TW201208553A - Device for monitoring an object, and method and system for monitoring and cooling an object - Google Patents

Device for monitoring an object, and method and system for monitoring and cooling an object Download PDF

Info

Publication number
TW201208553A
TW201208553A TW100121711A TW100121711A TW201208553A TW 201208553 A TW201208553 A TW 201208553A TW 100121711 A TW100121711 A TW 100121711A TW 100121711 A TW100121711 A TW 100121711A TW 201208553 A TW201208553 A TW 201208553A
Authority
TW
Taiwan
Prior art keywords
pillow
cooling
conductivity distribution
predefined range
conductivity
Prior art date
Application number
TW100121711A
Other languages
Chinese (zh)
Inventor
Kai Huang
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW201208553A publication Critical patent/TW201208553A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0536Impedance imaging, e.g. by tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0522Magnetic induction tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • A61F2007/0002Head or parts thereof
    • A61F2007/0008Scalp
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0054Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
    • A61F2007/0056Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water for cooling

Abstract

This invention relates to a method, a device and a system for monitoring and cooling an object. According to the invention, the device which is used for monitoring an object and which is connected with a cooling system for cooling the object, comprises: a measuring unit for measuring the conductivity distribution of the object; a determining unit for determining whether the conductivity distribution of the object or parameters conducted from the conductivity distribution are in a predefined range or not; a generating unit for generating a control signal if the determining unit determines that the conductivity distribution or parameters conducted from the conductivity distribution are not in the predefined range; and a control unit for controlling the cooling system to cool the object to a predetermined temperature value according to the control signal. By introducing the control unit into the device, the cooling system can be automatically controlled and enabled by the measurement result of the device, so that the cooling system will lower the temperature of the object as soon as possible if the measurement of the device indicates the occurrence of injury of the object.

