TW201208799A - Laser processing apparatus and laser processing method - Google Patents

Laser processing apparatus and laser processing method Download PDF

Info

Publication number
TW201208799A
TW201208799A TW100120972A TW100120972A TW201208799A TW 201208799 A TW201208799 A TW 201208799A TW 100120972 A TW100120972 A TW 100120972A TW 100120972 A TW100120972 A TW 100120972A TW 201208799 A TW201208799 A TW 201208799A
Authority
TW
Taiwan
Prior art keywords
laser
scanning
laser light
light
substrate
Prior art date
Application number
TW100120972A
Other languages
Chinese (zh)
Inventor
Takeshi Takakura
Mitsuo Kobayashi
Seiichiro Kawaratani
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Publication of TW201208799A publication Critical patent/TW201208799A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lasers (AREA)

Abstract

This invention aims to suppress the increase of processing time when an edge deletion process is performed on a thin film solar cell panel, and to enhance the processing quality. The process of this invention is repeatedly performed by the following: a thin film solar cell panel 102 is scanned by an optical unit in a light spot sequence of arrow 311a, arrow 311b,..., and arrow 311k of a proceeding direction thereof, which is the main scanning direction; then the light spots are moved to another adjacent row to scan in a direction opposite to the main scanning direction; and then the light spots are moved to still another adjacent row. The light spot scans in an arrow 311l direction after scanning in the arrow 311k direction. For the next processing block, the light spot scans in the same way as well. The scanning process is performed repeatedly until the linear area along an edge 301a of the thin solar cell panel is peeled. The invention is applicable to a laser processing apparatus for performing edge deletion.

Description

201208799 六、發明說明: 【發明所屬之技術領域】 本發明係關於雷射加工裝置 是關於使用於利用雷射也々 田射加工方法,特別 加工裝置及雷射加工方法。 雕錢時較佳的雷射 【先前技術】 薄膜太陽能電池面板係在例士” 璃基板上製膜,於進行電極 ·.历的1片玻 以鋁框保持面板的周圍而 、保濩專後 膜太陽能電池面板,會有貫 長期間使用涛 眩…々U 有貝穿保濩薄膜,而導致鋁框與 膜面短路之虞慮。於是,Λ ^ ^ 马了如兩電絕緣性,而進行剝 除。 板之邊緣部周邊的薄膜的邊緣去 以往 而,利用 密合性降 的虞慮。 只剝離膜 圖1 的邊緣去 示於專利 掃描方向 主掃描方 能電池面 的薄膜。 行。然 薄膜的 題產生 情況下 目° 池面板 法係顯 内沿副 體地沿 膜太陽 1 1B内 的邊緣去除錢用噴砂或使用磨石來進 此等方法會有加工後的表面變粗、保護 低、雨水滲入保護薄膜與面板之間等問 於是’近幾年,可在不削掉玻璃基板的 面之使用冑身十的邊緣去除加i乃受到矚 為顯示利用雷射加工進行薄膜太陽能電 除時之雷射光掃描方法之例。此掃描方 文獻1等。此掃描方法係一面於範圍21 (y軸方向)鋸齒形地掃插雷射光,一面全 向(X轴方向)掃描雷射光,藉此去除以薄 板1 1的邊1 1 A周圍的斜線所示之區域 201208799 圖2係顯示在如圖1所示 射光照射於薄膜太陽能電池面板又描雷射光的情況,雷 點)之例。再者,在圖2中, /的位置(以下稱為光 ^形的框Sg +久i赴 此圖所示’重疊鄰接之光點的面積變大=點。如 時間變長。 大,其紇果,加工 於是’如圖3所示,考量蕤 來縮小光點的重疊。於此情況f 子狀地掃描光點, 先將光點沿箭帛51a的方向(覆進行下述掃描:首 沿箭頭5lb的方向(主掃插方2描方向)掃描1行份, 沿箭頭5 lc的方向即與第】行相 丁知,於下一行, 5 1 d的方向(主掃描方向)前進 的方向掃描,沿箭頭 < 1仃份。 π沿 X站古A U . 掃描雷射光的2個檢流計掃描器, 向及y軸方向 點的情況。此外,圖4的箭頭。 圖3所示般掃描光 則丑貝6la至61d從a5 _ 流計掃描器掃描雷射光的方向。此夕、’、‘項不利用檢 除能電池面板11的位置被固定, * 、下表示薄膜太 板11射出雷射光的%學系頭(未對4膜太陽能電池面 3的箭頭52的方向、# X軸的 )等速地破搬送於圖 工的方向。 首先,為了沿圖3的箭頭s i 射光沿箭頭ό 1 a的方向(χ軸的負古方向如描光點,雷 向)被掃描。即,為了沿y軸方向掃:且y軸的正的方 的搬送方向沿斜後方掃描雷射光。、點對光學系項 的y軸方向的掃描距離Ly係與夕此時的雷射走 向的寬度大致-致,4方向的圍21的4方 份光點的期間,係與光學系頭田距離Lx於掃插1行 致一致。 轴方向矛多動的距離夫 201208799 '、 為了 /σ圖3的箭頭5 1 b的方向掃描光 % 射光沿箭頭6lb的方^^ ± ▼钿九鞑, 向(X軸的正的方向)被掃描。此 雷射光的"…的掃描距離係與距離Lx大致二時的 射光了沿圖3的箭頭5ic的方向掃描光點。 ~前頭61c的方向(x轴的負的方向且y轴 鸷 向)被掃描。即,與籥 負的方 的掃描方向相同,y輪方X袖方向 y軸方向的掃描方向相反。201208799 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a laser processing apparatus relating to a laser processing method, a special processing apparatus, and a laser processing method. A better laser for engraving money [Prior Art] A thin-film solar cell panel is formed on a glass substrate of a sample, and a sheet of glass is placed around the panel with an aluminum frame to protect the film. Solar panel, there will be a long period of use of the glare... 々U has a shell to wear the film, which causes the aluminum frame and the film surface to be short-circuited. So, Λ ^ ^ horse has two electrical insulation, and peeling In addition, the edge of the film around the edge of the board is conventionally used, and the adhesion is lowered. Only the edge of the film of Fig. 1 is shown in the patent scanning direction of the main scanning battery surface film. In the case of the occurrence of the problem, the pool panel method shows that the edge of the solar panel is removed along the edge of the film solar 1 1B. The method is to use sandblasting or using a grindstone to enter the surface, and the surface is roughened and protected. Rainwater infiltrates between the protective film and the panel, etc., so that in recent years, the use of the surface of the glass substrate without removing the glass substrate can be removed, and the film is removed by laser processing. Thunder An example of the optical scanning method is the scanning method 1 or the like. This scanning method scans the laser light in a zigzag manner in a range 21 (y-axis direction), and scans the laser light in an omnidirectional direction (X-axis direction), thereby removing the laser light. The area indicated by the oblique line around the side 1 1 A of the thin plate 1 1 201208799 Fig. 2 shows an example of the case where the spot light is irradiated onto the thin film solar cell panel and the laser light is traced as shown in Fig. 1. In Fig. 2, the position of / (hereinafter referred to as the frame of the light-shaped shape Sg + long time i goes to the figure, the area of the overlapping adjacent light spot becomes larger = point. If the time becomes longer. Large, its result, processing So, as shown in Fig. 3, consider the 蕤 to reduce the overlap of the light spots. In this case, f scan the spot in a sub-shape, first in the direction of the arrow 51a (the following scan is performed: the first arrow 5lb The direction (main scanning direction 2 drawing direction) scans one line, and the direction along the arrow 5 lc is the same as the first line, and the next line, the direction of the 5 1 d direction (main scanning direction) is scanned, along the direction Arrow < 1 copy. π along X station ancient AU. 2 galvanometer scanners for scanning laser light, And the y-axis direction point. In addition, the arrow of Fig. 4. The scanning light shown in Fig. 3 is ugly 6la to 61d from the a5 _ flow meter scanner to scan the direction of the laser light. On the eve, the ', ' item is not used. The position of the energy-removing battery panel 11 is fixed, and the lower part indicates that the film-coated board 11 emits laser light (the direction of the arrow 52 of the 4-film solar cell surface 3, the #X-axis) is broken at a constant speed. The direction of the transfer is first. In order to scan along the arrow y 1 a along the arrow ό 1 a (the negative direction of the χ axis such as the tracing point, the ray direction) is scanned. : The direction of the positive side of the y-axis scans the laser light obliquely rearward. The scanning distance Ly in the y-axis direction of the point-to-optical system term is substantially the same as the width of the laser strike at the time of the eve, and the period of the four-part light spot of the circumference 21 in the four directions is the distance from the optical system head. Lx is consistent in sweeping 1 line. Axis direction spears move distance 201208799 ', for / σ Figure 3 arrow 5 1 b direction scan light % illuminate along the arrow 6 lb square ^ ^ ± ▼ 钿 nine 鞑, direction (the positive direction of the X axis) scanning. The scanning distance of the laser light "... is the same as that of the distance Lx, and the light spot is scanned in the direction of the arrow 5ic of Fig. 3 . The direction of the front head 61c (the negative direction of the x-axis and the y-axis 鸷 direction) is scanned. That is, the scanning direction of the negative side is the same, and the scanning direction of the y-direction X-sleeve direction in the y-axis direction is opposite.

