TW201205297A - Serial bus clock frequency calibration system and method - Google Patents

Serial bus clock frequency calibration system and method Download PDF

Info

Publication number
TW201205297A
TW201205297A TW99124138A TW99124138A TW201205297A TW 201205297 A TW201205297 A TW 201205297A TW 99124138 A TW99124138 A TW 99124138A TW 99124138 A TW99124138 A TW 99124138A TW 201205297 A TW201205297 A TW 201205297A
Authority
TW
Taiwan
Prior art keywords
frequency
clock frequency
oscillator
clock
signal
Prior art date
Application number
TW99124138A
Other languages
Chinese (zh)
Other versions
TWI407317B (en
Inventor
Wei-Te Lee
Shin-Te Yang
Wen-Ming Huang
Original Assignee
Genesys Logic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesys Logic Inc filed Critical Genesys Logic Inc
Priority to TW99124138A priority Critical patent/TWI407317B/en
Priority to US12/884,164 priority patent/US8407508B2/en
Publication of TW201205297A publication Critical patent/TW201205297A/en
Application granted granted Critical
Publication of TWI407317B publication Critical patent/TWI407317B/en

Links

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A serial bus clock frequency calibration system and a method are disclosed herein. The system utilizes a first frequency calibration device, a second frequency calibration device and a third frequency calibration device to commonly share an oscillator as so to perform multi-stage clock frequency resolution calibrations for different frequency-tuning ranges. This can bring an optimal frequency resolution and greatly reduce system complexity and save element cost.

Description

201205297 六、發明說明: ' 【發明所屬之技術領域】 -·. 本發明係關於一種序列匯流排時脈頻率校準系統及其方法,特 • 別是指一種序列匯流排時脈頻率校準系統及其方法,用於多段式 提昇序列匯流排主機與裝置之間傳輸資料時的時脈頻率精確度 (Clock Frequency Resolution)。 [先前技術】 因為現有的各_消費性電子產品如通訊裝置(如手機)、影像 鲁擷取裝置、儲存裝置及上網裳置,無不朝高解析度或高晝質或高 儲存容量等功能發展,因而需處理大量的數位内容。為了方便使 用者能快速傳輸大量數位内容於主機(驗)與其周邊裝置(“π) 之間’該等消費性電子產品大多設置有較為普及的高速序列匯流 排(Sedal bus)傳輸架構如通用性串列匯流排(unw議如⑷Bus, USB)傳輸架構或IEEE1394傳輸架構。 以目刖USB傳輸架構為例,USB的最新標準已進展到3 〇版 的規格其不僅與USB 2.0版相容並擁有大部份USB 2 〇的原有 φ 功此(如仍維持125微秒的微訊框計時範圍(Microframe timer range)),且該USB 3.0規格還可以提供高達5 Gbps的超高速 (Super-speed)訊號傳輸速率’這比起高速或全速㈣h啊以或触 P ) B 2.0之最尚訊號傳輸速率48〇MbpS快上十倍以上;但 正因為如此’在傳輸USB 3.0的超高速傳輸訊號時可容許的頻率 誤差相對低於傳輪USB 2 Q的高速或全速傳輸訊號時可容許的頻 率誤差。 ^ 如第1圖所示,即顯示一種習知USB介面資料傳輸架構,包 括一㈣主機1G屬於咖2.〇版規格及-USB裝置12屬於USB 2.0版或USB 3.0版規格,且該USB主機1〇及USB裝置i2透過 201205297 兩者之間相對應的USB 2.0介面相互連接並進行USB 2.0規格的 高速或全速訊鱿傳輸;惟,USB介面要求的傳輸訊號頻率的精確 度要高,因此在第i圖之USB裝置12中之USB控制晶片中使用 一外部石英振盪元件14來產生時脈(Clock)頻率作為其工作頻 率’但使用外部石英振盪元件不僅成本較高,且與USB主機1〇 傳來的USB 2.〇版規格的輸入訊號相比,此工作頻率可能存在頻 率誤差的問題。假設另一種情況是該USB主機10及USB裝置12 皆屬於USB 3.0版規格,由於USB裝置12接收USB 3.0的超高速 傳輸訊號時可容許的頻率誤差更低於接收USB 2.0的高速或全速 傳輸訊號時可容許的頻率誤差,亦即對USB 3.〇的超高速傳輸訊 號的時脈頻率精確度(Cl〇ck Frequency Resolution)的要求會更高。 又如第2圖所示,為中華民國發明專利公開號第2〇〇7i9i54 號(下稱’154號公開專利說明書)所揭之另一種習知USB介面資料 傳輸架構’其包括一 USB主機20及一 USB裝置24之間進行USB 訊號傳輸。於’154號公開專利說明書第2圖所揭之USB裝置中, 需額外使用-頻率信號源(請參考,m號公開專利說明書第7圖所 揭之參考時脈產生電路132)依據輪出修正,作為一參考時脈信 號,再經由一頻率合成器(請參考’154號公開專利說明書第7圖所 揭之一鎖相迴路(PLL)134)依據該參考時脈信號以校正其工作頻 率,惟此設計過於複雜,有元件成本過高的問題,且利用參考時 脈產生電路來產生頻率信號源以校正其工作頻率,對USB傳輸訊 號而言,仍存在頻率不精確的問題。特別是如果該USB主機 及USB裝置η皆屬於USB 3.0版規格時,對USB 3.〇的超高速傳 輸訊號的時脈頻率精確度的要求還要更高。 【發明内容】 為解決前述習知技術的問題,本發明之一主要目的在於提供 201205297 -種序舰流排時脈頻率校準系統及其方法,係整合了具不同頻 ' 率調控範圍之兩階段時脈鮮精確度校正,包括:先用S0F(start 、-〇fframe)訊號作為粗調(Coarse Tuning) USB裝置之操作時脈頻率 的初步參考,以及接下來再利用該USB輪入訊號作參考時脈頻 率,來持續微調(Fine Tuning) USB裝置之操作時脈頻率,進而獲 取最佳的頻率精確度(Ci〇ck Frequency Resolution)。 同時,本發明之另一目的在於提供一種序列匯流排時脈頻率 校準系統及其方法,其中利用第一頻率調整裝置及第二頻率調整 • 裝置共用同一振盪器,以執行該兩階段時脈頻率精確度校正,故 能大幅簡化系統設計,使元件成本降低。 本發明之另一目的在於提供一種序列匯流排時脈頻率校準系 統及其方法,係整合了具不同頻率調控範圍之多段式時脈頻率精 確度校正’包括:先利用一第一型序列匯流排(如符合USB 2.0規 格)輸入訊號中的SOF (Start of frame)訊號作為粗調(c〇afSe Tuning) 一 USB裝置之操作時脈頻率的初步參考以輸出一第一時脈頻率, 以及接下來再利用該第一型序列匯流排輸入訊號頻率作為一參考 鲁 時脈頻率’來持續微調(Fine Tuning)該USB裝置之第一時脈頻率 以達到一第二時脈頻率,以及接下來利用一第二型序列匯流排(如 符合USB 3.0規格)輸入訊號中特定封包(如iTP(Isochronous Timestaiiip Packet))所含的時間資訊來持續調整該USB裝置之第 二時脈頻率以達到一第三時脈頻率,進而獲取最高的頻率精確度 (Clock Frequency Resolution) 0 同時’本發明之另一目的在於提供一種序列匯流排時脈頻率 . 校準系統及其方法,其中利用第一頻率調整裝置、第二頻率調整 裝置及第三頻率調整裝置共用調整同一振盪器,以執行多段式的 時脈頻率精確度校正,故能大幅簡化系統設計,使元件成本降低。 201205297 本發明之另-目的在於提供-種序列匯流排時脈頻率校 統及其方法’係整合了具額頻.率調控範圍之多段式時脈頻籍 破度校正’包括:先利用-第-型序列匯流排輸入訊號中的阳 (Start of frame)訊號調整一 USB裝置之操作時脈頻率以達到—F 一時脈頻率,以及接下來利用-第二型序舰流排輸入訊號中特 定封包(如 ITP(IS〇Chr〇n〇us Timestamp packet))所含的時間資士 、 持續調整該USB裝置之操作時脈頻率以達到—第二時脈頻^來 而獲取最高的頻率精綠度(Clock Frequency Res〇luti〇n)。,進 為達上述發明目的,本發明之一第一實施例係提供一種序 匯流排時脈頻率校準系統運用於—USB裝置上並自該咖裝置接 收第I型序列匯流排輸入訊號且該第一型序列匯流排輸入訊號 具有至J ~ SQF週期峨及—參考時脈頻率。該序 脱 頻钱準系統包括:-第-頻率調整裳置…第二頻率 及-振盈器’其中t該序列匯流排時脈頻率校準系統操作時,該 第-頻率調整裝置及第二頻率調整裝置分別對振盈器進行兩階段 的時脈頻率精確度校j^前述第_型序列匯流排輸人訊號為符合 USB 2.0規格之輸入訊號。 ,該第一頻率調整裝置基於SOF週期訊號及振盪器輸出之時脈 頻率,產生一第一控制訊號來設定一第一階頻率調控範圍,藉以 持續調整振盪器輪出的時脈頻率,直到獲得一符合S0F週期訊號 之間隔時間之第—時脈頻率,以及同時產生—第二控制訊號。實 質上,該第一頻率調整裝置是與振盪器組成一第一階頻率獲取迴 路以更改或維持振堡器輸出之時脈頻率。 °玄第二頻率調整裝置基於第二控制訊號的致能及參考時脈頻 率的相仅或波形邊緣,產生-第三控制訊號來設定-第二階頻率 調控範圍’藉以持續調整該振輪ίϋ之時脈頻率.,朗獲得- 201205297 趨近於月g迷參考時脈頻率之第二時脈頻率 調心裝置疋與此振 上It第二頻 振盪器輪取叫以更改咬— 之時脈頻率,且該第二階頻率獲取 次維持 路或鎖頻壇路。 疫路為一種鎖相迴 此外,本發明之一第二實施例提供一 校準方法,運& 搜序列匯流排時脈頻率 %用於一 USB裝置上且該USB裝置 裝置及帛展置具有第一頻率調整 ^調整裝置及振盡器,該方法包括下列步驟: § USB ajr m ^ P 衮置接收到一第一型序列匯流排輸入訊號且該第一201205297 VI. Description of the invention: 'Technical field to which the invention pertains» - The present invention relates to a sequence bus timing frequency calibration system and method thereof, and particularly to a serial bus timing frequency calibration system and The method is used for multi-stage lifting sequence bus frequency resolution (Clock Frequency Resolution) when transferring data between the host and the device. [Prior Art] Because existing _ consumer electronic products such as communication devices (such as mobile phones), video smashing devices, storage devices, and Internet surfing, all have high resolution or high enamel or high storage capacity. Development, and therefore need to deal with a large amount of digital content. In order to facilitate the user to quickly transfer a large amount of digital content between the host (test) and its peripheral devices ("π)", most of these consumer electronic products are equipped with a popular high-speed serial bus (Sedal bus) transmission architecture such as versatility Serial bus (unw) (4) Bus, USB) transmission architecture or IEEE1394 transmission architecture. Taking the USB transmission architecture as an example, the latest standard of USB has progressed to the 3 〇 version of the specification, which is not only compatible with the USB 2.0 version but also has Most USB 2 〇's original φ function (such as still maintaining the microframe timer range of 125 microseconds), and the USB 3.0 specification can also provide ultra-high speed up to 5 Gbps (Super-speed The signal transmission rate 'This is faster than the high speed or full speed (four) h or touch P) B 2.0's most popular signal transmission rate 48 〇 MbpS faster than ten times; but because of this 'in the transmission of USB 3.0 ultra-high-speed transmission signal The allowable frequency error is relatively lower than the allowable frequency error of the high-speed or full-speed transmission signal of the USB 2 Q. ^ As shown in Figure 1, a conventional USB interface data transmission architecture is shown, including one (four) main 1G belongs to the coffee 2. 〇 version of the specification and the USB device 12 belongs to the USB 2.0 version or the USB version 3.0 specification, and the USB host 1 and the USB device i2 are connected to each other via the corresponding USB 2.0 interface between 201205297 and USB. 2.0-speed high-speed or full-speed signal transmission; however, the accuracy of the transmission signal frequency required by the USB interface is high, so when an external quartz oscillating element 14 is used in the USB control chip in the USB device 12 of FIG. The clock frequency is used as its operating frequency'. However, the use of an external quartz oscillating element is not only costly, but also has a frequency error compared to the input signal of the USB 2.〇 version of the USB host. The other problem is that the USB host 10 and the USB device 12 are both USB 3.0 version specifications, and the allowable frequency error of the USB device 12 when receiving the USB 3.0 ultra-high speed transmission signal is lower than the high speed or full speed of receiving the USB 2.0. The allowable frequency error when transmitting signals, that is, the requirement for the Cl〇ck Frequency Resolution of the USB 3.〇 ultra-high-speed transmission signal is higher. Another conventional USB interface data transmission architecture disclosed in the Republic of China Invention Patent Publication No. 2〇〇7i9i54 (hereinafter referred to as the '154 patent specification) includes a USB host 20 and a USB device 24 USB signal transmission between the two. In the USB device disclosed in Figure 2 of the '154 patent specification, an additional frequency source is required (refer to the reference clock generation circuit disclosed in Figure 7 of the published patent specification no. 132) According to the round-trip correction, as a reference clock signal, and then via a frequency synthesizer (please refer to the phase-locked loop (PLL) 134 disclosed in Figure No. 154 of the '154 patent specification), according to the reference clock signal In order to correct the operating frequency, but the design is too complicated, the component cost is too high, and the reference clock generation circuit is used to generate the frequency signal source to correct its operating frequency. For the USB transmission signal, there is still frequency inaccuracy. The problem. In particular, if the USB host and the USB device η are both of the USB 3.0 version specifications, the clock frequency accuracy of the USB 3.〇 ultra-high-speed transmission signal is even higher. SUMMARY OF THE INVENTION In order to solve the problems of the prior art, one of the main objects of the present invention is to provide a 201205297-order ship clock timing frequency calibration system and a method thereof, which integrates two stages with different frequency-rate control ranges. Clock freshness correction, including: first use S0F (start, -〇fframe) signal as a preliminary reference for the operating clock frequency of the Coarse Tuning USB device, and then use the USB wheel signal as a reference. The clock frequency is used to continuously fine-tune the operating clock frequency of the USB device to obtain the optimal frequency accuracy (Ci〇ck Frequency Resolution). Meanwhile, another object of the present invention is to provide a serial bus clock frequency calibration system and method thereof, wherein a first frequency adjustment device and a second frequency adjustment device share the same oscillator to perform the two-stage clock frequency Accuracy correction greatly simplifies system design and reduces component cost. Another object of the present invention is to provide a sequence bus timing frequency calibration system and method thereof, which integrates multi-segment clock frequency accuracy correction with different frequency control ranges, including: first utilizing a first type sequence bus (if the USB 2.0 specification is met) The SOF (Start of frame) signal in the input signal is used as a preliminary reference for the operating clock frequency of a USB device to output a first clock frequency, and then Reusing the first type serial bus input signal frequency as a reference Lu clock frequency to continuously fine tune the first clock frequency of the USB device to reach a second clock frequency, and then using one The second type of serial bus (such as the USB 3.0 specification) inputs the time information contained in a specific packet (such as iTP (Isochronous Timestaiiip Packet)) to continuously adjust the second clock frequency of the USB device to reach a third time. Pulse frequency, and thus the highest frequency accuracy (Clock Frequency Resolution) 0 At the same time, another object of the present invention is to provide a sequence bus timing clock. Frequency calibration system and method thereof, wherein the same frequency oscillator is adjusted by using the first frequency adjusting device, the second frequency adjusting device and the third frequency adjusting device to perform multi-segment clock frequency accuracy correction, thereby greatly simplifying the system Designed to reduce component costs. 201205297 Another object of the present invention is to provide a sequence bus clock frequency calibration and its method 'to integrate a multi-segment clock frequency break correction with a range of frequency and rate control' including: first use - The Start of frame signal in the -type serial bus input signal adjusts the operating clock frequency of a USB device to reach the -F-clock frequency, and then uses the specific packet in the input signal of the second-type sequence ship (For example, ITP (IS〇Chr〇n〇us Timestamp packet)), the time frequency of the USB device is continuously adjusted to achieve the second clock frequency to obtain the highest frequency fine green color. (Clock Frequency Res〇luti〇n). In order to achieve the above object, a first embodiment of the present invention provides a sequential bus timing frequency calibration system for use on a USB device and receiving a Type I serial bus input signal from the coffee device and the first A type of serial bus input signal has a period from J to SQF and a reference clock frequency. The sequence frequency cancellation system includes: - a first frequency adjustment device ... a second frequency and - an oscillator - wherein the sequence frequency adjustment system operates when the sequence frequency adjustment system operates The adjusting device separately performs two-stage clock frequency accuracy on the vibrator. The aforementioned _-type serial bus input signal is an input signal conforming to the USB 2.0 specification. The first frequency adjusting device generates a first control signal to set a first-order frequency control range based on the clock frequency of the SOF period signal and the oscillator output, thereby continuously adjusting the clock frequency of the oscillator to obtain A first-clock frequency corresponding to the interval of the S0F period signal, and a second control signal. In essence, the first frequency adjusting means forms a first-order frequency acquisition loop with the oscillator to change or maintain the clock frequency of the vibrator output. The second second frequency adjusting device generates a third control signal based on the phase of the second control signal and the phase or waveform edge of the reference clock frequency to generate a second-order frequency control range to continuously adjust the vibration wheel. The clock frequency., Long obtained - 201205297 The second clock frequency aligning device that approaches the clock frequency of the month, and the second frequency oscillator of the oscillator is called to change the clock of the bite. Frequency, and the second order frequency acquires a secondary maintenance path or a lock frequency circuit. In addition, a second embodiment of the present invention provides a calibration method for collecting and storing a sequence bus clock frequency % for use on a USB device and the USB device device and the display device having the first a frequency adjustment ^ adjusting device and a vibrating device, the method comprising the following steps: § USB ajr m ^ P device receives a first type serial bus input signal and the first

型序列匯流轴& 率時,争诉輸入訊號具有至少一 SOF週期訊號及一參考時脈頻 頻率所^用該第一頻率調整裝置,根據該振盪器輸出之不同時脈 一护r制、Y出的該S〇F週期訊號之間隔時間是否正確,產生一第 SO二iti號更改或維持該振盪器輸出時脈頻率,直到獲取一符合 咕功訊號之間隔時間之第一時脈頻率,並同時產生一笫二控 制訊就:以及 S第一控制訊號致能該第二頻率調整裝置時,該第二頻率 調整裝置依擔此… 之門的 則述參考時脈頻率與該振盪器輸出之時脈頻率兩者 γ相位差或波形邊緣差,產生一第三控制訊號更改或維持該 振;器輸出之時脈頻率,直到獲取一符合前述參考時脈頻率之第 二時脈頻率。 本發明之一第三實施例係提供一種序列匯流排時脈頻率校準 系統運用於-USB裝置上並自該USB裝置接收〆第〆㉝序列匯流 排輸入訊號或接收-第二型序列匯流排輸入訊號,其中該第-塑 序列匯流排輸入訊號具有至少一 S〇F週期訊號及一參考時脈頻率 且該第二型序列匯流排輸入訊號具有至少一特定封包。該序列匯 流排時脈頻率校準系統包括:一第一頻率調整裝置、一第二頻率 調整裝置、一第三頻率調整裝置及一振盪器,其中當該序列匯% s 201205297 排時脈頻率校準系統操作時,該第— 整裝置及第三頻率調整裝置分別對振盪器^较置、第-頻率調 精確度校正。前述第—型序列匯流排輸二訊^^階段的時脈頻率 格之輸入訊唬,以及第二型序列匯流排輪入% 現 規格之輸人訊號。 ㈣入Μ為符合USB 3.0 該第三實施例之第一頻率調整裝 述第一實施例相同。 第二頰率調整裝置與前 該第三頻率調整裝置基於第二型序 封包所含的時間資訊及㈣器輸出之時脈=排輸人訊號中特定 訊號來狀振蘆器之-第三階頻率調控範^粒產生-第四控制 器輸出的時脈頻率,直到獲得—符合該至少二U心振還 隔時間之第三時脈頻率。實質上,該第三頻率調 :組成-第三階頻率獲取迴路以更改或維持振盈器輸出之時脈: 隸Γ二ΐ發明之一第四實施例係提供一種序列匯流排時脈頻 率权準系統運用於—腦裝置上並自該USBI置接收—第— 列匯流排輸人訊號或接收—第二财龍_輸人喊,复 第一型序舰流排輸人減具有至少—S〇F週期訊號及—參考= 脈頻率且該第二型序顺流排輸人訊號具有至少—特㈣包。該 序列匯流排時脈頻率校料、統包括:—第―頻率調整裝置二= 二頻率調整裝置及一振盪器,其中當該序列匯流排時脈頻率校準 系統操作時,該第一頻率調整裝置及第二頻率調整裝置分別對振 盪器進行多階段的時脈頻率精確度校正。前述第_型序列匯流排 輸入訊號為符合USB 2.0規格之輸入訊號,以及第二型序列匯、哀 排輸入訊號為符合USB 3.0規格之輸入訊號。 ;1 該第一頻率調整裝置基於SOF週期訊號及振盪器輸出之時脈 201205297 頻率,產生一第一控制訊號來設定一第一階頻率調控範圍,藉以 持續調整振盪器輸出的時脈頻率’直到獲得一符合SOF週期訊號 之間隔時間之第一時脈頻率並產生一第二控制訊號。實質上,該 第一頻率調整裝置是與振盪器組成一第一階頻率獲取迴路以更改 或維持振盪器輸出之時脈頻率。 該第二頻率調整裝置基於第二型序列匯流排輸入訊號中特定 封包所含的時間資訊及振盪器輸出之時脈頻率,產生一第二控制 訊號來設定振盪器之一第二階頻率調控範圍,藉以持續調整振逢 器輸出的時脈頻率,直到獲得一符合該至少一特定封包對應之間 隔時間之第二時脈頻率。實質上,該第二率調整裝置是與振盪器 組成一第二階頻率獲取迴路以更改或維持振盪器輸出之時脈頻 率〇 本發明之一第五實施例提供一種序列匯流排時脈頻率校準方 法,運用於一 USB裝置上且該USB裝置具有第一頻率調整裝置、 第二頻率調整裝置、第三頻率調整裴置及振盪器,該方法包括下 列步驟: 畲該USB裝置接收到一第一型序列匯流排輸入訊號且該第一 型序列匯流排輸入訊號具有至少一 S0F週期訊號及一參考時脈頻 率時,利用該第-頻率調整裝置,根據該振盈器輸出之不同時脈 ,率所計算出的該SOF週期訊號之間隔時間是否正確,產生―第 ,制訊號更改或維持該振i器輸出時脈頻率,直到獲取一符合 制訊號㈣號之間隔時間之第—時脈頻率,並同時產生一第二控 調整一控制訊號致能該第二頻率調整裝置時 之間的“ ==2頻:與該_輸出之時脈頻率 H緣差’產生-第三控制訊號更改或維. 201205297 振盪器輸出之時脈頻率,直到獲取一符合前述參考時脈頻率之 二時脈頻率;以及 當該USB裝置接㈣-第二型序舰_輸人崎i該第二 型序列匯流排輸入訊號具有至少一特定封包時,利用該第三頻率 調整裝置,根據該振盪器輸出之不同時脈頻率所計算出的兮至,卜 一特定封包對應之間隔時間是否正確,產生—第四控制訊=更〔 或維持該振盪器輸出時脈頻率,直到獲取一符合該至少一特定封 包對應之間隔時間之第三時脈頻率β 本發明之-第六實施例提供一種序列匯流排時脈頻率校準方 法’運用於- USB震置上且該USB裝置具有第一頻率調整裝置、 第二頻率調整裝置及振盪器,該方法包括下列步驟: 、 當該USB裝置接收到-第—型序賴流排輪人訊號且該第一 型序列匯流排輸入訊號具有至少一 s〇F週期訊號及一參考時脈頻 率時’利用該第—解調整裝置’根據該錄諸出之不同時脈 頻率所計算出的該SOF週期訊號之間隔時間是否正確,產生一第 一控制§fl號更改或維持該振盪器輸出時脈頻率,直到獲取一符合 SOF週期訊號之間隔時間之第一時脈頻率;以及 田該USB裝置接收到一第二型序列匯流排輸入訊號且該第二 型序列匯㈣輸人訊號具有至少—特定封包時,湘該第二頻率 調整裝置,根據該振㈣輸出之不同時脈解計算出該至少一特 定封包對應的間隔時間是否正確,產生—第二控制訊號更改或維 持該振盪器輸出時脈頻率,直到獲取一符合該至少一特定封包對 應之間隔時間之第二時脈頻率。 本發明之一第七較佳實施例之序列匯流排時脈頻率校準系統 主要包括.一第一頻率調整裝置、一第二頻率調整裝置、一第三 頻率調整裝置一㈣ϋ及—鍵結層,其相較於第三較佳實施例 201205297 之序列匯流排時脈頻率校㈣統的不同之處在於:第七較佳實施 ' 例之該第一頻率調整裝置與第三頻率調整裝置共用同-個間隔計 數器及頻率錯誤_單元,其餘元件皆相同於第三較佳實施例。 • 本發明之—第人較佳實施例之序列®流排時脈頻率校準系統 主要包括·—第—頻率調整裝置、-第二頻率調整裝置、-振盈 器及u I不同於前述第五較佳實施例之序列匯流排時脈 頻率校準系統在於:第崎佳實關之該第_頻率調整裝置與第 二頻率調整裝置係制同—侧隔計數器及頻率錯誤偵測單元, 其餘元件皆相同於第五較佳實施例。 【實施方式】 以下將參照所附圖式詳細說明本發明之技術内容。 請參考第3 11,係顯示一種依據本發明之一第一較佳實施例 之功月t*方塊圖其中揭示一 UBS ( Universe Serial Bus,USB )主機 30及USB l置32之間進行USB介面訊號傳輸,其中該 裝置32(如USB集線器(Hub))設有一序列匯流排時脈頻率校準系 統36 ’係依據該USB裝置32接收到的前述聰主機傳來的湖 輸入訊號,對該USB裝置32之操作時脈頻率整合了具不同調控 範圍之兩階段時脈頻率精確度校正,其中包括:第—階段頻率精 確度校正,是利用該USB輸入訊號中的〇f作画)訊號 為-種週期訊號’來作為粗調心咖加⑹湖裝置^之操作 時脈頻率的初步參考,収接下來料二階段頻率精確度校正是 利用該USB輸入訊號本身的頻率作為—參考時脈頻率,來持續微 調(Fine Tuning) USB裝置32之操作時脈頻率,使其趨近於usb 輸人訊號之頻率,藉此獲取最佳的料精確度(CU)ek叫霞丫 Resolution)。於本實施例中,前述USB主機3〇及_裝置32可 以符合USB 2.0的標準規格。於另一實施例中,前述腦主機% 201205297 符a US 3.0或2.0的標準規格,而該USB裝置32可符合USB 3.0 的標準規格,因此前述USB主機3Q及_裝置32之間傳輸的 USB輸入訊號亦符合usb 3.0或2.0的標準規格。 請進一步參考第4圖,係顯示本發明之第一較佳實施例之序 列匯流排時脈解校準线36,其主要結構包括:—第一頻率調 整裝置40、一振盪器42及一第二頻率調整裝置私,其中當該序 列匯流排時脈頻率校準祕36操料,㈣器42輸出不同時脈 頻率予該第一頻率調整裝置40及第二頻率調整裝置46。一旦有 USB輸入訊號進入該序列匯流排時脈頻率校準系統36時,該第一 頻率調整裳置4G與第二頻率調整震置46係同時接收該輸入 訊號以分別對振盪器42的時脈頻率輸出進行兩階段的頻率精確度 校正。 該第一頻率調整裝置40進一步具有一週期訊號偵測單元 (Periodic signal Detect〇r)402、一間隔計數器(interval c〇unter) 4〇6 及一頻率錯誤偵測單元(Frequency Error Detector)408,其中該週期 訊號偵測單元402用於偵測該USB輸入訊號中S0F週期訊號之資 料格式的出現。該間隔計數器406係利用該振盪器42傳來之時脈 頻率來計數在該S0F週期訊號之單一或數個間隔時間(single 〇r Multiple Interval)中的次數,以獲得一工作計數值。該頻率錯誤偵 測單元408 ’將前述工作計數值與一預設的S0F間·隔時間計數目 標值進行比對’判斷比對結果是否符合或接近,並依不同比對結 果產生不同準位的第一控制訊號予該振盪器42,在同時產生不同 準位之第二控制訊號予第二頻率調整裴置46。藉由不同準位的第 一控制訊號持續調控振盪器輸出的時脈頻率大小,再將此改變 過的時脈頻率傳回該第一頻率調整裴置40作相同處理,以此類推 直到振盪器42逐漸輸出一符合S0F週期訊號之間隔時間的第一時 12 201205297 脈頻率為止。 舉例而言,當該頻率錯謨一 __ 預設目標值不同時,代表該振\、測單70 408判斷出工作計數值與 於SOF週期訊號之間隔時間',心42傳來之時脈頻率是高於或低 改第-控制訊號輸出之準仅,為頻率錯誤價測單元_會藉由更 小並再將此改變後的時脈頻^變該振1器42傳來之時脈頻率大 且同時維持第二控制訊镜之^㈤該第-頻率調整裝置40處理, 位;反之,當該頻率錯誤_:會致能第二頻率調整裝置46之準 目標值相同時,代表該振心亨70顿判斷出卫作計數值與預設 或相同於SOF週期訊號之| 傳來之時脈頻率被校正成一接近 階段頻率精確度校正),此時1隔時間之第―時脈頻率(即完成第一 控制訊號輸出之準位,以維^頻率錯誤偵測單元侧會固定第一 且同時更改第二控制訊號輪货振堡器42傳回之第—時脈頻率, 46。 丨之準位以致能第二頻率調整裝置 因此’如第4及5圓所示 盪器42是組成了一第一呷二實質上第—頻率調整裝置4〇與振The type sequence sink axis & rate, the contention input signal has at least one SOF period signal and a reference clock frequency used by the first frequency adjusting device, according to the different clock outputs of the oscillator output, Whether the interval time of the S〇F period signal from Y is correct, generating a second SO iti number to change or maintain the oscillator output clock frequency until a first clock frequency corresponding to the interval time of the dynamometer signal is obtained, And simultaneously generating a second control message: and when the first control signal enables the second frequency adjustment device, the second frequency adjustment device according to the gate of the reference clock frequency and the oscillator output The gamma phase difference or the waveform edge difference of the clock frequency generates a third control signal to change or maintain the clock frequency of the oscillator output until a second clock frequency that meets the aforementioned reference clock frequency is obtained. A third embodiment of the present invention provides a serial bus clock frequency calibration system for use on a USB device and receiving a third serial bus input signal or a receiving - second type serial bus input from the USB device. The signal, wherein the first-sequence bus input signal has at least one S〇F period signal and a reference clock frequency and the second type sequence bus input signal has at least one specific packet. The sequence bus clock frequency calibration system comprises: a first frequency adjusting device, a second frequency adjusting device, a third frequency adjusting device and an oscillator, wherein when the sequence sinks % s 201205297 row clock frequency calibration system During operation, the first device and the third frequency adjusting device respectively correct the oscillator and the first-frequency tuning accuracy. The first-type serial bus combines the input signal of the clock frequency of the second phase and the input signal of the second-type serial bus into the current specification. (4) The following is the same as the first embodiment of the first frequency adjustment of the third embodiment. The second buccal rate adjusting device and the front third frequency adjusting device are based on the time information contained in the second type of encapsulation packet and the clock of the output of the (4) device = the specific signal in the output signal of the human signal - the third order The frequency modulation algorithm generates a clock frequency output by the fourth controller until the third clock frequency corresponding to the at least two U-heartbeat time intervals is obtained. In essence, the third frequency modulation: composition - third order frequency acquisition loop to change or maintain the clock of the oscillator output: one of the inventions of the second invention provides a sequence bus timing frequency weight The quasi-system is applied to the brain device and receives from the USBI device. The first column is connected to the human signal or received. The second financial dragon _ loses the human voice, and the first type of the sequence ship receives the person with at least one-S. 〇F periodic signal and - reference = pulse frequency and the second type of downstream input signal has at least - special (four) packets. The sequence bus timing frequency calibration includes: - a frequency adjustment device 2 = a two frequency adjustment device and an oscillator, wherein the first frequency adjustment device is operated when the sequence bus timing frequency calibration system operates And the second frequency adjusting device respectively performs multi-stage clock frequency accuracy correction on the oscillator. The aforementioned _ type sequence bus input signal is an input signal conforming to the USB 2.0 specification, and the second type serial port and the mourning input signal are input signals conforming to the USB 3.0 specification. ; 1 The first frequency adjusting device generates a first control signal to set a first-order frequency control range based on the SOF period signal and the oscillator output clock 201205297 frequency, thereby continuously adjusting the clock frequency of the oscillator output until Obtaining a first clock frequency that meets the interval between the SOF cycle signals and generating a second control signal. In essence, the first frequency adjusting means forms a first-order frequency acquisition loop with the oscillator to change or maintain the clock frequency of the oscillator output. The second frequency adjusting device generates a second control signal to set a second-order frequency control range of the oscillator based on the time information contained in the specific packet in the input signal of the second type serial bus and the clock frequency of the oscillator output. And continuously adjusting the clock frequency of the output of the amplitude device until a second clock frequency that meets the interval time corresponding to the at least one specific packet is obtained. In essence, the second rate adjusting device is configured to form a second-order frequency acquisition loop with the oscillator to change or maintain the clock frequency of the oscillator output. A fifth embodiment of the present invention provides a sequence bus clock frequency calibration. The method is applied to a USB device having a first frequency adjustment device, a second frequency adjustment device, a third frequency adjustment device, and an oscillator. The method includes the following steps: 畲 the USB device receives a first The type sequence bus input signal and the first type sequence bus input signal has at least one S0F period signal and a reference clock frequency, and the first frequency adjusting device is used according to different clocks of the output of the vibrator Whether the calculated interval time of the SOF period signal is correct, and the “first, system signal change or the output of the oscillator clock frequency is obtained until the first time-frequency of the interval corresponding to the signal number (4) is obtained, And simultaneously generating a second control adjustment control signal to enable the second frequency adjustment device between the "==2 frequency: the difference from the clock frequency H of the _ output Generate a third control signal change or dimension. 201205297 Oscillator output clock frequency until a second clock frequency that meets the aforementioned reference clock frequency is obtained; and when the USB device is connected (four) - the second type of ship _ input When the second type serial bus input signal has at least one specific packet, the third frequency adjusting device uses the third clock adjusting device to calculate the interval according to the different clock frequencies of the oscillator output, and the interval corresponding to a specific packet Whether the time is correct, generate - the fourth control signal = more [or maintain the oscillator output clock frequency until a third clock frequency corresponding to the interval corresponding to the at least one specific packet is obtained - the sixth implementation - the sixth implementation An example provides a sequence bus clock frequency calibration method 'applied to - USB shock and the USB device has a first frequency adjustment device, a second frequency adjustment device, and an oscillator, the method comprising the following steps: Receiving a --type sequence tiling wheel signal and the first type sequence bus input signal has at least one s 〇 F period signal and a reference clock frequency' Using the first solution adjustment device to determine whether the interval time of the SOF period signal is correct according to the recorded different clock frequency, generating a first control §fl number to change or maintain the oscillator output clock frequency Until the first clock frequency of the interval of the SOF periodic signal is obtained; and the USB device receives a second type serial bus input signal and the second type serial (4) input signal has at least a specific packet The second frequency adjusting device calculates whether the interval time corresponding to the at least one specific packet is correct according to different clock solutions of the output of the vibration (four), and generates a second control signal to change or maintain the oscillator output clock frequency. And obtaining a second clock frequency that meets the interval time corresponding to the at least one specific packet. The sequence bus clock frequency calibration system of the seventh preferred embodiment of the present invention mainly includes: a first frequency adjusting device, a second frequency adjusting device, a third frequency adjusting device, a (four) ϋ and a bonding layer, which are compared with the sequence of the third preferred embodiment 201205297 The difference between the bus clock frequency and the fourth (4) system is that the first frequency adjustment device and the third frequency adjustment device share the same interval counter and the frequency error_unit, and the remaining components are the same. In a third preferred embodiment. • The Sequence® Streaming Clock Frequency Calibration System of the preferred embodiment of the present invention mainly comprises a first-frequency adjusting device, a second frequency adjusting device, a vibrator and a u I different from the aforementioned fifth The sequence bus timing frequency calibration system of the preferred embodiment is that: the first frequency adjustment device and the second frequency adjustment device of the first-order frequency adjustment device are the same-side counter and the frequency error detection unit, and the remaining components are The same as the fifth preferred embodiment. [Embodiment] Hereinafter, the technical contents of the present invention will be described in detail with reference to the accompanying drawings. Please refer to FIG. 3, which shows a power module t* block diagram according to a first preferred embodiment of the present invention, in which a USB interface between a UBS (Universal Serial Bus (USB) host 30 and a USB l device 32 is disclosed. Signal transmission, wherein the device 32 (such as a USB hub) is provided with a serial bus clock frequency calibration system 36' according to the lake input signal received by the USB device 32, and the USB device is received by the USB device 32. The operating clock frequency of 32 integrates the two-stage clock frequency accuracy correction with different control ranges, including: the first-stage frequency accuracy correction, which uses the 〇f in the USB input signal to draw a signal. The signal 'is used as a preliminary reference for the operating clock frequency of the coarse-tuning (6) lake device ^, and the second-stage frequency accuracy correction is based on the frequency of the USB input signal itself as the reference clock frequency. Fine Tuning The operating clock frequency of the USB device 32 is such that it approaches the frequency of the usb input signal, thereby obtaining the best material accuracy (CU) ek called Xia丫 Resolution. In this embodiment, the aforementioned USB host 3 and device 32 can conform to the standard specifications of USB 2.0. In another embodiment, the brain host % 201205297 is a standard specification of US 3.0 or 2.0, and the USB device 32 can conform to the standard specification of USB 3.0, so the USB input transmitted between the USB host 3Q and the device 32 is performed. The signal also complies with the standard specifications of usb 3.0 or 2.0. Please refer to FIG. 4 again, which shows a serial bus timing pulse calibration line 36 according to a first preferred embodiment of the present invention. The main structure includes: a first frequency adjusting device 40, an oscillator 42 and a second The frequency adjustment device is private, wherein when the sequence bus timing frequency calibration is performed, the (four) device 42 outputs different clock frequencies to the first frequency adjustment device 40 and the second frequency adjustment device 46. Once a USB input signal enters the sequence bus clock frequency calibration system 36, the first frequency adjustment 4G and the second frequency adjustment oscillator 46 simultaneously receive the input signal to respectively correspond to the clock frequency of the oscillator 42. The output performs a two-stage frequency accuracy correction. The first frequency adjusting device 40 further has a periodic signal Detector 402, an interval counter 4〇6, and a Frequency Error Detector 408. The periodic signal detecting unit 402 is configured to detect the occurrence of a data format of the S0F periodic signal in the USB input signal. The interval counter 406 counts the number of times in the single or multiple intervals of the S0F period signal by using the clock frequency transmitted from the oscillator 42 to obtain a work count value. The frequency error detecting unit 408' compares the foregoing working count value with a preset S0F/interval time counting target value to determine whether the comparison result is consistent or close, and generates different levels according to different comparison results. The first control signal is applied to the oscillator 42 to generate a second control signal of a different level to the second frequency adjustment unit 46. The clock frequency of the oscillator output is continuously controlled by the first control signal of different levels, and the changed clock frequency is transmitted back to the first frequency adjustment device 40 for the same processing, and so on until the oscillator 42 gradually outputs a first time 12 201205297 pulse frequency that meets the interval time of the S0F period signal. For example, when the frequency error __ preset target value is different, it represents the vibration, and the test order 70 408 determines the interval between the work count value and the SOF period signal, and the clock transmitted from the heart 42 The frequency is higher or lower than the output of the first control signal. The frequency error measurement unit _ will be transmitted by the smaller and then the changed clock frequency. The frequency is large and the second control mirror is maintained at the same time. (5) the first frequency adjustment device 40 processes the bit; otherwise, when the frequency error _: enables the second target frequency of the second frequency adjustment device 46 to be the same, Zhenxin Heng 70 counts that the guard count value is preset or the same as the SOF period signal | The transmitted clock frequency is corrected to an approach phase frequency accuracy correction), at this time, the first-clock frequency of the interval (After completing the level of the first control signal output, the frequency error detection unit side will fix the first and simultaneously change the first-clock frequency returned by the second control signal wheel vibrator 42, 46. The level is such that the second frequency adjustment device can be swayed as indicated by the 4th and 5th circles 42 is composed of a substantially two first sip - and the oscillator frequency adjusting means 4〇

Acquisition L〇〇P)50,該迴^ 率獲取迴路(Fim-Stage ―此㈣ 之第-控制訊號來設定振遷装是依據第-頻率調整裝置40發出 5000ppm,以校準振盪器42於 2之第一頻率調控範圍如 該第-控制訊號實質上是包2《時脈頻率大小。於本實施例中, BCS[0]〜BCS[N](見第7八及了組可改變準位的數位切換訊號 數所組成。當該辦錯誤如同是調控㈣11 42的控制參 輸出之準位時,即是代表其維拷早:侧固定或更改第一控制訊號 付該等數位切換訊號BCS[〇]〜BCS[N] 之輸出準位不變,或改變至少其中—數位切換訊號bcs[q卜BAN] 之輸出準位’以6又疋振盪器42之一第一頻率調控範圍如5〇〇〇ppm。 再請參考第4圖,於本實施例中’該第二頻率調整裝置46夸「 13 201205297 括一相位偵測單το (Phase Detector,PD)462(或為一頻率偵測單元 (Frequency Detector,FD))、迴路濾波器(L〇〇p Fmer)466 及除頻器 (Frequency Divider)468 ’其中該相位偵測單元462,受到前述第二 頻率調整裝置40傳來的第二控制訊號之致能,將該USB輸入訊 號本身的頻率作為一參考時脈頻率,並比較該參考時脈頻率與該 振盪器42傳來之時脈頻率(或除頻器468傳來之經分頻的時脈頻 率)兩者之間的相位差或波形邊緣差(phase 〇r Edge Difference),以 產生一向上指示訊號或一向下指示訊號予迴路濾波器466,以表示 振盪器42傳來之時脈頻率對應於該參考時脈頻率是過快或過慢。 於本實施例中,該迴路濾波器可為一低通濾波器(L〇w pass Filter),用於累積(Accumuiate)該向上或向下指示訊號之相位並據 此產生不同準位之第三控制訊號來持續調整該振盪器42輸出之時 脈頻率大小並再將該調整後的時脈頻率傳回第二頻率調整裝置46 作相同處理,以此類推直到振盪器42是輸出一趨近於前述參考時 脈頻率之第二時脈頻率為止,才固定第三控制訊號之準位以維持 該振盪器42輸出之第二時脈頻率。於本實施例中,該第三控制訊 號可為一類比的電壓訊號(Vc)。該除頻器468可為一整數或分數 分頻器(Intergeror Fractional Divider),用於接收該振盪器42傳來 的時脈頻率,並產生分頻的時脈頻率予該相位偵測單元462。於本 發明之其他實施例中,可依實際需要,該第二頻率調整裝置46進 一步具有一充電幫浦(Charge Pump)(未顯示)連接於相位偵測單元 462與迴路濾波器466之間,並依據該相位偵測單元462之向上或 向下指示訊號,產生電流對迴路濾波器466進行充電。 由前述可知,如第4及6圖所示,實質上該第二頻率調整裝 置46亦與同一振盪器42疋組成了一第二階頻率獲取迴路 (Secondary-stage Frequency Acquisition Lo〇p)6〇,且為一種鎖相迴 201205297 路(Phase Lock Loop)或鎖頻迴路(Frequency L〇ck L〇〇p卜當階 段頻率校準完成並獲取第-時脈頻率後,同時第二㈣ 路60之相位偵測單凡462會被第二控制訊號致能,開始θ、 器42輸出之第-時脈頻率為基礎持續作校準,並使迴=、 466發出第三控制訊號來設定振盪器42之不同 濾波" 圍如5〇〇啊,直到振盈器42輪出一趨近於前述參ΐ日夺脈 第二時脈頻率為止,才固定該第二時脈頻率,其子脈頻革 範圍是大於第二頻率調控範圍,因為春士位、 頻率調控 執行-頻率粗調,再由組成的第二階頻率階頻率獲取迴路5〇 微調,來獲取最佳的頻率精確度。因我 迎路60執行一頻率 置40與第-頻率調整裝置46共享同^發明是第―頻率調整装 振*盈器42夕w iii 且第二階頻率獲取迴路60可使用一现有、, < 輸出頻率’而 所以元件成本低。需注意的是:第m的鎖相迴路或鎖頻迴路’ 5圖及第6 ® 二階頻率獲取迴路5〇, 60係分別依 圖所示的第一及第 今調整頻龜 振盪器42輸出之時脈頻率進行調整。 只千’因此不會同時對 請進一步參考第4及7A圖,& 约依據本益^ 實施例’其中該振盪器42可為〜 赞明之振盪器42的一Acquisition L〇〇P) 50, the return rate acquisition loop (Fim-Stage - the fourth - control signal to set the reverberation device according to the first frequency adjustment device 40 issued 5000ppm to calibrate the oscillator 42 to 2 The first frequency control range as the first control signal is substantially the packet 2 "clock frequency size. In this embodiment, BCS[0]~BCS[N] (see the seventh and the group can change the level The number of digital switching signals is composed. When the error is as if the control parameter of the (4) 11 42 is controlled, it means that the data is copied early: the side is fixed or the first control signal is changed to pay the digital switching signal BCS [〇 ] The output level of ~BCS[N] is unchanged, or at least the output level of the digital-switching signal bcs[qb BAN] is changed to 6 and the first frequency of the oscillator 42 is controlled by a range of 5〇〇. 〇ppm. Please refer to FIG. 4 again. In the present embodiment, the second frequency adjusting device 46 exaggerates "13 201205297 includes a phase detection single το (Phase Detector, PD) 462 (or a frequency detecting unit ( Frequency Detector, FD)), loop filter (L〇〇p Fmer) 466 and frequency divider (Frequency Divider) 468 The phase detecting unit 462 is enabled by the second control signal transmitted by the second frequency adjusting device 40, and uses the frequency of the USB input signal as a reference clock frequency, and compares the reference clock frequency. a phase difference or phase edge difference between the clock frequency transmitted from the oscillator 42 (or the divided clock frequency from the frequency divider 468) to generate a phase difference The upward indication signal or a downward indication signal is sent to the loop filter 466 to indicate that the clock frequency transmitted by the oscillator 42 corresponds to the reference clock frequency being too fast or too slow. In this embodiment, the loop filter can be a low pass filter (L〇w pass Filter) for accumulating the phase of the up or down indication signal and generating a third control signal of different levels to continuously adjust the output of the oscillator 42 The clock frequency is sized and passed back to the second frequency adjustment device 46 for the same process, and so on until the oscillator 42 outputs a second clock frequency that approaches the aforementioned reference clock frequency. until The level of the third control signal is fixed to maintain the second clock frequency of the output of the oscillator 42. In this embodiment, the third control signal can be an analog voltage signal (Vc). 468 can be an integer or fractional divider (Intergeror Fractional Divider) for receiving the clock frequency transmitted by the oscillator 42 and generating a divided clock frequency to the phase detecting unit 462. In other embodiments of the present invention, the second frequency adjusting device 46 further has a charge pump (not shown) connected between the phase detecting unit 462 and the loop filter 466. And according to the up or down indication signal of the phase detecting unit 462, a current is generated to charge the loop filter 466. As can be seen from the foregoing, as shown in FIGS. 4 and 6, the second frequency adjusting device 46 and the same oscillator 42 also form a second-order frequency acquisition loop (Secondary-stage Frequency Acquisition). And is a phase lock back to 201205297 (Phase Lock Loop) or frequency-locked loop (Frequency L〇ck L〇〇p Bu when the phase frequency calibration is completed and the first-clock frequency is obtained, and the phase of the second (four) way 60 The detection unit 462 is enabled by the second control signal, and the calibration is continued based on the first-clock frequency of the output of the θ, the device 42, and the third control signal is sent back to the circuit 466 to set the difference of the oscillator 42. The filtering " is surrounded by 5 〇〇, until the vibrating unit 42 rotates closer to the second clock frequency of the aforementioned ΐ 夺 ,, the second clock frequency is fixed, and the sub-frequency range is It is larger than the second frequency regulation range, because the spring position, the frequency regulation execution-frequency coarse adjustment, and then the second-order frequency-order frequency of the composition acquisition loop 5〇 fine-tuning to obtain the best frequency accuracy. Because I am 60 Performing a frequency setting 40 and a first frequency adjusting device 46 The sharing is the same as the first frequency invention, and the second-order frequency acquisition circuit 60 can use an existing, <output frequency', so the component cost is low. It should be noted that: The phase-locked loop or frequency-locked loop of the m' 5 and the 6th-order second-order frequency acquisition loop 5〇, 60 are adjusted according to the clock frequency of the output of the first and second adjusted-frequency turtle oscillators 42 shown in the figure. Only a thousand', therefore, please refer to Figures 4 and 7A at the same time, & about according to the benefit of the embodiment ^ where the oscillator 42 can be ~ a tribute to the oscillator 42

Votlage-controlled Oscillator, LC-Vcq) 各壓控振盤器(LCVotlage-controlled Oscillator, LC-Vcq) Pressure Controlled Discs (LC)

Out用於輸出時脈頻率、一調控端 要包括:至少一輸出踹 w In用於士Out is used to output the clock frequency, and the control terminal should include: at least one output 踹 w In for the Shift

Vc、NMOS元件94及95、NM〇s - ;接收該第三控制訊號 % 件 96、 於輸出端Out兩侧、兩個可變電容% % 兩個電感90, 91分設Vc, NMOS components 94 and 95, NM〇s -; receiving the third control signal % 96, on both sides of the output terminal Out, two variable capacitors %%, two inductors 90, 91 are set separately

Banks)910,920。由於電感-電容振邊及兩組電容組(Capacitor 又還盗的差動 920具有與另一電容組910相同之ν好性’其中一電容組 力能,談厶 分別連接於該振盪器42之輸出端〇ut μ’、,·且電容組910, 920 910, 920是由Ν+1個大小相同或不知 兩相對側,且每一電容組 ^目同之^ |办 惟在其他實施例中,本發明之電感 各911,922所組成; 4、電容振逼器42並不只限兩組 15 Γ 201205297 電容組’而是可設多組電容組在輸出端Out的每一側,以增加不 同的頻率調控範圍,且每一電容組910, 920的大小可設計成加權 一進位或加權一元運算(Binary weighted or Unary weighted)。且每 一電容911,912連接一切換開關(Switch) 913, 923,該切換開關913, 923可由M0S元件構成。由於一般的電感-電容振盪器提供的可調 控頻率範圍相當狹小,但為了對應處理過程、電壓及温度的變化, 本發明利用數位控制訊號控制該等電容組910,920來擴大此電感-電容振盪器42的第一頻率調控範圍,因此利用該第一頻率調整裝 置40之頻率錯誤偵測單元408傳來的第一控制訊號所包含的一組 數位切換訊號BCS[0]〜BCS[N]的不同準位變化來開啟或關閉該等 切換開關913, 923,即可變化該振盪器42輸出之時脈頻率大小, 藉此可提供不同的第一頻率調控範圍。同時,該兩個可變電容92, 93分別連接該調控端In的兩側,依據該第一頻率調整裝置40傳 來之第三控制訊號Vc的電壓大小,改變該兩個可變電容92, 93之 電容值,即可進一步微調該振藍器42輸出之時脈頻率’藉此可提 供一第二頻率調控範圍如5 OOppm。前述電容組910, 920與可變電 容92, 93皆可使用各種類型的電容來加以實施。例如,電容組910, 920可使用金屬-絕緣體_金屬(Metal_insulator_metal,MIM)裂電 容,或可變電容92, 93亦可以是一種PMOS或CMOS元件或是再 分成數個較小的電容來細化微調控制。 但眾所肩知,理想的電感-電容振盪器(LC-VCO)是可以1/(2 的頻率來振盪,但由於受到電感的阻抗或基材耗損 等緣故,儲存於電感與電容之能源容易消散,使振盪停止。因此 本發明利用交又耦合的NMOS元件94及95供應能源,其作用如 同對電感與電容之作動提供負阻抗。該NMOS元件96用於設置一 預設電流源。 201205297 h進-步參考第4及7B圖之本發明的振心c之另一實施 例’與第7A圖所示之振虚器42的功能與作動原理 不 過採用的電子元件不同。例如其中一電容組⑽,⑻ 容 誦為-m〇s元件,而該調控端之其卜側連 1020亦為一pm〇S元件。 供-所不’依據本發明之一第二較佳實施例係提 供一種序列匯流排時脈頻率校準方法哪,其中配合 4圖之 序列匯流排時脈鮮校準线36之各元件,該方法包括下列步驟:Banks) 910,920. Since the inductor-capacitor edge and the two sets of capacitors (the Capacitor also steals the differential 920 has the same ν goodness as the other capacitor bank 910), one of the capacitor groups can be connected to the oscillator 42 respectively. The output terminals 〇ut μ', , and the capacitor groups 910, 920 910, 920 are Ν +1 identical or unknown sides, and each capacitor group is the same as in other embodiments. The inductors of the present invention are composed of 911, 922; 4. The capacitor oscillator 42 is not limited to two groups of 15 Γ 201205297 capacitor group 'but multiple groups of capacitor groups can be set on each side of the output terminal to increase the difference The frequency control range, and the size of each capacitor group 910, 920 can be designed as a weighted one or a weighted one (Binary weighted or Unary weighted), and each capacitor 911, 912 is connected to a switch (Switch) 913, 923 The switch 913, 923 can be composed of MOS components. Since the general inductive-capacitor oscillator provides a relatively narrow range of controllable frequencies, the present invention utilizes digital control signals to control such changes in response to processing, voltage, and temperature. capacitance 910, 920 to expand the first frequency control range of the inductor-capacitor oscillator 42, so that a set of digital switching signals BCS included in the first control signal transmitted by the frequency error detecting unit 408 of the first frequency adjusting device 40 is used. The different level changes of 0]~BCS[N] to turn the switches 913, 923 on or off can change the clock frequency of the output of the oscillator 42, thereby providing different first frequency regulation ranges. At the same time, the two variable capacitors 92, 93 are respectively connected to the two sides of the control terminal In, and the two variable capacitors 92 are changed according to the voltage of the third control signal Vc transmitted from the first frequency adjusting device 40. The capacitance value of 93 can further fine-tune the clock frequency of the output of the blue lighter 42, thereby providing a second frequency control range of 5 OOppm. The foregoing capacitor groups 910, 920 and variable capacitors 92, 93 can be used. Various types of capacitors are implemented. For example, the capacitor banks 910, 920 can use Metal-insulator_metal (MIM) split capacitors, or variable capacitors 92, 93 can also be a PMOS or CMOS component or subdivided into One Small capacitors to refine the fine-tuning control. But as you know, the ideal inductor-capacitor oscillator (LC-VCO) can oscillate at 1/(2, but due to the impedance of the inductor or the loss of the substrate. The energy stored in the inductor and capacitor is easily dissipated to stop the oscillation. Therefore, the present invention uses the coupled and coupled NMOS components 94 and 95 to supply energy, which acts as a negative impedance to the inductor and capacitor. The NMOS device 96 is used to set a predetermined current source. 201205297 The other embodiment of the vibrating center c of the present invention with reference to Figs. 4 and 7B and the vibrator 42 shown in Fig. 7A have different functions and operating principles. For example, one of the capacitor banks (10), (8) is a -m〇s component, and the control terminal 1020 is also a pm〇S component. According to a second preferred embodiment of the present invention, a sequence bus clock frequency calibration method is provided, wherein the components of the sequential bus calibration line 36 of the sequence diagram of FIG. 4 are included, and the method includes The following steps:

腦=ΓΓ,USB裝置啟動或魏開機,使usb裝置接收一 輸人崎’且該刪輸人 卿週期訊號及一參考時脈頻率; “有至乂 步驟S810,利用第一頻率調整装置之週期訊號伯測單元來偵 測該USB輸人訊號中的SQF週期訊號; 。步驟S820,利用第一頻率調整裝置之間隔計數器,依據振堡 器(VC〇)輪出之不同時脈頻率計數出該SOF週期訊號之間隔時 間,以產生一工作計數值;Brain = ΓΓ, USB device is activated or Wei is turned on, so that the usb device receives a loser's and the user's cycle signal and a reference clock frequency are deleted; "There is a step S810, using the cycle of the first frequency adjustment device The signal detection unit detects the SQF period signal in the USB input signal; in step S820, the interval counter of the first frequency adjustment device is used to count the different clock frequencies according to the rotation of the vibrating device (VC〇) The interval between the SOF cycle signals to generate a work count value;

步驟S830,利用第一頻率調整裝置之頻率錯誤偵測單元,將 工作計數值與步驟S832中預設的SOF間隔時間計數目標值作比 對,依據該兩者比對結果,判斷是否有頻率錯誤出現,並據此產 生第一控制訊號予振盪器,以及產生第二控制訊號予第二頻率調 整裝置。如果有,則進行步驟S834;如果沒有,則進行步驟S840 ; 步驟S834,當工作計數值與預設目標值不同時,代表有頻率 錯誤出現,則更改第一控制訊號之輸出準位來設定一第一階段頻 率調控範圍,對該振盪器輸出之時脈頻率進行第一階段時脈頻率 精確度校準,且固定第二控制訊號之輸出準位以不致能第二頻率 調整裝置; 17 201205297 步驟S84〇 ’备工作计數值與預設目標值相同時,代表沒有頻 率錯誤出現,即是自振盪器(vco)獲取—符合週期訊號之間隔時間 =第一時脈頻率,則蚊第—控制訊號之輸出準位以維持該振盪 器輸出之第-時脈頻率,且同時改變第二控制訊號的輸出準位以 致能第二頻率調整裝置。實質上,本方法是先利用前述該第一頻 率調整裝置與振藍n組成—第—階頻率獲取迴路,並依據第一控 制訊號設定振盪器之第一頻率調控範圍(頻率粗調)以更改或維持 t遭器輸出之時脈頻率’因此如果振盈器(vco)輸出之時脈頻率不 4合週期訊號之間隔時間,則會在步驟S82G,S請,S834 <間形成 厂迴圈,直到獲取到第-時脈頻率為止。於另—實施例中,為了 =免無限或過長的迴圈,亦可設計成:在執行固以數的迴圈或 丁特疋時間之後’即以最後振㈣42輸出的時脈頻率作為第一 率,以提供應裝置32(見第3圖)中各元件所需的工作頻 步驟S850,利用第二控制訊號致能第二頻率調整裝置 偵測單元; 步驟S_,相位偵測單元開始判斷前述參考時脈頻率與該振 ,器(VCO)輸出之時脈頻率兩者之間的相位差或波形邊緣差是否 相同’並據此使迴路m產生-第三㈣m號㈣振盪器(vco) =更改或維持該㈣器輸出之第-時脈頻率。如果否,則進行步 驟S862 ;如果是,則進行步驟S870 ; —步驟S862,改變第三控制訊號之輸出準也以設定該振盈写之 二不同的第二頻率調控範圍更改或維持該振遷器輸出之時脈頻 率’即對該減器輸出之第-時脈頻率進行第二階段時脈頻率精 破度(頻率微調),並再將校準後之時脈料傳回第二頻率調整裝 置,其中第一頻率調控範圍大於第二頻率調控範圍。實質上,本 201205297 發明是利用該第二頻率調整裝置與此振盈器組成一第二階頻 取迴路並受第二控制訊號的致能,依據第三控制訊號執行第二 率調控範圍’因此如果振盪器(vc〇)輸出之時脈頻率不符合參’ 脈頻率,則會一直在步驟S86〇及s862之間形成一迴圈,吾 後如步驟S請麻’自㈣抓⑽獲取—符合前述參 = 率之第二時脈頻率。於另—音 、、頻 貝午y、为實施例中,為了避免無限或過長的、回 圈’亦可輯成:在執行^欠數的迴圈錢行特料間之後^ 係以當時該振盪器42輸出的時脈頻率作為第二時脈頻率,以提供 該USB裝置32(見第3圖)中各元件所需的工作頻率來源。’、 另依據本發明之-第三較佳實施例之—序雜流排時脈頻率 校準系統70 ’亦可設於如第3圖所示之USB裂置32中以取代該 第一較佳實施例之序列匯流排時脈頻率校準系統36(如usb裝置Step S830, using the frequency error detecting unit of the first frequency adjusting device, comparing the working count value with the preset SOF interval time counting target value in step S832, and determining whether there is a frequency error according to the comparison result of the two. Appearing, and generating a first control signal to the oscillator, and generating a second control signal to the second frequency adjusting device. If yes, proceed to step S834; if not, proceed to step S840; step S834, when the work count value is different from the preset target value, indicating that a frequency error occurs, then changing the output level of the first control signal to set a The first stage frequency control range, the first stage clock frequency accuracy calibration is performed on the clock frequency of the oscillator output, and the output level of the second control signal is fixed to disable the second frequency adjustment device; 17 201205297 Step S84 〇 When the standby work count value is the same as the preset target value, it means that no frequency error occurs, that is, it is obtained from the oscillator (vco)—the interval time of the coincidence signal = the first clock frequency, then the mosquito-control signal The output level is maintained to maintain the first-to-clock frequency of the oscillator output, and at the same time the output level of the second control signal is changed to enable the second frequency adjustment means. In essence, the method firstly utilizes the first frequency adjusting device and the blue-blue n-first-order frequency acquisition loop, and sets the first frequency control range (frequency coarse adjustment) of the oscillator according to the first control signal to change Or maintain the clock frequency of the output of the device. Therefore, if the clock frequency of the output of the vibrator (vco) is not the interval time of the 4-cycle period signal, a factory loop will be formed in step S82G, S, S834 < Until the first-clock frequency is obtained. In another embodiment, in order to eliminate the infinite or excessively long loop, it may be designed to: after performing the loop of the fixed number or the Dinger time, the clock frequency of the output of the last vibration (four) 42 is taken as the first First, to provide the working frequency step S850 required for each component in the device 32 (see FIG. 3), the second frequency adjusting device is used to enable the detecting unit by using the second control signal; Step S_, the phase detecting unit starts to judge Whether the phase difference or the waveform edge difference between the aforementioned reference clock frequency and the clock frequency of the oscillator (VCO) output is the same 'and the loop m is generated accordingly - the third (four) m (four) oscillator (vco) = Change or maintain the first-clock frequency of the (4) output. If not, proceed to step S862; if yes, proceed to step S870; - step S862, change the output of the third control signal to change or maintain the relocation of the second frequency control range that is different from the setting of the oscillation write The clock frequency of the output of the device is the second stage clock frequency fineness (frequency fine adjustment) of the first-clock frequency of the output of the reducer, and the calibrated time pulse is transmitted back to the second frequency adjusting device. Wherein the first frequency regulation range is greater than the second frequency regulation range. In essence, the 201205297 invention utilizes the second frequency adjusting device and the vibrator to form a second-order frequency taking loop and is enabled by the second control signal, and performs the second rate control range according to the third control signal. If the clock frequency of the oscillator (vc〇) output does not match the pulse frequency, a loop will always be formed between steps S86〇 and s862. If I follow step S, please select “from (4) grab (10). The second clock frequency of the aforementioned parameter. In the case of another tone, frequency, and y, for the embodiment, in order to avoid infinite or too long, the loop 'can also be compiled: after executing the sum of the number of money in the loop The clock frequency output by the oscillator 42 is used as the second clock frequency to provide the source of operating frequency required for each component of the USB device 32 (see Figure 3). In addition, the sequential choke clock frequency calibration system 70' according to the third preferred embodiment of the present invention may also be provided in the USB split 32 as shown in FIG. 3 instead of the first preferred one. Example bus sequence clock frequency calibration system 36 (eg, usb device)

32也可以是一種USB集線器(Hub)並同時具有多個符合不同USB 楳準規格之通訊埠)β於該第三較佳實施例中,第3圖所示之usb 主機30可以是符合USB 2.0的標準規格,而該USB裝置32可以32 may also be a USB hub (Hub) and have a plurality of communication standards conforming to different USB standards. In the third preferred embodiment, the usb host 30 shown in FIG. 3 may be USB 2.0 compliant. Standard specifications, and the USB device 32 can

符合USB 3.0的標準規格’以傳輸符合USB 2_0標準規格的USB 輸入訊號(如同第一型序列匯流排輸入訊號),或者前述USB主機Compliant with USB 3.0 standard specifications' to transmit USB input signals conforming to USB 2_0 standard specifications (like the first type serial bus input signal), or the aforementioned USB host

30及USB裝置32兩者皆符合USB 3.0的標準規格,但於該USB 主機30及USB裝置32之間傳送資訊的初期,已設定會先以符合 USB 2.0標準規格的USB輸入訊號(即第一型序列匯流排輸入訊號) 進行傳輪,之後再以傳輸符合USB 3.0標準規格的USB輸入訊號 (如同第二型序列匯流排輸入訊號)傳送資料(待後詳述)。 明進一步參考第9圖,係顯示本發明之第三較佳實施例之序 列匯流排時脈頻率校準系統70,其主要結構包括:一第一頻率調 整裝置40、一第二頻率調整裝置46、一第三頻率調整裝置72、一 振盪器42及一鏈結層74,其中因為該第一頻率調整裝置40、第。Both the 30 and the USB device 32 conform to the standard specifications of the USB 3.0. However, in the initial stage of transmitting information between the USB host 30 and the USB device 32, the USB input signal conforming to the USB 2.0 standard specification (ie, the first The type serial bus input signal is transmitted, and then the data is transmitted by transmitting a USB input signal conforming to the USB 3.0 standard specification (like the second type serial bus input signal) (to be detailed later). Further, referring to FIG. 9 , a sequence bus clock frequency calibration system 70 according to a third preferred embodiment of the present invention is shown. The main structure includes a first frequency adjusting device 40 and a second frequency adjusting device 46. A third frequency adjusting device 72, an oscillator 42 and a link layer 74, wherein the first frequency adjusting device 40, the first.

[S 201205297 二頻率調整裝置46及振m器42之結構與功能皆相同於第4 及7B圖所示之第一較佳實施例之序列匯流排時脈頻率校準、U 36之第-頻率調整裝置⑽、第二頻率調整裝置46及振還器系统 且也分別Μ成如同第5及6圖所示之第—階頻率獲取迴路=42 ’ 二階頻率獲取迴路60,於此不再贅述。 及第 如第3及9圆所示’當該USB主機3〇及USB裝置32雙 性連接且處於傳送資訊的初期時,該USB主機3G會先發出=電 測訊號給肖USB裝置32之序列匯流排時脈頻率校準系統7〇之谓 結層74以確定該裳置32 #存在及連接,接著雙方進人—信$ 換(Handshaking)階段,其中USB裝置32之鏈結層%決定其與該 USB主機30之間的通訊協定模式,例如USB 2.0或USB 3.0。一 旦該鍵結層74決定USB主機3G及USB裝置32之間的通訊協定 模式之後5卩可依该通訊協定模式來進_步決定以該第—頻率調 整褒置4G來接收第—型序列匯流排輸人訊號或以第三頻率調整裝 置72來接收第二型序列匯流排輸入訊號。例如,當該usb主機[S 201205297 The structure and function of the two frequency adjusting device 46 and the oscillator 42 are the same as the sequence bus clock frequency calibration of the first preferred embodiment shown in FIGS. 4 and 7B, and the first frequency adjustment of the U 36 The device (10), the second frequency adjusting device 46, and the vibrator system are also respectively formed into a second-order frequency acquisition loop 60 as shown in FIGS. 5 and 6 and a second-order frequency acquisition loop 60, which will not be described herein. And as shown in the 3rd and 9th circles, when the USB host 3 and the USB device 32 are connected in a bidirectional manner and are in the initial stage of transmitting information, the USB host 3G will first issue a = electrical signal to the sequence of the USB device 32. The bus clock frequency calibration system 7 is referred to as the layer 74 to determine the presence and connection of the skirt 32, and then the two parties enter the letter-handshaking phase, wherein the link layer % of the USB device 32 determines its The protocol mode between the USB host 30, such as USB 2.0 or USB 3.0. Once the bonding layer 74 determines the protocol mode between the USB host 3G and the USB device 32, the protocol can be determined according to the protocol mode to receive the first-type sequence sink by the first-frequency adjustment device 4G. The human signal is output or the third frequency adjustment device 72 is used to receive the second type serial bus input signal. For example, when the usb host

30及USB裝置32均支援USB3 〇規格時,該usb主機30與USB 裝置32之間的電性連接初期(如信號交換(Handshaking)階段)會分 成以下兩個階段進行:於第一階段時,該鏈結層74先決定該USB 主機30及USB裝置32之間的通訊協定模式為usb 2.0以回覆該 USB主機30 ’使該USB主機30關閉其符合USB 3.0規格妁超高 速(Super-speed)訊號操作,接著該鏈結層74會先決定由該第一頻 率調整裝置40來接收該USB主機3〇傳來的第一型序列匯流排輸 入訊號以進行第一階段的第一型序列匯流排頻率校準。 當該第一頻率調整裝置4.0完成此第一階段的第一型序列匯流 排頻率校準後’該鏈結層74再改變USB主機30及USB裝置32 之間的通訊協定模式為USB 3.0,接著決定由該第三頻率調整裝置 20 201205297When both the USB device 32 and the USB device 32 support the USB3 specification, the initial stage of electrical connection between the USB host device 30 and the USB device 32 (such as the handshake process) is divided into the following two phases: in the first phase, The link layer 74 first determines that the communication protocol mode between the USB host 30 and the USB device 32 is usb 2.0 to reply to the USB host 30'. The USB host 30 is turned off to meet the USB 3.0 specification, Super-speed. After the signal operation, the link layer 74 first determines that the first frequency adjustment device 40 receives the first type serial bus input signal from the USB host 3 to perform the first stage sequence bus. Frequency calibration. After the first frequency adjusting device 4.0 completes the first-stage serial bus frequency calibration of the first stage, the link layer 74 changes the communication protocol mode between the USB host 30 and the USB device 32 to USB 3.0, and then determines By the third frequency adjustment device 20 201205297

72來接收該USB主機30傳凌从* 基於第一 一階段之第二型序列匯 示)。 74決定USB主機30及USB 2.0時,係由該第一頻率調整 孔號’因為該第一型序列匯流 於本第三實施例中,當該鏈結層74; 裝置32之間的通訊協定模式為uSB 2 〇 裝置40接收第一型序列匯流排輸入訊號 排輸入訊號具有至少一週期訊號(如SOF封包)及—參考時脈頻率 時,使該第一頻率調整裝置40基於該至少一週期訊號(如SOF封 包)及振盪器42輸出之時脈頻率’產生一第一控制訊號用於設定 該振盪器之一第一頻率調控範圍如5000ppm ’並持續調整振盪器 42輸出的時脈頻率,直到獲得符合前述SOF週期訊號之間隔時間 之第一時脈頻率,進而產生一第二·控制訊號。請進一步參考第11 圖所示之取樣時間Tsl與該第一韶序列匯流排輸入訊號之間的關 係示意圖,符號’’SOF”代表該第一变序列匯流排輸入訊號中的每一 週期訊號(即SOF封包),符號”τΓ代表週期訊號之間隔時間。當 該第一頻率調整裝置40利用振盪器42輸出的時脈頻率計數出一 指定週期訊號SOF之間隔時間Τ1的工作計數值後,會與一預設 目標值作差異判斷,以決定是否產生第一控制訊號設定該振盪器 42之第一頻率調控範圍,直到獲得符合週期訊號之間隔時間T1 之第一時脈頻率。 於本第三實施例中,當該第二頻率調整裝置46受到前述第二 控制訊號的致能時,該第一頻率調整裝置40會停止工作如停止調 整該振盪器42輸出的時脈頻率且該第二頻率調整裝置46開弘接 收該第一型序列匯流排輪入訊號的參考時脈頻率,並基於該參考 時脈頻率與振盪器42輪出的時脈頻率之間的相位差或波形邊緣 21 201205297 差’產生一'楚72 to receive the USB host 30 from the * based on the first stage of the second type sequence). 74 determines the USB host 30 and USB 2.0, the first frequency adjustment hole number ' because the first type sequence merges in the third embodiment, when the link layer 74; the communication mode between the devices 32 Receiving, by the uSB 2 〇 device 40, the first type of serial bus input signal, the input signal having at least one periodic signal (such as a SOF packet) and the reference clock frequency, causing the first frequency adjusting device 40 to be based on the at least one periodic signal (such as SOF packet) and the clock frequency of the output of the oscillator 42 'generate a first control signal for setting a first frequency regulation range of the oscillator such as 5000ppm' and continuously adjust the clock frequency output by the oscillator 42 until Obtaining a first clock frequency that meets the interval between the foregoing SOF period signals, thereby generating a second control signal. Please refer to the relationship between the sampling time Tsl shown in FIG. 11 and the input signal of the first serial bus, and the symbol ''SOF') represents each period signal in the input signal of the first variable sequence bus ( That is, the SOF packet), the symbol "τ" represents the interval between the periodic signals. When the first frequency adjusting device 40 uses the clock frequency outputted by the oscillator 42 to count the working count value of the interval time Τ1 of the specified period signal SOF, it will make a difference judgment with a preset target value to determine whether to generate the first A control signal sets the first frequency regulation range of the oscillator 42 until a first clock frequency that coincides with the interval time T1 of the periodic signal is obtained. In the third embodiment, when the second frequency adjusting device 46 is enabled by the second control signal, the first frequency adjusting device 40 stops working, such as stopping adjusting the clock frequency output by the oscillator 42 and The second frequency adjusting device 46 is configured to receive the reference clock frequency of the first type serial bus input signal, and based on the phase difference or waveform between the reference clock frequency and the clock frequency of the oscillator 42 Edge 21 201205297 Poor 'generate one' Chu

二控制訊號K 圍如500ppm,並持」文;叹定振盪器42之—第二頻率調控範 趨近於前述參考時朊,振盪器42輸出的時脈頻率,直到獲得 調控範圍是大於第j率之第二時脈頻率,其中因為該第一頻率 可以獲得比第二階::率調控範圍,因此第二階頻率獲取迴路60 脈頻率精確度。當^獲取迴路5〇(如第5及6圖所示)更高的時 脈頻率之第二時^頻—頻率調整裝置46獲得趨近於前述參考時 第-型序列匯排二.卩代表已70成了對振盈器42的兩階段 如第5圖及第6^ 精確度校準過程,其中需注意的是: 序分別校準頻率,因=第一及第二階頻率獲取迴路5〇, 6〇係依 之時脈頻率進行調整/兩迴路5〇, 6G不會同時對振盪器42輸出 述參該第二頻率調整裝置46獲得趨近於前 發出率之後’該第二頻率調整裝置46會 Λ魂通知该鏈結層74,使 性連接並番站“ X 吏视.,』74切斷與該主機30電 〇重^貞測’令該裝置32與主機3〇間之通訊協定模式由 置ϋΐ 3.G,接著該鍵結層74決定第三頻率調整裝 於前述^ /機Μ傳來的第二型序列匯流排輸人訊號,並基 攻第—型序舰流排時脈頻率精確度的校準結果,進行下一 β之第二型序列匯流排時脈頻率精蜂度校準過程、主 ^〶鍵結層74決定將該通訊模式切換成USB3 G之後,該束置 2不會收到符合_2.0的第-型序列匯流排輸人訊號。… 盔另’於其他實施例中’為了避免第二階頻率獲取迴路6〇執行 二限或過長的迴圈,亦"計成:利用—計數器於計數固定次數 7迴圈或於執行-段特定時間之後,發出一訊號通知該键結層 、4’使該鏈結層74將該通訊協定模式由USB2()切換至usb3.〇, 並以當時該振盪器42輸出的時脈頻率作為已校準的第二時脈頻 22 201205297 率。 另’於其他實施例中’該鏈結層74内設該通訊協定為USB 2.0 時的執行時間;當此執行時間一到,該鏈結層74將該通訊協定模 式由USB 2.0切換至USB 3.0,並以當時該振盪器42輸出的時脈 頻率作為已校準的第二時脈頻率。 如第9及12圖所示之本第三實施例中,該第三頻率調整裝置 72用於接收第二型序列匯流排輸入訊號,其包括:一封包辨識單The second control signal K is surrounded by 500 ppm, and holds the text; the second frequency regulation norm of the oscillating oscillator 42 is close to the aforementioned reference time, the clock frequency output by the oscillator 42 until the control range is greater than the jth The second clock frequency of the rate, wherein the second frequency acquisition loop 60 pulse frequency accuracy is obtained because the first frequency can obtain a second order:: rate regulation range. When the second loop frequency of the acquisition loop 5〇 (as shown in FIGS. 5 and 6) is higher, the frequency-frequency adjusting device 46 obtains the first-type sequence tandem according to the aforementioned reference. 70 has become the two stages of the vibrator 42 as shown in Figure 5 and the 6^ precision calibration process, which should be noted that: the sequence is separately calibrated, because the first and second order frequency acquisition loop 5〇, 6〇 adjusts according to the clock frequency/two loops 5〇, 6G does not simultaneously output the oscillator 42 and the second frequency adjusting device 46 obtains the approaching rate. The second frequency adjusting device 46 The soul layer will notify the link layer 74 to make the connection and the "X 吏 ..," 74 cut off the communication with the host computer 30 to determine the communication protocol mode between the device 32 and the host computer 3. By setting 3.G, then the bonding layer 74 determines the third frequency adjustment to be applied to the second type of serial bus input signal transmitted from the above ^ / machine, and the base-type sequence ship clock The frequency accuracy calibration result is performed on the next β-type sequence bus, the clock frequency, the fine bee calibration process, and the main bonding layer 74 After switching the communication mode to USB3G, the beam 2 will not receive the first-type serial bus input signal that conforms to _2.0.... Helmet is another 'in other embodiments' to avoid second-order frequency acquisition Loop 6〇 performs a second or too long loop, and also counts: using a counter to count a fixed number of 7 loops or after a specific period of execution - a signal to signal the key layer, 4' The link layer 74 switches the protocol mode from USB2() to usb3.〇, and uses the clock frequency output by the oscillator 42 as the calibrated second clock frequency 22 201205297 rate. In the example, the link layer 74 has an execution time when the protocol is USB 2.0; when the execution time is up, the link layer 74 switches the protocol mode from USB 2.0 to USB 3.0, and at that time The clock frequency output by the oscillator 42 is used as the calibrated second clock frequency. In the third embodiment shown in Figures 9 and 12, the third frequency adjusting device 72 is configured to receive the second type serial bus. Input signal, which includes: a package identification slip

元722、一時間邊界回復單元724、一間隔計數器726及一頻率錯 誤偵測單元728 〇 該封包辨識單元722,用於辨識該第二型序列匯流排輸入訊號 中至少一特定封包如同步時戳封包(Is〇chr〇n〇us Timestamp匕吐吒 ITP)以獲取該特定封包所含的時間f訊(如—種記錄匯流排間隔時 間資訊(Bus lnterval Informati〇n)的時間印記⑺削啦叫))。請參考 第12圖所示之取樣時間Ts2與該第二型序列匯流排輸人訊號之間 ,關係示意圖’符號” ITP”代表該第二型序列匯流排輸人訊號中的 母nr封包;於本第三實施例中,該封包辨識單元722可以在 2時間Τ2内對該第二型序列匯流排輸人訊號内一連串的數個 辨/單包中^每—取封包作取樣辨識。於其他實施例中,該封包 :識早可以在取樣時間Τ2内僅對—特定ιτρ封包取樣辨 ,時間邊界回復料724,根據該封包 前 =資訊有記錄該每一特定封包與其前對 = 隔時間之前-個鄰近的時 列匯产排齡 多 之取樣時間Ts2與該第二梨序 列匯係示意圖,符號,代表該第二炎序 排輪入訊號中每一1τρ_包所属之間隔時間1 23 201205297 號”BN”、”BN+1”、”BN+2”、...”BN+8”代表在取樣時間 T2 内一連 串ΙΤΡ封包中每一 ΙΤΡ封包所屬之間隔時間Τ2的前一鄰近時間邊 界。符號”ΔίΟΙ”、,,Z\tl2”、”/^23”、..._,,/^89”代表該每一 ΙΤΡ 封包與該ΙΤΡ封包所屬間隔時間Τ2之前一時間邊 界”Bn’’、’’Bn+广、’^^/、…巧^^”之間的相對時間差:於本第 三實施例中,該時間邊界回復單元724可以僅根據至少一特定ΙΤΡ 封包(如取樣時間Ts2中的第Ν個ΙΤΡ封包)内所含的時間資訊所記 錄該特定ΙΤΡ封包與其前一時間邊界”ΒΝ”之間的相對時間差”△ tOl”,即可回復該特定第Ν個ΙΤΡ封包所屬間隔時間Τ2之前一時 間邊界如”Bn”。於其他實施例,該時間邊界回復單元724,也可以 根據至少一個特定ITP封包(如取樣時間Ts2中的第N個ITP封包) 所含的時間資訊記錄的該特定第N個ITP封包與該下一時間邊界” BN+丨”之間的相對時間差如”ΔΐΙΟ”,以回復該第N個ITP封包所屬 間隔時間Τ2之下一時間邊界如” ΒΝ+1”,以及如持續利用第(Ν+8) 個ΙΤΡ封包内的時間資訊記錄的相對時間差△ t89以回復該第(Ν+8) 個ITP封包所屬間隔時間T2之前一時間邊界如BN+8。 該間隔計數器726,根據該時間邊界回復單元724提供的該每 一特定ITP封包所屬間隔時間之時間邊界如BN、BN+,並利用該 振盪器42輸出之時脈頻率計數出,從其中一特定ITP封包所屬間 隔時間之時間邊界(如BN)到另一特定ITP封包所屬間隔時間之時 間邊界(如BN+8)之間的計數差值,以作為一工作計數值。請參考第 12圖所示之一案例,當取樣時間Ts2為1 ms且取樣的第二型序列 匯流排輸入訊號中包含了 9 個 ITP 封包 如”Ν”、”N+1”、’’N+2”、......’’N+8”,因此該每一 ITP封包所屬的 間隔時間T2皆為125/zs (即lms/8),其中利用該時間邊界回復單 元724已找出第N個ITP封包及其所屬間隔時間T2之前一時間 24 201205297 邊界BN,與找出第(N+8)個ITP封包及其所屬間隔時間T2之前一 時間邊界如ΒΝ+8,則該間隔計數器726可利用該振盪器42輸出之 時脈頻率如12 Mhz計數出從該第Ν個ΙΤΡ封包所屬間隔時間Τ2 之時間邊界如Bn到另一第(N+8)個ITP封包所屬間隔時間T2之時 間邊界如BN+8的計數差值為12,000次,以作為工作計數值。 該頻率錯誤偵測單元728,依據該間隔計數器726提供的前 述工作計數值與一預設的目標值之比對結果,產生第四控制訊 號,其中如果工作計數值與預設目標值不同時,該第三頻率調整 ^ 裝置72之頻率錯誤偵測單元728更改第四控制訊號之輸出,以改 變該振盪器42輸出之時脈頻率大小;反之,如果工作計數值與預 設目標值相同時,該第三頻率調整裝置72之頻率錯誤偵測單元 728固定第四控制訊號之輸出以維持該振盪器42輸出之第二時脈 頻率。請對照參考第12圖所示之取樣時間Ts2與該第二型序列匯 流排輸入訊號之間的關係示意圖中之案例,如果工作計數值為 12,000次,但預設目標值”X”大於或小於12,000次,則該第三頻 率調整裝置72之頻率錯誤偵測單元728會發出第四控制訊號之輸 ^ 出以降低或加快該振盪器42輸出之時脈頻率,且使該該振盪器42 輸出之時脈頻率再回饋予第三頻率調整裝置72之間隔計數器726 以重新計數工作計數值,週而復始,直到工作計數值等於預設目 標值為止,代表已獲得一符合該至少一特定封包對應之間隔時間 之第三時脈頻率,可作為該USB裝置32(見第3圖)中各元件所需 的工作頻率來源。惟,於另一實施例中,為了避免無限或過長的 迴圈,亦可設計成:利用一計數器於計數固定次數的迴圈或於執 行特定時間之後,係以當時該振盪器42輸出的時脈頻率作為第三 時脈頻率。 如第9及7A圖所示,依據本發明之第三實施例之序列匯流排The element 722, a time boundary replying unit 724, an interval counter 726, and a frequency error detecting unit 728, the packet identifying unit 722, configured to identify at least one specific packet in the second type of serial bus input signal, such as a synchronization time stamp. The packet (Is〇chr〇n〇us Timestamp 匕 吒 ITP) is used to obtain the time information contained in the specific packet (such as the time stamp of the Bus lnterval Informati〇n) (7) )). Please refer to the sampling time Ts2 shown in FIG. 12 and the second type serial bus input signal. The relationship diagram 'symbol' ITP′′ represents the parent nr packet in the second type serial bus input signal; In the third embodiment, the packet identification unit 722 can perform sampling identification on a series of multiple identification/single packets in the second type of serial communication bus in the second time Τ2. In other embodiments, the packet may be sampled in the sampling time Τ2 only for the specific ιτρ packet, and the time boundary is returned to the packet 724. According to the packet = information, the specific packet is recorded with the previous pair = Before the time - a neighboring time series of sampling time Ts2 and the second pear sequence schematic diagram, the symbol, representing the interval between each 1τρ_ packet in the second inflamed row of the signal 23 201205297 "BN", "BN+1", "BN+2", ... "BN+8" represents the previous neighboring interval Τ2 of each packet in a series of packets within the sampling time T2. Time boundary. The symbols "ΔίΟΙ",,, Z\tl2", "/^23", ..._,, /^89" represent a time boundary "Bn'' before the interval Τ2 between each of the packets and the packet. The relative time difference between ''Bn+Broadway, '^^/, 巧^^": In the third embodiment, the time boundary replying unit 724 may only be based on at least one specific 封 packet (eg, sampling time Ts2) The time information contained in the first packet (the packet) records the relative time difference between the specific packet and its previous time boundary "ΒΝ" △ tOl", which can reply to the interval of the particular first packet. Τ2 A time boundary such as "Bn". In other embodiments, the time boundary replying unit 724 may also record the specific Nth ITP packet and the next time according to the time information contained in the at least one specific ITP packet (eg, the Nth ITP packet in the sampling time Ts2). The relative time difference between a time boundary "BN+丨" is such as "ΔΐΙΟ" to reply to a time boundary below the interval of the Nth ITP packet Τ2 such as "ΒΝ+1", and if the continuous use of the first (Ν+8) The relative time difference Δt89 of the time information records in the packets is to return a time boundary such as BN+8 before the interval (T+2) of the (IT+8) ITP packets. The interval counter 726 is based on the time boundary of the interval time of each specific ITP packet provided by the time boundary replying unit 724, such as BN, BN+, and is counted by the clock frequency output by the oscillator 42 from a specific ITP. The difference between the time boundary (eg, BN) of the interval to which the packet belongs to the time boundary (eg, BN+8) of the interval at which another particular ITP packet belongs, as a work count value. Please refer to the case shown in Figure 12. When the sampling time Ts2 is 1 ms and the sampled second type serial bus input signal contains 9 ITP packets such as "Ν", "N+1", ''N +2", ... ''N+8", so the interval T2 to which each ITP packet belongs is 125/zs (ie, lms/8), wherein the time boundary reply unit 724 has been used The interval between the Nth ITP packet and its associated interval T2, 24 201205297, BN, and the time interval before finding the (N+8) ITP packet and its associated interval T2, such as ΒΝ+8, then the interval The counter 726 can use the clock frequency output by the oscillator 42 as 12 Mhz to count the time boundary from the time interval Τ2 of the second packet to Τ2, such as Bn, to another (N+8) ITP packet to belong to the interval T2. The time difference such as BN+8 has a count difference of 12,000 times as the work count value. The frequency error detecting unit 728 generates a fourth control signal according to the result of the comparison between the work count value provided by the interval counter 726 and a preset target value, wherein if the work count value is different from the preset target value, The frequency error detecting unit 728 of the third frequency adjusting device 72 changes the output of the fourth control signal to change the clock frequency of the output of the oscillator 42; otherwise, if the working count value is the same as the preset target value, The frequency error detecting unit 728 of the third frequency adjusting device 72 fixes the output of the fourth control signal to maintain the second clock frequency output by the oscillator 42. Please refer to the case in the relationship between the sampling time Ts2 shown in Fig. 12 and the input signal of the second type serial bus. If the working count value is 12,000 times, the preset target value "X" is larger or smaller. 12,000 times, the frequency error detecting unit 728 of the third frequency adjusting device 72 issues a fourth control signal output to reduce or speed up the clock frequency of the oscillator 42 output, and causes the oscillator 42 to output The clock frequency is fed back to the interval counter 726 of the third frequency adjusting device 72 to recount the working count value, and is repeated until the working count value is equal to the preset target value, indicating that an interval corresponding to the at least one specific packet has been obtained. The third clock frequency of time can be used as a source of operating frequency for each component of the USB device 32 (see Figure 3). However, in another embodiment, in order to avoid infinite or excessive loops, it is also possible to design: using a counter to count a fixed number of loops or after performing a specific time, the output of the oscillator 42 at that time. The clock frequency is used as the third clock frequency. As shown in Figures 9 and 7A, a sequence bus according to a third embodiment of the present invention

[S 25 201205297 時脈頻率校準系統70的第三頻率調整裝置72所發出之第四控制 訊號與前述第一實施例之第一控制訊號的控制原理相同,同樣是 以數位控制訊號控制該等電容組910,920來設定此振盪器42的第 三頻率調控範圍如300ppm,因此利用該第三頻率調整裝置72之 頻率錯誤偵測單元408傳來的第四控制訊號所包含的一組數位切 換訊號BCS[0]〜BCS[N]的不同準位變化開啟或關閉該振盪器42之 切換開關913, 923,即可變化該振盪器42輸出之時脈頻率大小。 於其他實施例中,該第三頻率調整裝置72傳來之第四控制訊號可 以為一電壓Vc,該電壓Vc的不同準位可以改變該兩個可變電容 92, 93之電容值,即可進一步微調該振盪器42輸出之時脈頻率。 前述電容組910, 920與可變電容92, 93皆可使用各種類型的電容 來加以實施。例如’電容組910,92〇可使用金屬-絕緣體-金屬 (Metal-insulator-metal,MIM)型電容,或可變電容92, 93亦可以是 一種PMOS或CMOS元件或是再分成數個較小的電容來細化頻率 調控。 請進一步參考第9及7B圖之本發明的振盪器42之另一實施 例’與第7A圖所示之振盪器42的功能與作動原理皆相似,只不 過採用的電子元件不同。例如其中一電容組100,1〇1之任一電容 1010為一 PMOS元件’而該調控端之其中一侧連接的一可變電容 1020亦為一 PMOS元件。 基於前述,當第三頻率調整裝置72接收第二型序列匯流排輸 入訊號時,基於該第二型序列匯流排輸入訊號中至少一特定封包 所含的時間資訊及該振盪器42輸出之時脈頻率,產生第四控制訊 號用於設定振盈器之一第三頻率調控範圍如3OOppm,以更改該振 盪器42輸出之時脈頻率且更改後之時脈頻率再回饋予第三頻率調 整裝置72 ’周而復始,使得該第三頻率調整裝置72與振廬器42 26 201205297 事實上組成了如第10圖所示之一第三階頻率獲取迴路⑽以持續 更改或维持該振遽器42輸出之時脈頻率,直到獲得1合該至少 -特定封包對應之間隔時間之第三時脈頻率。亦可 計數第三階頻率獲取迴路IG2執行固^次數的趣射 時間之後,以當時該振Μ 42輸出的時脈頻率作為第三時丁^ 率。惟,需注意的是··如第5、6及1〇圖所示的第一二 三階頻率獲取迴路50, 6〇, 1〇2皆依序分別校準頻率:一口 路脈頻 供一種序列匯流排時脈頻率校準方二之J:較 列匯流排時脈頻率校準系統7〇之各元件,該考第9圖之序 利用-鏈結層74決定該 &括下列步驟: 列匯流排輸入訊號或該第_ 、〜、置40接收第一型序 排輸入訊號; 頻率_裝置72接收第二型序列匯流 步驟_見第8圖所含之各步驟),當料 置40接收第-型序列匯流排輸入訊號::頻率調整装 列匯流排時脈頻率精破度校準過程,藉 ^的第-型序 一頻率調控範圍及第二頻率調控範圍,進而遭器42之第 頻率及第二時脈頻率,其 運而獲仵所需的第一時脈 範圍;以及 第一頻率調控範圍大於第二頻率調控 步驟S90 ’當完成該兩階 '標準規格)時脈頻率精確度校準過—程之列匯=如符合USB 列匯流排(如符合USB 3.G榡準纽 卩執行—第二型序 後介紹)。於前述步驟S8G ^沾二脈頻率精破度校準過程(如 所示該苐二頻率調整襞置 ‘如第8圖之步驟S870 時脈頻率之後,該第二頻率6=:前:,^ I發出-訊途通知該鏈結 27 S] 201205297 層74,使該鍵結層74切 裝置32與主機30間之通訊協^ 30電性連接並重新偵測,使該 接著該鏈結層74決定第三頻;二枳式由USB2.0切換至USB3.〇, 的第二型序額流騎人72開始接收主機30傳來 脈頻率精確度的校準、纟:並基於刖述第—型序列匯流排時 精確度校準過程4 行讀第二㈣舰流排時脈頻率 敌i回政mu™ A 、、他貫施例中’為了避免第二階頻率獲 ㈣田〜/ 或過長的迴圈,亦可設計成:利用—計數器於 -;U的迴圈或於執行—段特定時間之後,發出—訊號通 知β鏈m層74’使摘結層74將該通訊協定模式由脳2.0切換 至USB 3.0並以當時該振堡器輪出的時脈頻率作為已校準的 第二=脈頻率。另,於其他實施例中,該鍵結層74内設-段該通 訊協疋為USB 2.G的執行時間;當此執行時間—到,該鏈結層74 將°亥通訊協定模^ USB2.G切換1 USB3.G,並以當時該振盪器 42輸^的時脈頻率作為已校準的第二時脈頻率。 明進一步參考第M圖所示,係為前述第二型序列匯流排時脈 頻率精確度校準過程S90所含之各步驟,其中請配合參考第9圖 之序列匯流排時脈頻率校準系統7〇之各元件,該過程S90進一步 包括下列步驟: 步驟S9〇〇,利用該第三頻率調整裝置π接收第二型序列匯流 排輸入訊號且該第二型序列匯流排輸入訊號具有至少一特定ITP 封包; 步驟S1 〇〇〇,利用第三頻率調整裝置72辨識出該至少一特定 ITP封包及其所含的時間資訊; 步驟S1002,利用該至少 一特定ITP対包所含的時間資訊回復 該至少一特定ITp封包所屬間隔時間之時間邊界(如第12圖之符 號”BN”、”BN+丨,,); 28 201205297 步驟S1004,利用該第三頻率調整裝置72依據該振盪器42輸 *- 出之時脈頻率計算出,從其中一特定ΓΓΡ封包所屬間隔時間之時 .·_ 間邊界(如第12圖之符號”BN”)至另一特定ITP封包所屬間隔時間 之時間邊界(如第12圖之符號”BN+8”)之間的計數差值,以作為一 工作計數值; 步驟S1006,利用該第三頻率調整裝置72比對前述工作計數 值與一預設目標值之間有無差異;如果是,則進行步驟S1008;反 之,則進行步驟S1010 ; ^ 步驟S1008,利用該第三頻率調整裝置72根據工作計數值與 W . 該預設目標值之間的比對結果,產生第四控制訊號用於設定振盪 器42之一第三頻率調控範圍以持續調整振盪器42輸出的操作時 脈頻率並將該調整後的操作時脈頻率回饋予第三頻率調整裝置 72 ;接著回到步驟S1000,使第三頻率調整裝置72對第二型序列 匯流排輸入訊號重新取樣。於本第四實施例中,前述第三頻率調 控範圍小於第一頻率調控範圍及第二頻率調控範圍,且在步驟 S1008中,該第三頻率調整裝置72是以第四控制訊號設定振盈器 42之一第三頻率調控範圍,以使振盪器42從步驟S80(兩階段的 φ 第一型序列匯流排時脈頻率精確度校準過程)中獲得的第二時脈 頻率調整至第三時脈頻率。 步驟S1010,當工作計數值與預設目標值相同時,代表已獲取 符合該特定封包對應之間隔時間邊界之第三時脈頻率,則固定第 四控制訊號之輸出以維持該振盪器42輸出之第三時脈頻率;接著 回到步驟S1000,使第三頻率調整裝置72對第二型序列匯流排輸 入訊號重新取樣,直到第三頻率調整裝置72獲得一符合該至少一 特定ITP封包對應之間隔時間之第三時脈頻率。於其他實施例中, 可以利用一計數器計數如第10圖所示之第三階頻率獲取迴路102 _ [b 29 201205297 執行固定次數的迴圈或於執行特定時間之後,即以當 42輸出的時脈頻率作為第三時脈頻率。 .一振羞器 請進-步參考第15圖,係顯示本發明之第五較佳實施例之序 列匯流排時脈頻率校準系統15〇,其主要結構包括:一第一,率調 整裝置40、一第二頻率調整裝£72、一振璽器42及—鍵結= 第15圖之該第五較佳實施例與第9圖之第三實施例相較,相同之 處如下:第五較佳實施例之該第一頻率調整裝置4〇、振盪器42 及鏈結層74之内部結構與功能皆相同於第9、7A及則所示之 第三較佳實施例之序列匯流排時脈頻率校準系统70之第一頻率調 整裝置40、振盪器42及鏈結層74,其令第五較佳實施例之第一 頻率調整裝置40與振盪器42組成如同第5圖所示之第一階頻率 獲取迴路50,以及第五較佳實施例之第二頻率調整裝置72之内部 結構與功能也相同於第9圖之第三實施例之第三頻率調整裝置72 並與振盛器42組成一第二階頻率獲取迴路(未標示),其結構及功 ^如同第10圖所示之第三較佳實施例之第三階頻率獲取迴路 Ί /\ Λ 。反之’第15圖之該第五較佳實施例與第9圖之第三實施例 相較’差異之處在於:第15圖之該第五較佳實施例未設置有如第 9圖之第三實施例所示之第二頻率調整裝置46及第6圖所示之第 二階頻率獲取迴路6〇。 當USB裝置32(如第3圖所示)接到—種USB輸入訊號時’如 果該USB輸人μ為第 一型序列匯流排(如符合USB 2.0標準規格) 輪入訊號或第二型序列匯流排(如符合USB 3 〇標準規格)輸入訊 號則如第10圖所示之鏈結層74決定以該第一頻率調整裝置40 來接收第一型序列匯流排輸入訊號或以第二頻率調整裝置72來接 收第二型序列匯流排輸入訊號。 如第3、5及15圖所示之本第五實施例中,當該USB主機30 201205297 及USB裝置32雙方電性連接且處於傳送資訊的初期時,該 " 主機會先發出一偵測訊號給該USB裝置32之序列匯流排時脈 ·· 頻率校準系統70之鏈結層74以確定該裝置32的存在及連接,接 • 著雙方進入一信號交換(Handshaking)階段,其中USB裝置32之[S 25 201205297 The fourth control signal sent by the third frequency adjusting device 72 of the clock frequency calibration system 70 is the same as the control principle of the first control signal of the first embodiment, and the capacitor is also controlled by the digital control signal. The group 910, 920 sets the third frequency control range of the oscillator 42 to be 300 ppm. Therefore, the set of digital switching signals BCS included in the fourth control signal transmitted by the frequency error detecting unit 408 of the third frequency adjusting device 72 is used. The different level changes of 0]~BCS[N] turn on or off the switches 913, 923 of the oscillator 42, and the clock frequency of the output of the oscillator 42 can be changed. In other embodiments, the fourth control signal sent by the third frequency adjusting device 72 can be a voltage Vc, and different levels of the voltage Vc can change the capacitance values of the two variable capacitors 92, 93. The clock frequency of the output of the oscillator 42 is further fine tuned. The aforementioned capacitor banks 910, 920 and variable capacitors 92, 93 can be implemented using various types of capacitors. For example, 'capacitor group 910, 92 〇 can use metal-insulator-metal (MIM) type capacitor, or variable capacitor 92, 93 can also be a PMOS or CMOS component or subdivided into several smaller Capacitance to refine the frequency regulation. Please refer to the other embodiment of the oscillator 42 of the present invention with reference to Figs. 9 and 7B and the oscillator 42 shown in Fig. 7A for the same function and operation principle, except that the electronic components used are different. For example, one of the capacitors 100, 1?1 is a PMOS device, and a variable capacitor 1020 connected to one side of the control terminal is also a PMOS device. Based on the foregoing, when the third frequency adjusting device 72 receives the second type serial bus input signal, based on the time information contained in at least one specific packet in the input signal of the second type serial bus and the clock output of the oscillator 42 Frequency, generating a fourth control signal for setting a third frequency regulation range of the oscillator, such as 3OOppm, to change the clock frequency of the output of the oscillator 42 and the modified clock frequency is fed back to the third frequency adjusting device 72. 'Recurringly, such that the third frequency adjusting device 72 and the vibrator 42 26 201205297 actually constitute a third-order frequency acquisition loop (10) as shown in FIG. 10 to continuously change or maintain the output of the vibrator 42 The pulse frequency is until the third clock frequency of the interval corresponding to the at least-specific packet is obtained. After the third-order frequency acquisition loop IG2 is counted, the clock frequency output by the vibration 42 is used as the third-time frequency. However, it should be noted that the first two third-order frequency acquisition loops 50, 6〇, 1〇2 are sequentially calibrated separately according to the 5th, 6th and 1st diagrams: one-channel pulse frequency for one sequence Bus timing frequency calibration method 2: J: The components of the bus clock frequency calibration system 7 ,, the order of Figure 9 is determined by the - link layer 74. The following steps are included: Column bus The input signal or the _, 〜, 40 sets receive the first type of sequence input signal; the frequency _ device 72 receives the second type of sequence convergence step _ see the steps included in Fig. 8), when the material set 40 receives the first - Type sequence bus input signal:: frequency adjustment assembly bus line clock frequency fineness calibration process, by the first-type sequence of a frequency regulation range and the second frequency control range, and then the frequency of the device 42 and The second clock frequency, which is obtained by the first clock range required; and the first frequency control range is greater than the second frequency control step S90 'when the two-stage 'standard specification is completed') the clock frequency accuracy is calibrated - Cheng Zhi Lie=If it complies with the USB bus bar (if it complies with USB 3.G榡- The second type sequence after introduction). After the foregoing step S8G ^ two-frequency frequency fineness calibration process (as shown in the second frequency adjustment device ' as shown in step 8 of FIG. 8 clock frequency, the second frequency 6 =: before:, ^ I Sending a message to the link 27 S] 201205297 layer 74, causing the bonding layer 74 to cut the device 32 and the host 30 to electrically connect and re-detect, so that the link layer 74 is determined The third frequency; the second type of switch from USB2.0 to USB3.〇, the second type of sequence stream rider 72 begins to receive the calibration of the pulse frequency accuracy of the host 30, and is based on the first-order sequence. Bus alignment accuracy calibration process 4 rows read the second (four) ship flow clock frequency enemy i ruling muTM A,, in his example, in order to avoid the second-order frequency get (four) field ~ / or too long back The circle can also be designed to: use the counter to cycle through the U; or after the specific time period of the execution - the signal is sent to the beta chain m layer 74' to cause the picking layer 74 to switch the protocol mode from 脳2.0. Up to USB 3.0 and the clock frequency rotated by the vibrator at that time as the calibrated second = pulse frequency. In addition, in other embodiments, The key layer 74 is internally provided with a segment of the communication protocol for the execution time of the USB 2.G; when the execution time is reached, the link layer 74 switches the USB protocol to the USB2.G to 1 USB3.G, and The clock frequency of the oscillator 42 is used as the calibrated second clock frequency. The reference to the second type of bus bar clock frequency accuracy calibration process S90 is further shown in FIG. The steps S90 further include the following steps: Step S9:, using the third frequency adjusting device π to receive the second component, in conjunction with the components of the sequence bus clock calibration system 7A of FIG. The type sequence bus input signal and the second type sequence bus input signal has at least one specific ITP packet; in step S1, the third frequency adjusting device 72 is used to identify the at least one specific ITP packet and the time it contains Step S1002: Respond to the time boundary of the interval at which the at least one specific ITp packet belongs by using the time information included in the at least one specific ITP packet (such as the symbol “BN”, “BN+丨,,” in FIG. 12); 201205297 In step S1004, the third frequency adjusting device 72 calculates, according to the clock frequency of the oscillator 42, from the time interval between the time intervals of a particular packet, the boundary between the frames (such as the symbol in FIG. 12). "BN") to the time difference between the time boundary of another specific ITP packet (such as the symbol "BN+8" in FIG. 12), as a work count value; Step S1006, using the third The frequency adjusting device 72 compares whether there is a difference between the foregoing working count value and a preset target value; if yes, proceeding to step S1008; otherwise, proceeding to step S1010; ^ step S1008, using the third frequency adjusting device 72 according to the work And a comparison result between the count value and the W. the preset target value, generating a fourth control signal for setting a third frequency regulation range of the oscillator 42 to continuously adjust the operation clock frequency output by the oscillator 42 and The adjusted operating clock frequency is fed back to the third frequency adjusting device 72; then, returning to step S1000, the third frequency adjusting device 72 resamples the second type serial bus input signal. In the fourth embodiment, the third frequency adjustment range is smaller than the first frequency regulation range and the second frequency regulation range, and in step S1008, the third frequency adjustment device 72 sets the oscillator with the fourth control signal. a third frequency regulation range of 42 to adjust the second clock frequency obtained by the oscillator 42 from step S80 (the two-stage φ first type sequence bus clock frequency accuracy calibration process) to the third clock frequency. Step S1010: When the working count value is the same as the preset target value, indicating that the third clock frequency corresponding to the interval time interval corresponding to the specific packet is acquired, the output of the fourth control signal is fixed to maintain the output of the oscillator 42. The third clock frequency; then returning to step S1000, causing the third frequency adjusting device 72 to resample the second type serial bus input signal until the third frequency adjusting device 72 obtains an interval corresponding to the at least one specific ITP packet. The third clock frequency of time. In other embodiments, a counter can be used to count the third-order frequency acquisition loop 102 as shown in FIG. 10 _ [b 29 201205297 performing a fixed number of loops or after performing a specific time, that is, when 42 outputs The pulse frequency is used as the third clock frequency. A vibrator, please refer to FIG. 15, which shows a sequence bus clock frequency calibration system 15A according to a fifth preferred embodiment of the present invention, the main structure of which includes: a first, rate adjusting device 40 , a second frequency adjustment device, 72, a vibrator 42 and a key combination = the fifth preferred embodiment of FIG. 15 is compared with the third embodiment of the ninth embodiment, and the similarities are as follows: The internal structure and function of the first frequency adjusting device 4, the oscillator 42 and the link layer 74 of the preferred embodiment are the same as those of the sequence bus of the third preferred embodiment shown in FIGS. 9 and 7A. The first frequency adjusting device 40 of the pulse frequency calibration system 70, the oscillator 42 and the link layer 74, the first frequency adjusting device 40 and the oscillator 42 of the fifth preferred embodiment are formed as shown in FIG. The first-order frequency acquisition circuit 50 and the second frequency adjustment device 72 of the fifth preferred embodiment have the same internal structure and function as the third frequency adjustment device 72 of the third embodiment of FIG. 9 and are combined with the vibrating device 42. A second-order frequency acquisition loop (not labeled) whose structure and function are as shown in Fig. 10. The third-order frequency acquisition loop Ί /\ Λ of the third preferred embodiment. Conversely, the fifth preferred embodiment of FIG. 15 is different from the third embodiment of FIG. 9 in that the fifth preferred embodiment of FIG. 15 is not provided with the third figure as shown in FIG. The second frequency adjustment device 46 shown in the embodiment and the second-order frequency acquisition circuit 6 shown in FIG. When the USB device 32 (as shown in Figure 3) is connected to a USB input signal, 'If the USB input μ is the first type of serial bus (if the USB 2.0 standard is met), the round signal or the second type sequence The input signal of the bus (if conforming to the USB 3 standard specification) is determined by the link layer 74 as shown in FIG. 10 to receive the first type serial bus input signal or adjust the second frequency by the first frequency adjusting device 40. The device 72 receives the second type of serial bus input signal. In the fifth embodiment shown in Figures 3, 5 and 15, when the USB host 30 201205297 and the USB device 32 are electrically connected and are in the initial stage of transmitting information, the " host sends a detection first. The signal is given to the serial bus of the USB device 32. The link layer 74 of the frequency calibration system 70 determines the presence and connection of the device 32, and the two parties enter a handshaking phase, wherein the USB device 32 It

鏈結層74決定其與該USB主機30之間的通訊協定模式,例如USB 2.0或USB 3.0。一旦該鏈結層74決定USB主機30及USB裝置 32之間的通訊協定模式之後,即可依該通訊協定模式來進一步決 定以該第一頻率調整裝置40來接收第一型序列匯流排輸入訊號或 φ 以第二頻率調整裝置72來接收第二型序列匯流排輸入訊號。例 如’當該USB主機30及USB裝置32均支援USB3.0規格時,該 USB主機30與USB裝置32之間的電性連接初期(如信號交換 (Handshaking)階段)會分成以下兩個階段進行:於第一階段時,該 鏈結層74先決定該USB主機3〇及USB裝置32之間的通訊協定 模式為USB 2.0以回覆該USB主機30,使該USB主機30關閉其 符合USB 3.0規格的超高速(Super-speed)訊號操作,接著該鏈結層 74會先決定由該第一頻率調整裝置4〇來接收該USB主機3〇傳來 的第一型序列匯流排輸入訊號以進行第一階段的第一型序列匯流 排頻率校準。 當該第一頻率調整裝置40接收第一型序列匯流排輸入訊號且 該第一型序列匯流排輸入訊號具有至少一週期訊號(如s〇F封包) 及一參考時脈頻率時,第一頻率調整裝置40基於該至少一週期訊 號(如SOF封包)及振盪器42輸出之時脈頻率,產生一第一控制訊 號用於設定該振盪器之一第一頻率調控範圍,並持續調整振盪器 42輸出的時脈頻率,直到獲得符合週期訊號之間隔時間之第一時 脈頻率(請參考第11圖所示之取樣時間Tsl與該第一型序列匯流排· 輸入訊號之間的關係示意圖),亦代表該第一頻率調整裝置4〇已 31 201205297 元成了對振盪器42的第一階段的第一型序列匯流排時脈頻率精確 . 度校準過程:接著該第一頻率調整裝置40之頻率錯誤偵測單元 408會發出—訊號通知該鏈結層74’使該鏈結層74切斷與主機30 電I·生連接並重新偵測,以將該裂置32與主機3〇間之通訊協定模 式由USB 2.0切換至USB 3.0,接著該鏈結層74決定第二頻率調 整裝置72開始接收主機3〇傳來的第二型序列匯流排輸入訊號, 並基於别述第—型序列匯流排時脈頻率精確度的校準結枣,進行 下階敛之第二型序列匯流排時脈頻率精確度校準過程。需注意 的是,當鏈結層74決定將該通訊模式切換成USB3 〇之後,絲籲 置32不會收到符合USB 2·〇的第一型序列匯流排輸入訊號。 士第15圖之本第五實施例中,當該鏈結層74決定由該第二 1率調U置72接收第二型序列匯流排輸人訊號時,基於該第二 ^'序列匯流排輪人訊號中特定封包所含的時間資訊及該振盪器42 ,出之時脈頻率,產生第二控制訊號用於設定振盪器之-第二頻 率調控範圍(Μ述該第—頻率調控範圍大於第二頻率調控範圍)), 、更二振1器42輸出之時脈頻率且更改後之時脈頻率再回饋予 第*7頻率調整裝置72,周而復始,姻獲得—符合㈣隔時間之籲 ^ 頻率。於其他實施例中,可以利用一計數器計數該第三 階頻=獲取迴路1G2(如第1G @所示)執行固定次數的迴圈或於執 一特時間之後,即以當時該振盈器42輸出的時脈頻率作為第三 時脈頻率。 此外,攸據本發明之一第六較佳實施例係提供一種序列匯流 排時脈頻率校準方法,其中配合參考第15圖之序列匯流排時脈頻 率校準系統15q之各元件’該方法包括下列步驟: 利用鏈結層74決定該第一頻率調整裝置4〇接收第一塑序 列匯流排(如符合USB 2.G標準規格)輸人訊號或該第二頻率調整 32 201205297 裝置72接收第二型序列匯流排(如符合USB 3.0標準規格)輸入訊 ·- 號; .· 步驟S800〜S840(見第8圖)’當該鏈結層74決定該第一頻率 調整裝置40接收第一型序列匯流排輸入訊號,即執行單一階段的 第一型序列匯流排時脈頻率精韓度校準過程,藉以分別設定振盪 器42之第一頻率調控範圍,進而獲得所需的第一時脈頻率;以及 步驟S90(見第14圖),當完成該第一階段的第一型序列匯流排 (如符合USB 2.0標準規格)時脈頻率精確度校準過程之後,鏈結層 74決定由第二頻率調整裝置72對前述振盪器42輸出的第一時脈 ® 頻率持續執行第二階段的第二型序列匯流排時脈頻率精確度校準 過程。 請進一步參考第16圖,係顯示本發明之一第七較佳實施例之 序列匯流排時脈頻率校準系統70’,其主.要結構包括:一第一頻率 調整裝置40、一第二頻率調整裝置46、一第三頻率調整裝置72、 一振盡器42及一鏈結層74 ’其相較於第9圖之第三較佳實施例之 序列匯流排時脈頻率校準系統70的不同之處在於:第七較佳實施 例之該第一頻率調整裝置40與第三頻率調整裝置72係共用同一 ® 個間隔計數器4〇6及頻率錯誤偵測單元408,其餘元件如第二頻率 調整裝置46、振盪器42及鏈結層74之結構與功能皆相同於第9 及10圖所示之第三較佳實施例,因此於此不再贅述。 請進一步參考第17圖,係顯示本發明之一第八較佳實施例之 序列匯流排時脈頻率校準系統15〇,,其主要結構包括:一第一頻 率調整裝置40、一第二頻率調整裝置72、一振盪器42及一鏈結 層74,其相較於第15圖之第五較佳實施例之序列匯流排時脈頻率 校準系統150的不同之處在於:第八較佳實施例之該第一頻率調 整裝置40與第二頻率調整裝置72係共用同一個間隔計數器406 33 201205297 及頻率錯誤偵測單元408, 構與功能皆相同於第15圖 贅述。 其餘元件如振盪器42及鏈結層74之結 所不之第五較佳實施例,因此於此不再 法,可本發明之序列匯流排時脈頻率校準系統及其方 範圍1:二本的USB訊號之操作時脈頻率執行不同頻率調控 精確度校準,且本發明之序列匯流排時脈 頻率校準系統利用第-頻率調整裝置、第二頻率調整裝置及第三 :率=置共用同一振盪器,以執行多段式時脈頻率精確度校 準,故此大幅簡化系統設計,使元件成本降低。 綜上所述,本發明符合發明專利要件,爰依法提出專利申试。 惟以上所述者僅為本發明之較佳實施例,舉凡熟悉此項技蓺:人 士’在麦依本發明精神架構下所做之等效修飾或變化,皆應包含 於以下之申請專利範圍内。 。I3The link layer 74 determines its protocol mode with the USB host 30, such as USB 2.0 or USB 3.0. Once the link layer 74 determines the protocol mode between the USB host 30 and the USB device 32, the first frequency adjustment device 40 can be further determined to receive the first type serial bus input signal according to the protocol mode. Or φ receives the second type serial bus input signal by the second frequency adjusting means 72. For example, when both the USB host 30 and the USB device 32 support the USB 3.0 specification, the initial stage of electrical connection between the USB host 30 and the USB device 32 (such as the handshake process) is divided into the following two phases. In the first stage, the link layer 74 first determines that the communication protocol mode between the USB host 3 and the USB device 32 is USB 2.0 to reply to the USB host 30, so that the USB host 30 is turned off to comply with the USB 3.0 specification. The super-speed signal operation, and then the link layer 74 first determines that the first frequency adjustment device 4 receives the first type serial bus input signal from the USB host 3 to perform the first One stage of the first type of sequence bus frequency calibration. When the first frequency adjusting device 40 receives the first type serial bus input signal and the first type serial bus input signal has at least one periodic signal (such as s〇F packet) and a reference clock frequency, the first frequency The adjusting device 40 generates a first control signal for setting a first frequency control range of the oscillator based on the at least one period signal (such as the SOF packet) and the clock frequency output by the oscillator 42, and continuously adjusting the oscillator 42. Output the clock frequency until the first clock frequency corresponding to the interval of the periodic signal is obtained (please refer to the relationship between the sampling time Tsl shown in Fig. 11 and the first type of sequence bus and input signal), It also represents that the first frequency adjusting device 4 〇 31 201205297 becomes the first type of sequence bus bar clock frequency accuracy for the first stage of the oscillator 42. The degree calibration process: then the frequency of the first frequency adjusting device 40 The error detection unit 408 sends a signal to the link layer 74' to disconnect the link layer 74 from the host 30 and re-detect it to connect the split 32 to the host 3. The protocol mode is switched from USB 2.0 to USB 3.0, and then the link layer 74 determines that the second frequency adjusting device 72 starts to receive the second type serial bus input signal transmitted from the host 3, and based on the first-type serial bus. The calibration of the clock frequency accuracy is performed, and the second-order sequence bus line clock frequency accuracy calibration process is performed. It should be noted that after the link layer 74 decides to switch the communication mode to USB3, the wire call 32 will not receive the first type serial bus input signal conforming to the USB 2·〇. In the fifth embodiment of Figure 15, when the link layer 74 determines to receive the second type sequence bus input signal by the second rate adjustment U, the second channel is based on the second bus sequence. The time information contained in the specific packet in the wheel signal and the clock frequency of the oscillator 42 are generated to generate a second control signal for setting the second frequency control range of the oscillator (discussing that the first frequency adjustment range is greater than The second frequency regulation range)), and the clock frequency of the output of the second vibration unit 42 and the changed clock frequency are fed back to the *7 frequency adjustment device 72, and the marriage is obtained again. frequency. In other embodiments, a counter can be used to count the third-order frequency=acquisition loop 1G2 (as shown by the first 1G@) to perform a fixed number of loops or after a special time, that is, the oscillator 42 at that time. The output clock frequency is used as the third clock frequency. In addition, according to a sixth preferred embodiment of the present invention, there is provided a method for calibrating a sequence bus clock frequency, wherein the components of the sequence bus timing calibration system 15q with reference to FIG. 15 are included. Step: using the link layer 74 to determine that the first frequency adjustment device 4 receives the first plastic sequence bus (if the USB 2.G standard is compliant) input signal or the second frequency adjustment 32 201205297 device 72 receives the second type The serial bus (if conforming to the USB 3.0 standard specification) is input to the signal number. - Steps S800 to S840 (see FIG. 8) 'When the link layer 74 determines that the first frequency adjustment device 40 receives the first type sequence convergence Row input signal, that is, performing a single-stage first-type serial bus clock frequency precision calibration process, thereby respectively setting the first frequency control range of the oscillator 42 to obtain the required first clock frequency; and the steps S90 (see Figure 14), after completing the first-stage serial bus (such as the USB 2.0 standard specification) clock frequency accuracy calibration process, the link layer 74 determines the second frequency. When the second-type sequence of a first clock frequency of the entire apparatus 42 ® foregoing oscillator 72 outputs a second stage is performed continuously bus clock frequency accuracy of the calibration procedure. Please refer to FIG. 16 for a sequence bus clock frequency calibration system 70' according to a seventh preferred embodiment of the present invention. The main structure includes: a first frequency adjusting device 40 and a second frequency. The adjusting device 46, a third frequency adjusting device 72, a vibrating unit 42 and a link layer 74' are different from the serial bus clock frequency calibration system 70 of the third preferred embodiment of FIG. The first frequency adjusting device 40 and the third frequency adjusting device 72 of the seventh preferred embodiment share the same interval counter 4〇6 and the frequency error detecting unit 408, and the remaining components are adjusted according to the second frequency. The structure and function of the device 46, the oscillator 42 and the link layer 74 are the same as those in the third preferred embodiment shown in FIGS. 9 and 10, and thus will not be described again. Referring to FIG. 17, a sequence bus clock frequency calibration system 15A according to an eighth preferred embodiment of the present invention is shown. The main structure includes: a first frequency adjustment device 40 and a second frequency adjustment. The device 72, an oscillator 42 and a link layer 74 are different from the sequence bus clock frequency calibration system 150 of the fifth preferred embodiment of FIG. 15 in that: the eighth preferred embodiment The first frequency adjusting device 40 and the second frequency adjusting device 72 share the same interval counter 406 33 201205297 and the frequency error detecting unit 408, and the functions and functions are the same as those in FIG. The remaining components, such as the oscillator 42 and the link layer 74, are not in the fifth preferred embodiment. Therefore, the serial bus clock frequency calibration system of the present invention and its range 1 and 2 can be omitted. The operating clock frequency of the USB signal performs different frequency regulation precision calibration, and the serial bus clock frequency calibration system of the present invention utilizes the first frequency adjusting device, the second frequency adjusting device, and the third: rate=set sharing the same oscillation In order to perform multi-stage clock frequency accuracy calibration, the system design is greatly simplified and the component cost is reduced. In summary, the present invention complies with the requirements of the invention patent, and proposes a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and those skilled in the art: equivalent modifications or variations made by the person in the spirit of the invention may be included in the following patent application scope. Inside. . I3

【圖式簡單說明】 第1圖係為一架構簡圖以顯示習知USB主機與usb裝置之間 的USB介面資料傳輸。 第2圖係為一架構簡圖以顯示另一種習知USB主機與穿 置之間的USB介面資料傳輸。 、 第3圖係為一架搆簡圖以顯示依據本發明之一第一實施例之 USB主機與USB裝置之間的USB介面資料傳輸。 第4圖係為一功能方塊圖以顯示依據本發明之第一實施例之 序列匯流排時脈頻率校準系統之架構。 第5圆係為一功能方塊圖以顯示依據本發明之第一實施例之 序列匯流排時脈頻率校準系統之第一階頻率獲取迴路。 第6圖係為一功能方塊圖以顯示依據本發明之第一實施例之 序列匯流排時脈頻率校準系統之第二階頻率獲取迴路。 34 201205297 第7A圖係為一功能方塊圖以顯示依據本發明之第一實施例 *- 之序列匯流排時脈頻率校準系統之振盪器之電路。 第7B圖係為一功能方塊圖以顯示依據本發明之另一較佳實 施例之序列匯流排時脈頻率校準系統之振盪器之電路。 第δ圖係為一方法流程圖以顯示依據本發明之一第二實施例 之一種序列匯流排時脈頻率校準方法之步驟。 第9圖係為一功能方塊圖以顯示依據本發明之一第三實施例 之序列匯流排時脈頻率校準系統之架構。 φ 第10圖係為一功能方塊圖以顯示依據本發明之第三實施例之 序列匯流排時脈頻率校準系統之第一階頻率獲取迴路。 第11圖為一取樣時間Tsl與該第一型序列匯流排輸入訊號之 間的關係示意圖 第12圖為一取樣時間Ts2與該第二型序列匯流排輸入訊號之 間的關係示意圖 第13圖係為一方法流程圖以顯示依據本發明之一第四較佳實 施例之一種序列匯流排時脈頻率校準方法。 ^ 第14圖係為一方法流程圖以顯示第13圖之一種第二型序列 ❿ 匯流排時脈頻率精確度校準過程。 第15圖係為一功能方塊圖以顯示本發明之一第五較佳實施例 之一種序列匯流排時脈頻率校準系統。 第16圖係為一功能方塊圖以顯示本發明之一第七較佳實施例 之一種序列匯流排時脈頻率校準系統。 第17圖係為一功能方塊圖以顯示本發明之一第八較佳實施例 之一種序列匯流排時脈頻率校準系統。 【主要元件符號說明】 30 USB主機 35 201205297 32 USB裝置 36, 70, 70’,150, 150’ 序列匯流排時脈頻率校準系統 40 第一頻率調整裝置 42 振盪器 46 第二頻率調整裝置 50 第一階頻率獲取迴路 60 第二階頻率獲取迴路 72 第三頻率調整裝置[Simple diagram of the diagram] Figure 1 is a schematic diagram of the architecture to display the USB interface data transmission between the conventional USB host and the usb device. Figure 2 is an architectural diagram showing the USB interface data transfer between another conventional USB host and device. Figure 3 is a schematic diagram showing the USB interface data transmission between the USB host and the USB device according to the first embodiment of the present invention. Figure 4 is a functional block diagram showing the architecture of a sequence bus clock frequency calibration system in accordance with a first embodiment of the present invention. The fifth circle is a functional block diagram showing the first order frequency acquisition loop of the sequence bus clock frequency calibration system in accordance with the first embodiment of the present invention. Figure 6 is a functional block diagram showing a second order frequency acquisition loop of a sequence bus clock frequency calibration system in accordance with a first embodiment of the present invention. 34 201205297 Figure 7A is a functional block diagram showing the circuitry of an oscillator of a serial bus clock frequency calibration system in accordance with the first embodiment of the present invention. Figure 7B is a functional block diagram showing the circuitry of an oscillator of a serial bus clock frequency calibration system in accordance with another preferred embodiment of the present invention. The δth diagram is a method flow diagram showing the steps of a sequence bus clock frequency calibration method in accordance with a second embodiment of the present invention. Figure 9 is a functional block diagram showing the architecture of a sequence bus clock frequency calibration system in accordance with a third embodiment of the present invention. Figure 10 is a functional block diagram showing a first order frequency acquisition loop of a sequence bus clock frequency calibration system in accordance with a third embodiment of the present invention. Figure 11 is a schematic diagram showing the relationship between a sampling time Tsl and the input signal of the first type serial bus. Fig. 12 is a schematic diagram showing the relationship between a sampling time Ts2 and the input signal of the second type serial bus. A method flow diagram for displaying a serial bus clock frequency calibration method in accordance with a fourth preferred embodiment of the present invention. ^ Figure 14 is a method flow diagram showing a second type of sequence ❿ bus timing frequency accuracy calibration process of Figure 13. Figure 15 is a functional block diagram showing a serial bus clock frequency calibration system in accordance with a fifth preferred embodiment of the present invention. Figure 16 is a functional block diagram showing a serial bus clock frequency calibration system in accordance with a seventh preferred embodiment of the present invention. Figure 17 is a functional block diagram showing a serial bus clock frequency calibration system in accordance with an eighth preferred embodiment of the present invention. [Main component symbol description] 30 USB host 35 201205297 32 USB device 36, 70, 70', 150, 150' Sequence bus clock frequency calibration system 40 First frequency adjustment device 42 Oscillator 46 Second frequency adjustment device 50 First-order frequency acquisition loop 60 second-order frequency acquisition loop 72 third frequency adjustment device

74 鏈結層 102 第三階頻率獲取迴路 402 週期訊號偵測單元 406 間隔計數器 408 頻率錯誤偵測單元 462 相位偵測單元 466 迴路濾波器 468 除頻器74 Link layer 102 Third-order frequency acquisition loop 402 Period signal detection unit 406 Interval counter 408 Frequency error detection unit 462 Phase detection unit 466 Loop filter 468 Frequency divider

90, 91 電感 92, 93 可變電容 94, 95, 96 NMOS 元件 910, 920, 100, 101 電容組 911,922 電容 913, 923 切換開關 722 封包辨識單元 724 時間邊界回復單元 726 間隔計數器 728 頻率錯誤偵測單元 36 201205297 1010, 1020 PM0S元件 Out 輸出端 In 調控端 BCS[0]~ BCS[N] 第一控制訊號的數位切換訊號 Vc 第三控制訊號90, 91 Inductor 92, 93 Variable Capacitor 94, 95, 96 NMOS Component 910, 920, 100, 101 Capacitor Bank 911, 922 Capacitor 913, 923 Switch 722 Packet Identification Unit 724 Time Boundary Recovery Unit 726 Interval Counter 728 Frequency Error Detection unit 36 201205297 1010, 1020 PM0S component Out output terminal In regulation terminal BCS[0]~ BCS[N] digital control signal of first control signal Vc third control signal

Tsl, Ts2 取樣時間 ITP, SOF 封包 ΤΙ, T2 間隔時間Tsl, Ts2 sampling time ITP, SOF packet ΤΙ, T2 interval

Bn、Bn+1、B n+2、B n+3、B N+8 時間邊界 △ tOl、、Z\t23、At89間隔時間之前一時間邊界 △ tlO、At21、At32、At98間隔時間之下一時間邊界 S80〜S1010 步驟 371Bn, Bn+1, B n+2, B n+3, B N+8 time boundary △ tOl, Z\t23, At89 interval time before a time boundary Δ tlO, At21, At32, At98 interval time Time boundary S80~S1010 Step 371

Claims (1)

201205297 七、申請專利範圍: 1、 一種序列匯流排時脈頻率校準系統,包括: 一振盈器’用於分別產生不同時脈頻率; 〇 '第一頻率調整裝置用於接收一第一型序列匯流排輸入訊 號’並基於該第—型序列匯流排輸人減之—週期訊號及該振蓋 器輪出之時脈頻率,調整該振盪器輸出一第一時脈頻率; 〇 第一頻率調整裝置用於接收該第一型序列匯流排輸入訊 號’並基於該第一型序列匯流排輸入訊號之一時脈訊號及該振盪 器輸出之時脈頻率,調整該振盪器輸出一第二時脈頻率;以及 鲁 :第三頻率調整裝置用於接收一第二型序列匯流排輸入訊 號,並基於該第二型序列匯流排輸入訊號及該振盪器輸出之時脈 頻率,調整該振盪器輸出一第三時脈頻率。 2、 如申請專利範圍第1項所述之序列匯流排時脈頻率校準系 ’、中°亥週期讯號為一種SOF(Start of frame)訊號。 3、 如申請專利範圍第1項所述之序列匯流排時脈頻率校準系 統,其中該第一頻率調整裝置基於該週期訊號及該振盪器輸出之 時脈頻率,產生一第一控制訊號用於調整該振盪器輸出該第一時 春 脈頻率,以符合該週期訊號之間隔時間,藉此該第一頻率調整裝 置與該振盪器組成一第一階頻率獲取迴路。 4、 如申請專利範圍第3項所述之序列匯流排時脈頻率校準系 統,其中該第一頻率調整裝置基於該週期訊號及該振盪器輸出之 時脈頻率,進一步產生一第二控制訊號以致能該第二頻率調整裝 置’使該第二頻率調整裝置基於該時脈訊號的相位或波形邊緣, 產生一第三控制訊號用於調整該振盪器輸出一第二時脈頻率以趨 近於該時脈訊號’藉此該第二頻率調整裝置與該振盪器組成一第 一階頻率獲取迴路。 38 201205297 5、如申請專利範圍第1項所述之序列匯流排時脈頻率校準系 統,進一步具有一鏈結層用於決定由該第一頻率調整裝置接收該 第一型序列匯流排輸入訊號或由該第三頰率調整裝置接收該第二 型序列匯流排輸入訊號’其中該第一型序列匯流排輸入訊號與該 第二型序列匯流排輸入訊號屬於不同的通訊協定。201205297 VII. Patent application scope: 1. A sequence bus timing frequency calibration system, comprising: a vibrating unit for respectively generating different clock frequencies; 〇 'the first frequency adjusting device is for receiving a first type sequence The bus input signal 'and adjusts the first clock frequency of the oscillator output based on the first-type serial bus-receiving-reducing period signal and the clock frequency of the vibrator wheel; 〇 first frequency adjustment The device is configured to receive the first type serial bus input signal 'and adjust the oscillator output to a second clock frequency based on a clock signal of the first type serial bus input signal and a clock frequency of the oscillator output And the third frequency adjusting device is configured to receive a second type serial bus input signal, and adjust the oscillator output according to the second type serial bus input signal and the clock frequency of the oscillator output. Three clock frequencies. 2. The sequence bus timing frequency calibration system as described in item 1 of the patent application scope is a SOF (Start of frame) signal. 3. The sequence bus timing frequency calibration system of claim 1, wherein the first frequency adjustment device generates a first control signal based on the periodic signal and a clock frequency of the oscillator output. Adjusting the oscillator to output the first time pulse frequency to meet the interval time of the period signal, whereby the first frequency adjusting device and the oscillator form a first order frequency acquisition loop. 4. The sequence bus timing frequency calibration system according to claim 3, wherein the first frequency adjusting device further generates a second control signal based on the periodic signal and the clock frequency of the oscillator output. The second frequency adjusting device can cause the second frequency adjusting device to generate a third control signal for adjusting the oscillator outputting a second clock frequency to approximate the phase based on the phase or waveform edge of the clock signal. The clock signal 'by the second frequency adjusting device and the oscillator constitute a first order frequency acquisition loop. 38 201205297 5. The serial bus clock frequency calibration system of claim 1, further comprising a link layer for determining that the first type of serial bus input signal is received by the first frequency adjustment device or Receiving, by the third buccal rate adjusting device, the second type serial bus input signal, wherein the first type serial bus input signal and the second type serial bus input signal belong to different communication protocols. 6、 如申請專利範圍第1項所述之序列匯流排時脈頻率校準系 統,其中該第三頻率調整裝置基於該第二型序列匯流排輸入訊號 甲至少-特定封包及該振盪器輸出之時脈頻率,產生一第四控制 訊號用於調整該振盪器輪出-第三時脈頻率,以符合該至少 定封包對應之間隔時間之第三時脈頻 计^咕^ 負旱’藉此該第三頻率調整梦 置與該振盪器組成一第三階頻率獲取趣略 ^ 7、 如申清專利範圍第6項所诚少— 統 , 、 之序列匯流排時脈頻率校準糸 ,其中該特定封包為—種同步時 顿準系 于戰封包(Isochronous Timestam Packet,ITP)。 estamP 8、-種序龍流排時脈頻率校準純,包括: -振盡器’用於分別產生不同時脈頻率; -第-頻率調整裝置特Mu序列匯流排輸入訊 號’並基於該第—型序列匯流排輸入訊號所含之-第1訊及該 振盪器輸*之時脈頻率’調整該振盪器輸出—第—時脈頻率;^ 及 一第二頻率調整裝置用於接收—第二塑序列匯流排輸入訊 號’並基於該第二型序職流排輸人訊號所含之-第二資訊及該 振盪器輸出之時脈頻率,調整該振盪器輸出一第二時脈頻率,其 中該第一資訊不同於該第二資訊。 、 9、如申凊專利1&圍第8項所述之序列匯流排時脈頻率校準系 統,其中該第-資訊為-週期訊號,以及該第二資訊為至少一特 39 201205297 定封包所含的時間資訊。 10、如申請專利範圍第9項所述之序列匯流排時脈頻率校準系 統,其中該第一頻率調整裝置基於該週期訊號及該振盪器輸出之 時脈頻率’產生—第—控制減詩調整該振輸it}該第-時 脈頻率,以符合該週期訊號之間隔時間,藉此該第一頻率調整裝 置與該振盪器組成一第一階頻率獲取迴路。 u、如申請專利範圍第10項所述之序列匯流排時脈頻率校準 系統’其中該第二頻率調整裝置基於該至少—特^封包所含的該 時間資訊及該振ill輸出之時脈頻率,產生—第二控制訊號用於 調整該振I器輸出該第二時脈頻率,以符合該至少—特定封包對 應之時間邊界之間隔時間,藉此該第二頻率調整裝置與該振盈器 組成一第二階頻率獲取迴路。 12、如中請專利範圍第u項所述之序列匯流排時脈頻率校準 系統,其中該第二頻率調整裝置進一步包括: 一封包辨識單元,用於辨識該第二型序龍流排輸人訊號中之 該至V特定封包以獲取該至少—特定封包所含的時間資訊; 一時間邊界ig復單元,根據前料間資訊產生該至少—特定封 包所屬間隔時間之時間邊界; 中一特定封包所屬間隔時間之時間邊界至另 一間隔計數器’利用該振鹽器輸出之時脈頻率計算出從前述其 一特定封包對應間隔 ,以獲得一工作計數值;以及6. The serial bus clock frequency calibration system of claim 1, wherein the third frequency adjustment device is based on the second type of sequence bus input signal A at least - a specific packet and the output of the oscillator a pulse frequency, generating a fourth control signal for adjusting the oscillator wheel-out third clock frequency to meet the interval time corresponding to the minimum time interval of the third time pulse frequency meter ^咕^ negative drought The third frequency adjustment dream set and the oscillator form a third-order frequency acquisition interest ^ 7, as in the scope of the sixth paragraph of the patent scope of the Shenqing patent system, the sequence bus clock frequency calibration 糸, where the specific The packet is the Isochronous Timestam Packet (ITP). estamP 8, - the sequence of the dragon flow clock frequency calibration pure, including: - the vibrator 'is used to generate different clock frequencies respectively; - the first - frequency adjustment device special Mu sequence bus input signal ' and based on the first - The serial sequence bus input signal includes - the first signal and the clock frequency of the oscillator output * adjust the oscillator output - the first clock frequency; ^ and a second frequency adjustment device for receiving - the second The serial sequence bus input signal 'and adjusts the oscillator output to a second clock frequency based on the second information included in the second type of serial flow input signal and the clock frequency of the oscillator output, wherein The first information is different from the second information. 9. The sequence bus timing frequency calibration system according to claim 8, wherein the first information is a period signal, and the second information is at least one special 39 201205297 package included Time information. 10. The sequence bus timing frequency calibration system according to claim 9, wherein the first frequency adjusting device generates a first control frequency based on the periodic signal and the clock frequency of the oscillator output. The amplitude of the first-clock frequency is matched to the interval of the period signal, whereby the first frequency adjusting device and the oscillator form a first-order frequency acquisition loop. u. The sequence bus timing frequency calibration system according to claim 10, wherein the second frequency adjusting device is based on the time information included in the at least one packet and the clock frequency of the vibrating output Generating a second control signal for adjusting the second clock frequency of the oscillator to meet an interval time of the at least one time boundary corresponding to the specific packet, whereby the second frequency adjusting device and the oscillator Form a second order frequency acquisition loop. 12. The sequence bus timing frequency calibration system of claim 5, wherein the second frequency adjustment device further comprises: a packet identification unit for identifying the second type of serial flow The V-specific packet in the signal to obtain the time information contained in the at least-specific packet; a time boundary ig complex unit, generating a time boundary of the at least-specific packet-to-interval time according to the pre-information information; The time interval of the interval time to another interval counter uses the clock frequency of the output of the oscillator to calculate a corresponding interval from a specific packet to obtain a work count value; 對結果,產生該第二控制訊號。For the result, the second control signal is generated. 的切换訊號,且該振盪器進一 控制訊號與該第二控制訊號各包括數個可改變 該振盪器進一步具有數組電容組(Capacit〇r 201205297 Banks) ’每一電容組設有數個且大小相同或不相同之電容,其中 每一電容連接一切換開關且該等切換開關可供該前述數個可改變 的切換訊號控制以調整該振盈器輸出之時脈頻率。 14、如申請專利範圍第u項所述之序列匯流排時脈頻率校準 系統,其中該第一控制訊號或該第二控制訊號可為一電壓訊號, 且該振盪器為一壓控振盪器具有數個可變電容,藉由改變該第一 控制訊號或該第二控制訊號之電廢大小即可變化該振盪器輸出之 時脈頻率。 • 15、如申請專利範圍第14項所述之序列匯流排時脈頻率校準 系統,其中該等電容可為一種pM〇s或CM〇s元件。 16、 如申請專利範圍f 8項所述之序列匯流排時脈頻率校準系 統,進一步具有一鏈結層用於決定該第一頻率調整裝置接收該第 一型序列匯流排輸入訊號或該第二頻率調整裝置接收該第二型序 列匯流排輸入訊號。 17、 如中請專利範圍第12項所述之序列匯流排時脈頻率校準 系統,其中該第一頻率調整裝置及該第二頻率調整裝置共用同一 φ 個間隔計數器及頻率錯誤偵測單元。 18、 一種序列匯流排時脈頻率校準系統,包括: 一振堡器’用於分別產生不同時脈頻率; -封包辨識單元’用於辨識—序列匯流排輸人訊號中的至少一 特定封包以獲取該至少一特定封包所含的時間資訊; 時間邊界回復單元,根據前述時間資訊產生該至少一特定封 包所屬間隔時間之時間邊界; ’ -間隔计數器’利用該振盪器輸出之時脈頻率計算出從前述其 中-特定封包所屬間隔時間之時間邊界至另一特定封包對應間隔 時間之時間邊界之間的計數差值,以獲得一工作計數值;以及 201205297 頻率錯誤摘測單元,依據該工作計數值與一預設目標值之比 掛会士要 A 、、'° ’屋生一控制訊號至該振盈器以更改或維持該振盪器輸出 之時脈頻率。 19 種序列匯流排時脈頻率校準方法,適用於一序列匯流排 時脈頻率校準系統且該系統具有—第—頻率調整裝置、一第二頻 率調1装置、一第三頻率調整裝置及一振盪器,該方法包括下列 步驟: 忒第一頻率調整裝置接收一第一型序列匯流排輸入訊號,並 依據該第型序列匯流排輸人訊號與該振I器輸出之時脈頻率丨 魯 門的差異,更改或維持該振盪器輸出之時脈頻率,以符合該週期 訊號之間隔時間; 該第二頻率調整裝置依據該第一型序列匯流排輸入訊號之一 時脈訊號與該錄器輸出之時脈頻率兩者之間的差異,更改或維 持該振i器輸出之時脈頻率,以符合該時脈訊號;以及 該第三頻率調整裝置接收—第二型序列匯流排輸人訊號且該 第二型序舰流排輸人訊號具有至少―特定封包,並根據該振盈 器輸:之不同時脈頻率所計算出的該至少一特定封包對應之間隔鲁 時門疋否正確,更改或維持該振盪器輸出之時脈頻率,以符合該 特定封包對應之時間邊界之間隔時間。 2〇、如中請專利範圍第19項所述之方法,其中該週期訊號為 -種SOF(Start 〇f frame)訊號,以及該至少—特定封包為—種同步 時戮封包(Isochronous Timestamp Packet, ITp)。 2卜如申請專利範圍帛19項所述之方法,其中進一步包括下 列步驟: 以更改或維持振盈 該第一頻率調整裝置發出一第一控制訊號 器輸出之時脈頻率,並產生一第二控制訊號; 42 201205297 該第二頻率調整裝置發出一第三控制訊號以更改或維持振盪 ,- 器輸出之時脈頻率;以及 該第三頻率調整裝置接收該第二型序列匯流排輸入訊號並產 生一第四控制訊號以更改或維持振盪器輸出之時脈頻率,並持續 調整振盪器輸出的時脈頻率,以符合該至少一特定封包對應之間 隔時間。 22、如申請專利範圍第21項所述之方法,進一步包括下列步 驟: φ 利用第三頻率調整裝置,依據該振盪器輸出之時脈頻率計算出 從前述其中一特定封包所屬間隔時間之時間邊界到另一特定封包 所屬間隔時間之時間邊界之間的計數差值,以產生一工作計數 值;以及 依據工作計數值與一預設目標值之比對結果,產生該第四控制 訊號; 田工作汁數值與預設目標值不同時,更改該第四控制訊號之輸 出,以改變該振盪器輸出之時脈頻率;以及 # 田工作a十數值與預設目標值相同時,固定該第四控制訊號之輸 出以維持該振盪器輸出之時脈頻率。 23、—種序列匯流排時脈頻率校準方法,適用於一序列匯流排 夺脈頻率校準系統且該系統具有—第-頻率調整裝置、-第二頻 率調^裳置及-振盈器,該方法包括下列步驟: 該第頻率調整裝置接收一第_型序列匯流排輸入訊號且該 第里序列匯流排輸入訊號具有一第一資訊,對該振盈器輸出的 時脈頻率執行-第一階段時脈頻率精確度校 時脈頻率;以及 I第_•頻率調整裝置接收—第二型序列匯流排輸人訊號且該 [S 1 43 201205297 ,二型序舰流排輸人訊號具有―第二資訊,並根據該㈣器輸 出之時脈頻率執行-第二階段時脈頻率精麵校正過程,獲取一 第—時脈頻率。 2心如中請專利範圍第23項所述之方法,其中該第一資訊包 含至少-週期訊號且該第-時脈頻率符合該週期訊號之間隔時 間’以及該第二資訊包含至少—特定封包且該第二時脈頻率符合 該至少一特定封包對應之間隔時間。 25、如申請專利範圍第23項所述之方法,其中當第一階段頻 率校準過程完成之後,使該第二頻率調整裝置基於前述振盡器輸 出的第-時脈頻率持續執行第二階段時脈頻率精確度校準過程。 26如申凊專利範圍第23項所述之方法,進一步包括利用一 鏈、”。層決Μ第-頻率調整裝置接收第—型序列匯流排輸入訊號 或該第二頻率調整裝置接收第二型序列匯流排輸入訊號。 27、如巾請專利範圍第23項所述之方法,其中該第一型序列 匯Α排輸人訊號與該第二型相匯流排輸人訊號屬於不同的通訊 協定。Switching signal, and the oscillator further includes a plurality of control signals and the second control signal respectively, and the oscillator further has an array capacitor group (Capacit〇r 201205297 Banks). Each capacitor group is provided with several and the same size or Different capacitors, wherein each capacitor is connected to a switch and the switch is provided for the foregoing plurality of switchable switching signals to adjust the clock frequency of the oscillator output. 14. The sequence bus timing frequency calibration system of claim 5, wherein the first control signal or the second control signal is a voltage signal, and the oscillator is a voltage controlled oscillator. The plurality of variable capacitors can change the clock frequency of the oscillator output by changing the size of the first control signal or the second control signal. • The sequence bus timing frequency calibration system of claim 14 wherein the capacitance is a pM〇s or CM〇s component. 16. The sequence bus timing frequency calibration system of claim 18, further comprising a link layer for determining that the first frequency adjustment device receives the first type serial bus input signal or the second The frequency adjusting device receives the input signal of the second type serial bus. 17. The sequence bus timing frequency calibration system of claim 12, wherein the first frequency adjustment device and the second frequency adjustment device share the same φ interval counter and frequency error detection unit. 18. A sequence bus timing frequency calibration system, comprising: a vibration trainer for respectively generating different clock frequencies; - a packet identification unit for identifying at least one specific packet in the sequence bus input signal Obtaining time information included in the at least one specific packet; the time boundary replying unit generates a time boundary of the interval at which the at least one specific packet belongs according to the foregoing time information; and the interval pulse uses the clock frequency output by the oscillator Calculating a count difference from a time boundary between the time boundary of the time interval of the specific packet to another specific packet to obtain a work count value; and a 201205297 frequency error extraction unit, according to the work The ratio of the count value to a preset target value is connected to the A, and '°' control signals to the oscillator to change or maintain the clock frequency of the oscillator output. 19 serial bus clock frequency calibration methods are applicable to a sequence of bus clock frequency calibration systems and the system has a -first frequency adjustment device, a second frequency modulation device, a third frequency adjustment device and an oscillation The method includes the following steps: 忒 The first frequency adjusting device receives a first type serial bus input signal, and according to the first type bus, the input signal and the clock output of the vibration device are 丨 Lumen Differentiating, changing or maintaining the clock frequency of the oscillator output to meet the interval time of the periodic signal; the second frequency adjusting device according to the clock signal of the input signal of the first type serial bus and the output of the recorder a difference between the pulse frequencies, changing or maintaining the clock frequency of the output of the oscillator to conform to the clock signal; and the third frequency adjusting device receiving the second type of bus bar input signal and the first The second type of sequence ship input signal has at least a specific packet, and corresponding to the at least one specific packet calculated according to different clock frequencies of the oscillator input: Cloth door spacer Lu NO correct, change, or maintain the output of the clock oscillator frequency to match the particular interval of time corresponding to the packet boundaries. The method of claim 19, wherein the periodic signal is a SOF (Start 〇f frame) signal, and the at least-specific packet is an Isochronous Timestamp Packet (Isochronous Timestamp Packet, ITp). 2 The method of claim 19, further comprising the steps of: changing or maintaining the amplitude of the first frequency adjusting device to generate a clock frequency of the first control signal output, and generating a second Control signal; 42 201205297 The second frequency adjusting device sends a third control signal to change or maintain the clock frequency of the oscillation output, and the third frequency adjusting device receives the second type serial bus input signal and generates A fourth control signal is used to change or maintain the clock frequency of the oscillator output, and continuously adjust the clock frequency of the oscillator output to conform to the interval time corresponding to the at least one specific packet. 22. The method of claim 21, further comprising the steps of: φ using a third frequency adjustment device to calculate a time boundary from an interval time of one of the foregoing specific packets according to a clock frequency of the oscillator output a count difference between time boundaries of an interval at which another particular packet belongs to generate a work count value; and generating a fourth control signal based on a comparison of the work count value with a predetermined target value; When the juice value is different from the preset target value, the output of the fourth control signal is changed to change the clock frequency of the oscillator output; and when the field value of the field is the same as the preset target value, the fourth control is fixed. The output of the signal maintains the clock frequency of the oscillator output. 23, a sequence bus timing frequency calibration method, suitable for a sequence of bus line pulse frequency calibration system and the system has a - first frequency adjustment device, a second frequency modulation device and a vibration device, The method includes the following steps: the first frequency adjusting device receives a _ type sequence bus input signal and the first sequence bus input signal has a first information, and the clock frequency output by the vibrator is performed - the first stage Clock frequency accuracy calibration clock frequency; and I _• frequency adjustment device receiving - second type sequence bus line input signal and the [S 1 43 201205297, the second type order ship line input signal has "second Information, and according to the clock frequency output of the (four) device - the second phase clock frequency fine surface correction process is performed to obtain a first-clock frequency. The method of claim 23, wherein the first information includes at least a period signal and the first clock frequency corresponds to an interval time of the periodic signal 'and the second information includes at least a specific packet And the second clock frequency meets the interval time corresponding to the at least one specific packet. The method of claim 23, wherein, after the first phase frequency calibration process is completed, the second frequency adjustment device is caused to continue to perform the second phase based on the first-clock frequency of the output of the vibrator Pulse frequency accuracy calibration process. The method of claim 23, further comprising: using a chain, the layer-by-frequency adjustment device receives the first-type sequence bus input signal or the second frequency adjustment device receives the second type The serial bus input signal. 27. The method of claim 23, wherein the first type of serial exchange signal and the second type of communication signal belong to different communication protocols.
TW99124138A 2009-02-18 2010-07-22 Serial bus clock frequency calibration system and method TWI407317B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW99124138A TWI407317B (en) 2010-07-22 2010-07-22 Serial bus clock frequency calibration system and method
US12/884,164 US8407508B2 (en) 2009-02-18 2010-09-16 Serial bus clock frequency calibration system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99124138A TWI407317B (en) 2010-07-22 2010-07-22 Serial bus clock frequency calibration system and method

Publications (2)

Publication Number Publication Date
TW201205297A true TW201205297A (en) 2012-02-01
TWI407317B TWI407317B (en) 2013-09-01

Family

ID=46761589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99124138A TWI407317B (en) 2009-02-18 2010-07-22 Serial bus clock frequency calibration system and method

Country Status (1)

Country Link
TW (1) TWI407317B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375968A (en) * 2014-12-03 2015-02-25 上海兆芯集成电路有限公司 Host-side peripheral interface circuit
TWI475397B (en) * 2012-09-18 2015-03-01 Algoltek Inc Usb3.0 clock frequency generation device without crystal oscillator
CN104391817A (en) * 2014-12-03 2015-03-04 上海兆芯集成电路有限公司 Electronic system synchronous with peripheral equipment
TWI497301B (en) * 2013-02-07 2015-08-21 Phison Electronics Corp Signal processing method, cennector, and memory storage device
TWI696921B (en) * 2019-03-28 2020-06-21 威鋒電子股份有限公司 Usb integrated circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644706B1 (en) * 2019-07-15 2020-05-05 Faraday Technology Corp. Data and clock recovery circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297705B1 (en) * 2000-02-23 2001-10-02 Cypress Semiconductor Corp. Circuit for locking an oscillator to a data stream
DE10262079A1 (en) * 2002-12-23 2004-11-18 Infineon Technologies Ag Method and device for extracting a clock frequency on which a data stream is based
US8009763B2 (en) * 2008-04-02 2011-08-30 Oracle America, Inc. Method and apparatus for equalizing a high speed serial data link
TWI374350B (en) * 2008-11-11 2012-10-11 Genesys Logic Inc Serial bus clock frequency calibration system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI475397B (en) * 2012-09-18 2015-03-01 Algoltek Inc Usb3.0 clock frequency generation device without crystal oscillator
TWI497301B (en) * 2013-02-07 2015-08-21 Phison Electronics Corp Signal processing method, cennector, and memory storage device
CN104375968A (en) * 2014-12-03 2015-02-25 上海兆芯集成电路有限公司 Host-side peripheral interface circuit
CN104391817A (en) * 2014-12-03 2015-03-04 上海兆芯集成电路有限公司 Electronic system synchronous with peripheral equipment
CN104391817B (en) * 2014-12-03 2017-07-28 上海兆芯集成电路有限公司 The electronic system synchronous with ancillary equipment
CN104375968B (en) * 2014-12-03 2017-09-15 上海兆芯集成电路有限公司 Host side peripheral interface circuit
US9804634B2 (en) 2014-12-03 2017-10-31 Via Alliance Semiconductor Co., Ltd. Peripheral interface circuit at host side and electronic system using the same
TWI696921B (en) * 2019-03-28 2020-06-21 威鋒電子股份有限公司 Usb integrated circuit
US10901934B2 (en) 2019-03-28 2021-01-26 Via Labs, Inc. USB integrated circuit

Also Published As

Publication number Publication date
TWI407317B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
TWI374350B (en) Serial bus clock frequency calibration system and method
TW201205297A (en) Serial bus clock frequency calibration system and method
CN1794587B (en) Clock generator for generating accurate and low-jitter clock
CN102346499B (en) Impulse frequency correction system of serial bus clock and method thereof
EP2856689B1 (en) A multiformat digital audio interface
US8407508B2 (en) Serial bus clock frequency calibration system and method thereof
KR101733273B1 (en) Universal synchronization engine based on probabilistic methods for guarantee of lock in multiformat audio systems
CN104348471B (en) Clock and data recovery method and circuit
EP2617135B1 (en) Techniques for varying a periodic signal based on changes in a data rate
US7787528B2 (en) Transmitting/receiving device and communication system using the same
CN1955949B (en) Universal serial bus device
US9425781B2 (en) Syncless unit interval variation tolerant PWM receiver circuit, system and method
CN102063402A (en) Method and circuit for correcting frequency of universal serial bus (USB) device
CN108010476A (en) A kind of video signal transmission clock generating device and method
JP2009284053A (en) Digital phase detector and pll
CN110109643A (en) A kind of the usb audio terminal system on chip and synchronous clock calibrating method of no crystal oscillator
CN106341127B (en) A kind of method and apparatus that video clock restores
TW201210202A (en) Transceiver system having phase and frequency detector and method thereof
JP2009239768A (en) Semiconductor integrated circuit device and method for clock data recovery
CN106341128B (en) A kind of method and apparatus of restored audio clock
CN107370720A (en) Multi-protocols and multiple data rates communication
CN101739373B (en) System and method for calibrating serial bus time pulse frequency
TW201010288A (en) Synchronization device for transmitting real-time audio data by USB
US10205586B2 (en) Method and apparatus for network synchronization
TWI325693B (en) Method of detecting phase difference, phase detector for performing the same and clock-and-data recovering device including the phase detector