Description

201208553 六、發明說明: 【發明所屬之技術領域】 本發明係關於物體監測,且更特定地關於一種監測一物 體之裝置,與一種監測及冷卻一物體之方法及系統。 【先前技術】 MIT(磁感應斷層攝影)係適宜於生物醫學應用的一非入 侵性且非接觸式途徑。例如,Μίτ裝置可藉由量測一病人 之大腦之電導率分佈而用於監測一病人之大腦。若厘17量 測之變化足夠大,此可指示一大腦損傷的發生。 MIT之一應用為在神經外科手術之後監測大腦中的出 血,且另一潛在應用係監測病人在晚上睡覺時二次中風事 件的出現。美國心臟協會報導,在美國每年約7〇〇,〇〇〇人 遭受一次中風,且其中有33%為再發性發病。再者,在一 研究中發現25%的中風事件在一人的睡覺期間出現。另一 研究透露在54〇/〇之中風病人中,中風在睡眠期間發作。此 等資料展示中風通常在人們睡著且對此不知曉時發生。 此外,已發現在大腦損傷之後的低溫療法係用於挽救神 經細胞及其他大腦細胞的一方法。研究指示將大腦組織冷 部至30°C至34°C的一溫度可延遲神經細胞及其他細胞死 亡。 因此,當一 MIT裝置用於監測此類病人且偵測到一大腦 損傷時’必須儘快採取後續的行動,以在—中風或出血事 件之後保護該大腦,因為對大腦細胞的損害係無法復原 的。對於中風病人或出血的病人,時間非常寶貴,因為只 156250.doc 201208553 有在症狀發作後3到6小時的—時間窗内才能給予最有效的 治療H #目前為止,—MIT裝置僅在螢幕上輸出其 量測的結果,且等待醫生或醫務人員進行後續⑽序,所 以可能無法及時處理病人。 【發明内容】 本發明係基於以下見識一冷卻系統應由一物體監 測裝置之量測結果自動控制,使得其可藉由延遲大腦細胞 的死亡且延長寶貴的時間窗而對t風病人有利,尤其對於 在其等睡眠期間遭受-中風或出血的病人。再者,若該量 測結果指示大腦損傷,則可發送出_警報,使得醫務人員 可立即處理病人。 本發明提供實現上文概念的—方法、—裝置及系統。 根據本發明之—態樣,提供—裝置以監測—物體,該裝 置::於:卻該物體的一冷卻系統連接,該裝置包括: 里測單7G,其用於量測該物體之一電導率分佈; 判疋單7L ’其用於判定該物體之電導率分佈或從該電 導率分佈導出之參數是否在一預定義範圍中; -產生單元,其用於若該判定單元判定該電導率分佈或 從該電導率分佈導出之參數不在該預定義㈣中,則產生 一控制信號;及 控制單7〇,其用於根據該控制信號控制該冷卻系統, 以將該物體冷卻至1定溫度值。 π =際中。玄冷部系統由該裝置之量測結果自動啟動, 使仔右該裝置之1測指示該物體出現損傷,則該冷卻系統 156250.doc 201208553 將儘快降低該物體之溫度。 在一實施例中,該裝置係一磁感應斷層攝影(Μιτ)裝 置》 在另一實施例中,該產生單元進一步經調適以:若該判 定單元判定該電導率分佈或從該電導率分佈導出之參數不 在一預定義範圍中,則產生且發送出一警報。 在此情況中’可及時處理該物體,且可在寶貴的時間窗 内給予最有效的治療。 在一進一步實施例中’該物體係一人頭,且該預定義範 圍及該預定溫度值根據該人頭之大腦損傷之類型及人的健 康狀況而設定。 本發明之其他目的及結果將從與附圖結合而作出之以下 描述中變得更顯而易見且更容易理解。 【實施方式】 本發明將與實施例結合且參考圖式而在下文中更詳細描 述及解釋。 圖中相同的參考標記指示類似或對應的特徵部及/或功 能。 本發明之一實施例將參考圖式而在下文中更詳細描述。 圖1係根據本發明之用於監測一物體之裝置10的一方塊 圖。 參考圖1,該裝置10包括一量測單元11,其用於在接收 一 ΜΙ(量測指令)之後量測物體的一電導率分佈。該ΜΙ可經 由使用者按壓按紐而輸入。 156250.doc 201208553 在一實施例中,該裝置 置,且該物體可為一人頭。’’·、感應斷層攝影陣)裝 用於量測大腦之電導率分 其他參數可從由該量測單 在此情況中,該量測單元〗!可 佈。如熟習此項技術者所熟知, 元11量測之電導率分佈處導出。 判定單元12,其用於判定該物體 率分佈導出t參數是否在一預定 該裝置10進一步包括一 之電導率分佈或從該電導 義範圍中。 換句話說,若㈣體之電㈣分佈或從該電㈣分佈導 出之參數不在-預定義範圍令’則此可為一大腦損傷的一 指-,諸如在睡眠時間期間的一令風或在神經外科手術後 大腦中的一出血等等。 該裝置10進一步包括一產生單元13,其用於若該判定單 元12判定該電導率分佈或從該電導率分佈導出之參數不在 一預定義範圍中,則產生一控制信號。 該裝置10進一步包括一控制單元14,其用於根據該控制 信號控制冷卻系統CS,以將該物體冷卻至一預定溫度值。 在一貫施例中,該預定義範圍及該預定溫度值根據人頭 之大腦損傷類型及人的健康狀況而設定。 研究指示將大腦組織冷卻至30。(:至34。(:的一溫度可延遲 神經細胞及其他細胞死亡。因此,該預定溫度值根據大腦 損傷之類型(例如,在神經外科手術後的一出血或在睡眠 時間期間的一中風)而設定。此外,該預定溫度值亦可根 據該病人之健康狀況而設定,例如,血壓、心率、心腦血 156250.doc 201208553 管疾病之病歷等等。 類似地’該物體之該電導率分佈或從該電導率分佈導出 之參數的預定義範圍可根據人頭之大腦損傷的類型及人的 健康狀況而設定。 如上文所討論,因為該冷卻系統可在無醫生或醫務人員 介入的情況下由-MIT裝置之量測自動控制及啟動,㈣ 溫療法可儘快開始’以保護該大腦。 在另-實施财,該產生單元13進_步經調適以:若該 判定單元判定該電導率分佈或從該電導率分佈導出之參數 不在該預定義範圍中,則產生及發送出一警報。 在此情況中,一旦由該裝置偵測到一大腦損傷,藉由產 生及發送出-警報至醫務人員,或至直接在病人附近的親 屬,可及時處理病人,且可在寶貴的時間窗内給予最有效 的治療》 在1實施例中’該控制單元14進一步經組態以:若該 判定單元12判;t該電導率分佈或從該電導率分佈導出之參 數在-預定義範圍内,則將大腦表面的溫度值保持於與環 境溫度一致。 因此,在自行治癒的輕微大腦損傷之情況中,例如,一 輕微出血,該量測單元i j之量測可返回至該預定義範圍, 且接著該控制單元14可控制該冷卻系統,以將該物體之溫 度提升至室溫,使得可減輕對該病人的任何副作用或嚴重 的低溫併發症。 亦可能發生若該量測單元丨丨之量測在某一時間段不足夠 156250.doc 201208553 精確且該冷卻系統被不恰當地啟用,則該量測單元丨丨之量 測亦可返回至該預定義範圍。在此情況中,若該量測單元 11之量測返回至一正常值,則該冷卻系統可將該物體之溫 度提升至室溫’以保護該物體免受不恰當的處理。 請注意’儘管本發明僅採用一 Μίτ裝置作為裝置10之一 實例,對於熟習此項技術者將容易地想到可使用可監測該 物體且量測一人頭之電導率分佈且接著判定是否具有一大 腦損傷的任何裝置,諸如電阻抗斷層攝影(EIT)、電阻斷 層攝影(ERT)、電容斷層攝影(ECT)、t磁斷層攝影(EMT) 及磁共振電阻抗斷層攝影(MREIT)裝置。 圖2係根據本發明之監測及冷卻一物體之方法的一流程 圖0 如圖2中所展不,根據本發明之該方法包括一步驟21 : 量則X物體之電導率分佈。步驟2丨之:力能可由該量測單 元11執行。 該方法進一步包括一步驟22:判定該物體之該電導率分 佈或從該電導率分佈導出之參數是^在-預定義範圍中。 步驟22之功能可由該判定單元^執行。 該方法進—步包括—步㈣:若判定的步驟22判 々又少那“刊疋錄电 導率分佈或從該電導率分料出之參數不在—狀義範圍 内’則產生—控制信號。步驟23之功能可由該產生單元13 執行。 根據該控制信號而控制一 預定溫度值。步驟24之功 該方法進一步包括一步驟24 ·· 冷卻系統,以將該物體冷卻至一 156250.doc 201208553 能可由該控制單元14執行。 在一實施例中,該方法進一步包括一步驟25 :若判定之 步驟22判定該電導率分佈或從該電導率分佈導出之參數不 在該預定義範圍内,則產生及發送出一警報。步驟25之功 能可由該產生單元13執行。 在一實施例中,該物體係一人頭,且該預定義範圍及預 定溫度值根據該人頭之大腦損傷類型及人的健康狀況而設 定。 在此情況中,該方法可進一步包括一步驟26 :若判定之 步驟22判定該電導率分佈或從該電導率分佈導出之參數在 該預定義範圍内,則將該大腦表面的溫度值保持於與室溫 一致0 圖3展示根據本發明之用於監測及冷卻一物體的一系 統。 如圖3中所展示,根據本發明之該系統包括如上文所提 及之該MIT裝置及與該MIT裝置連接的一冷卻系統。 詳細而言’該MIT裝置包括基本MIT硬體301,包含磁發 射/接收線圈、防護蓋及其他必要組件,以監測該物體 302 ° 此外,該MIT裝置包括一控制單元312,其用於根據由 該MIT硬體301產生之控制信號而控制該冷卻系統,以將 該物體冷卻至一預定溫度值。 因為該MIT裝置已在上文中詳細描述,其進一步的描述 在本文中省略。 156250.doc •10· 201208553 接者’描述在該系統中採用的—冷卻系統,其根據本發 明之一實施例用於監測及冷卻一物體。 如圖3中所展不,該冷卻系統包括:一枕塾,在該枕 塾之本體314中具有熱傳導流體3G3;及一管系統316,其 具有在其内循環的冷卻液3G8,且與該枕塾313交換熱,以 冷卻該物體302,其在此實例中係一人頭。 該冷卻系統可經組態以便當睡眠中的病人安好時為一舒 適的正常枕墊,而當出現大腦損傷時儘快藉由冷卻大腦而 保護该病人的大腦。 如所展示,該枕墊313之本體314進一步包括一上層 3〇4,其經調適以支撐該物體3〇2,且直接接觸該物體 302。該上層3〇4係熱傳導性的且較柔軟。在該枕墊313 中,具有一通孔,其經調適以含有該管系統3 16之管3〇7。 该管系統316包括兩個不同管。在該枕墊313之通孔内的 一者307由熱傳導材料製成,且在該枕墊313外的另一者 306由一絕熱、非傳導性且剛硬的材料製成。結果,在該 管307内的該冷卻液308可與該枕墊中的熱傳導流體3〇3交 換熱,且該冷卻液308在經過該管306時將不加熱,因為其 由絕熱、非傳導性且剛硬的材料製成,且因此可改良熱效 率。 在一實施例中’該管系統316進一步包括:一冷卻栗 310’其用於驅動在該管系統316内循環的冷卻液308;及 一控制單元309 ’其用於根據來自該MIT裝置之該控制單 元3 12的控制信號而控制該冷卻泵310。 156250.doc -11 - 201208553 在一實施例中’該枕塾313進一步包括至少一個支管 315,其由一絕熱、非傳導性且剛硬的材料3〇5製成。儘管 在該物體302之兩側上展示兩個支管3 15,熟習此項技術者 可容易地理解可如需要僅具有一個支管或多於兩個支管 315 ° 該支管315可與該枕塾313之本體314連通,使得當該物 體302躺在該枕墊313中時,該上層304彎曲,以便形成一 凹處,導致該熱傳導流體303在該支管315中上升,藉此控 制該物體302處於一固定位置,且由於由該熱傳導流體3〇3 之高度差異而引發的力,該枕墊313之上層304保持與該物 體302緊密接觸。 