TW201205930A - Cathode and lithium battery using the same and method for manufacturing the lithium battery - Google Patents

Cathode and lithium battery using the same and method for manufacturing the lithium battery Download PDF

Info

Publication number
TW201205930A
TW201205930A TW099124941A TW99124941A TW201205930A TW 201205930 A TW201205930 A TW 201205930A TW 099124941 A TW099124941 A TW 099124941A TW 99124941 A TW99124941 A TW 99124941A TW 201205930 A TW201205930 A TW 201205930A
Authority
TW
Taiwan
Prior art keywords
active material
positive electrode
negative electrode
current collector
lithium battery
Prior art date
Application number
TW099124941A
Other languages
Chinese (zh)
Other versions
TWI413293B (en
Inventor
Ru-Yuan Yang
Min-Hang Weng
Yu-Chi Chang
Huang-Yu Chen
Ming-Jhan Chuang
Original Assignee
Univ Nat Pingtung Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Pingtung Sci & Tech filed Critical Univ Nat Pingtung Sci & Tech
Priority to TW099124941A priority Critical patent/TWI413293B/en
Publication of TW201205930A publication Critical patent/TW201205930A/en
Application granted granted Critical
Publication of TWI413293B publication Critical patent/TWI413293B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention provides a cathode and a lithium battery using the same and method for manufacturing the lithium battery. The cathode has a cathode current collector and a cathode active material layer. The cathode active material layer includes a first active material and a second active material which has higher oxidation-reduction potential than that of the first active material. In addition, the invention also provides a lithium battery having the cathode described above and a method for manufacturing the lithium battery. By attaching the multi-layer active materials on the cathode current collector, the invention improves the oxidation-reduction potential of the cathode and the cycling properties of the lithium battery.