其次’為了沿圖3的碎ς d U 射光沿箭頭6ld的方向(二:的方向掃描光點,雷 雷射光的X軸方向的^ 的方向)被掃描。此時的 ?万向的知描距離係與距離Lx大致1的 =雷射光依箭…方向、箭頭二二 ^ 向、被反覆進行掃 先前技術文獻 專利文獻 :利文獻1曰本特開2002 — 244〇 【發明内容】 就A報 [發明欲解決之課題] 圖5為更詳細地顯示如參閱圖 時之光點位置之例的圖。 述般知描雷射光 沿圖4的箭頭61a的方向 射光時’必須驅動4方向及 \6lC的方向掃描雷 插器。因此,兩檢流計掃描^ 向兩者的檢流計掃 持掃描用旋轉轴之轴承的可動部的^摩擦力作用於支 於動摩擦係數小於靜摩擦係數,心。—般而言,由 X比起不驅動檢流計 -6- 201208799 掃描器而旋轉軸未旋轉時,驅動檢流計掃描器而旋 旋轉時更容易受到振動等干擾的影響。因此,沿箭頭 的方向及箭頭6 1 c的方向掃描雷射光時,雷射光的 會因振動等干擾而不靜定’雷射光容易蛇行。苴处 、'、〇 如圖5的範圍7丨a至71 d内的斜線部所示,產生未 雷射光(光點)且薄膜未被剝離而殘留的區域。 此外,將雷射光的掃描方向從箭頭6 1 a的方向 箭頭61b的方向而切換成箭頭6U的方向時,因慣 對檢流計掃描器的回應產生延遲。其結果,在圖3 圍21的端部,如圖5的範圍71 e内所示,光點的位 一致’薄膜未被剝離而殘留的部分成為梳齒狀。其結 長期間使用薄膜太陽能電池面板U時,膜面從被加 梳齒上的部分劣化或剝落的風險增加。 本發明係有鑑於此種狀況而完成,可抑制薄膜 能電池面板的邊緣去除之加工時間的增加,並且使 品質提高。 [解決課題之手段] 本發明之一態樣的雷射加工裝置,係使用雷射 薄膜從基板剝離的雷射加工裝置,其具備:加工部 包含掃描手段,該掃描手段係在第1方向的預定範 及與前述第1方向正交的第2方向的預定範圍内, 述基板上掃描前述雷射光;及移動手段,其移動前 工部與前述基板中之至少一者,使前述加工部與前 板之間的相對位置至少在前述第1方向上移動;將 比前述雷射光的射束直徑寬且延伸於前述第丨方向 轉軸 61a 振動 果, 照射 經過 性而 的範 置不 果, 工於 太陽 力Π工 光將 ,其 圍内 於前 述加 述基 寬度 之直 201208799 '線狀第1區域内的薄膜 前述移動丰Η” 剝離時,係-面利用 述加工部與前述基板之間的相對位置 ::=二::動,—面利用前述掃描手段沿前述: 述第心:二向對前述基板掃描前述雷射光,於前 置第κ域…述行進方向掃描前述雷射光的照射位 在本發明之—態樣的雷射加工裝置中,將寬度比雷 射光的射束直徑寬且延伸於第 甲於第1方向之直線狀第1區域 、薄膜從基板剝離時,係―面使加卫部與基板之 相對位置沿第i方向移動,一面沿該加工部前進的行進 :向對基板掃描雷射光,於第1區域内沿行進方向掃描 雷射光的照射位置。 因此可抑制4膜太陽能電池面板的邊缘去除之加 工時間的增加’並且使加工品質提高。 此掃描+段係由例如檢流計掃描器所才冓成。此移動 手段係由例如線性馬達、升降器、致動器等所構成。 沿前述行進方向掃描前述雷射光後,再利用前述掃 描手段沿前述第2方向將前述雷射光位移,在與前述行 進方向相反的方向上掃描前述雷射光,於沿前述行進方 向上掃描前述雷射光時之前述雷射光的照射位置=鄰接 於前述第2方向的位置,在與前述行進方向相反的方向 上掃描前述雷射光的照射位置。 藉此,可更加縮短薄膜太陽能電池面板的邊緣去除 的加工時間。 -8- 201208799 可在前述第1 ^ 、 、 圍 沿 進 序 的 2 時 之 描 述 雷 薄 方 向 雷 1區域的前述第1方向之預定每個範 ,利用前述掃沪主 兑、I 细乎段’一面使前述雷射光的照射位置 别述第2方向位 七二 移,一面在前述行進方向或與前述行Next, in order to follow the arrow d U of Fig. 3, the light is scanned in the direction of the arrow 6ld (the direction of scanning the spot in the direction of the second: the direction of the X in the X-axis direction of the Rayleigh light). At this time, the universal distance of the universal line and the distance Lx is approximately 1 = the laser light is in the direction of the arrow, the direction of the arrow, and the arrow is repeatedly scanned. The prior art literature patent document: Li document 1 曰本特开2002 - 244〇 [Summary of the Invention] A report [Question to be Solved by the Invention] FIG. 5 is a view showing an example of the position of a light spot as shown in the figure. When the light is emitted in the direction of the arrow 61a of Fig. 4, it is necessary to drive the lightning direction in the direction of 4 directions and the direction of \6lC. Therefore, the two galvanometers scan the galvanometers of the two galvanometers to scan the movable portion of the scanning rotating shaft, and the frictional force acts on the dynamic friction coefficient to be smaller than the static friction coefficient. In general, when X is not rotated by X without driving the galvanometer -6-201208799 scanner, it is more susceptible to vibration and other disturbances when the galvanometer scanner is rotated while rotating. Therefore, when the laser light is scanned in the direction of the arrow and the direction of the arrow 6 1 c, the laser light is not disturbed by the vibration or the like, and the laser light is easy to snake.苴, ', 〇 As shown by the oblique line in the range of 7丨a to 71d in Fig. 5, a region where no laser light (light spot) is generated and the film is not peeled off remains. Further, when the scanning direction of the laser light is switched from the direction of the arrow 61b of the arrow 6 1 a to the direction of the arrow 6U, a delay is caused by the response of the conventional galvanometer scanner. As a result, at the end of the periphery 21 of Fig. 3, as shown in the range 71 e of Fig. 5, the positions of the spots coincide. The portion where the film is not peeled off remains in the shape of a comb. When the thin film solar cell panel U is used during the growth period, the risk of deterioration or peeling of the film surface from the portion to be combed is increased. The present invention has been made in view of such a situation, and it is possible to suppress an increase in processing time of edge removal of a thin film battery panel and to improve quality. [Means for Solving the Problem] A laser processing apparatus according to an aspect of the present invention is a laser processing apparatus that uses a laser film to be peeled off from a substrate, and includes: the processing unit includes a scanning means, and the scanning means is in the first direction The predetermined range of the predetermined direction and the second direction orthogonal to the first direction, wherein the laser light is scanned on the substrate; and the moving means moves at least one of the front working portion and the substrate to form the processed portion The relative position between the front plates moves at least in the first direction; the vibration is larger than the beam diameter of the laser light and extends in the first-direction direction rotating shaft 61a, and the illumination is not effective. When the solar force is completed, the film is peeled off in the straight line 201208799 'the first moving region of the film in the linear first region>, and the surface is used to compare the processed portion with the substrate. Position::=2::,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the laser processing apparatus according to the present invention, when the width is wider than the beam diameter of the laser beam and extends in the first linear region of the first direction in the first direction, and the film is peeled off from the substrate, The surface moves the relative position of the urging portion and the substrate in the ith direction, and travels along the processed portion: scanning the laser beam against the counter substrate, and scanning the irradiation position of the laser light in the traveling direction in the first region. The increase in processing time of the edge removal of the 4-film solar cell panel' and the improvement of the processing quality. This scanning + segment is formed by, for example, a galvanometer scanner. This moving means is performed by, for example, a linear motor, a lifter, and After scanning the laser light in the traveling direction, the laser beam is displaced in the second direction by the scanning means, and the laser beam is scanned in a direction opposite to the traveling direction to travel along the traveling direction. The irradiation position of the laser light when the laser light is scanned in the direction = the position adjacent to the second direction, in a direction opposite to the aforementioned traveling direction The irradiation position of the laser light is described. Thereby, the processing time for edge removal of the thin film solar cell panel can be further shortened. -8- 201208799 The thunder and thin direction lightning can be described at the first 1 and the second step of the circumference. In the predetermined direction of the first direction of the first region, the irradiation position of the laser light is shifted by the second direction in the second direction by the above-mentioned sweeping main control, I is finer than the segment, and is in the traveling direction or The aforementioned line

万向相反的方6 L 问上交替地掃描,依前述行進方向的順 剝離各範圍的薄骐。 猎·此,〇| — V) π縮短薄膜太陽能電池面板的邊緣去除 加工時間。 :寬度比則述雷射光的射束直徑寬且延伸於前述第 ° 直線狀第2區域内的薄媒從前述基板剝離 可面利用刚述移動手段使前述加工部與前述基板 間的相對位置沿前冰笙,+ 文第2方向移動,一面利用前述掃 手段沿前述加工Λβ #^ 4刚進的行進方向對前述基板掃描 雷射光’於前述第2區域 a 4 ™ /σ刖速行進方向知描前诚 射光的照射位置。 可將射入基板的雷射A的剖面設成矩形。 藉此,可縮小重疊鄰接的光點的面積可 膜太陽能電池面板的邊緣去除的加工時間。、‘短 此掃描手段可具備:第i檢流計掃描器 向上掃描雷射光;及第2檢流計掃描…在在” 上掃描雷射光。 ,、在第2方 藉此’可精度良好地高速地進行 句·、隹半#番用以扭、& 霄射光的掃描。 可進一步s又置用以振盪雷射光的 谭射振邊年jru 本發明之一態樣的雷射加工方法為,盈于奴。 射光的射束直徑寬且延伸於前述第τ 字寬度比則述 方向上的直線狀 -9- 201208799 區域内的薄膜從前述基板制離時,雷射加工裝置传—面 利用前:移動手段使前述加工部與前述基板之間的相對 位置在前述第1方向上蔣叙 移動,一面利用前述掃描手段沪 前述加工部前進的行進方向對前述基板掃描前述雷: 光,於前述區域内沿前述行進方向掃描前述雷射光的照 射位置,其中該雷射加工裝置係具備包含掃描手段的加 工部,而該掃描手段係於基板上沿第i方向及與前述第 1方向正父的第2方向掃描前述雷射光。 在本發明之一離揭沾+ &丄 ^樣的田射加工方法中,將寬度比 身:光的:束直徑寬且延伸於第1方向之直線狀區域内的 位……糸®使加工部與基板之間的相對 置在第方向上移動’-面沿加工部前進的行進方向The opposite side of the square 6 L is alternately scanned, and the thinness of each range is peeled off in accordance with the aforementioned traveling direction. Hunting, this, 〇 | — V) π shortens the edge of the thin film solar panel to remove processing time. a width ratio in which a beam diameter of the laser light is wide and a thin medium extending in the second linear region of the first phase is peeled off from the substrate, and a relative position between the processed portion and the substrate is sequentially moved by a moving means The front hail is moved in the second direction, and the scanning direction is used to scan the substrate in the traveling direction of the processing Λβ#^4 in the traveling direction of the second region a 4 TM /σ idle speed. The position of the exposure of the pre-existing light. The cross section of the laser A incident on the substrate can be made rectangular. Thereby, the processing time for the edge removal of the solar cell panel can be reduced by the area of the light spots adjacent to each other. 'This short scan method can be equipped with: the i-th galvanometer scanner scans the laser light upwards; and the second galvanometer scans... scans the laser light on the "on", and the second party can accurately The high-speed scanning of the sentence, the 隹 番 用以 用以 & & & & & & & & & & & 。 。 。 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 扫描 谭 谭 谭 谭 谭The laser beam having a wide beam diameter and extending over the aforementioned τ-th width ratio in the direction of the straight line -9-201208799 when the film is separated from the substrate, the laser processing device transmits and uses The front means: the moving means moves the relative position between the processed portion and the substrate in the first direction, and scans the substrate by the scanning direction of the processing unit in advance by the scanning means. Scanning the irradiation position of the laser light in the region along the traveling direction, wherein the laser processing apparatus includes a processing unit including a scanning means, and the scanning means is on the substrate along the ith direction and the first Scanning the laser light in the second direction of the father. In the field processing method of the invention, the width is wider than the beam diameter and extends in the first direction. The position in the linear region...糸® causes the opposing portion between the processed portion and the substrate to move in the first direction, and the direction in which the surface moves along the processed portion