因為該物體302可經控制以便處於一固定位置中,且其 將不相對於該MIT裝置而移動,可改良該MIT裝置之量測 精度。此外’因為該枕墊313之該上層304保持與該物體 3 02緊密接觸’該物體3 02可有效地冷卻,且因此可增強延 遲神經細胞及其他細胞死亡的效應。 在另一實施例中’該系統可進一步包括一溫度感測器 3 11,其用於感測該物體302之溫度值。 如圖3中所展示’該溫度感測器311可置於該上層3〇4處 或大腦之表面’只要其可感測大腦表面處的溫度值。 應注意’上文提及之實施例繪示而非限制本發明,且熟 習此項技術者將能夠在未脫離隨附申請專利範圍之範疇下 設計替代實施例。在申請專利範圍中,置於圓括弧之間的 任何參考標記不應解譯為限制申請專利範圍。詞語「包 156250.doc 12 201208553 括」不排除存在並未列於-中請專利範圍中或描述中的元 件或步驟。在一元件前的詞語「_」4「一個」不排除: 在複數個此等元件。在列舉若干單元之系統申請專利範圍 t,若干此等單元可由軟體及/或硬體之同一項目體現。 詞語第-、第二及第三等等的使用不指示任何次序。此等 詞語解譯為名稱。 【圖式簡單說明】 圖1係根據本發明之用於監測一物體之裝置的一方塊 圖; 圖2係根據本發明之監測及冷卻方法的—流程圖;及 圖3展示根據本發明之用於監測及冷卻一物體之系統 【主要元件符號說明】 10 裝置 11 量測單元 12 判定單元 13 產生單元 14 控制單元 21 步驟 22 步驟 23 步驟 24 步驟 25 步驟 26 步驟 301 磁感應斷層攝影硬體 156250.doc •13· 201208553 302 物體 303 熱傳導流體 304 上層 305 材料 306 管 307 管 308 冷卻液 309 控制單元 310 冷卻泵 311 溫度感測器 312 控制單元 313 枕墊 314 本體 315 支管 156250.doc -14-201208553 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to object monitoring, and more particularly to a device for monitoring an object, and a method and system for monitoring and cooling an object. [Prior Art] MIT (Magnetic Inductive Tomography) is a non-invasive and non-contact approach suitable for biomedical applications. For example, a Μίτ device can be used to monitor a patient's brain by measuring the conductivity distribution of a patient's brain. If the change in the PCT measurement is large enough, this can indicate the occurrence of a brain injury. One of the applications of MIT is to monitor bleeding in the brain after neurosurgery, and another potential application is to monitor the presence of secondary stroke events when the patient is asleep at night. The American Heart Association reports that in the United States, about 7 years a year, deaf people suffer a stroke, and 33% of them are recurrent. Furthermore, in a study, 25% of stroke events occurred during a person's sleep. Another study revealed that in 54 〇/〇 stroke patients, stroke occurred during sleep. This information shows that strokes usually occur when people are asleep and are not aware of it. In addition, cryotherapy after brain injury has been found to be a method for saving nerve cells and other brain cells. Studies have shown that cooling the brain tissue to a temperature of 30 ° C to 34 ° C can delay the death of nerve cells and other cells. Therefore, when an MIT device is used to monitor such patients and a brain injury is detected, 'subsequent actions must be taken as soon as possible to protect the brain after a stroke or bleeding event because the damage to the brain cells is irreversible. . For stroke patients or patients with bleeding, time is very valuable, because only 156250.doc 201208553 can give the most effective treatment within 3 to 6 hours after the onset of symptoms - H # so far, - MIT device only on the screen The results of the measurements are output and waiting for the doctor or medical staff to follow up (10), so the patient may not be processed in time. SUMMARY OF THE INVENTION The present invention is based on the insight that a cooling system should be automatically controlled by the measurement results of an object monitoring device such that it can be beneficial to t-wind patients by delaying the death of brain cells and extending valuable time windows, especially For patients who suffer from - stroke or bleeding during their sleep. Furthermore, if the measurement indicates brain damage, an _alarm can be sent so that the medical staff can immediately process the patient. The present invention provides methods, apparatus, and systems that implement the above concepts. According to an aspect of the invention, there is provided a device for monitoring an object, the device:: but a cooling system of the object is connected, the device comprising: a test meter 7G for measuring a conductance of the object Rate distribution; judgement 7L 'is used to determine whether the conductivity distribution of the object or the parameter derived from the conductivity distribution is within a predefined range; - a generating unit for determining the conductivity if the determining unit determines The distribution or the parameter derived from the conductivity distribution is not in the predefined (four), a control signal is generated; and the control unit 7 is used to control the cooling system according to the control signal to cool the object to a constant temperature value. π = in the middle. The quenching system is automatically activated by the measurement result of the device, so that the 1st measurement of the device indicates that the object is damaged, and the cooling system 156250.doc 201208553 will lower the temperature of the object as soon as