JP2010022723A - Thermometric conductivity measuring instrument, skin tissue blood circulation evaluation device and decubitus diagnostic device - Google Patents

Thermometric conductivity measuring instrument, skin tissue blood circulation evaluation device and decubitus diagnostic device Download PDF

Info

Publication number
JP2010022723A
JP2010022723A JP2008190325A JP2008190325A JP2010022723A JP 2010022723 A JP2010022723 A JP 2010022723A JP 2008190325 A JP2008190325 A JP 2008190325A JP 2008190325 A JP2008190325 A JP 2008190325A JP 2010022723 A JP2010022723 A JP 2010022723A
Authority
JP
Japan
Prior art keywords
temperature
temperature conductivity
unit
living body
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008190325A
Other languages
Japanese (ja)
Other versions
JP5327840B2 (en
Inventor
Yoko Aso
洋子 阿曽
Aki Ibe
亜希 伊部
Tomoyuki Haga
知行 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASORT KK
Osaka University NUC
Original Assignee
ASORT KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASORT KK, Osaka University NUC filed Critical ASORT KK
Priority to JP2008190325A priority Critical patent/JP5327840B2/en
Publication of JP2010022723A publication Critical patent/JP2010022723A/en
Application granted granted Critical
Publication of JP5327840B2 publication Critical patent/JP5327840B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermometric conductivity measuring instrument being simply usable anywhere by anyone. <P>SOLUTION: This thermometric conductivity measuring instrument 11 includes: a thermal stimulation generation section 24 applying a thermal stimulation to a living body for a predetermined time; a temperature measuring section 25 measuring a temporal change in the temperature of the living body imposed with the thermal stimulation by the thermal stimulation generation section 24; and thermometric conductivity calculation sections 331 and 332 calculating the thermometric conductivity of the living body from the measurement result of the temperature measurement section 25 based on a biological heat conduction equation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、生体の温度伝導率を測定する装置、さらに、温度伝導率から生体の血液流量を評価する装置及び褥瘡危険度を判定する装置に関するものである。   The present invention relates to a device for measuring the temperature conductivity of a living body, and further to a device for evaluating the blood flow rate of a living body from the temperature conductivity and a device for determining a pressure ulcer risk.

褥瘡とは、患者が長期にわたり同じ体位で寝たきり等になった場合に、ベッドとの接触部分が圧迫されて阻血状態となり、周辺組織が壊死する皮膚疾患である。褥瘡の発生を予測診断する方法としては、OHスケールや、褥瘡好発部位の形状から褥瘡危険度を評価する褥瘡診断装置等が従来から知られている(例えば、特許文献1参照)。   Pressure ulcers are skin diseases in which, when a patient becomes bedridden or the like in the same position for a long period of time, the contact portion with the bed is compressed to become ischemic and the surrounding tissues are necrotized. Conventionally known methods for predicting the occurrence of pressure ulcers include a pressure ulcer diagnosis device that evaluates the pressure ulcer risk from the OH scale and the shape of pressure ulcer recurrent sites (see, for example, Patent Document 1).

OHスケールは、自力体位変換、病的骨突出、浮腫、関節拘縮から褥瘡発生危険を評価する尺度である。各項目0〜3点からなり、得点が高いほど褥瘡発生危険が高いとされる。また、従来の褥瘡診断装置は、人体表面における殿筋部、仙骨部、腰部、背中部といった各部位相互において、殿筋部を基準としてこれに対する他の各部位の高低を測定することによって、褥瘡の診断を行っている。
特開2000−51181号公報
The OH scale is a scale for evaluating the risk of pressure ulcer development from self-reposition, pathologic bone protrusion, edema, and joint contracture. Each item consists of 0 to 3 points, and the higher the score, the higher the risk of pressure ulcers. In addition, the conventional pressure ulcer diagnosis device measures the height of each other part with respect to the gluteal muscle part in each part such as the gluteal muscle part, the sacrum part, the lumbar part, and the back part on the surface of the human body. The diagnosis is performed.
JP 2000-51181 A

OHスケールは、自力体位変換、病的骨突出、浮腫、関節拘縮の各項目について主観的な評価を行うので、予測診断には高度な専門性が必要となる。したがって、経験の少ない看護師や在宅介護者等には、正確な予測診断が困難である。   Since the OH scale performs subjective evaluation on each of the items of self-position change, pathological bone protrusion, edema, and joint contracture, a high degree of expertise is required for predictive diagnosis. Therefore, accurate prediction diagnosis is difficult for nurses and home caregivers who have little experience.

また、特許文献1には、褥瘡好発部位の形状から褥瘡発生を予知することにより、診断者の技量に左右されない診断結果が得られると記載されている。しかしながら、この褥瘡診断装置は、褥瘡好発部位の形状測定を自動化したことに留まり、外見から褥瘡の発生を予測診断するOHスケールと本質的に異なるところがない。   Further, Patent Document 1 describes that by predicting the occurrence of pressure ulcer from the shape of a pressure ulcer frequent occurrence site, a diagnosis result independent of the skill of the diagnostician can be obtained. However, this pressure ulcer diagnosis device is merely an automated measurement of the shape of the pressure ulcer occurrence site, and there is essentially no difference from the OH scale that predicts the occurrence of pressure ulcer from the appearance.

他方、褥瘡発生の内的要因としては、皮膚組織内の血流状態が考えられる。従来の血液流量を測定装置するとしては、レーザードップラー方式、超音波ドップラー方式の血流量測定装置、皮膚表面温度の測定により皮膚組織血液循環状態を評価するためのサーモグラフィー等が知られている。しかしながら、これらは、装置構成が複雑、大型で、操作が難しい上、非常に高価であるので、基礎研究等で使用されているに留まり、臨床もしくは一般家庭での使用は困難な状況である。   On the other hand, a blood flow state in the skin tissue can be considered as an internal factor of pressure ulcer development. As a conventional blood flow rate measuring device, a laser Doppler type or ultrasonic Doppler type blood flow rate measuring device, a thermography for evaluating the skin tissue blood circulation state by measuring the skin surface temperature, and the like are known. However, these devices are complicated, large in size, difficult to operate, and very expensive. Therefore, they are used only in basic research and the like, and are difficult to use in clinical or general homes.

そこで、この発明は、このような状況に鑑みてなされたものであり、何処でも、誰でも、簡単に使用できる温度伝導率測定装置、温度伝導率を利用して血液流量を評価する皮膚組織血液循環評価装置及び褥瘡診断装置を提供することを目的とする。   Therefore, the present invention has been made in view of such a situation. A temperature conductivity measuring device that can be easily used by anyone anywhere, skin tissue blood that evaluates blood flow using temperature conductivity. It aims at providing a circulatory evaluation apparatus and a pressure ulcer diagnostic apparatus.

上記の目的を達成するために、本発明に係る温度伝導率測定装置は、生体に所定時間だけ熱刺激を付与する熱刺激発生部と、前記熱刺激発生部によって熱刺激を付与された生体の温度の時間的変化を測定する温度測定部と、生体熱伝導方程式に基づいて、前記温度測定部の測定結果から生体の温度伝導率を算出する温度伝導率算出部とを備え、生体の温度伝導率を測定する。   In order to achieve the above object, a temperature conductivity measuring device according to the present invention includes a thermal stimulation generating unit that applies thermal stimulation to a living body for a predetermined time, and a living body that has been subjected to thermal stimulation by the thermal stimulation generating unit. A temperature measurement unit that measures a temporal change in temperature; and a temperature conductivity calculation unit that calculates a temperature conductivity of the living body from a measurement result of the temperature measuring unit based on a living body heat conduction equation, Measure the rate.

上記構成の温度伝導率測定装置は、熱刺激発生部と温度測定部とを測定部位に接触させるだけで温度伝導率を測定できるので、人体への侵襲がない。また、操作が簡単なので、専門知識を有さない一般の看護師や在宅介護者でも簡単に患者の皮膚の温度伝導率を測定することができる。   The temperature conductivity measuring apparatus having the above configuration can measure the temperature conductivity only by bringing the thermal stimulus generation unit and the temperature measurement unit into contact with the measurement site, and thus does not invade the human body. In addition, since the operation is simple, a general nurse or home caregiver who does not have specialized knowledge can easily measure the temperature conductivity of the patient's skin.

なお、本明細書中の「生体熱伝導方程式に基づいて生体の温度伝導率を算出する」とは、温度伝導率測定装置に記憶した生体熱伝導方程式に温度測定部の測定結果を代入して温度伝導率を算出することに限らず、下記のように生体熱伝導方程式を利用して得られた温度伝導率推定テーブルに基づいて温度伝導率を算出することも含まれる。   In this specification, “calculating the temperature conductivity of the living body based on the biological heat conduction equation” means substituting the measurement result of the temperature measuring unit into the biological heat conduction equation stored in the temperature conductivity measuring device. Not only calculating the temperature conductivity but also calculating the temperature conductivity based on a temperature conductivity estimation table obtained using the biological heat conduction equation as described below.

熱刺激を付与する前の生体の温度をt1、前記所定時間を経過した時点での生体の温度をt2、前記所定時間を経過した時点からt1/t2が予め定められた値に達するまでの時間を時定数と定義する。そして、前記温度伝導率算出部は、生体熱伝導方程式に基づいて予め算出された時定数と温度伝導率との関係を保持する温度伝導率推定テーブルを記憶する記憶部と、前記温度測定部の検出結果に基づいて時定数を算出する時定数算出部と、前記温度伝導率推定テーブルに基づいて、前記時定数から生体の温度伝導率を推定する温度伝導率推定部とを備える。これにより、即座に生体の温度伝導率を得ることができる。 The living body temperature before applying the thermal stimulus is t 1 , the living body temperature at the time when the predetermined time has passed is t 2 , and t 1 / t 2 is a predetermined value from the time at which the predetermined time has passed. The time to reach is defined as the time constant. The temperature conductivity calculator includes a storage unit that stores a temperature conductivity estimation table that holds a relationship between a time constant and a temperature conductivity that are calculated in advance based on a biological heat conduction equation; and A time constant calculating unit that calculates a time constant based on the detection result; and a temperature conductivity estimating unit that estimates the temperature conductivity of the living body from the time constant based on the temperature conductivity estimation table. Thereby, the temperature conductivity of a living body can be obtained immediately.

また、前記熱刺激発生部は、生体に冷却刺激を付与する冷却刺激発生部であってもよい。本明細書中の「熱刺激」とは、冷却刺激及び加温刺激の両方を含むが、高精度の温度伝導率測定を行う観点からは、加温刺激よりも冷却刺激の方が優れている。   The thermal stimulus generator may be a cooling stimulus generator that applies a cooling stimulus to the living body. “Thermal stimulation” in the present specification includes both cooling stimulation and warming stimulation, but from the viewpoint of measuring temperature conductivity with high accuracy, the cooling stimulation is superior to the heating stimulation. .

例えば、前記熱刺激発生部は、ペルチェ素子によって構成されていてもよい。これにより、ペルチェ素子に流れる電流の向きを変えるだけで、冷却刺激と加温刺激とを簡単に切り替えることができる。   For example, the thermal stimulation generation unit may be configured by a Peltier element. Thereby, it is possible to easily switch between the cooling stimulus and the warming stimulus only by changing the direction of the current flowing in the Peltier element.