Description

201205930 六、發明說明: 【發明所屬之技術領域】 本發明係一種正極與使用該正極之鋰電池及其製造方法,特 別是-種具有多層活性物質之正極與使用該具有多層活性物質之 正極之鋰電池及其製造方法。 【先前技術】 目前用來作為鋰過渡金屬氧化物的正極材料,主要採用鈷、 鲁鎳、鐘、鐵、叙等金屬。依目前開發的正極材料的材料結構不同, 可分為層狀(Layered)、撖欖石(01ivine)、尖晶石(Spind)和 剪刀(Shear)尊四種。層狀氧化物如g類或鎳类員金屬,它的電容 量大約在160至190(mAh/g)及平均工作電壓3.6〜37v。鈷類主要應 用在各種電子設備㈣小型電池,由於錢量較少,面臨價格昂 貴的缺點。糾,義在理論容量及顧量方的祕優異,不 過其熱穩定性不佳’ *且不易合成,所以目前與其它材料混合開 發0 撖欖石的結晶結構如鐵類金屬,與其它稀少金屬相比,除了 成本低廉外’它具有良好的穩定性與循環特性等優點,不過容量 低且電壓僅2 V ’目前與填酸混合可確保3 3 ν·。央晶石縫氧 化物由於在穩定氧原子的能力較鋰鈷氧化物為優,相對提升了安 王性,不過缺·點是鐘猛氧化物在猛離子溶出時,會有高溫使用與 儲存時電池性能衰退的問題。 201205930 參照美國專利案第7,_,238號,其標題為「金屬礙酸鹽之製 備 ’ Synthesis of metal phosphates」。該專利揭示一種合成 LiMnp〇4 以及LiFePOe方法’其中更包含添加—金屬防止鐵氧化成三價4 鐵化合物,使製程過程中不需額外加人還補,也因此不會有碳 殘留等問題。但此方式製得之鋰金屬正極材料,其導電率較低, 且鋰電池具有較低電容量。 另外,參照美國專利案第7,338,734號,其標題為「導電性鋰 儲存電極,Conductive lithium storage electrode」。該專利揭示一種 陰極活性材料,其具有橄欖石結構的LixFei yMyP〇4之化合物,且 可單獨或與其他材料組合使用而做為陰極活性材料,在其組合物 中使用較便宜且能夠充足供應的鐵材料。因此,比其他任何鋰氧 化物所構成之鋰電池具有較低的毒性以及不會造成環境污染等優 點。但此陰極活性材料其工作電壓與鋰鈷氧以及鋰錳氧比較之下 相對較低。如果應用於需大電壓之產品,就必須佔據大量的空間。 此外,因撖欖石結構之LiFeP〇4正極材料的粉末顆粒太大,導致 導電度更差。 為克服此一缺點,如美國專利案第6,528,〇33號,其標題為「一 種製造鐘組成材料之方法,Meth〇d 〇f making Uthium eQntain materials」;第6,716,372號,其標題為「一種鋰組成材料,Uthium containing materials」;第6 73〇 281號,其標題為「一種以過渡金 屬化合物作為正極活性物質之製造方法,Meth〇d 〇f making transition metal compounds usefiil as cathode active materials」等。該 201205930 專專利係於製程中添加碳源,或在粉末表面披覆碳粉,以使粉末 之表面電子導電性提升。 此外,參照美國專利案第7,438,992號,其標題為「鋰基質之 '舌性物質及其製備,Lithium-based active materials and prepamtbn thereof」。其揭示一種陰極活性材料,其組合式係為 UMIl_yMIIyP〇4 ;其中 MI 係為釩(V),Mil 則由 Mg、Ca、Zn、Sr、 Pb Cd、Sn、以及Ba其中至少一種所組成此陰極活性材料於 春重複進彳了充電/放料’由於發生内部短路錢得電容量明顯地減 少。且容易因陰極及陽極材料在充電/放電過程中發生反應而產生 體積改變’而使得電池產生熱膨脹。 【發明内容】 有鐘於此,本發明之發明人乃細心研究,提出-種具有多層 活性物質之正極與使用該正極之㈣池,同時提出—種微波加熱 法來製造活性物質,以解決傳統碟酸鐘鐵電池所具有之工作電壓 • 低的缺點,同時改善其循環特性與容量。 本發月提供-種正極,該正極包含正極集電體以及披覆正極 集電體之正極活性物f層’而正極活性物f層具有由不同活性物 質所·,且成之多層結構,藉由使用不同氧化還原電位之活性物質, 將使正極之氧化電位提高。此外,本發日㈣提供—觀電池, 侧用上述具衫層結構之正極灘物制之錄独電池上, 藉以提高㈣池之電壓並保留原本之容量特性。本發明也提供一 種鐘電池賴造方法,細改善·高_目合成法製作正極活 201205930 性物質層時,需長咖於高溫τ持溫的缺點。 本= 騎提出之正極包含正極集·叹正極雜物質層。 ,、楚$活性物質層係披覆於正極集電體且包含第一活性物質 r=rf,此外,第一活性㈣之氧化還原電位係高於 第一活性物質之氧化還原電位。 此^本發_提出之㈣池包含正極、負極、隔離層與電 壬hi物哲正極包含正極集電體以及正極活性物質層,而正極 =層係披覆於正極集電體;負極包含負極集電體以及負極 用乂2層,而負極活性物質層係披覆於負極集電體;隔離層係 二刀離正極與負極於相對位置,以避免產生短路效應;電解質 =疋配置於正極與負極之間,使離子可敍極與負極間自由移 祕Γγ前述正極活性物質層之第一活性物質之氧化還原電 ^係同於第—活性物質之氧化還原電位。 而本發明所提出之鐘電池的製造方法包含下列步驟··披覆正 極活性物質層於正極集電體而形成正極,·披覆負極活性物質層於 負極集電體而形成負極;以隔離層分離正極與負極於相對位置, 避免產生祕效應;以及配置電㈣於正極與負極之間,使離子 =正極與負極間自由移動。需注意,其中正極活性物質層包含 活性物質與第二活性物質,且第—活性物質之氧化還原電位 係尚於第二活性物質之氧化還原電位。 本發明之正極因具有由多層活性物質所域之正極活性物質 層’且第-活性物質之氧化還原電位大於第二活性物質之氧化還 201205930 原電位,驗電池之工作賴得以提高。此外,由於所合成之多 層結構之·婦具有_石賴,因此#_駿電池且長時 間充放電時,依然__原本高電容以及高之特性。再者, 本發明利職波加熱法製作·㈣,有別於傳統加熱技術,利 職波加熱的方式使贿錄·_由轉之㈣改變其升溫 夺3其中大功率意s胃較向之升溫速率,藉以達到減少製程時 間、節約麟以及降低製程溫度,而鱗制之活錄f的特性 % 更優於傳統加熱方式。 為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂, 下文特舉較佳實施例,作詳細說明如下。 【實施方式】 雖然本發明可表現為獨形式之實施例,但關所示者及於 下文中說明者係為本發明之較佳實關,並請了解本文所揭示者 係考量為本發明之-範例,並非意_以將本發娜制於圖式及/ % 或所描述之特定實施例中。 請參考第1圖,為本發明之正極示意圖(1),揭示一種具有 多層活性物質之正極110’包含正極集電體112以及正極活性物質 層11卜其中,正極活性物質層lu係披覆於正極集電體112。此 外’正極活性物質層m包含第一活性物質lla以及第二活性物質 lib ’而第一活性物質lla係設於第二活性物質ub與正極集電體 112之間,且第一活性物質lla之氧化還原電位係高於第二活性物 質ub之氧化還原電位。 201205930 正極活性物質層111亦為活性物質,係含有可吸收以及放出鋰 之正極材料’例如不含鋰之硫化合物,或含有鋰之化合物。 亦可根據需要添加含有碳材料之導電材料以及聚偏氟乙烯等 之黏著劑°其中,含有鋰之化合物係以可獲得高電壓以及高能量 役度者為佳。作為此含链之化合物’可列舉含有链與過渡金屬之 複合氧化物,或含有鋰與過渡金屬之磷酸化合物。其化學式,係 以LiyMIP〇4或LixMII02所表示,其中MI及Mil皆表示為1種以上之 過渡金屬。X以及y之值則根據電池之充放電狀態而不同,通常為 〇.〇5$χ$1·ι〇,〇〇5$y$i 1〇。 特別是’作為含有經與過渡金屬之複合氧化物,較好的是含 有鎳、鈷(Co)以及錳(Μη)中之至少1種者。其原因在於可獲得更 高之電壓。具體而言,可列舉經/鎳複合氧化物(LixNi〇2)、鋰鈷複 合氧化物(14〇〇02)、裡鎳銘複合氧化物(1^咖^/〇202(〇&lt;2&lt;1))、 鐘錄猛銘複合氧化物(LixNikwMnvCowO/CK v,0&lt; w,v+w&lt;l))、 或具有尖晶石型構造之鋰錳複合氧化物(LiMn2〇4)等。再者,該複 合氧化物,除鋰、鎳、鈷以及錳中之至少1種之外,亦可含有其 他元素。 又,作為含有裡與過渡金屬之填酸化合物之具體例,例如, 可列舉裡鐵填酸化合物(LiFeP〇4)、或含有鋰與鐵(Fe)與其他元素之 鱗酸化合物(LiyFe_IIIuP〇4)。式中,ΜΠΙ係選自鎳、始、猛、銅 (Cu)、鋅(Zn)、鎂(Mg)、鉻(Cr)、釩(V)、钥(Mo)、鈦(Ti)、鋁、銳 201205930 (Nb)、硼(B)以及鈣(Ga)所組成之一。上述提及之u以及y通常為 0&lt;u&lt;l,0.05 1.10。 正極活性物質層111亦含有第-活性物flla與第二活性物質 lib,其中第一活性物質lla設於正極集電體112與第二活性物質 lib之間。帛一活性物f lla與第二·活性物質llb具有不同之組 成,藉此組合而形成具有多層構造之正極活性物質層U1。例如, 作為第-活性物質1 la,較佳的係為氧化還原電位高於第二活性物 • 質仙者。其主要原因在於,為了防止容量降低之同時可提高表 面侧之熱穩定性。再者,可藉由第—活性㈣na之高氧化還原 電位特性提南鐘電池100之放電電麗。 較佳地,第一活性物質lla係為含有鋰與過渡金屬之磷酸化 合物’第二活性物質llb係為含有轉鐵之魏化合物^更佳地, 第-活性物質Ua係為含有雜猛之磷酸化合物。其主要原因在 於’可獲得高容量,同時亦可提高熱穩定性。 ❿ 此外,為了讓正極活性物質層111更具有高電容性與高傳導 性’其必須具有—最佳之厚度,以利瓣子傳輸。其中,第-活 改物質lla之厚度係介於1〇μιη^ 1〇〇μιη之間;以及第二活性物 質Ub之厚度係介於1〇 Mm至1〇〇 μηι之間。 再者’第一活性物質Ua與第二活性物質11b亦可含有其他 活除質’且當第一活性物質Ua與第二活性物質ub中含有複數 種雜物質時’第一活性物質lla與第二活性物質lib中允許含 有相同之活性物質。 201205930 又如第2圖所示,第二活性物質ub亦可設置於正極集電體 112與第一活性物質ua之間。其原因在於,若使用熱穩定性高之 第二活性物質lib ’可提高正極集電體112侧之熱穩定性,且可抑 制正極集電體112之劣化。 進而,如第3圖所示’亦可同時具有第二活性物質ub與第 二活性物質11c。此時,第二活性物質1比與第二活性物質11(;之 組成’可相同亦可不同。 正極110,例如,可於混合活性物質與根據需要之導電劑以及 黏合劑,使之分散於N-甲基各酮等之溶劑中之後,塗布於正 極集電體112上並乾燥溶劑,藉由滚筒壓機等進行壓縮成型形成 第一活性物質11a以及第二活性物質llb、12c,藉此進行製造。 上述之黏合劑係含聚合物質與可萃取塑化劑,適合形成黏合 多孔複合物。較佳黏合劑包括齒化烴聚合物(例如聚(偏二氣乙烯) 及聚((二氣-1 ’ 4-伸苯基)乙烯)、氟化脲烷、氟化環氧化物、氟 化丙烯酸類、齒化烴聚合物之共聚合物、環氧化物、乙烯丙烯胺 二單體(EPDM)、聚亞乙稀二氟化物(pydf)、六氟丙稀(Hpp)、乙 烯丙烯酸共聚合物(EAA)、乙烯醋酸乙烯酯共聚合物(EVA)、 EAA/EVA共聚合物、pvdf/hfp共聚合物、及其混合物之一。 上述之導電劑係可包括碳黑、石墨、粉狀鎳、金屬顆粒、傳 導性聚合物(例如,具有雙鍵之共軛網絡特性如聚吡咯及聚乙炔) 及其混合物之一。 請參考第4圖,為本發明之鋰電池示意圖,揭示一種經電池 201205930 100 ’具有上述之具有多層活性物質之正極110。鐘電池100包含: 正極110、負極120、隔離層13〇以及電解質140。其中,正極11〇包 含正極集電體m以及披覆於正極集電體⑴之正極活性物質層 負極120包含負極集電體⑵以及披覆於負極集電體⑵之負 極活性物質層121 ;隔離層130係用以分離正極110與負極12〇於相 對位置’以避免產生短路效應;電解们侧係配置於正極⑽與 負極120之間,使得離子能夠在正極110與負極120中自由移動。 • 正極集電體II2之二面或單面設有正極活性物質層⑴。正極 集電體112之材質係選自娜、鎳羯或不鏽鋼猪等之一。盆中正 極雜物質層111包含第一活性物質Ha與第二活性物質m,且 第/舌f生物質lla之氧化還原電位係高於第二活性物質之氧 化還原電位。 負極集電體122之材質係選自銅落、錄箱或不鏽鋼羯等之一。 而負極活性物質層121含有可吸留或釋放鐘之負極材料中之其中 • 1種或2種以上。例如,含有錫、銅、解作為構成元素之材料, 此係由於錫、銅、磷之吸留或釋放子之能力較大而可獲得高能量 密度之故。 作為此種貞極材料’具體上刊舉金屬之單體、合金、或化 α物或至部分具有此等巾之丨種或2種以上之材料。又本發 ^中,合金除了 2種以上之金屬元素所構成之合金外,也含有包 含1種以上之金屬元素與i種以上之半金屬元素之合金。又或者 包含1種以上之非金屬元素之合金。其組織中有時共存著固溶體、 201205930 共晶(共融混合物)、金屬間化合物或此等中之兩種以上之合金。 作為金屬之合金,例如,作為錫_銅_構以外之第4構成元素, 可列舉含有由石夕、鎳、鐵(Fe)、鈷、錳、鋅(Zn)、銦(In)、銀(Ag)、 鈦(Ti)、鍺(Ge)、鉍(Bi)、銻(Sb)及鉻(Cr)組成之群中之至少丨種者。 作為可吸留及釋放鐘之負極材料,例如也可使用石墨、難石墨 化性碳或易石墨化性碳等碳質材料,且此等碳質材料也可與上述 之負極材料共用。碳質材料在鋰之吸留及釋放時帶來之結晶構造 之變化非常少,例如’使其與上述之負極1;2〇材料共用時,可獲鲁 得高能量密度’並可獲得優異之循環特性,更可發揮作為導電劑 之機能,故相當理想。 負極活性物質層121也可包含前述之導電劑、黏著劑或黏度 調整劑等無助於充電之其他材料。 電解質140係提供離子在正極11〇與負極12〇間轉移。電解 質140較佳為一種物質具有高離子傳導性以及絕緣性以避免在存 放期間自行放電。電解質140可為液體或固體,固態電解質14〇 較佳者含有聚合基質,其含有離子傳生介質;液態電解質14〇 · 較佳者包含溶劑及鹼金屬鹽,其形成離子傳導性液體。 固態聚合電解質140,包含由聚合有機或無機單體(或其局部 聚合物)形成之電解質M0可相容物質之固態聚合基質,及當與 其他電解質140之成份組合使用時,亦可形成固態聚合電解質 140。適當固態聚合基質除習知者外,並包括自有機聚合物、無機 12 201205930 聚合物或_基質形成單舰自_基質形成單體之局部聚合物 形成之固態基質。 聚。電解質U〇基質係包含鹽,通常為無機鹽,其係藉由溶 綱質均勾分個基#。溶臟佳為加人電解質14G之低分子 篁有機溶#丨’其可用來_丨化無赫子鹽。賴難為任何可相 容相當非揮發性非質子相當極性賴,包括碳卿_紙)、碳 酸二乙酯(DEC)、碳酸二丙g旨(Dpc)、碳酸乙基甲醋、碳酸 伸丁醋、γ·丁内I旨、三甘醇二㈣、四甘醇二㈣、内酯類、醋類、 甲基亞硬—氧戊環、環丁颯、及其混合物。較佳溶劑包括 EC/DMC、EC/DEC、EC/DPC 及 EC/EMC。較佳的是,無機離子 鹽為鋰或納鹽,例如,LiASF6、磨6、Licl〇4、LiB(C6H5)4、 UAICI4、LiBr、及其混合物’以毒性低的鹽較佳。 此外,電解質140包含一隔離層no,或由隔離層13〇環繞。 隔離層130容許離子移行過膜,而仍可提供電荷在電極間之物理 分離’以ρ;ίτ止短路。較佳的是’ _層13G亦可抑制在電池内因 化學反應失控所發生之高溫,在溫度升高時,較佳地藉由本身的 降解來提供高電阻以防止化學反應持續進行。在一較佳具體例 中,電解質140之聚合基質可含有附加聚合物或其最初聚合基質 來作為隔離層130,提供正極11〇與負極12〇間之所需之物理隔離。 隔離層130元件通常為聚合物並自含有共聚合物之組合物製 備。較佳組合物為75至92%亞乙烯氟與8至25%六氟丙烯共聚 合物(市面上可獲自Atochem North America公司名稱為Kynar 13 201205930 FLEX)及有機溶劑塑化劑。該共聚合物組合物對製備電極膜元件 亦佳,因為確保後續層壓界面可相容性。塑化溶劑為共同用作電 解質140鹽之溶劑之各種有機化合物之例如’碳酸丙烯酯或碳酸 乙烯酯’以及此等化合物之混合物。以較高沸點塑化劑化合物如 酞酸二丁酯、酞酸二甲酯、酞酸二乙酯、及磷酸參丁氧乙酯較佳。 無機填料附加物如發烟氧化鋁或石夕炫化發烟石夕石可用以強化分離 物膜之物理強度與熔_融黏度,並在有些組合物内,增加電解質14〇 吸收之後續準位。 請參考第5圖,為本發明之鋰電池製造方法流程圖,揭示一 種多層正極活性物質之鋰電池1〇〇製造方法,其主要步驟包含: 步驟510 ·形成正極合劑。 將正極活性物質混合導電劑以及黏著劑調製成正極合劑。 步驟520 .形成正極合劑漿液。 將正極合劑分散於溶劑令而形成膏狀之正極合劑漿液。 步驟530 :形成正極no。 將正極合劑披覆於金屬箔正極集電體112二面使其乾燥後, 壓縮成型而形成正極110。 步驟610 :形成負極合劑。 將負極活性物質混合導電劑以及黏著劑調製成負極合劑。 步驟620 .形成負極合劑漿液。 將負極合劑分散於溶劑中而成膏狀之負極合劑漿液。 步驟630 :形成負極12〇。 201205930 將負極合劑塗敷於金屬箔負極集電體122兩面使其乾燥後, 壓縮成型而形成負極120。 步驟710 :配置隔離層130。 將隔離層130捲繞於正極110與負極12〇中,並將正極n〇 與負極120以及隔離層130收容於電池罐之内部。 步驟720 :配置電解質140。 將電解質140注入電池罐之内部,使其含浸隔離層13〇。 步驟730 :形成鋰電池100。 藉由上述步驟而完成鋰電池100 .=&gt; 請參考第6圖,為本發明之正極製造方法流程圖,其中正極 110係以下列步驟製成: 步驟531 :形成第一混合物。 藉由混合鋰化合物、磷酸化合物、碳源以及第一過渡金屬之 化合物,而得到第一混合物。 步驟532 :球磨第一混合物。 將第一混合物球磨20分鐘至2小時。 步驟533 :通入惰性氣體。 通入惰性氣體於一微波加熱源之腔體内以提供惰性氣體氣氛 進而防止二價鐵氧化,惰性氣體選自於下列所構成之群組:氮氣 (N2)、氬氣(Ar)、一氧化碳(CO)、二氧化碳(C02)之一。 步驟534 :以微波加熱源加熱。 以微波加熱源加熱球磨後之第一混合物。 15 201205930 步驟535 :形成第一活性物質。 將第一混合物冷卻至室溫而形成第一活性物質na。 步驟536 :重複步驟531至步驟535而形成第二活性物質。 將步驟531中之第一過渡金屬改為第二過渡金屬,並重複步 驟531至535而形成第二活性物質ub。 步驟537 :形成正極活性物質層ni。 配置第一活性物質11a於第一活性物質lla之一面,以形成 正極活性物質層111。 其中,步驟534之製程條件為: (1) 微波加熱源之頻率係介於〇 3 GHz至3〇 GHz ; (2) 微波加熱源之功率係介於4〇〇 w至1200 W之間; (3) 微波加熱源之升溫速率係介於6〇。(:/111丨11至12〇〇c/min之間; (4) 微波加熱源之持溫溫度係介於75〇〇c至85〇〇c之間; (5) 微波加熱源之持溫時間介於2分鐘至3〇分鐘之間。 201205930 &lt;實施例ι&gt; 兹簡單說明本發明所提出之一種多層正極活性物質之正極製 作方法的實施例1如了: 將ο.5莫耳FeA 79 85克、〇 5莫耳邮〇3 36 %克、【莫耳 _册〇4 132.06克混合以及36 8克的聚丙稀,形成第一混合 物。將第-混和物與氧化錯球以重量比2〇 : 1加入乙醇溶液中, 並球磨3〇分鐘。球磨後之第一混合物的溶液置於氣氣環境中並以 • 12〇〇C烘烤6小時’乾燥後即得-粉末狀的起始物。將該粉末狀的 起始物置於氧化崎場中,並置於微波加熱源内,將功率設定為 750 W ’頻率設定為2.45 GHz,升溫速率設定為6〇〇c/min,並於 氮氣壞境下以75〇0C熱處理4分鐘,繼而得到一4酸鐘鐵粉末。 &lt;實施例2&gt; 實施例2同樣為一種多層正極活性物質之正極HQ製作方 法,其與實施例1大致相同,唯一差異在於將以2〇3置換成〇 5莫 φ 耳Μη&quot;378.94克’其餘步驟均與實施例1相同,藉以得到—磷酸 裡锰粉末。 &lt;實施例3&gt; 請參照第4圖,將實施例1所製得之鱗酸鋰鐵粉末與碳黑及 聚二氟乙烯(polyvinylidene difluoride,PVDF)黏合劑,依比例(83 . 10 : 7)混合均勻後’彼覆於1〇阿鋁箔上,經12〇°c烘乾6小時 後,藉以得到磷酸鋰鐵活性物質層,並形成正極110。以及藉著厚 25 μηι之微多孔性聚乙烯膜(東燃化學製;E25MMS)構成之隔離層 17 201205930 130依照負極i2〇、隔離層130及正極no之順序疊層後’多數捲 繞。接著’混合40重量百分比之4-氟-1,3·二噁茂炫-2-酮(FEC)、 45重量百分比之碳酸二甲酯重量百分比之電解質鹽 LiPF6而調製電解質14〇。並將正極11〇與負極12〇收容於電池罐 之内部後,將電解質140注入電池罐之内部,使其含浸隔離層 130’以形成鋰電池1〇〇’再藉由充放電測試機測試其充放電性質。 &lt;實施例4&gt; 請參照第1圖,將實施例1所製成之磷酸鐘鐵粉末作為第一活 性物質’賴於厚度為1G μπι之㈣集電體上,並壓縮而形成厚 度為100 μηι之第一活性物質Ua。接著將實施例2所製備之碟酸 娜粉末,彼覆於第-活性物質lla之一侧,並壓縮而形成厚度 為100 μιη之第二活性物質llb ’以此製作成第i圖所示之正= 110 ’並依實施例3的作法製作成鐘電池1〇〇。 〈實施例5&gt; 請參照第2圖,如同實施例4之正極製作方法,其差異處在於 實施例5係先將磷酸錄粉末,亦即第二活性物们化,彼覆於鋁 羯集電體上。再將魏賴粉末,亦即第—活性物質u 於 第二活性物質上llb,以形成圖2所示之多層活性物質之電極並 依實施例3的作法製作成鋰電池1〇〇。 &lt;實施例6&gt; ,其差異在於厚 50μηι之第二活 請參照第3圖’如同實賴4之JL極製作方法 度ΙΟΟμιη之第一活性物質11&amp;的二側均披覆厚度 201205930 性物質lib、lie ’再披覆於銘箔材質之正極集電體ii2上,以形 成具有多層活性物質之正極110。其中,第一活性物質11a係為實 施例1之填酸鋰鐵粉末’第二活性物質lib係為實施例2之磷酸 猛·粉末。 關於實施例1-6之正極110以及使用正極11〇之鋰電池1〇〇, 評價電池放電電壓以及充放電電容維持率,如下表一、表二所示。 表一 正極 充放電電容維椿率(%) 第一活性 物質 (集電邀側) 第二活性 物質 (表面側) 玟電鼋廑 (V) 高負荷 2A 低負荷 實紇例1-1 LiMnP04 LiFeP04 3.7V 72 92 實施例1-2 LIFeP04 LiMnP04 3.3V 71 88 實施例1-3 LiMnP04 3.8V 70 86 實施例14 LiFeP04 3.2V 75 92 實施例1-1至1-4正極材料均使用相同製程條件製作,負極 120係選用人工石墨。再者,第—活性物質lla與第二活性物仙 質厚度皆為100 μιη。如表一所示,其中實施例14至係於正 極110表面設有多層活性物質’實施例1-3至Μ則僅設有單層活 性物質’實驗結果齡,錄_原電倾高之魏鎌活性物 質設於集電删’财助於提高放電電駄及具錄佳之充放電 電容維持率。 201205930 表二201205930 VI. Description of the Invention: [Technical Field] The present invention relates to a positive electrode and a lithium battery using the same, and a method of manufacturing the same, in particular, a positive electrode having a plurality of active materials and a positive electrode using the multilayer active material Lithium battery and its manufacturing method. [Prior Art] Currently used as a positive electrode material for a lithium transition metal oxide, mainly metals such as cobalt, ruthenium, bell, iron, and ruthenium are used. According to the material structure of the cathode material currently developed, it can be divided into three types: Layered, 01ivine, Spind and Shear. A layered oxide such as a g-type or nickel-based metal has a capacitance of about 160 to 190 (mAh/g) and an average operating voltage of 3.6 to 37 v. Cobalt is mainly used in a variety of electronic equipment (4) small batteries, due to the small amount of money, facing the disadvantage of expensive. Correction, meaning in the theoretical capacity and the secret of the side, but its thermal stability is not good ' * and difficult to synthesize, so currently mixed with other materials to develop 0 撖 的 stone crystal structure such as iron metal, and other rare metals In comparison to the low cost, it has good stability and cycle characteristics, but the capacity is low and the voltage is only 2 V. The current mixing with acid filling ensures 3 3 ν·. Because the ability of stabilizing oxygen atoms is better than that of lithium cobalt oxide, the core crystal crack oxides have improved the Anwang property. However, the lack of point is that Zhongmeng oxide will be used and stored at high temperature when it is dissolved. The problem of battery performance degradation. 201205930 refers to U.S. Patent No. 7, _, 238, entitled "Preparation of Metallic Acids". This patent discloses a method for synthesizing LiMnp〇4 and LiFePOe, which further includes the addition of a metal to prevent the oxidation of iron into a trivalent iron compound, so that no additional work is required in the process, and thus there is no problem of carbon residue. However, the lithium metal positive electrode material obtained by this method has a low electrical conductivity, and the lithium battery has a low electrical capacity. In addition, reference is made to U.S. Patent No. 7,338,734, entitled "Conductive lithium storage electrode." This patent discloses a cathode active material having a compound of LixFei yMyP〇4 of an olivine structure, and can be used as a cathode active material alone or in combination with other materials, and is inexpensive and sufficiently supplyable in its composition. Iron material. Therefore, the lithium battery composed of any other lithium oxide has lower toxicity and does not cause environmental pollution. However, this cathode active material has a relatively low operating voltage compared to lithium cobalt oxide and lithium manganese oxide. If applied to products that require large voltages, they must occupy a lot of space. In addition, the powder particles of the LiFeP〇4 positive electrode material of the ruthenium structure are too large, resulting in poor conductivity. To overcome this shortcoming, for example, U.S. Patent No. 6,528, No. 33, entitled "A method of making a clock-making material, Meth〇d makingf making Uthium eQntain materials"; No. 6,716,372, entitled "A Lithium Uthium containing materials"; No. 6,73,281, entitled "A method for producing a transition metal compound as a positive electrode active material, Meth〇d makingf making transition metal compounds use fiil as cathode active materials". The 201205930 special patent adds a carbon source to the process or coats the surface of the powder to enhance the electronic conductivity of the surface of the powder. In addition, reference is made to U.S. Patent No. 7,438,992, entitled "Lithium-based active materials and prepamtbn thereof". It discloses a cathode active material, the combination of which is UMI1_yMIIyP〇4; wherein MI is vanadium (V), and Mil is composed of at least one of Mg, Ca, Zn, Sr, Pb Cd, Sn, and Ba. The active material was repeatedly charged in the spring for charging/discharging. The electricity capacity was significantly reduced due to the internal short circuit. It is also easy to cause a thermal change in the battery due to a volume change caused by the reaction of the cathode and anode materials during charging/discharging. SUMMARY OF THE INVENTION In view of this, the inventors of the present invention have carefully studied and proposed a positive electrode having a plurality of active materials and a (four) cell using the positive electrode, and simultaneously proposed a microwave heating method to manufacture an active material to solve the conventional problem. The acid clock battery has the disadvantage of low operating voltage and improved cycle characteristics and capacity. The present invention provides a positive electrode comprising a positive electrode current collector and a positive electrode active material f layer of the positive electrode current collector, and the positive electrode active material f layer has a multi-layer structure and is formed by a plurality of layers. The oxidation potential of the positive electrode is increased by the use of an active material having a different redox potential. In addition, this day (4) provides a battery, which is used on the recording battery of the positive beach material of the above-mentioned shirt layer structure, so as to increase the voltage of the (4) pool and retain the original capacity characteristics. The invention also provides a method for manufacturing a clock battery, which is characterized in that the positive electrode is produced by the high-order synthesis method, and the temperature of the high-temperature τ is required to be maintained. This = the positive electrode of the ride includes the positive electrode set and the sigh positive electrode impurity layer. The active material layer is coated on the positive electrode current collector and contains the first active material r=rf. Further, the oxidation-reduction potential of the first active (four) is higher than the redox potential of the first active material. The present invention has a positive electrode, a negative electrode, a separator, and an electric 壬hi. The positive electrode includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode=layer is coated on the positive electrode current collector; the negative electrode includes a negative electrode. The current collector and the negative electrode have two layers of ruthenium, and the negative electrode active material layer is coated on the negative electrode current collector; the separation layer is in a position opposite to the positive electrode and the negative electrode to avoid a short circuit effect; electrolyte = 疋 is disposed on the positive electrode and Between the negative electrodes, the ion-preservable electrode and the negative electrode are freely moved. The oxidative reduction of the first active material of the positive electrode active material layer is the same as the oxidation-reduction potential of the first active material. Further, the method for producing a clock battery according