possible. In one embodiment, the apparatus is a magnetic induction tomography apparatus. In another embodiment, the generating unit is further adapted to: if the determining unit determines the conductivity distribution or derives from the conductivity distribution If the parameter is not within a predefined range, an alert is generated and sent. In this case, the object can be processed in time and the most effective treatment can be given within a valuable time window. In a further embodiment, the system is in a human head, and the predefined range and the predetermined temperature value are set according to the type of brain damage of the head and the health of the person. Other objects and results of the present invention will become more apparent from the following description taken in conjunction with the accompanying drawings. [Embodiment] The present invention will be described in conjunction with the embodiments and described in more detail below with reference to the drawings. The same reference numbers in the figures indicate similar or corresponding features and/or functions. An embodiment of the invention will be described in more detail below with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of an apparatus 10 for monitoring an object in accordance with the present invention. Referring to Figure 1, the apparatus 10 includes a metrology unit 11 for measuring a conductivity distribution of an object after receiving a chirp (measurement command). The cassette can be entered by pressing the button by the user. 156250.doc 201208553 In an embodiment, the device is disposed and the object can be a human head. ’’·, Inductive tomography array) is used to measure the conductivity of the brain. Other parameters can be measured from the measurement. In this case, the measurement unit! Can be clothed. As is well known to those skilled in the art, the conductivity distribution of the element 11 measurement is derived. The determining unit 12 is configured to determine whether the object rate distribution derives a t parameter whether or not the device 10 further includes a conductivity distribution or a range from the electrical conductivity. In other words, if the (four) body's electrical (four) distribution or the parameter derived from the electrical (four) distribution is not in the -predefined range order, then this can be a finger of a brain injury, such as a wind or during a sleep time. A bleeding in the brain after neurosurgery and so on. The apparatus 10 further includes a generating unit 13 for generating a control signal if the determining unit 12 determines that the conductivity distribution or the parameter derived from the conductivity distribution is not within a predefined range. The apparatus 10 further includes a control unit 14 for controlling the cooling system CS based on the control signal to cool the object to a predetermined temperature value. In a consistent embodiment, the predefined range and the predetermined temperature value are set according to the type of brain damage of the head and the health of the person. The study indicated that the brain tissue was cooled to 30. (: to 34. (A temperature of one can delay the death of nerve cells and other cells. Therefore, the predetermined temperature value is based on the type of brain damage (for example, a bleeding after neurosurgery or a stroke during sleep time) In addition, the predetermined temperature value may also be set according to the health condition of the patient, for example, blood pressure, heart rate, heart and brain blood 156250.doc 201208553 disease history of the disease, etc. Similarly, the conductivity distribution of the object Or the predefined range of parameters derived from the conductivity distribution can be set according to the type of brain damage of the human head and the health of the person. As discussed above, because the cooling system can be accessed without a doctor or medical staff Automatically controlled and activated by the measurement of the -MIT device, (4) The temperature therapy can be started as soon as possible to protect the brain. In another implementation, the generating unit 13 is adapted to: if the determining unit determines the conductivity distribution Or the parameter derived from the conductivity distribution is not in the predefined range, then an alarm is generated and sent out. In this case, once detected by the device To a brain injury, by generating and sending out-alarms to medical staff, or to relatives directly in the vicinity of the patient, the patient can be treated in time and the most effective treatment can be given within a valuable time window. In one