また、この発明に係る温度伝導率測定装置は、前記熱刺激発生部と前記温度測定部とを保持し、かつ生体の表面に貼付される貼付部材、前記熱刺激発生部及び前記温度測定部を含む測定器と、前記温度伝導率算出部、前記測定器の動作を制御する測定器制御部及び前記温度伝導率算出部によって算出された生体の温度伝導率を表示する表示部を含み、前記測定器とデータの送受信可能な状態で接続される操作端末とで構成されていてもよい。   Moreover, the temperature conductivity measuring device according to the present invention includes the sticking member that holds the thermal stimulus generation unit and the temperature measurement unit and is affixed to the surface of a living body, the thermal stimulus generation unit, and the temperature measurement unit. A measuring device including the temperature conductivity calculating unit, a measuring device control unit that controls the operation of the measuring device, and a display unit that displays the temperature conductivity of the living body calculated by the temperature conductivity calculating unit. And an operation terminal connected in a state where data can be transmitted and received.

また、前記貼付部材は、生体の表面に沿って変形可能な材料で形成されており、前記温度測定部は、前記貼付部材の生体表面に対面する面から突出するように配置されていてもよい。これにより、測定部位がどのような形状であっても、高精度の測定結果を得ることができる。   Further, the sticking member may be formed of a material that can be deformed along the surface of the living body, and the temperature measuring unit may be disposed so as to protrude from a surface facing the living body surface of the sticking member. . As a result, a highly accurate measurement result can be obtained regardless of the shape of the measurement site.

また、前記測定器と前記操作端末とは、無線接続されているのがよい。これにより、配線を気にすることなく、温度伝導率の測定を行うことができる。   Further, the measuring device and the operation terminal are preferably wirelessly connected. Thereby, temperature conductivity can be measured without worrying about the wiring.

この発明に係る皮膚組織血液循環評価装置は、上記のいずれかに記載の温度伝導率測定装置と、予め算出された温度伝導率と血液流量との関係を保持する血液流量評価テーブルを記憶する記憶部と、前記血液流量評価テーブルに基づいて、前記温度伝導率算出部の算出結果から生体の血液流量を評価する血液流量評価部とを備える。上記構成の皮膚組織血液循環評価装置は、温度伝導率という客観的な数値に基づいて血液流量を評価しているので、評価者の技量に左右されず高精度の診断が可能となる。   A skin tissue blood circulation evaluation device according to the present invention stores the temperature conductivity measurement device according to any one of the above and a blood flow rate evaluation table that holds a relationship between a previously calculated temperature conductivity and a blood flow rate. And a blood flow rate evaluation unit that evaluates the blood flow rate of the living body from the calculation result of the temperature conductivity calculation unit based on the blood flow rate evaluation table. Since the skin tissue blood circulation evaluation apparatus having the above configuration evaluates the blood flow rate based on an objective numerical value such as temperature conductivity, a highly accurate diagnosis is possible regardless of the skill of the evaluator.

この発明に係る褥瘡診断装置は、上記のいずれかに記載の温度伝導率測定装置と、予め算出された温度伝導率と褥瘡危険度との関係を保持する褥瘡危険度判定テーブルを記憶する記憶部と、前記褥瘡危険度判定テーブルに基づいて、前記温度伝導率算出部の算出結果から生体表面の褥瘡の危険度を判定する褥瘡危険度判定部とを備える。上記構成の褥瘡診断装置は、温度伝導率という客観的な数値に基づいて褥瘡の危険度を評価しているので、評価者の技量に左右されず高精度の診断が可能となる。   A pressure ulcer diagnostic apparatus according to the present invention includes a temperature conductivity measuring device according to any one of the above, and a storage unit that stores a pressure ulcer risk determination table that holds a relationship between a previously calculated temperature conductivity and pressure ulcer risk. And a pressure ulcer risk determination unit that determines the risk of pressure ulcers on the living body surface from the calculation result of the temperature conductivity calculation unit based on the pressure ulcer risk determination table. Since the pressure ulcer diagnosis apparatus having the above-described configuration evaluates the risk of pressure ulcer based on an objective numerical value such as temperature conductivity, highly accurate diagnosis is possible regardless of the skill of the evaluator.

この発明に係るプログラムは、所定時間だけ熱刺激を付与する熱刺激発生部と、前記熱刺激発生部によって熱刺激を付与された生体の温度の時間的変化を測定する温度測定部とを備える温度伝導率測定装置で実行されるものであって、生体熱伝導方程式に基づいて、前記温度測定部の測定結果から生体の温度伝導率を算出する温度伝導率算出ステップを含む。   A program according to the present invention includes a thermal stimulus generation unit that applies thermal stimulation for a predetermined time, and a temperature measurement unit that measures a temporal change in the temperature of a living body to which thermal stimulation is applied by the thermal stimulus generation unit. It is executed by the conductivity measuring device, and includes a temperature conductivity calculating step for calculating the temperature conductivity of the living body from the measurement result of the temperature measuring unit based on the biological heat conduction equation.

本発明は、温度伝導率測定装置、皮膚組織血液循環評価装置及び褥瘡診断装置として実現することができるだけでなく、これらの装置に含まれる特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM(Compact Disc−Read Only Memory)等の記録媒体やインターネット等の通信ネットワークを介して流通させることができる。   The present invention can be realized not only as a temperature conductivity measurement device, a skin tissue blood circulation evaluation device, and a pressure ulcer diagnosis device, but also as a program that causes a computer to execute the characteristic steps included in these devices. You can also. Such a program can be distributed via a recording medium such as a CD-ROM (Compact Disc-Read Only Memory) or a communication network such as the Internet.

この発明によれば、専門知識を有しない一般の看護師や在宅介護者でも簡単に温度伝導率を測定できる温度伝導率測定装置を得ることができる。また、この温度伝導率測定装置を応用することにより、何処でも、誰でも、簡単に使用できる皮膚組織血液循環評価装置及び褥瘡診断装置を得ることができる。   According to the present invention, it is possible to obtain a temperature conductivity measuring device that can easily measure temperature conductivity even by a general nurse or home caregiver who does not have specialized knowledge. Further, by applying this temperature conductivity measuring device, it is possible to obtain a skin tissue blood circulation evaluation device and a pressure ulcer diagnostic device that can be easily used by anyone anywhere.

図1〜図3を参照して、この発明の一実施形態に係る温度伝導率測定装置11を説明する。なお、図1は温度伝導率測定装置11の構成を示す概略図、図2は温度伝導率測定装置11の構成を示すブロック図、図3は測定器21の構造を示す断面図である。   With reference to FIGS. 1-3, the temperature conductivity measuring apparatus 11 which concerns on one Embodiment of this invention is demonstrated. 1 is a schematic diagram showing the configuration of the temperature conductivity measuring device 11, FIG. 2 is a block diagram showing the configuration of the temperature conductivity measuring device 11, and FIG. 3 is a cross-sectional view showing the structure of the measuring instrument 21.

まず、図1及び図2に示されるように、温度伝導率測定装置11は、生体の温度伝導率を簡単に測定できる装置であって、患者の体に取り付ける測定器21と、測定時に看護師等が操作する操作端末31とで構成されており、両者は相互にデータの送受信可能な状態で接続されている。   First, as shown in FIGS. 1 and 2, the temperature conductivity measuring device 11 is a device that can easily measure the temperature conductivity of a living body, and includes a measuring device 21 attached to a patient's body and a nurse at the time of measurement. Etc., and the two are connected in a state where data can be transmitted and received.

測定器21は、操作端末31に接続するための通信部22と、生体の表面に貼付される貼付部材23と、生体に熱刺激を付与する熱刺激発生部24と、生体の温度変化を測定する温度測定部25とを主に備える。この測定器21は、操作端末31の指示に基づいて、生体に熱刺激を付与すると共に生体の温度変化を測定し、測定結果を操作端末31に送信する。   The measuring device 21 measures the temperature change of the living body, the communication part 22 for connecting to the operation terminal 31, the sticking member 23 stuck on the surface of the living body, the thermal stimulation generating part 24 for applying thermal stimulation to the living body. The temperature measuring unit 25 is mainly provided. The measuring device 21 applies a thermal stimulus to the living body based on an instruction from the operation terminal 31, measures a temperature change of the living body, and transmits a measurement result to the operation terminal 31.

通信部22は、操作端末31の通信部32(後述)との間でデータの送受信を行うための通信インターフェースである。この実施形態における測定器21と操作端末31とは、無線接続されている。具体的な接続形態は特に限定されないが、例えば、赤外線やBluetooth等で接続される。なお、後述する通信部32も同様であるので、説明は省略する。   The communication unit 22 is a communication interface for transmitting / receiving data to / from a communication unit 32 (described later) of the operation terminal 31. The measuring instrument 21 and the operation terminal 31 in this embodiment are wirelessly connected. Although a specific connection form is not particularly limited, for example, the connection is performed by infrared rays, Bluetooth, or the like. In addition, since the communication part 32 mentioned later is also the same, description is abbreviate | omitted.

貼付部材23は、測定部位に貼付される平板形状の部材であって、生体の表面に沿って変形可能な材料、例えばシリコン等で形成されている。これにより、起伏の激しい皮膚表面に貼付する場合でも、測定結果の信頼性が向上する。特に、仙骨部等の褥瘡好発部位は起伏が激しいので、後述する褥瘡診断に利用する場合には、有利な効果を奏する。また、貼付部材23は、熱刺激発生部24と温度測定部25とを保持している。   The affixing member 23 is a flat plate-like member affixed to the measurement site, and is formed of a material that can be deformed along the surface of the living body, such as silicon. This improves the reliability of the measurement results even when affixing to a undulating skin surface. Particularly, pressure ulcer sites such as the sacral region are highly undulating, and therefore have advantageous effects when used for pressure ulcer diagnosis described later. In addition, the sticking member 23 holds a thermal stimulus generation unit 24 and a temperature measurement unit 25.

図3に示されるように、熱刺激発生部24は、円筒形状のケース241と、ケース241の内部に積層配置される熱伝導プローブ242と、ペルチェ素子243と、ヒートシンク244と、熱放散ファン245とを主に備え、生体の表面に熱刺激を付与することによって生体に温度勾配を生じさせる。なお、この実施形態における熱刺激発生部は、生体に冷却刺激を付与する冷却刺激発生部であり、皮膚温度よりも約5℃程度低い温度(25℃〜30℃)の刺激を付与する。   As shown in FIG. 3, the thermal stimulus generator 24 includes a cylindrical case 241, a heat conduction probe 242 that is stacked inside the case 241, a Peltier element 243, a heat sink 244, and a heat dissipation fan 245. The temperature gradient is generated in the living body by applying thermal stimulation to the surface of the living body. In addition, the thermal stimulus generation unit in this embodiment is a cooling stimulus generation unit that applies a cooling stimulus to a living body, and applies a stimulus having a temperature (25 ° C. to 30 ° C.) that is approximately 5 ° C. lower than the skin temperature.

ペルチェ素子243は、直流電流を流すことによって一方の面が吸熱し、他方の面が発熱する半導体素子である。この実施形態におけるペルチェ素子243は冷却素子として使用するので、吸熱する側に熱伝導プローブ242を、発熱する側にヒートシンク244と熱放散ファン245とを配置している。   The Peltier element 243 is a semiconductor element that absorbs heat on one surface and generates heat on the other surface when a direct current is passed. Since the Peltier element 243 in this embodiment is used as a cooling element, the heat conduction probe 242 is disposed on the side that absorbs heat, and the heat sink 244 and the heat dissipation fan 245 are disposed on the side that generates heat.

熱伝導プローブ242は、熱伝導率の高い材料、例えば銅やアルミニウム等によって形成されており、一方側端部がペルチェ素子243の吸熱面に接し、他方側端部が貼付部材23の中央部を貫通している。また、熱伝導プローブ242には、温度制御用センサ242aが取り付けられている。ヒートシンク244及び熱放散ファン245は、ペルチェ素子243の発熱面に取り付けられ、発熱面の熱を放出する。   The heat conduction probe 242 is made of a material having high heat conductivity, such as copper or aluminum, and has one end on the heat absorbing surface of the Peltier element 243 and the other end on the center of the sticking member 23. It penetrates. Further, a temperature control sensor 242 a is attached to the heat conduction probe 242. The heat sink 244 and the heat dissipation fan 245 are attached to the heat generating surface of the Peltier element 243, and release the heat of the heat generating surface.