to the present invention includes the steps of: forming a positive electrode by coating a positive electrode active material layer on a positive electrode current collector, and coating a negative electrode active material layer on a negative electrode current collector to form a negative electrode; Separating the positive electrode from the negative electrode at a relative position to avoid a secret effect; and disposing the electricity (4) between the positive electrode and the negative electrode to allow the ion to move freely between the positive electrode and the negative electrode. It is to be noted that the positive electrode active material layer contains the active material and the second active material, and the redox potential of the first active material is still at the redox potential of the second active material. The positive electrode of the present invention has a positive electrode active material layer of a plurality of active materials and the oxidation-reduction potential of the first active material is greater than the oxidation potential of the second active material, and the original potential of the battery is improved. In addition, since the multi-layer structure of the synthesized body has _shi Lai, when the #_ jun battery is charged and discharged for a long time, the __ original high capacitance and high characteristics are still present. Furthermore, the invention is produced by the profit wave heating method (4), which is different from the traditional heating technology, and the method of heating the job wave to make the bribe record _ by the change (four) to change its warming to win 3 of which the power is high The heating rate is used to reduce the process time, save the lining and reduce the process temperature, and the characteristic value of the scaled recording f is better than the traditional heating method. The above and other objects, features, and advantages of the present invention will become more apparent and understood. [Embodiment] While the present invention may be embodied in a form of a single form, it is intended to be a preferred embodiment of the present invention. - The examples are not intended to be in the form of the drawings and /% or the specific embodiments described. Referring to FIG. 1 , a schematic diagram (1) of a positive electrode of the present invention is disclosed. A positive electrode 110 ′ having a plurality of active materials includes a positive electrode current collector 112 and a positive electrode active material layer 11 , wherein the positive electrode active material layer is coated with Positive electrode current collector 112. Further, the positive electrode active material layer m includes the first active material 11a and the second active material lib', and the first active material 11a is disposed between the second active material ub and the positive electrode collector 112, and the first active material 11a The redox potential is higher than the redox potential of the second active material ub. 201205930 The positive electrode active material layer 111 is also an active material, and contains a positive electrode material which can absorb and release lithium, for example, a lithium-free sulfur compound or a lithium-containing compound. It is also possible to add a conductive material containing a carbon material and an adhesive such as polyvinylidene fluoride as needed. Among them, a compound containing lithium is preferably a high voltage and a high energy service. The chain-containing compound 'is a composite oxide containing a chain and a transition metal, or a phosphoric acid compound containing lithium and a transition metal. The chemical formula is represented by LiyMIP(R) 4 or LixMII02, wherein both MI and Mil are represented as one or more transition metals. The values of X and y differ depending on the state of charge and discharge of the battery, and are usually 〇.〇5$χ$1·ι〇, 〇〇5$y$i 1〇. In particular, as the composite oxide containing a transition metal, it is preferred to contain at least one of nickel, cobalt (Co) and manganese (Mn). The reason is that a higher voltage can be obtained. Specific examples include a nickel-based composite oxide (LixNi〇2), a lithium-cobalt composite oxide (14〇〇02), and a nickel-nickel composite oxide (1^咖^/〇202 (〇&lt;2&lt; 1)), Zhong Lu Mengming composite oxide (LixNikwMnvCowO/CK v, 0; w, v + w &lt; l)), or a lithium manganese composite oxide (LiMn2〇4) having a spinel structure. Further, the composite oxide may contain other elements in addition to at least one of lithium, nickel, cobalt and manganese. Further, specific examples of the acid-filling compound containing a transition metal and a transition metal include, for example, a ferritic acid compound (LiFeP〇4) or a scaly compound containing lithium and iron (Fe) and other elements (LiyFe_IIIuP〇4). ). Wherein the lanthanide is selected from the group consisting of nickel, lanthanum, lanthanum, copper (Cu), zinc (Zn), magnesium (Mg), chromium (Cr), vanadium (V), molybdenum (Mo), titanium (Ti), aluminum, One of the components of Sharp 201205930 (Nb), boron (B) and calcium (Ga). The above mentioned u and y are usually 0 &lt; u &lt; l, 0.05 1.10. The positive electrode active material layer 111 also contains a first active material flla and a second active material lib, wherein the first active material 11a is provided between the positive electrode current collector 112 and the second active material lib. The first active material f lla and the second active material 11b have different compositions, thereby combining to form a positive electrode active material layer U1 having a multilayer structure. For example, as the first active material 1 la, it is preferred that the redox potential is higher than that of the second active material. The main reason is that the thermal stability of the surface side can be improved while preventing the capacity from being lowered. Furthermore, the discharge current of the Nanzhong battery 100 can be improved by the high oxidation-reduction potential characteristic of the first active (tetra)na. Preferably, the first active material 11a is a phosphoric acid compound containing lithium and a transition metal. The second active material 11b is a compound containing iron, and preferably the first active material Ua is a phosphoric acid containing Compound. The main reason for this is that high capacity can be obtained while also improving thermal stability. Further, in order to make the positive electrode active material layer 111 more highly capacitive and highly conductive, it must have an optimum thickness to facilitate the transport of the petals. Wherein, the thickness of the first active material lla is between 1 〇 μιη ^ 1 〇〇 μιη; and the thickness of the second active material Ub is between 1 〇 Mm and 1 〇〇 μηι. Furthermore, 'the first active material Ua and the second active material 11b may also contain other living substances' and when the first active material Ua and the second active material ub contain a plurality of kinds of impurities, the first active material 11a and the first active material The same active substance is allowed to be contained in the two active substances lib. 201205930 As shown in Fig. 2, the second active material ub may be disposed between the positive electrode current collector 112 and the first active material ua. The reason for this is that the use of the second active material lib' having high thermal stability improves the thermal stability of the positive electrode current collector 112 side and suppresses deterioration of the positive electrode current collector 112. Further, as shown in Fig. 3, the second active material ub and the second active material 11c may be simultaneously provided. In this case, the second active material 1 may be the same as or different from the second active material 11 (the composition '. The positive electrode 110 may be, for example, mixed with an active material and a conductive agent and a binder as needed to be dispersed. After the solvent of the N-methyl ketone or the like is applied to the positive electrode current collector 112, the solvent is dried, and the first active material 11a and the second active materials 11b and 12c are formed by compression molding using a roll press or the like. The above-mentioned adhesive is composed of a polymeric substance and an extractable plasticizer, and is suitable for forming a porous composite. The preferred adhesive includes a toothed hydrocarbon polymer (for example, poly(ethylene diethylene oxide) and poly ((two gas). -1 '4-phenylene)ethylene), fluorinated urethane, fluorinated epoxide, fluorinated