embodiment 'The control unit 14 is further configured to: if the decision unit 12 determines; t the conductivity distribution or the parameter derived from the conductivity distribution is within a predefined range, the temperature value of the brain surface is maintained at ambient The temperature is uniform. Therefore, in the case of a slight brain injury that is self-healing, for example, a slight bleeding, the measurement of the measuring unit ij can be returned to the predefined range, and then the control unit 14 can control the cooling system, Increasing the temperature of the object to room temperature may reduce any side effects or severe hypothermia complications to the patient. It may also occur if the measurement of the measurement unit is not sufficient for a certain period of time 156250.doc 201208553 Accurate and the cooling system is improperly activated, the measurement of the measuring unit 亦可 can also be returned to the predefined range. In this case, if the measurement If the measurement of element 11 returns to a normal value, the cooling system can raise the temperature of the object to room temperature to protect the object from improper handling. Please note that although the present invention uses only one device, the device is used as a device. One example of 10, for those skilled in the art, will readily contemplate the use of any device that can monitor the object and measure the conductivity distribution of a human head and then determine if there is a brain damage, such as electrical impedance tomography (EIT). Electrical impedance tomography (ERT), capacitive tomography (ECT), t-magnetic tomography (EMT), and magnetic resonance electrical impedance tomography (MREIT) devices. Figure 2 is a diagram of a method of monitoring and cooling an object in accordance with the present invention. Flowchart 0 As shown in Figure 2, the method according to the invention comprises a step 21: measuring the conductivity distribution of the X object. Step 2: The force can be performed by the measuring unit 11. The method further includes a step 22 of determining that the conductivity distribution of the object or the parameter derived from the conductivity distribution is in a predefined range. The function of step 22 can be performed by the decision unit ^. The method further comprises: step (4): if the step 22 of the determination is less, the "controllographic conductivity distribution or the parameter from the conductivity is not in the range of the meaning" is generated - the control signal The function of step 23 can be performed by the generating unit 13. A predetermined temperature value is controlled according to the control signal. The method of step 24 further includes a step 24 · cooling system to cool the object to a 156250.doc 201208553 The method can be performed by the control unit 14. In an embodiment, the method further includes a step 25: if the determining step 22 determines that the conductivity distribution or the parameter derived from the conductivity distribution is not within the predefined range, then And sending an alarm. The function of step 25 can be performed by the generating unit 13. In an embodiment, the system is a human head, and the predefined range and the predetermined temperature value are based on the type of brain damage of the human head and the health of the person. In this case, the method may further include a step 26: if the determining step 22 determines the conductivity distribution or derives from the conductivity distribution Within this predefined range, the temperature value of the brain surface is maintained at room temperature. Figure 3 shows a system for monitoring and cooling an object in accordance with the present invention. The system of the invention comprises the MIT device as mentioned above and a cooling system connected to the MIT device. In detail, the MIT device comprises a basic MIT hardware 301 comprising a magnetic transmitting/receiving coil, a protective cover and others An essential component to monitor the object 302 ° In addition, the MIT device includes a control unit 312 for controlling the cooling system to cool the object to a predetermined temperature value based on a control signal generated by the MIT hardware 301 Since the MIT device has been described in detail above, further description thereof is omitted herein. 156250.doc • 10·201208553 The present invention describes a cooling system employed in the system, according to an embodiment of the present invention. For monitoring and cooling an object. As shown in FIG. 3, the cooling system includes: a pillow having a heat transfer fluid 3G3 in the body 314 of the pillow; and a tube system 316 It has a cooling fluid 3G8 circulating therein and exchanges heat with the pillow 313 to cool the object 302, which in this example is a human head. The cooling system can be configured to comfort the patient during sleep. The time is a comfortable normal pillow, and the brain of the patient is protected as soon as possible when the brain is damaged. As shown, the body 314 of the pillow 313 further includes an upper layer 3〇4, which is adapted to Supporting the object 3〇2 and directly contacting the object 302. The upper layer 3〇4 is thermally conductive and relatively soft. In the pillow 313, there is a through hole adapted to contain the tube of the tube system 3 16 3〇 7. The tube system 316 includes two different tubes. One of the 307s in the through hole of the pillow 313 is made of a thermally conductive material, and the other 306 outside the pillow 313 is made of a thermally insulating, non-conductive, and rigid material. As a result, the coolant 308 in the tube 307 can exchange heat with the heat transfer fluid 3〇3 in the pillow, and the coolant 308 will not heat as it passes through the tube 306 because it is thermally insulated, non-conductive. And the hard material is made, and thus the thermal efficiency can be improved. In an embodiment, the tube system 316 further includes: a cooling pump 310' for driving the coolant 308 circulating in the tube system 316; and a control unit 309' for the The cooling pump 310 is controlled by a control signal of the control unit 3 12 . 156250.doc -11 - 201208553 In an embodiment the pillow 313 further comprises at least one branch 315 made of a thermally insulating, non-conductive and rigid material 3〇5. Although two branch pipes 3 are shown on both sides of the object 302, it will be readily understood by those skilled in the art that there may be only one branch pipe or more than two branch pipes 315 ° as needed. The branch pipe 315 may be associated with the pillow 313 The body 314 is in communication such that when the object 302 lies in the pillow 313, the upper layer 304 is curved to form a recess, causing the heat transfer fluid 303 to rise in the branch 315, thereby controlling the object 302 to be fixed. Position, and due to the force induced by the difference in height of the heat transfer fluid 3〇3, the upper layer 304 of the pillow 313 remains in intimate contact with the object 302. Since the object 302 can be controlled to be in a fixed position and it will not move relative to the MIT device, the measurement accuracy of the MIT device can be improved. Further, because the upper layer 304 of the pillow 313 remains in close contact with the object 302, the object 302 can be effectively cooled, and thus the effect of delaying nerve cells and other cell death can be enhanced. In another embodiment, the system can further include a temperature sensor 3 11 for sensing the temperature value of the object 302. As shown in Fig. 3, the temperature sensor 311 can be placed at the upper layer 3〇4 or the surface of the brain as long as it can sense the temperature value at the surface of the brain. It is to be noted that the above-mentioned embodiments are illustrative and not limiting, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the scope of the patent application, any reference mark placed between parentheses shall not be construed as limiting the scope of the patent application. The phrase "package 156250.doc 12 201208553" does not exclude the presence of elements or steps that are not listed or described in the patent. The word "_" 4 "one" before a component does not exclude: a plurality of such components. In the case of a system for listing a number of units, a number of such units may be embodied by the same item of software and/or hardware. The use of the terms -, second, third, etc. does not indicate any order. These words are interpreted as names. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a device for monitoring an object according to the present invention; FIG. 2 is a flow chart of a monitoring and cooling method according to the present invention; and FIG. 3 shows a use according to the present invention. System for monitoring and cooling an object [Key element symbol description] 10 Device 11 Measurement unit 12 Decision unit 13 Production unit 14 Control unit 21 Step 22 Step 23 Step 24 Step 25 Step 26 Step 301 Magnetic induction tomography hardware 156250.doc •13· 201208553 302 Object 303 Heat Transfer Fluid 304 Upper Layer 305 Material 306 Tube 307 Tube 308 Coolant 309 Control Unit 310 Cooling Pump 311 Temperature Sensor 312 Control Unit 313 Pillow 314 Body 315 Branch 156250.doc -14-

Claims (1)

201208553 七、申請專利範圍 =於现測一物體的裝置,該裝置與用於冷卻該物體 的-冷卻系統連接,該裝置包括: 里測單元(11),其田h旦 丹用於量測該物體之一電導率分 怖, 1疋單70 (12) ’其用於判定該物體之電導率分佈或 :電導t分佈導出之參數是否在—預定義範圍中; 、生單7C (13) ’其用於若該判^單元判定該電導淳 或從該電導率分佈導出之參數*在該預定義範度 中,則產生一控制信號;及 控制單το (14),其用於根據該控制信號而控制該冷 卻系統,以將該物體冷卻至一預定溫度值。 2.如請求項1之裝置,其中 該裝置係一磁感應斷層攝影(MIT)裝置。 3. 如請求項1之裝置,其中 該產生單70 (13)進一步經調適以:若該判定單元 判定該電㈣分佈或從該料率分料^之參數不在該 預定義範圍中,則產生且發送出一警報。 4. 如請求項3之裝置,其中 該物體係一人頭,且該預定義範圍及該預定溫度值根 據該人頭之大腦損傷的類型及人的健康狀況而設定。 5· 一種監測及冷卻一物體之方法,其包括以下步驟: 量測(21)該物體之一電導率分佈; 判疋(22)該物體之該電導率分佈或從該電導率分佈導 156250.doc 201208553 出^參數是否在一預定義範圍内; 分之該步驟(22)判定該電導率分佈或從該電導率 制信號:參數不在該預定義範圍内,則產生(23)-控 ::該控制信號而控制(24)一冷卻系統,以將該物體 7部至一預定溫度值。 6.如:,項5之方法,其進一步包括—步驟(25) 分佈^^之該步驟(22)判定該電導率分佈或從該電導率 一警報之參數不在該預定義範圍内,則產生及發送出 7.如請求項6之方法,其中 該物體係—人頭’且該預定義範圍及該預定溫度值根 該人頭之大腦損傷的類型及人的健康狀況而設定。 8·如請求項7之方法,其進一步包括-步驟(26) 、右判定之該步驟(22)判定該電導率分佈或從該電導率 佈導出之參數在該預定義範圍内,則將該大腦表面處 的溫度值保持於與室溫一致。 9. 一種用於監測及冷卻一物體之系統,其包括 如請求項1至4中任一項之裝置;及 與該裝置連接的一冷卻系統。 10. 如請求項9之系統,其中 該系統進一步包括用於感測該物體之溫度值的一溫度 感測器(3 11)。 11. 如請求項9之系統,其中 156250.doc * 2 - 201208553 該冷卻系統包括: 一枕墊(313),其在該枕墊(313)之本體(314)中具有 熱傳導流體(303);及 一管系統(3 16),其具有在其内循環的冷卻液 (308),且與該枕墊(313)交換熱。 12. 如請求項11之系統,其中 該枕墊(313)之本體(314)進一步包括: 上層(304),其經調適以支撐該物體(3〇2),且直 接接觸該物體(302) ’該上層(304)為熱傳導性的; 一通孔’其經調適以包含該管系統(3丨6)之管 (307) 〇 13. 如請求項12之系統,.其中 3亥管系統(316)包括兩個不同管,在該枕塾(313)之該 通孔内的一者(307)由熱傳導性材料製成,且在該枕墊 (3 13)之外的另一者(3〇6)由一絕熱、非傳導性且剛硬的 材料製成。 14. 如請求項13之系統,其中 該管系統(316)進一步包括: 一冷卻泵(310) ’其用於驅動在該管系統(3 16)内循環 之該冷卻液(308);及 一控制單元(309)’其用於根據來自該裝置之控制單元 (3 12)的控制信號而控制該冷卻泵(3 1〇)。 15. 如請求項12之系統,其中 該枕墊(313)進一步包括由一絕熱、非傳導性且剛硬的 156250.doc 201208553 材料(305)製成的至少一個支管(315),該支管(3 15)可與 該枕墊(313)之本體(314)連通,使得當該物體(302)躺在 該枕墊(313)中時,該上層(304)彎曲,以便形成一凹 處,導致該熱傳導流體(303)在該支管(315)中上升,藉 此控制該物體(302)處於一固定位置,且由於由該熱傳導 流體(303)之高度差異引發的力,該枕墊(313)之該上層 (304)保持與該物體(3〇2)緊密接觸。 156250.doc201208553 VII. Patent application scope = device for measuring an object, the device is connected with a cooling system for cooling the object, the device comprises: a measuring unit (11), the field of which is used to measure the object One of the conductivity divisions, 1疋70 (12) 'is used to determine the conductivity distribution of the object or: the parameter derived from the conductance t distribution is in the -predefined range;, the birth order 7C (13) 'its And if the determining unit determines the parameter or the parameter derived from the conductivity distribution* in the predefined range, generating a control signal; and controlling the single το (14) for using the control signal according to the control signal The cooling system is controlled to cool the object to a predetermined temperature value. 2. The device of claim 1, wherein the device is a magnetic induction tomography (MIT) device. 3. The device of claim 1, wherein the production order 70 (13) is further adapted to: if the determining unit determines that the electrical (four) distribution or the parameter from the material rate is not within the predefined range, Send an alert. 4. The device of claim 3, wherein the system is a human head and the predefined range and the predetermined temperature value are set according to the type of brain damage of the head and the health of the person. 5. A method of monitoring and cooling an object, comprising the steps of: measuring (21) a conductivity distribution of the object; determining (22) the conductivity distribution of the object or from the conductivity distribution 156250. Doc 201208553 Whether the parameter is within a predefined range; if the step (22) determines the conductivity distribution or signals from the conductivity: the parameter is not within the predefined range, then (23)-control: The control signal controls (24) a cooling system to bring the object 7 to a predetermined temperature value. 6. The method of item 5, further comprising the step (22) of the step (22) determining that the conductivity distribution or the parameter from the conductivity-alarm is not within the predefined range, 7. The method of claim 6, wherein the system of the human body is the head and the predetermined range and the predetermined temperature value are set according to the type of brain damage of the head and the health of the person. 8. The method of claim 7, further comprising - step (26), wherein the step (22) of the right determination determines that the conductivity distribution or the parameter derived from the conductivity distribution is within the predefined range, then The temperature at the surface of the brain is kept constant at room temperature. A system for monitoring and cooling an object, comprising the apparatus of any one of claims 1 to 4; and a cooling system coupled to the apparatus. 10. The system of claim 9, wherein the system further comprises a temperature sensor (31) for sensing a temperature value of the object. 11. The system of claim 9, wherein: 156250.doc * 2 - 201208553 the cooling system comprises: a pillow (313) having a heat transfer fluid (303) in the body (314) of the pillow (313); And a tube system (3 16) having a coolant (308) circulating therein and exchanging heat with the pillow (313). 12. The system of claim 11, wherein the body (314) of the pillow (313) further comprises: an upper layer (304) adapted to support the object (3〇2) and directly in contact with the object (302) 'The upper layer (304) is thermally conductive; a through hole 'which is adapted to contain the tube (307) of the tube system (3) 6 〇 13. The system of claim 12, wherein the 3 tube system (316) ) comprising two different tubes, one of the through holes (307) of the pillow (313) being made of a thermally conductive material and the other one outside the pillow (3 13) (3〇) 6) Made of an adiabatic, non-conductive and rigid material. 14. The system of claim 13 wherein the tube system (316) further comprises: a cooling pump (310) 'for driving the coolant (308) circulating within the tube system (316); and The control unit (309) 'is used to control the cooling pump (3 1 〇) based on control signals from the control unit (3 12) of the device. 15. The system of claim 12, wherein the pillow (313) further comprises at least one branch (315) made of an insulated, non-conductive, and rigid 156250.doc 201208553 material (305), the branch ( 3 15) may be in communication with the body (314) of the pillow (313) such that when the object (302) lies in the pillow (313), the upper layer (304) is curved to form a recess, resulting in a recess The heat transfer fluid (303) rises in the branch pipe (315), thereby controlling the object (302) to be in a fixed position, and the pillow (313) due to the force caused by the difference in height of the heat transfer fluid (303) The upper layer (304) remains in intimate contact with the object (3〇2). 156250.doc
TW100121711A 2010-06-22 2011-06-21 Device for monitoring an object, and method and system for monitoring and cooling an object TW201208553A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010074213 2010-06-22

Publications (1)

Publication Number Publication Date
TW201208553A true TW201208553A (en) 2012-02-16

Family

ID=44581810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121711A TW201208553A (en) 2010-06-22 2011-06-21 Device for monitoring an object, and method and system for monitoring and cooling an object

Country Status (2)

Country Link
TW (1) TW201208553A (en)
WO (1) WO2011161571A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11684510B2 (en) 2006-04-20 2023-06-27 University of Pittsburgh—of the Commonwealth System of Higher Education Noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US9211212B2 (en) 2006-04-20 2015-12-15 Cerêve, Inc. Apparatus and method for modulating sleep
US9492313B2 (en) 2006-04-20 2016-11-15 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US8236038B2 (en) 2006-04-20 2012-08-07 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Method and apparatus of noninvasive, regional brain thermal stimuli for the treatment of neurological disorders
US8425583B2 (en) 2006-04-20 2013-04-23 University of Pittsburgh—of the Commonwealth System of Higher Education Methods, devices and systems for treating insomnia by inducing frontal cerebral hypothermia
CA2896950C (en) 2013-01-02 2021-10-19 Cereve, Inc. Systems for enhancing sleep
CN103471735B (en) * 2013-09-11 2016-03-02 华南理工大学 Power battery pack internal temperature on-line testing method and system
US9320451B2 (en) 2014-02-27 2016-04-26 Kimberly-Clark Worldwide, Inc. Methods for assessing health conditions using single coil magnetic induction tomography imaging
US9442088B2 (en) 2014-02-27 2016-09-13 Kimberly-Clark Worldwide, Inc. Single coil magnetic induction tomographic imaging
US9207197B2 (en) 2014-02-27 2015-12-08 Kimberly-Clark Worldwide, Inc. Coil for magnetic induction to tomography imaging
US10238222B2 (en) 2014-09-05 2019-03-26 Raj Rao Electronically controllable pillow

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998056310A1 (en) * 1997-06-09 1998-12-17 Auckland Uniservices Limited System and method for reducing brain injury particularly in newborn infants
US7087075B2 (en) * 2002-09-30 2006-08-08 Medtronic Emergency Response Systems, Inc. Feedback system for rapid induction of mild hypothermia
WO2009037629A1 (en) * 2007-09-18 2009-03-26 Koninklijke Philips Electronics N.V. Method and apparatus for monitoring an object of interest in a medical system

Also Published As

Publication number Publication date
WO2011161571A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
TW201208553A (en) Device for monitoring an object, and method and system for monitoring and cooling an object
US11844722B2 (en) Method and system to detect changes in a patient's endogenous temperature set-point during externally induced targeted temperature management
Madrid et al. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults
Magerl et al. The definition and diagnostic testing of physical and cholinergic urticarias–EAACI/GA2LEN/EDF/UNEV consensus panel recommendations
Chiappini et al. Performance of non‐contact infrared thermometer for detecting febrile children in hospital and ambulatory settings
KR101251251B1 (en) Methods and devices for selective disruption of lipid rich cells by controlled cooling
Amri et al. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study
Sund‐Levander et al. Time for a change to assess and evaluate body temperature in clinical practice
Sund-Levander et al. Assessment of body temperature measurement options
JPWO2018199058A1 (en) Body temperature measurement device
JP2010022723A (en) Thermometric conductivity measuring instrument, skin tissue blood circulation evaluation device and decubitus diagnostic device
JP2012237670A (en) Thermometer and manometer provided with the same
JP7340600B2 (en) Sensor, method for estimating the core temperature of a living body, and method for using the sensor
WO2017140525A1 (en) Heat-flow sensor and sensor arrangement
WO2015092627A1 (en) Continuous temperature profiling and control during surgery
EP3666179A1 (en) Core body temperature sensor system based on flux measurement
JPWO2021076642A5 (en)
Sim et al. A nonintrusive temperature measuring system for estimating deep body temperature in bed
JP2007037631A (en) Clinical thermometer and heat-insulating material for clinical thermometer
CN102596008B (en) System for detection and treatment of infection or inflammation
Zweifler et al. Rectal temperature reflects tympanic temperature during mild induced hypothermia in nonintubated subjects
Atallah et al. Perioperative measurement of core body temperature using an unobtrusive passive heat flow sensor
Loke et al. Comparing the effectiveness of two types of cooling blankets for febrile patients
Munday et al. The clinical effectiveness of interventions to assist perioperative temperature management for women undergoing cesarean section: a systematic review
Guiying et al. Research progress in core body temperature measurement during target temperature management