温度測定部25は、熱電能の異なる2種類の金属を接合して構成される微細熱電対であって、生体の温度の時間的変化を測定する。この実施形態における温度測定部25は、熱伝導プローブ242の先端位置と、この位置から4mm離れた複数個所に同心円状に配置されている。また、この温度測定部25は、貼付部材23の生体表面に対面する面(図3の下面)から突出するように配置されている。これにより、生体表面に密着するので、高精度の温度測定が可能となる。   The temperature measurement unit 25 is a fine thermocouple configured by joining two kinds of metals having different thermoelectric powers, and measures a temporal change in the temperature of the living body. In this embodiment, the temperature measurement unit 25 is concentrically arranged at the tip position of the heat conduction probe 242 and at a plurality of locations 4 mm away from this position. Further, the temperature measuring unit 25 is disposed so as to protrude from the surface (the lower surface in FIG. 3) facing the living body surface of the sticking member 23. Thereby, since it closely_contact | adheres to the biological body surface, a highly accurate temperature measurement is attained.

操作端末31は、測定器21に接続するための通信部32と、操作端末31の制御を行うCPU33(Central Processing Unit)と、各種プログラム等を記憶するROM34(Read Only Memory)と、温度伝導率推定テーブルを記憶するRAM35(Random Access Memory)と、測定器21の操作画面や測定結果等を表示する表示部36とを主に備える。   The operation terminal 31 includes a communication unit 32 for connection to the measuring instrument 21, a CPU 33 (Central Processing Unit) for controlling the operation terminal 31, a ROM 34 (Read Only Memory) for storing various programs, and the temperature conductivity. A RAM 35 (Random Access Memory) that stores an estimation table and a display unit 36 that displays an operation screen of the measuring instrument 21 and measurement results are mainly provided.

CPU33は、ROM34に記憶されている時定数算出プログラム、温度伝導率推定プログラム、測定器制御プログラム等を読み込み、時定数算出部331、温度伝導率推定部332、測定器制御部333等として動作する。   The CPU 33 reads a time constant calculation program, a temperature conductivity estimation program, a measurement device control program, etc. stored in the ROM 34, and operates as a time constant calculation unit 331, a temperature conductivity estimation unit 332, a measurement device control unit 333, and the like. .

時定数算出部331は、温度測定部25の検出結果に基づいて時定数を算出する。温度伝導率推定部332は、後述する温度伝導率推定テーブル351に基づいて、時定数から生体の温度伝導率を推定する。なお、時定数算出部331と温度伝導率推定部332とで温度伝導率算出部を構成する。   The time constant calculation unit 331 calculates a time constant based on the detection result of the temperature measurement unit 25. The temperature conductivity estimation unit 332 estimates the temperature conductivity of the living body from the time constant based on a temperature conductivity estimation table 351 described later. The time constant calculation unit 331 and the temperature conductivity estimation unit 332 constitute a temperature conductivity calculation unit.

測定器制御部333は、測定器21の動作を制御する。具体的には、熱刺激発生部24の冷却温度や冷却時間、温度測定部25の測定時間、さらには温度制御用センサ242aの検出結果に基づいて、熱刺激発生部24の温度調節等を行う。   The measuring instrument control unit 333 controls the operation of the measuring instrument 21. Specifically, the temperature of the thermal stimulation generator 24 is adjusted based on the cooling temperature and cooling time of the thermal stimulation generator 24, the measurement time of the temperature measurement unit 25, and the detection result of the temperature control sensor 242a. .

記憶部としてのRAM35は、温度伝導率推定テーブル351を記憶している。なお、RAM35に代えて、ハードディスクドライブ等の他の記憶装置を採用してもよい。温度伝導率推定テーブル351は、時定数と温度伝導率との関係を保持している。図5にグラフ化した温度伝導率推定テーブル351を示す。   The RAM 35 as a storage unit stores a temperature conductivity estimation table 351. Instead of the RAM 35, another storage device such as a hard disk drive may be employed. The temperature conductivity estimation table 351 holds the relationship between the time constant and the temperature conductivity. FIG. 5 shows a temperature conductivity estimation table 351 that is graphed.

表示部36は、測定器21の操作画面や測定結果等の表示を行う液晶画面である。なお、液晶画面に代えて有機ELディスプレイを採用すれば、操作端末31をさらに小型化、薄型化できる。   The display unit 36 is a liquid crystal screen that displays an operation screen of the measuring instrument 21 and a measurement result. If an organic EL display is employed instead of the liquid crystal screen, the operation terminal 31 can be further reduced in size and thickness.

次に、式(1)〜(3)及び図4を参照して、温度測定部25の検出結果から生体の温度伝導率を算出する方法を説明する。なお、図4は生体に冷却刺激を付与した時の温度応答の理論値と測定値とをプロットした図である。また、式(1)〜(3)中のTは皮膚組織温度(℃)を、Tsは皮膚表面温度(℃) を、Tbは環境温度(℃)を、ρtは皮膚組織の密度(kg/m3)を、Ctは皮膚組織の比熱(J/K)を、ΔTは皮膚組織温度(T)と測定開始時の皮膚組織温度(T0)との温度差(℃)を、λtは皮膚組織の熱伝導率(m2/s)を、ρbは血液の密度(kg/m3)を、Cbは血液の比熱(J/K)を、Wbは組織単位体積あたりの血液流量(ml/s)を、λeは総合熱伝達率(m2/s)を、Qmは代謝による産熱(J)を、Qeは単位体積当たりの発熱量(J)を、αt=λt/ρttは温度伝導率(m2/s)をそれぞれ指している。 Next, a method for calculating the temperature conductivity of the living body from the detection result of the temperature measurement unit 25 will be described with reference to the equations (1) to (3) and FIG. FIG. 4 is a graph plotting theoretical values and measured values of temperature response when a cooling stimulus is applied to a living body. In the formulas (1) to (3), T is skin tissue temperature (° C.), T s is skin surface temperature (° C.), T b is environmental temperature (° C.), and ρ t is skin tissue density. (Kg / m 3 ), C t is the specific heat (J / K) of the skin tissue, ΔT is the temperature difference (° C.) between the skin tissue temperature (T) and the skin tissue temperature (T 0 ) at the start of measurement. , Λ t is the skin tissue thermal conductivity (m 2 / s), ρ b is the blood density (kg / m 3 ), C b is the blood specific heat (J / K), and W b is the tissue unit. Blood flow rate per volume (ml / s), λ e is total heat transfer rate (m 2 / s), Qm is heat produced by metabolism (J), Qe is calorific value (J) per unit volume , Α t = λ t / ρ t C t indicate the temperature conductivity (m 2 / s), respectively.

まず、式(1)は、ペネスの生体熱伝導方程式(bioheat equation)である。なお、左辺は時間変化による皮膚組織への熱の蓄積を、右辺第1項は温度勾配に基づく熱伝導による熱の流れを、第2項は動脈血から皮膚組織への熱移動を、第3項は皮膚組織の代謝による産熱をそれぞれ表している。また、第3項はz=0における境界条件を与えている。   First, Equation (1) is Penne's bioheat equation. The left side is the heat accumulation in the skin tissue due to changes over time, the first term on the right side is the heat flow due to heat conduction based on the temperature gradient, the second term is the heat transfer from the arterial blood to the skin tissue, the third term Represents heat production due to metabolism of skin tissue. The third term gives a boundary condition at z = 0.

次に、皮膚表面及び皮膚組織断面での熱伝導方程式を考える。つまり、式(1)でz=0、T=Tsとすると、皮膚表面の熱伝導方程式である式(2)を、式(1)でy=0とすると、皮膚組織断面での熱伝導方程式である式(3)を得ることができる。なお、式(2)及び式(3)では、代謝による産熱をないもの(式(1)の第3項=0)としている。 Next, consider the heat conduction equation at the skin surface and skin tissue cross section. That is, if z = 0 and T = T s in equation (1), equation (2), which is the heat conduction equation of the skin surface, and y = 0 in equation (1), heat conduction in the skin tissue cross section. Equation (3), which is an equation, can be obtained. In addition, in Formula (2) and Formula (3), it is set as the thing which does not produce heat by metabolism (the 3rd term = 0 of Formula (1)).

Figure 2010022723
Figure 2010022723

Figure 2010022723
Figure 2010022723

Figure 2010022723
Figure 2010022723

上記式(2)及び式(3)において、Wb=0とすれば、非定常熱伝導方程式となる。これらを数値解析すれば、血液流量の影響を含んだ「見掛けの温度伝導率(αt)」を算出することができる。なお、本明細書では、これらを「局所皮膚組織熱伝導モデル」という。 In the above formulas (2) and (3), if W b = 0, an unsteady heat conduction equation is obtained. If these are numerically analyzed, the “apparent temperature conductivity (α t )” including the influence of the blood flow rate can be calculated. In the present specification, these are referred to as “local skin tissue heat conduction model”.

次に、上記の局所皮膚組織熱伝導モデルを用いて生体の温度伝導率を算出する一例を説明する。まず、冷却刺激による皮膚表面の温度応答を実際に測定する(測定値)。具体的には、60秒間(冷却刺激期間)に亘って冷却刺激を付与し、冷却開始直後から冷却刺激解放後120秒間に亘って刺激中心位置における温度応答を測定する。測定結果を図4に「*」で示す。一方、局所皮膚組織熱伝導モデルによって、同様の条件の下での温度応答を数値計算する(理論値)。計算結果を図4に「○」で示す。   Next, an example of calculating the temperature conductivity of a living body using the above-described local skin tissue heat conduction model will be described. First, the temperature response of the skin surface due to cooling stimulation is actually measured (measured value). Specifically, a cooling stimulus is applied for 60 seconds (cooling stimulus period), and the temperature response at the stimulus center position is measured for 120 seconds after the cooling stimulus is released immediately after the start of cooling. The measurement results are indicated by “*” in FIG. On the other hand, the temperature response under the same conditions is numerically calculated by a local skin tissue heat conduction model (theoretical value). The calculation result is indicated by “◯” in FIG.

次に、測定値と理論値との積算誤差が最小値に収束するように式(2)のパラメータ(特にαt、λe)を調整することにより、温度伝導率を同定することができる。最後に、この温度伝導率に補正係数を乗じることにより、「見掛けの温度伝導率」を算出することができる。なお、「補正係数」は、温度伝導率が既知の物質(シリコンゴム等)で上記の測定を行い、実際の温度伝導率を実験で求めた温度伝導率で除することにより求めることができる。 Next, the temperature conductivity can be identified by adjusting the parameters (especially α t , λ e ) of Equation (2) so that the integrated error between the measured value and the theoretical value converges to the minimum value. Finally, the “apparent temperature conductivity” can be calculated by multiplying this temperature conductivity by a correction coefficient. The “correction coefficient” can be obtained by performing the above measurement with a substance having a known temperature conductivity (silicon rubber or the like) and dividing the actual temperature conductivity by the temperature conductivity obtained by experiments.

なお、上記の説明では、刺激中心位置における温度応答のみを測定した例を示したが、その他の部分(この実施形態では、刺激中心位置から4mm離れた位置)でも同様に測定を行う。複数個所で測定を行うことにより、結果の信頼性が向上する。   In the above description, an example is shown in which only the temperature response at the stimulation center position is measured, but the measurement is performed in the same manner at other portions (in this embodiment, a position 4 mm away from the stimulation center position). By making measurements at multiple locations, the reliability of the results is improved.