acrylic acid, copolymer of agglomerated hydrocarbon polymer, epoxide, ethylene propylene amine dimer (EPDM) ), polyethylene difluoride (pydf), hexafluoropropylene (Hpp), ethylene acrylic acid copolymer (EAA), ethylene vinyl acetate copolymer (EVA), EAA/EVA copolymer, pvdf/ One of the hfp copolymers, and a mixture thereof. The above conductive agent may include carbon Black, graphite, powdered nickel, metal particles, conductive polymers (for example, conjugated network properties with double bonds such as polypyrrole and polyacetylene) and mixtures thereof. Please refer to Fig. 4 for the lithium battery of the present invention. The schematic diagram of the cell reveals a battery 200105930 100' having the above-mentioned positive electrode 110 having a plurality of active materials. The clock battery 100 comprises: a positive electrode 110, a negative electrode 120, a separator 13 and an electrolyte 140. The positive electrode 11 includes a positive electrode current collector. m and the cathode active material layer anode 120 coated on the cathode current collector (1) include a cathode current collector (2) and an anode active material layer 121 coated on the anode current collector (2); the separator 130 is used to separate the cathode 110 and the anode 12 〇 in the relative position 'to avoid the short-circuit effect; the electrolysis side is disposed between the positive electrode (10) and the negative electrode 120, so that ions can move freely in the positive electrode 110 and the negative electrode 120. • Two sides or single of the positive electrode current collector II2 The positive electrode active material layer (1) is provided on the surface. The material of the positive electrode current collector 112 is one selected from the group consisting of na, nickel or stainless steel pigs. The positive electrode material layer 111 in the pot contains the first active material. Ha and the second active material m, and the oxidation-reduction potential of the first/flole biomass lla is higher than the redox potential of the second active material. The material of the negative electrode collector 122 is selected from copper drop, box or stainless steel 羯The negative electrode active material layer 121 contains one or more of the negative electrode materials capable of occluding or releasing the clock. For example, a material containing tin, copper, or a solution as a constituent element is due to tin, The ability to absorb or release copper or phosphorus is large and high energy density can be obtained. As such a ruthenium material, the monomer, alloy, or chemical substance or part of the metal is specifically mentioned. A variety of towels or two or more materials. Further, in the present invention, in addition to the alloy composed of two or more kinds of metal elements, the alloy also contains an alloy containing one or more kinds of metal elements and one or more kinds of semimetal elements. Or an alloy containing one or more kinds of non-metallic elements. A solid solution, a 201205930 eutectic (eutectic mixture), an intermetallic compound, or an alloy of two or more of these may be present in the structure. As a metal alloy, for example, the fourth constituent element other than the tin-copper_structure includes, for example, stellite, nickel, iron (Fe), cobalt, manganese, zinc (Zn), indium (In), and silver (including At least one of a group consisting of Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and chromium (Cr). As the negative electrode material for the occlusion and release clock, for example, a carbonaceous material such as graphite, non-graphitizable carbon or easily graphitizable carbon may be used, and these carbonaceous materials may be used in common with the above-described negative electrode material. The change in the crystal structure of the carbonaceous material during the occlusion and release of lithium is very small. For example, 'when it is used together with the above-mentioned negative electrode 1; 2 〇 material, a high energy density can be obtained and excellent. The cycle characteristics are more desirable as a function of a conductive agent. The negative electrode active material layer 121 may also contain other materials such as a conductive agent, an adhesive, or a viscosity adjusting agent which do not contribute to charging. The electrolyte 140 provides ions to be transferred between the positive electrode 11〇 and the negative electrode 12〇. Electrolyte 140 is preferably a material that has high ionic conductivity and insulation to avoid self-discharge during storage. The electrolyte 140 may be a liquid or a solid, and the solid electrolyte 14 preferably contains a polymeric matrix containing an ion-generating medium; the liquid electrolyte 14 preferably contains a solvent and an alkali metal salt which form an ion-conducting liquid. The solid state polyelectrolyte 140 comprises a solid polymeric matrix of an electrolyte M0 compatible material formed by polymerizing an organic or inorganic monomer (or a partial polymer thereof), and when combined with other components of the electrolyte 140, can also form a solid state polymerization. Electrolyte 140. Suitable solid polymeric matrices, in addition to the conventional ones, include solid matrices formed from local polymers formed from organic polymers, inorganic 12 201205930 polymers or _ matrices from a single carrier. Gather. The electrolyte U 〇 matrix comprises a salt, usually an inorganic salt, which is branched by a matrix. It is good to dissolve the electrolyte into the low molecular molecule of the electrolyte 14G. The organic solvent #丨' can be used to _ 丨 无 赫 赫 赫. It is difficult to be compatible with any compatible non-volatile aprotic and relatively polar, including carbon _ paper, diethyl carbonate (DEC), dipropylene glycol (Dpc), ethyl methyl carbonate, butyl vinegar γ·丁内I, triethylene glycol di(tetra), tetraethylene glycol di(tetra), lactones, vinegars, methyl sulfoxide, cyclobutane, and mixtures thereof. Preferred solvents include EC/DMC, EC/DEC, EC/DPC and EC/EMC. Preferably, the inorganic ion salt is lithium or a sodium salt, for example, LiASF6, Mill 6, Licl 4, LiB(C6H5)4, UAICI4, LiBr, and mixtures thereof are preferably a less toxic salt. Further, the electrolyte 140 includes an isolation layer no or is surrounded by the isolation layer 13A. The isolation layer 130 allows ions to migrate through the film while still providing a physical separation of charge between the electrodes by ρ; Preferably, the layer 13G also suppresses the high temperature which occurs in the battery due to the uncontrolled chemical reaction, and when the temperature rises, it is preferable to provide high resistance by itself to prevent the chemical reaction from continuing. In a preferred embodiment, the polymeric matrix of electrolyte 140 may contain an additional polymer or its original polymeric matrix as barrier layer 130 to provide the desired physical separation between positive electrode 11 and negative electrode 12. The spacer layer 130 component is typically a polymer and is prepared from a composition comprising a copolymer. The preferred composition is 75 to 92% vinylidene fluoride and 8 to 25% hexafluoropropylene copolymer (commercially available from Atochem North America under the name Kynar 13 201205930 FLEX) and an organic solvent plasticizer. The copolymer composition is also preferred for the preparation of electrode film elements because of the subsequent laminate interface compatibility. The plasticizing solvent is, for example, a 'propylene carbonate or vinyl carbonate' and a mixture of these various organic compounds which are used together as a solvent for the electrolyte 140 salt. It is preferred to use a higher boiling plasticizer compound such as dibutyl phthalate, dimethyl phthalate, diethyl decanoate, and butyl butoxyethyl phosphate. Inorganic filler addenda such as fumed alumina or Shixia Hyunzhishi Shishi can be used to strengthen the physical strength and melt-melt viscosity of the separator film, and in some compositions, increase the subsequent level of electrolyte 14〇 absorption. . Please refer to FIG. 5, which is a flow chart of a method for manufacturing a lithium battery of the present invention, and discloses a method for manufacturing a lithium battery 1〇〇 of a multilayer positive active material, the main steps of which include: Step 510: Forming a positive electrode mixture. The positive electrode active material is mixed with a conductive agent and an adhesive to prepare a positive electrode mixture. Step 520. Form a positive electrode mixture slurry. The positive electrode mixture was dispersed in a solvent to