對基板掃描雷射光,於區域内y D 照射位置。 仃進方向知描雷射光的 因此,可抑制薄膜太陽能電池面板的邊 工時間的增加,並且使加工品質提高。 *之加 此掃描手丰又係由例如&流言十掃描器所構成。 [發明之效果] 依據本發明的一態樣’可進行薄膜太陽能 的邊緣去除。特別是依據本發明的一態樣, 板 太陽能電池面板的邊緣去除之加工時間的增加'專骐 加工品質提高。 亚且使 【貫施方式】 以下,就用以實施本發明的形態(以下稱為 進行說明。又,說明係依以下的顺序進行。 q態 -10- 201208799 1.實施形態 2.變形例 < 1.實施形態> 參閱圖6至圖12,就作為本發明 加裝置1 〇 1的結構例進行說明。雷射加工 用以進行薄膜太陽能電池面板102的邊 、置ι〇1為 [雷射加工裝置的外觀的結構例] 、 圖6為顯示雷射加工裝置1〇1的外觀的結構例的立 體圖。雷射加工裝置101係由雷射振盪器m、方形光 纖112、光學部U3、支架式起重機114、台115、及美 座Π 6所構成。雷射振盪器i丨丨與光學部丨丨3經由方形 光纖112而連接。光學部113設於支架式起重機的 前面。支架式起重機114設於台115的上面。基座116 s史於台115的上面的大致中央。 再者’以下’將台115的寬度方向設為父軸方向, 龙且將從左向右的方向設為玉的方向。此外,將台Π5 的深度方向設為y軸方向,並且將從後向前的方向為正 的方向。再者’將台115的高度方向設為Z軸方向,並 且將從下向上的方向設為正的方向。 從雷射振盪器111射出的雷射光通過方形光纖112 而射入光學部i i 3。光學部丨丨3將雷射光照射於基座n 6 上所載置的薄膜太陽能電池面板1〇2,並且在薄膜太陽 能電池面板1 〇 2上掃描雷射光。 此外’光學部113藉由設於支架式起重機114前面 的線性馬達121 ’可沿X軸方向平行移動。再者,支架 -11- 201208799 式起重機114藉由沿著台115上面的左右的邊而設置的 線性馬達1 2 2 a、1 2 2 b ’可沿y轴方向平行移動。並且, 藉由使光學部113及支架式起重機114移動,可使雷射 光往薄膜太陽能電池面板1 02的照射位置沿χ轴方向及 y軸方向移動。 此外’在台115的上面,在y軸方向上延伸的搬送 皮帶123a、123b係隔著基座116設置於左右方向基座, 藉由搬送皮帶123a、123b沿y軸方向搬送薄膜太陽能電 池面板1 0 2。 [雷射加工裝置的電路的結構例] 圖7為顯示雷射加工裝置1 〇丨的電路的結構例的方 塊圖。雷射加工裝置101的雷射振盪器U1係以包含脈 衝產生器151、雷射振盪;器152、衰減器(at T)153、準直 透鏡154、及透鏡155的方式構成。雷射加工裝置1〇1 的光學部1 1 3係以包含擴束器丨7卜檢流計掃描器1 72&、 172b、及透鏡173的方式構成。 脈衝產生器151產生預定頻率的脈衝信號(以下稱為 射出指令k號)’將產生的射出指令信號供給至雷射振盪 器 152。 雷射振盪器1 52係由例如將雷射二極體(以下稱為 LD)用於激發光源,將Nd : YAG用於雷射媒體的多模態 的Q— SW雷射振盪器所構成。雷射振盪器152係與從脈 衝產生器1 5 1供給的射出指令信號同步,射出基本波(波 長i〇64nm)的橫向模態為多模態的脈衝狀的雷射光。從 雷射振盪H 152射出的雷射光藉衰減$ 153衰減,藉準 201208799 1 5 5聚集雷射 可設定成任意 直透鏡154準直,而射入透鏡155。透鏡 光’導入方形光纖112。 再者,衰減器153的衰減量為可變, 的值。 方形光纖m係由多模態的光纖所構成。此外 8顯示方形光.纖112 $端面(射入面或射出面),如上: 述,方形光纖112的射入口或射出口 U2a的剖面成為矩 形。因此,通過方形光纖112的雷射光的剖面被成形為 矩形而從方形光纖丨! 2被射出。 此外,如上述,從雷射振盪器丨52射出的雷射光為 多模態的雷射脈衝,如圖9的左側所示,被導入方形光 纖11 2前的各雷射脈衝的剖面的光的強度分布具有幾個 波蜂°並且’多模態的雷射脈衝的相干性(coherency)低, 所以如圖9的右側所示,在方形光纖1 1 2内多重反射後 而射出之各雷射脈衝的剖面的光的強度分布無干涉條 紋’波峰大致平坦。即,方形光纖丨丨2之射出端面之各 雷射脈衝的剖面的光的強度不管與其中心相隔的距離多 遠’皆大致均勻。再者,剖面的光的強度均勻的雷射脈 衝可減少例如照射脈衝之部分的加工不均勻等,適於邊 緣去除。 如此一來,在雷射加工裝置101中,不使用均勻器 等间價且光功率損失大的裝置,而以只使多模態的雷射 脈衝通過方形光纖丨丨2的簡單結構,就可有效率地得到 適於邊緣去除之剖面的光的強度均勻的雷射脈衝。 201208799 回到圖7,從方形光纖112被射出的雷射 學部113。射入光學部113的雷射光利用擴束言 保持矩形的情況下擴大射束直徑,並且成為平 從擴束器171被射出的雷射光利用檢流計掃描 172b朝透鏡173的方向被反射,經由透 射入薄膜太陽能電池面板102,在薄膜太陽能 102的加工面上成像。 [檢流計掃描器的結構例] 此處’參照圖1 0及圖1丨,就檢流計掃描 1 7 2 b的結構例進行說明》 如圖1 0所示,檢流計掃描器丨72a係由檢% %轉軸182a及反射鏡183a所構成。從擴束器 的雷射光射入反射鏡183a,利用反射鏡183a向 描器172b的方向反射。反射鏡i83a在檢流計 制下,以旋轉轴1 8 2 a為中心而旋轉,可使雷射 角度改變。並且’使雷射光往反射鏡1 83a的射 變’藉由使雷射光的反射方向變化,於薄膜太 面板10 2上沿X軸方向掃描雷射光。 檢流計掃描器1 72b具有與檢流計掃描器 的結構,其由檢流計1 8 1 b、旋轉軸1 82b及反 所構成。被檢流計掃描器172a的反射鏡183a 射光射入反射鏡183b,藉反射鏡183b朝透 方向反射。反射鏡1 8 3 b在檢流計1 8 1 b的控制 轉軸1 82b為中心而旋轉,可使雷射光的射入声 並且’使雷射光往反射鏡1 83b的射入角度改| 光射入光 § 171 ,在 行光束。 器 172a、 鏡173而 電池面板 器 172a、 ί 計 181a、 171射出 檢流計掃 1 8 1 a的控 光的射入 入角度改 陽能電池 172a同樣 射鏡183b 反射的雷 鏡173的 下,以旋 ί度改變。 ^,而使雷 -14- 201208799 射光的反射方向改變’藉此,於薄膜太陽能電池面板1 〇2 上沿y軸方向掃描雷射光。 圖1 1顯示檢流計1 8 1 a的結構例。檢流計丨8丨a係由 可動線圈201、螺旋彈簧202、及永久磁鐵2〇3N、203S 所構成。 可動線圈201軸支於旋轉軸182a ,並置於永久磁鐵 203N與永久磁鐵203S之間所產生的磁場中。此外,旋 轉軸182a係連接於螺旋彈簧2〇2,並在一端安裝有未圖 立而則藉未圖示的軸承支持 示的反射鏡183a,另一 當電流流通於磁場中的可動線圈2〇1時可動線圈 如便以旋轉車由182a為中心,朝向與螺旋彈簧2〇2拉引 旋轉轴182a的方向相反的方向旋轉。並且,當可動線圈 如旋轉之力與螺旋彈簀202拉引旋轉軸仙之力相等 :,旋轉軸182a的旋轉停止。依此方式,將反射鏡ma 2度設定為與流到可動線圈2〇1的電流的大小對應的 可使洲反射鏡仙所進行的雷射光的反射方向 二因此,藉由控制流到可動線圈2〇ι的電 制藉由反射鏡183a所致之雷射光 雷射光。 叾身才先的反射方向,且可掃描 他不旋轉,所以靜摩擦力會 ^mm 的轴承的可動部用於支持旋轉車由心 的電流改變,旋轉…便會旋轉=可動線圈2。1 支持旋轉軸1 82a的軸承的可動 擦力會作用於 ^ ^ ^ 』勒。如上述,一妒& ‘ 動摩擦係數Μ靜摩擦絲,所 ,而吕, 死轉神182a旋轉時比 201208799 起旋轉抽182a未旋轉時,旋轉轴ΐ82&較容易受到振動 等干擾的影響。即,相較於固定反射们83a時,使反射 鏡 183a 繞旋轉轴 2a紅轉時較容易產生由干擾所造成 的反射鏡1 83a的搖晃。另外,此干擾會因例如由線性馬 達122 a 122 b所進行的支架式起重機h4驅動時的振動 等而產生。 再者,檢流計掃描器172b的檢流計18仙也具有與 檢机汁1 8 1 a同樣的結構,由於其說明重複,所以省略。 如此’藉由檢流計掃描器丨72a的反射鏡1 83a以旋 轉軸1 82a為中心而旋轉,檢流計掃描器丨7汕的反射鏡 183b以旋轉軸i82b為中心而旋轉,雷射光朝向透鏡 1 73的射入位置及射入角會改變。並且,依據朝向f 0透 鏡173的射入角及射入位置的改變,薄膜太陽能電池面 板1 0 2的加工面上的雷射光的成像位置會沿水平方向移 動。即,利用檢流計掃描器i 72a、丨72b掃描雷射光朝向 薄膜太陽能電池面板1 〇 2的照射位置。 回到圖7,薄膜太陽能電池面板丨〇2為單一型薄膜 太陽能電池面板,從圖内上方起,依序層積有玻璃製的 透明基板102A、由ιτο、Sn〇2、Zn〇等的tC〇構成的 透明電極層102B、由a — Si構成的半導體層1〇2(:、由 Ag電極構成的背面電極層1 〇2D。然後,利用雷射光去 除透明電極層102B至背面電極層i〇2d。 [雷射加工裝置1 〇 1的控制部的結構例] 圖12為顯示控制雷射加工裝置ι〇1動作的控制部 251的結構例的方塊圖。控制部251係藉由例如 -16- 201208799 CPU(Central Processing Unit;中央處理單元)等的處理 執行預定的控制程式來實現。控制部2 5丨係以包含輸 控制部261、驅動控制部262、及掃描控制部263的方 構成。 輸出控制部26 1係控制雷射振盪器u丨,控制從 射振盈器1 11射出的雷射光的強度、射出時序等。 驅動控制部262驅動線性馬達i 2丨,以控制光學 113的X軸方向的位置。此外,驅動控制部驅動 性馬達122a、122b ’藉由控制支架式起重機114的乂 方向的位置,以控制光學部i 13的y軸方向的位置。 者,驅動控制部262驅動搬送皮帶123a、i23b,以控 4膜太陽能電池面板丨〇 2的y軸方向的位置。 掃4¾控制部2 6 3驅動檢流計掃描器丨7 2 a、1 7 2 b, 控制雷射光的掃描。 再者,輸出控制部2 6 1、驅動控制部2 6 2及掃描 制部263共有彼此的動作狀態等的資訊。 [雷射加工處理] 其-人’參閱圖13的流程圖’說明藉雷射加工裝 1 0 1執行的雷射加工處理。 θ在步驟S1,驅動控制部262判定是否已插入薄膜 陽:電池面板102。例如,驅動控制杳"62根據來自 於〇 11 5上的未圖示的感測器的資訊,檢測是否在搬 皮帶123a、123b上設置有薄膜太陽能電池面板1〇2。 :控制。p 262在搬送皮帶123&、1231)上未設置薄膜太 月b電池面板! 〇2的情況,判定未插入薄膜太陽能電池 器 出 式 雷 部 線 轴 再 制 以 控 置 太 設 送 驅 陽 面 -17- 201208799 板102,在搬送皮帶123a 上6又置有薄膜太陽能電 池面板1〇2的情況,判定已插入薄膜太陽能電池面板 1〇2。此判定處理反覆進行到判定已插入薄膜太陽能電池 面板102為止,當判定已插薄 彳 辟臊太險忐電池面板102 時,處理進入步驟S2。 在乂驟S2,雷射加工裝置1〇1開始薄膜太陽能電池 面板1〇2 @弓丨進。即,驅動控制部262驅動搬送皮帶 123a、123b,開始將薄膜太陽能電池面板iQ2^㈣ 負的方向搬送。 在步驟S3,驅動控制部262判定是否薄膜太陽能電 池面板!〇2已被引進到基& 116的位置。例如,駆動控 制部262根據來自設於台U5上之未圖示的感測器的資 訊,狀是否薄膜太陽能電池面1G2已被引進到基座 116的位置。此判定處理反覆進行直到判定薄膜太陽能 電池面板丨〇2已被弓丨進到基座116的位置為止當判定 薄膜太陽能電池面板102已被引進到基座ιΐ6的位置 時,處理進入步驟S4。 在步驟S4’雷射加工裝置ι〇1將薄膜太陽能電池面 板102设置於基座丨丨6上。即,驅動控制部%停止搬 送皮帶123a、123b的驅動,控制例如未圖示的升降機 等,以將薄膜太陽能電池面板1〇2設置於基座116上。 在;X驟S5,雷射加工裝置1〇1進行邊緣去除處理。 再者,關於邊緣去除處理的詳細情形,參閱圖14後述之。 在步驟S6,雷射加工裝置1〇1開始進行薄膜太陽能 電池面板102的引出。即,驅動控制部262控制例如未 -18- 201208799 圖不的升降機等,將薄獏太陽能電池面板丄〇2設置於搬 送皮帶123a、123b上,驅動搬送皮帶123a、123b,以開 始將薄膜太陽能電池面板1〇2朝丫轴的正的方向的搬送。 在步驟S7 ’驅動控制部262判定是否薄膜太陽能電 池面板102的引出已完成。例如,驅動控制部μ根據 來自6又於台1 1 5上的未圖示的感測器的資訊,判定是否 薄膜太陽能電池面1G2的引出已完成。此判定處理反 覆進行到判定薄膜太陽能電池面1〇2的引出已完成為 止’當判疋薄膜太陽能電池面板i 〇2的引出已完成時, 雷射加工處理結束。 [邊緣去除處理的詳細情形] 其次,參閱目14的流程圖’對® 13的步,驟S5的邊 緣去除處理的詳細情形進行說明。 在步驟S 5 1,驅動控告丨Λ。μ & A L , 勒控制部262將雷射光的照射位置 移動到其次加工的邊的開始位置。 圖1 5係顯示對薄膜女陪, 專膜太%能電池面板102進行邊緣去 除時的加工順序之例。在此例中,依箭頭3〇心 3〇5b、箭頭/05C、箭頭305d的順序進行邊緣去除广 即’在薄膜太陽能電池面板1〇2的邊3〇la周邊 圍3〇2a照射雷射& ’剝離以範圍3G2a内的斜線顯:& 寬度比雷射光的射束直徑還寬的直線狀區域303a = 膜。其次,在薄膜太陽能電池…〇2的邊3〇邊缚 範圍302b照射雷射光,剝離 周邊的 w離以範圍302b内的斜線 ,寬度比雷射光的射束直徑還寬的直線狀區域3咖不 溥膜。其次’在薄膜太陽能電池面板1〇2的邊3〇lc周: 201208799 的範圍3 0 2 c昭射φ射本 -射田射先’剥離以範圍302c内的斜線顯 二,又雷射光的射束直徑寬的直線狀區域3〇3c的 薄膜n最後在薄膜太陽能電池面板1G2 周邊的範圍咖照射雷射光,制離以範圍則内的^ 的薄膜。雷射先的射束直經寬的直線狀區域咖 匕卜進饤區域303 a的邊緣去除時,從範圍3〇2& 左下角的開始位置3〇4a開始照射雷射光。此外,進行區 域3〇3b的邊緣去除時’從範圍3〇2b左上角的開始位: 304b開始進行雷射光的照射。接著,進行區域如〇的 邊緣去除時,從範圍3〇2c右上角的開始位置取c開始 進行雷射光的照射。此外,進行區域3G3d的邊緣去除 時’從範圍302d右下角的開始位置3〇4d開始進行雷射 光的照射。 因此,在本實施形態的情況,首先邊3〇la成為加工 對象,所以驅動控制部262驅動線性馬達i 2丨及線性馬 達122a、122b,以使光學部113及支架式起重機移 動,直到從光學部1 1 3射出的雷射光照射於開始位置 304a的位置為止。 在步驟S52,驅動控制部262沿著加工的邊,使光 學部113開始移動。在此情況下,驅動控制部262驅動 線性馬達121,使光學部113朝χ軸的正的方向開始移 動。藉此,光學部113往沿著最初被加工的邊3〇1:=箭 頭305a的方向(區域303a的長度方向)開始移動。 -20- 201208799 ,一 一…、π狀八j芴能带 在 '反102移動的方向稱為主掃描方向。此外,以下电池面 薄膜太陽能電池面102上與主掃描方向垂直的,將 為副掃描方向。因此,在進行區域303a的邊緣去方向稱 況’主掃描方向成為x軸 除的情 α X釉的正的方向,副掃描方 y轴方向。再者,以下技+4 成為 _ 以下將主掃描方向也稱為列方 副掃描方向也稱為行方向。 ° ’將 在步驟S53 ’雷射振盪器U1在輪出控制 控制下,開始進行雷射光的輸出。藉此,開始 的 光朝薄膜太陽能電池面板1〇2的照射。 丁雷射 在步驟S54,掃描控制 描。 ㈣進仃雷射光的掃 此處,參閱圖16及圖I? j-l. μ 圖17,就雷射光的掃描方土 蛘細情形進行說明。圖丨6 方法的 園16顯不在範圍3〇2a内 位置及掃描方向。此外, 先點的 點時之雷射光的掃描方向。 、知描光 如上述’雷射光的照射從開始位置 然後,掃描控制部263 α進行。 17 ^ ^ 驅動檢流計掃描器172a,以^ π 17的前頭331a的方向^軸的正的 从沿圖 掃描雷射光。此時& p 11 )、即主掃描方向 由耵尤 時的掃描距離係設定Α^+ 器172a可沿x軸方& _ > 為例如祆流計掃描 J Μ X和万向掃描 此’光點沿圖16的箭頭3"a的方向、㈣附近。藉 掃描。此外’此時’以鄰接於χ軸方向=知描方向被 部分重疊的方式,照射雷射光。向的先點的端部呈 -2 1 - 201208799 其次,掃描控制部263驅動檢流計掃插哭 沿圖17的箭頭331b的方向(y軸的負的方向;。、 方向,掃描雷射光到沿箭頭311a的方向掃描这 列的相鄰的列。藉此,光點的位置沿y轴的負 移1歹!刀另外,此時,由於光學部113沿X 方向移動’所以光點係如箭頭3 11 b所示,沿χ 方向且y軸的負的方向的斜方向被掃描。此夕: 頭311a的方向掃摇過之第1列的光點的端部盘 前頭311。的方向掃描之第2列的光點的端部; 的方式,來設定第2列的光點的位置。 壬 其次,掃描控制部263驅動檢流計掃栌裝 沿圖17的箭頭+ 哪指益 頌331c的方向(\軸的負的 描方向相反的方向掃 。广 為與沿箭頭331 先。此時的掃描距 離。藉此,弁赴少你,哲 大致 先點在與第1列之光點的 沿著圖16的箭頭311C的方向、即心:接 方向被掃描。再者,& _ 主知描方 丹者,此時,以鄰接於The substrate is scanned for laser light at a y D illumination location in the region. In the direction of the laser light, it is possible to suppress the increase in the labor time of the thin film solar cell panel and to improve the processing quality. *Additional This scanning handbook is composed of, for example, & rumored ten scanners. [Effect of the Invention] Edge removal of thin film solar energy can be performed according to an aspect of the present invention. In particular, in accordance with an aspect of the present invention, the increase in processing time of the edge removal of the solar panel of the panel is made to improve the processing quality. The following is a mode for carrying out the present invention (hereinafter, it will be described below. Further, the description will be made in the following order. q state-10-201208799 1. Embodiment 2. Modifications < 1. Embodiments Referring to Fig. 6 to Fig. 12, a configuration example of the adding device 1 〇1 of the present invention will be described. Laser processing is used to perform the edge of the thin film solar cell panel 102, and ι〇1 is [Ray FIG. 6 is a perspective view showing a configuration example of the appearance of the laser processing apparatus 1〇1. The laser processing apparatus 101 is composed of a laser oscillator m, a square optical fiber 112, and an optical unit U3. The scaffolding crane 114, the stage 115, and the yoke 6 are formed. The laser oscillator i is connected to the optical unit 丨丨3 via the square fiber 112. The optical unit 113 is provided in front of the gantry crane. 114 is disposed on the upper surface of the stage 115. The pedestal 116 s is located substantially at the center of the upper surface of the stage 115. Further, 'below', the width direction of the stage 115 is set to the parent axis direction, and the dragon is set from the left to the right direction. The direction of the jade. In addition, the depth of the platform 5 The direction is set to the y-axis direction, and the direction from the back to the front is a positive direction. Further, the height direction of the stage 115 is set to the Z-axis direction, and the direction from the bottom to the top is set to a positive direction. The laser light emitted from the oscillating oscillator 111 is incident on the optical portion ii 3 through the square optical fiber 112. The optical portion 丨丨3 irradiates the laser light onto the thin film solar cell panel 1 〇 2 placed on the susceptor n 6 and is on the thin film. The laser light is scanned on the solar cell panel 1 〇 2. Further, the 'optical portion 113' can be moved in parallel along the X-axis direction by the linear motor 121' provided in front of the bracket crane 114. Further, the bracket-11-201208799 type crane 114 borrows The linear motors 1 2 2 a, 1 2 2 b ' provided by the left and right sides above the stage 115 are movable in parallel in the y-axis direction. Further, by moving the optical portion 113 and the bracket crane 114, The laser beam moves toward the y-axis direction and the y-axis direction at the irradiation position of the thin film solar cell panel 102. Further, the transfer belts 123a and 123b extending in the y-axis direction on the upper surface of the stage 115 are disposed via the susceptor 116. Left and right direction base, borrow The thin film solar cell panel 102 is transported in the y-axis direction by the transport belts 123a and 123b. [Configuration Example of Circuit of Laser Processing Apparatus] Fig. 7 is a block diagram showing a configuration example of a circuit of the laser processing apparatus 1A. The laser oscillator U1 of the laser processing apparatus 101 is configured to include a pulse generator 151, a laser oscillator 152, an attenuator (at T) 153, a collimator lens 154, and a lens 155. The laser processing apparatus The optical unit 1 1 3 of 1〇1 is configured to include a beam expander 丨7 检 finder scanner 1 72 & 172 b and a lens 173 . The pulse generator 151 generates a pulse signal of a predetermined frequency (hereinafter referred to as an injection command k number)' to supply the generated emission command signal to the laser oscillator 152. The laser oscillator 1 52 is composed of, for example, a multi-mode Q-SW laser oscillator in which a laser diode (hereinafter referred to as LD) is used for an excitation light source and Nd:YAG is used for a laser medium. The laser oscillator 152 is synchronized with the emission command signal supplied from the pulse generator 151, and emits a pulsed laser light whose fundamental mode (wavelength i 〇 64 nm) is multimodal. The laser light emitted from the laser oscillation H 152 is attenuated by the attenuation of 153, and the laser can be set by the 201208799 1 5 5 to be collimated by any straight lens 154 and injected into the lens 155. The lens light 'is introduced into the square fiber 112. Furthermore, the amount of attenuation of the attenuator 153 is a variable value. The square fiber m is composed of a multi-mode fiber. In addition, 8 shows a square light fiber 112 end (injection surface or exit surface), as described above, the cross section of the square fiber 112 or the exit U2a is rectangular. Therefore, the cross section of the laser light passing through the square fiber 112 is formed into a rectangular shape and is smashed from the square fiber! 2 was shot. Further, as described above, the laser light emitted from the laser oscillator 丨52 is a multi-modal laser pulse, as shown on the left side of FIG. 9, the light of the cross section of each of the laser pulses before being introduced into the square optical fiber 11 2 The intensity distribution has several wave bees and the multi-modal laser pulse has a low coherency, so as shown on the right side of FIG. 9, the lasers are emitted after multiple reflections in the square fiber 112. The intensity distribution of the light in the cross section of the pulse is free of interference fringes' peaks are substantially flat. That is, the intensity of the light of the cross section of each of the laser pulses 射2 on the exit end face is substantially uniform regardless of the distance from the center. Further, the laser pulse having a uniform intensity of light in the cross section can reduce processing unevenness such as a portion of the irradiation pulse, and is suitable for edge removal. In this way, in the laser processing apparatus 101, a device having a high price and a large loss of optical power such as a homogenizer is not used, and a simple structure in which only a multi-modal laser pulse passes through the square fiber 丨丨 2 can be used. A laser pulse of uniform intensity of light suitable for the edge-removed profile is efficiently obtained. 201208799 Referring back to Fig. 7, the laser portion 113 is emitted from the square fiber 112. When the laser beam incident on the optical portion 113 is held in a rectangular shape by the expansion beam, the beam diameter is enlarged, and the laser light emitted from the beam expander 171 is reflected by the galvanometer scan 172b toward the lens 173. The film is transmitted through the thin film solar cell panel 102 and imaged on the processed surface of the thin film solar cell 102. [Configuration Example of Galvanometer Scanner] Here, a description will be given of a configuration example of the galvanometer scanning 1 7 2 b with reference to FIG. 10 and FIG. 1A. As shown in FIG. 10, the galvanometer scanner 丨72a is composed of a %% rotation shaft 182a and a mirror 183a. The laser light from the beam expander is incident on the mirror 183a, and is reflected by the mirror 183a in the direction of the scanner 172b. The mirror i83a is rotated about the rotation axis 1 8 2 a under the galvanometer to change the laser angle. And the 'reflection of the laser light toward the mirror 1 83a' is scanned in the X-axis direction on the thin film panel 10 by changing the direction in which the laser light is reflected. The galvanometer scanner 1 72b has a structure with a galvanometer scanner which is constituted by a galvanometer 1 8 1 b, a rotating shaft 1 82b, and a reverse. The mirror 183a of the calibrated flowmeter scanner 172a is incident on the mirror 183b, and is reflected by the mirror 183b in the transparent direction. The mirror 1 8 3 b rotates around the control shaft 1 82b of the galvanometer 1 8 1 b, so that the incident light of the laser light can be made and the angle of incidence of the laser light to the mirror 1 83b is changed. Into the light § 171, in the line beam. The 172a, the mirror 173, the battery panel 172a, the 181a, 171 emit the galvanometer scanning illuminator, and the light-injecting angle of the solar cell 172a is reflected by the ray mirror 173 reflected by the mirror 183b. Change with a degree of rotation. ^, and the reflection direction of the Ray-14-201208799 light is changed', whereby the laser light is scanned in the y-axis direction on the thin film solar cell panel 1 〇2. Fig. 1 1 shows a structural example of the galvanometer 1 8 1 a. The galvanometer 丨8丨a is composed of a movable coil 201, a coil spring 202, and permanent magnets 2〇3N and 203S. The movable coil 201 is axially supported by the rotating shaft 182a and placed in a magnetic field generated between the permanent magnet 203N and the permanent magnet 203S. Further, the rotating shaft 182a is connected to the coil spring 2〇2, and a mirror 183a which is not shown but is supported by a bearing (not shown) is attached at one end, and the movable coil 2 当 when a current flows in the magnetic field. At 1 o'clock, the movable coil rotates in a direction opposite to the direction in which the coil spring 2 〇 2 pulls the rotary shaft 182a, centering on the rotary car 182a. Further, when the force of the movable coil such as the rotation is equal to the force of the helical magazine 202 pulling the rotation shaft, the rotation of the rotation shaft 182a is stopped. In this way, the mirror ma 2 degree is set to correspond to the magnitude of the current flowing to the movable coil 2〇1, so that the reflection direction of the laser light by the continent mirror can be made. Therefore, by controlling the flow to the movable coil The laser light of 2 〇 is made by the laser light caused by the mirror 183a. The first direction of reflection is reflected, and it can be scanned without rotating, so the movable part of the bearing with static friction force ^mm is used to support the current change of the heart of the rotating car, and the rotation will rotate = the movable coil 2. 1 support rotation The movable friction of the bearing of shaft 1 82a acts on ^ ^ ^ 勒. As described above, the ΐ& ‘dynamic friction coefficient Μ static friction wire, and LV, when the rotation of the god 182a rotates than the 201208799 rotation 182a does not rotate, the rotation axis &82& is more susceptible to vibration and other disturbances. That is, when the mirror 183a is turned red about the rotation axis 2a as compared with the fixed reflection 83a, the shaking of the mirror 1 83a caused by the disturbance is more likely to occur. Further, this disturbance is caused by, for example, vibration when the scaffolding crane h4 is driven by the linear motor 122 a 122 b or the like. Further, the galvanometer 18 sen of the galvanometer scanner 172b has the same configuration as that of the detector juice 181a, and its description is repeated, and therefore will be omitted. Thus, the mirror 1 83a of the galvanometer scanner 72a rotates around the rotation axis 1 82a, and the mirror 183b of the galvanometer scanner 旋转7 rotates around the rotation axis i82b, and the laser light is directed. The incident position and the incident angle of the lens 1 73 are changed. Further, the imaging position of the laser light on the processed surface of the thin film solar cell panel 1 0 2 is moved in the horizontal direction in accordance with the change in the incident angle and the incident position of the lens 173 toward the f 0 . That is, the illuminometer scanners i 72a and 72b are used to scan the irradiation position of the laser light toward the thin film solar cell panel 1 〇 2 . Referring back to Fig. 7, the thin film solar cell panel 丨〇2 is a single-type thin film solar cell panel, and a transparent substrate 102A made of glass, tC of ιτο, Sn 〇 2, Zn 〇, etc. are sequentially stacked from the top in the figure. The transparent electrode layer 102B composed of yttrium and the semiconductor layer 1 〇 2 composed of a-Si (: a back electrode layer 1 〇 2D made of an Ag electrode. Then, the transparent electrode layer 102B is removed by laser light to the back electrode layer i 〇 2d. [Configuration Example of Control Unit of Laser Processing Apparatus 1 〇1] Fig. 12 is a block diagram showing a configuration example of a control unit 251 that controls the operation of the laser processing apparatus 〇1. The control unit 251 is for example, by -16. - 201208799 The processing of the CPU (Central Processing Unit) or the like is executed by executing a predetermined control program. The control unit is configured to include the transmission control unit 261, the drive control unit 262, and the scan control unit 263. The output control unit 26 1 controls the laser oscillator u 丨 to control the intensity of the laser light emitted from the oscillating reflector 1 11 , the emission timing, etc. The drive control unit 262 drives the linear motor i 2 丨 to control the X of the optical 113. Position in the axial direction Further, the drive control unit drive motors 122a and 122b' control the position of the optical unit i13 in the y-axis direction by controlling the position of the gantry crane 114 in the 乂 direction. The drive control unit 262 drives the transport belt 123a. I23b, to control the position of the 4-film solar panel 丨〇2 in the y-axis direction. Sweep control unit 2 6 3 drive galvanometer scanner 丨7 2 a, 1 7 2 b, control the scanning of laser light. The output control unit 261, the drive control unit 262, and the scanning unit 263 share information such as the operation state of each other. [Laser processing] The person-sees the flowchart of Fig. 13 to explain the laser processing. The laser processing performed by the lens 1 is performed. θ In step S1, the drive control unit 262 determines whether or not the film anode: the battery panel 102 has been inserted. For example, the drive control 杳 " 62 is based on a not shown from the 〇 11 5 The information of the sensor detects whether or not the thin film solar cell panel 1〇2 is provided on the transport belts 123a and 123b. : Control. The p 262 does not have a film solar panel b on the transport belts 123 & 1231)! In the case of 〇2, it is determined that the thin-film solar cell output type thunder bobbin is not inserted to control the over-transmission drive surface -17-201208799 plate 102, and the thin film solar cell panel 1 is placed on the transfer belt 123a. In the case of 〇2, it was judged that the thin film solar cell panel 1〇2 was inserted. This determination process is repeated until it is judged that the thin film solar cell panel 102 has been inserted, and when it is judged that the battery panel 102 has been thinned, the process proceeds to step S2. At step S2, the laser processing apparatus 1〇1 starts the thin film solar cell panel 1〇2 @弓丨. In other words, the drive control unit 262 drives the transport belts 123a and 123b to start transporting the thin film solar cell panel iQ2(4) in the negative direction. In step S3, the drive control unit 262 determines whether or not the thin film solar panel is in use! 〇 2 has been introduced to the base & 116 location. For example, the tilt control unit 262 determines whether or not the thin film solar cell surface 1G2 has been introduced to the susceptor 116 based on the information from the sensor (not shown) provided on the stage U5. This determination process is repeated until it is determined that the thin film solar cell panel 已2 has been drawn into the susceptor 116, and when it is determined that the thin film solar cell panel 102 has been introduced to the susceptor ΐ6, the processing proceeds to a step S4. The thin film solar cell panel 102 is placed on the susceptor 6 in the laser processing apparatus ι〇1 in step S4'. In other words, the drive control unit % stops the driving of the transport belts 123a and 123b, and controls, for example, an elevator (not shown) to mount the thin film solar cell panel 1〇2 on the susceptor 116. At step X5, the laser processing apparatus 1〇1 performs edge removal processing. Further, the details of the edge removal processing will be described later with reference to FIG. At step S6, the laser processing apparatus 101 starts the extraction of the thin film solar cell panel 102. In other words, the drive control unit 262 controls, for example, an elevator or the like that is not shown in -18-201208799, and installs the thin solar battery panel 丄〇2 on the conveyance belts 123a and 123b, and drives the conveyance belts 123a and 123b to start the thin film solar battery. The panel 1〇2 is transported in the positive direction of the 丫 axis. The drive control section 262 determines in step S7' whether or not the extraction of the thin film solar battery panel 102 has been completed. For example, the drive control unit μ determines whether or not the extraction of the thin film solar cell surface 1G2 has been completed based on the information from the sensor (not shown) on the stage 1 15 . This determination process is repeated until it is judged that the extraction of the thin film solar cell surface 1 〇 2 has been completed. When the extraction of the thin film solar cell panel i 〇 2 is completed, the laser processing is completed. [Details of edge removal processing] Next, the details of the edge removal processing of step S5 of step S5 will be described with reference to the flowchart of item 14. At step S 5 1, the driver is warned. μ & A L , the control unit 262 moves the irradiation position of the laser light to the start position of the side of the second processing. Fig. 1 shows an example of the processing sequence for the edge removal of the film panel 102. In this example, the edge removal is performed in the order of the arrows 3〇3〇5b, the arrow/05C, and the arrow 305d. That is, the laser is irradiated on the side of the edge of the thin film solar cell panel 1〇3〇3〇2a. ; 'Peeling is shown by a diagonal line in the range 3G2a: & a linear region 303a whose width is wider than the beam diameter of the laser beam = film. Next, the laser light is irradiated on the side edge 3 of the thin film solar cell 〇2, and the laser beam is irradiated, and the peripheral w is separated from the oblique line in the range 302b, and the linear region having a width wider than the beam diameter of the laser light is not Decor film. Secondly, 'on the side of the thin film solar cell panel 1〇3〇3 lc week: 201208799 range 3 0 2 c 射射 φ射本-射田射先' peeling out with a diagonal line in the range 302c, and laser light shot The film n of the linear region 3〇3c having a wide beam diameter is finally irradiated with laser light in the range around the thin film solar cell panel 1G2 to separate the film in the range of . When the beam of the first laser beam is removed straight through the wide linear region, the edge of the entrance region 303a is removed, and the laser light is irradiated from the start position 3〇4a of the lower left corner of the range 3〇2&. Further, when the edge of the region 3〇3b is removed, the irradiation of the laser light is started from the start position of the upper left corner of the range 3〇2b: 304b. Next, when the edge of the region such as 〇 is removed, the laser light is irradiated from the start position of the upper right corner of the range 3〇2c. Further, when the edge of the region 3G3d is removed, the irradiation of the laser light is started from the start position 3〇4d of the lower right corner of the range 302d. Therefore, in the case of the present embodiment, first, the side is made to be processed. Therefore, the drive control unit 262 drives the linear motor i 2 and the linear motors 122a and 122b to move the optical unit 113 and the cradle crane until the optical The laser light emitted from the portion 1 1 3 is irradiated to the position of the start position 304a. In step S52, the drive control unit 262 causes the optical unit 113 to start moving along the processed side. In this case, the drive control unit 262 drives the linear motor 121 to start moving the optical portion 113 in the positive direction of the x-axis. Thereby, the optical portion 113 starts moving in the direction (the longitudinal direction of the region 303a) along the side 3?1:=arrow 305a to be processed first. -20- 201208799, one-to-one, π-like eight-character band The direction in which the 'reverse 102 moves is called the main scanning direction. Further, the following battery surface thin film solar cell surface 102 will be perpendicular to the main scanning direction and will be in the sub-scanning direction. Therefore, in the edge direction of the region 303a, the direction of the main scanning direction is the positive direction of the x-axis glaze, and the sub-scanning direction is the y-axis direction. Furthermore, the following technique +4 becomes _. The main scanning direction is also referred to as a column side. The sub-scanning direction is also referred to as a row direction. ° ' At the step S53 ', the laser oscillator U1 starts the output of the laser light under the control of the wheel-out control. Thereby, the light of the start is irradiated toward the thin film solar cell panel 1〇2. Ding Lei At step S54, the scanning control is described. (4) Scanning the laser light. Refer to Figure 16 and Figure I? j-l. μ Figure 17 for a detailed description of the scanning area of the laser. Fig. 6 The method of the method 16 is not in the range 3〇2a position and scanning direction. In addition, the scanning direction of the laser light at the point of the first point. The light is irradiated as described above. The irradiation of the laser light is performed from the start position, and then the scanning control unit 263α performs. 17 ^ ^ The drive galvanometer scanner 172a scans the laser light from the positive edge of the direction of the front head 331a of π 17 . At this time & p 11 ), that is, the main scanning direction is set by the scan distance of the 耵 时 Α 172 172a can be along the x-axis side & _ > for example turbulence meter scanning J Μ X and universal scanning The light spot is in the direction of the arrow 3 "a in Fig. 16, and (4). Borrow scan. Further, 'this time' is irradiated with laser light so as to be partially overlapped in the direction of the x-axis direction. The end of the apex point is -1 1 - 201208799. Next, the scanning control unit 263 drives the galvanometer to sweep the direction of the arrow 331b along the y-axis (the negative direction of the y-axis; the direction, scanning the laser light to the direction) The adjacent columns of the column are scanned in the direction of the arrow 311a. Thereby, the position of the spot is shifted by 1 歹 along the y axis! In addition, at this time, since the optical portion 113 moves in the X direction, the light spot is The oblique direction along the χ direction and the negative direction of the y-axis is scanned as indicated by the arrow 3 11 b. On the eve of this: the direction of the head 311a is swept by the direction of the end of the spot of the first column. The position of the spot of the second row is set to the position of the spot of the second column. Next, the scan control unit 263 drives the galvanometer broom along the arrow of FIG. 17 + which means 颂 331c The direction of the \ axis of the negative direction of the opposite direction of the sweep. Widely along with the arrow 331 first. At this time the scanning distance. By this, 弁 go to less you, Zhe roughly point in the light point with the first column In the direction of the arrow 311C of Fig. 16, that is, the heart: the direction is scanned. Further, & _ the master knows the square, at this time, Connected to

端二:分重疊的方式,照射雷射光。D 其次,掃描控制部263驅動 沿圖1 7的气-5 犯動桠抓。十知插器 前碩331d的方向(y軸負 方向,掃描雷射光到沿箭頭311c的方4= 列的相鄰的列。鹑 如榀過 相同的箭頭與圖16的箭頭: 的方向位移八 Λ ,光點的位置沿 歹J刀。此外,以7, 之第2列的光點的端部與其次將:箭頭二的二 172b ,以 ‘即副掃描 i雷射光之 的方向位 軸的正的 軸的正的 ,以沿箭 其次將沿 部分重疊 172a,以 即與主掃 離係設定 相同的距 的位置, 向相反的 的光點的 172b ,以 即副掃描 雷射光的 3 1 1 b大致 y軸的負 向掃描過 方向掃描 .22- 201208799 的第3列的光點的端部呈部 的光點的位置。 刀重噓的方式,設定第3列 其後,依圖17的箭頭^ μ _ 331k的順序掃描雷射光 二前頭331f.....箭頭 掃描方向掃γ φ ,反復進行下述處理:沿主 门却也雷射光後 列,沿與主掃γ大^ 4 W抑描方向位移到相鄰的 位移到相鄰的列。°目反的方向掃描後,沿副掃描方向 311f.....气。日此,依圖16的箭頭3lle、箭頭 沿副掃描方向歹^的順序掃描光點。即,光點係一面 田万向1列1列地位移,一 主掃描方向相& 13主拎捂方向或與 缺德1 向按每1列交替地被掃描。 描控i部箭頭331k的方向的掃描結束後,掃 向計掃描…,沿箭…的方 的y軸方向的位置移動二描方向掃描雷射光’將光點 由於光學部113 第1列的位置。另夕卜,此時, u予4 113沿x軸的正 箭頭31U所干vt ^ 方向移動,所以光點係如 1所不’沿X軸的正的方, 的斜方向被掃描。此外,播p奸座 〉。y軸的正的方向 的方向的掃卜 田工lJ部263係以朝箭頭33 11 田凡成時之光點的位置盥;^箭瓸q丨丨ΑΛ He 向掃描過之光點末端的位m=頁3IIa的方 光的掃描速度。 致的方式,控制雷射 的順=描以Λ’Γ/由依箭頭33ia、33ib、…、3川 段。…次雷射光而剝離薄膜的區域稱為加工區 5後’同樣地’依圖17的箭頭3 训的順序掃福雷射光,依圖】6的箭頭312a、312b、…、 -23- 201208799 3121的順序掃描光點。此外 區域3G3a的薄 < ϋ樣的掃描直到 ,,** 豕』雕兀成為止。it/·,士 的缚膜的制離完成為止 =直到區域3〇3a 副掃描方向1列J 工品又,光點係一面沿 掃描方向相反的方二移,:面沿主掃描方向或與主 方向的順序剝離各° 1幻乂替地被掃描,依主掃描 VL二到離各加工區段内的薄膜。 沿主掃插方向及與主掃 光時,驅動檢料彳Μ器17?相反的方向掃描雷射 流計掃描哭丨72a a,成為動摩擦力作用於檢 描器172b @ 勖°P另—方面,檢流計掃 /2b停止,靜摩擦力作用 軸承的可動邛&貼能 用於檢机叶知描器172a的 J勒。丨丨的狀態。因此 入a 軸1 82b難以a 4 榀机3十知描器1 72b的旋轉 難以受到振動等干 的振動被靜定。其結果,伞、〜a,由射光的y軸方向 沿X .轴方向成為―直線。因點的位置不會蛇行,而大致 薄膜刹雜 、’、。此,在區域303a的端部(將 大致二首:P分與不剝離的部分的境界),沿主掃描方向 :直線地掃描矩形的光點,所以區域3 言成為凹凸,而大約一直綠岫—以 内, 線也—致。此外,可在區域303a 除未照射雷射光且薄膜去姑各丨祕 导膜未被剝離而殘留的區域。 卜’將雷射光的掃描方向從主掃描方向(例如圖π 、前頭331a的方向)反轉為主槁 m 局主知拖方向的相反方向(例如 7的箭頭3仏的方向)、或從主掃描方向的相反方向 (例如圖17的箭頭331C的方向)反轉為主掃描方向(例如 固17的箭頭331e的方向)眸,产^士 -. )手在紐時間之間驅動檢流計 ^器!72a及檢流計掃播器_的兩者。因此,基於 。參閱圖5所述之現象相同的原因,會有加工部在反轉 -24- 201208799 为成為梳齒狀的可能性。然而,如圖1 6 所示,藉由疊合鄰接的加工區段的端部, 上的薄膜被完全剝離,可消除此問題。 再者,與參閱圖3及圖4所述之掃描 縮小重疊鄰接的光點的面積。再者,藉由 面(光點)設成矩形,相較於圓形或橢圓形 一步縮小重疊鄰接之光點的面積。其結果 時間。 回到圖14 ’在步驟s 5 5,掃描控制部 加工中之邊的加工已結束。步驟S 5 5的判 執行直到判定加工中的邊的加工已結束為 工中的邊的加工已結束的情況,處理進入 在步驟S56 ’雷射振盪器1U在輸出 控制下,停止雷射光的輸出。藉此,停止 太陽能電池面板1 0 2的照射。 在步驟S57,掃描控制部263判定是 加工已結束。在判定全部的邊的加工未結 理回到步驟S 5 1。 其後,反覆執行步驟S51至S57的處 部的邊的加工已結束為止。藉此’參閱圖 藉由與上述的掃描方法同樣的方法,依範 3〇2c、範園3〇2d的順序照射雷射光,依丨 域3 0 3 c、區域3 0 3 d的順序剝離薄膜。 再者,主掃描方向係以在對邊3 〇 i b 況,成為箭頭305b的方向(y軸的正的方向 的範圍3 1 3内 使殘留於梳齒 方法同樣,可 將雷射光的剖 的情况,可進 ,可縮短加工 263判定是否 定處理係反覆 止,在判定加 步驟S 5 6 ^ 控制部261的 雷射光朝薄膜 否全部的邊的 束的情況,處 理直到判定全 16及圖17, 圍302b 、範圍 區域303b 、區 進行加工的情 )’在對邊301c -25. 201208799 進行加工的情況,成為甚 向),在對邊30 Id進行力’ 3〇5C的方向(X軸的負的方 向(A的負的方向的情況,成為箭頭⑽的方 的變化14 方式變化。因此,按照主掃描方向 =㈤整驅動檢流計掃描器172a、172b = 向,調整雷射光的掃描方向。 柃 例如,在對邊301b 自百m 進仃加工的情況,以圖1 7沾苒 頭33la的方向成為 口 17的前 忐& 土 Υ袖的正的方向,箭頭331b的太& 成為X軸的正的方向 的方向 然後,以w 的箭頭 整雷射光的掃推方向。 ’⑦員Ua的方向成為y軸的正的方&, 箭頭311b的方向成為 町方向, ^ 車由的正的方向的方式’在卩敁 3〇2b内掃描光點。此 在&域 ,7 ^ 在對邊3 0 1 c進行加工的愔.. 以前頊331a的方向成 Wit况, 成為X軸的負的方向,箭頭331b Μ 方向成為y軸的正的方 卟的 向。然後,以圖16的婪_s 仰描方 ^ 丨頭311a的方向成為X轴的貞& 方向,箭頭31 lb的方& 町員的 fa, 乃向成為y軸的正的方向的方式,力 區域302c内掃描光 々式在 331b的方向成為X轴的負::y轴的負的方向,箭頭 掃描方向。然後,二的方向的方式,調整雷射光的 的負的方向,箭頭3llb:箭頭31U的方向成為Μ 彳 ,, b的方向成為X軸的負的方向的古 =rd内掃描光點。 爽的降方:纟步驟S57 ’判定全部的邊的加工已姓 上除處理結束。 除之Γ二間::?薄膜太陽能電池面板102的邊緣去 β加,並且使加工品質提高。 -26- 201208799 < 2.變形例> 的說明中,係顯示在進行薄膜 池面板102的邊绪 、太%能 、’去除的情況,適用本發明之例, 在例如使用雷射 此夕 之,在使用雷射朵^ 存聘時,換 適用本發明。 j辟犋時’也 此外,以上的說明中,係顯示在保持固 能電池面板1 02沾A '專骐太 的仇置的狀態下,藉由使光學 位置移動,而便壤趙1也 13 之間的相對位置移動夕如/ n 备/、九學部] 移動之例,但也可以在保持固 11 3的位置的壯能τ >^光學 〜、下,使薄膜太陽能電池面板 置移動或使兩者移動,以使薄膜太的 光學部"3之間的相對位置移動。 面板⑽ 再者,以上的說明中,係顯示將雷射光 =之例’但也可為矩形以外的形狀,例如圓:或: 此外,以上的說明中,係顯示利用檢流計掃 =、172b掃描雷射光之例,但也可利用其他^ 袄來掃描雷射光。 $ 再者,本發明的實施形態並不限定於上述實 態,在不脫離本發明要旨的範圍内可進行各 / 【圖式簡單說明】 更° 圖1為用以說明雷射光的掃描方法 s J乐1例的圖 圖2為用以說明雷射光的掃描 *〜乐1例的圖 圖3為用以說明雷射光的掃描 J乐2例的圖 電 可 陽 的 13 部 位 與 成 圓 器 手 形 -27- 201208799 圖4為用以說明雷射光的掃描方法的第2例的圖。 圖5為用以說明利用第2雷射光的掃描方法而產生 的問題的圖。 圖6為顯示適用本發明的雷射加工裝置的外觀的結 構例的立體圖。 圖7為顯不適用本發明的雷射加工裝置的電路的結 構例的方塊圖。 圖8為顯示方形光纖的端面的圖。 圖9為顯示被導入方形光纖前與導入並射出後之多 模態雷射脈衝的剖面的光的強度分布之例的圖。 圖1 0為顯示檢流計掃描器的結構例的圖。 圖1 1為顯示檢流計的結構例的圖。 圖 1 2為顯示雷射加工裝置之控制部的結構例的方 塊圖。 圖1 3為用以說明藉由雷射加工裝置執行之雷射加 工處理的流程圖。 圖 14為用以說明邊緣去除處理的詳細情形的流程 圖。 圖1 5為顯示邊緣去除的加工順序的圖。 圖1 6為顯示光點的位置及掃描方向的圖。 圖1 7為顯示雷射光的掃描方向的圖。 【主要元件符號說明】 101 雷射加工裝置 102 薄膜太陽能電池面板 111 雷射振盪器 -28- 201208799 112 方 形 光 纖 113 光 學 部 114 支 架 式 起 重 機 115 台 116 基 座 121 線 性 馬 達 122a、 122b 線 性 馬 達 123a、 123b 搬 送 皮 帶 171 擴 束 器 172a、 172b 檢 流 計 掃 描 器 173 f 6 1透鏡 181a、 181b 檢 流 計 182a、 182b 旋 轉 轴 183a、 183b 反 射 鏡 25 1 控 制 部 261 輸 出 控 制 部 262 驅 動 控 制 部 263 掃 描 控 制 部 -29-End 2: The method of overlapping, illuminating the laser light. D Next, the scan control section 263 drives the gas-5 slamming along the Fig. 17. The direction of the front 331d of the omnipotent inserter (the negative direction of the y-axis, scanning the laser light to the adjacent column of the square 4= column along the arrow 311c. For example, the same arrow and the arrow of Figure 16 are displaced in the direction of eight Λ, the position of the spot is along the 歹J. In addition, the end of the spot of the second column of 7, and the second will be: the second 172b of the arrow two, in the direction of the sub-scan i laser light The positive axis is positive, so that along the arrow, it will be partially overlapped 172a, that is, at the same distance as the main sweeping system, to the opposite spot 172b, that is, 3 1 1 of the sub-scanning laser light. b The negative y-axis scan of the negative y-axis scans the end of the spot in the third column of .22-201208799. The position of the spot is the position of the spot. The way of the knife is set to the third column, then according to Figure 17 The arrow ^ μ _ 331k scans the laser light two front head 331f.....the arrow scan direction sweeps γ φ , repeats the following processing: along the main gate, but also the laser light, the column is along with the main sweep γ ^ 4 W The direction of the drawing is shifted to the adjacent displacement to the adjacent column. After scanning in the direction opposite to the direction, along the sub-scanning direction 311f In this case, the light spot is scanned in the order of the sub-scanning direction 箭头^ according to the arrow 3 lle of FIG. 16 , that is, the light spot is displaced by one row and one row in one row, one main scanning direction. The phase & 13 main 拎捂 direction or alternately with each side of the 缺1 direction is scanned. After the scanning of the direction of the i-head arrow 331k is finished, the scan is scanned toward the y-axis of the side of the arrow... The position moves the scanning light in the two-drawing direction to "light the spot" due to the position of the first column of the optical portion 113. In addition, at this time, u is moved to the direction of the x-axis of the positive arrow 31U in the vt ^ direction, so the light If the point is not the same as the positive side of the X-axis, the oblique direction is scanned. In addition, the direction of the positive direction of the y-axis is 336. 11 The position of the light spot of Tian Fancheng; 瓸 arrow瓸 q丨丨ΑΛ He The scanning speed of the square m at the end of the scanned spot m=page 3IIa. Λ 'Γ / by the arrow 33ia, 33ib, ..., 3 Chuan section....The area where the film is peeled off by the laser light is called the processing area 5 and then 'samely' according to Figure 17. The order of the first 3 trainings sweeps the laser light, and the light spots are scanned in the order of arrows 312a, 312b, ..., -23-201208799 3121 of Fig. 6. In addition, the thinness of the area 3G3a is scanned until, ** 豕兀 兀 兀 it it it it it it it it it it it it it it it it it it it it it it it it it it it it = = = = = = = = = = = = = = = = = = = = = = The strips are stripped in the main scanning direction or in the order of the main direction. The main scanning VL is separated from the film in each processing section. In the direction of the main sweeping direction and in the opposite direction of the main sweeping, the scanning detector is scanned in the opposite direction to scan the laser scanner 72a a, and the dynamic friction force acts on the detector 172b @ 勖°P. The galvanometer sweep / 2b stops, and the movable 邛 & paste of the static friction force bearing can be used to check the J 勒 of the blade 172a. The state of 丨丨. Therefore, it is difficult to enter the a-axis 1 82b, and the rotation of the ten-knife 1 72b is hard to be stabilized by dry vibration such as vibration. As a result, the umbrella, ~a, is a "straight line" along the X-axis direction of the y-axis direction of the emitted light. Because the position of the point does not mean to snake, but the film is almost smeared, ',. Thus, at the end of the region 303a (the boundary between the two portions: P and the portion that is not peeled off), the rectangular spot is linearly scanned in the main scanning direction, so that the region 3 becomes uneven, and the green is approximately - Within, the line is also. Further, in the region 303a, a region where the laser light is not irradiated and the film is left unremoved without being peeled off may be removed.卜'Inverting the scanning direction of the laser light from the main scanning direction (for example, the direction of the figure π and the front head 331a) to the opposite direction of the direction of the master 槁m (for example, the direction of the arrow 3仏 of 7), or from the main The opposite direction of the scanning direction (for example, the direction of the arrow 331C of FIG. 17) is reversed to the main scanning direction (for example, the direction of the arrow 331e of the solid 17), and the hand-driving galvanometer is driven between the hand and the time. ! Both 72a and galvanometer sweeper_. Therefore, based on . Referring to the same reason as described in Fig. 5, there is a possibility that the processed portion is in the shape of a comb in the inverted -24-201208799. However, as shown in Fig. 16, the problem can be eliminated by overlapping the ends of the adjacent processed sections, the film on which is completely peeled off. Further, the area of the light spot adjacent to the overlap and the overlap with the scanning described with reference to Figs. 3 and 4 is described. Further, by setting the surface (light spot) to a rectangular shape, the area of the light spot adjacent to the overlap is reduced in one step compared to the circular or elliptical shape. The result is time. Returning to Fig. 14', in step s5 5, the processing of the side in the processing of the scanning control section is completed. The execution of step S5 5 is performed until it is determined that the processing of the edge in the machining has ended, and the processing of the side of the work is completed. The processing proceeds to step S56. The laser oscillator 1U stops the output of the laser light under the output control. . Thereby, the irradiation of the solar cell panel 102 is stopped. In step S57, the scan control unit 263 determines that the processing has ended. It is judged that the processing of all the sides is not completed and the process returns to step S51. Thereafter, the processing of the side of the portion where steps S51 to S57 are repeatedly executed is completed. By referring to the same method as the scanning method described above, the laser light is irradiated in the order of 〇3〇2c and Fanyuan 3〇2d, and the film is peeled off in the order of the 33 3 3 c and the region 3 0 3 d. . In addition, the main scanning direction is the same as the method of the arrow 305b (the range of the y-axis in the range of 3 1 3 in the positive direction of the y-axis, and the laser beam can be cut in the same manner as in the comb-tooth method). In the case where the processing 263 is determined to be negative, the processing is reversed, and in the case where it is determined that the laser light from the control unit 261 is directed to the side of the film, the processing is continued until the determination of all 16 and FIG. In the case where the circumference 302b, the range area 303b, and the area are processed), the case where the processing is performed on the opposite side 301c - 25. 201208799, and the direction of the force 30 〇 5C is performed on the opposite side 30 Id (the negative of the X-axis) The direction (the negative direction of A) changes as the direction of the arrow (10) changes. Therefore, the scanning direction of the laser light is adjusted in accordance with the main scanning direction = (five) driving galvanometer scanners 172a, 172b = direction. For example, in the case where the opposite side 301b is processed from a hundred m, the direction of the squeezing head 33la in Fig. 17 becomes the positive direction of the front 忐 & Υ sleeve of the mouth 17, and the arrow 331b is too & The direction of the positive direction of the axis then, to w The arrow is in the direction of the sweep of the laser. The direction of the 7th Ua is the positive side of the y-axis, the direction of the arrow 311b becomes the direction of the town, and the way of the positive direction of the car is in the 卩敁3〇2b Scan the spot. This is in the & field, 7 ^ is processed on the opposite side 3 0 1 c. The direction of the previous 331a is in the Wit state, which becomes the negative direction of the X axis, and the arrow 331b Μ direction becomes the y axis. In the direction of the 卟 s 仰 仰 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 311 The direction of the positive direction of the axis, the direction of the scanning pupil in the force region 302c becomes the negative of the X-axis in the direction of 331b: the negative direction of the y-axis, the direction of the arrow scanning. Then, the direction of the two directions adjusts the laser light. The negative direction, the arrow 3llb: the direction of the arrow 31U becomes Μ 彳, and the direction of b becomes the scanning point of the ancient = rd in the negative direction of the X-axis. The cool descending: 纟 step S57 'determines all the sides Processing has been surnamed except the end of processing. In addition to the second::? The edge of the thin film solar panel 102 to β plus And the processing quality is improved. -26-201208799 < 2. Modifications> In the description of the edge of the film pool panel 102, too much energy, and 'removal, the example of the present invention is applied. In the case of, for example, the use of a laser, the use of the laser is used in the case of the use of the laser. In addition, in the above description, the display of the solid-state battery panel 102 is adhered to A' In the state of being too arrogant, by moving the optical position, the relative position between the soil and the 13 is moved as in the case of the movement, but it can also be maintained. The strength of the position of 11 3 τ > ^ optical ~, down, the thin film solar cell panel is moved or moved to move the relative position between the optical portion of the film too. Panel (10) In the above description, the example in which the laser light is used is shown, but the shape other than the rectangle may be used, for example, a circle: or: In the above description, the galvanometer sweep = 172b is used. Scanning for laser light, but you can also use other 袄 to scan for laser light. Further, the embodiment of the present invention is not limited to the above-described embodiment, and various embodiments of the present invention can be carried out without departing from the gist of the present invention. FIG. 1 is a scanning method for explaining laser light. FIG. 2 is a diagram for explaining the scanning of the laser light. FIG. 3 is a diagram for explaining the scanning and illuminating of the laser light. -27- 201208799 FIG. 4 is a view for explaining a second example of a scanning method of laser light. Fig. 5 is a view for explaining a problem caused by a scanning method using second laser light. Fig. 6 is a perspective view showing a structural example of an appearance of a laser processing apparatus to which the present invention is applied. Fig. 7 is a block diagram showing a configuration example of a circuit of a laser processing apparatus to which the present invention is applied. Fig. 8 is a view showing an end face of a square optical fiber. Fig. 9 is a view showing an example of intensity distribution of light of a cross section of a multimodal laser pulse before being introduced into a square optical fiber and introduced and emitted. Fig. 10 is a view showing a configuration example of a galvanometer scanner. Fig. 11 is a view showing a configuration example of a galvanometer. Fig. 12 is a block diagram showing a configuration example of a control unit of the laser processing apparatus. Figure 13 is a flow chart for explaining the laser processing performed by the laser processing apparatus. Fig. 14 is a flow chart for explaining the details of the edge removal processing. Figure 15 is a diagram showing the processing sequence of edge removal. Figure 16 is a diagram showing the position of the spot and the scanning direction. Fig. 17 is a diagram showing the scanning direction of the laser light. [Main component symbol description] 101 Laser processing device 102 Thin film solar cell panel 111 Laser oscillator-28- 201208799 112 Square fiber 113 Optical portion 114 Bracket crane 115 Taiwan 116 Base 121 Linear motor 122a, 122b Linear motor 123a, 123b conveying belt 171 beam expander 172a, 172b galvanometer scanner 173 f 6 1 lens 181a, 181b galvanometer 182a, 182b rotating shaft 183a, 183b mirror 25 1 control unit 261 output control unit 262 drive control unit 263 scanning Control Department-29-

Claims (1)

201208799 七、申請專利範圍: 1. 一種雷射加工裝置’係使用雷射光將薄膜從基板 的雷射加工裝置’其特徵在於具備: 加工部,其包含掃描手段,該掃描手段係在 方向的預定範圍内及與該第1方向正交的第2方 預定範圍内,於該基板上掃描該雷射光;及 移動手段,其移動該加工部與該基板中之至 者,使該加工部與該基板之間的相對位置至少在u 方向上移動; 將寬度比該雷射光的射束直徑寬且延伸於該 方向之直線狀第1區域内的薄膜從該基板剝離時 一面利用該移動手段使該加工部與該基板之間的 位置沿該第1方向移動,一面利用該掃描手段沿 工部前進的行進方向對該基板掃描該雷射光,於驾 區域内沿該行進方向掃描該雷射光的照射位置。 2. 如申請專利範圍第1項之雷射加工裝置,其中沿 進方向掃描該雷射光後,再利用該掃描手段沿該 方向將該雷射光位移,在與該行進方向相反的方 掃描該雷射光,於沿該行進方向掃描該雷射光時 雷射光的照射位置與鄰接於該第2方向的位置, 該行進方向相反的方向上掃描該雷射光的照射位 3 ·如申請專利範圍第2項之雷射加工裝置,其中在古 區域的該第1方向之預定的每個範圍,利用該揭 段,一面使該雷射光的照射位置沿該第2方向你 一面在該行進方向或與該行進方向相反的方向上 地掃描’依該行進方向的順序剝離各範圍的薄膜 剝離 第1 向的 少一 [第1 第1 ,係 相對 該加 友第1 該行 第2 向上 之該 在與 置。 衾第1 ’描手 :移, -交替 -30- 201208799 4.如申請專利範圍第 項之雷射加工裝置, 比該雷射光的射束 其中將寬度 魂# 米罝仫寬且延伸於該第2方6卜^ 線狀第2區域内的麄 万向上之直 膘從該基板剝離時,4 2手段使該加工部與該基板之間的相對—面利用 二2方向移動’-面利用該掃描手段沿該:位置沿該 的行進方向對該基板掃插該雷射光,加工部前進 沿S玄行進方向掃描該雷射光的照射位置。2區域内 5.如申請專利_ 1項之雷射加工裝置,装 基板之該雷射光的剖面為矩形。 其中射入該 該掃描 申請專利範圍第1項之雷射加工裝 手段具備: 其中 第1檢流計掃描器,其在該第i方向上搞 射光;及 D上掃描該雷 第2檢流計掃描器,其在該第2方向上摄 射光。 D上掃描該雷 7·如申請專利範圍帛i項之雷射加工裝置 用以振盪該雷射光的雷射振I手段。 -中更具備 8. 一種雷射加工方法,其特徵在於: 將寬度比該雷射光的射束直徑寬且 直線狀區域内的薄膜從該基板剝離時:;L ^置係一面利用該移動手段,使該加工部與該基板 ^間的相對位置在該第1方向上移動,-面利用該掃 描手段沿該加卫部前進的行進方向對該基板掃描該雷 射光’於该區域内沿該行進方向掃描該雷射光的照射 位置; -3 1- 201208799 其中該雷射加工裝置係具備包含掃描手段的加工 部,而該掃描手段係於基板上沿第1方向及與該第1 方向正交的第2方向掃描該雷射光。201208799 VII. Patent application scope: 1. A laser processing device 'is a laser processing device for irradiating a film from a substrate using laser light', characterized in that it comprises: a processing portion, which comprises a scanning means, the scanning means is predetermined in the direction Scanning the laser light on the substrate within a predetermined range of the second square orthogonal to the first direction; and moving the device to move the processed portion and the substrate to the processed portion The relative position between the substrates moves at least in the u direction; when the film having a width wider than the beam diameter of the laser light and extending in the linear first region extending in the direction is peeled off from the substrate, the moving means is used The position between the processed portion and the substrate moves in the first direction, and the laser beam is scanned by the scanning means along the traveling direction of the working portion, and the laser beam is scanned in the driving direction along the traveling direction. position. 2. The laser processing apparatus of claim 1, wherein the laser light is scanned in the forward direction, and the laser light is displaced in the direction by the scanning means, and the lightning is scanned in a direction opposite to the traveling direction. Shooting light, scanning the irradiation position of the laser light when the laser light is scanned in the traveling direction and the position adjacent to the second direction, and the direction of the opposite direction of the traveling light is scanned in the direction opposite to the traveling direction. a laser processing apparatus, wherein each of the predetermined ranges of the first direction in the ancient region is used, and the irradiation position of the laser light is along the second direction in the traveling direction or the traveling direction In the direction opposite to the direction of the scan, the thin film peeling in the first direction is peeled off in the order of the traveling direction. [1st first, the second and the second in the second line of the friend.衾1st 'Hands: Move, -Alternate -30- 201208799 4. As in the laser processing device of the scope of the patent application, the beam of the laser beam is wider than the beam of the laser beam When the two straight lines in the second region of the linear shape are peeled off from the substrate, the relative surface of the processed portion and the substrate is moved by the two-direction direction. The scanning means sweeps the laser light along the traveling direction along the traveling direction, and the processed portion advances the scanning position of the laser light in the S-shaped traveling direction. In the area 2, as in the laser processing apparatus of claim 1, the laser beam of the substrate is rectangular in cross section. The laser processing apparatus for injecting the first item of the scanning application patent range includes: wherein: a first galvanometer scanner that emits light in the ith direction; and a scan of the Ray second galvanometer on D A scanner that takes light in the second direction. Scanning the mine on D. 7. A laser processing apparatus for oscillating the laser light according to the laser processing apparatus of claim 帛i. - a medium laser processing method, characterized in that: when the width is larger than the beam diameter of the laser beam and the film in the linear region is peeled off from the substrate: L ^ is placed on the side using the moving means And moving the relative position between the processed portion and the substrate in the first direction, and scanning the laser light in the region along the traveling direction of the feeding portion by the scanning means Scanning the irradiation position of the laser light in the traveling direction; -3 1- 201208799 wherein the laser processing apparatus includes a processing unit including a scanning means, and the scanning means is orthogonal to the first direction and orthogonal to the first direction on the substrate The second direction scans the laser light.
TW100120972A 2010-06-17 2011-06-16 Laser processing apparatus and laser processing method TW201208799A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137928A JP2012000640A (en) 2010-06-17 2010-06-17 Laser processing device and laser processing method

Publications (1)

Publication Number Publication Date
TW201208799A true TW201208799A (en) 2012-03-01

Family

ID=45347951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120972A TW201208799A (en) 2010-06-17 2011-06-16 Laser processing apparatus and laser processing method

Country Status (5)

Country Link
JP (1) JP2012000640A (en)
KR (1) KR20130079481A (en)
CN (1) CN103068515A (en)
TW (1) TW201208799A (en)
WO (1) WO2011158539A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916081B (en) * 2012-10-19 2015-07-08 张立国 Edge deletion method for thin-film solar cells
CN103084736A (en) * 2013-01-16 2013-05-08 中国重型机械研究院股份公司 Laser edge cutting system
JP2018091931A (en) * 2016-11-30 2018-06-14 澁谷工業株式会社 Terahertz light generation device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435247B2 (en) * 1995-02-28 2003-08-11 株式会社東芝 Laser light irradiation apparatus and laser light irradiation method
JP2001079680A (en) * 1999-09-14 2001-03-27 Matsushita Electric Ind Co Ltd Laser beam machining device and method therefor
JP2004098116A (en) * 2002-09-09 2004-04-02 Mitsubishi Electric Corp Mask transfer laser pattern machining method
JP2004322106A (en) * 2003-04-21 2004-11-18 Sumitomo Heavy Ind Ltd Laser beam machining method, and laser beam machining apparatus
GB2444037A (en) * 2006-11-27 2008-05-28 Xsil Technology Ltd Laser Machining
JP2008212999A (en) * 2007-03-06 2008-09-18 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP2009119521A (en) * 2007-11-19 2009-06-04 Miyachi Technos Corp Laser welding method
CN101452972B (en) * 2007-11-30 2010-05-26 深圳市大族激光科技股份有限公司 Amorphous silicon thin-film solar cell laser etching system and etching method

Also Published As

Publication number Publication date
KR20130079481A (en) 2013-07-10
WO2011158539A1 (en) 2011-12-22
JP2012000640A (en) 2012-01-05
CN103068515A (en) 2013-04-24

Similar Documents

Publication Publication Date Title
TWI221102B (en) Laser material processing method and processing device
CN102785028B (en) Laser processing and laser processing device
CN103567630A (en) Laminated-substrate processing method and processing apparatus
CN102658424B (en) System and method for machining LED (light-emitting diode) substrate by laser
US20060108508A1 (en) Method and apparatus for high speed imaging
US7672344B2 (en) Multi-laser system
WO2011065373A1 (en) Laser processing method
TWI392553B (en) Laser machining apparatus
CN103779195B (en) Laser anneal method and system
TW200941743A (en) Partially transparent solar panel
CN100402220C (en) Method and device for removal of thin-film
TW201117902A (en) Latitudinal iso-line scribe, stitching, and simplified laser and scanner controls
CN102123817B (en) Chamfering apparatus
CN105789125A (en) Wafer processing method
CN108526142A (en) A kind of method and apparatus for realizing laser cleaning based on light beam circular scanning
TW201208799A (en) Laser processing apparatus and laser processing method
JP5584560B2 (en) Laser scribing method
CN103434149A (en) Parallel scanning laser pretreatment device and method
TWI744460B (en) Laser processing device
JP4377490B2 (en) Reversible thermal recording medium recording / erasing apparatus
JP2002001561A (en) Oval hole machining method and its apparatus
WO2014203240A1 (en) Kerf-free ingot wafering
JP2005210103A5 (en)
JP2004343093A5 (en)
CN206335247U (en) Optical machining device