上記の方法は、式(2)を繰り返し計算する必要があり、膨大な計算時間を必要とする。そこで、図5を用いて簡易に温度伝導率を推定する方法を説明する。なお、図5は見掛けの温度伝導率と対応する時定数との関係を示す図である。   The above method needs to repeatedly calculate equation (2), and requires enormous calculation time. Therefore, a method for simply estimating the temperature conductivity will be described with reference to FIG. FIG. 5 is a diagram showing the relationship between the apparent temperature conductivity and the corresponding time constant.

まず、上記の局所皮膚組織熱伝導モデルを利用して「見掛けの温度伝導率」と、それに対応する時定数とを算出する。なお、この実施形態においては、冷却刺激解放後(60秒)からt1/t2=0.63となるまでの時間を時定数としている。この手順を繰り返すことによって得られる結果(図5)を温度伝導率推定テーブル351とする。この温度伝導率推定テーブル351を用いれば、図4に示すような測定結果から時定数を算出し、その時定数から即座に温度伝導率を推定することが可能となる。 First, the “apparent temperature conductivity” and a corresponding time constant are calculated using the above-mentioned local skin tissue heat conduction model. In this embodiment, the time from when the cooling stimulus is released (60 seconds) until t 1 / t 2 = 0.63 is used as the time constant. The result (FIG. 5) obtained by repeating this procedure is used as the temperature conductivity estimation table 351. If this temperature conductivity estimation table 351 is used, it is possible to calculate a time constant from the measurement result as shown in FIG. 4 and to immediately estimate the temperature conductivity from the time constant.

次に、図6を参照して、温度伝導率測定装置11の動作を説明する。なお、図6は温度伝導率測定装置11による温度伝導率の測定手順を示す図である。また、RAM35の温度伝導率推定テーブル351には、図5に示すような関係が保持されている。   Next, the operation of the temperature conductivity measuring device 11 will be described with reference to FIG. FIG. 6 is a diagram showing a procedure for measuring the temperature conductivity by the temperature conductivity measuring device 11. Further, the temperature conductivity estimation table 351 in the RAM 35 holds the relationship as shown in FIG.

まず、貼付部材23を温度伝導率の測定部位に貼り付ける。熱刺激発生部24は、測定器制御部333からの指示に基づいて、所定の時間だけ生体に熱刺激を付与する(S1)。これにより、生体に温度勾配が生じる。なお、熱刺激を付与する時間は任意に設定することができるが、この実施形態では60秒として説明する。このとき、測定器制御部333は、温度制御用センサ242aの検出結果をリアルタイムに受信し、一定の熱刺激を付与するように熱刺激発生部24を制御する。   First, the affixing member 23 is affixed to the temperature conductivity measurement site. The thermal stimulation generator 24 applies thermal stimulation to the living body for a predetermined time based on an instruction from the measuring instrument controller 333 (S1). Thereby, a temperature gradient is generated in the living body. In addition, although the time which gives a thermal stimulus can be set arbitrarily, in this embodiment, it demonstrates as 60 seconds. At this time, the measuring instrument controller 333 receives the detection result of the temperature control sensor 242a in real time, and controls the thermal stimulus generator 24 so as to apply a constant thermal stimulus.

次に、温度測定部25は、熱刺激を付与するのと同時に生体の温度変化の測定を開始し、熱刺激解放後(60秒経過後)から所定の時間まで計測を続ける(S2)。なお、温度変化の測定は、温度勾配が安定する(熱刺激を付与する前の状態に戻る)まで継続するのが望ましいので、熱刺激解放後から120秒程度継続する。また、計測結果はリアルタイムに時定数算出部331に送信される。   Next, the temperature measurement unit 25 starts measuring the temperature change of the living body at the same time as applying the thermal stimulus, and continues the measurement from the release of the thermal stimulus (after 60 seconds) to a predetermined time (S2). The measurement of the temperature change is preferably continued until the temperature gradient is stabilized (returns to the state before applying the thermal stimulus), and thus continues for about 120 seconds after the release of the thermal stimulus. Further, the measurement result is transmitted to the time constant calculation unit 331 in real time.

次に、時定数算出部331は、温度測定部25の検出結果に基づいて時定数を算出する(S3)。具体的には、熱刺激解放後(60秒経過後)からt1/t2=0.63となるまでの時間を算出する。 Next, the time constant calculation unit 331 calculates a time constant based on the detection result of the temperature measurement unit 25 (S3). Specifically, the time from when the thermal stimulus is released (after 60 seconds elapses) until t 1 / t 2 = 0.63 is calculated.

次に、温度伝導率推定部332は、温度伝導率推定テーブル351に基づいて、時定数算出部331によって算出された時定数から生体の温度伝導率を推定する(S4)。そして、この結果が表示部36に表示される。例えば、時定数算出部331で算出された時定数が「16」であれば、「温度伝導率=2.9×10-7(m2/s)」等と表示される。 Next, the temperature conductivity estimation unit 332 estimates the temperature conductivity of the living body from the time constant calculated by the time constant calculation unit 331 based on the temperature conductivity estimation table 351 (S4). Then, the result is displayed on the display unit 36. For example, if the time constant calculated by the time constant calculation unit 331 is “16”, “temperature conductivity = 2.9 × 10 −7 (m 2 / s)” is displayed.

上記構成の温度伝導率測定装置11は、貼付部材23を測定部位に貼り付けるだけでよいので、生体への侵襲がない。また、複雑な操作が必要ないので、専門知識を有さない一般の看護師や在宅介護者でも簡単に患者の皮膚の温度伝導率を測定することができる。   Since the temperature conductivity measuring device 11 having the above-described configuration only needs to affix the affixing member 23 to the measurement site, there is no invasion of the living body. In addition, since complicated operations are not required, a general nurse or home caregiver who does not have specialized knowledge can easily measure the temperature conductivity of the patient's skin.

なお、上記の各実施形態においては、温度伝導率推定テーブル351に基づいて温度伝導率を推定する例を示したが、これに限ることなく、他の方法で温度伝導率を算出してもよい。例えば、温度伝導率測定装置11が非常に高速なCPU33を搭載している場合には、上述の「局所皮膚組織熱伝導モデル」を利用して温度伝導率を算出してもよい。   In each of the above embodiments, an example has been shown in which the temperature conductivity is estimated based on the temperature conductivity estimation table 351. However, the present invention is not limited to this, and the temperature conductivity may be calculated by another method. . For example, when the temperature conductivity measuring device 11 is equipped with a very high-speed CPU 33, the temperature conductivity may be calculated using the above-mentioned “local skin tissue heat conduction model”.

また、上記の各実施形態においては、測定器21と操作端末31とを無線接続した例を示したが、これに限らず、他のあらゆる接続形態を採用することができる。例えば、両者を有線で接続してもよいし、LAN(Local Area Network)やインターネット等のネットワークを介して両者を接続してもよい。   Further, in each of the above embodiments, the example in which the measuring instrument 21 and the operation terminal 31 are wirelessly connected has been described. However, the present invention is not limited to this, and any other connection form can be employed. For example, both may be connected by wire, or may be connected via a network such as a LAN (Local Area Network) or the Internet.

また、上記の各実施形態においては、測定器21と操作端末31とを1対1で接続した例を示したが、これに限ることなく、1台の操作端末31で複数台の測定器21を制御するようにしてもよい。例えば、病院内において、患者に1台ずつ付与される複数の測定器21と、ナースステーション等に設置された操作端末31とを院内ネットワークを介して接続すれば、複数の患者の測定結果を集中管理することができる。   Further, in each of the above-described embodiments, an example in which the measuring device 21 and the operation terminal 31 are connected on a one-to-one basis has been described. May be controlled. For example, in a hospital, if a plurality of measuring devices 21 assigned to each patient and an operation terminal 31 installed in a nurse station or the like are connected via a hospital network, the measurement results of a plurality of patients are concentrated. Can be managed.

また、上記の各実施形態においては、測定器21と操作端末31とで温度伝導率測定装置11を構成した例を示したが、これに限ることなく、両者の機能を含む一体型の温度伝導率測定装置であってもよい。これにより、通信部22,32が不要になるので、装置構成がさらに単純化される。   Further, in each of the above-described embodiments, the example in which the temperature conductivity measuring device 11 is configured by the measuring instrument 21 and the operation terminal 31 has been described. It may be a rate measuring device. Thereby, since the communication parts 22 and 32 become unnecessary, an apparatus structure is further simplified.

皮膚組織内では、皮膚血管の血流が熱移動の調節に主導的な役割を果たしている。すなわち、温度伝導率測定装置11によって推定される温度伝導率から皮膚組織の血液循環状態を評価することができると考えられる。さらには、血液の循環不良に起因する疾患の診断にも応用することが可能であると考えられる。   Within the skin tissue, the blood flow of the skin blood vessels plays a leading role in regulating heat transfer. That is, it is considered that the blood circulation state of the skin tissue can be evaluated from the temperature conductivity estimated by the temperature conductivity measuring device 11. Furthermore, it can be applied to the diagnosis of diseases caused by poor blood circulation.

そこで、図7〜図14を参照して、温度伝導率と血液の循環状態との関係を検証すると共に、温度伝導率測定装置11の応用例としての皮膚組織血液循環評価装置11Aについて説明する。   7 to 14, the relationship between the temperature conductivity and the blood circulation state will be verified, and a skin tissue blood circulation evaluation device 11A as an application example of the temperature conductivity measurement device 11 will be described.

まず、図7〜図12を参照して、温度伝導率と血液の循環状態との関係を検証する。図7及び図10は、熱刺激を付与した後の皮膚組織の温度応答の時間変化を式(2)を用いて数値計算した結果を示す図である。具体的には、熱刺激解放後20秒(□)、40秒(◇)、60秒(△)、80秒(×)、100秒(*)、120秒(○)、140秒(+)、160秒(■)、180秒(◆)、200秒(▲)、220秒(●)経過後の温度を皮膚表面から深さ5mmの位置まで0.5mm間隔で数値計算している。なお、図7は所定時間だけ冷却刺激を付与した場合の温度応答を示す図、図10は所定時間だけ加温刺激を付与した場合の温度応答を示す図である。   First, the relationship between the temperature conductivity and the blood circulation state is verified with reference to FIGS. FIG. 7 and FIG. 10 are diagrams showing the results of numerical calculation of the time change of the temperature response of the skin tissue after the thermal stimulation is applied using Equation (2). Specifically, 20 seconds (□), 40 seconds (◇), 60 seconds (△), 80 seconds (×), 100 seconds (*), 120 seconds (◯), 140 seconds (+) after release of thermal stimulation. , 160 seconds (■), 180 seconds (♦), 200 seconds (▲), and 220 seconds (●), the temperature is calculated numerically at intervals of 0.5 mm from the skin surface to a depth of 5 mm. FIG. 7 is a diagram showing a temperature response when a cooling stimulus is applied for a predetermined time, and FIG. 10 is a diagram showing a temperature response when a heating stimulus is applied for a predetermined time.

図7を参照して、冷却刺激を付与した場合、刺激解放直後(〜20秒後)は、皮膚表面付近(0mm〜1.5mm付近)の温度勾配が非常に高くなっている。その後、20秒〜100秒の間は、皮膚表面(0mm)の温度はほとんど変化せず、皮膚内部(特に0.5mm〜3.0mm)の温度が減少し、100後には直線に近い温度勾配となる。その後(100秒〜220秒)は、温度勾配がより直線に近づくと共に、その傾きが徐々に緩やかとなっていく。   Referring to FIG. 7, when a cooling stimulus is applied, the temperature gradient near the skin surface (around 0 mm to 1.5 mm) is very high immediately after the stimulus is released (up to 20 seconds later). Thereafter, the temperature of the skin surface (0 mm) hardly changes between 20 seconds and 100 seconds, the temperature inside the skin (particularly 0.5 mm to 3.0 mm) decreases, and after 100, the temperature gradient is close to a straight line. It becomes. Thereafter (from 100 seconds to 220 seconds), the temperature gradient becomes closer to a straight line, and the gradient gradually decreases.

一方、図10を参照して、加温刺激を付与した場合、刺激解放直後(〜20秒)は、皮膚表面付近(0mm〜2.5mm)は負の温度勾配(深層部程温度が低くなる)、深層部(2.5mm〜5.0mm)は正の温度勾配(深層部程温度が高くなる)となっている。その後、20秒〜100秒の間は、皮膚表面(0mm)の温度はほとんど変化せず、皮膚内部(特に0.5mm〜2.0mm)の温度が上昇し、100秒後にはほぼ全域で負の温度勾配となる。その後、皮膚組織のほぼ全域(0mm〜4.5mm)で温度が低下するが、皮膚表面に近いほど温度低下率が高く、120秒後には平衡状態(皮膚組織全域で温度がほぼ一定)になり、それ以降は温度勾配が逆転(正の温度勾配になる)する。   On the other hand, with reference to FIG. 10, when a warming stimulus is applied, immediately after the stimulus is released (˜20 seconds), the temperature near the skin surface (0 mm to 2.5 mm) is a negative temperature gradient (the temperature in the deep layer becomes lower). ), The deep layer portion (2.5 mm to 5.0 mm) has a positive temperature gradient (the temperature of the deep layer portion increases). Thereafter, the temperature of the skin surface (0 mm) hardly changes between 20 seconds and 100 seconds, the temperature inside the skin (especially 0.5 mm to 2.0 mm) rises, and after 100 seconds, the temperature is almost negative over the entire area. Temperature gradient. After that, the temperature decreases in almost the entire skin tissue (0 mm to 4.5 mm), but the temperature decreasing rate becomes higher as it is closer to the skin surface. After 120 seconds, the temperature is in an equilibrium state (the temperature is almost constant in the entire skin tissue). After that, the temperature gradient is reversed (becomes a positive temperature gradient).

上記のように、冷却刺激を付与した場合と、加温刺激を付与した場合とでは、温度応答に差が生じる。これは、通常の環境下における外気温は体温より低いので、皮膚表面から深層部に向かって正の温度勾配が存在する。つまり、熱は体の深層部から皮膚組織を経て外環境に移動している。しかしながら、加温刺激を付与すると、この流れが一時的に逆転するので(皮膚表面付近に負の温度勾配が生じる)、途中で温度勾配が逆転する現象が観察される。   As described above, there is a difference in temperature response between when the cooling stimulus is applied and when the warming stimulus is applied. This is because the outside air temperature in a normal environment is lower than the body temperature, so that there is a positive temperature gradient from the skin surface toward the deep layer. That is, heat is transferred from the deep layer of the body through the skin tissue to the outside environment. However, when a warming stimulus is applied, this flow is temporarily reversed (a negative temperature gradient is generated in the vicinity of the skin surface), and a phenomenon in which the temperature gradient is reversed in the middle is observed.

次に、図8及び図11は、血液流量を変化させたときの皮膚表面の温度応答を式(2)を用いて数値計算した結果である。具体的には、血液流量が1000(ml/s)を基準とし、血液流量を基準値(□)、基準値の2倍(◇)、基準値の3倍(△)、基準値の4倍(×)、基準値の5倍(○)としたときの温度応答をそれぞれ数値計算している。なお、図8は所定時間だけ冷却刺激を付与した場合の温度応答示す図を、図11は所定時間だけ加温刺激を付与した場合の温度応答を示す図である。   Next, FIG. 8 and FIG. 11 are the results of numerical calculation of the temperature response of the skin surface when the blood flow rate is changed using the equation (2). Specifically, based on a blood flow rate of 1000 (ml / s), the blood flow rate is a reference value (□), twice the reference value (◇), three times the reference value (△), and four times the reference value. (×) and the temperature response when the reference value is 5 times (◯) are numerically calculated. FIG. 8 is a diagram showing a temperature response when a cooling stimulus is applied for a predetermined time, and FIG. 11 is a diagram showing a temperature response when a heating stimulus is applied for a predetermined time.

図8を参照して、冷却刺激を付与した場合、血液流量が多いほど温度応答が良くなっている。一方、図11を参照して、加温刺激を付与した場合、血液流量が少ないほど温度応答が良くなっている。また、図8と図11とを比較すると、冷却刺激を付与した場合(図8)の方が温度応答が良くなっているのが観察される。   Referring to FIG. 8, when the cooling stimulus is applied, the temperature response is improved as the blood flow rate is increased. On the other hand, referring to FIG. 11, when the warming stimulus is applied, the temperature response is improved as the blood flow rate is decreased. Further, when FIG. 8 is compared with FIG. 11, it is observed that the temperature response is improved when the cooling stimulus is applied (FIG. 8).

次に、図9は、式(2)に基づいて、図8の結果から温度伝導率と血液流量との関係を導き出した結果を示す図である。同様に、図12は、式(2)に基づいて、図11の結果から温度伝導率と血液流量との関係を導き出した結果を示す図である。   Next, FIG. 9 is a diagram showing a result of deriving the relationship between the temperature conductivity and the blood flow rate from the result of FIG. 8 based on the equation (2). Similarly, FIG. 12 is a diagram showing the result of deriving the relationship between the temperature conductivity and the blood flow rate from the result of FIG. 11 based on the formula (2).

図9及び図12を参照して、冷却刺激及び加温刺激のどちらを付与した場合でも、温度伝導率と血液流量との間には、線形の関係が存在することが明らかとなった。なお、血液流量をx、温度伝導率をyとすると、図9では、y=2.0×10-8x+2.0×10-7の関係が、図12では、y=1.0×10-8x+2.0×10-7の関係が成立することが明らかとなった。 With reference to FIG. 9 and FIG. 12, it was found that there was a linear relationship between temperature conductivity and blood flow rate when either cooling stimulus or warming stimulus was applied. If the blood flow rate is x and the temperature conductivity is y, the relationship of y = 2.0 × 10 −8 x + 2.0 × 10 −7 in FIG. 9 and y = 1.0 × 10 in FIG. It became clear that the relationship of −8 x + 2.0 × 10 −7 was established.

上記のように、温度伝導率と血液流量との間には、線形の関係が存在することが明らかとなったので、温度伝導率測定装置11を用いて患者の皮膚の温度伝導率を測定すれば、測定部位における血液流量を評価することができる。また、温度伝導率測定装置11の応用例として、図13及び図14に示すような皮膚組織血液循環評価装置11Aを得ることもできる。図13は皮膚組織血液循環評価装置11Aのブロック図、図14は皮膚組織血液循環評価装置11Aによる血液流量の評価手順を示す図である。なお、図13は図2の構成を含み、図14は図6の構成を含むので、共通部分には同一の参照番号を付し、説明は省略する。   As described above, since it has been clarified that there is a linear relationship between the temperature conductivity and the blood flow rate, the temperature conductivity of the patient's skin can be measured using the temperature conductivity measuring device 11. For example, the blood flow rate at the measurement site can be evaluated. Moreover, as an application example of the temperature conductivity measuring device 11, a skin tissue blood circulation evaluation device 11A as shown in FIGS. 13 and 14 can be obtained. FIG. 13 is a block diagram of the skin tissue blood circulation evaluation apparatus 11A, and FIG. 14 is a diagram illustrating a blood flow evaluation procedure performed by the skin tissue blood circulation evaluation apparatus 11A. 13 includes the configuration of FIG. 2 and FIG. 14 includes the configuration of FIG. 6, common portions are denoted by the same reference numerals and description thereof is omitted.

まず、図13を参照して、皮膚組織血液循環評価装置11Aは、温度伝導率測定装置11の構成に加え、操作端末31AのCPU33AがROM34Aに記憶されている血液流量評価プログラムを読み込んで血液流量評価部334として機能し、RAM35Aが血液流量評価テーブル352を記憶している。   First, referring to FIG. 13, in addition to the configuration of the temperature conductivity measuring device 11, the skin tissue blood circulation evaluation device 11A reads the blood flow rate evaluation program stored in the ROM 34A by the CPU 33A of the operation terminal 31A. The RAM 35A functions as the evaluation unit 334, and the blood flow rate evaluation table 352 is stored.

血液流量評価部334は、血液流量評価テーブル352に基づいて、温度伝導率推定部332の算出結果から生体の血液流量を評価する。血液流量評価テーブル352は、予め算出された温度伝導率と血液流量との関係を保持している。具体的には、冷却刺激を付与する場合には図9に示すような関係を、加温刺激を付与する場合には図12に示すような関係を保持している。   The blood flow rate evaluation unit 334 evaluates the blood flow rate of the living body from the calculation result of the temperature conductivity estimation unit 332 based on the blood flow rate evaluation table 352. The blood flow rate evaluation table 352 holds the relationship between the temperature conductivity calculated in advance and the blood flow rate. Specifically, the relationship shown in FIG. 9 is maintained when a cooling stimulus is applied, and the relationship shown in FIG. 12 is maintained when a heating stimulus is applied.

次に、図14を参照して、皮膚組織血液循環評価装置11Aの動作を説明する。皮膚組織血液循環評価装置11Aは、温度伝導率測定装置11と同様の手順で生体の温度伝導率を測定する(S1〜S4)。次に、血液流量評価部334は、血液流量評価テーブル352に基づいて、温度伝導率推定部332によって算出された温度伝導率から生体の血液流量を評価する(S5)。そして、この評価結果が表示部36に表示される。例えば、算出された温度伝導率が2.7×10-7(m2/s)であれば、「血液流量=2」又は「血液流量=2000(ml/s)」等と表示される。 Next, the operation of the skin tissue blood circulation evaluation apparatus 11A will be described with reference to FIG. The skin tissue blood circulation evaluation device 11A measures the temperature conductivity of the living body in the same procedure as the temperature conductivity measurement device 11 (S1 to S4). Next, the blood flow rate evaluation unit 334 evaluates the blood flow rate of the living body from the temperature conductivity calculated by the temperature conductivity estimation unit 332 based on the blood flow rate evaluation table 352 (S5). Then, the evaluation result is displayed on the display unit 36. For example, if the calculated temperature conductivity is 2.7 × 10 −7 (m 2 / s), “blood flow rate = 2” or “blood flow rate = 2000 (ml / s)” is displayed.

上記構成の皮膚組織血液循環評価装置11Aによれば、温度伝導率という客観的な数値に基づいて血液流量を評価しているので、評価者の技量に左右されず高精度の診断が可能となる。   According to the skin tissue blood circulation evaluation apparatus 11A having the above-described configuration, the blood flow rate is evaluated based on an objective numerical value such as temperature conductivity. Therefore, a highly accurate diagnosis is possible regardless of the skill of the evaluator. .

次に、血液の循環不良に起因する疾患として褥瘡(床ずれ)を例に挙げ、図15〜図19を参照して、温度伝導率と褥瘡の発生危険度との関係を検証すると共に、温度伝導率測定装置11の応用例としての褥瘡診断装置11Bについて説明する。   Next, pressure ulcer (bed slippage) is taken as an example of a disease caused by poor blood circulation, and the relationship between temperature conductivity and the risk of pressure ulcers is verified with reference to FIGS. A pressure ulcer diagnosis device 11B as an application example of the rate measuring device 11 will be described.

まず、図15〜図17を参照して、温度伝導率と褥瘡発生の危険度との因果関係を検証する。なお、図15は健康高齢者の温度伝導率を測定した結果を示すヒストグラム、図16は入院高齢者の温度伝導率を測定した結果を示すヒストグラム、図17はOHスケールによる褥瘡の危険度評価と評価部位の温度伝導率との関係を示す図である。なお、本明細書においては、自分で日常生活を行う能力のある65歳以上の高齢者を「健康高齢者」、多くの時間をベッドや車椅子で過ごし、介助等がなければ日常生活を行えない65歳以上の高齢者を「入院高齢者」と定義している。   First, with reference to FIGS. 15 to 17, the causal relationship between the temperature conductivity and the risk of pressure ulcer occurrence will be verified. 15 is a histogram showing the results of measuring the temperature conductivity of healthy elderly people, FIG. 16 is a histogram showing the results of measuring the temperature conductivity of elderly hospitalized people, and FIG. 17 is a risk assessment of pressure ulcers based on the OH scale. It is a figure which shows the relationship with the temperature conductivity of an evaluation site | part. In addition, in this specification, an elderly person 65 years or older who has the ability to perform daily life by himself is a “healthy elderly person”, spends a lot of time in a bed or wheelchair, and cannot perform daily life without assistance. Elderly people over the age of 65 are defined as “hospitalized elderly”.

図15及び図16を参照して、健康高齢者の温度伝導率の平均値は2.443×10-7(m2/s)、標準偏差は0.557×10-7(m2/s)であったのに対し、入院高齢者の温度伝導率の平均値は2.004×10-7(m2/s)、標準偏差は0.695×10-7(m2/s)であった。また、ヒストグラム中の健康高齢者のピークは、入院高齢者のピークより高い位置にあることが認められた。 Referring to FIGS. 15 and 16, the average value of the temperature conductivity of healthy elderly people is 2.443 × 10 −7 (m 2 / s), and the standard deviation is 0.557 × 10 −7 (m 2 / s). ), However, the average temperature conductivity of hospitalized elderly was 2.004 × 10 −7 (m 2 / s) and the standard deviation was 0.695 × 10 −7 (m 2 / s). there were. Moreover, it was recognized that the peak of the healthy elderly in the histogram is higher than the peak of the hospitalized elderly.

次に、入院中の複数の高齢者等を対象として、OHスケールによる褥瘡の危険度評価と評価部位の温度伝導率とを測定すると、図17に示すように両者の間には強い負の相関あることが判明した。そこで、OHスケールによる褥瘡の危険度をx、温度伝導率をyとして図17の回帰直線を求めると、y=−0.2392x+2.9225となった。   Next, when the risk assessment of pressure ulcer based on the OH scale and the temperature conductivity of the evaluation site are measured for a plurality of elderly people in hospital, etc., a strong negative correlation is found between them as shown in FIG. It turned out to be. Accordingly, when the regression line in FIG. 17 was obtained by setting the risk level of pressure ulcer on the OH scale to x and the temperature conductivity to y, y = −0.2392x + 2.9225.

上記のように、温度伝導率と褥瘡危険度との間には、強い負の相関が存在することが明らかとなったので、温度伝導率測定装置11を用いて患者の皮膚の温度伝導率を測定すれば、測定部位における褥瘡の危険度を評価することができる。また、温度伝導率測定装置11の応用例として、図18及び図19に示すような褥瘡診断装置11Bを得ることもできる。図18は褥瘡診断装置11Bのブロック図、図19は褥瘡診断装置11Bによる褥瘡危険度の評価手順を示す図である。なお、図18は図2の構成を含み、図19は図6の構成を含むので、共通部分には同一の参照番号を付し、説明は省略する。   As described above, it has been clarified that there is a strong negative correlation between the temperature conductivity and the pressure ulcer risk. Therefore, the temperature conductivity of the patient's skin is measured using the temperature conductivity measuring device 11. If measured, the risk of pressure ulcers at the measurement site can be evaluated. Further, as an application example of the temperature conductivity measuring device 11, a pressure ulcer diagnosis device 11B as shown in FIGS. 18 and 19 can be obtained. FIG. 18 is a block diagram of the pressure ulcer diagnostic device 11B, and FIG. 19 is a diagram showing the pressure ulcer risk level evaluation procedure by the pressure ulcer diagnostic device 11B. 18 includes the configuration of FIG. 2 and FIG. 19 includes the configuration of FIG. 6, common portions are denoted by the same reference numerals and description thereof is omitted.

まず、図18を参照して、褥瘡診断装置11Bは、温度伝導率測定装置11の構成に加え、操作端末31BのCPU33BがROM33Bに記憶されている褥瘡危険度判定プログラムを読み込んで褥瘡危険度判定部335として機能し、RAM35Bが褥瘡危険度判定テーブル353を記憶している。   First, referring to FIG. 18, in addition to the configuration of the temperature conductivity measuring device 11, the pressure ulcer diagnosis device 11B reads the pressure ulcer risk determination program stored in the ROM 33B by the CPU 33B of the operation terminal 31B and determines the pressure ulcer risk level. The RAM 35B functions as the unit 335 and stores the pressure ulcer risk determination table 353.

褥瘡危険度判定部335は、褥瘡危険度判定テーブル353に基づいて、温度伝導率推定部332の算出結果から生体表面の褥瘡の危険度を判定する。褥瘡危険度判定テーブル332は、温度伝導率と褥瘡危険度との関係を保持している。具体的には、図17に示すような関係を保持している。   The pressure ulcer risk determination unit 335 determines the risk of pressure ulcers on the living body surface from the calculation result of the temperature conductivity estimation unit 332 based on the pressure ulcer risk determination table 353. The pressure ulcer risk determination table 332 holds the relationship between temperature conductivity and pressure ulcer risk. Specifically, the relationship as shown in FIG. 17 is maintained.

次に、図19を参照して、褥瘡診断装置11Bの動作を説明する。褥瘡診断装置11Bは、温度伝導率測定装置11と同様の手順で生体の温度伝導率を測定する(S1〜S4)。次に、褥瘡危険度判定部335は、褥瘡危険度判定テーブル353に基づいて、温度伝導率推定部332によって算出された温度伝導率から生体の血液流量を評価する(S5)。そして、この評価結果が表示部36に表示される。例えば、算出された温度伝導率が2.0×10-7(m2/s)であれば、「褥瘡危険度=4(OHスケール)」等と表示される。 Next, the operation of the pressure ulcer diagnostic apparatus 11B will be described with reference to FIG. The pressure ulcer diagnosis device 11B measures the temperature conductivity of the living body in the same procedure as the temperature conductivity measurement device 11 (S1 to S4). Next, the pressure ulcer risk determination unit 335 evaluates the blood flow rate of the living body from the temperature conductivity calculated by the temperature conductivity estimation unit 332 based on the pressure ulcer risk determination table 353 (S5). Then, the evaluation result is displayed on the display unit 36. For example, if the calculated temperature conductivity is 2.0 × 10 −7 (m 2 / s), “pressure ulcer risk = 4 (OH scale)” is displayed.

また、上記の変形例として、図17に示すような関係に代えて、温度伝導率についての少なくとも1つの閾値を褥瘡危険度判定テーブル353に保持しておいてもよい。そして、算出された温度伝導率とこの閾値とから、褥瘡危険度を簡易的に評価してもよい。具体的には、第1の閾値として1.5×10-7(m2/s)を、第2の閾値として2.0×10-7(m2/s)を褥瘡危険度判定テーブル353に記憶しておく。そして、温度伝導率推定部332によって算出された温度伝導率が、第1の閾値未満であれば「褥瘡危険度大」と、第1の閾値以上、第2の閾値未満であれば「褥瘡危険度中」と、第2の閾値以上であれば「褥瘡危険度小」と表示部36に表示するようにしてもよい。 Further, as a modified example, at least one threshold value for temperature conductivity may be held in the pressure ulcer risk determination table 353 instead of the relationship shown in FIG. The pressure ulcer risk may be simply evaluated from the calculated temperature conductivity and this threshold value. Specifically, the pressure threshold risk determination table 353 is set to 1.5 × 10 −7 (m 2 / s) as the first threshold and 2.0 × 10 −7 (m 2 / s) as the second threshold. Remember it. If the temperature conductivity calculated by the temperature conductivity estimation unit 332 is less than the first threshold value, “high pressure ulcer risk”, and if it is not less than the first threshold value and less than the second threshold value, “pressure ulcer risk” If it is “moderate” or more than the second threshold value, “small pressure ulcer risk” may be displayed on the display unit 36.

上記構成の温度伝導率測定装置11Bによれば、温度伝導率という客観的な数値に基づいて褥瘡の危険度を評価しているので、評価者の技量に左右されず高精度の診断が可能となる。   According to the temperature conductivity measuring device 11B having the above-described configuration, since the risk level of pressure ulcer is evaluated based on an objective numerical value called temperature conductivity, a highly accurate diagnosis is possible regardless of the skill of the evaluator. Become.

なお、上記の実施形態においては、血液の循環不良に起因する疾患として褥瘡の例を説明したが、これに限ることなく、他の疾患の診断にも応用することができる。例えば、レイノウ病や白蝋病等の末梢循環系の血行障害の他、脳梗塞等の診断にも応用できる。   In the above embodiment, an example of a pressure sore has been described as a disease caused by poor blood circulation. However, the present invention is not limited to this, and can be applied to diagnosis of other diseases. For example, the present invention can be applied to diagnosis of cerebral infarction as well as peripheral circulatory disorders such as Reynold's disease and white wax disease.

また、上記の各実施形態においては、熱刺激として冷却刺激を付与した例を示したが、これに限ることなく、温熱刺激を付与しても温度伝導率を推定することができる。ただし、図7及び図10を用いて検証したように、加温刺激を付与した場合には、途中で熱の流れが逆転するので、測定精度の観点からは、冷却刺激を付与することが望ましい。   Moreover, in each said embodiment, although the example which provided the cooling stimulus as a heat stimulus was shown, it is not restricted to this, A temperature conductivity can be estimated even if a heat stimulus is provided. However, as verified using FIG. 7 and FIG. 10, when a heating stimulus is applied, the flow of heat is reversed in the middle, so it is desirable to apply a cooling stimulus from the viewpoint of measurement accuracy. .

さらに、本発明は、上記のような温度伝導率測定装置11、皮膚組織血液循環評価装置11A及び褥瘡診断装置11Bとして実現することができるだけでなく、これらの装置に含まれる特徴的な構成部をステップ(つまり、図6,図14及び図19に記載のステップ)とする温度伝導率測定方法、皮膚組織血液循環評価方法及び褥瘡診断方法として実現したり、これらの装置に含まれる特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM等の記録媒体やインターネット等の通信ネットワークを介して流通させることができる。   Furthermore, the present invention can be realized not only as the temperature conductivity measuring device 11, the skin tissue blood circulation evaluation device 11A, and the pressure ulcer diagnostic device 11B as described above, but also the characteristic components included in these devices. Steps (that is, steps described in FIGS. 6, 14, and 19) are realized as temperature conductivity measurement methods, skin tissue blood circulation evaluation methods, and pressure ulcer diagnosis methods, and characteristic steps included in these devices It can also be realized as a program for causing a computer to execute. Such a program can be distributed via a recording medium such as a CD-ROM or a communication network such as the Internet.

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明は、生体の温度伝導率を測定する温度伝導率測定装置に有利に利用される。   The present invention is advantageously used in a temperature conductivity measuring device that measures the temperature conductivity of a living body.