form a paste-like positive electrode mixture slurry. Step 530: Forming a positive electrode no. The positive electrode mixture is coated on both sides of the metal foil positive electrode current collector 112 to be dried, and then compression-molded to form the positive electrode 110. Step 610: forming a negative electrode mixture. The negative electrode active material is mixed with a conductive agent and an adhesive to prepare a negative electrode mixture. Step 620. Form a negative electrode mixture slurry. The negative electrode mixture is dispersed in a solvent to form a paste-like negative electrode mixture slurry. Step 630: Forming the negative electrode 12〇. 201205930 The negative electrode mixture is applied to both surfaces of the metal foil negative electrode current collector 122, dried, and then compression-molded to form a negative electrode 120. Step 710: Configure the isolation layer 130. The separator 130 is wound around the positive electrode 110 and the negative electrode 12, and the positive electrode n〇 and the negative electrode 120 and the separator 130 are housed inside the battery can. Step 720: Disposing the electrolyte 140. The electrolyte 140 is injected into the interior of the battery can to be impregnated with the separator 13 〇. Step 730: Forming a lithium battery 100. The lithium battery 100 is completed by the above steps. Referring to Fig. 6, a flow chart of the method for producing a positive electrode of the present invention, wherein the positive electrode 110 is produced by the following steps: Step 531: forming a first mixture. The first mixture is obtained by mixing a lithium compound, a phosphoric acid compound, a carbon source, and a compound of the first transition metal. Step 532: Ball milling the first mixture. The first mixture was ball milled for 20 minutes to 2 hours. Step 533: Passing an inert gas. An inert gas is introduced into the cavity of a microwave heating source to provide an inert gas atmosphere to prevent oxidation of the ferrous iron. The inert gas is selected from the group consisting of nitrogen (N2), argon (Ar), carbon monoxide ( One of CO) and carbon dioxide (C02). Step 534: heating with a microwave heating source. The first mixture after ball milling is heated by a microwave heating source. 15 201205930 Step 535: Formation of a first active substance. The first mixture is cooled to room temperature to form a first active material na. Step 536: Step 531 to step 535 are repeated to form a second active material. The first transition metal in step 531 is changed to the second transition metal, and steps 531 to 535 are repeated to form the second active material ub. Step 537: Forming the positive electrode active material layer ni. The first active material 11a is disposed on one side of the first active material 11a to form a positive electrode active material layer 111. The process conditions of step 534 are: (1) the frequency of the microwave heating source is between 〇3 GHz and 3 GHz; (2) the power of the microwave heating source is between 4 〇〇w and 1200 W; 3) The heating rate of the microwave heating source is between 6 〇. (: /111丨11 to 12〇〇c/min; (4) The temperature of the microwave heating source is between 75〇〇c and 85〇〇c; (5) The temperature of the microwave heating source The time is between 2 minutes and 3 minutes. 201205930 &lt;Examples&gt; Briefly, Example 1 of a method for producing a positive electrode of a multilayer positive active material proposed by the present invention is as follows: ο. 5 mole FeA 79 85 g, 〇 5 莫 〇 〇 3 36 % gram, [Moer _ 〇 4 132.06 gram mixture and 36 8 gram of polypropylene, forming a first mixture. The weight ratio of the first mixture to the oxidized wrong ball 2〇: 1 Add to the ethanol solution and ball mill for 3 minutes. The solution of the first mixture after ball milling is placed in an air atmosphere and baked at 12 ° C for 6 hours. The starting material was placed in the oxidized field and placed in a microwave heating source, the power was set to 750 W', the frequency was set to 2.45 GHz, the heating rate was set to 6 〇〇c/min, and nitrogen was applied. The heat treatment was carried out at 75 °C for 4 minutes in the environment, followed by obtaining a 4-acid clock iron powder. &lt;Example 2&gt; Example 2 is also a A method for producing a positive electrode HQ of a multilayer positive electrode active material is substantially the same as that of Example 1, except that the difference between 2〇3 and 〇5Moφ Μ Μ&quot;378.94 g' is the same as in the first embodiment, thereby obtaining - Manganese phosphate powder. &lt;Example 3&gt; Referring to Fig. 4, the lithium iron silicate powder prepared in Example 1 and carbon black and polyvinylidene difluoride (PVDF) binder were used in proportion. 83 . 10 : 7) After mixing evenly, 'on the aluminum foil, after drying for 6 hours at 12 ° C, to obtain the lithium iron phosphate active material layer, and form the positive electrode 110. And by thick 25 μηι The separator 17 composed of the microporous polyethylene film (manufactured by Tosoh Chemical Co., Ltd.; E25MMS) 201205930 130 is laminated in the order of the negative electrode i2〇, the separator 130, and the positive electrode no. Then, the majority is wound. Then, the mixture is mixed with 40% by weight. -Fluorine-1,3. dioxin-2-ketone (FEC), 45 weight percent of dimethyl carbonate by weight of electrolyte salt LiPF6 to prepare electrolyte 14 〇. The positive electrode 11 〇 and the negative electrode 12 〇 are contained in After the inside of the battery can, the electrolyte 140 is injected The inside of the battery can is immersed in the isolation layer 130' to form a lithium battery 1' and then tested for its charge and discharge properties by a charge and discharge tester. <Example 4> Referring to Fig. 1, the embodiment 1 will be referred to. The produced ferro-phosphorus powder as the first active material depends on the (IV) current collector having a thickness of 1 G μm and is compressed to form a first active material Ua having a thickness of 100 μm. Next, the disc acid powder prepared in Example 2 is coated on one side of the first active material 11a, and compressed to form a second active material 11b having a thickness of 100 μm to prepare the first active material 11b. Positive = 110 ' and made into a clock battery according to the method of Example 3. <Example 5> Referring to Fig. 2, a method of producing a positive electrode as in Example 4, the difference is that in Example 5, the phosphoric acid powder, that is, the second active material, is firstly formed, and the aluminum active material is collected. Physically. Further, a Wei Lai powder, i.e., a first active material, was applied to the second active material 11b to form an electrode of the multilayer active material shown in Fig. 2, and a lithium battery was fabricated in accordance with the procedure of Example 3. &lt;Example 6&gt;, the difference is that the second activity of thickness 50 μm is referred to Fig. 3 'as the JL pole manufacturing method of the real 4, the first active material 11 &amp; Lib, lie' is further coated on the positive electrode collector ii2 of the Ming foil material to form a positive electrode 110 having a plurality of active materials. Here, the first active material 11a is the lithium iron-filled powder of Example 1. The second active material lib is the phosphoric acid powder of Example 2. With respect to the positive electrode 110 of Example 1-6 and the lithium battery 1〇〇 using the positive electrode 11〇, the battery discharge voltage and the charge and discharge capacity retention rate were evaluated as shown in Tables 1 and 2 below. Table 1 Positive and negative charge and discharge capacitors (%) First active material (collection side) Second active material (surface side) 玟Electric 鼋廑 (V) High load 2A Low load 纥 Example 1-1 LiMnP04 LiFeP04 3.7V 72 92 Example 1-2 LIFeP04 LiMnP04 3.3V 71 88 Example 1-3 LiMnP04 3.8V 70 86 Example 14 LiFeP04 3.2V 75 92 The positive electrode materials of Examples 1-1 to 1-4 were all fabricated using the same process conditions. The negative electrode 120 is made of artificial graphite. Further, the first active material 11a and the second active material are each 100 μm thick. As shown in Table 1, in the embodiment 14 to the surface of the positive electrode 110 is provided with a plurality of layers of active material 'Examples 1-3 to Μ then only a single layer of active material' experimental results of age, recorded _ original electric high The active material is set at the collector to help improve the discharge power and the recorded charge and discharge capacity maintenance rate. 201205930 Table 2

實施例2-1至2-5之正極均使用相同製程條件製作,負極12〇 係選用人工石墨。再者’第一活性物質lla厚度係為1〇〇拜第 二活性物質11b、11c之厚度皆為5〇吨。如表二所示,其中實施 例2_1之正極集電體的表面依序披覆第二活性物質仙、第一活性 物質11a以及第二活性物質llb,而實施例2·2至之集點體表 面則微覆單層或雙層難㈣,實驗結果騎,實關W於高 負荷及低貞荷紐下’均轉較高之級電電容量。 由此可知’藉由加入氧化還原電位較高的第一活性物質山 以及第二活性物質llb所形成之具有多層活性物質之正極,有助 於提昇鐘龍,且若於表面織錢_均配置活性物質將 可獲得更高之充放電電容維持率。 綜上所述,本發明之功效係: 所组成之JLM電池之'作職。本發明之正極具衫層活性物質 所、、且成之正極活性物質層,並且限制第―活性物質 位大於第二雜物質之氧化餘,因啸高了輯池之二作 201205930 電壓。 2. 改善鋰電池之循環特性。由於所合成之具有多層結構的正 極活性物質具有撖欖石結構,因此應用於鐘電池上時,可在長時 間充放電下依然保留原本高電容以及高電壓之特性。 3. 利用微波加熱法製作活性物質不僅較節省能源,且具有較 佳的特性。有別於傳統加熱技術,微波加熱使得活性物質能夠由 内到外同時加熱’同喃由神大小來控制升溫時間以及升溫速 鲁率’進而達到節約能源、降低製程溫度、減少製程時間以及得到 較佳的活性物質特性。 雖然本發明已以前述較佳實施例揭示,然其並義以限定本 發明’任何熟習此技藝者,林脫離本發明之精神和細内,當 可=各種之更動絲改。如上述的轉,都可以作各型式的修正 與變化’而不會破壞此發明的精神。因此本發明之保護範圍當視 後附之申請專利範圍所界定者為準。 201205930 【圖式簡單說明】 第1圖為本發明之正極示意圖(1)。 第2圖為本發明之正極示意圖(2)。 第3圖為本發明之正極示意圖(3)。 第4圖為本發明之鋰電池示意圖。 第5圖為本發明之鋰電池製造方法流程圖。 第6圖為本發明之正極製造方法流程圖。The positive electrodes of Examples 2-1 to 2-5 were all produced under the same process conditions, and the negative electrode 12 was made of artificial graphite. Further, the thickness of the first active material 11a is 1 〇〇, and the thickness of the second active materials 11b and 11c is 5 ton. As shown in Table 2, the surface of the positive electrode current collector of Example 2_1 is sequentially coated with the second active material substance, the first active material 11a and the second active material 11b, and the episode body of the embodiment 2·2 The surface is slightly covered with a single layer or double layer (four), the experimental results of riding, the real off W under high load and low 贞 纽 ' 均 ' ̄ turn to higher level of electrical capacity. Therefore, it can be seen that by adding a positive electrode having a plurality of active materials formed by a first active material mountain having a high oxidation-reduction potential and a second active material 11b, it is helpful to enhance the bell dragon, and if the surface is woven, The active material will achieve a higher charge and discharge capacity retention. In summary, the effect of the present invention is: the job of the JLM battery. The positive electrode of the present invention has a positive active material layer and a positive electrode active material layer, and the first active material is limited to be larger than the second impurity, and the voltage is higher than the 201205930 voltage. 2. Improve the cycle characteristics of lithium batteries. Since the synthesized positive electrode active material having a multilayer structure has a sapphire structure, when applied to a clock battery, the original high capacitance and high voltage characteristics can be retained under long-term charge and discharge. 3. The use of microwave heating to produce active materials is not only energy efficient, but also has good properties. Different from the traditional heating technology, microwave heating enables the active material to be heated from the inside to the outside, and the temperature is controlled by the size of the god and the heating rate is increased, thereby saving energy, reducing the process temperature, reducing the process time and obtaining Good active substance properties. Although the present invention has been disclosed in the foregoing preferred embodiments, it is intended to be in the nature of the invention. As with the above, it is possible to make corrections and changes of the various types without detracting from the spirit of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 201205930 [Simplified description of the drawings] Fig. 1 is a schematic view of the positive electrode of the present invention (1). Figure 2 is a schematic view of the positive electrode of the present invention (2). Figure 3 is a schematic view of the positive electrode of the present invention (3). Figure 4 is a schematic view of a lithium battery of the present invention. Fig. 5 is a flow chart showing a method of manufacturing a lithium battery of the present invention. Figure 6 is a flow chart showing the method of manufacturing the positive electrode of the present invention.

22 201205930 【主要元件符號說明】 100 裡電池 110 正極 111 正極活性物質層 11a 第一活性物質 lib 、 11c 第二活性物質 112 正極集電體 120 負極 121 負極活性物質層 122 負極集電體 130 隔離層 140 電解質22 201205930 [Description of main components] 100 电池Battery 110 Positive electrode 111 Positive electrode active material layer 11a First active material lib, 11c Second active material 112 Positive electrode current collector 120 Negative electrode 121 Negative electrode active material layer 122 Negative current collector 130 Isolation layer 140 electrolyte

23twenty three

Claims (1)

201205930 七、申請專利範圍: 1. 一種正極,包含: 一正極集電體;以及 -正極活性物質層,披覆於該正極集電體,包含 活 性物質與一第二活性物質,其中 你古於糾 第-雜物質之氧化還原電 位向於該第二活性物質之氧化還原電位。 2. —種鐘電池,包含: 一正極,包含一正極集電體與一正極活性物質層,其中該 正極活性物質層彼覆於該正極集電體; 負極包3負極集電體與一負極活性物質層,其中該 負極活性物質層披覆於該負_電體; ' 一隔離層,分離該正極與該負極於相對位置,以避免短 路;以及 a ’使離子可於該正 一電解質,配置於該正極與該負極之間 極與該負極間自由移動; 其中,該正極活性物質層包含一第一活性物質與一第二活 ^物質’且該第-活性物f之氧化還原電位高於該第二活性物 質之氧化還原電位。 3. 如請求項2之鋰電池, 性物質之二面。 其中該第二活性物質係配置於該第一活 一種鋰電池的製造方法,包含下列步驟: 坡覆-正極活性物質層於—正極集電體,而形成—正極; 24 4. 201205930 披覆負極活性物質層於一負極集電體,而 以及 〜只從, 以-隔離層分離該正極與該負極於相對位置,避免產生短 路; 配置-電解質於該正極與該負極之間,使離子可於該正極 與該負極間自由移動; 其中’該正極活性物質層包含-第-活性物質與—第二活 !·生物質’且該第-活性物質之氡化還原電位高於該第二活性物 質之氧化還原電位。 5.如請求項4之链電池的製造方法,其中,於形成該正極的步驟 中包含下列步驟: (a) 混合一鋰化合物、一磷酸化合物、一碳源以及一第一過 渡金屬之化合物,而得到一第一混合物; (b) 以一微波加熱源加熱該第一混合物,而得到化學式為 LiMIPO^C之一第一活性物質,其中mi係為該第一過渡金屬; (c) 混合該鋰化合物、該磷酸化合物、該碳源以及一第二過 渡金屬之化合物,而得到一第二混合物; (d) 以該微波加熱源加熱該第二混合物,而得到化學式為 LiMnP〇4-C之一第二活性物質,其中,Mil係為該第二過渡金 屬,此外,該第二活性物質之氧化還原電位係低於該第一活性 物質之氧化還原電位;以及 (e) 配置該第二活性物質於該第一活性物質之一面。 25 201205930 6. 如請求項5之鋰電池的生 f番μ 更包含下列步驟: ⑴-置以第一活性物質於該第一活性物質之另 7. 如請求項5之鋰電池的·袢 面。 电—製梃方法,於步驟(b)與 微波加熱源之升溫速率係介於6〇。〇响至12〇(&gt;(^ )中,讀 8. 如請求項5之經電池的製造方法,於步驟⑼與步驟^中間。 微波加熱源之持溫溫度係介於75(fc至85〇()(:之間。,讀 9. 如請求項5之鐘電池的製造方法,於步驟(b)與步驟⑼中,= 微波加熱源之功率係介於4〇〇 w至1200 W之間。 讀 10. 如請求項5之鋰電池的製造方法,於步驟(b)與步驟y)中= 微波加熱源之微波頻率係介於0.3 GHz至3〇 GHz之間 讀 26201205930 VII. Patent application scope: 1. A positive electrode comprising: a positive electrode current collector; and a positive electrode active material layer coated on the positive electrode current collector, comprising an active material and a second active material, wherein The oxidation-reduction potential of the enthalpy-heterogen is toward the redox potential of the second active material. 2. A clock battery comprising: a positive electrode comprising a positive electrode current collector and a positive electrode active material layer, wherein the positive electrode active material layer covers the positive electrode current collector; the negative electrode package 3 negative electrode current collector and a negative electrode An active material layer, wherein the negative active material layer is coated on the negative electrode; 'a spacer layer separating the positive electrode from the negative electrode to avoid a short circuit; and a' enabling ions to be in the positive electrolyte; Disposed between the positive electrode and the negative electrode and the negative electrode; wherein the positive active material layer comprises a first active material and a second active material and the first active material f has a high oxidation-reduction potential The oxidation-reduction potential of the second active material. 3. For the lithium battery of claim 2, the two sides of the substance. The second active material is disposed in the manufacturing method of the first active lithium battery, and comprises the following steps: a slope-positive active material layer is formed on the positive electrode current collector to form a positive electrode; 24 4. 201205930 The active material layer is disposed on a negative current collector, and the anode is separated from the negative electrode by a separate layer to avoid short circuit; the electrolyte is disposed between the positive electrode and the negative electrode to enable ions to be The positive electrode and the negative electrode are freely movable; wherein the positive electrode active material layer contains a -first active material and a second active biomass, and the deuteration reduction potential of the first active material is higher than the second active material Oxidation reduction potential. 5. The method of manufacturing a chain battery according to claim 4, wherein the step of forming the positive electrode comprises the steps of: (a) mixing a lithium compound, a monophosphate compound, a carbon source, and a compound of a first transition metal, And obtaining a first mixture; (b) heating the first mixture with a microwave heating source to obtain a first active material of the formula LiMIPO^C, wherein mi is the first transition metal; (c) mixing the a lithium compound, the phosphoric acid compound, the carbon source and a compound of a second transition metal to obtain a second mixture; (d) heating the second mixture with the microwave heating source to obtain a chemical formula of LiMnP〇4-C a second active material, wherein Mil is the second transition metal, and further, the redox potential of the second active material is lower than the redox potential of the first active material; and (e) the second active is disposed The substance is on one side of the first active material. 25 201205930 6. The raw material of the lithium battery of claim 5 further comprises the following steps: (1) - placing the first active substance on the other active substance 7. The lithium battery of claim 5 . In the electro-calendar method, the heating rate of the step (b) and the microwave heating source is 6 〇. 〇 至 〇 & & & & & & & & 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如〇()(:Between., Read 9. For the manufacturing method of the battery of claim 5, in steps (b) and (9), the power of the microwave heating source is between 4 〇〇w and 1200 W. 10. The manufacturing method of the lithium battery of claim 5, in the steps (b) and y) = the microwave frequency of the microwave heating source is between 0.3 GHz and 3 GHz, read 26
TW099124941A 2010-07-28 2010-07-28 Cathode and lithium battery using the same and method for manufacturing the lithium battery TWI413293B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099124941A TWI413293B (en) 2010-07-28 2010-07-28 Cathode and lithium battery using the same and method for manufacturing the lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099124941A TWI413293B (en) 2010-07-28 2010-07-28 Cathode and lithium battery using the same and method for manufacturing the lithium battery

Publications (2)

Publication Number Publication Date
TW201205930A true TW201205930A (en) 2012-02-01
TWI413293B TWI413293B (en) 2013-10-21

Family

ID=46761802

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099124941A TWI413293B (en) 2010-07-28 2010-07-28 Cathode and lithium battery using the same and method for manufacturing the lithium battery

Country Status (1)

Country Link
TW (1) TWI413293B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380110A (en) * 2018-04-12 2019-10-25 三星Sdi株式会社 Electrode assembly and rechargeable battery including the electrode assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134770A (en) * 2004-11-08 2006-05-25 Sony Corp Cathode and battery
CN100564250C (en) * 2007-05-30 2009-12-02 横店集团东磁股份有限公司 The microwave fast solid phase sintering method of lithium ion battery anode material lithium iron phosphate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380110A (en) * 2018-04-12 2019-10-25 三星Sdi株式会社 Electrode assembly and rechargeable battery including the electrode assembly

Also Published As

Publication number Publication date
TWI413293B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
CN1988222B (en) Cathode active material and lithium ion secondary battery
JP4984022B2 (en) Secondary battery
US8518582B2 (en) Cathode comprising active material composite and lithium battery using the same
JP5268315B2 (en) Non-aqueous electrolyte battery active material and non-aqueous electrolyte battery
JP4951933B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5358905B2 (en) Negative electrode for secondary battery, secondary battery, and production method thereof
JP2006134770A (en) Cathode and battery
JP2001525112A (en) Manufacturing method of electrochemical cell
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
CN102376946A (en) Anode active material and lithium battery comprising anode active material
JP2008234872A (en) Positive electrode active material and battery
JP2007258127A (en) Negative electrode and battery
JP2014017199A (en) Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same
JP2008147117A (en) Electrolyte and battery
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
JP2006228601A (en) Battery
JP4240060B2 (en) Positive electrode active material and battery
JP6897228B2 (en) Active material, electrodes and lithium-ion secondary battery
CN111183537A (en) Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP4940570B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery
JP2013062114A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery manufactured using the same
JP4941696B2 (en) Lithium ion secondary battery
CN110265628B (en) Positive electrode and lithium ion secondary battery
TW201205930A (en) Cathode and lithium battery using the same and method for manufacturing the lithium battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees