical density or gray scale and color on anodized aluminum using a lower cost laser, which does not cause oxides thereon. Poor damage and no cleaning required before anodizing. SUMMARY OF THE INVENTION One feature of the present invention is the addition of visible white markings of various optical densities to anodized aluminum articles. These markings are durable and have an appearance that meets commercial needs. This is achieved by establishing the markers using a laser marking system. These marks are built into or under the oxide layer and are therefore protected by oxides. These laser pulses establish a mark that conforms to the quotient = demand and do not cause substantial damage to the oxide layer, so that: the standard: remembers durability. It establishes durability and meets commercial requirements by controlling the generation and guidance of the laser parameters of the laser pulse. In one feature of the invention, the laser processing system is configured to produce laser pulses with appropriate parameters in a programmable manner. Optional to improve the reliability of laser marking through anodization and: = two exemplary laser pulse parameters including laser type, wavelength, pulse only, B pulse repetition rate (repetition me), number of pulses, pulse = pulse timing shape, pulse space shape, and focal spot size and shape. Into the cow is not 6 丄 The surface of the object, the parameter contains the specified focal spot relative to and the relative motion of the guided laser pulse relative to the object I. 9 201208897 The present invention is characterized by the use of a specific laser pulse parameter depending on the specific laser pulse parameters used to make the oxide layer of the upper layer of the metal article white from an optical density that is almost imperceptible to the naked eye, thereby establishing durability and meeting commercial needs. . Other features of the present invention are achieved by dyeing or tinting the anodizing zone: de-coloring or partial discoloration, while adding or not labeling the underlying aluminum to establish durability and commercial requirements on the anodizing process. Marked. Another feature of the present invention is to establish a slight change in the size of the anodized layer of the scattered light 'and to create a slight "creamy" or diffuse appearance to the appearance without completely removing the anodized region Opaque, bright, different from the & appearance. In order to achieve the foregoing and other features in accordance with the purpose of the present invention, a method for establishing a color and optical density selectable visible mark on an anodized aluminum sample is disclosed in the form embodied and broadly recited herein. The configuration to perform the method [the feature of the present invention is to create visible indicia of selectable color and optical density on the anodized article. The method includes providing a laser marking system having a laser, a laser optics, a controller operatively coupled to the Xiaolei shot to control laser pulse parameters, and a controller having stored laser pulse parameters Selecting a stored laser pulse parameter associated with a predetermined color and optical density, and directing the laser marking system to generate a laser pulse having a laser pulse parameter associated with a predetermined color and optical density, the method comprising greater than about 丨 picoseconds and less than The large I spoon has a timing pulse width of 1000 nanoseconds, or a continuous wave (CW), to illuminate the anodized aluminum. 10 201208897 [Embodiment] Embodiments of the present invention are durable, selectively, predictably, and reproducibly visible in various optical densities and colors: anodized aluminum article. In an advantageous manner, it is such that the marks appear on or near the surface of the aluminum or in the anodization zone and maintain the anodized layer substantially intact to protect the surface and the indicia. The mark made by this method is called a sandwich mark because it is formed at or on the surface of the aluminum under the oxide layer forming the anodization region, or within the oxide layer itself. The T embodiment of the present invention maintains the surface of the oxide substantially intact after labeling to protect the target: a mechanically contiguous surface between adjacent labeled and non-marked regions. The tactile sensation of the human body is substantially indistinguishable from the anodized area of the surrounding mark for the texture of such marks. In addition, the marking of the material should be sinful and reproducible, meaning that if a marking of a particular color and optical density is desired, it is known that when the anodized aluminum is treated by a laser processing system, a predetermined result will be produced. A set of laser parameters. It should also be understood that, in some cases, the white mark created by modifying the anodized layer by laser treatment may be further processed by adding a fluorescent or phosphorescent dye to the anodized region, possibly before laser processing. Or afterwards. One embodiment of the present invention uses a structured laser system to label anodized aluminum articles. An exemplary laser processing system that can be tuned to mark anodized aluminum articles is the ESI MM5330 micromachining system (micromachining syStem) manufactured by Electro Scientific Industries, Inc., 97229 'OR, Portland 〇201208897 This system is written in ESI's "Model 5330ns Service"

Guide(5 3 30ns 機型服務指南)”,ESI P/N 178987a,2009 年 1 〇月’其整體以參照之形式納入於此。此系統係採用二極 體激發式Q型開關固態雷射之微加工系統,其在3〇 KHz脈 衝重複率、第二諧振倍增至532奈米波長下具有5.7 W之平 均功率。另一可以被調構成用以標記經過陽極氧化之鋁質 物品之示範性雷射處理系統係亦由位於97229, 〇R,p〇rtland 之 Electro Scientific Industries 公司所產製的 ESI ML5900 微加工系統。此系統書面說明於ESI發行之"Model 5900Guide (5 3 30ns Model Service Guide), ESI P/N 178987a, 2009, 1 month, which is incorporated by reference in its entirety. This system uses a diode-excited Q-switch solid-state laser. A micromachining system having an average power of 5.7 W at a pulse repetition rate of 3 kHz and a second resonance doubling to a wavelength of 532 nm. The other can be tuned to represent an exemplary mine for anodized aluminum articles. The ESI ML5900 micromachining system is also manufactured by Electro Scientific Industries, Inc., 97229, 〇R, p〇rtland. This system is written in ESI"Model 5900

Service Guide(5900 機型服務指南广,ESI p/N ! 78472A,2009 年10月,其整體以參照之形式納入此此。此系統採用之固 態二極體激發式雷射可以被組構成在上達5 MHz的脈衝重 複率下發射出從大約355奈米(uv)到大約1〇64奈米(IR)之 波長。上述之任一系統均可以藉由加入適當之雷射、雷射 光學模組、部件處置設備及控制軟體而被調構成用以依據 揭示於本說明書中的方法在經過陽極氧化之鋁的表面上可 靠地且可重複地產生標記。這些修改使得雷射處理系統能 夠在預定的速率及間距下將具有適當雷射參數的雷射脈衝 導控至預定地方之一適當定位及承置的經過陽極氧化之鋁 質物品上q建立具有預定顏色及光學密度的標記。 圖1顯示依據本發明一實施例之被調構成用以標記物 品之ESI MM5330微加工系統之示意圖。調構内容包含雷射 1〇,此在本發明一實施例之中係運作於1064奈米波長之二 極體激發Nd:YV04固態雷射,由德國仏㈣咖⑽的 12 201208897Service Guide (5900 model service guide, ESI p/N! 78472A, October 2009, which is incorporated by reference in its entirety. The solid-state diode-excited laser used in this system can be grouped up. A wavelength of from about 355 nanometers (uv) to about 1 〇64 nanometers (IR) is emitted at a pulse repetition rate of 5 MHz. Any of the above systems can be added by adding appropriate laser and laser optical modules. The component handling device and the control software are configured to reliably and reproducibly produce markings on the surface of the anodized aluminum in accordance with the method disclosed in this specification. These modifications enable the laser processing system to be predetermined The laser pulse with appropriate laser parameters is guided to a properly positioned and placed anodized aluminum article at a rate and spacing to create a mark having a predetermined color and optical density. A schematic diagram of an ESI MM5330 micromachining system configured to mark an article in accordance with an embodiment of the present invention. The configuration includes a laser, which operates in an embodiment of the present invention. 064 nm wavelength dipole excited Nd: YV04 solid state laser, by German 仏 (four) coffee (10) 12 201208897

Lumera laser GmbH製造的系丨丨站他, J Kapid型谠機組。此雷射選擇性 地利用-固‘㈣振頻率產生器將料倍增以使得波長降低 至532奈米或使頻率增加至三倍而將波長降低至3 55奈 米’伙而分別產生可見光(綠色)或紫外線(uv)雷射脈衝。此 雷射10額定產生6瓦特之連續功率並具有ι〇〇〇 κΗζ的最 大脈衝重複率。此雷射1G與控㈣2G協同運作以產生具 有1皮秒至1,GGG奈秒持續時間之雷射脈衝12。這些雷射 脈衝12可以是高斯型或者是經由雷射光學模組14特別形 塑或裁製過之形式以允許預定之標記施力”雷射光學模址 與控制器2G協同運作,導控雷射脈冑12以在物品18 之上或其附近形成一雷射光斑16。物品18被固定於平台 22之上’其包含移動控制構件’與控制器2〇及雷射光學: 組14協同運作以提供複合射束^位能力。複合射束定位係 在物品i"目對於雷射光斑16移動之時,藉由使控制器2〇 導控雷射光學模組14中之操控構件而補償平台22、雷射光 斑16或二者引發的相對運動,以將形狀標記於物品18之 上的功能。.. 當雷射脈衝12被導控以A札0 t。 等控以在物品18之上或其附近形成 雷射光斑16之時,亦由雷射光學模組14配合控制器心 以塑形。雷射光學模組14控制雷射脈衝12之空間形狀, 封以是S斯或特別形塑之形狀。舉例而言,其可以使用" ==式(top hat):間形貌’其投送出在照射至被標記物品 的整個光斑内具有均句㈣劑量之_雷射脈衝12。諸如此 類的特殊形塑形狀之Μ形貌可以利用繞射光學構件造 13 201208897 出。雷射脈衝12亦可以被雷射光學模組14中的光電式構 件、可操控反射鏡構件或振鏡(galvanometer)構件柵阻或導 控。 雷射光斑16係指雷射脈衝12所形成的雷射光束之焦 斑。如前所述,雷射光斑16處的雷射能量分佈係取決於雷 射光學模組14 ^此外,雷射光學模組14控制雷射光斑16 的聚焦深度(depth of focus) ’或是量測平面遠離焦平面 (focal plane)時光斑失焦的速度。藉由控制聚焦深度,控制 器20可以導控雷射光學模組14以及平台22可重複地以高 精確度將雷射光斑16定位於物品18的表面處或其附近。 藉由將焦斑定位於物品表面的上方或下方以製做標記允許 雷射光束失焦一特定程度,從而增加雷射脈衝照射之區域 並減少表面處的雷射能量密度(nuence)。由於光束腰徑之幾 何結構已知,將焦斑明確定位於物品實際表面上方或下方 將對光斑尺寸及能量密度提供進一步的精確控制。 圖2係顯微照片,其顯示利用大於1奈秒脈衝之先前 技術雷射建立於經過陽極氧化之鋁30上之一標記。該陽極 氧化區在標記區域34之中顯示清楚的裂縫痕跡32,一個不 良的結果。圖3顯示利用皮秒級雷射在同一形式的經過陽 極氧化之鋁36上製做出的同一顏色及光學密度之標記38, 其顯不並無裂痕。皮秒級雷射對經過陽極氧化之鋁質物品 符α商業需求之黑色標記’且未對氧化層造成損傷。 商業上可接受之黑色係定義成一個具有CIE色度L*=4〇、 3 且bH!==10或更小之標記。使用皮秒級雷射之另一優點 201208897 在於其更加便宜、需要更少之維護、以及通常比先前技術 飛秒級雷射具有遠遠較長的運作壽命n本發明之特 色不而要在陽極氧化之前先清潔鋁的表面以建立符合商業 需求的標記。 μ 本發明之一實施例在陽極氧化區下的經過陽極氧化之 鋁上執行標記之施加。對於產生夾層標記而不傷害陽極氧 化區,其雷射能量密度定義為: F = E/s 其中E係雷射脈衝能量而s係雷射光斑面積,必須滿 F < Fs,其中Fu係基板之雷射修改門檻值,此例中 之基板係鋁,而Fs係表面層或陽極氧化區之損傷門檻值。 Fu和Fs已然經由實驗獲得,且代表所選擇雷射使基板及表 層開始又損之旎量捃度。對於i 〇皮秒(ps)脈衝,實驗顯 八Al(|g)的Fu對於皮秒綠光係〜〇 13焦耳/平方公分(j/cm2) 而對於皮秒IR則是〜〇·2焦耳/平方公分,而Fs對於皮秒綠 光係〜0.18焦耳/平方公分而對於皮秒IR則是〜丨焦耳/平方 =分。在此等數值之間改變雷射能量密度產生不同顏色及 光學密度之標記。不同的脈衝持續時間及雷射波長將各自 具有對應的Fu及Fs數值。一組特定之雷射參數的實際門 播值係經由實驗決定。 . 本發明之一實施例藉由調整雷射光斑之位置,從位於 紹質物品的表面處變成位於鋁的表面上方或下方之一明確 15 201208897 距離處’而精確地控制在該鋁質物品的表面處的雷射能量 密度。圖4顯示雷射脈衝焦斑4〇及其鄰近處之光束腰徑之 示意圖。光束腰徑由一表面42表示,其係一雷射脈衝由 FWHM方法在該雷射脈衝沿其行進的光軸44上量測的空間 成量分佈之直徑。直徑48代表當雷射處理系統將雷射脈衝 聚焦於該表面上方一距離(A_〇)處時該鋁的表面上的雷射脈 衝光斑尺寸。直徑46代表當雷射處理系統將雷射脈衝聚焦 於該表面下方一距離(Β·0)處時該鋁的表面上的雷射脈衝光 斑尺寸。 除了符合商業需求之黑色,對物品施加具有灰階數值 之標記亦有效用。圖5及圖6顯示由本發明—實施例所做 出的施加於經過陽極氧化之鋁上的一連串灰階標記。標記 到全黑。依據本發 示成CIE色度量測 的光學密度範圍從幾乎與背景無法分辨 明之一特色,每一灰階標記均可以被表 本發明之一特色將每 其依照命令可靠地且 數值之特有三元數組,L*、a*及b* , —預定灰階數值連結一組雷射參數,He is the owner of the Lumera laser GmbH, the J Kapid type. The laser selectively multiplies the material by a solid-state (four) frequency generator to reduce the wavelength to 532 nm or to triple the frequency and reduce the wavelength to 3 55 nm. ) or ultraviolet (uv) laser pulses. This laser 10 is rated to produce 6 watts of continuous power with a maximum pulse repetition rate of ι〇〇〇 κΗζ. This laser 1G cooperates with the control (4) 2G to produce a laser pulse 12 having a duration of 1 picosecond to 1, GGG nanosecond. These laser pulses 12 may be Gaussian or specially shaped or tailored via the laser optics module 14 to allow predetermined marking of the force applied. The laser optical module cooperates with the controller 2G to guide the mine. The squirt 12 forms a laser spot 16 on or near the article 18. The article 18 is secured to the platform 22 'which contains the mobile control member' with the controller 2 and the laser optics: Group 14 operates in conjunction To provide a composite beam position. The composite beam positioning system compensates the platform by causing the controller 2 to guide the steering members in the laser optical module 14 when the article i" moves toward the laser spot 16 22. The relative motion induced by the laser spot 16 or both to mark the shape above the item 18. When the laser pulse 12 is controlled to A 0 0 t. When the laser spot 16 is formed in the vicinity thereof, the laser optical module 14 is also matched with the controller core to shape the space. The laser optical module 14 controls the spatial shape of the laser pulse 12, and the seal is S-shaped or special-shaped. Shape of the plastic. For example, it can use the " == formula (top hat ): The topography 'delivers a laser pulse 12 with a uniform (four) dose in the entire spot that illuminates the marked object. The morphological shape of a special shaped shape such as this can be made using a diffractive optical component 13 201208897 The laser pulse 12 can also be gated or controlled by a photoelectric component, an steerable mirror component or a galvanometer component in the laser optics module 14. The laser spot 16 is a laser pulse 12 The focal spot of the formed laser beam. As previously mentioned, the laser energy distribution at the laser spot 16 is dependent on the laser optics module 14 ^ In addition, the laser optics module 14 controls the depth of focus of the laser spot 16 (depth of focus) 'Or the speed at which the spot is out of focus when the measurement plane is away from the focal plane. By controlling the depth of focus, the controller 20 can guide the laser optical module 14 and the platform 22 to be repeatedly Highly accurate positioning of the laser spot 16 at or near the surface of the article 18. By placing the focal spot above or below the surface of the article to make a mark allows the laser beam to be out of focus to a certain extent, thereby increasing the laser Pulsed irradiation The domain also reduces the laser energy density at the surface. Since the geometry of the beam waist diameter is known, determining the focal spot above or below the actual surface of the article provides further precise control of spot size and energy density. Figure 2 is a photomicrograph showing the creation of a mark on anodized aluminum 30 using a prior art laser having a pulse of greater than one nanosecond. The anodization zone shows a clear crack trace 32 in the marked area 34, A poor result. Figure 3 shows the same color and optical density mark 38 made by the picosecond laser on the same form of anodized aluminum 36, with no cracks. The picosecond laser has a black mark on the anodized aluminum article's commercial requirements and has not caused damage to the oxide layer. A commercially acceptable black color is defined as a mark having a CIE chromaticity L*=4〇, 3 and bH!==10 or less. Another advantage of using picosecond lasers in 201208897 is that it is cheaper, requires less maintenance, and generally has a much longer operating life than prior art femtosecond lasers. The surface of the aluminum is cleaned prior to oxidation to create a marking that meets commercial needs. μ An embodiment of the invention performs the application of a mark on the anodized aluminum under the anodization zone. For the generation of the interlayer mark without harming the anodization zone, the laser energy density is defined as: F = E / s where E is the laser pulse energy and s is the laser spot area, must be full F < Fs, where the Fu substrate The laser modifies the threshold value. In this example, the substrate is aluminum, and the Fs is the damage threshold of the surface layer or the anodized region. Fu and Fs have been experimentally obtained and represent the measured imperfections of the selected laser to cause the substrate and the surface to begin to lose. For the i 〇 picosecond (ps) pulse, the experiment shows that Al (|g) of Fu is for picosecond green light ~ 〇 13 joules / cm ^ 2 (j / cm 2 ) and for picosecond IR is ~ 〇 · 2 joules / square centimeter, while Fs is ~0.18 joules / square centimeter for picosecond green light and ~丨 joules per square = cent for picosecond IR. Changing the laser energy density between these values produces markers of different colors and optical densities. Different pulse durations and laser wavelengths will each have a corresponding Fu and Fs value. The actual homing values for a particular set of laser parameters are determined experimentally. An embodiment of the present invention precisely controls the position of the laser spot by changing the position of the laser spot from a surface located at the surface of the article to a position above or below the surface of the aluminum at a distance of 15 201208897 The laser energy density at the surface. Figure 4 shows a schematic representation of the beam waist diameter of the laser pulse focal spot 4 〇 and its vicinity. The beam waist diameter is represented by a surface 42 which is the diameter of the spatial distribution of the laser pulse measured by the FWHM method on the optical axis 44 along which the laser pulse travels. Diameter 48 represents the size of the laser pulse spot on the surface of the aluminum when the laser processing system focuses the laser pulse at a distance (A_〇) above the surface. Diameter 46 represents the size of the laser pulse spot on the surface of the aluminum when the laser processing system focuses the laser pulse at a distance (Β·0) below the surface. In addition to the black color that meets commercial needs, it is also effective to apply a mark having a grayscale value to the article. Figures 5 and 6 show a series of gray scale marks applied to anodized aluminum by the present invention - examples. Mark to all black. According to the present invention, the optical density range of the CIE color metric is indistinguishable from the background, and each gray scale mark can be characterized by one of the features of the present invention, each of which is reliable according to the command and unique to the numerical value. a set of elements, L*, a*, and b*, - a predetermined grayscale value that links a set of laser parameters,

可重複地在經過陽極氧化夕奴lL 乳化之鋁上產生預定之灰階數值標 記。其亦應注意,肉眼可能看起來無法察覺的標記,當以 廣域可見光之外的頻率照射時,❹紫外光,以變成可 被看見。 Ί仗從過陽極氧化&姑/υ上製 w出的黑色標記60、62、64以β a 4·以及66。此等標記60、62、 64以及66具有範圍從小於= a~5及b* = 10到完全透 月的CIE色度,使之成為符合 τ 口同茱為求之標記。該等標記 16 201208897 %極氧化區的 致的外觀。利 極氧化層之損 很大的差異。 S己之時,施加 陽極氧化區造 依據本發明一 會損傷陽極氧 變化。此等改 的另一特徵在於’由於它們係位於無損傷的 下方,故其在一寬廣的視角範圍内均具有— 用先前技術方法所做出的標記,由於對於陽 傷,故傾向於隨著視角的改變在外觀上具有 特別疋,當利用先前技術奈秒級脈衝進行標 足夠雷射脈衝能量至表面以做出深色標記對 成損傷,此使得標記之外觀隨著視角變化。 特色做出之標言己,無論標記顏色多深,均不 化區,亦不會隨著視角不同而在外觀上有所 良之標記制用以下雷射參數造成:The predetermined gray scale value mark can be repeatedly produced on the anodized aluminum emulsified aluminum. It should also be noted that the mark, which may appear undetectable to the naked eye, becomes ultraviolet light when it is illuminated at a frequency other than wide-area visible light to become visible. The black marks 60, 62, 64 from the anodizing & υ / υ are taken as β a 4 · and 66. These indicia 60, 62, 64, and 66 have CIE chromaticities ranging from less than a = a 5 and b * = 10 to full transmissive, making them a mark consistent with the τ port. The mark 16 201208897 % of the extreme oxidation zone appearance. The damage of the polar oxide layer is very different. When an anodic oxidation zone is applied, the anodic oxidation is altered in accordance with the present invention. Another feature of these changes is that 'because they are located below the damage-free, they have a wide range of viewing angles. - Marks made by prior art methods, tend to follow The change in viewing angle is particularly ambiguous in appearance, when the prior art nanosecond pulse is used to calibrate enough laser pulse energy to the surface to make a dark mark pair damage, which causes the appearance of the mark to vary with viewing angle. The characteristics of the mark made, no matter how deep the mark color, are not zoned, and will not be marked by the difference in the angle of view with the following laser parameters:

表1 ’用於彩色及灰階標記之雷射參數 標記 60、62、 的銘幾乎無法察覺的6〇6:之光學密度範圍從相對於未標 的灰階光學密产 纟全黑# 66。介於該二個極端之 在度⑷㈣藉由移動焦斑使其更接近物品 17 201208897 增加能量密度從而建立更深色之標記而產生。焦斑在鋁的 表面上方的高度之改變從零開始,即最深色光學密度標記 62之情形,在圖5之中由右至左每一標記64、66遞增5〇〇 微米之增量,結束於表面上方5毫米處的最淺色標記6〇 ^ 注意以位於鋁的表面上方4.5至15毫米之焦斑所產生的標 記64顯現出棕褐或金黃色,而以焦斑一毫米或更短者產生 之標記62及66則顯現出灰色或黑色。維持此對於雷射焦 斑距工作表面距離的精確控制以及將其他雷射參數維持於 正常雷射處理的公差之内,使其得以在經過陽極氧化之鋁 上製做出具有預定顏色及光學密度之雷射標記。此外,最 深色標記顯示小於L* = 40、a* = 5而b* = l 0之CIE色度,使 其成為一符合商業需求之黑色標記。 本發明之另一特色決定具有灰階之外顏色之標記與皮 秒雷射脈衝參數之間的關係。灰階之外的顏色可以以二種 不同方式產生於經過陽極氧化之鋁上。第一,其.可以在一 光學密度之範圍中產生金黃色調。其係藉由在紹及氧化物 塗層間的交界面處做出變化而產生此顏色。仔細選擇雷射 脈衝參數將產生預定之金黃顏色而不致損傷氧化物塗層。 圖5亦顯示由本發明之一特色產生之金黃或棕褐的各 同色彩。 經過陽極氧化之鋁的雷射標記亦可以藉由使用IR波+ 雷射脈衝以對鋁施加標記的本發明之一特色達成。此特色 藉由以二種不同方式改變鋁的表面處之雷射能量密度而產 生不同灰階密度之標記。如上所述’纟可以藉由將焦斑定 18 201208897 位於銘的表面的上方或 -下方以改變表面處之能量密度而造 出灰階。控制灰階的第_ 弟一種方式係藉由在標記預定圖案之 時改變照射點距(bite丨、 v )成線條間距以改變位於鋁的表面 處之總劑量。改變照射點距係指調整雷射脈衝光束相對於 ㈣表面移動之速率或者改變脈衝重複率或者二者均改 复此導致在鋁_L連續雷射脱、衝撞擊位置間的距離改變。 改變線條間距係指調整標記線條之間的距離以達成各種不 同程度之交疊。圖6顯示具有—標記72的陣列之一鋁質物 品74。此等標言己72被安排於包含六行四列的陣列之中。此 六行代表鋁的表面上方範圍從〇(頂列)到5毫米(底列)的六 個焦斑z向高度。四列則代表由左至右的5、1〇、2〇及5〇 微米之間距。其應可以從圖6看出,改變焦斑之z向高度 及改變雷射脈衝之間距能夠以可預測之方式產生從小於Table 1 'Laser parameters for color and grayscale markings Marks 60, 62, the imperceptible almost 6:6: The optical density range is optically dense relative to the unmarked grayscale 纟 all black #66. Between these two extremes (4) (4) is generated by moving the focal spot closer to the item 17 201208897 by increasing the energy density to create a darker mark. The change in height of the focal spot above the surface of the aluminum starts from zero, i.e., the darkest optical density mark 62, which is incremented by 5 〇〇 micron increments from right to left for each mark 64, 66 in Fig. 5, ending The lightest color mark at 5 mm above the surface 6〇^ Note that the mark 64 produced by the focal spot of 4.5 to 15 mm above the surface of the aluminum shows a brown or golden yellow color with a focal spot of one millimeter or less. The marks 62 and 66 produced by the person appear gray or black. Maintaining this precise control of the distance from the laser focal spot to the working surface and maintaining other laser parameters within the tolerances of normal laser processing, allowing it to be made of a predetermined color and optical density on the anodized aluminum. Laser marker. In addition, the darkest mark shows a CIE chromaticity less than L* = 40, a* = 5, and b* = l 0, making it a black mark that meets commercial needs. Another feature of the invention determines the relationship between the indicia of the color outside the grayscale and the picosecond laser pulse parameters. Colors other than the gray scale can be produced on the anodized aluminum in two different ways. First, it can produce a golden hue in the range of optical density. This color is produced by making changes at the interface between the oxide coatings. Careful selection of the laser pulse parameters will produce a predetermined golden color without damaging the oxide coating. Figure 5 also shows the various colors of golden or tan produced by one of the features of the present invention. The laser marking of the anodized aluminum can also be achieved by the use of IR waves + laser pulses to mark the aluminum. This feature produces markers of different gray scale densities by varying the laser energy density at the surface of the aluminum in two different ways. As described above, the gray scale can be created by changing the energy density at the surface by placing the focal spot 18 201208897 above or below the surface of the mark. One mode of controlling the gray scale is to change the total distance of the irradiation spot distance (bite 丨, v ) to change the total dose at the surface of the aluminum by marking the predetermined pattern. Changing the illumination point distance means adjusting the rate at which the laser pulse beam moves relative to the (4) surface or changing the pulse repetition rate or both of which results in a change in the distance between the aluminum-L continuous laser off-shoot and the impact position. Changing the line spacing means adjusting the distance between the marked lines to achieve a different degree of overlap. Figure 6 shows an aluminum article 74 having an array of -tags 72. These specifications have been arranged in an array of six rows and four columns. These six rows represent the z-direction height of the six focal spots above the surface of the aluminum range from 〇 (top column) to 5 mm (bottom column). The four columns represent the distance between 5, 1〇, 2〇 and 5〇 microns from left to right. It should be seen from Figure 6 that changing the z-direction height of the focal spot and changing the distance between the laser pulses can be produced in a predictable manner from less than

·:)且 D 到幾近透明之間的任何預定·:) and any reservation between D and almost transparent

CIE L 學密度之灰階,從而在經過陽極氧化之鋁上產生符合商j 需求之標記。 雷射種類 DPSS Nd:YV04 波長 1064奈米 脈衝持續時間 10皮秒 脈衝時序 _ 高斯 雷射功率 2.5 W 重複率 500 KHz 速度 5〇毫米/秒 間距 5、10、20、50 微米 光斑尺寸 55-130微米 光斑形狀 向斯 201208897CIE L learns the gray scale of density, which produces a mark on the anodized aluminum that meets the requirements of the business. Laser type DPSS Nd: YV04 Wavelength 1064 nm Pulse duration 10 picosecond pulse timing _ Gaussian laser power 2.5 W Repeat rate 500 KHz Speed 5 〇 mm / sec pitch 5, 10, 20, 50 μm spot size 55-130 Micron spot shape to s 201208897

表2 :用於灰階IR標記之雷射脈衝參數 可以利用皮秒或奈秒雷射脈衝施加至經過陽極氧化之 鋁上之一第二種型態之標記係藉由被染色陽極氧化區之脫 色所造成的顏色對比上之改變。一般而言,陽極氧化區係 多孔性的,且將輕易地接受許多種染劑。再次參見圖3,此 經過陽極氧化之鋁之顯微照片顯示表面之多孔性質。用以 標記染色後的經過陽極氧化之鋁之雷射脈衝可以,取決於 波長及脈衝能量,在標記鋁時將染色脫除’使得陽極氧化 區變成透明,從而將下方的鋁之上的標記顯現出來。利用 較高之能量密度,其有可能同時進行染色脫除以及先前段 洛所述之以黑色、灰階、或彩色標記陽極氧化層下方之鋁。 能量較低之脈衝可以部分脫除陽極氧化區之染色,使其呈 半透明,從而對其下之鋁標記局部上色。最後,較長波長 的脈衝可以在未造成陽極氧化區之脫色下在鋁上施加具有 符合商業需求的黑色或灰階顏色之標記。圖7顯示染色後 的經過陽極氧化之鋁質物品,具有利用可見光(532奈米)雷 射脈衝製做而成之標記。注意陽極氧化區中的染色在接受 了射脈衝的區域中被脫除。目8顯示同一種染色後的經過 陽極氧化之鋁質物品,具有利用IR(1〇64奈米)雷射脈衝製 做而成之標記。注意陽極氧作區並未被IR雷射脈衝脫色, 故未能使得下方的鋁質顏色穿越原始氧化物的半透明狀態 而顯現出來。 本發明之另一特色係有關於利用皮秒或奈秒雷射以經 20 201208897 過著色之陽極氧化區對經過陽極氧化之銘施加雷射標記。 由於%極氧化通常形成多孔性之表面,故可能引入染劑, 其改變鋁之外觀。此等染劑可以是不透明或半透明,允許 不同數量之入射光抵達鋁’且經由陽極氧化區被反射回 來。圖7顯示經過陽極氧化之鋁質物品8〇,其依據本發明 之一特色在陽極氧化區之中具有粉紅染色並被製做成一標 記82的陣列。顏色之產生係藉由取除氧化層中的染色,而 下方的銘顯現出從原有(銀)色到一系列經過雷射標記的色 彩從棕褐到灰色最後到黑色之顏色。這些色彩係藉由改變 紹的表面處的雷射脈衝之能量密度而產生。圖中的四列代 表將雷射脈衝之間距從10微米改變到5〇微米,而行則代 表將距.表面的焦斑距離從〇·〇毫米改變到5.0毫米。此等雷 射參數在所有的情況下均使得覆蓋鋁的氧化物中的染色脫 除而讓紹上的標記得以顯現出來。雷射標記光學密度之 範圍從透明到CIE色度小於L* = 40、a* = 5、b* = l〇。用以產 生此等標記之雷射參數顯示於表3之中。 雷射種類 DPSS Nd:YOV4 波長 532奈米 脈衝持續時間. 10皮秒 衝時序 高斯 雷射功率 — 4W 虿複竿 500 KHz 速度 5〇毫米/秒 間距 10微米 光斑尺寸 10-400微米 光斑形狀 高斯 21 201208897 焦點尚度 ϊ):5毫米 ' -- 表3:用於可見氧化物脫色之雷射參數 %極氧化區染色之脫除係與頻率相關的。如圖7所示, 532奈米之雷射脈衝即使在施用最低的能量密度時亦能脫 除陽極氧化區之染色。另一方面,IR雷射波長,在染色後 的經過陽極氧化之鋁上建立標記’且對於多數的半透明染 劑顏色並不會脫除其染色。圖8顯示經過陽極氧化之鋁質 物品1 00,具有粉紅染色以及以IR雷射脈衝製做而成之標 記102。該等標記從半透明到黑色,且係藉由改變焦斑到表 面之距離以及藉由改變間距二者,以修改雷射能量密度而 製成。圖中的六行代表使雷射脈衝焦斑與鋁的表面之間.的 距離從5.5毫米(右側)變化到零(左側)。圖中的四列則代表 使雷射脈衝間距從丨〇微米變化到5〇微米。用以產生此等 才示s己之雷射參數顯示於表4之中。 雷射種類 DPSS Nd:Y〇V4 波長 1064奈米 脈衝持續時間 10皮秒 蛟衝時序 高斯 雷射功率 4W 重複率 500 KHz 速度 50毫米/秒 間距 10微米 光斑尺寸 10-400微米 光斑形狀 高斯 焦點高度 0-5毫米 _ 表4:用於IR著色陽極氧化區標記之雷射參數 22 201208897 針對532奈米(綠光)雷射波長之陽極氧化區染色脫 除、對鋁進行標記以及使表面燒蝕之間的關係顯示於圖9 之中。針對532奈米(綠光)雷射脈衝配合給定於表1、2及 3内的參數,圖9顯示以焦耳/平方公分(J〇ules/cm2)為單位 的陽極氧化區脫色(Fb)、標記陽極氧化區下之鋁(Fu)、以及 表面燒蝕(FS)的能量密度門檻值。就本發明之—特色而言, 532奈米雷射脈衝產生的數值係Fb = 〇1焦耳/平方公分、 Fu = 0.13焦耳/平方公分、以及& = 〇 18焦耳/平方公分。 圖1〇顯示配合給定於表U及3内的參數之1〇64奈米(ir) 雷射脈衝之以焦耳/平方公分為單位的能量密度門檻值。就 本發明之一特色而言,1064奈米(IR)雷射脈衝之以焦耳/平 方公分為單位的能量密度門檻值係Fu = 0.2焦耳/平方公分 以及Fs = 1 ·〇焦耳7平方公分。注意其並無針對陽極氧化區 脫色之門檻值,因為IR波長雷射脈衝在雷射能量密度大到 足以損傷覆蓋的陽極氧化區之前,尚無法開始對陽極氧化 區脫色。其亦應注意Fb、FU及Fs的精確數值將取決於所 使用的特足雷射及光學模組。對於一特定之處理配置以及 待進行標記之物品,其應以實驗的方式決定,並儲存於控 制器之中以供後續使用。 在本發明之另一實施例中,經過調構之雷射處理系統 之可編程特性使得經過陽極氧化之鋁質物品可以標記以符 合商業需求之標記圖案。如圖u所示,在此特色之中,一 圖案110被轉換成一數位表示方式112,其被分解成一列表 23 201208897 114,其中在列表i i 4之中的每一項目丨i 6均包含—位置戋 複數位置的表示方式,具有一顏色A光學密度關聯至每一 位置。列表1 14被儲存於控制器20之中。控制器2〇將雷 射參數連結列表114中的每—項目116,當該等雷射參數被 以命令之形式傳送至雷射1〇、光學模組14及移動控制平台 22之時,將致使雷射1〇發出一或多個雷射脈衝12,照射 到鋁質物品1 8的表面1 6或其附近。該等脈衝將建立一具 有預定顏色及光學密度之標記。當標記正被建立時,藉由 依據儲存於列表中的位置相對於鋁質物品18移動雷射脈衝 12,使得預定範圍顏色及光學密度之標記以預定之圖案被 製做於經過陽極氧化之鋁的表面之上。 在本發明的另一實施例之中,著色之陽極氧化區被圖 案化於先前圖案化的標記之上以呈現額外的顏色及光學密 X在此特色之中,灰階圖案被建立於一經過陽極氧化之 鋁質物之上。該物品接著被塗覆以一光阻塗層,其可以 藉由曝光至雷射脈衝而被顯影。經過灰階圖案化及光阻塗 覆後之物品被置入雷射處理系統之中,並進行校準對齊使 侍系統可以準確地將雷射脈衝施加至已經加諸於物品上的 圖案。所使用的光阻係一種被稱為”負型"光阻劑者,其中暴 露=雷射輻射之區域將被移除,而未暴露之區域將留存ς 物。η上繼續後續之處理。殘留的光阻保護物品表面使其免 2被木色’而已被曝光且之後被移除的陽極氧化區域將被 染上預定之顏色。此陽極氧化層被設計成半透明以容許光 線穿過陽極氧化區而到達下方的圖案並被反射回來穿過陽 24 201208897 極氧化區,從而產生具有選定 电 ,涵色及光學密度之有色圖 案。此有色陽極氧化區若有需 Λ』 *要亦可以利用本發明其他特 色所揭不之技術予以脫色,以彦 座生具有預定透明度之預定 顏色。此顏色可以施加於其下圖 案的整個區域,或者以逐 點的方式為之,僅受限於雷射系 町糸統之解析度,通常在1 〇到 400微米的範圍之内。此動作 初作了以重覆以產生多重顏色之疊 覆在本發明之一特色中,其以多重顏色疊覆網格之形式 施加陽極氧化區顏色疊覆’諸如貝爾圖案(Bayer pattern)。 藉由將灰階圖案設計成配合顏色疊覆網格,可以將一耐久 性、符合商業需求之全彩影像建立於經過陽極氧化之铭質 物品之上。 圖12a至圖12i顯示用以利用=種顏色建立此種顏色墨 覆的一連串步驟。在圖12a之中,鋁質物品i 18具有透明陽 極氧化層120以及先前依據本發明之其他特色施加之標記 122。負型光阻124被施加至透明陽極氧化層12〇之表面。 在圖12b之中,雷射脈衝126對光阻124之區域128、13〇 進行曝光。在圖12c之_,未曝光之光阻134在光阻處理之 後留存下來,但已曝光之光阻被移除,留下處理後之光阻 層134中的空位132。圖12d顯示基礎陽極氧化層.12〇中在 處理後之光阻層134十的空位132下方的區段136中的陽 極氧化區被染以顏色。完整無損的處理後之光阻層丨3 4防 止陽極氧化區獲致顏色,除了處理後之光阻層134中已被 移除的區域132之外。圖I2e顯示物品118在處理後之光阻 層移除之後包含具有顏色部分之陽極氧化區136之基礎陽 25 201208897 極氧化區12 0以及先前施加之標記12 2之相對位置。 圖12f顯示物品118具有基礎陽極氧化區120,包含顏 色部分136以及第二光阻層138。圖 12g顯示此光阻之第二 疊層13 8被雷射脈衝142照射,使得區域14〇被曝光。圖 12h顯示具有基礎陽極氧化區120之物品11 8進行被移除光 阻140下方陽極氧化區之染色以及殘留光阻138移除之後 之情況。此使得完整無損的基礎陽極氧化層包含著色區域 1 3 6、144 ’位於先前標記區域122之上。圖12i顯示後續雷 射脈衝146被用以選擇性地對該鋁質物品先前經過陽極氧 化及染色之部分進行脫色,以產生額外的預定顏色或光學 密度。本發明此特色所述之處理造成彩色圖索疊覆於灰階 圖案之上’以可編程的圖案形式產生具有耐久性且符合商 業需求之顏色及光學密度之範圍寬廣之標記。 在本發明的另一實施例之中,可以.使用特定之圖案將 著色陽極氧化區建立於經過陽極氧化之鋁質物品之上,產 生觀看時呈全彩影像之外觀。在此特色之中,其利用本文 所述之技術將一影像之圖案代表形式施加至表面上。顏色 染劑以例示於圖12a至圖12i之方式引入,但該等染劑引入 陽極氧化基礎層之圖案係被設計成將灰階表示方式轉換成 全彩的方式》此一圖案之一實例係貝爾濾光鏡(Bayer filter ’圖中未顯不)’其將紅色、綠色及藍色濾光鏡元素並 列於一圖案之中,使得眼睛對紅色、綠色及藍色元素之感 知融合成其光學密度與著色陽極氧化區濾光鏡下方的灰階 標s己相關之單-顏色,從而產生全彩影像或圖案之外觀。 26 201208897 且曝光該光阻之圖案可以藉Table 2: Laser pulse parameters for gray scale IR markers can be applied to the anodized aluminum by a picosecond or nanosecond laser pulse. The second type of label is used by the dyed anodization zone. The change in color contrast caused by discoloration. In general, the anodization zone is porous and will readily accept many dyes. Referring again to Figure 3, this photomicrograph of anodized aluminum shows the porous nature of the surface. The laser pulse for marking the anodized aluminum after dyeing can, depending on the wavelength and the pulse energy, remove the dye when marking aluminum, so that the anodization zone becomes transparent, thereby revealing the mark on the underlying aluminum. come out. With a higher energy density, it is possible to perform both dye removal and the aluminum under the anodized layer marked with black, gray scale, or color as previously described. The lower energy pulse partially removes the dye from the anodization zone, making it translucent, thereby locally coloring the underlying aluminum mark. Finally, longer wavelength pulses can be applied to the aluminum with a black or grayscale color marking that meets commercial requirements without causing discoloration of the anodized region. Figure 7 shows the dyed anodized aluminum article with a mark made from visible (532 nm) laser pulses. Note that the dye in the anodization zone is removed in the region where the pulse is received. Item 8 shows the same dyed anodized aluminum article with a mark made from IR (1〇64 nm) laser pulses. Note that the anodic oxygen zone is not decolored by the IR laser pulse, so it does not appear to cause the underlying aluminum color to cross the translucent state of the original oxide. Another feature of the invention relates to the application of a laser marking to an anodized tip using an anodized zone colored by a picosecond or nanosecond laser. Since % pole oxidation generally forms a porous surface, it is possible to introduce a dye which changes the appearance of aluminum. These dyes may be opaque or translucent, allowing a different amount of incident light to reach the aluminum' and being reflected back through the anodization zone. Figure 7 shows an anodized aluminum article 8 which, in accordance with one feature of the invention, has a pink tint in the anodization zone and is formed into an array of indicia 82. The color is produced by removing the dye from the oxide layer, and the underlying color shows the color from the original (silver) color to a series of laser-marked colors from brown to gray and finally to black. These colors are produced by varying the energy density of the laser pulses at the surface. The four columns in the figure change the distance between the laser pulses from 10 microns to 5 microns, while the line represents the change in the focal spot distance from the surface from 〇·〇 mm to 5.0 mm. These laser parameters in all cases result in the removal of the dye in the oxide covering the aluminum and allow the marking on the display to be revealed. The laser marker optical density ranges from transparent to CIE chromaticity less than L* = 40, a* = 5, b* = l〇. The laser parameters used to generate these markers are shown in Table 3. Laser type DPSS Nd: YOV4 Wavelength 532 nm pulse duration. 10 picoseconds rushing timing Gaussian laser power - 4W 虿 竿 500 KHz Speed 5 〇 mm / sec pitch 10 micron spot size 10-400 micron spot shape Gauss 21 201208897 Focus is still ϊ): 5 mm' -- Table 3: Laser parameters for visible oxide decolorization. % Polar oxidation zone dye removal is frequency dependent. As shown in Figure 7, the 532 nm laser pulse removes the dyeing of the anodization zone even when the lowest energy density is applied. On the other hand, the IR laser wavelength establishes a mark on the anodized aluminum after dyeing and does not remove the dye for most translucent dye colors. Figure 8 shows an anodized aluminum article 100 with a pink coloration and a mark 102 made with IR laser pulses. The marks are made from translucent to black and are made by modifying the laser energy density by changing the distance from the focal spot to the surface and by changing the pitch. The six rows in the figure represent the distance between the laser pulse focal spot and the surface of the aluminum from 5.5 mm (right side) to zero (left side). The four columns in the figure represent the variation of the laser pulse pitch from 丨〇 microns to 5 μm. The laser parameters used to generate these indications are shown in Table 4. Laser type DPSS Nd: Y〇V4 Wavelength 1064 nm Pulse duration 10 picosecond buffer timing Gaussian laser power 4W repetition rate 500 KHz Speed 50 mm / sec pitch 10 micron spot size 10-400 micron spot shape Gaussian focus height 0-5 mm _ Table 4: Laser parameters for IR colored anodized zone markings 201208897 Dyeing removal, labeling of aluminum and surface ablation of anodic oxidation zones for 532 nm (green) laser wavelengths The relationship between them is shown in Figure 9. For the 532 nm (green) laser pulse with the parameters given in Tables 1, 2 and 3, Figure 9 shows the anodization decolorization (Fb) in joules per square centimeter (J〇ules/cm2) Mark the energy density threshold of aluminum (Fu) and surface ablation (FS) under the anodization zone. For the features of the present invention, the 532 nm laser pulse produces values of Fb = 〇1 Joules/cm 2 , Fu = 0.13 Joules/cm 2 , and & = 〇 18 Joules/cm 2 . Figure 1 shows the energy density threshold in joules per square centimeter for the 1 〇 64 nm (ir) laser pulse given the parameters given in Tables U and 3. In one feature of the invention, the energy density threshold of Joule/square centimeter for a 1064 nm (IR) laser pulse is Fu = 0.2 Joules / cm ^ 2 and Fs = 1 · 〇 Joule 7 cm ^ 2 . Note that there is no threshold for the decolorization of the anodization zone because the IR wavelength laser pulse cannot begin to decolorize the anodization zone until the laser energy density is large enough to damage the covered anodization zone. It should also be noted that the exact values of Fb, FU and Fs will depend on the particular laser and optical module used. For a particular processing configuration and the item to be marked, it should be determined experimentally and stored in the controller for subsequent use. In another embodiment of the invention, the programmable nature of the conditioned laser processing system allows the anodized aluminum article to be marked to conform to commercially desirable marking patterns. As shown in Figure u, in this feature, a pattern 110 is converted into a digital representation 112 that is broken down into a list 23 201208897 114, where each item 丨i 6 in list ii 4 contains - location The representation of the 戋 complex position has a color A optical density associated with each location. List 1 14 is stored in controller 20. The controller 2 will each of the items 116 in the laser parameter concatenation list 114, when the laser parameters are transmitted as commands to the laser, the optical module 14, and the mobile control platform 22, The laser emits one or more laser pulses 12 that impinge on or near the surface 16 of the aluminum article 18. These pulses will create a mark with a predetermined color and optical density. When the mark is being created, the laser beam 12 is moved relative to the aluminum article 18 in accordance with the position stored in the list such that the predetermined range of color and optical density marks are made in the predetermined pattern on the anodized aluminum. Above the surface. In another embodiment of the invention, the colored anodization region is patterned over the previously patterned indicia to present additional color and optical density. X is in this feature, and the grayscale pattern is established in a pass. Above the anodized aluminum. The article is then coated with a photoresist coating that can be developed by exposure to a laser pulse. The gray-scale patterned and photoresist-coated articles are placed into the laser processing system and aligned to allow the servo system to accurately apply laser pulses to the pattern that has been applied to the article. The photoresist used is referred to as a "negative" photoresist, where the area of exposure = laser radiation will be removed, while the unexposed areas will retain the object. η continues the subsequent processing. The residual photoresist protects the surface of the article from being exposed to wood color and the exposed anodized region will be dyed with a predetermined color. This anodized layer is designed to be translucent to allow light to pass through the anode. The oxidized zone reaches the underlying pattern and is reflected back through the cation 24 201208897 polar oxidation zone to produce a colored pattern with selected electrical, color and optical densities. If the colored anodized zone is needed, it can also be utilized. The technique disclosed by the other features of the present invention decolorizes a predetermined color having a predetermined transparency. The color can be applied to the entire area of the lower pattern, or in a point-by-point manner, limited only by the laser. The resolution of the line system is usually in the range of 1 〇 to 400 μm. This action was initially repeated to produce multiple colors overlapping in one of the features of the present invention, which is multiple Applying an anodized color overlay in the form of a color overlay grid, such as a Bayer pattern. By designing the grayscale pattern to match the color overlay grid, a durable, commercial-compliant full color can be achieved. The image is created on an anodized top quality article. Figures 12a through 12i show a series of steps for creating such a color ink overlay using = color. In Figure 12a, the aluminum article i 18 has a transparent anodization. Layer 120 and indicia 122 previously applied in accordance with other features of the present invention. Negative photoresist 124 is applied to the surface of transparent anodized layer 12A. In Figure 12b, laser pulse 126 is directed to region 128 of photoresist 124, The exposure is performed at 13 Å. In Fig. 12c, the unexposed photoresist 134 remains after the photoresist treatment, but the exposed photoresist is removed, leaving the vacancies 132 in the processed photoresist layer 134. 12d shows that the anodized region in the portion 136 below the vacancy 132 of the photoresist layer 134 after the treatment is dyed in color in the base anodized layer. The photoresist layer after the intact treatment is prevented. Anodized zone The color, except for the region 132 of the treated photoresist layer 134 that has been removed. Figure I2e shows the base 118 of the article 118 containing the anodized region 136 having a color portion after removal of the treated photoresist layer. 201208897 The polar oxidation zone 120 and the relative position of the previously applied marker 12 2. Figure 12f shows that the article 118 has a base anodization region 120 comprising a color portion 136 and a second photoresist layer 138. Figure 12g shows the second stack of photoresist Layer 13 8 is illuminated by laser pulse 142 such that region 14 is exposed. Figure 12h shows article 11 with base anodization 120 for dyeing of the anodized region beneath removed photoresist 140 and removal of residual photoresist 138 After that. This causes the intact underlying anodized layer to contain the colored regions 136, 144' above the previously marked regions 122. Figure 12i shows that subsequent laser pulses 146 are used to selectively decolorize portions of the aluminum article that have previously been anodized and dyed to produce an additional predetermined color or optical density. The process described in this feature of the present invention causes the color image to be overlaid on the grayscale pattern' to produce a wide range of durable and commercially desirable color and optical density in a programmable pattern. In another embodiment of the invention, the colored anodized region can be formed on the anodized aluminum article using a particular pattern to produce the appearance of a full color image when viewed. Within this feature, a pattern representation of an image is applied to the surface using the techniques described herein. The color dyes are introduced in the manner illustrated in Figures 12a to 12i, but the pattern in which the dyes are introduced into the anodized base layer is designed to convert the gray scale representation into a full color. One example of this pattern is Bell. The filter (Bayer filter 'not shown') displays the red, green and blue filter elements in a pattern so that the eye's perception of red, green and blue elements blends into its optical density. The single-color associated with the grayscale mark below the colored anodization filter produces a full color image or the appearance of the pattern. 26 201208897 and exposing the pattern of the photoresist can be borrowed

光阻可以是負型或正型光阻, 由遮罩產生,諸如使用於電辟 由一電子裝置直接寫入,或者 或者藉由雷射直接燒蝕。The photoresist can be a negative or positive photoresist, produced by a mask, such as for direct writing by an electronic device, or by direct ablation by a laser.

圃"所示,此實施例藉由在陽極氧化層之中產生低程度之 傷害但未使陽極氧化層產生燒㈣以其他方式被自表:移 除而標記經過陽極氧化處理之鋁質物品。圖13顯示一經過 陽極氧北處理之物品丨5〇,具有以此種依據本發明一實施例 之方式所建立之一白色標記152。該低程度傷害包含位於陽 極氧化區中大量的小型"微"裂縫’其使所有波長之光線發生 繞射,而造成表面產生一"霜狀”或團簇型白色外觀。由於陽 極氧化區在巨觀尺寸上並未受到結構性的損傷或破裂,故 表面維持其耐久性且在紋路上並無明顯改變。用以在經過 陽極氧化之鋁上建立明亮白色標記之雷射參數提供稍微大 於陽極氧化區損傷門檻值之雷射能量密度。其選擇該雷射 月b 1松度使得其大到足以在陽極氧化區之中建立微裂縫, 但未大到足夠造成充分的傷害而改變物品的耐久性或可察 覺之紋路。表5包含用以在一件如圖丨3所示的經過陽極氧 化處理之鋁質物品上建立明亮白色標記之雷射參數。 27 201208897 雷射種類 DPSS Nd:Y〇V4 波長 355奈米 ' 脈衝持續時間 100奈秒 脈衝時序 ^ ; ~~ 雷射功率 4W 重複率 90 KHz 速度 200毫米/秒 間距 10微米 ~~ 光斑尺寸 350-400 微米 ~~~ 光斑形狀 尚斯 · 焦點向度 0-5 毫米 ~~~~' 表5:用於白色陽極氧化區標記之雷射參數 藉由在一接近特定陽極氧化區及物品損傷門檻值的指 定範圍之内改變所使用的雷射能量密度,標記之外觀可以 在輕微霜面到完全不透明的明亮白色之間變動。此外,此 實施例可以將此效果與著色的陽極氧化區相結合,以產生 具有不同飽和度之標記。當雷射能量密度增加,一染色 陽極氧化層將先出現不飽和,意味顏色看起來似乎援混到 白色。當雷射能量密度增加,著色的陽極氧化區產生脫色, 而標記呈現一未著顏色的明亮白色外觀。圃" This example illustrates the anodized aluminum article by other means by which a low degree of damage is generated in the anodized layer but the anodized layer is not burned (iv). . Figure 13 shows an anodic oxygen treated article 〇5〇 having a white marking 152 created in such a manner in accordance with an embodiment of the present invention. This low level of damage involves a large number of small "micro" cracks in the anodization zone that illuminate all wavelengths of light, causing the surface to produce a "creamy" or cluster-like white appearance. Due to anodizing The area is not structurally damaged or broken in the size of the giant, so the surface maintains its durability and does not change significantly on the grain. The laser parameters used to create bright white markings on the anodized aluminum provide a slight a laser energy density greater than the damage threshold of the anodization zone. The laser b 1 is selected to be large enough to establish microcracks in the anodization zone, but not large enough to cause sufficient damage to change the article. Durability or appreciable texture. Table 5 contains the laser parameters used to create a bright white marking on an anodized aluminum article as shown in Figure 3. 27 201208897 Laser Type DPSS Nd: Y〇V4 wavelength 355 nm' pulse duration 100 nanosecond pulse timing ^ ; ~~ laser power 4W repetition rate 90 KHz speed 200 mm / sec pitch 10 micron ~ ~ Spot size 350-400 μm ~~~ Spot shape Shangs · Focus degree 0-5 mm~~~~' Table 5: Laser parameters for white anodized zone marking by approaching a specific anodization zone and The laser energy density used is changed within the specified range of the damage threshold of the article, and the appearance of the mark can vary from a light frosty surface to a completely opaque bright white color. In addition, this embodiment can oxidize this effect with coloring. The zones are combined to produce markers with different saturations. As the laser energy density increases, a dyed anodized layer will first appear unsaturated, meaning that the color appears to be blended into white. When the laser energy density increases, the coloring The anodization zone produces discoloration, while the markings exhibit a bright white appearance with no color.

用以產生該等明亮白色標記之雷射參數包含使用一 5不米波長第二諧振二極體激發式固態Nd: γν〇4雷射, 二係一發射出能量範圍在266到532奈米之間的高功率脈 ’雷射。s亥雷射運作於4 KW,基未上位於i kw到⑽kW 28 201208897 的範圍之令,較佳的實施方式係從1 KW到12 KW之間。 雷射成量密度範圍從大約〇 ! χ 1〇·6焦耳/平方公分到⑽〇 焦耳/平方公分,或者特別是從1.0 X ΙΟ·6焦耳/平方公分到 10·0焦耳/平方公分。脈衝持續時間之範圍係從1皮秒到 1 〇〇〇奈秒(ns) ’或者較佳之實施方式係從i奈秒到奈 矜雷射重複率係位於從丨KHz到丨〇〇 MHz的範圍之申, 或者較佳之貫施方式係從】〇 KHz到i MHz。雷射光束相對 於被標記物品移動之速度之範圍從i毫米/秒到ι〇米,秒, 或者車乂佳之實施方式係從i 〇〇毫米/秒到工米/秒。物品表面 雷射脈衝相鄰列之間的間距或間隔範圍從i微米到削〇 微米,或者較佳之實施方式係從10微米到100微米。於物 品表面處量測的雷射脈衝光斑尺寸範隨1〇微米到ι〇〇〇 微米,或者較佳之實施方式係從5〇微米到5〇〇微米。相對 於物品表面之雷射脈衝焦斑位置之範圍從-ίο毫米到+1〇毫 米,或者特別是從0到+5毫米。 圖14顯示一清楚的經過陽極氧化處理之鋁質物品 160具有母列包含六個的三列標記162,各自均使用表5 斤列之雷射參數施加至表面,其中光斑尺寸從最左側一行 的:〇0微米’每-行遞增60微米’到最右側-行的500微 米1射脈衝之相鄰線條之間的間距或距離,由最頂列的 /只到中間列的20微米,到最底列的5〇微米。其可 :看出,隨著功率增加,白色標記之明亮度增加而透明 減少。 本發明之實施例 以包含C〇2雷射的紅外線雷射脈衝標 29 201208897 記物品。以藉ώ浐 田在陽極氧化層中產生改變而做出的白色標 記,成功地標却飽、a nB t /x °、過%極氧化處理之物品所使用的雷射參The laser parameters used to generate the bright white markings include the use of a 5 m wavelength second resonant diode excited solid state Nd: γν〇4 laser, and the second system emits energy in the range of 266 to 532 nm. The high power pulse between the 'lasers. The s-Hai laser operates at 4 KW, and the base is in the range of i kw to (10) kW 28 201208897. The preferred embodiment is between 1 KW and 12 KW. The laser density ranges from approximately 〇 ! χ 1 〇 6 joules per square centimeter to (10) 焦 joules per square centimeter, or especially from 1.0 X ΙΟ 6 joules per square centimeter to 10·0 joules per square centimeter. The pulse duration ranges from 1 picosecond to 1 nanosecond (ns) or the preferred embodiment is from i nanosecond to nai laser repetition rate in the range from 丨KHz to 丨〇〇MHz. The application, or the preferred method of application, is from 〇KHz to i MHz. The speed at which the laser beam travels relative to the marked item ranges from i mm/sec to ιm, seconds, or the preferred embodiment is from i 〇〇 mm/sec to memi/sec. The surface of the article has a spacing or spacing between adjacent columns of laser pulses ranging from i microns to truncated microns, or a preferred embodiment is from 10 microns to 100 microns. The laser pulse spot size measured at the surface of the article ranges from 1 〇 micron to ι 微米 micron, or preferably from 5 〇 micron to 5 〇〇 micron. The location of the laser pulse focal spot relative to the surface of the item ranges from -ίο mm to +1 〇 mm, or especially from 0 to +5 mm. Figure 14 shows a clear anodized aluminum article 160 having a three-column mark 162 comprising six columns, each applied to the surface using a laser parameter of Table 5, wherein the spot size is from the leftmost row. : 〇0 μm increments from 60 μm per line to the rightmost line - the spacing or distance between adjacent lines of 500 μm 1 pulse, from the topmost / only to the middle column of 20 μm, to the most The bottom row is 5 microns. It can be seen that as the power increases, the brightness of the white mark increases and the transparency decreases. Embodiments of the present invention record an article with an infrared laser pulse containing a C〇2 laser. The white mark made by the change of the field in the anodized layer, successfully marks the laser ray used in the article of a nB t /x °, over % oxidized

表 用於白色陽極氧化區標記之雷射參數 ,用以建立此等白色標記之雷射參數包含利用一 10.6微 米波長C02雷射。該雷射運作於75 Kw’基本上位於【請 到500 KW的範圍之中,較佳的實施方式係從到15〇 kw之間。f射能量密度範圍從大約ι 〇 X ι〇 6焦耳/平方公 刀到1〇〇.〇焦耳/平方公分,或者特別是從1.0 X 1〇·6焦耳/ 平方a刀到1 〇.〇焦耳/平方公分。脈衝持續時間之範圍係從 1不€/到連續波之施用,或者較佳之實施方式係從^⑽奈秒 到100毫秒(ms)。雷射重複率係位於從1 KHz到1 MHz的 範圍之中,或者較佳之實施方式係從丨〇 KHz到25〇 雷射光束相對於被標記物品移動之速度之範圍從1毫米/秒 到10米/秒,或者較佳之實施方式係從1〇〇毫米/秒到】米/ 30 201208897 秒。物品表面上雷射脈衝相鄰列之間的間距或間隔範圍徙ι 微米到1000微米,或者較佳之實施方式係從1〇微米到1〇〇 微米。於物品表面處量測的雷射脈衝光斑尺寸範圍從丨0微 米到1000微米,或者較佳之實施方式係從50微米到5〇〇 微米。 前述實施例之細節可以在未脫離本發明之基本原理下 進行許多修改,此對於習於斯藝者應係顯而易見的〗本發 明之範疇因此應由以下之申請專利範圍界定之。 【圖式簡單說明】 圖1,雷射處理系統。 圖2,以先前技術奈秒脈衝製做出之標記。 圖3,以皮秒脈衝製做出之標記。 圖4,射束腰徑。 圖5 ’位於經過陽極氧化之鋁上的灰階標記。 圖6 ’位於經過陽極氧化之紹上的標記。 圖7,染色後的、加上可見光標記之經過陽極氧化之鋁。 圖8 ’染色後的、加上ir標記之經過陽極氧化之鋁。 圖9 ’顯示可見光雷射脈衝門檻值之關係圖。 圖10 ’顯示IR雷射脈衝門檻值之關係圖。 圖11,轉換成雷射參數的影像資料。 圖12a-i,施加至一鋁質物品之著色陽極氧化區。 圖13,白色標記。 圖14 ’位於經過陽極氧化之鋁上的灰階標記。 31 201208897 【主要元件符號說明】 1 〇:雷射 12 :雷射脈衝 14 :雷射光學模組 16 :雷射光斑 1 8 :物品 20 :控制器 22 :平台 3 0 :經過陽極氧化之鋁 32 :裂縫 34 :標記區域 3 6 :經過陽極氧化之鋁 3 8 :標記 40 :焦斑 42 :光束腰徑表面 44 :光軸 46 :直徑 48 :直徑 60-66 :標記 70 :經過陽極氧化之鋁 72 :標記 74 :鋁質物品 80 :鋁質物品 32 201208897 82 :標記 I 00 :經過陽極氧化之鋁質物品 102 :標記 110 :圖案 112 :數位表示方式 114 :列表 116 :列表中的項目 II 8 :鋁質物品 120 :透明陽極氧化層 122 :標記 124 :光阻層 1 2 6 :雷射脈衝 128 :光阻區域 1 3 0 :光阻區域 132:光阻層中的空位 1 3 4 :光阻層 136:空位下方的區段 1 3 8 :第二光阻層 140 ··第二光阻層中的區域 142 :雷射脈衝 144 :著色區域 146 :著色區域 1 5 0 :經過陽極氧化處理之物品 152 :白色標記 33 201208897 160 162 Fb : Fu .: Fs : :經過陽極氧化處理之鋁質物品 :標記 陽極氧化區脫色的能量密度門檻值 標記陽極氧化區下之鋁的能量密度門檻值 表面燒蝕的能量密度門檻值 34The laser parameters used for marking the white anodization zone, the laser parameters used to establish such white markings include the use of a 10.6 micron wavelength CO 2 laser. The laser operates at 75 Kw' and is basically located in the range of 500 KW. The preferred embodiment is from 15 〇 kw. The f-radiation energy density ranges from approximately ι 〇X ι〇6 joules/square gong to 1 〇〇.〇 joules/cm 2 , or especially from 1.0 X 1 〇 6 joules per square a knife to 1 〇. 〇 joules / square centimeters. The duration of the pulse is in the range of from 1 to no continuous wave, or a preferred embodiment is from ^(10) nanoseconds to 100 milliseconds (ms). The laser repetition rate is in the range from 1 KHz to 1 MHz, or the preferred embodiment is from 丨〇KHz to 25 〇. The speed of the laser beam moving relative to the marked item ranges from 1 mm/sec to 10 The meter/second, or preferred embodiment, is from 1 mm/sec to ???m/30 201208897 seconds. The spacing or spacing between adjacent columns of laser pulses on the surface of the article is from 1 micron to 1000 microns, or preferably from 1 micron to 1 micron. The laser pulse spot size measured at the surface of the article ranges from 丨0 micrometers to 1000 micrometers, or preferably from 50 micrometers to 5 micrometers. The details of the foregoing embodiments may be varied without departing from the basic principles of the invention, and the scope of the invention should be apparent to those skilled in the art. [Simple diagram of the diagram] Figure 1, laser processing system. Figure 2 is a representation of the prior art nanosecond pulse system. Figure 3. Marks made in picosecond pulses. Figure 4, beam waist diameter. Figure 5' is a gray scale mark on anodized aluminum. Figure 6 'is located on the anodized mark. Figure 7. Aluminized anodized aluminum with a visible mark after dyeing. Figure 8 'Aluminized anodized aluminum with ir mark after dyeing. Figure 9' shows a plot of the threshold value of the visible laser pulse. Figure 10' shows a plot of IR laser pulse threshold values. Figure 11. Image data converted to laser parameters. Figures 12a-i are applied to the colored anodization zone of an aluminum article. Figure 13, white mark. Figure 14' is a gray scale mark on anodized aluminum. 31 201208897 [Explanation of main component symbols] 1 〇: Laser 12: Laser pulse 14: Laser optical module 16: Laser spot 1 8 : Item 20: Controller 22: Platform 3 0: Aluminized aluminum 32 : crack 34 : marked area 3 6 : anodized aluminum 3 8 : mark 40 : focal spot 42 : beam waist diameter surface 44 : optical axis 46 : diameter 48 : diameter 60-66 : mark 70 : anodized Aluminum 72: Mark 74: Aluminum Item 80: Aluminum Item 32 201208897 82: Mark I 00: Anodized Aluminum Item 102: Mark 110: Pattern 112: Digital Expression 114: List 116: Item II in the list 8: Aluminum article 120: transparent anodized layer 122: mark 124: photoresist layer 1 2 6 : laser pulse 128: photoresist region 1 3 0 : photoresist region 132: vacancy in the photoresist layer 1 3 4 : Photoresist layer 136: segment under the vacancy 1 3 8 : second photoresist layer 140 · region 142 in the second photoresist layer: laser pulse 144: colored region 146: colored region 1 5 0 : anodized Handled Item 152: White Mark 33 201208897 160 162 Fb : Fu .: Fs : : Anodized Aluminum Substance: Marking Energy Density Threshold for Decolorization in Anodized Zone Marking Energy Density Threshold for Aluminum under Anodic Oxidation Zone Energy Density Threshold for Surface Ablation 34

Claims (1)

201208897 七、申請專利範圍: 1· 一種用於在經過陽極氧化處理之物品上建立具有預 定性質之標記的方法,該預定性質包含光學密度、顏色、 紋路以及财久性,該方法包含: 提供雷射標記系統,其包含具有可控制雷射能量密度 之雷射; 決定與建立具有錢定性質之該標記相關聯之該雷射 能量密度;以及 導控該雷射標記系統以 記該經過陽極氧化處理之樣 具有範圍從透明到不透明之 圍未標記紋路大致無法區別 損的陽極氧化區。 利用該決定之雷射能量密度標 品’從而建立該標記,該標記 光學密度、白色之顏色、與周 之紋路以及耐久且大致完整無 2.如申請專利範圍第1項所述. . 汀通之用於在經過陽極氧化 處理之物品上建立具有預定性質 σ — & 買之橾§己的方法,其中.該樣 品包含金屬。 3.如申請專利範圍第2 處理之物品上建立具有預定 屬包含鋁。 項所述之用於在經過陽極氧化 f生質之標記的方法,其中該金 4.如申請專利範圍第1項 4 S ^ ^ # 斤边之用於在經過陽極氧化 處理之物品上建立具有預定性 極氢仆F妯-九A^ §己的方法,其中該陽 栊虱化&被永色加上雷射處理以. 記。 立具有額外顏色之該標201208897 VII. Patent Application Range: 1. A method for establishing a mark having a predetermined property on an anodized article, the predetermined property including optical density, color, texture, and longevity, the method comprising: providing a mine a marking system comprising a laser having a controllable laser energy density; determining the laser energy density associated with establishing the marking having a quantitative property; and directing the laser marking system to record the anodizing The treated sample has an anodized region that is substantially indistinguishable from the unmarked lines ranging from transparent to opaque. Using the determined laser energy density standard 'to establish the mark, the mark optical density, white color, and the texture of the week and durable and substantially complete. 2. As described in claim 1 of the patent scope. It is used to establish a method having a predetermined property σ - & on an anodized article, wherein the sample contains a metal. 3. The article has a predetermined genus containing aluminum as set forth in the second treatment of the patent application. The method for labeling an anodized f-producing substance, wherein the gold is used in an anodized article as set forth in claim 1 of the 4th S S ^ ^ # Predetermined method of hydrogen servant F妯-nine A^ §, wherein the cation is & is treated with permanent color plus laser. Set the standard with extra color 如申請專利範圍第 項所述之用於在經過陽極氧化 35 201208897 處理之物品上建立具有預定性質之標記的方法,其中該被 染色之陽極氧化區此外亦被雷射脫色。 6. —種以雷射在經過陽極氧化處理之樣品上製做出之 標記’具有範圍從透明到不透明的光學密度、白色之顏色、 與周圍未標記紋路大致無法區別之紋路以及耐久且大致完 整無損的陽極氧化區’纟中該標記之外觀係造成光線在陽 極氧化層中散射之雷射誘發損傷之結果。 7. 如申凊專利範圍第6項所述之以雷射在經過陽極氧 化處理之樣品上製做出之標記,其中該樣品包含金屬。 8·如申凊專利範圍第7項所述之以雷射在經過陽極氧 化處理之樣品上製做出之標記,纟中該金屬包含鋁。 9.如申請專利範圍第6項所述之以雷射在經過陽極氧 化處理之樣品上製做出之標記,其中該陽極氧化區被染色 加上雷射處理以建立具有額外顏色之該標記。 1〇.如申請專利範圍第9項所述之以雷射在經過陽極 氧化處理之樣品上製做出之標記,其中該被染色之陽極氧 化區此外亦被雷射脫色。 八、圖式: (如次頁) 36A method for establishing a mark having a predetermined property on an article subjected to anodization 35 201208897 as described in the scope of the patent application, wherein the dyed anodized region is further decolored by a laser. 6. A mark made by laser on an anodized sample 'has an optical density ranging from transparent to opaque, a white color, a texture that is indistinguishable from surrounding unmarked lines, and durable and substantially intact. The appearance of the mark in the anodization zone '纟 is the result of laser induced damage that scatters light in the anodized layer. 7. A mark made by laser on an anodized sample as described in claim 6 of the scope of the patent, wherein the sample comprises a metal. 8. A mark made by laser on an anodized sample as described in claim 7 of the scope of the patent application, wherein the metal contains aluminum. 9. A mark made by laser on an anodized sample as described in claim 6 wherein the anodized region is dyed plus a laser treatment to create the mark having an additional color. 1A. A mark made by laser on an anodized sample as described in claim 9 of the patent application, wherein the dyed anode oxidized region is additionally decolored by a laser. Eight, the pattern: (such as the next page) 36
TW100109644A 2010-08-30 2011-03-21 Method and apparatus for reliably laser marking articles TWI549836B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/871,588 US8451873B2 (en) 2010-02-11 2010-08-30 Method and apparatus for reliably laser marking articles

Publications (2)

Publication Number Publication Date
TW201208897A true TW201208897A (en) 2012-03-01
TWI549836B TWI549836B (en) 2016-09-21

Family

ID=46763372

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109644A TWI549836B (en) 2010-08-30 2011-03-21 Method and apparatus for reliably laser marking articles

Country Status (1)

Country Link
TW (1) TWI549836B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60036078T2 (en) * 1999-11-11 2008-05-15 Koninklijke Philips Electronics N.V. MARKING AN ANODIZED LAYER OF AN ALUMINUM OBJECT
JP4391524B2 (en) * 2003-08-19 2009-12-24 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Link processing method and laser system using laser pulses with a specially shaped power profile.

Also Published As

Publication number Publication date
TWI549836B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
KR101869435B1 (en) Method and apparatus for reliably laser marking articles
US8451873B2 (en) Method and apparatus for reliably laser marking articles
US8761216B2 (en) Method and apparatus for reliably laser marking articles
US8379678B2 (en) Method and apparatus for reliably laser marking articles
JP6689067B2 (en) Method of making a glass-ceramic component with a patterned coating
US10071583B2 (en) Marking of product housings
CN103228399B (en) For the method and apparatus of reliably radium-shine tagged items
JP2014509947A (en) Method and apparatus for reliably laser marking an object
AU9309398A (en) Laser marking method
CN105696226B (en) The fabric of laser labelling
CN109153277A (en) Production has the method for the label of desired color on article
TW201208899A (en) Method and apparatus for reliably laser marking articles
TW201208897A (en) Method and apparatus for reliably laser marking articles
Bosman Processes and strategies for solid state Q-switch laser marking of polymers
TWI583478B (en) Anodized aluminum article
TW201238694A (en) Method and apparatus for reliably laser marking articles
TWI640384B (en) Method for creating a mark on an article, laser marking apparatus, article having a mark, anodized metallic article having a mark and anodized metallic article
WO2018077172A1 (en) Crown cap provided with identification code
AU767732B2 (en) High contrast surface marking
AU6555201A (en) High contrast surface marking
AU6555401A (en) High contrast surface marking

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees