TW201208899A - Method and apparatus for reliably laser marking articles - Google Patents

Method and apparatus for reliably laser marking articles Download PDF

Info

Publication number
TW201208899A
TW201208899A TW100109645A TW100109645A TW201208899A TW 201208899 A TW201208899 A TW 201208899A TW 100109645 A TW100109645 A TW 100109645A TW 100109645 A TW100109645 A TW 100109645A TW 201208899 A TW201208899 A TW 201208899A
Authority
TW
Taiwan
Prior art keywords
laser
pulse
anodized
article
mark
Prior art date
Application number
TW100109645A
Other languages
Chinese (zh)
Inventor
Haibin Zhang
Glenn Simenson
Patrick Leonard
Original Assignee
Electro Scient Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/871,619 external-priority patent/US8379678B2/en
Application filed by Electro Scient Ind Inc filed Critical Electro Scient Ind Inc
Publication of TW201208899A publication Critical patent/TW201208899A/en

Links

Abstract

The invention is a method and apparatus for creating marks on an anodized aluminum specimen with selectable color and optical density. The method includes providing a laser marking system having a laser, laser optics and a controller operatively connected to said laser to control laser pulse parameters. The laser marking system is directed to produce laser pulses having laser pulse parameters associated with the desired color and optical density in the presence of a fluid directed to the surface of the anodized aluminum specimen while marking.

Description

201208899 六、發明說明: 【發明所屬之技術領域】 本發明係有關於以雷射處理系統對經過陽極氧化處理 (謂dized)之物品之雷㈣記(laser marking)。特別是關於利 用雷射處理系統以一種具持久性且符合商業需求的方式伊 記經過陽極氧化處理之物品。具體言之,其係有關於使紫 卜冰可見光及紅外線波長雷射脈衝與經過 之物品之間的交互作用具備獨特特徵,《可靠丄= 地在-流雜存在下建立具有預定顏色及光學 ㈣ density)之持久性標記。 【先前技術】 、市面上的產品基於商業、管控、裝飾或功能上的目的, ㊉需要在其上有某種形式的標記。所需的標記特性包含一 、持久性、以及施加的容易性。外觀係指可靠 地並可重複地以一選定之形狀、顏色及光學密度呈現—伊 5己的旎力。持久性係儘管經過 下 ^ ^ 你的表面有所磨耗,仍能 維持不變之品質❶施加的容易 仍此 ⑽咖職abiIlty)之標纪的材料脖1做具有可編程性 心”“… 時間及資源上的成本。可 、.扁耘性係指措由改變軟體以一新 要 的待‘ 5己圖案編程標記 置,而非改變諸如篩版或遮草等硬體。 以裝 經過陽極氧化處理之金屬物品,其質 形塑且擁有耐爻的矣而也上 U 易於 …面拋先,故在工業及商業貨品上均有 :夕應用。陽極氧化意味多種電解鏡化處理中的任:: 種,其中天然氧化層被增生於 ° 曰生於堵如鋁、鈦(titanium)、鋅、 201208899 鎂、鈮(niobium)或鈕(tantalum)的金屬之上,以增進對於腐 蝕或磨損的抵抗力以及獲得裝飾之目的。此等表面疊層事 貫上可以被著上或染上任何顏色,而在金屬上製造出一個 永久性的、不褪色的、耐久性表面。許多此等金屬可以利 用本發明之特色被有效益性地進行標記。此外,諸如抗腐 蝕之不銹鋼等金屬均可以使用此方式加上標記。諸如此等 的許多金屬製成品均需要永久性的、清楚可見的、符合商 業需求之標記。經過陽極氧化之鋁係具有此需求之典型材 料。以雷射處理系統產生的雷射脈衝標記經過陽極氧化處 理之鋁可以在極低的標記成本下以可編程之方式快速地製 做出耐久性之標記。 以雷射脈衝使經過陽極氧化處理之鋁的表面上產生顏 色變化已行之多年。在 p. Maja、M. Autric、P. Delaporte、 P. Alloncle等人的一篇標題為"Dry laser 士加% μ anodized aluminum(經過陽極氧化之鋁的乾式雷射清潔)"的 論文中(COLA,99 5th International Conference 〇n Laser201208899 VI. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a laser marking of an anodized article (dized) by a laser processing system. In particular, the use of a laser processing system for an anodized article in a durable and commercially desirable manner. Specifically, it has a unique feature for making the interaction between the visible and infrared wavelength laser pulses of the Zibul ice and the passing articles, "Reliable 丄 = ground in the presence of the flow to establish a predetermined color and optics (4) Density) Persistence mark. [Prior Art] The products on the market are based on commercial, regulatory, decorative or functional purposes, and ten need to have some form of mark on them. The required marking characteristics include one, durability, and ease of application. Appearance refers to the ability to present reliably and reproducibly in a selected shape, color, and optical density. The persistence system is still able to maintain the same quality after the surface is worn out. The quality is still easy to apply. (10) The abiIlty of the abiIlty) has a programmable heart. And the cost of resources. However, the flatness means that the software is changed to a new one, and the hardware is not changed, such as a screen or a grass. The metal objects that have been anodized have a plastic shape and are resistant to sputum, and U is easy to be thrown first. Therefore, it is used in both industrial and commercial goods. Anodizing means any of a variety of electrolytic mirroring processes: where the natural oxide layer is proliferated at a temperature such as aluminum, titanium, zinc, 201208899 magnesium, niobium or tantalum. Above the metal to enhance resistance to corrosion or wear and to achieve decorative purposes. These surface laminates can be placed or dyed in any color to create a permanent, non-fading, durable surface on the metal. Many of these metals can be advantageously labeled using the features of the present invention. In addition, metals such as corrosion-resistant stainless steel can be marked in this manner. Many metal products such as these require permanent, clearly visible, commercially desirable markings. Anodized aluminum is a typical material with this need. Lasers generated by laser processing systems that have been anodized with aluminum lasers can be used to quickly create durable markings at a very low mark cost. Laser color changes have been made on the surface of anodized aluminum by laser pulses for many years. In a paper titled “Dry laser singular plus anodized aluminum” by p. Maja, M. Autric, P. Delaporte, P. Alloncle et al. (COLA, 99 5th International Conference 〇n Laser

Ablation(雷射燒蝕國際會議),1999年7月i9 23曰, G6ttingen ’ 德國,發行於 Appl. Phys. A 69 [Suppl ], S343-S346 (1999),pp S43-S346),其描述自鋁的表面移除 陽極氧化區,但應注意’其顏色變化係發生於雷射能量低 於自表面移除陽極氧化區所需雷射能量之處。 被k出以解釋金屬表面之光學密度或顏色變化的機制 之一係雷射誘發週期表面微結構(laser_in(juced peri〇die surface structures; UPSS)之產生 βΑ· γ. Vorobyev 和 Chunlei 201208899Ablation (International Conference on Laser Ablation), July 1999 i9 23曰, G6ttingen 'Germany, published in Appl. Phys. A 69 [Suppl ], S343-S346 (1999), pp S43-S346), description from The surface of the aluminum is removed from the anodization zone, but it should be noted that 'the color change occurs where the laser energy is lower than the laser energy required to remove the anodization from the surface. One of the mechanisms by which k is used to explain the optical density or color change of a metal surface is the generation of laser-induced periodic surface microstructures (laser_in(juced peri〇die surface structures; UPSS). βΑ· γ. Vorobyev and Chunlei 201208899

Guo 之論文 ”Colorizing meta】s with femt〇sec〇nd laser pulses(利用飛秒雷射脈衝對金屬著色)"(AppHed physics Letters(應用物理快報)92,(〇41914) 2008,第頁到 第141 9 14 3頁田述可以利用飛秒雷射脈衝(femt〇sec〇nd laser pulse)在鋁或類鋁金屬上製造出的各種不同顏色。此論 文描述在金屬上製造出黑色或灰色標記並在金屬上建立一 金黃的顏色。其亦提到一些其他顏色,但不多加贅述。LIpss 係其對於在金屬表面產生標記所提供的唯一說明。此外, 其僅教示或提議具有65飛秒時序脈衝寬度之雷射脈衝以建 立該等結構。並且,其並未提及在雷射處理之前,鋁質樣 品是否經過陽極氧化處理或者表面是否曾經過清潔。該論 文亦未討論對於氧化層的可能損傷。 當論及雷射脈衝持續時間(durati〇n)之時,量測脈衝持 續時間的方法應該加以定義。時序脈衝形狀可以從簡單的 高斯脈衝(Gaussian pulse)到更複雜的與個別作業有關之形 狀。對於特定型態處理之有利的示範性非高斯雷射脈衝描Guo's paper "Colorizing meta" s with femt〇sec〇nd laser pulses (AppHed physics Letters 92, (〇41914) 2008, page to page 141 9 14 Page 3 Tian Shu can use the femt〇sec〇nd laser pulse to produce a variety of different colors on aluminum or aluminum-like metals. This paper describes the creation of black or gray markings on metals. Create a golden color on the metal. It also mentions some other colors, but not to mention them. LIpss is the only description provided for marking on metal surfaces. In addition, it only teaches or proposes to have 65 femtosecond timing pulses. Laser pulses of width to establish such structures. And, it does not mention whether the aluminum sample has been anodized or the surface has been cleaned prior to laser processing. The paper also does not discuss possible damage to the oxide layer. When discussing the duration of the laser pulse (durati〇n), the method of measuring the pulse duration should be defined. The timing pulse shape can be simple Gaussian pulse to more complex shapes associated with individual operations. Demonstrative non-Gaussian laser pulse mapping for specific type processing

述於編號7,126,746的美國專利GENERATING SETS OF TAILORED LASER PULSES(產生經過裁製的雷射脈衝群組) 之中,發明人Sun等,該專利授讓於本發明之受讓人,此 處以參照之形式納入本文。該專利揭示產生具有時間波形 (temporal profile)異於二極體激發固態(di〇de pumped state; DPSS)雷射所製造出的典型高斯時間波形之雷射脈衝 的方法及裝置。這些非高斯型態之脈衝被稱為,,經過裁製的" 脈衝,因為其時間波形(temporal pr〇file)係藉由結合一個以 6 201208899 上的脈衝以產生單—脈彳私芬/ ^ 脈衝及/或先電式地調變脈衝而改造自 典型的尚斯波形。此產生一脈衝,其脈衝能量隨時間改變, 通常包含-或多個功率峰值,其中瞬間功率在脈衝持續時 間的-小部分增加至一大於脈衝平均功率之數值。此種經 過裁製的脈衝在高速率處理材料中可以有所效用,其不會 在材料周遭造成碎片或者過熱的問題。問題在於利用基本 上應用於高斯脈衝的標準方法量測諸如該等複雜脈衝的持 、’夸間可月匕產生異吊的結果。高斯脈衝持續時間之量測通 常是使用持續時間的半峰全幅值(full width at _ maximum; FWHM)量測。相對於此,利用積分平方法,如 描述於編號M58,739的美國專利L〇NG ufe印咖 SILICA ULTRAViOLET OPTICAL ELEMENTS(長壽命溶融 石英紫外線光學元件)之中者,發明人Memory,允許複雜 的時序形狀被量測並以一較具意義之方式進行比較。在此 專利之中,其利用以下公式量測脈衝持續時間 (J nndif 其中T⑴係一代表雷射脈衝時序形狀之函數。 關於可靠地並T重複地在經過陽極氧化之在呂上產生出 具有預定顏色及光學密度的標記的另一問題在於,以極易 取得的奈秒脈衝寬度固態雷射製造極深色標記所需的能量 足以對陽極氧化區造成損傷’此係—無法接受的結果。"黑 曰度或明7C度或顏色名稱均係相對性的用詞。以數量表 示顏色的一個標準方法係參考色度量測(c〇1〇rimetry)之^ΐΕ 糸統。此系統描述於 〇hn〇, γ.的"CIE Fundamentais f〇r c〇i〇r 201208899In the U.S. Patent No. 7,126,746, issued to the assignee of the present disclosure, the assignee of the present disclosure is hereby incorporated by reference. Included in this article. This patent discloses a method and apparatus for generating a laser pulse having a typical Gaussian time waveform produced by a temporal profile different from a diode-pumped state (DPSS) laser. These non-Gaussian pulses are called, tailored "pulses, because their temporal pr〇file is generated by combining a pulse on 6 201208899 to produce a single pulse. ^ Pulses and / or first modulated pulses are modified from the typical Shans waveform. This produces a pulse whose pulse energy changes over time, typically containing - or multiple power peaks, wherein the instantaneous power increases from a small fraction of the pulse duration to a value greater than the pulse average power. Such tailored pulses can be useful in high rate processing materials that do not cause debris or overheating problems around the material. The problem is to measure the results of such complex pulses, such as those of complex pulses, which are basically applied to Gaussian pulses. The measurement of the Gaussian pulse duration is usually measured using the full width at _ maximum (FWHM) of the duration. In contrast, the integrator method, such as the US patent L〇NG ufe SILICA ULTRAViOLET OPTICAL ELEMENTS, which is described in No. M58,739, is invented by Memory, allowing complex timing. The shape is measured and compared in a more meaningful way. In this patent, it uses the following formula to measure the pulse duration (J nndif where T(1) is a function of the shape of the laser pulse timing. With regard to reliable and T-repetitively produced on the anodized Another problem with color and optical density marking is that the energy required to make extremely dark marks with a very easy to obtain nanosecond pulse width solid state laser is sufficient to cause damage to the anodization zone. This is an unacceptable result. Black 或 or Ming 7C degrees or color names are relative terms. A standard method of expressing color by quantity is the reference color metric (c〇1〇rimetry). This system is described in 〇hn〇, γ."CIE Fundamentais f〇rc〇i〇r 201208899

Measurements(色彩量測的CIE基礎)”一文之中(IS&T NIpi6Measurements (CIE Foundation for Color Measurement)" (IS&T NIpi6

Conf,Vancouver,CN,2000 年 10 月 16-20 日,第 540-545 頁)。在此量測系統之中,達成一符合商業需求的黑色標記 需要小於或等於L*=40、a*=5以及b* = l〇之參數。此產生 一無可見灰度或彩度的中性黑色。在編號6,777,〇98的美國Conf, Vancouver, CN, October 16-20, 2000, pp. 540-545). Among the measurement systems, a black mark that meets commercial requirements is required to have parameters less than or equal to L*=40, a*=5, and b*=l〇. This produces a neutral black with no visible gray or chroma. In the United States number 6,777,〇98

專利 MARKING OF AN ANODIZED LAYER OF AN ALUMINIUM OBJECT(鋁質物件陽極氧化層之標記)之中, 务明人Keng Kit Yeo描述一種以黑色標記對經過陽極氧化 之鋁質物品進行標記的方法,該黑色標記位於一介於陽極 氧化區及鋁之間的疊層之中,因而與陽極氧化表面同樣耐 久。其中所述之標記被描述成具有深灰色或黑色之彩度, 且相較於未利用奈秒級红外線雷射脈衝標記過的部分顯得 稍為較不具光澤。此外,其必須清除紹的所有表面微粒, 例如,在磨光之後而在陽極氧化之前殘留的微粒。依據該 專利所請求的方法製做標記其不利性有以下二個原因··第 …以奈秒級脈衝建立符合商業需求的黑色標記傾向於對 :化層造成破壞;其次,磨光或其他處理之後跟隨的鋁的 清潔在流程中加入額外步驟’增加相關費用,並可能干擾 其它處理所需要的表面拋光。 所需要的,但前述技術未揭示的,係在經過陽極氧化 之1呂上製造出黑色或灰色或者彩色之標記的可靠且可重複 ^方法’其不需要-昂貴的飛秒雷射或者在製程令干擾到 氧化層或在表面備妥之後需要清潔。此外’其並未提供如 何在經過陽極氧化之紹的表面上可重複性地建立各種不同 201208899 顏色的資m,亦未徹底追查對於陽極氧化層的脫色或損傷 效應。故其有必要提出-種利用較低成本雷射可靠地並可 重複地在經過陽極氧化之紹上建立具有預定光學密度或灰 p皆及顏色之標記的方法,其不會對其上的氧化物造成不良 的傷害,且在陽極氧化之前不需要清潔。 【發明内容】 本心月之特色係以各種不同光學密度或灰階及顏色 之可看見標記加諸於經過陽極氧化處理之鋁質物品。此等 標記應該持久W且具有符合商t需求之外觀。此係藉由 利用雷射脈衝建立該等標記而達成,標記被建立於氧 化層下方的鋁的表面處,因此被氧化物所保護。該等雷射 脈衝建立符合商業需求之標記且未對氧化層造成明顯損 傷,從而使得該等標記經久耐用。其藉由控制產生及導控 雷射脈衝之雷射參數而在經過陽極氧化之鋁上建立耐久且 符合商業需求之標記。在本發明的一特色之中,雷射處理 系統被調構成以一可編程之方式產生具有適當參數之雷射 脈衝。在雷射標記進行時利用一流體流動抑止標記期間在 氧化層中的«傷,允許使用較高之能量,其產生較大範 圍之顏色及光學密度以及較高之生產量。 ΊΓ選擇以4進雷射標記經過陽極氧化之紹的可靠性及 可重複性的示範性雷射脈衝參數包含雷射種類、波長、脈 衝持續時間、脈衝重複率(repetiti〇n以⑷、脈衝數目、脈衝 月匕里、脈衝時序形狀、脈衝空間形狀以及焦斑(f〇cal邛 尺寸及形狀。進一步的雷射脈衝參數包含指定焦斑相對於 201208899 ^扣表面之位置以及導控雷射脈衝相對於物品的相對運 本發明之特色藉由利用取決於所用特定雷射脈衝來數 之範圍從肉眼幾乎無法察覺到黑色的光學密度加深陽極氧 ▲方的鋁的表面之顏色而建立耐久且符合商業需求之標 "=¾月之其他特色建立呈棕褐或金黃色彩的各種不同 光學密度之顏色’同樣地取決於所用的特定雷射脈衝參 數。、本發明之其他特色藉由對染色或著色之陽極氧化區進 行脫色或部分脫色,同時對下方的鋁加上或不加上標記, 以在經過陽極氧化之鋁上建立耐久且符合商業需求之標 記。其他特色在雷射處理期間使用一流體流動以降低對氧 化物之傷害。 為了達成依據本發明目的之前述及其他特色,以本文 所實施並寬廣陳述之形式’揭示一種用於在一經過陽極氧 化的I呂質樣品上建立-顏色及光學密度可選擇之可見標記 的方法,以及調構以執行該方法之裝置。本發明係一種用 於在經過陽極氧化之紹質樣本上建立一顏色及光學密度可 選擇之可見標記的方法及裳置。該方法包含提供一雷射標 記系統’其具有雷射、雷射光學模組以及有效連接至該雷 射以控制雷射脈衝參數的控制器以及具有儲存雷射脈衝參 數之控制器、選擇關聯預定顏色及光學密度之儲存雷射脈 衝參數、導控该雷射標記系統以產生具有關聯預定顏色及 光學密度之雷射脈衝參數之雷射脈衝,同時在物品被標記 時導控一流體流動。 201208899 【實施方式】 本發明之特色係以各種不同光學密度及顏色之可看見 標記,耐久性地、可選擇性地、可預測性地、且可重複性 地標記經過陽極氧化處理之鋁質物品。以有利之方式,其 使得該等標記出現於鋁的表面或其附近,並保持陽極氧化 層大致整無損以保護該表面和該等標記。以此方式做出 的‘ a己被稱為夾層標記(interiayer mark),因為其被製做於 形成陽極氧化區的氧化層下方的鋁的表面處或表面上。理 想情況下,氧化物在標記加入之後維持完整無損以保護標 記並提供機械性地毗連於相鄰檁記及非標記區域間之表 面。此外,該等標記應能夠可靠且可重複性地產生,意味 若需要具有特定顏色及光學密度之標記,則其知悉當以雷 射處理系統處理該陽極氧化紹之時將會產生預定結果之一 組雷射參數。其同時亦應理解,某些以雷射處理系統產生 的此種標記係看不見的。在此特色之中,該雷射處理系統 建立在一般觀看條件下不可看見的標記,但在例如當被紫 外光照射時的其他條件下變成可被看見。其應理解,此等 標記係被用以提供防盜標記或其他特殊標記。 本發明之一實施例使用經過調構之雷射處理系統以標 s己經過陽極氧化之鋁質物品。可以被調構成用以標記經過 陽極氧化之鋁質物品之示範性雷射處理系統係由位於 97229 ’ OR ’ portiand 之 Electr〇 Scientific 公司所 產製的 ESI MM5330 微加工系統(micr〇machining system)。 此系統係一採用二極體激發式Q型開關固態雷射之微加工 201208899 系統,其在30 KHz脈衝重複率、第二諧振倍增至5 32奈米 波長下具有5.7 W之平均功率。另一可以被調構成用以標記 經過陽極氧化之鋁質物品之示範性雷射處理系統係亦由位 於 97229,OR ’ Portland 之 Electro Scientific Industries 公 司所產製的ESI ML5900微加工系統。此系統採用之固態二 極體激發式雷射可以被組構成在上達5 Μ Η z的脈衝重複率 下發射出從大約355奈米(UV)到大約1064奈米(IR)之波 長。上述之任一系統均可以藉由加入適當之雷射、雷射光 學模組、部件處置設備及控制軟體而被調構成用以依據揭 示於本說明書中的方法在經過陽極氧化之紹的表面上可靠 地且可重複地產生標記。這些修改使得雷射處理系統能夠 在預定的速率及間距下將具有適當雷射參數的雷射脈衝導 控至預定地方之適當定位及承置的經過陽極氧化之鋁質物 上以建立具有預定顏色及光學密度的標記。此一經過調 構之系統之一示意圖顯示於圖1之中。 圖1顯示依據本發明一實施例之被調構成用以標記物 品之ESI ΜΜ5330微加工系統之示意圖。調構内容包含雷射 10 ’此在本發明一實施例之中係運作於i 064奈米波長之二 極體激發Nd:YV04固態雷射,由德國,Kaiserslautern的 Lumera laser GmbH公司製造的Rapid型號機組。此雷射選 擇性地利用一固態諧振頻率產生器將頻率倍增以使得波長 降低至532奈米或使頻率增加至三倍而將波長降低至355 奈米’從而分別產生可見光(綠色)或紫外線(uv)雷射脈衝。 此雷射10額定產生6瓦特之連續功率並具有1〇〇〇〖Hz的 12 201208899 最大脈衝重複率。此Φ ά …由 10與控制器20協同運作以產生 具有1皮秒至1,〇〇〇奉务,、姓 生 射脈衝12 TV a - 持續4間之雷射脈衝12。這些雷 射脈衝I 2可以疋尚斯刑士 士 .本與描, 、, 式或者疋特殊形狀或者是經由雷射 于模、·且14裁製以允許預 只疋才示s己施加。雷射朵座描知 14,與控制器20協同運作,道带射先予杈組 J運作導控雷射脈衝12以在物品18 或其附近形成雷射光斑物品18被固定…22 之上,其包含移動控制構件’與控制器 14協同運作以提供複合射―了尤子模‘.且 ^ 0 1〇 4 針束疋位能力。複合射束定位係在 物品18相對於雷射光斑μ移 移動之時,藉由控制器20導控 光學模組14中之操控構件而補償平纟22、雷射光斑 16或二者引發的相對運動,以將形狀標記於物品18之上的 功能。 “當雷射脈衝12被導控以在物品18之上或其附近形成 雷射光斑1 6之時,亦由雷射^ . - Λ 力田取射先學棋組14配合控制器20加 以塑形。雷射光學模組14控制雷射脈衝12之空間形狀, 其可以是高斯或特殊形狀。舉例而言,其可以使:"頂帽式 (top hat)"空間外形,其投送出在整個照射至被標記 光斑内具有均勻輕射劑量之雷射脈衝12。諸如此類的特殊 形塑形狀之空間形貌可以利用繞射光學構件造出。雷射脈 衝12亦被雷射光學模,组14中的光電式構件、彳操控鏡組 構件或振鏡(galvanometer)構件栅阻或導控。 雷射光斑16係指雷射脈衝12所形成的雷射光束之焦 斑。如前所述,雷射光斑16處的雷射能量分佈係取決於; 射光學模組14。此外,雷射光學模組14控制雷射光斑^ 13 201208899 的聚焦深度(depth of focus),或是量測平面遠離焦平面 (focal plane)時光斑失焦的速度。藉由控制聚焦深度,控制 益20可以導控雷射光學模組14以及平台22可重複地以高 精確度將雷射光斑16定位於物品丨8的表面處或其附近。 藉由將焦斑定位於物品表面的上方或下方以製做標記允許 雷射光束失焦特定程度,從而增加雷射脈衝照射之區域並 減少表面處的雷射能量密度(fluence)e由於光束腰徑之幾何 結構已知,將焦斑明確定位於物品實際表面之上或之下將 對光斑尺寸及能量密度提供進一步的精確控制。 圖2係顯微照片,其顯示利用大於奈秒脈衝而無流體 流動之先前技術雷射建立於經過陽極氧化之鋁3〇上之標 記。該陽極氧化區在標記區域34之中顯示清楚的裂縫痕跡 32 ’ 一個不良的、结果。_ 3顯示利用皮秒級雷射在同一形 式:經過陽極氧化之鋁36上製做出的同一顏色及光學密度 之標記38 ’其顯示並無裂痕。皮秒級雷射對經過陽極氧化 之紹質物品施加符合商業需求之黑色標記,且未對氧化層 造成損傷。商業上可接受之黑色料義成—個具有⑽色 度L*=40、a* = 5j_ b* = 1〇或更小之標記。使用皮秒級雷射 之另-優點在於其更加便宜、需要更少之維護以及通常比 先前技術飛秒級雷射具有遠遠較長的運作壽命。此外,本 發明之特色不需要在陽極氧化建立符合商業需求的標記之 前先清潔鋁的表面。 、° 本發明之一實施例在陽極氧化區下的經過陽極氧化之 紹上執行標記之施加。對於待產生的夾層標記,其雷射能 14 201208899 量密度定義為: F = E/s 其中E係雷射脈衝能量而s係雷射光斑面積,必須滿 足 fu<f<fs 其中Fii係基板/塗層交界面之雷射修改門檻值,此例中 係鋁/氧化鋁,而Fs係表面層或陽極氧化區之損傷門檻值。 Fu和Fs已然經由實驗獲得,且代表所選擇雷射使基板及表 面層開始受損之能量密度。對於1〇皮秒(ps)脈衝,實驗顯 示A1(鋁)的Fu對於皮秒綠光係〜〇13焦耳/平方公分而對於 皮秒IR則是〜0.2焦耳/平方公分,而Fs對於皮秒綠光係 〜0·18焦耳/平方公分而對於皮秒IR則是〜丨焦耳/平方公 分。在此等數值之間改變雷射能量密度產生不同顏色及光 學密度之標記。不同的脈衝持續時間及雷射波長將各自具 有對應的Fu及Fs數值。一組特定之雷射參數及經過陽極 虱化處理之物品的實際門檻值係經由實驗決定。標記時使 用一流體流動之優點係流體流動增加損傷門檻值Fs,從而 允4使用較尚之能置標記物品,此容許較高之生產量以及 較寬範圍之標記密度。Among the patents MARKING OF AN ANODIZED LAYER OF AN ALUMINIUM OBJECT (Knowledge of the anodized layer of aluminum objects), Keng Kit Yeo describes a method of marking an anodized aluminum article with a black mark. Located in a stack between the anodization zone and aluminum, it is as durable as an anodized surface. The indicia described therein are described as having a dark gray or black chroma and appear slightly less glossy than portions that have not been marked with nanosecond infrared laser pulses. In addition, it must remove all surface particles, for example, particles that remain after anodization after polishing. There are two reasons for making the mark according to the method requested by the patent. The first two steps are to establish a black mark that meets commercial requirements with a nanosecond pulse, which tends to cause damage to the layer; secondly, polishing or other processing The subsequent cleaning of the aluminum adds an extra step in the process to increase the associated costs and may interfere with the surface finish required for other processing. What is required, but not disclosed in the prior art, is a reliable and repeatable method of producing black or gray or colored markings on an anodized 1 'no need - expensive femtosecond laser or in process It is necessary to clean it if it interferes with the oxide layer or after the surface is ready. In addition, it does not provide a reproducible way to establish a variety of different colors for the 201208899 color on the anodized surface, nor does it thoroughly trace the discoloration or damage effects on the anodized layer. Therefore, it is necessary to propose a method for reliably and reproducibly establishing a mark having a predetermined optical density or gray color and color on an anodized film using a lower cost laser, which does not oxidize thereon. The object causes undesirable damage and does not require cleaning prior to anodization. SUMMARY OF THE INVENTION This heart is characterized by the addition of visible marks of various optical densities or gray scales and colors to anodized aluminum articles. These tags should be persistent and have a look that meets the needs of the quotient. This is achieved by the use of laser pulses to establish the marks, which are established at the surface of the aluminum below the oxide layer and thus protected by the oxide. These laser pulses establish a mark that meets commercial requirements without causing significant damage to the oxide layer, thereby rendering the marks durable. It establishes durable and commercially viable markings on anodized aluminum by controlling the laser parameters that generate and direct the laser pulses. In one feature of the invention, the laser processing system is configured to produce a laser pulse with appropriate parameters in a programmable manner. The use of a fluid flow to suppress the "injury" in the oxide layer during the marking of the laser allows the use of higher energy, which produces a greater range of color and optical density and higher throughput.示范Selective laser pulse parameters that select the reliability and repeatability of the 4-injection laser mark through anodization include laser type, wavelength, pulse duration, pulse repetition rate (repetiti〇n to (4), number of pulses , pulse month, pulse timing shape, pulse space shape and focal spot (f〇cal邛 size and shape. Further laser pulse parameters include the specified focal spot relative to the 201208899 ^ button surface and the pilot laser pulse The invention of the present invention is characterized by the use of a specific laser pulse depending on the number of specific laser pulses used to narrowly understand the color of the surface of the aluminum anodic aluminum from the optical density of the black eye. Other features of the demand "=3⁄4 month to create a variety of different optical density colors in brown or golden color 'depending on the specific laser pulse parameters used. Other features of the invention by dyeing or coloring The anodized zone is decolored or partially decolored, while the underlying aluminum is or is not labeled to pass through the anode oxygen A mark on the aluminum that is durable and meets commercial needs. Other features use a fluid flow during laser processing to reduce damage to oxides. To achieve the foregoing and other features in accordance with the purpose of the present invention, it is embodied and broadly stated herein. Form ' reveals a method for establishing a visible marker of color and optical density on an anodized Ilu sample, and a device configured to perform the method. The invention is for use in passing A method and a skirt for establishing a visible mark of color and optical density on an anodized sample, the method comprising providing a laser marking system having a laser, a laser optical module, and an effective connection to the mine a controller for controlling the parameters of the laser pulse and a controller having a parameter for storing the laser pulse, selecting a stored laser pulse parameter associated with a predetermined color and optical density, and guiding the laser marking system to generate an associated predetermined color and optical Laser pulse of density laser pulse parameters, while guiding a fluid flow when the item is marked 201208899 [Embodiment] The present invention features durable, selectively, predictably, and reproducibly labeled anodized aluminum articles with visible marks of various optical densities and colors. In an advantageous manner, it causes the indicia to appear on or near the surface of the aluminum and to keep the anodized layer substantially intact to protect the surface and the indicia. The 'a has been referred to as a mezzanine Institutional mark because it is made at or on the surface of the aluminum below the oxide layer forming the anodization zone. Ideally, the oxide remains intact after the mark is added to protect the mark and provide mechanical Adjacent to the surface between adjacent unmarked and unmarked areas. In addition, the marks should be able to be produced reliably and reproducibly, meaning that if a mark with a specific color and optical density is required, it is known to be a laser processing system. Processing the anodization will produce a set of laser parameters for a predetermined result. It should also be understood that some of the markings produced by laser processing systems are invisible. Among these features, the laser processing system establishes invisible marks under normal viewing conditions, but becomes visible when under other conditions, such as when illuminated by ultraviolet light. It should be understood that such indicia are used to provide anti-theft tags or other special indicia. One embodiment of the present invention uses a structured laser processing system to label anodized aluminum articles. An exemplary laser processing system that can be tuned to mark anodized aluminum articles is the ESI MM5330 micromachining system manufactured by Electr〇 Scientific, Inc., 97229' OR 'portiand. This system is a micromachined 201208899 system using a diode-excited Q-switched solid state laser with an average power of 5.7 W at 30 KHz pulse repetition rate and second resonance multiplication to 5 32 nm wavelength. Another exemplary laser processing system that can be tuned to mark anodized aluminum articles is also the ESI ML5900 micromachining system manufactured by Electro Scientific Industries, Inc., OR OR Portland, 97229. The solid-state diode-excited laser used in this system can be configured to emit a wavelength from about 355 nanometers (UV) to about 1064 nanometers (IR) at a pulse repetition rate of up to 5 Μ Η z. Any of the above systems can be configured to incorporate an appropriate laser, laser optical module, component handling device, and control software for use on an anodized surface in accordance with the methods disclosed in this specification. The marking is produced reliably and reproducibly. These modifications enable the laser processing system to direct laser pulses with appropriate laser parameters to a suitably positioned and placed anodized aluminum material at a predetermined rate and spacing to create a predetermined color and Marking of optical density. A schematic of one of the configured systems is shown in Figure 1. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an ESI ΜΜ 5330 micromachining system constructed to mark articles in accordance with an embodiment of the present invention. The configuration includes laser 10'. In one embodiment of the invention, a diode-operated Nd:YV04 solid-state laser operating at a wavelength of i 064 nanometers, a Rapid model manufactured by Lumera laser GmbH of Kaiserslautern, Germany. unit. The laser selectively utilizes a solid-state resonant frequency generator to multiply the frequency to reduce the wavelength to 532 nm or to triple the frequency and reduce the wavelength to 355 nm to produce visible (green) or ultraviolet light, respectively ( Uv) Laser pulse. This laser 10 is rated to produce 6 watts of continuous power and has a maximum pulse repetition rate of 12 08 Hz 12 201208899. This Φ ά ... cooperates with the controller 20 to produce a laser pulse 12 having a duration of 1 picosecond to 1, and a lifetime of a pulse of 12 TV a - for four. These laser pulses I 2 can be applied to a special shape or by laser, and are tailored to allow for pre-existing. The laser depiction 14 cooperates with the controller 20 to actuate the pilot laser pulse 12 to create a laser spot 18 on or near the article 18 to be fixed. It includes a mobile control component 'operating in conjunction with the controller 14 to provide a composite shot - a special mode'. and ^ 0 1〇4 needle beam clamping capability. The composite beam positioning compensates for the relative motion of the flat 22, the laser spot 16, or both by the controller 20 guiding the steering member in the optical module 14 as the article 18 moves relative to the laser spot. Movement, the function of marking the shape above the item 18. "When the laser pulse 12 is piloted to form a laser spot 16 on or near the article 18, it is also laser-assisted by the laser. The laser optical module 14 controls the spatial shape of the laser pulse 12, which may be Gaussian or a special shape. For example, it can be: "top hat" spatial shape, which is delivered A laser pulse 12 having a uniform light shot dose throughout the illuminated spot. The spatial shape of a particular shaped shape such as this can be created using a diffractive optical member. The laser pulse 12 is also laser optical mode, group The photoelectric component, the cymbal control mirror member or the galvanometer member is gated or guided. The laser spot 16 is the focal spot of the laser beam formed by the laser pulse 12. As mentioned above, The laser energy distribution at the laser spot 16 depends on the optical module 14. In addition, the laser optical module 14 controls the depth of focus of the laser spot ^ 201208899, or the measurement plane is far away. The speed at which the spot is out of focus at the focal plane. Controlling the depth of focus, Control Benefit 20 can direct the laser optics module 14 and the platform 22 to repeatedly position the laser spot 16 at or near the surface of the article 8 with high precision. By positioning the focal spot at Marking above or below the surface of the article allows the laser beam to be out of focus to a certain extent, thereby increasing the area illuminated by the laser pulse and reducing the radiance of the laser at the surface. e Due to the geometry of the beam waist diameter is known Determining the focal spot above or below the actual surface of the article will provide further precise control over spot size and energy density. Figure 2 is a photomicrograph showing prior art Rays using no more than nanosecond pulses without fluid flow The shot is created on the anodized aluminum 3 。 mark. The anodized area shows a clear crack trace 32 ' in the marked area 34. A bad result. _ 3 shows the use of picosecond lasers in the same form: The same color and optical density mark 38' made on the anodized aluminum 36 shows no cracks. The picosecond laser strikes the anodized article. Add a black mark that meets commercial requirements without causing damage to the oxide layer. A commercially acceptable black material is a mark having (10) chromaticity L*=40, a* = 5j_b* = 1〇 or less. Another advantage of using a picosecond laser is that it is cheaper, requires less maintenance, and generally has a much longer operational life than prior art femtosecond lasers. Furthermore, the features of the present invention do not require anodization. The surface of the aluminum is cleaned prior to establishing the markings in accordance with commercial requirements. An embodiment of the invention performs the application of the marking on the anodizing under the anodizing zone. For the interlayer marking to be produced, the laser energy 14 201208899 The quantity density is defined as: F = E/s where E is the laser pulse energy and s is the laser spot area, which must satisfy fu<f<fs where the Fii substrate/coating interface is laser modified threshold value. In the case of aluminum/alumina, the Fs is the damage threshold of the surface layer or the anodization zone. Fu and Fs have been experimentally obtained and represent the energy density at which the selected lasers begin to damage the substrate and surface layer. For a 1 〇 picosecond (ps) pulse, the experiment shows that A1 (aluminum) Fu is ~12 joules/cm 2 for picosecond green light and ~0.2 joules/cm 2 for picosecond IR, while Fs is for picoseconds The green light system is ~0·18 joules/cm 2 and for picosecond IR it is ~丨 joules/cm 2 . Changing the laser energy density between these values produces markers of different colors and optical densities. Different pulse durations and laser wavelengths will each have a corresponding Fu and Fs value. The actual threshold for a particular set of laser parameters and the anodized material is determined experimentally. The advantage of using a fluid flow when marking is that the fluid flow increases the damage threshold Fs, thereby allowing the use of a higher capacity marker, which allows for higher throughput and a wider range of marker densities.

本發明之一貫靶例藉由調整雷射光斑之位置,從位於 鋁質物品的表面處變成位於鋁的表面上方或下方之明確距 離處,而精確地控制在該鋁質物品的表面處的雷射能量密 度。圖4顯示雷射脈衝焦斑40及其鄰近處之光束腰徑之一 示意圖。光束腰徑由表面42表示,其係雷射脈衝由fwHM 15 201208899 方法在該雷射脈衝沿其行進的光軸44上量測的空間能量分 佈之直徑。直徑48代表當雷射處理系統將雷射脈衝聚焦於 s玄表面上方距離(A-Ο)處時銘的表面上的雷射脈衝光斑尺 寸》直徑46代表當雷射處理系統將雷射脈衝聚焦於該表面 下方一距離(B-0)處時鋁的表面上的雷射脈衝光斑尺寸。 除了符合商業需求之黑色,對物品施加具有灰階數值 之標記亦有效用。圖5及圖6顯示由本發明實施例所做出 的施加於經過陽極氧化之紹上的一連串灰階標記。標記的 光學密度範圍從幾乎與背景無法分辨到全黑。依據本發明 之一特色,每一灰階標記均可以被表示成dE色度量測數 值之特有三元數組,L*、a*及b*。本發明之一特色將每一 預定灰階數值連結一組雷射參數,其依照命令可靠地且可 重複地在經過陽極氧化之鋁上產生預定之灰階數值標記。 其亦應注意,肉眼可能看起來無法察覺的標記,當以廣譜 可見光之外的頻率照射時,例如紫外光,可以變成可被看 見。 圖5顯不本發明一實施例在經過陽極氧化之鋁7〇上製 造出的黑色標記6〇、62、64、以及66。此等標記6()、62、 64'以及66具有範圍從小於L*=4〇、a* = 5及b* = i〇到完全 透月的CIE色度’使之成為符合商業需求之標記。該等標 。己的另一特徵在於’由於它們係位於無損傷的陽極氧化之 下’故其在-寬廣的視角範圍内均具有一致的外觀。利用 先前技術方法所做出的標記,由於對於陽極氧化層之損 傷,故傾向於隨著視角的改變在外觀上具有很大的差異。 16 201208899 特別是,當利用先前技術奈秒級脈衝進行標記之時,施加 足夠雷射脈衝能量至表面以做出深色標記對陽轰& 損傷,此使得標記之外觀隨著視角變 ^ i% 依據本發明一特 無論標記顏色多⑨,均不會損傷陽極氧化 視角不同而在外觀上有所變化。此等改良 之S己係利用以下雷射參數造成: 雷射種類The consistent target of the present invention precisely controls the thunder at the surface of the aluminum article by adjusting the position of the laser spot from a surface located at the surface of the aluminum article to a clear distance above or below the surface of the aluminum article. Shooting energy density. Figure 4 shows a schematic of one of the beam waists of the laser pulse focal spot 40 and its vicinity. The beam waist diameter is represented by surface 42 which is the diameter of the spatial energy distribution measured by the fwHM 15 201208899 method on the optical axis 44 along which the laser pulse travels. The diameter 48 represents the laser pulse spot size on the surface of the surface when the laser processing system focuses the laser pulse at a distance above the s-surface (A-Ο). The diameter 46 represents when the laser processing system focuses the laser pulse. The size of the laser pulse spot on the surface of the aluminum at a distance (B-0) below the surface. In addition to the black color that meets commercial needs, it is also effective to apply a mark having a grayscale value to the article. Figures 5 and 6 show a series of gray scale marks applied to an anodized process by an embodiment of the present invention. The optical density of the mark ranges from almost indistinguishable to the background to all black. In accordance with one feature of the present invention, each grayscale marker can be represented as a unique ternary array of dE color metric values, L*, a*, and b*. One feature of the present invention combines each predetermined gray scale value with a set of laser parameters that reliably and reproducibly produce predetermined gray scale value marks on the anodized aluminum in accordance with the command. It should also be noted that indicia that may appear undetectable to the naked eye, when illuminated at frequencies other than broad-spectrum visible light, such as ultraviolet light, may become visible. Figure 5 shows black indicia 6, 62, 64, and 66 made on anodized aluminum 7 crucibles in accordance with one embodiment of the present invention. These marks 6(), 62, 64' and 66 have a range from less than L*=4〇, a*=5 and b*=i〇 to full moon-transparent CIE chromaticity' making it a mark of commercial need . The standard. Another feature is that 'because they are located under anodic oxidation without damage', they have a consistent appearance over a wide viewing angle range. The mark made by the prior art method tends to have a large difference in appearance with a change in the viewing angle due to damage to the anodized layer. 16 201208899 In particular, when marking with a prior art nanosecond pulse, apply sufficient laser pulse energy to the surface to make a dark mark to the yang+ damage, which causes the appearance of the mark to change with the viewing angle. % According to the present invention, no matter the color of the mark is 9, it does not damage the anodization angle of view and changes in appearance. These improved S are caused by the following laser parameters: Laser type

光斑尺寸 焦點tfj度 表 0-5毫米,4^:間隔〇 用於彩色及灰階標記之雷射參數 ‘ δ己60、62、64、66之光學密度範圍從相對於未標 的鋁幾乎無法察覺的60到全黑的66。介於該二個極端之 的灰Ρ白光學岔度64、66係藉由移動焦斑使其更接近物品 :生@加能量密度從而產生更深色之標記。焦斑在鋁 面上方的向度之改變從零開始,即最深色光學密度標 6 2之情幵$,j^i 之中由右至左每標記64、66遞增500 : 米之增量,έ士 φ认士 、·、° I於表面上方5毫米處的最淺色標記6〇。; 17 201208899 意以位於鋁的表面上方4.5至1 _5毫米之焦斑所產生的標記 64顯現出棕褐或金黃色,而以焦斑一毫米或更短者產生之 標記62及66則顯現出灰色或黑色。維持此對於雷射焦斑 距工作表面距離的精確控制加上將其他雷射參數維持於正 常雷射處理的公差之内,使其得以在經過陽極氧化之鋁上 製做出具有預定顏色及光學密度之雷射標記。此外,最深 色標δ己顯示小於L*=40、a* = 5而b* = 10之CIE色度,使其 成為符合商業需求之黑色標記。 本發明之另一特色決定具有灰階之外顏色之標記與皮 秒雷射脈衝參數之間的關係。灰階之外的顏色可以以二種 不同方式產生於經過陽極氧化之銘上。第一,其可以在光 學密度之範圍中產生金黃色調。其係藉由在鋁及氧化物塗 層間的交界面處做出變化而產生此顏色。仔細選擇雷射脈 衝參數將產生預定之金黃顏色而不致損傷氧化物塗層。圖5 亦顯示由本發明之特色產生之金黃或棕褐的各種不同色 彩。 經過陽極氧化之鋁的雷射標記亦可以藉由使用IR波 雷射脈衝以對鋁施加標記的本發明之一特色達成。此特丨 藉由以一種不同方式改變鋁的表面處之雷射能量密度而』 生不同灰階密度之標記。如上所述,其可以藉由將焦斑^ 位於鋁的表面的上方或下方以改變表面處之能量密度而造 出灰階。控制灰階的第二種方式係藉由在標記預定圖案之 時改變照射點距(bite size)或線條間距以改變位於鋁的表面 處之總劑量。…射點距係指調整雷射脈衝光束相對於 18 201208899 紹的表面移動之速率或者改變脈衝重複率或者二者均改 變:此導致在紹上連續雷射脈衝撞擊位置間的距離改變。 改變線條間距係指調整標記線條之間的距離以達成各種不 :程度之交疊。圖6顯示具有一標記72的陣列之一紹質物 。口 74。此等標記72被安排於_包含六行四列的陣列之中。 :六行代表鋁的表面上方範圍從〇(頂列)到5毫米(底列)的 六:焦斑Z向高度。四列則代表由上到下的5、ι〇、及 〇微米之間距。其應可以從圖6看出,改變焦斑之2向高 度及改變雷射脈衝之間距能夠以可預測之方式產生從小於 -40、a* = 5、且b* = 1〇到幾近透明之間的任何預定光 學密度之灰階’從而在經過陽極氧化之在呂上產生符合 需求之標記。 ,'rt & ----- — DPSS Nd:YV〇4 /反长 T〇64奈米 -- 版1知持續時严| 1 0皮秒 1SJ Ά — 尚斯 _., 语射功率 2.5 W -— 直複率 BQ Οτ- ----- ^00 KHz —— 5 0毫米/秒 Η此 ~II ------ 5 ' 10、20、50 微米 尤斑尺寸 5 5 -1 3 0微米 尤斑尺寸 ------ 高斯 --— 展點而度 ~~二--- 〇 - 5毫米’每步間隔1毫米 表2 :用於灰階IR標記之雷射脈衝參數 可以利用皮秒雷射脈衝施加至經過陽極氧化之鋁上之 19 201208899 -第二種型態之標記係藉由被染色陽極氧化區之脫色所造 成的顏色對比上之改變。在一微觀的尺度上,陽極氧化區 係多孔性的,且將輕易地接受許多種染劑。再次參見圖3 , 此經過陽極氧化之鋁之顯微照片顯示表面之多孔性質。用 以標記染色後的經過陽極氧化之鋁之雷射脈衝可以:取決 於波長及脈衝能 化區變成透明, 量,在標§己鋁時將染色脫除,使得陽極氧 從而將下方的鋁之上的標記顯現出來。利 用較南之能量密度, 其有可能同時進行染色脫除以及先前 段落所述之以黑色、灰階或彩色標記陽極氧化層下方之 鋁。能量較低之脈衝可以部分脫除陽極氧化區之染色,使 其呈半透明,從而對其下之鋁標記局部上色。最後,較長 波長的脈衝可以在未造成陽極氧化區之脫色下在鋁上施加 具有符合商業需求的黑色或灰階顏色之標記。圖7顯示染 色後的經過陽極氧化之鋁質物品,具有利用可見光(532奈 米)雷射脈衝製做而成之標記。注意陽極氧化區中的染色在 接文雷射脈衝的區域中被脫除。圖8顯示同一種染色後的 經過陽極氧化之鋁質物品’具有利用IR(1〇64奈米)雷射脈 衝製做而成之標記。注意陽極氧化區並未被IR雷射脈衝脫 色’故未能使得下方的鋁質顏色穿越原始氧化物的半透明 狀態而顯現出來。 本發明之另一特色係有關於利用皮秒雷射以經過著色 之陽極氧化區對經過陽極氧化之鋁施加雷射標記。由於陽 極氧化通常形成一多孔性之表面,故可能引入染劑,其改 '避銘之外觀。此等染劑可以是不透明或半透明,允許不同 20 201208899 數量之入射光抵達銘,且經由陽極氧化區被反射回來。圖^ 顯示-經過陽極氧化之㈣物品8G,其依據本發明之―特 色在陽極氧化區之中具有粉紅染色並被製做成—標記82的 陣列。顏色之產生係藉由脫除氧化層中的染色,而下方的 .鋁顯現出從原有(銀)色到一系列經過雷射標記的色彩從棕 褐到灰色最後到黑色之顏色。這些色彩係藉由改變紹的表 面處的雷射脈衝之能量密度而產生。圖中的四列代表將雷 射脈衝之間距從ίο.微米改變到50微米,而行則代表將距 表面的焦斑距離從0.0毫米改變到5.0毫米。此等雷射參數 在所有的情況下均使得覆蓋鋁的氧化物中的染色脫除,而 讓銘上的標記得以顯現出來。雷射標記光學密度之範圍從 透明到CIE色度小於L*=40、a* = 5、b* = l〇。用以產生此等 標記之雷射參數顯示於表3之中。 雷射種類 DPSS Nd:YOV4 — 波長 532奈米 脈衝持續時間 10皮秒 脈衝時序 尚斯 雷射功率 4W 重複率 — 500 KHz — 迷度 50毫米/秒 間距 10.微米 光斑尺寸 10-400微米 光斑尺寸 尚斯 焦點高度 0-5毫米 表3:用於可見氧化物脫色之雷射參數 21 201208899 陽極氧化區染色之脫除係與頻率相關的。如圖7•所示, 532奈米之雷射脈衝即使在最低的能量密度亦能脫除陽極 氧化區之染色。另一方面,IR雷射波長,在染色後的經過 陽極氧化之紹上建立標記’且對於多數的半透明染劑顏色 並不會脫除其染色。圖8顯示經過陽極氧化之鋁質物品 1〇〇,具有粉紅染色以及以IR雷射脈衝製做而成之標記 102。該等標記從半透明到黑色’且係藉由改變焦斑到表面 之距離以及藉由改變間距二者,以修改雷射能量密度而製 成。圖中的六行代表使雷射脈衝焦斑與鋁的表面之間的距 離從5.5毫米(右側)變化到零(左側)。圖中的四列則代表使 雷射脈衝間距從10微米變化到5〇微米。用以產生此等標 記之雷射參數顯示於表4之中。 雷射種類 DPSS Nd:YOV4 波長 1064奈米 脈衝持續時間 10圣秒 脈衝時序 南斯 雷射功率 4W 重複率 500 KHz 速度 5〇毫米/秒 間距 1 〇微米 光斑尺寸 10-400微米 光斑尺寸 1¾斯 焦點高度 〇-5毫米 表4 :用於ir著色陽極氧化區標記之雷射參數 針對532奈米(綠光)雷射波長之陽極氧化區染色脫 22 201208899 除、對鋁進行標記以及使表面燒蝕之間的關係顯示於圖9 之中。針對5 3 2奈米(綠光)雷射脈衝配合給定於表i及3内 的參數,圖9顯示以焦耳/平方公分(J〇ules/cm2)為單位的陽 極氧化區脫色(Fb)、標記陽極氧化區下之鋁(Fu)、以及表面 燒蝕(Fs)的能量密度門檻值。就本發明之一特色而言,532 奈米雷射脈衝產生的數值係Fb = 〇1焦耳/平方公分、Fu = 〇.13焦耳/平方公分、以及Fs = 〇18焦耳/平方公分◊圖 顯示配合給定於表2及4内的參數之1〇64奈米(IR)雷射脈 衝之以焦耳/平方公分為單位的能量密度門檻值。就本發明 之一特色而言,1064奈米(lR)雷射脈衝之以焦耳/平方公分 為單位的能量密度門檻值係Fu = 〇 2焦耳/平方公分以及Η 1.0焦耳/平方公分。注意其並無針對陽極氧化區脫色之門 捏值,因為IR波長雷射脈衝在雷射能量密度大到足以損傷 覆蓋的陽極氧化區之前,尚無法開始對陽極氧化區脫色。 其亦應注意Fb、Fu& Fs的精確數值將取決於所使用的特 定雷射及光學模組。對於—特定之處理配置以及待進行標 記之物品’其應以實驗的方式決定,並儲存於控制器之中. 以供後續使用。 在本發明之另-實施例中,經過調構之雷射處理系统 之可編程特性使得經過陽極氧化之鋁質物品可以標記 合商業需求之標記圖案。如圖u所示,在此特色之中,二 圖案^皮轉換成—數位表示方式ιΐ2,其被分解成 數Λ 114之中的每一項目116均包含一位置或Spot size focus tfj deg. 0-5 mm, 4^: spacing 雷 for laser parameters of color and gray scale markings δ The optical density range of δ, 60, 62, 64, 66 is almost undetectable from unlabeled aluminum 60 to all black 66. The gray-white optical mobility 64, 66 between the two extremes is closer to the item by moving the focal spot: the raw @plus energy density produces a darker mark. The change in the directionality of the focal spot above the aluminum surface starts from zero, that is, the darkest optical density standard 6 2, j$, j^i increases from right to left by 64, 66 per mark 64, 66 increments, Gentleman φ 士士, ·, ° I is the lightest color mark 6 于 at 5 mm above the surface. 17 201208899 It is intended that the mark 64 produced by the focal spot of 4.5 to 1 _5 mm above the surface of the aluminum appears brown or golden yellow, while the marks 62 and 66 produced by the focal spot of one millimeter or less appear. Gray or black. Maintaining this precise control of the distance from the laser focal spot to the working surface plus maintaining other laser parameters within the tolerances of normal laser processing allows it to be fabricated on anodized aluminum to have a predetermined color and optical density Laser mark. In addition, the deepest color scale δ has shown a CIE chromaticity less than L*=40, a* = 5 and b* = 10, making it a black mark that meets commercial needs. Another feature of the invention determines the relationship between the indicia of the color outside the grayscale and the picosecond laser pulse parameters. Colors outside the grayscale can be produced in an anodized manner in two different ways. First, it can produce a golden hue in the range of optical density. This color is produced by making changes at the interface between the aluminum and oxide coatings. Careful selection of the laser pulse parameters will produce a predetermined golden color without damaging the oxide coating. Figure 5 also shows various colors of golden or brown produced by the features of the present invention. The laser marking of the anodized aluminum can also be achieved by the use of an IR wave laser pulse to mark the aluminum. This feature produces a mark of different gray scale densities by varying the laser energy density at the surface of the aluminum in a different manner. As described above, it is possible to create a gray scale by changing the energy density at the surface by placing the focal spot above or below the surface of the aluminum. The second way to control the gray scale is to change the total dose at the surface of the aluminum by changing the bite size or line spacing when marking the predetermined pattern. ...the spot distance refers to adjusting the rate of surface movement of the laser pulse beam relative to 18 201208899 or changing the pulse repetition rate or both: this results in a change in the distance between successive laser pulse impact locations. Changing the line spacing means adjusting the distance between the marked lines to achieve a variety of degrees of overlap. Figure 6 shows one of the arrays having a mark 72. Port 74. These indicia 72 are arranged in an array of six rows and four columns. : Six rows represent the upper surface of the aluminum range from 〇 (top column) to 5 mm (bottom column). Six: focal spot Z-direction height. The four columns represent the distance between the top, bottom 5, ι, and 〇 micrometers. It should be seen from Figure 6 that changing the 2-point height of the focal spot and changing the distance between the laser pulses can be produced in a predictable manner from less than -40, a* = 5, and b* = 1 〇 to nearly transparent. The gray scale ' between any predetermined optical density' thus produces an indication of compliance with the anodized. , 'rt & ----- — DPSS Nd: YV〇4 / anti-long T〇64nm-- version 1 knows the duration of time | 1 0 picoseconds 1SJ Ά — Shangs _., speech power 2.5 W -— Direct rate BQ Οτ- ----- ^00 KHz —— 50 mm/sec ~ this~II ------ 5 ' 10, 20, 50 μm Special spot size 5 5 -1 3 0 micron spot size ------ Gauss--- spread point ~~ two--- 〇- 5 mm' interval 1 mm per step Table 2: Laser pulse parameters for gray-scale IR marking can Applying a picosecond laser pulse to the anodized aluminum 19 201208899 - The second type of mark is a change in color contrast caused by the discoloration of the dyed anodized zone. On a microscopic scale, the anodization zone is porous and will readily accept many dyes. Referring again to Figure 3, this photomicrograph of anodized aluminum shows the porous nature of the surface. The laser pulse for marking the dyed anodized aluminum can be: depending on the wavelength and the pulse energy-producing region becomes transparent, the amount is removed, and the anodic oxygen is used to lower the aluminum underneath. The mark on it appears. Using a lighter density in the south, it is possible to simultaneously perform dye removal as well as aluminum under the anodized layer marked with black, grayscale or color as described in the previous paragraph. The lower energy pulse can partially remove the dyeing of the anodization zone, making it translucent, thereby locally coloring the underlying aluminum mark. Finally, longer wavelength pulses can be applied to the aluminum with a black or grayscale color that meets commercial requirements without causing discoloration of the anodization zone. Figure 7 shows the anodized aluminum article after dyeing, which is marked with visible (532 nm) laser pulses. Note that the dyeing in the anodization zone is removed in the region of the incoming laser pulse. Figure 8 shows that the same dyed anodized aluminum article has a mark made by IR (1〇64 nm) laser pulse. Note that the anodization zone is not discolored by the IR laser pulse, so it does not appear to cause the underlying aluminum color to cross the translucent state of the original oxide. Another feature of the invention relates to the application of a laser marking to anodized aluminum using a picosecond laser to pass a colored anodization zone. Since anodic oxidation usually forms a porous surface, it is possible to introduce a dye which changes its appearance. These dyes can be opaque or translucent, allowing a different amount of incident light to arrive at the mark and reflected back through the anodization zone. Figure 2 shows an anodized (4) article 8G having an array of indicia 82 having a pink coloration in the anodization zone in accordance with the present invention. The color is produced by removing the dye from the oxide layer, while the underlying aluminum exhibits a color from the original (silver) color to a series of laser-marked colors from brown to gray to black. These colors are produced by varying the energy density of the laser pulses at the surface. The four columns in the figure represent the change in the distance between the laser pulses from ίο. to 50 μm, while the line represents the change in the focal spot distance from the surface from 0.0 mm to 5.0 mm. These laser parameters in all cases result in the removal of the dye in the oxide covering the aluminum, allowing the markings on the inscription to be revealed. The laser marker optical density ranges from transparent to CIE chromaticity less than L*=40, a* = 5, b* = l〇. The laser parameters used to generate these markers are shown in Table 3. Laser type DPSS Nd: YOV4 — Wavelength 532 nm Pulse duration 10 picosecond pulse timing Shangsi laser power 4W repetition rate — 500 KHz — faint 50 mm / sec pitch 10. Micron spot size 10-400 μm spot size Suns focus height 0-5 mm Table 3: Laser parameters for visible oxide decolorization 21 201208899 Anodic oxidation zone dye removal is frequency dependent. As shown in Figure 7•, the 532 nm laser pulse removes the dyeing of the anodic oxidation zone even at the lowest energy density. On the other hand, the IR laser wavelength establishes a mark on the anodized after dyeing and does not remove the dye for most translucent dye colors. Figure 8 shows an anodized aluminum article 1 with a pink stain and a mark 102 made with IR laser pulses. The marks are made from translucent to black' and are modified by varying the distance from the focal spot to the surface and by varying the pitch to modify the laser energy density. The six rows in the figure represent the change in the distance between the laser pulse focal spot and the surface of the aluminum from 5.5 mm (right side) to zero (left side). The four columns in the figure represent the variation of the laser pulse spacing from 10 microns to 5 microns. The laser parameters used to generate these marks are shown in Table 4. Laser type DPSS Nd: YOV4 Wavelength 1064 nm Pulse duration 10 Saint seconds pulse timing Nanss laser power 4W Repeat rate 500 KHz Speed 5 〇 mm / sec pitch 1 〇 Micrometer spot size 10-400 μm Spot size 13⁄4 斯 focus Height 〇-5 mm Table 4: Laser parameters for ir-colored anodized zone markings for 532 nm (green) laser wavelengths of anodizing zone dyeing off 22 201208899 In addition, marking aluminum and ablating the surface The relationship between them is shown in Figure 9. For the 5 3 2 nanometer (green) laser pulse with the parameters given in Tables i and 3, Figure 9 shows the anodization decolorization (Fb) in joules per square centimeter (J〇ules/cm2). Mark the energy density threshold of aluminum (Fu) and surface ablation (Fs) under the anodization zone. In one aspect of the invention, the value of the 532 nm laser pulse is Fb = 〇1 joules/cm 2 , Fu = 〇13 joules per square centimeter, and Fs = 〇18 joules per square centimeter. The energy density threshold in joules per square centimeter of the 1 〇 64 nm (IR) laser pulse given the parameters given in Tables 2 and 4. In one aspect of the invention, the energy density threshold of Joules per square centimeter for a 1064 nanometer (lR) laser pulse is Fu = 〇 2 joules per square centimeter and Η 1.0 joules per square centimeter. Note that there is no threshold for the decolorization of the anodization zone because the IR wavelength laser pulse cannot begin to decolorize the anodization zone until the laser energy density is large enough to damage the covered anodization zone. It should also be noted that the exact values of Fb, Fu & Fs will depend on the particular laser and optical module used. For the specific processing configuration and the item to be marked, it should be determined experimentally and stored in the controller for later use. In still other embodiments of the invention, the programmable nature of the conditioned laser processing system allows the anodized aluminum article to be labeled with commercially desirable marking patterns. As shown in Figure u, in this feature, the two patterns are converted into a digital representation ι ΐ 2, which is decomposed into a number Λ 114 each of which contains a position or

^ 4的表不方式,具有一顏色及光學密度關聯至每L 23 201208899 位置。列表Π4被儲存於控制器2〇之中。控制器2〇將雷 射參數連結列表114中的每一項目116,當該等雷射參數被 以命令之形式傳送至雷射1〇、光學模組14及移動控制平台 22之時,將致使雷射1〇發出一或多個雷射脈衝,照射 到鋁質物品18的表面16或其附近。該等脈衝將建立一具 有預定顏色及光學密度之標記。當標記正被建立時,藉由 依據儲存於列表中的位置相對於鋁質物品18移動雷射脈衝 12,使得預定範圍顏色及光學密度之標記以預定之圖案被 製做於經過陽極氧化之紹的表面之上。 在本發明的另一實施例之中,著色之陽極氧化區被圖 案化於先前圖案化的標記之上以呈現額外的顏色及光學密 度。在此特色之中,灰階圖案被建立於經過陽極氧化之鋁 質物品之上。該物品接著被塗覆以光阻塗層,其可以藉由 曝光至雷射脈衝而被顯影。經過灰階圖案化及光阻塗覆後 之物。口被置入雷射處理系統之中,並進行校準對齊使得系 統可以準確地將雷射脈衝施加至已經加諸於物品上的圖 索。所使用的光阻係-種被稱為”負型"光阻劑者,其中暴露 ^雷射輻射之區域將被移除’而未暴露之區域將留存於物 品上繼續後續之處ί里。殘留的《阻保護物品表面使其免於 被染色,巾已被曝光且之後被移除的陽極氧化區域將被染 上預定之顏色。㈣極氧化層被設計成半透明以容許光線 穿過陽極氧化區而到達下方的圖案並被反射回來穿過陽極 氧化區’⑼而產生具有選定顏色及光學密度之有色圖案。 此有色陽極氧化區若有需要亦可以利用本發明其他特色所 24 201208899 揭示之技術予以脫色,卩產4具有肖定透明度之預定顏 色。此顏色可以施加於其下圖案的整個區#,或者以逐點 的方式為之’僅受限於雷射系統之解析度,通常在ig到_ 微米㈣圍之内。此動作可以重覆以產生多重顏色之最 覆。在本發明之-特色中,其以多重顏色疊覆網格之形二 施加陽極氧化區顏色疊覆,諸如貝爾圖案(Β^ _咖)。 藉由將灰階圖案設計成配合顏色疊覆網格,可以將一耐久 性、符合商業需求之全彩影像建立於經過陽極氧化之鋁質 物品之上。 圖12a至圖12i顯示用以利用二種顏色建立此種顏色疊 覆的一連串步驟。在圖12a之中,一鋁質物品118具有一透 :陽極氧化層120以及先前依據本發明之其他特色施加之 標記122。一負型光阻124被施加至透明陽極氧化層12〇之 表面。在圖12b之中,雷射脈衝126對光阻124之區域128、 13〇進行曝光。在圖12c之中,未曝光之光阻134在光阻處 理之後留存下來,但已曝光之光阻被移除,留下處理後之 光阻層134中的空位132。圖12d顯示基礎陽極氧化層12〇 中在處理後之光阻層134中的空位132下方的區段136中 的陽極氧化區被染以顏色。完整無損的處理後之光阻層134 防止陽極氧化區獲致顏色,除了處理後之光阻層134中已 被移除的區域132之外。圖12e顯示物品丨丨8在處理後之光 阻層移除之後包含具有顏色部分之陽極氧化區136之基礎 陽極氧化區12〇以及先前施加之標記122之相對位置。 圖12f顯示一物品118具有基礎陽極氧化區12〇,包含 25 201208899 顏色部分1 36以及一第二光阻層i 38。圖丨2g顯示此光阻之 第二疊層1 38被雷射脈衝142照射,使得區域140被曝光。 圖12h顯示具有基礎陽極氧化區丨2〇之物品1丨8進行被移 除光阻140下方陽極氧化區之染色以及殘留光阻138移除 之後之情況。此使得完整無損的基礎陽極氧化層包含著色 區域136、144,位於先前標記區域122之上。圖12i顯示 後續雷射脈衝146被用以選擇性地對該鋁質物品先前經過 陽極氧化及染色之部分進行脫色,以產生額外的預定顏色 或光學密度。本發明此特色所述之處理造成一彩色圖案疊 覆於一灰階圖案之上,以可編程的圖案形式產生具有耐久 性且符合商業需求之顏色及光學密度之範圍寬廣之標記。 在本發明的另一實施例之卞,可以使用特定之圖案將 著色陽極氧化區建立於經過陽極氧化之鋁質物品之上,產 生觀看時呈全彩影像之外觀。在此特色之中,其利用本文 所述之技術將一影像之圖案代表形式施加至表面上。顏色 染劑以例示於圖12a至圖12i之方式引入,但該等染劑引入 陽極氧化基礎層之圖案係被設計成將灰階表示方式轉換成 全彩的方式。此一圖案之一實例係一貝爾濾光鏡(Β_ 仙",圖中未顯示),其將紅色、綠色及藍色遽光鏡元素並 列於-圖案之中,使得眼睛對紅色、綠色及藍色元素之感 知融合成其光學密度與著色陽極氧化區渡光鏡下方的灰階 標記相關之單-顏色,從而產生全彩影像或圖案之外觀。 先阻可以是負型或正型光阻,且曝光該光阻之圖案可以藉 由遮罩產生,諸如使詩電路或半導體應用之中者,或^ 26 201208899 由一電子裝置直接寫入,或者藉由諸如喷墨之技術直接沉 積’或者藉由雷射直接燒名虫。 在本發明另一實施例之中,經過調構之雷射標記系統 148顯示於圖13之中,其包含一喷嘴164以及流體供應 166。圖13顯示經過調構之雷射標記系統ι48,其包含一雷 射150’雷射150發出沿一雷射光束路徑152行進之雷射脈 衝,穿越光束操控光學模組(beamsteering()ptics)154,於此 處被導控以照射一固定於一移動平台162上之物品158,所 有動作均受一控制器16〇之控制。喷嘴164由流體供應ι66 供予流體,並在雷射丨5〇被激發並沿著雷射光束路線i 52 發出脈衝之時或發出脈衝左右的時間,將一流體流動.ι68 導控至位於被雷射光束152照射位置處或其附近之物品 158。在一些實施例之中,喷嘴164係安裝至移動控制設備 170 ’其焚控制器160之導控而相對於物品J 58移動喷嘴i 64 並因此移動流體流動168,從而將流體流動168導控至雷射 光束152照射於物品158上的位置附近。在其他實施例之 中,物品158之表面可以在雷射加工時被流體淹覆,排除 配合雷射光束1 52移動喷嘴164之需要。 此流體流動168冷卻物品之表面並增加可施加至物品 15 8上位置處的能量密度大小。此增加被標記的特定的經 過陽極氧化之鋁質物品之Fs,因此允許更多能量密度被用 以在鋁和氧化物的交界面處改造鋁的表面,同時亦允許更 大的能量密度以及因而達成的更大生產量。在此實施例之 中採用水做為上述之流體,然而其亦可以使用空氣或者 27 201208899 諸如氮或氬等其他氣體或其他流體。位於表面上的流體流 動之目的在於防止陽極氧化區之溫度抵達明顯損傷開始產 生之溫度。針對特定雷射參數充分降低溫度之流體流動速 率係依經驗決定,且將隨使用之流體以及陽極氧化區及金 屬物品之相關熱傳導特性而有所差異。 雷射標記進行時將流體輸送至物品表面的方式取決於 所知用之流體。若流體流動係相對高速流體中之一小股串 流,諸如空氣或惰性氣體’則喷嘴164可能必須機械式地 耗接至光束操控光學模组154以維持流體流冑168與雷射 光束路徑152之間的配合。在一諸如水之流體的情形,物 品的表面可以被淹覆,從而對—大片區域提供熱防護,此 種狀況下不需要在物品i 58進行雷射標記時移動喷嘴1 Μ。 此種冷卻效應允許用以建立標記的雷射參數改變以容 許更強烈的顏色標記、幅度更大的陽極氧化區脫色以及增 加的生產® ’同時限制熱應力對陽極氧化區造成之損傷。 圖Ua顯示一經過陽極氧化處理之物品18〇,其具有已染色 之陽極氧化區182。該陽極氧化區的—部分已,然經過雷射脫 色1 84 ’且導致陽極氧化區之裂縫i %。所使用的雷射參數 列於表5之中。 28 201208899 雷射種類 DPSS Nd:YOV4 波長 532奈米 脈衝#續時間 10皮秒 脈衝時序 南斯 雷射功率 2W 重複率 200 KHz ~ 速度 100毫米/秒 間距 10微米 — 光斑尺寸 10-400 微米 — 光斑尺寸 向斯 焦點南度 0-5毫米 表5:雷射賊色參數 在圖14a之中,其利用表5之中所列的雷射參數對染色 的陽極氧化區進行脫色。在此實施例之中’其選擇雷射參 數,使其達成高功率、雷射穩定運作、以及提供良好系統 生產量之標記速率。焦點高度隨後被調整以對雷射能量密 度提供細微的控制。此例中,〇.38焦耳/平方公分冬雷射能 里毪度被用以對陽極氧化區進行脫色,其同時亦產生裂縫 1 86,此係無法接受的。對於此特別的樣品,所有超過〇 u 焦耳/平方公分的能量密度均導致陽極氧化區之破裂。因 此’就此㈣的樣品而·r ’陽極氧化區無法被有效率地脫 色且不使得陽極氧化區產生裂縫。圖14b顯示運用本發明 一實施例對陽極氧化區進行脫色之結果,其亦使用表5所 列的雷射參數。經過陽極氧化處理之物品190已被染色1 92 且”中的一部分1 94已在存在一流體的情況下被脫色。注 29 201208899 意在此樣品中,雖然利用〇 2 S隹Ή· / τ 用υ·25焦耳/平方公分的能量密度進 行脫色處理’但並未造成可看見的裂縫。其藉由在雷射脫 色期間以2-3毫米的水淹覆該物品而避免掉裂縫。 可以被本發明之實施例妥善運用的雷射參數包含使用 波長範圍從汛到uv之雷射,特別是從大約106微米到大 約3^5奈米。該雷射運作於2%,基本上位於i以到_w 的範圍之中’較佳的實施方式係從^到i2w之間。脈衝 持續時間之範圍係從!皮秒到咖奈秒㈣,或者較佳之 實施方式係從i皮秒到奈秒。雷射重複率係位於從】 KHz到100顧2的範圍之中,&者較佳之實施方式係從ι〇 KHz到1 MHz。雷射能量密度範圍從大約〇1 χ 1〇.6焦耳/ 平方公分到100.0焦耳/平方公分,或者特別是從1〇 χ 1〇·2 焦耳/平方公分到10.0焦耳/平方公分。雷射光束相對於被標 記物品移動之速度之範圍從丨毫米/秒到1〇米/秒,或者較 佳之實施方式係從1 00毫米/秒到i米/秒。物品表面上雷射 脈衝相鄰列之間的間距或間隔範圍從1微米到1〇〇〇微米, 或者較佳之實施方式係從10微米到1〇〇微米。於物品表面 處量測的雷射脈衝光斑尺寸範圍從1 〇微米到1 〇〇〇微米, 或者較佳之實施方式係從50微米到500微米。相對於物品 表面之雷射脈衝焦斑位置之範圍從_ 10毫米到+ i 0毫米,或 者特別是從〇到+ 5毫米。 前述實施例之細節可以在未脫離本發明之基本原理下 進行許多修改,此對於習於斯藝者應係顯而易見的。本發 明之範疇因此應由以下之申請專利範圍界定之。 201208899 【圖式簡單說明】 圖 1, 雷射處理系統。 圖 2, 以先前技術奈秒脈衝製做出之標記。 圖 3, 以皮秒脈衝製做出之標記。 圖 4, 射束腰徑。 圖 5, 位於經過陽極氧化之鋁上的灰階標記。 圓 6, 位於經過陽極氧化之鋁上的標記。 圖 7 ’染色後的、加上可見光標記之經過陽極氧化之鋁 圖 8, 染色後的、加上IR標記之經過陽極氧化之鋁 圖 9, 顯示可見光雷射脈衝門檻值之關係圖。 圖 10, 顯示IR雷射脈衝門檻值之關係圖。 谓 11, 轉換成雷射參數的影像資料。. 圖 12a -i ’施加至一鋁質物品之著色陽極氧化區。 圖 13, 具有流體流動之雷射處理系統。 圖 14a ’陽極氧化區脫色顯示裂縫。 圖 14b 極氣化區脫色顯示使用流體則無裂縫。 [ 主要 元件符號說明】 10 雷射 12 雷射脈衝 14 雷射光學模組 16 雷射光斑 18 物品 20 控制器 . 22 平台 31 201208899 30 經過陽極氧化之鋁 32 裂縫 34 標記區域 36 經過陽極氧化之鋁 38 標記 40 焦斑 42 光束腰徑表面 44 光軸 46 直徑 48 直徑 60-66 標記 70 經’過陽極氧化之鋁 72 標記 74 在呂質物品 80 紹質物品 82 標記 100 經過陽極氧化之鋁質物品 102 標記 110 圖案 112 數位表示方式 114 列表 116 列表中的項目 118 在呂質物品 120 透明陽極氧化層 32 201208899 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 158 160 162 164 166 168 標記 光阻層 雷射脈衝 光阻區域 光阻區域 光阻層中的空位 光阻層 空位下方的區段 第二光阻層 第二光阻層中的區域 雷射脈衝 著色區域 著色區域 雷射標記系統 雷射 雷射光束路徑 光束操控光學模組 物品 控制器 移動平台 喷嘴 流體供應 流體流動 移動控制設借 33 170 201208899 180 經 過 陽極氧化處 理 之 物 品 182 已 染 色之 陽極 氧 化 區 184 經 過 雷射 脫色 之 區 域 186 裂 縫 190 經 過 陽極 氧化 處 理 之 物 品 192 已 染 色區 域 194 流 體 存在 下被 脫 色 之 區 域 Fb 陽 極 氧化 區脫 色 的 能 量 密度 門 檻· 值 Fu 標 記 陽極 氧化 區 下 之 鋁 的能 量 密 度門檻值 Fs 表 面 燒触 的能 量 密 度 門檻值 34The ^4's table does not have a color and optical density associated with each L 23 201208899 location. The list Π4 is stored in the controller 2〇. The controller 2 〇 connects each item 116 in the laser parameter linkage list 114 when the laser parameters are transmitted as commands to the laser 1 , optical module 14 and the mobile control platform 22 The laser emits one or more laser pulses that illuminate the surface 16 of the aluminum article 18 or its vicinity. These pulses will create a mark with a predetermined color and optical density. When the mark is being created, the laser beam 12 is moved relative to the aluminum article 18 in accordance with the position stored in the list such that the predetermined range of color and optical density marks are made in a predetermined pattern for anodization. Above the surface. In another embodiment of the invention, the colored anodized regions are patterned over previously patterned indicia to exhibit additional color and optical density. Among these features, the grayscale pattern is built on an anodized aluminum article. The article is then coated with a photoresist coating that can be developed by exposure to a laser pulse. After grayscale patterning and photoresist coating. The port is placed in the laser processing system and aligned for alignment so that the system can accurately apply a laser pulse to the map that has been applied to the item. The photoresist system used is called "negative" "resist, where the area exposed to the laser radiation will be removed' and the unexposed areas will remain on the item and continue to follow. The residual "protectively protects the surface of the article from being dyed, the anodized area where the towel has been exposed and then removed will be dyed with a predetermined color. (4) The polar oxide layer is designed to be translucent to allow light to pass through. The anodization zone reaches the underlying pattern and is reflected back through the anodization zone '(9) to produce a colored pattern having a selected color and optical density. This colored anodization zone can also utilize other features of the invention if desired 24 201208899 The technique is decolorized, and the product 4 has a predetermined color with a transparent transparency. This color can be applied to the entire area of the lower pattern, or in a point-by-point manner, which is limited only by the resolution of the laser system, usually Within ig to _ micrometer (4). This action can be repeated to produce the primaries of multiple colors. In the feature of the present invention, it is anodized in the form of multiple color overlapping grids. Color overlays, such as the Bell pattern (Β^_咖). By designing the grayscale pattern to match the color overlay grid, a durable, commercially available full-color image can be built on anodized aluminum. Above the article. Figures 12a through 12i show a series of steps for establishing such a color overlay using two colors. In Figure 12a, an aluminum article 118 has a permeation: anodized layer 120 and previously in accordance with the present invention. Other features are applied to the mark 122. A negative photoresist 124 is applied to the surface of the transparent anodized layer 12A. In Figure 12b, the laser pulse 126 exposes the regions 128, 13 of the photoresist 124. In Figure 12c, the unexposed photoresist 134 remains after the photoresist treatment, but the exposed photoresist is removed leaving the vacancies 132 in the treated photoresist layer 134. Figure 12d shows the underlying anodized layer The anodization region in the region 136 below the vacancy 132 in the treated photoresist layer 134 is colored in color. The intact photoresist layer 134 prevents the anodization region from being colored, except after treatment. Photoresist layer 134 Out of the region 132 that has been removed. Figure 12e shows the article 丨丨8 comprising a base anodization region 12 of the anodization region 136 having a color portion after removal of the treated photoresist layer and the previously applied indicia 122 Figure 12f shows an article 118 having a base anodization zone 12, comprising 25 201208899 color portion 136 and a second photoresist layer i 38. Figure 2g shows the second stack 1 38 of the photoresist being The laser pulse 142 is illuminated such that the region 140 is exposed. Figure 12h shows the article 1 丨 8 having the underlying anodization region 进行8 after the removal of the anodization region under the photoresist 140 and the removal of the residual photoresist 138 Happening. This causes the intact underlying anodized layer to contain colored regions 136, 144 overlying the previously marked regions 122. Figure 12i shows that subsequent laser pulses 146 are used to selectively decolorize the previously anodized and dyed portions of the aluminum article to produce an additional predetermined color or optical density. The process described in this feature of the present invention causes a color pattern to be overlaid on a gray scale pattern to produce a wide range of markers of durable and commercially desirable color and optical density in a programmable pattern. In another embodiment of the invention, a colored pattern of anodized regions can be created on the anodized aluminum article using a particular pattern to produce a full color image for viewing. Within this feature, a pattern representation of an image is applied to the surface using the techniques described herein. The colorants are introduced in the manner illustrated in Figures 12a through 12i, but the pattern in which the dyes are introduced into the anodized base layer is designed to convert the gray scale representation to full color. An example of this pattern is a Bell filter (Β _ 仙 ", not shown), which aligns the red, green and blue 遽 mirror elements in the - pattern so that the eyes are red, green and The perception of the blue element merges into a single-color associated with the gray-scale mark beneath the anodic oxidation zone of the colored anodized area, resulting in the appearance of a full-color image or pattern. The first resistance may be a negative or positive photoresist, and the pattern exposing the photoresist may be generated by a mask, such as in a circuit or semiconductor application, or directly written by an electronic device, or Direct deposition by techniques such as inkjet or direct burning of insects by laser. In another embodiment of the invention, a structured laser marking system 148 is shown in FIG. 13 and includes a nozzle 164 and a fluid supply 166. Figure 13 shows a modulated laser marking system ι 48 that includes a laser 150' laser 150 that emits a laser pulse traveling along a laser beam path 152, traversing the beam steering optics module (beamsteering() ptics) 154 Here, it is guided to illuminate an item 158 fixed to a mobile platform 162, all of which are controlled by a controller 16A. The nozzle 164 is supplied with fluid by the fluid supply ι 66 and is controlled to be located when the laser 丨 5 〇 is excited and pulsed along the laser beam path i 52 or a pulse is applied. The laser beam 152 illuminates an item 158 at or near the location. In some embodiments, the nozzle 164 is mounted to the mobile control device 170's control of the incineration controller 160 to move the nozzle i 64 relative to the article J 58 and thereby move the fluid flow 168 to direct the fluid flow 168 to Laser beam 152 is illuminated near the location on article 158. In other embodiments, the surface of the article 158 may be flooded by the fluid during laser processing, eliminating the need to cooperate with the laser beam 152 to move the nozzle 164. This fluid flow 168 cools the surface of the article and increases the amount of energy density that can be applied to the location on the item 158. This increases the Fs of the particular anodized aluminum article that is marked, thus allowing more energy density to be used to modify the surface of the aluminum at the interface of aluminum and oxide, while also allowing for greater energy density and thus Achieved greater production. Water is used as the fluid described above in this embodiment, however it is also possible to use air or other gases such as nitrogen or argon or other fluids. The purpose of the fluid flow on the surface is to prevent the temperature of the anodized zone from reaching the temperature at which the apparent damage begins. The rate of fluid flow that substantially lowers the temperature for a particular laser parameter is empirically determined and will vary with the fluid used and the associated heat transfer characteristics of the anodized and metallic articles. The manner in which fluid is delivered to the surface of the article as it proceeds is dependent on the fluid being used. If the fluid flow is a small stream of relatively high velocity fluid, such as air or inert gas, the nozzle 164 may have to be mechanically consuming to the beam steering optics module 154 to maintain the fluid flow 168 and the laser beam path 152. The cooperation between. In the case of a fluid such as water, the surface of the article can be flooded to provide thermal protection to a large area, in which case it is not necessary to move the nozzle 1 在 when the item i 58 is laser marked. This cooling effect allows for changes in the laser parameters used to establish the mark to allow for more intense color marking, greater anodic oxidation zone decolorization, and increased production' while limiting thermal damage to the anodized zone. Figure Ua shows an anodized article 18 crucible having a dyed anodization zone 182. A portion of the anodization zone has been subjected to laser decolorization 1 84 ' and results in a crack i % of the anodization zone. The laser parameters used are listed in Table 5. 28 201208899 Laser type DPSS Nd: YOV4 Wavelength 532 nm pulse #Continuation time 10 picosecond pulse timing Nansi laser power 2W repetition rate 200 KHz ~ speed 100 mm / sec pitch 10 micron - spot size 10-400 micron - spot Dimensions to S-focus South 0-5 mm Table 5: Laser thief color parameters in Figure 14a, which uses the laser parameters listed in Table 5 to decolorize the dyed anodization zone. In this embodiment, it selects the laser parameters to achieve high power, stable laser operation, and a marker rate that provides good system throughput. The focus height is then adjusted to provide fine control over the laser energy density. In this case, 〇.38 joules/cm 2 of winter laser energy is used to decolorize the anodized zone, which also produces cracks 1 86, which is unacceptable. For this particular sample, all energy densities in excess of 〇 u joules per square centimeter resulted in cracking of the anodization zone. Therefore, the anodized region of the sample of (4) cannot be efficiently decolored and does not cause cracks in the anodization region. Figure 14b shows the results of decolorization of the anodization zone using an embodiment of the invention, which also uses the laser parameters listed in Table 5. The anodized article 190 has been dyed 1 92 and a portion of 1 94 has been bleached in the presence of a fluid. Note 29 201208899 In this sample, although 〇2 S隹Ή· / τ is used能量·25 joules/cm 2 of energy density for decolorization treatment' but does not cause visible cracks. It avoids cracks by flooding the article with 2-3 mm of water during laser bleaching. DETAILED DESCRIPTION OF THE INVENTION The well-used laser parameters include the use of lasers having wavelengths ranging from 汛 to uv, particularly from about 106 microns to about 3^5 nm. The laser operates at 2%, basically at i The preferred embodiment among the ranges of _w is from ^ to i2w. The pulse duration ranges from ! picoseconds to daiseconds (four), or the preferred embodiment is from i picoseconds to nanoseconds. The laser repetition rate is in the range from kHz to 100 kHz, and preferred embodiments are from ι〇KHz to 1 MHz. The laser energy density ranges from approximately χ1 χ1〇.6 joules/ Square centimeters to 100.0 joules per square centimeter, or especially from 1〇χ 1 • 2 joules per square centimeter to 10.0 joules per square centimeter. The speed at which the laser beam moves relative to the marked item ranges from 丨 mm/sec to 1 〇 m/sec, or a preferred embodiment is from 100 mm/sec. Up to i m/s. The spacing or spacing between adjacent columns of laser pulses on the surface of the article ranges from 1 micron to 1 micron, or preferably from 10 micron to 1 micron. The measured laser pulse spot size ranges from 1 〇 micron to 1 〇〇〇 micron, or preferably from 50 micron to 500 micron. The laser pulse focal spot position relative to the surface of the article ranges from _ 10 Mm to + i 0 mm, or in particular from 〇 to + 5 mm. The details of the foregoing embodiments can be modified without departing from the basic principles of the invention, which should be apparent to those skilled in the art. The scope shall therefore be defined by the scope of the following patent application. 201208899 [Simple description of the diagram] Figure 1. Laser processing system. Figure 2, Marked by the prior art nanosecond pulse system. Figure 3, Marked by the second pulse. Figure 4. Beam waist diameter. Figure 5. Gray scale mark on anodized aluminum. Circle 6, on the anodized aluminum. Figure 7 'Dyeed Adding the anodized aluminum to the visible mark, Figure 8, and the anodized aluminum with the IR mark, Figure 9, shows the relationship between the threshold of the visible laser pulse. Figure 10 shows the IR laser pulse. The relationship between the threshold values, that is, the image data converted into laser parameters. Fig. 12a - i ' applied to the colored anodized area of an aluminum article. Figure 13. Laser processing system with fluid flow. Figure 14a 'Decoloration of the anodized zone shows cracks. Figure 14b Decolorization of the extreme gasification zone shows no cracks when using fluid. [Main component symbol description] 10 Laser 12 Laser pulse 14 Laser optical module 16 Laser spot 18 Item 20 Controller. 22 Platform 31 201208899 30 Anodized aluminum 32 Crack 34 Marked area 36 Aluminized aluminum 38 Mark 40 Focal spot 42 Beam waist surface 44 Shaft 46 Diameter 48 Diameter 60-66 Mark 70 by 'anodized aluminum 72 Mark 74 in Lu goods 80 Selected items 82 Marked 100 Anodized aluminum Item 102 Mark 110 Pattern 112 Digital representation 114 List 116 Item 118 in the list Transparent material 120 transparent anodized layer 32 201208899 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 158 160 162 164 166 168 Marking photoresist layer Laser pulse resisting area Photoresist area Photoresist layer in the photoresist layer under the vacancy layer Second resist layer Second area in the second photoresist layer Laser pulse colored area Colored area laser Marking system laser laser beam path beam steering optical module item controller mobile platform nozzle Fluid supply fluid flow movement control 33 170 201208899 180 Anodized article 182 Abatted anodized zone 184 Laser decolored zone 186 Crack 190 Anodized article 192 Stained zone 194 Fluid is present Decolorization zone Fb Anodization zone energy density threshold value · value Fu Marked the energy density of aluminum under the anodization zone Threshold value Fs Surface energy density threshold of burnt exposure 34

Claims (1)

201208899 七、申請專利範圍: 1' 種用於在經過陽極氧化處理之物品上建立具有預 定性質之標記的方法,包含: 提供具有可編程雷射脈衝參數之雷射標記系統以及在 該經過陽極氧化處理之物品上提供一流體; 决疋在該流體存在下與建立具有該預定性質之該標記 相關聯之特疋雷射脈衝參數;、以及 導控該雷射標記系統以在該流體位於該經過陽極氧化 處理之物品上時利用該決定之特定雷射脈衝參數標記該經 過陽極氧化處理之物品,從而建立具有該預定性質之該標 記0 士申》月專矛j範圍第i項的方法,其中該經過陽極氧 化處理之物品係經過陽極氧化處理之鋁。 3.如申請專利範圍帛"頁的方法,其中該預定性質包 含尺寸 '形狀、位置、顏色以及光學密度。. 4.如申請專利範圍 數包含脈衝寬度、波長 能量密度、光斑尺寸、 第1項的方法,其中該雷射脈衝參 、脈衝數目、脈衝時序形狀、脈衝 光斑形狀以及焦斑。 5. 如申請專利範圍第1項的方法,其中該流體係水。 6. 如申請專利範圍第1項的方法,其中係以-流動之 形式提供該流體。 士申月專利範圍第6項的方法,其中該流體流動被 相對於β玄物。口移動以維持該流體與該雷射脈衝間之一關 係0 35 201208899 8.如申請專利範圍第卜員的方法,其中該標記係藉由 對該經過陽極氧化處理之物品染色及選擇性地脫色而產 生0 ,如申請專利範圍第4項的方法,其中該脈衝寬度之 範圍係從大約1皮秒到大約〖〇〇〇奈秒。 10. 如申請專利範圍第4項的方法,其中該波長之範圍 係從大約10.6微米到大約355奈米。 11. 如申明專利範圍帛4項的方法,其中該脈衝數目之 範圍係從1到大約1 〇 〇 〇 〇個脈衝。 12. 如中請專利範圍第4項的方法,其中該脈衝時序形 狀係高斯型。 13. 如中請專利範圍第4項的方法,其中該脈衝時序形 狀係裁製型。 14.如中請專利範㈣4項的方法,其中該脈衝能量密 度之範圍係從U x 1G、耳/平方公分卜到ι〇〇 焦耳/平方公分。 範 15.如申請專利範圍第4項的 圍係從大約1 0微米到大約丨〇〇〇 方法,其中該光斑尺寸之 微米。 方法,其中該光斑形狀係 16.如申請專利範圍第4項的 高斯或形塑形狀的其中之一。 如中請專利範圍第4項的方法,其中該焦斑係聚焦 於該經過陽極氧化處理之物品的表面處、表面上方或表面 下方其中之一。 18. 如申請專利範圍第3項的 方法,其中該預定光學密 36 201208899 度係等於或小於大約L*=4〇、a* = 5和b* = i〇。 19·如中請專利範圍第3項的方法,其中該默顏色係 白色、黑色、透明、灰色、栌说A〜1 才不褐色(tan)或金黃色(gold)的其 中之-0 20. -種用以在經過陽極氧化處理之物品上產生具有 預定性質之標記的雷射標記的裝置,包含: 雷射’其用以產生雷射脈衝; 雷射光學模組,其用以修改及導控該雷射脈衝; 平台’其用以承載並定位該經過陽極氧化處理之物品; 流體,其用以自該經過陽極氧化處理之物品吸收熱; 以及 控制器,其用以存取特定雷射脈衝參數並與該雷射、 雷射光學模組以及平台協同運作,依據該特定雷射脈衝參 數產生及導控該雷射脈衝以照射至該經過陽極氧化處理之 物品,同時該流體自該蠖渦鸱 目忑▲過陽極氧化處理之物品吸收該雷 射脈衝所產生之熱,從而產生具有該預定性質之該標記。 &如申請專利範圍第20項的裝置,其中該經過陽極 氧化處理之物品係經過陽極氧化處理之鋁。 22.如中請專利範圍第2G項的裝置,纟中該預定性質 包s尺寸、形狀、位置、顏色以及光學密度。 23_如申請專利範圍第2〇項的裝置,其中該雷射脈衝 脈衝寬度、波長、脈衝數目、脈衝時序形狀、脈 衝此里达度、光斑尺寸、光斑形狀以及焦斑。 认如中請專利範圍第2〇項的裝置,其中該流體係水。 37 201208899 25.如申請專利範圍第2〇項的裝置,其中係以一流動 之形式提供該流體。 26·如申請專利範圍第25項的裂置,其中該流體流動 被相對於該物品移動以維持該流體與該雷射脈衝間之一關 係。 2'如申請專利範圍第20項的裝置,其中該標記係藉 由對該經過陽極氧化處理之物品染色及選擇性地脫色而產 生0 28. 如申請專利範圍第23項的裝置 之範圍係從大約1皮秒到大約1〇〇〇奈秒 29. 如申請專利範圍第23項的震置 圍係從大約10.6微米到大約3 5 5奈米。 30. 如申請專利範圍第23項的裝置 之範圍係從1到大約1 〇〇〇〇個脈衝。 31. 如申請專利範圍第23項的裝置 形狀係高斯型。 32. 如申請專利範圍第23項的裝置 形狀係裁製型。 33. 如申請專利範圍第23項的 ^ 又置 I ee邙队1SJ月& J 密度之IlL圍係從I .0 X 1 〇·6隹耳/羋士 \ ,、、、斗/千方公分到1〇.〇焦耳/平^ 公分。 34. 如申請專利範圍第23項 幻屐置,其中該光斑尺τ 之範圍係從大約10微米到大約1〇〇〇微米。 ' 35. 如申請專利範圍第23項 幻裒置,其中該光斑形法 其中該脈衝寬度 其中該波長之範 其中該脈衝數目 其中該脈衝時序 其中該脈衝時片 其中該脈衝能j 38 201208899 係南斯或形塑形狀的其中之一 β 3 6 女 • Q申請專利範圍第23項的裝置,其中該焦斑係聚 焦於β亥經過陽極氣 处里之物品的表面處、表面上方或表 面下方其中之一。 的裝置,其中該預定光學 #=5 和 b*=10。 .如申请專利範圍第22項 密度係等於或小於大約L*=40、a ^ *申凊專利範圍第22項的裝置,#中該預定顏色 係白色黑色、透明、灰色、棕褐色或金黃色的其中之一。 39.如申請專利範圍帛20 g的裝置,《中該標記係藉 由對該經過陽極氧化處理之物品染色及選擇性地脫色而產 生。 / 40·如ΐ請專利範圍帛20項的裝置,其中該雷射參數 係被選擇以一具有不同光學密度以形成一影像之預定圖案 在该經過陽極氧化處理之物品上產生該標記。 41·如申請專利範圍第40項的裝置,其中藉由選擇性 地移除一光阻層以曝光陽極氧化區,並進行染色,且選擇 性地對該經過曝光、染色之陽極氧化區進行脫色,以將著 色之該陽極氧化區施加於該影像上,從而產生一彩色影像。 八、圖式: (如次頁) 39201208899 VII. Patent Application Range: 1' A method for establishing a mark having a predetermined property on an anodized article, comprising: providing a laser marking system with programmable laser pulse parameters and anodizing the same Providing a fluid on the treated article; determining a characteristic laser pulse parameter associated with establishing the mark having the predetermined property in the presence of the fluid; and directing the laser marking system to locate the fluid at the passage Determining the anodized article by using the determined specific laser pulse parameter on the anodized article, thereby establishing a method having the predetermined property of the mark i terminology of the mark The anodized article is anodized aluminum. 3. The method of claiming a "page, wherein the predetermined property comprises a size 'shape, position, color, and optical density. 4. The method of claiming a pulse width, a wavelength energy density, a spot size, and a first term, wherein the laser pulse parameter, the number of pulses, the pulse timing shape, the pulse spot shape, and the focal spot. 5. The method of claim 1, wherein the system water. 6. The method of claim 1, wherein the fluid is provided in a flow-through manner. The method of claim 6, wherein the fluid flow is relative to the beta metaphys. Mouth movement to maintain a relationship between the fluid and the laser pulse. 0 35 201208899 8. The method of claim 2, wherein the marking is by dyeing and selectively decolorizing the anodized article The method of claim 4, wherein the pulse width ranges from about 1 picosecond to about 〇〇〇 nanosecond. 10. The method of claim 4, wherein the wavelength ranges from about 10.6 microns to about 355 nm. 11. The method of claim 4, wherein the number of pulses ranges from 1 to about 1 〇 〇 〇 pulses. 12. The method of claim 4, wherein the pulse timing shape is Gaussian. 13. The method of claim 4, wherein the pulse timing shape is tailored. 14. The method of claim 4, wherein the pulse energy density ranges from U x 1G, ear/square centimeter to ι joule/square centimeter. The method of claim 4, wherein the circumference of the range is from about 10 micrometers to about 丨〇〇〇, wherein the spot size is micrometers. The method wherein the spot shape is one of a Gaussian or shaped shape as in claim 4 of the patent application. The method of claim 4, wherein the focal spot is focused on one of the surface of the anodized article, above or below the surface. 18. The method of claim 3, wherein the predetermined optical density 36 201208899 degrees is equal to or less than about L*=4〇, a*=5, and b*=i〇. 19. The method of claim 3, wherein the color is white, black, transparent, gray, and AA~1 is not brown (tan) or gold (gold). a device for producing a laser mark having a predetermined property on an anodized article, comprising: a laser 'for generating a laser pulse; a laser optical module for modifying and guiding Controlling the laser pulse; a platform 'for carrying and positioning the anodized article; a fluid for absorbing heat from the anodized article; and a controller for accessing the specific laser The pulse parameter is coordinated with the laser, the laser optical module, and the platform, and the laser pulse is generated and guided according to the specific laser pulse parameter to illuminate the anodized article, and the fluid is from the raft Vortex ▲ The anodized article absorbs the heat generated by the laser pulse to produce the mark having the predetermined property. &A device as claimed in claim 20, wherein the anodized article is anodized aluminum. 22. The apparatus of claim 2, wherein the predetermined property comprises a size, a shape, a position, a color, and an optical density. 23_ The device of claim 2, wherein the laser pulse width, wavelength, number of pulses, pulse timing shape, pulse radiance, spot size, spot shape, and focal spot. A device of the second aspect of the patent, wherein the system water is used. 37 201208899 25. The device of claim 2, wherein the fluid is provided in a flowing form. 26. The rupture of claim 25, wherein the fluid flow is moved relative to the article to maintain a relationship between the fluid and the laser pulse. 2' The device of claim 20, wherein the marking is produced by dyeing and selectively decolorizing the anodized article. 28. The scope of the device of claim 23 is Approximately 1 picosecond to about 1 nanosecond. 29. The seismic perimeter of claim 23 is from about 10.6 microns to about 35 5 nm. 30. The device as claimed in item 23 of the patent scope ranges from 1 to about 1 pulse. 31. The device shape as in claim 23 is Gaussian. 32. The shape of the device as claimed in item 23 of the patent application is tailored. 33. If you apply for the patent scope of item 23, and set the I ee邙 team 1SJ month & J density of IlL enclosure from I.0 X 1 〇·6 隹 ear / gentleman \ ,,,, bucket / thousand Centimeters to 1 〇. 〇 joules / flat ^ cm. 34. As claimed in claim 23, wherein the spot size τ ranges from about 10 microns to about 1 inch. 35. The method according to claim 23, wherein the spot shape method is wherein the pulse width is a range of the wavelength of the pulse number, wherein the pulse timing is the pulse time period, wherein the pulse time piece of the pulse energy can be j 38 201208899 One of the shapes of the shape or shape of the β 3 6 female Q patent, wherein the focal spot is focused on the surface of the article in the anode gas, above or below the surface. one. Device, wherein the predetermined optics #=5 and b*=10. If the density of the 22nd item of the patent application is equal to or less than about L*=40, a ^ * claim 22, the predetermined color is white black, transparent, gray, tan or golden yellow. One of them. 39. For a device having a patent range of 帛20 g, the mark is produced by dyeing and selectively decolorizing the anodized article. The apparatus of claim 20, wherein the laser parameter is selected to produce the indicia on the anodized article in a predetermined pattern having a different optical density to form an image. 41. The device of claim 40, wherein the anodized region is exposed by selective removal of a photoresist layer and dyed, and the exposed, dyed anodized region is selectively decolored And applying the colored anodized region to the image to produce a color image. Eight, the pattern: (such as the next page) 39
TW100109645A 2010-08-30 2011-03-21 Method and apparatus for reliably laser marking articles TW201208899A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/871,619 US8379678B2 (en) 2010-02-11 2010-08-30 Method and apparatus for reliably laser marking articles

Publications (1)

Publication Number Publication Date
TW201208899A true TW201208899A (en) 2012-03-01

Family

ID=46763374

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109645A TW201208899A (en) 2010-08-30 2011-03-21 Method and apparatus for reliably laser marking articles

Country Status (1)

Country Link
TW (1) TW201208899A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2615381C1 (en) * 2015-09-21 2017-04-04 Владимир Ефимович Рогалин Method for laser marking of product surface of aluminium or its alloy with oxide outer layer
CN107107639A (en) * 2014-12-19 2017-08-29 Bsh家用电器有限公司 Method and home appliances part for manufacturing the home appliances part with specific color
US10214441B2 (en) 2012-10-12 2019-02-26 Ihi Corporation Cutting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214441B2 (en) 2012-10-12 2019-02-26 Ihi Corporation Cutting device
CN107107639A (en) * 2014-12-19 2017-08-29 Bsh家用电器有限公司 Method and home appliances part for manufacturing the home appliances part with specific color
CN107107639B (en) * 2014-12-19 2019-04-30 Bsh家用电器有限公司 For manufacturing the method and household appliance component of the household appliance component with specific color
RU2615381C1 (en) * 2015-09-21 2017-04-04 Владимир Ефимович Рогалин Method for laser marking of product surface of aluminium or its alloy with oxide outer layer

Similar Documents

Publication Publication Date Title
US8379678B2 (en) Method and apparatus for reliably laser marking articles
US8761216B2 (en) Method and apparatus for reliably laser marking articles
KR101869435B1 (en) Method and apparatus for reliably laser marking articles
US8451873B2 (en) Method and apparatus for reliably laser marking articles
KR101881621B1 (en) Method and apparatus for reliably laser marking articles
KR20140044299A (en) Method and apparatus for reliably laser marking articles
US9138826B2 (en) Method for laser marking a metal surface with a desired colour
EP2922657A1 (en) Method for laser marking a metal surface with a desired colour
JP6474810B2 (en) Laser system and method for marking inside a thin layer and object produced thereby
TW201208899A (en) Method and apparatus for reliably laser marking articles
KR20190020655A (en) How to create a mark with the desired color on an article
TW201238694A (en) Method and apparatus for reliably laser marking articles
TWI640384B (en) Method for creating a mark on an article, laser marking apparatus, article having a mark, anodized metallic article having a mark and anodized metallic article
TWI583478B (en) Anodized aluminum article
TWI549836B (en) Method and apparatus for reliably laser marking articles