この発明の一実施形態に係る温度伝導率測定装置の構成を示す概略図である。It is the schematic which shows the structure of the temperature conductivity measuring apparatus which concerns on one Embodiment of this invention. 温度伝導率測定装置のブロック図である。It is a block diagram of a temperature conductivity measuring device. 図1の測定器の断面図である。It is sectional drawing of the measuring device of FIG. 生体に冷却刺激を付与した時の温度応答の理論値と測定値とをプロットした図である。It is the figure which plotted the theoretical value and measured value of the temperature response when a cooling stimulus is provided to the living body. 見掛けの温度伝導率と対応する時定数との関係を示す図である。It is a figure which shows the relationship between apparent temperature conductivity and a corresponding time constant. 温度伝導率測定装置による温度伝導率の測定手順を示す図である。It is a figure which shows the measurement procedure of the temperature conductivity by a temperature conductivity measuring apparatus. 冷却刺激を付与した後の皮膚組織の温度応答の時間変化を示す図である。It is a figure which shows the time change of the temperature response of the skin tissue after giving a cooling stimulus. 血液流量を変化させたときの冷却刺激に対する皮膚表面の温度応答を示す図である。It is a figure which shows the temperature response of the skin surface with respect to the cooling irritation | stimulation when changing a blood flow rate. 冷却刺激を付与したときの温度伝導率と血液流量との関係を示す図である。It is a figure which shows the relationship between the temperature conductivity when a cooling stimulus is provided, and the blood flow rate. 加温刺激を付与した後の皮膚組織の温度応答の時間変化を示す図である。It is a figure which shows the time change of the temperature response of the skin tissue after giving a heating stimulus. 血液流量を変化させたときの加温刺激に対する皮膚表面の温度応答を示す図である。It is a figure which shows the temperature response of the skin surface with respect to a heating irritation | stimulation when changing a blood flow rate. 加温刺激を付与したときの温度伝導率と血液流量との関係を示す図である。It is a figure which shows the relationship between the temperature conductivity when a warming stimulus is provided, and the blood flow rate. この発明の一実施形態に係る皮膚組織血液循環評価装置のブロック図である。1 is a block diagram of a skin tissue blood circulation evaluation apparatus according to an embodiment of the present invention. 皮膚組織血液循環評価装置による血液流量の評価手順を示す図である。It is a figure which shows the evaluation procedure of the blood flow by the skin tissue blood circulation evaluation apparatus. 健康高齢者の温度伝導率を測定した結果を示すヒストグラムである。It is a histogram which shows the result of having measured the temperature conductivity of healthy elderly people. 入院高齢者の温度伝導率を測定した結果を示すヒストグラムである。It is a histogram which shows the result of having measured the temperature conductivity of the hospitalized elderly person. 温度伝導率とOHスケールによる褥瘡の危険度評価との関係を示す図である。It is a figure which shows the relationship between temperature conductivity and the risk assessment of pressure ulcer by OH scale. この発明の一実施形態に係る褥瘡診断装置のブロック図である。It is a block diagram of the pressure ulcer diagnostic apparatus which concerns on one Embodiment of this invention. 褥瘡診断装置による褥瘡危険度の評価手順を示す図である。It is a figure which shows the evaluation procedure of the pressure ulcer risk by a pressure ulcer diagnostic apparatus.

符号の説明Explanation of symbols

11 温度伝導率測定装置
11A 皮膚組織血液循環評価装置
11B 褥瘡診断装置
21 測定器
22,32 通信部
23 貼付部材
24 熱刺激発生部
25 温度測定部
33,33A,33B CPU
34,34A,34B ROM
35,35A,35B RAM
36 表示部
241 ケース
242 熱伝導プローブ
242a 温度制御用センサ
243 ペルチェ素子
244 ヒートシンク
245 熱放散ファン
331 時定数算出部
332 温度伝導率推定部
333 測定器制御部
334 血液流量評価部
335 褥瘡危険度判定部
351 温度伝導率推定テーブル
352 血液流量評価テーブル
353 褥瘡危険度判定テーブル
DESCRIPTION OF SYMBOLS 11 Temperature conductivity measuring apparatus 11A Skin tissue blood circulation evaluation apparatus 11B Pressure ulcer diagnostic apparatus 21 Measuring device 22, 32 Communication part 23 Pasting member 24 Thermal stimulus generation part 25 Temperature measuring part 33, 33A, 33B CPU
34, 34A, 34B ROM
35, 35A, 35B RAM
36 Display unit 241 Case 242 Thermal conduction probe 242a Temperature control sensor 243 Peltier element 244 Heat sink 245 Heat dissipation fan 331 Time constant calculation unit 332 Temperature conductivity estimation unit 333 Measuring instrument control unit 334 Blood flow rate evaluation unit 335 Pressure ulcer risk determination unit 351 Temperature conductivity estimation table 352 Blood flow rate evaluation table 353 Pressure ulcer risk determination table

Claims (10)

生体の温度伝導率を測定する温度伝導率測定装置であって、
生体に所定時間だけ熱刺激を付与する熱刺激発生部と、
前記熱刺激発生部によって熱刺激を付与された生体の温度の時間的変化を測定する温度測定部と、
生体熱伝導方程式に基づいて、前記温度測定部の測定結果から生体の温度伝導率を算出する温度伝導率算出部と
を備える温度伝導率測定装置。
A temperature conductivity measuring device for measuring the temperature conductivity of a living body,
A thermal stimulation generator that applies thermal stimulation to the living body for a predetermined time;
A temperature measuring unit for measuring a temporal change in the temperature of a living body given thermal stimulation by the thermal stimulation generating unit;
A temperature conductivity measuring device comprising: a temperature conductivity calculating unit that calculates a temperature conductivity of a living body from a measurement result of the temperature measuring unit based on a living body heat conduction equation.
熱刺激を付与する前の生体の温度をt1、前記所定時間を経過した時点での生体の温度をt2、前記所定時間を経過した時点からt1/t2が予め定められた値に達するまでの時間を時定数と定義すると、
前記温度伝導率算出部は、
生体熱伝導方程式に基づいて予め算出された時定数と温度伝導率との関係を保持する温度伝導率推定テーブルを記憶する記憶部と、
前記温度測定部の検出結果に基づいて時定数を算出する時定数算出部と、
前記温度伝導率推定テーブルに基づいて、前記時定数から生体の温度伝導率を推定する温度伝導率推定部と
を備える請求項1に記載の温度伝導率測定装置。
The living body temperature before applying the thermal stimulus is t 1 , the living body temperature at the time when the predetermined time has passed is t 2 , and t 1 / t 2 is a predetermined value from the time at which the predetermined time has passed. If time to reach is defined as a time constant,
The temperature conductivity calculator is
A storage unit for storing a temperature conductivity estimation table that holds a relationship between a time constant and a temperature conductivity calculated in advance based on a biological heat conduction equation;
A time constant calculating unit for calculating a time constant based on the detection result of the temperature measuring unit;
The temperature conductivity measurement device according to claim 1, further comprising: a temperature conductivity estimation unit that estimates a temperature conductivity of a living body from the time constant based on the temperature conductivity estimation table.
前記熱刺激発生部は、生体に冷却刺激を付与する冷却刺激発生部である
請求項1又は2に記載の温度伝導率測定装置。
The temperature conductivity measuring device according to claim 1, wherein the thermal stimulus generator is a cooling stimulus generator that applies a cooling stimulus to the living body.
前記熱刺激発生部は、ペルチェ素子によって構成される
請求項1〜3のいずれか1項に記載の温度伝導率測定装置。
The temperature conductivity measuring device according to any one of claims 1 to 3, wherein the thermal stimulation generator is configured by a Peltier element.
前記熱刺激発生部と前記温度測定部とを保持し、かつ生体の表面に貼付される貼付部材、前記熱刺激発生部及び前記温度測定部を含む測定器と、
前記温度伝導率算出部、前記測定器の動作を制御する測定器制御部及び前記温度伝導率算出部によって算出された生体の温度伝導率を表示する表示部を含み、前記測定器とデータの送受信可能な状態で接続される操作端末と
で構成される請求項1〜4のいずれか1項に記載の温度伝導率測定装置。
An adhesive member that holds the thermal stimulus generation unit and the temperature measurement unit and is affixed to the surface of a living body, a measuring instrument including the thermal stimulus generation unit and the temperature measurement unit,
The temperature conductivity calculation unit, a measurement device control unit for controlling the operation of the measurement device, and a display unit for displaying the temperature conductivity of the living body calculated by the temperature conductivity calculation unit, and transmission and reception of data with the measurement device The temperature conductivity measuring device according to any one of claims 1 to 4, comprising an operation terminal connected in a possible state.
前記貼付部材は、生体の表面に沿って変形可能な材料で形成されており、
前記温度測定部は、前記貼付部材の生体表面に対面する面から突出するように配置されている
請求項5に記載の温度伝導率測定装置。
The sticking member is formed of a material that can be deformed along the surface of a living body,
The temperature conductivity measuring device according to claim 5, wherein the temperature measuring unit is disposed so as to protrude from a surface of the sticking member facing the living body surface.
前記測定器と前記操作端末とは、無線接続されている
請求項5又は6に記載の温度伝導率測定装置。
The temperature conductivity measuring device according to claim 5 or 6, wherein the measuring device and the operation terminal are wirelessly connected.
請求項1〜7のいずれか1項に記載の温度伝導率測定装置と、
予め算出された温度伝導率と血液流量との関係を保持する血液流量評価テーブルを記憶する記憶部と、
前記血液流量評価テーブルに基づいて、前記温度伝導率算出部の算出結果から生体の血液流量を評価する血液流量評価部と
を備える皮膚組織血液循環評価装置。
The temperature conductivity measuring device according to any one of claims 1 to 7,
A storage unit for storing a blood flow rate evaluation table that holds a relationship between the temperature conductivity calculated in advance and the blood flow rate;
A skin tissue blood circulation evaluation apparatus comprising: a blood flow rate evaluation unit that evaluates a blood flow rate of a living body from a calculation result of the temperature conductivity calculation unit based on the blood flow rate evaluation table.
請求項1〜7のいずれか1項に記載の温度伝導率測定装置と、
予め算出された温度伝導率と褥瘡危険度との関係を保持する褥瘡危険度判定テーブルを記憶する記憶部と、
前記褥瘡危険度判定テーブルに基づいて、前記温度伝導率算出部の算出結果から生体表面の褥瘡の危険度を判定する褥瘡危険度判定部と
を備える褥瘡診断装置。
The temperature conductivity measuring device according to any one of claims 1 to 7,
A storage unit for storing a pressure ulcer risk determination table that holds a relationship between a pre-calculated temperature conductivity and pressure ulcer risk;
A pressure ulcer diagnosis apparatus comprising: a pressure ulcer risk determination unit that determines the risk of pressure ulcers on the surface of a living body from the calculation result of the temperature conductivity calculation unit based on the pressure ulcer risk determination table.
所定時間だけ熱刺激を付与する熱刺激発生部と、前記熱刺激発生部によって熱刺激を付与された生体の温度の時間的変化を測定する温度測定部とを備える温度伝導率測定装置で実行されるプログラムであって、
生体熱伝導方程式に基づいて、前記温度測定部の測定結果から生体の温度伝導率を算出する温度伝導率算出ステップを含む
プログラム。
The thermal conductivity measuring device includes a thermal stimulation generating unit that applies thermal stimulation for a predetermined time, and a temperature measuring unit that measures a temporal change in the temperature of the living body given thermal stimulation by the thermal stimulation generating unit. A program
A program including a temperature conductivity calculating step of calculating a temperature conductivity of a living body from a measurement result of the temperature measuring unit based on a living body heat conduction equation.
JP2008190325A 2008-07-23 2008-07-23 Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device Expired - Fee Related JP5327840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190325A JP5327840B2 (en) 2008-07-23 2008-07-23 Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190325A JP5327840B2 (en) 2008-07-23 2008-07-23 Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device

Publications (2)

Publication Number Publication Date
JP2010022723A true JP2010022723A (en) 2010-02-04
JP5327840B2 JP5327840B2 (en) 2013-10-30

Family

ID=41729118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190325A Expired - Fee Related JP5327840B2 (en) 2008-07-23 2008-07-23 Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device

Country Status (1)

Country Link
JP (1) JP5327840B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526900A (en) * 2010-04-22 2013-06-27 ケンタウリ メディカル インコーポレイテッド System, device and method for preventing, detecting and treating conditions such as pressure-induced ischemia and pressure ulcers
JP2014523770A (en) * 2011-06-15 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ Measurement of body temperature
CN104185447A (en) * 2012-03-26 2014-12-03 新华生物科技股份有限公司 Method and apparatus for obtaining vasodilation data representing cutaneous local thermal hyperemia response of subject
US9655546B2 (en) 2010-04-22 2017-05-23 Leaf Healthcare, Inc. Pressure Ulcer Detection Methods, Devices and Techniques
US9728061B2 (en) 2010-04-22 2017-08-08 Leaf Healthcare, Inc. Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions
US10140837B2 (en) 2010-04-22 2018-11-27 Leaf Healthcare, Inc. Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions
US10588565B2 (en) 2010-04-22 2020-03-17 Leaf Healthcare, Inc. Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US10631732B2 (en) 2009-03-24 2020-04-28 Leaf Healthcare, Inc. Systems and methods for displaying sensor-based user orientation information
US10758162B2 (en) 2010-04-22 2020-09-01 Leaf Healthcare, Inc. Systems, devices and methods for analyzing a person status based at least on a detected orientation of the person
JP2021029292A (en) * 2019-08-16 2021-03-01 国立大学法人千葉大学 Bed sore detection device and bed sore detection method
US11051751B2 (en) 2010-04-22 2021-07-06 Leaf Healthcare, Inc. Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US11272860B2 (en) 2010-04-22 2022-03-15 Leaf Healthcare, Inc. Sensor device with a selectively activatable display
US11278237B2 (en) 2010-04-22 2022-03-22 Leaf Healthcare, Inc. Devices, systems, and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US11369309B2 (en) 2010-04-22 2022-06-28 Leaf Healthcare, Inc. Systems and methods for managing a position management protocol based on detected inclination angle of a person
US11874162B2 (en) 2018-05-15 2024-01-16 Kyocera Corporation Electromagnetic wave detection apparatus and information acquisition system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287885A (en) * 1975-11-05 1977-07-22 Draegerwerk Ag Piercing sonde for measuring heat transfer or blood circulation of physical tissue of human body
JPS58138457A (en) * 1982-02-15 1983-08-17 松下電工株式会社 Massager
JPS60145125A (en) * 1984-01-09 1985-07-31 斎藤 建夫 Method for obtaining index curve coming to basis of measurement of absolute value of blood flow amount
JPS60234641A (en) * 1984-05-08 1985-11-21 ヘモダイナミクス テクノロジイ,インコ−ポレイテツド Method and apparatus for examination of terminal blood flow
JPS6377434A (en) * 1986-09-19 1988-04-07 斎藤 建夫 Method for calculating calibration value of tissue blood flow rate meter
JPH10290796A (en) * 1997-04-18 1998-11-04 Nec Corp Method and device for identifying living body
JP2000051181A (en) * 1998-08-05 2000-02-22 Takehiko Oura Bedsore diagnostic device
JP2002119487A (en) * 2000-10-18 2002-04-23 Ami Techno Ltd Contact pressure blood flow sensor
JP2003505131A (en) * 1999-07-22 2003-02-12 シー・アール・バード・インク Ischemia detection system
JP2004215807A (en) * 2003-01-14 2004-08-05 Nec Infrontia Corp Organism discrimination device and fingerprint authentication device
JP2005115919A (en) * 2003-09-19 2005-04-28 Mitsubishi Materials Corp Radio temperature sensor
JP2005319110A (en) * 2004-05-10 2005-11-17 Hitachi Ltd Instrument for measuring blood sugar level
JP2006198321A (en) * 2005-01-24 2006-08-03 Hitachi Ltd Blood sugar level measuring apparatus

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287885A (en) * 1975-11-05 1977-07-22 Draegerwerk Ag Piercing sonde for measuring heat transfer or blood circulation of physical tissue of human body
JPS58138457A (en) * 1982-02-15 1983-08-17 松下電工株式会社 Massager
JPS60145125A (en) * 1984-01-09 1985-07-31 斎藤 建夫 Method for obtaining index curve coming to basis of measurement of absolute value of blood flow amount
JPS60234641A (en) * 1984-05-08 1985-11-21 ヘモダイナミクス テクノロジイ,インコ−ポレイテツド Method and apparatus for examination of terminal blood flow
JPS6377434A (en) * 1986-09-19 1988-04-07 斎藤 建夫 Method for calculating calibration value of tissue blood flow rate meter
JPH10290796A (en) * 1997-04-18 1998-11-04 Nec Corp Method and device for identifying living body
JP2000051181A (en) * 1998-08-05 2000-02-22 Takehiko Oura Bedsore diagnostic device
JP2003505131A (en) * 1999-07-22 2003-02-12 シー・アール・バード・インク Ischemia detection system
JP2002119487A (en) * 2000-10-18 2002-04-23 Ami Techno Ltd Contact pressure blood flow sensor
JP2004215807A (en) * 2003-01-14 2004-08-05 Nec Infrontia Corp Organism discrimination device and fingerprint authentication device
JP2005115919A (en) * 2003-09-19 2005-04-28 Mitsubishi Materials Corp Radio temperature sensor
JP2005319110A (en) * 2004-05-10 2005-11-17 Hitachi Ltd Instrument for measuring blood sugar level
JP2006198321A (en) * 2005-01-24 2006-08-03 Hitachi Ltd Blood sugar level measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013031197; 賀 纓 他: '"指の温度と上肢血流循環の相関性に関する研究"' 日本機械学会論文集(B編)71巻702号 , 2005, 267〜274頁, 日本機械学会 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10631732B2 (en) 2009-03-24 2020-04-28 Leaf Healthcare, Inc. Systems and methods for displaying sensor-based user orientation information
US10258258B2 (en) 2010-03-07 2019-04-16 Leaf Healthcare, Inc. Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions
US10874330B2 (en) 2010-03-07 2020-12-29 Leaf Healthcare, Inc. Systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US10682076B2 (en) 2010-03-07 2020-06-16 Leaf Healthcare, Inc. Systems and methods for monitoring the attachment and/or positioning of a wearable of a sensor device
US10729357B2 (en) 2010-04-22 2020-08-04 Leaf Healthcare, Inc. Systems and methods for generating and/or adjusting a repositioning schedule for a person
US11278237B2 (en) 2010-04-22 2022-03-22 Leaf Healthcare, Inc. Devices, systems, and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US10004447B2 (en) 2010-04-22 2018-06-26 Leaf Healthcare, Inc. Systems and methods for collecting and displaying user orientation information on a user-worn sensor device
US10140837B2 (en) 2010-04-22 2018-11-27 Leaf Healthcare, Inc. Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions
US9655546B2 (en) 2010-04-22 2017-05-23 Leaf Healthcare, Inc. Pressure Ulcer Detection Methods, Devices and Techniques
US10588565B2 (en) 2010-04-22 2020-03-17 Leaf Healthcare, Inc. Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US11948681B2 (en) 2010-04-22 2024-04-02 Leaf Healthcare, Inc. Wearable sensor device and methods for analyzing a persons orientation and biometric data
US11883154B2 (en) 2010-04-22 2024-01-30 Leaf Healthcare, Inc. Systems and methods for monitoring a person's position
JP2013526900A (en) * 2010-04-22 2013-06-27 ケンタウリ メディカル インコーポレイテッド System, device and method for preventing, detecting and treating conditions such as pressure-induced ischemia and pressure ulcers
US10758162B2 (en) 2010-04-22 2020-09-01 Leaf Healthcare, Inc. Systems, devices and methods for analyzing a person status based at least on a detected orientation of the person
US11369309B2 (en) 2010-04-22 2022-06-28 Leaf Healthcare, Inc. Systems and methods for managing a position management protocol based on detected inclination angle of a person
US10888251B2 (en) 2010-04-22 2021-01-12 Leaf Healthcare, Inc. Systems, devices and methods for analyzing the attachment of a wearable sensor device on a user
US10912491B2 (en) 2010-04-22 2021-02-09 Leaf Healthcare, Inc. Systems, devices and methods for managing pressurization timers for monitoring and/or managing a person's position
US11317830B2 (en) 2010-04-22 2022-05-03 Leaf Healthcare, Inc. Systems and methods for managing pressurization timers for monitoring and/or managing a person's position
US11051751B2 (en) 2010-04-22 2021-07-06 Leaf Healthcare, Inc. Calibrated systems, devices and methods for preventing, detecting, and treating pressure-induced ischemia, pressure ulcers, and other conditions
US11272860B2 (en) 2010-04-22 2022-03-15 Leaf Healthcare, Inc. Sensor device with a selectively activatable display
US9728061B2 (en) 2010-04-22 2017-08-08 Leaf Healthcare, Inc. Systems, devices and methods for the prevention and treatment of pressure ulcers, bed exits, falls, and other conditions
JP2014523770A (en) * 2011-06-15 2014-09-18 コーニンクレッカ フィリップス エヌ ヴェ Measurement of body temperature
CN104185447A (en) * 2012-03-26 2014-12-03 新华生物科技股份有限公司 Method and apparatus for obtaining vasodilation data representing cutaneous local thermal hyperemia response of subject
JP2015514458A (en) * 2012-03-26 2015-05-21 ニュー チャイニーズ バイオテクノロジー コーポレーション リミテッドNew Chinese Biotechnology Corporation Ltd. Method and apparatus for acquiring vasodilation data representing local skin hyperthermic response of subject
US11874162B2 (en) 2018-05-15 2024-01-16 Kyocera Corporation Electromagnetic wave detection apparatus and information acquisition system
JP2021029292A (en) * 2019-08-16 2021-03-01 国立大学法人千葉大学 Bed sore detection device and bed sore detection method

Also Published As

Publication number Publication date
JP5327840B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5327840B2 (en) Temperature conductivity measuring device, skin tissue blood circulation evaluation device, and pressure ulcer diagnostic device
US20230240542A1 (en) Method and apparatus for indicating the emergence of an ulcer
JP7005513B2 (en) Single heat flux sensor device
JP6452896B2 (en) System and method for deep body temperature measurement
JP4359300B2 (en) Thermal sensation determination device, thermal sensation determination method, thermal sensation determination program, air conditioning control device, air conditioning control method, and air conditioning control program
US20220000370A1 (en) Core body temperature sensor system based on flux measurement
JP2012237670A (en) Thermometer and manometer provided with the same
CN110049716B (en) Ulcer detection apparatus and method with varying threshold
CN207803893U (en) Cushion
JP2016114467A (en) Deep body temperature measurement system and deep body temperature measurement method
US20140142462A1 (en) Peripheral temperature measuring
Saurabh et al. Continuous core body temperature estimation via SURFACE temperature measurements using wearable sensors-is it feasible?
JP6938325B2 (en) Measuring device, measuring method and program
CN111741710B (en) Core temperature detection system and method
JP2008194253A (en) Toilet seat and body temperature measuring method
CN115243606A (en) Device and method for monitoring peripheral diabetic neuropathy and/or peripheral arterial disease
Finvers et al. Wireless temporal artery bandage thermometer
Madhvapathy Thermal Sensing of Organ Tissue for Applications in Clinical Medicine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5327840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees