TW201204825A - A method for removing sulfides from a liquid fossil fuel and the device using the same - Google Patents

A method for removing sulfides from a liquid fossil fuel and the device using the same Download PDF

Info

Publication number
TW201204825A
TW201204825A TW099136872A TW99136872A TW201204825A TW 201204825 A TW201204825 A TW 201204825A TW 099136872 A TW099136872 A TW 099136872A TW 99136872 A TW99136872 A TW 99136872A TW 201204825 A TW201204825 A TW 201204825A
Authority
TW
Taiwan
Prior art keywords
diesel
tank
mixing
surfactant
metal catalyst
Prior art date
Application number
TW099136872A
Other languages
Chinese (zh)
Other versions
TWI417375B (en
Inventor
Hsin-Tung Lin
Meng-Wei Wan
Ming-Chun Lu
Original Assignee
Hsin-Tung Lin
Meng-Wei Wan
Ming-Chun Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hsin-Tung Lin, Meng-Wei Wan, Ming-Chun Lu filed Critical Hsin-Tung Lin
Publication of TW201204825A publication Critical patent/TW201204825A/en
Application granted granted Critical
Publication of TWI417375B publication Critical patent/TWI417375B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/28Recovery of used solvent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/12Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with oxygen-generating compounds, e.g. per-compounds, chromic acid, chromates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/14Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen with ozone-containing gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents

Abstract

The desulfurization of fossil fuels is provided by the combination of fossil fuels with an aqueous mixture of ozone or hydrogen peroxide and a Tetraoctylphosphonium salt phase transfer catalyst, and the mixture is then subjected to reactive mixing to form oxidize sulfur compounds in the fuel. The polar oxidized sulfones species are removed via another mixing step. The desulfurization device provides for continuous mixing-assisted desulfurization for the removal of sulfur containing compounds from fossil fuels such as diesel fuel.

Description

201204825 六、發明說明: 【發明所屬之技術領域】 本發明是關於一種石油、化石燃料、及油基燃料 (petroleum-based fiiels)的脫流方式。 【先前技術】 在目前的運輸行業中,柴油燃料是一個被廣泛使 用的化石燃料。由於柴油引擎在節能方面較汽油引擎 來得有優勢,故在環境保護意識與綠色運動日益高漲 的今日,柴油燃料的需求在未來想必也是水漲船高。 柴油燃料一般主要是由烷類、環烷烴、和芳香族碳氫 化合物所混合而成並相對複雜的混合物,其碳原子數 是介於9〜28,而沸點的範圍約為150-390°C。他們的 相對分布主要是由以下因素所決定:特定的燃料原 料、精煉程序、及基於消費者日常商業需求的混合計 畫。較常在柴油中被發現的硫化物例如為烷苯并噻吩 (alkylbenzothiophenes)及烧二苯并售吩 (alkyldibenzothiophenes)。 在柴油中含有硫會造成環境的困擾,例如在燃燒 時,會產生二氧化硫(S02)及硫酸鹽顆粒物(sulfate particulate matter),其是屬於嚴重有害物質故對大眾 健康會產生極大的傷害。而且,硫也會造成其他問題, 例如:觸媒轉換器的損害、内燃機的部份鏽蝕、及日 益嚴重的空氣汙染。也因為汽油及其他石油產品中所 含有的硫會對外界造成危害,故美國的環境保護署 4 201204825 (US Environmental Protection Agency)已經頒發 了相關 的規定,將石油的硫含量上限由原先的300 ppm降至 30 ppm ’而柴油的硫含量上限由原先的500 ppm降至 15 ppm,以確保社會大眾的安全與健康。 加氫脫硫法是一種脫硫方法,其可以大規模地以 習知的化學方式從柴油中將硫脫除。習知的加氫脫硫 法為一種加氫處理程序(hydro-treatment process),其 是藉由氫氣與觸媒而將柴油中的含硫化合物進行分解 並形成硫化氫(hydrogen sulfide)。 $而’在脫硫程序中即使是少量未反應的硫化氫 也會造成很大的危害。硫化氳具有相當激烈的毒性, f經在工作場所中造成大量人員的死亡,故對工作人 員具有相當大的威脅。此外,在美國環境保護署較新 且較嚴格的規定下,在實行加氫脫硫程序時,氫氣從 反應器外壁洩露的機率會比較高。 氧化脫硫法(oxidative desulfurization)是習知的 一種適用於柴油的脫硫方式,此方法是依據以下的操 作原理:硫化合物的極性較碳氫化合物為高。此外, 硫氧化物,例如:砜’的極性也大於硫化物(sulfide)。 更重要的是,從硫化物氧化成砜也較碳氫化合物來得 快且容易。因此,將極性較差的硫化物轉換成更具有 極性的爾或亞颯(sulf〇xide),可以讓硫化合物較容易從 化石燃料中萃取出來並溶於水相溶液中。 於美國專利6,402,939中,描述了以下的技術方 5 201204825 案:藉由結合氧化脫硫法與超音波技術,以將有機硫 化物從化石燃料中移除。其中,氧化脫硫法是藉由於 水相流體中結合化石燃料與做為氧化劑之氫過氧化物 而達成,而超音波則是施加在混合物上以增加混合物 中各種物質的反應性。超音波輔助氧化脫硫程序 (Ultrasound-assisted oxidative desulfurization,簡稱 UA0D)是在常溫常壓下實行,它可讓硫化合物從碳 氫化合物中選擇性地被移除。然而,使用四基溴化銨 (quaternary ammonium bromides)做為界面活性劑,卻 會產生溴化物等副產物。此外,脫硫程序所使用的超 音波反應器(sonoreactor)也具有不少缺點,例如:需要 極為昂貴的儀器,該儀器需要如RF放大器與函數產 生器等技術上較複雜的零件,此外產生超音波也需要 較高的電力消耗,另外需要較高的操作溫度(通常是 在70〜80°C ),而且長久下來超音波也有可能對長鏈的 破氫化合物產生損害(例如產生裂解)。此外,需要將 所對應的函數產生器與RF放大器增大才能適用到較 大規模的生產’這也造成了傳統的超音波反應器或超 音波脫硫裝置在大量生產上的限制。 而且’在批次生產中,使用探針式反應器(pr〇be type reactor)並將超音波應用在氧化脫硫方式雖然可 將硫的移除率提高,然而全部的反應物須結合在一起 且被保持在一定的控制環境下一段時間,直到達成想 要的反應結果。也因此,這樣的反應程序往往是較慢、 花費較多時間、且在處理程序結束前生產物必須處於 201204825 分離的狀態。 【發明内容】 為了克服上述的問題,本發明之其中一目的是提 供-種適用於化石燃料的混合辅助氧化脫硫法。上述 的化石燃料是與水相氧化劑溶液結合,此水相氧化劑 溶液包括氫過氧化物溶液或臭氧溶液。該水相氧化劑 溶液包括—作為界面活性劑的四級銨鹽,四級錢鹽是 -種由帶j£電且具有四個取代基的氮原子並搭配有帶 _ 負電的相對離子㈣嫩㈣所組成的化合物。在本實 ,例中,四級銨鹽具有至少一包括8個以上碳原子的 厌鏈四級録鹽是作為界面活性劑,以將硫化物轉化 成礙的產量提高’且不會有漠化物等副產物之產生。 本發明之另一目的是提供一種適用於化石燃料 的混合輔助氧化脫硫法。上述的化石燃料是與水相氫 ,氧化物溶液或水相臭氧溶液相結合。該氫過氧化物 溶液或臭氧溶液包括一四級銨鹽,該四級銨鹽是作為 φ 界面=性劑’以使有機相燃料中的硫化物轉化成颯的 產量提兩。該混合辅助氧化脫硫法使用多個混合槽與 多個旋風分離器’且無須使用到任何複雜、不可靠、 且昂貴的超音波產生器。除此之外,由於未使用到任 何超音波產生器’故無須在化石燃料的脫流程序中使 用冷媒去冷卻多相的反應介質。而且,此混合輔助氧 化脫硫法所需消耗的能量也少得多。此外,因為其無 須使用到函數產生器與RF放大器,故相較於傳統的 超音波產生器或超音波脫硫法,該混合輔助氧化脫硫 201204825 法較適於大規模的生產。而且,長久下來,該混合輔 助氧化脫硫法也不會對長鏈的碳氳化合物產生損害 (例如產生裂解)。 本發明之再一目的是提供一種連續流系統,該連 續流系統是用於化石燃料氧化脫硫。該氧化脫硫系統 為具有多個模組化混合槽的連續流單元,該連續流單 元包括至少二個混合槽、混合器、至少二個旋風分離 器、與一蒸發塔。混合器是連接到每一個混合槽,其 用於攪拌和混合以有效生成乳化泡沫,旋風分離器是 鲁 與混合槽連續式地相串連。蒸發塔是連接到其中一旋 風分離器與其中一混合槽,以產生砜。此外,為了處 理更多的燃料並增加氧化,可增加多組的混合槽與旋 風分離器,該多組的混合槽與旋風分離器是分別與多 個蒸發塔相並連或串連。 為讓本發明之上述目的、特徵和優點更能明顯易 懂,下文將以實施例並配合所附圖示,作詳細說明如 下。 鲁 【實施方式】 許多深度脫硫方式必須耗費較高之成本,在過去 四十年中,科學家嘗試發展許多深度脫硫替代方式, 其中,氧化脫硫為一低耗費、高效率之深度脫硫技術。 氧化脫硫必須選擇適當之催化劑及強氧化劑,配合適 當之界面活性劑,這樣便可大幅提高油品脫硫效率; 其反應過程為:將油品中之有機硫轉換成具極性之氧 化硫,並以極性溶劑/吸附劑將硫去除。 8 201204825201204825 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method of de-flowing petroleum, fossil fuel, and petroleum-based fiiels. [Prior Art] In the current transportation industry, diesel fuel is a widely used fossil fuel. Since diesel engines have advantages over gasoline engines in terms of energy saving, today's demand for diesel fuel is rising in the future, and environmental protection awareness and green sports are rising. Diesel fuel is generally a mixture of alkane, cycloalkane, and aromatic hydrocarbons, which is a relatively complex mixture having a carbon number between 9 and 28 and a boiling point of about 150-390 ° C. . Their relative distribution is largely determined by specific fuel raw materials, refining procedures, and hybrid plans based on the consumer's daily business needs. Sulfides which are more commonly found in diesel oil are, for example, alkylbenzothiophenes and alkyldibenzothiophenes. The presence of sulfur in diesel fuel can cause environmental problems. For example, when burning, sulfur dioxide (S02) and sulfate particulate matter are produced, which are serious harmful substances and cause great harm to public health. Moreover, sulfur can cause other problems, such as damage to the catalytic converter, partial corrosion of the internal combustion engine, and increasingly serious air pollution. Also, because the sulfur contained in gasoline and other petroleum products poses a hazard to the outside world, the US Environmental Protection Agency 4 201204825 (US Environmental Protection Agency) has issued regulations to limit the sulfur content of petroleum from the original 300 ppm. Down to 30 ppm' and the upper limit of sulfur content of diesel is reduced from the original 500 ppm to 15 ppm to ensure the safety and health of the general public. The hydrodesulfurization process is a desulfurization process which removes sulfur from diesel fuel on a large scale in a conventional chemical manner. The conventional hydrodesulfurization process is a hydro-treatment process which decomposes sulfur-containing compounds in diesel by hydrogen and a catalyst to form hydrogen sulfide. $ and ' even a small amount of unreacted hydrogen sulfide in the desulfurization process can cause great harm. Strontium sulphide has a very strong toxicity, and f is a considerable threat to workers because it causes a large number of deaths in the workplace. In addition, under the newer and stricter regulations of the US Environmental Protection Agency, the probability of hydrogen leaking from the outer wall of the reactor is higher when the hydrodesulfurization process is implemented. Oxidative desulfurization is a conventional desulfurization method suitable for diesel fuel. The method is based on the following principle: sulfur compounds are more polar than hydrocarbons. Further, sulfur oxides such as sulfone' are also more polar than sulfide. More importantly, oxidation from sulfide to sulfone is also faster and easier than hydrocarbons. Therefore, the conversion of less polar sulfides to more polar or sulfonxide allows sulfur compounds to be easily extracted from fossil fuels and dissolved in aqueous solutions. U.S. Patent No. 6,402,939, the disclosure of which is hereby incorporated by reference in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all Among them, the oxidative desulfurization method is achieved by combining a fossil fuel in an aqueous phase fluid with a hydroperoxide as an oxidizing agent, and ultrasonic waves are applied to the mixture to increase the reactivity of various substances in the mixture. The Ultrasound-assisted oxidative desulfurization (UA0D) is carried out at normal temperature and pressure to selectively remove sulfur compounds from hydrocarbons. However, the use of quaternary ammonium bromides as a surfactant produces by-products such as bromide. In addition, the sonoactor used in the desulfurization process also has a number of disadvantages, such as the need for extremely expensive instruments that require technically complex parts such as RF amplifiers and function generators, in addition to generating super Sound waves also require higher power consumption, and higher operating temperatures (usually 70 to 80 ° C) are required, and long-term ultrasonic waves may also cause damage to long-chain hydrogen-blocking compounds (eg, cracking). In addition, the corresponding function generator and RF amplifier need to be increased to be suitable for larger-scale production. This has also caused a limitation in mass production of conventional ultrasonic reactors or ultrasonic desulfurization devices. Moreover, 'in batch production, using a pr〇be type reactor and applying ultrasonic waves to the oxidative desulfurization method can increase the sulfur removal rate, but all the reactants must be combined. It is kept under a certain control environment for a period of time until the desired reaction result is achieved. Therefore, such a reaction procedure tends to be slow, takes a lot of time, and the production must be in a state of 201204825 separation before the end of the process. SUMMARY OF THE INVENTION In order to overcome the above problems, it is an object of the present invention to provide a mixed assisted oxidative desulfurization method suitable for use in fossil fuels. The above fossil fuel is combined with an aqueous phase oxidant solution comprising a hydroperoxide solution or an ozone solution. The aqueous phase oxidant solution comprises - a quaternary ammonium salt as a surfactant, and the quaternary salt is a nitrogen atom having a charge of four substituents and is associated with a negative ion with a negative charge (four) tender (four) The compound composed. In this embodiment, the quaternary ammonium salt has at least one analytic quaternary salt comprising more than 8 carbon atoms as a surfactant to convert the sulfide into a yield increase, and there is no desertification. The production of by-products. Another object of the present invention is to provide a mixed assisted oxidative desulfurization process suitable for use in fossil fuels. The above fossil fuel is combined with an aqueous phase hydrogen, an oxide solution or an aqueous phase ozone solution. The hydroperoxide solution or ozone solution comprises a quaternary ammonium salt which is used as a φ interface = agent to convert the sulfide in the organic phase fuel into hydrazine. The hybrid assisted oxidative desulfurization process uses multiple mixing tanks and multiple cyclonic separators' and does not require the use of any complex, unreliable, and expensive ultrasonic generators. In addition, since no ultrasonic generator is used, it is not necessary to use a refrigerant to cool the multiphase reaction medium in the degassing process of the fossil fuel. Moreover, this mixed assisted oxidative desulfurization process requires much less energy. In addition, because it does not require the use of a function generator and an RF amplifier, the hybrid assisted oxidative desulfurization 201204825 method is more suitable for large-scale production than conventional ultrasonic generators or ultrasonic desulfurization methods. Moreover, the mixed auxiliary oxidative desulfurization method does not cause damage to long-chain carbon ruthenium compounds (e.g., cracking). It is still another object of the present invention to provide a continuous flow system for oxidative desulfurization of fossil fuels. The oxidative desulfurization system is a continuous flow unit having a plurality of modular mixing tanks including at least two mixing tanks, a mixer, at least two cyclones, and an evaporation tower. The mixer is connected to each mixing tank for agitation and mixing to effectively produce an emulsified foam, and the cyclone is continuously connected in series with the mixing tank. The evaporation tower is connected to one of the cyclones and one of the mixing tanks to produce a sulfone. In addition, in order to process more fuel and increase oxidation, a plurality of sets of mixing tanks and cyclones may be added, the plurality of mixing tanks and cyclones being connected in series or in series with a plurality of evaporation towers, respectively. The above described objects, features, and advantages of the present invention will become more apparent from the following description. Lu [Embodiment] Many deep desulfurization methods must cost a lot. In the past 40 years, scientists have tried to develop many deep desulfurization alternatives, among which oxidative desulfurization is a low-cost, high-efficiency deep desulfurization. technology. Oxidative desulfurization must choose appropriate catalyst and strong oxidant, with appropriate surfactant, which can greatly improve the desulfurization efficiency of oil; the reaction process is: convert the organic sulfur in the oil into polar sulfur oxide, The sulfur is removed with a polar solvent/adsorbent. 8 201204825

在此,風過氧化物是指一種化合物,其分子結構 中的R代表著氫原子、有機基、或無機基。其中,R 為有機基的氫過氧化物是可溶於水中,其例如為··甲 基氫過氧化物、乙基氫過氧化物、異丙基氫過氧化物、 正丁基氫過氧化物、二丁基氫過氧化物、三丁基氫過 氧化物、2-甲氧基_2_丙基氩過氧化物 (2-methoxy-2-propyl hydroperoxide)、三戊基氫過氧化 物(tert-amyl hydroperoxide)、及環己基氫過氧化物。 此外,R為無機基的氫過氧化物例如為··過氧亞硝酸、 過磷酸、及過硫酸。較佳的氫過氧化物為過氧化氫(其 中R為氫原子)及三烷基過氧化物,該三烷基過氧化 物例如為三丁基過氧化物。 將化石燃料與氧化劑水相溶液(〇xidizer叫狀〇旧 solution)進行混合便形成水相流體(aque〇us fluid),其 中氧化劑水相溶液包括過氧化氫、氫過氧化物、或臭 氧。液體化石燃料與氧化劑水相溶液的相對比例約介 於1:1至1: 3之間,較佳約為1:125。在氧化劑水相 ;谷液中,虱過氧化物的濃度是介於丨^至雖然 相對比例會影響到程序上的有效性與流體處理上的難 易度,但它在本發明中並不是至關緊要。缺而, 部份的案财,將聽添加至氧化财相賴中可產 生較佳的效果’添加臭氧的方法例如是藉由臭氧產生 器(型號:Padfk 〇職L22)將臭氧氣泡打進水相 液體中或將臭氧直接打入至溶液中。其中,臭氧的流 率主要是介於O.Olg/hr到lg/hr間。此外,臭氧在氧化 201204825 =相溶液中的濃度是介於㈣lg/L到lg/L,且較佳 疋處於飽和狀態。 氫過氧化物相對於化石燃料與水相溶液的含量 =可有所改變’雖然轉換率只可能隨著氫過氧化物的 比例而有些微的變化。當氫過氧化物為過氧化氫,且 其體積相對約佔整個水相與有機相溶液之1%到3〇% 時,較佳比例為3%到30%時,以得到較佳的結果。 對於過氧化氫之外的其他氫過氧化物,其較佳的相對 體積量為相應的莫爾量(molar amount)。 在此實施例中,金屬觸媒是被包含在反應系統 中j以規範羥基自由基的活性,此羥基自由基是由氫 過氧化物所產生。此金屬觸媒例如為過渡金屬觸媒 (transition metal cataiySts)、芬頓觸媒(Fent〇n catalysts ’即:亞鐵鹽)、或金屬離子觸媒(metal — catalysts) ’上述之金屬離子觸媒的金屬離子例如為: 鐵II離子、鐵ΠΙ離子、銅I離子、銅η離子、鉻m 離子、鉻VI離子、鉬離子、鎢離子、及釩離子。對於 某些系統,例如原油系統,芬頓觸媒是較佳地。對於 其他的系統,例如柴油系統及其他二苯基噻吩為重要 組成物的系統’鎢酸鹽則為較佳的金屬觸媒。其中, 鎢酸鹽包括鶴酸、取代基鎢酸(substituted tungstic acids)、或金屬鶴酸鹽,此取代基鶴酸例如為構鶴酸。 上述之金屬觸媒的添加量必須達到催化有效量 (catalytically effective amount)的程度,所謂的催化有 效量是指可將反應過程朝向預定目標(即:將將硫化 201204825 物氧化成砜)反應的量。在大部分的案例中,當 氧化物的溶液為25克時,催化有效量是介於= 克至0.5公克(約3%到30%的體積濃度),較佳為〇 2 公克。在本實施例中,界面活性劑為四辛基磷鹽 (Tetraocty丨phosphonium salt),此四辛基磷鹽例如為: 辛基溴化磷、四辛基氣化磷、四辛基碘化磷、四^基 醋酸磷、或四辛基鉻化磷。上述之四辛基磷鹽的化^ 結構式如下: Γ Ri -η +Here, the wind peroxide refers to a compound in which R in the molecular structure represents a hydrogen atom, an organic group, or an inorganic group. Wherein, the hydroperoxide wherein R is an organic group is soluble in water, and is, for example, methyl hydroperoxide, ethyl hydroperoxide, isopropyl hydroperoxide, n-butyl hydroperoxide , dibutyl hydroperoxide, tributyl hydroperoxide, 2-methoxy-2-propyl hydroperoxide, triamyl hydroperoxide (tert-amyl hydroperoxide), and cyclohexyl hydroperoxide. Further, the hydroperoxide in which R is an inorganic group is, for example, peroxynitrite, perphosphoric acid, and persulfuric acid. Preferred hydroperoxides are hydrogen peroxide (wherein R is a hydrogen atom) and a trialkyl peroxide such as tributyl peroxide. The fossil fuel is mixed with an aqueous oxidant solution (a solution) to form an aqueous fluid (aque〇us fluid), wherein the aqueous oxidant solution comprises hydrogen peroxide, hydroperoxide, or ozone. The relative ratio of liquid fossil fuel to oxidant aqueous phase solution is between about 1:1 and 1:3, preferably about 1:125. In the oxidant aqueous phase; the gluten peroxide, the concentration of the cerium peroxide is between 丨^ to although the relative ratio affects the procedural effectiveness and the ease of fluid handling, but it is not critical in the present invention. Want. Lack of, part of the case, will be added to the oxidation of the financial sector can produce better results. 'Adding ozone, for example, by ozone generator (Model: Padfk 〇 L22) to get ozone bubbles into the water The phase liquid or ozone is directly driven into the solution. Among them, the flow rate of ozone is mainly between O.Olg/hr and lg/hr. In addition, the concentration of ozone in the oxidation 201204825 = phase solution is between (four) lg / L to lg / L, and preferably 疋 is saturated. The content of hydroperoxide relative to fossil fuel and aqueous phase solution = may vary' although the conversion rate may only vary slightly with the proportion of hydroperoxide. When the hydroperoxide is hydrogen peroxide and its volume is relatively from about 1% to about 3% by weight of the entire aqueous phase and the organic phase solution, a preferred ratio is from 3% to 30% to obtain better results. For other hydroperoxides other than hydrogen peroxide, the preferred relative volume is the corresponding molar amount. In this embodiment, the metal catalyst is contained in the reaction system to regulate the activity of hydroxyl radicals which are produced by hydroperoxides. The metal catalyst is, for example, a transition metal cataiy Sts, a Fenton catalyst (ie, a ferrous salt), or a metal-catalyst (metal ion catalyst). The metal ions are, for example, iron II ions, iron ion ions, copper I ions, copper η ions, chromium m ions, chromium VI ions, molybdenum ions, tungsten ions, and vanadium ions. For some systems, such as crude oil systems, Fenton catalysts are preferred. For other systems, such as diesel systems and other systems where diphenylthiophene is an important constituent, tungstate is the preferred metal catalyst. Wherein the tungstate comprises abietic acid, substituted tungstic acids, or a metal tartrate, and the substituted hexanoic acid is, for example, taurine. The above-mentioned metal catalyst must be added in an amount to achieve a catalytically effective amount, and the so-called catalytically effective amount means an amount which can react the reaction process toward a predetermined target (i.e., oxidize the sulfide 201204825 to a sulfone). . In most cases, when the oxide solution is 25 grams, the catalytically effective amount is from gram to 0.5 gram (about 3% to 30% by volume), preferably 〇 2 gram. In this embodiment, the surfactant is a Tetraocty(R) phosphonium salt, and the tetraoctylphosphonium salt is, for example, octylphosphonium bromide, tetraoctylphosphorus phosphorus, tetraoctylphosphonium iodide. , tetrakis acid acetate, or tetraoctyl chromium phosphate. The above formula of the tetraoctylphosphonium salt is as follows: Γ Ri -η +

I ^— P —Rg X-I ^— P —Rg X-

I L 心」 其中Ri R2、R3、和R4為烧基自由基(aikyi radicals), 且在烧基支鏈與烷基直鏈中具有8個碳原子,而χ-則 為陰離子。在大部分的案例中,當氫過氧化物的溶液 為25克時’作為界面活性劑之四辛基磷鹽的催化有效 量是介於0.01公克至0.5公克(約3%到30%的體積 濃度)’較佳為0.2公克。氧化劑水相溶液、界面活性 劑、金屬觸媒、及含硫量較高的柴油是經由多個導管 進行混合並運輸到第一混合槽。藉由傳統的流量闕和 流量的控制系統,則每一個導管中的原料流(feed stream)的流量皆可獨立地被管控。在第一混合槽中, 藉由混合器,這些反應物可徹底地被混合。此外,在 第一混合槽内之油相/水相的乳狀液(oil/aqueous emulsion)中,眾多泡沫所產生的接觸面積可使硫化物 201204825 氧化成亞硬或;ε風的反應速率增快。 菖反應式混合結束後,生成的混合物中將包括水 相和有機相,其中有機相包括大部分由氧化反應而成 的颯。在移除砜前,生成的混合物是可進行相分離的。 藉由破乳(deemulsion),可完成相分離的動作。另外, 可藉由習知的方式完成破乳的程序。對於操作乳化與 連續式攪拌等領域具有通常技術者來說,特別是在水 包油乳化(oil-in-water emulsions)領域,上述這此方彳 是顯而易見的。 二 1 相較於原先存在於化石燃料中的硫化物,硬具有 較高的極性,故藉由極性溶液萃取器使極性物質經由 混合和分離等程序後,颯可較輕易地從水相、有機相、 或兩者的混合中移除。在本實施例中,極性溶液萃取 器為一配置有混合器的混合槽。在充分攪拌並混合的 乳化混合物中添加眾多的微小泡沫可增加萃取的效 益,這是因為極性溶液與化石燃料的接觸面積增加 了。這些微小泡沫可為液體泡沫(liquid bubble)或氣體 泡沫,這些液體泡沫例如為油相泡沫或水相泡沫。在 其他的實施例中,極性溶液萃取器可以為液固吸附裝 置(liquid-solid adsorption unit)。氧化鋁可被填充在固 態吸附裝置的管柱内,且可藉由重力和真空技術以辅 助吸收程序。在極性溶液萃取器中,乙腈等溶液可被 用來作為極性溶液。藉由蒸餾的方法(沸點約介於 550K到950K之間),可使乙腈輕易地從碾分離。其 中,溶劑與油類的重量百分比可維持在1:1 (例如:j 12 201204825 公克的柴油搭配1公克的乙腈)。 在此,“液態化石燃料,,是指任何從石油、煤炭、 及,他自然物質所提煉出來的含碳液體❶這些燃料可 為汽油、柴油、飛機用燃料、火箭用燃料等交通工具 用燃料,或者也可為重油、剩餘燃料等石化殘餘燃^ 油。 ★混合辅助氧化脫硫法的實行方式例如為使用連 續,系統(continuous flow system),此連續流系統可在 穩態下操作,在操作過程中反應物持續輸入到反應容 器(reaction vessel)中,而生成物則持續地從反應容器 中移除。 本實施例揭露了一種連續脫硫裝置10,此連續脫 硫裝置10可在短時間處理大量的柴油燃料,具有高脫 硫效率、低資本投入、及低維持費用等優點。而且, 連續脫硫裝置10的操作溫度低於超音波產生器。一般 來說,因為水相流體的化學反應,操作溫度可被提高 到約50-60°C。此連續脫硫裝置10約可除去95%的硫 含量。若要提高產出率及功效,可將兩個連續脫硫裝 置10進行並聯,以達到更高的脫硫率。 圖1所繪示為本實施例之連續脫硫裝置1〇。其 中,氧化劑供給槽30是用於供給氧化劑水相溶液,而 柴油供給槽20則是用於供給具有高含硫量的柴油燃 料。其中,氧化劑供給槽30與柴油供給槽2〇是藉由 多個導管而與第一混合槽100相連接。另外,界面活 性劑容器40與金屬觸媒容器5〇也連接到第一混合槽 13 201204825 100。其中,藉由習知的流量閥與流量控制系統,氧化 劑供給槽30、柴油供給槽20、界面活性劑容器40、 與金屬觸媒容器50的流量可各別並獨立地被控制。 藉由添加界面活性劑與金屬觸媒,並藉由混合器 110之助,參與反應的混合物是在第一混合槽1〇〇進 仃混合。在此,第一混合槽100也可被視為脫硫反應 器。在第一混合槽1〇〇的油相/水相的乳狀液中所進行 的反應性混合程序中,包括將硫化物氧化成亞颯及砜 的程序。混合後,參與反應的混合物被運輸至第一旋 風分離器140。第一旋風分離器14〇可被視為柴油/水 相分離槽。在此柴油/水相分離槽中,水相流體(包含 ^化劑與觸媒)與油相流體(包含柴油與颯)相分離。 藉此,在之後的處理程序中,可產生低含硫量的柴油。 之後,經過一段時間後,水相流體經由再循環迴路並 經過觸媒活化容器55而再循環至第一混合槽1〇〇中。 在本實施例中,、混合_ 11〇為機械勝式混合器, 其,糊機械攪拌的方式來將第—混合槽謂中的溶液 進行/昆CT然而’本領域具有通常知識者,也可使用 超音波震盪H高壓樣混合科可達麻合效果的混合 器,所謂高壓紐混合器是利时射高壓水柱來達到混合的 效果。 在第一旋風分離器140與第二旋風分離器24〇 間,β又置有一第二混合槽2〇〇。此第二混合槽2〇〇為 極性溶液萃取器,於此第二混合槽2〇〇中,藉由混合 器110之助而經過混合與萃取的程序後,包含有颯等 201204825 副產物及硫含量低的柴油之油相流體被分離出。之 後’上述油相流體被傳送到第二旋風分離器240,此 第二旋風分離器240將含硫量低的柴油分離出並儲存 在柴油保持槽11中。此外’包含砜等副產物的極性溶 液被傳輸至一蒸發塔300中’以將極性溶液回收再利 用並將其儲存在溶液恢復槽65(s〇lvem rec〇very tank) 中。其中,砜等副產物可從蒸發塔3〇〇中取得。 對於含硫量不同的各種燃料,經過最佳化的混合 • 輔助氧化脫硫程序,約可以移除95%以上的硫,或^ 以將硫的濃度降低至15 ppm以下。此外,使用四辛基 磷鹽也可以防止溴化物等副產物的產生。而且,較佳 的相間轉換能力也可以讓過度金屬觸媒有較高的回復 率和較佳的再使用率,因此即使使用經過稀釋的氫過 氧化物和臭氧溶液,仍可得到相同的除硫效率。 凊參照圖2,圖2所繪示為圖1之可攜式連續脫 硫裝置的脫硫程序,該脫硫程序將硫從液體化石燃料 φ 中移除,其包含了下述的步驟。 在步驟S100中’將從柴油供給槽2〇所流出液體 化=燃料與從氧化劑供給槽3〇流出的氧化劑溶液相 ^°該氧化劑溶液為包括水的臭氧溶液或過氧化氫 谷液此外,將儲存在界面活性劑容器中的界面活 f劑與儲存在金制媒容器中的金屬觸媒混合在 起以形成多相的反應介質(multiphase reaction :edlUm)。界面活性劑,例如:四辛基磷鹽,具有四 取代基,且該取代基是選自於由具有卜2〇個碳原子 15 201204825 之烷基、芳基、及芳烷基所構成的族群中的一種材質, 其中至J 一取代基為具有8個以上碳原子之烷基。儲 存於金屬觸媒容器50中的金屬觸媒為過度金屬觸 媒,例如:磷鎢酸。而且,舉例來說,在每25公克的 作為液體化石燃料的含硫柴油中,界面活性劑的使用 量約為0.1公克,金屬觸媒的使用量約為〇 2公克,且 搭配與含硫柴油相同容量的雙氧水溶液或臭氧溶液, 其中雙氧水或臭氧的體積濃度介於3°/。至30%間。 在步驟S105’將多相的反應介質進行反應式混合 一段充足的時間,以使柴油中的硫化物氧化成砜,並 形成乳化泡沫(emulsion bubble)。藉由於第一混合槽 100内對多相的反應介質進行充分攪拌與混合後,可 使所產生之泡沫的直徑皆小於i mm,或者讓大部分之 泡沫的直徑皆小於1 mm,在較佳的情況下,則是讓大 部份之泡沫的直徑約保持在10微米,且其餘多數的泡 沫的直徑約小於0.1 mm。 在步驟S110中’藉由第一旋風分離器14〇可將 油相流體與水相流體分離。之後,在步驟sl3〇中,藉 由第二旋風分離器140可將含有極性溶劑的溶液與非 極性溶液相分離。 在步驟S115中,藉由第二混合槽200,又稱為極 性洛液萃取器,可將極性溶劑中的油相流體混合並分 離。在第二混合槽200中的極性溶劑例如為乙腈,在 沸點介於550 K到950 K的情況下,乙腈可藉由蒸餾 法輕易地從砜分離出來。溶劑與油的重量百分比保持 201204825 在1:卜例如:1公克的柴油 成的多個乳化泡沫之直徑皆1公克的乙腈。所形 泡沫的直徑皆小於i mm,在較佳1 mm=者:部分之 泡沫的直徑約保持在1G微米兄下,大部份之 徑約小於0.1 mm。於步驟S1G5\其餘多數的泡床的直 生之泡沫兔洛 與步驟S115中,所產 ϋ可為乳泡或不混溶的液體泡沫。I L core" wherein Ri R2, R3, and R4 are aikyi radicals, and have 8 carbon atoms in the alkyl branch and the alkyl straight chain, and χ- is an anion. In most cases, when the hydroperoxide solution is 25 grams, the catalytically effective amount of the tetraoctylphosphonate as a surfactant is between 0.01 and 0.5 grams (about 3% to 30% by volume). The concentration) is preferably 0.2 g. The oxidant aqueous phase solution, the surfactant, the metal catalyst, and the higher sulfur content diesel are mixed through a plurality of conduits and transported to the first mixing tank. With conventional flow and flow control systems, the flow of feed streams in each conduit can be independently controlled. In the first mixing tank, these reactants can be thoroughly mixed by the mixer. In addition, in the oil/aqueous emulsion of the oil phase/water phase in the first mixing tank, the contact area generated by the plurality of foams can oxidize the sulfide 201204825 to a sub-hard or ε wind reaction rate fast. After the completion of the hydrazine reaction, the resulting mixture will include an aqueous phase and an organic phase, wherein the organic phase includes most of the hydrazine formed by the oxidation reaction. The resulting mixture is phase separable prior to removal of the sulfone. The action of phase separation can be accomplished by deemulsion. Alternatively, the procedure for breaking the emulsion can be accomplished in a conventional manner. This is well known to those of ordinary skill in the art of operating emulsification and continuous agitation, particularly in the field of oil-in-water emulsions. Compared with the sulfides originally present in fossil fuels, the hardness has a higher polarity. Therefore, after the polar substances are mixed and separated by a polar solution extractor, the hydrazine can be easily removed from the aqueous phase and organic. Remove the phase, or a mixture of the two. In this embodiment, the polar solution extractor is a mixing tank equipped with a mixer. The addition of numerous microfoams to a well-stirred and mixed emulsified mixture increases the effectiveness of the extraction because the contact area of the polar solution with the fossil fuel is increased. These tiny foams may be liquid bubbles or gas foams such as oil phase foams or aqueous phase foams. In other embodiments, the polar solution extractor can be a liquid-solid adsorption unit. Alumina can be packed into the column of the solid state adsorption unit and can be assisted by gravity and vacuum techniques to aid in the absorption process. In a polar solution extractor, a solution such as acetonitrile can be used as a polar solution. The acetonitrile can be easily separated from the mill by distillation (boiling point between about 550K and 950K). The weight percentage of solvent to oil can be maintained at 1:1 (for example: j 12 201204825 grams of diesel with 1 gram of acetonitrile). Here, "liquid fossil fuel" refers to any carbon-containing liquid extracted from petroleum, coal, and other natural materials. These fuels may be fuels for vehicles such as gasoline, diesel, aircraft fuel, and rocket fuel. Or it may be a petrochemical residual fuel such as heavy oil or surplus fuel. ★ The mixed auxiliary oxidative desulfurization method is carried out, for example, by using a continuous flow system, which can be operated at a steady state. During the operation, the reactants are continuously input into the reaction vessel, and the product is continuously removed from the reaction vessel. This embodiment discloses a continuous desulfurization apparatus 10, which can be short Time to process a large amount of diesel fuel, has the advantages of high desulfurization efficiency, low capital investment, and low maintenance cost. Moreover, the operating temperature of the continuous desulfurization device 10 is lower than that of the ultrasonic generator. Generally, because of the aqueous phase fluid The chemical reaction, the operating temperature can be increased to about 50-60 ° C. The continuous desulfurization device 10 can remove about 95% of the sulfur content. To increase the yield and The two continuous desulfurization apparatuses 10 can be connected in parallel to achieve a higher desulfurization rate. Figure 1 shows a continuous desulfurization apparatus 1 of the present embodiment, wherein the oxidant supply tank 30 is used for supply. The oxidant aqueous phase solution is used for supplying the diesel fuel having a high sulfur content. The oxidant supply tank 30 and the diesel supply tank 2 are connected to the first mixing tank 100 by a plurality of conduits. In addition, the surfactant container 40 and the metal catalyst container 5 are also connected to the first mixing tank 13 201204825 100. The oxidant supply tank 30 and the diesel supply tank 20 are provided by a conventional flow valve and flow control system. The flow rate of the surfactant container 40 and the metal catalyst container 50 can be controlled separately and independently. By adding a surfactant and a metal catalyst, and by the aid of the mixer 110, the mixture participating in the reaction is The first mixing tank 1 is mixed with the weir. Here, the first mixing tank 100 can also be regarded as a desulfurization reactor. It is carried out in the emulsion of the oil phase/aqueous phase of the first mixing tank 1〇〇. Reactive mixing program, package A procedure for oxidizing sulfides to hydrazine and sulfone. After mixing, the mixture participating in the reaction is transported to a first cyclone separator 140. The first cyclone separator 14 can be considered a diesel/aqueous phase separation tank. / In the aqueous phase separation tank, the aqueous phase fluid (including the catalyst and the catalyst) is separated from the oil phase fluid (including the diesel fuel and the ruthenium). Thereby, in the subsequent treatment process, the diesel fuel with low sulfur content can be produced. Thereafter, after a period of time, the aqueous phase fluid is recirculated to the first mixing tank 1 via the recirculation loop and through the catalyst activation vessel 55. In this embodiment, the mixture _ 11 〇 is a mechanical win. Mixer, which is mechanically stirred by the paste to carry out the solution in the first mixing tank. However, the person who has the usual knowledge in the field can also use the ultrasonic oscillating H high pressure sample mixing department to achieve the hemp effect. The mixer, the so-called high-pressure neo-mixer, is a high-pressure water column that is used to achieve mixing. Between the first cyclone separator 140 and the second cyclone separator 24, β is further provided with a second mixing tank 2''. The second mixing tank 2 is a polar solution extractor, and in the second mixing tank 2, after the mixing and extraction process by the mixer 110, the 201204825 by-product and sulfur are contained. The oil phase fluid of the low content diesel oil is separated. Thereafter, the above-mentioned oil phase fluid is sent to the second cyclone separator 240, which separates the low sulfur content diesel oil and stores it in the diesel holding tank 11. Further, a 'polar solution containing a by-product such as a sulfone is transferred to an evaporation column 300' to recover the polar solution and store it in a solution recovery tank 65 (s〇lvem rec〇very tank). Among them, by-products such as sulfone can be obtained from the evaporation tower. For optimized blends of various fuels with different sulphur content, the auxiliary oxidative desulfurization procedure can remove more than 95% of the sulfur, or reduce the sulfur concentration to less than 15 ppm. In addition, the use of tetraoctylphosphine salts also prevents the formation of by-products such as bromide. Moreover, the better phase-to-phase conversion capability also allows the excessive metal catalyst to have a higher recovery rate and better reuse rate, so even with the diluted hydroperoxide and ozone solution, the same desulfurization can be obtained. effectiveness. Referring to Figure 2, there is shown a desulfurization procedure for the portable continuous desulfurization apparatus of Figure 1, which removes sulfur from the liquid fossil fuel φ, which comprises the steps described below. In step S100, 'liquidization from the diesel supply tank 2〇=fuel and the oxidant solution flowing out from the oxidant supply tank 3〇. The oxidant solution is an ozone solution including water or a hydrogen peroxide valley liquid. The interfacial agent stored in the surfactant container is mixed with the metal catalyst stored in the gold medium container to form a multiphase reaction (edlUm). a surfactant, for example, a tetraoctylphosphonium salt having a tetra-substituent group, and the substituent is selected from the group consisting of an alkyl group, an aryl group, and an aralkyl group having a carbon atom of 15 201204825 A material of the formula wherein the substituent to the J is an alkyl group having 8 or more carbon atoms. The metal catalyst stored in the metal catalyst container 50 is an excessive metal catalyst such as phosphotungstic acid. Moreover, for example, in every 25 grams of sulfur-containing diesel fuel as a liquid fossil fuel, the amount of surfactant used is about 0.1 gram, the amount of metal catalyst used is about 公2 gram, and it is matched with sulphur-containing diesel. The same volume of aqueous hydrogen peroxide solution or ozone solution, wherein the volume concentration of hydrogen peroxide or ozone is between 3 ° /. Up to 30%. The heterogeneous reaction medium is subjected to reactive mixing in step S105' for a sufficient period of time to oxidize the sulfide in the diesel to sulfone and form an emulsion bubble. By sufficiently agitating and mixing the multiphase reaction medium in the first mixing tank 100, the diameter of the foam produced can be less than i mm, or the diameter of most of the foam is less than 1 mm, preferably In the case, the majority of the foam is maintained at a diameter of about 10 microns, and the remainder of the foam has a diameter of less than about 0.1 mm. The oil phase fluid can be separated from the aqueous phase fluid by the first cyclone separator 14 in step S110. Thereafter, in step s13, the solution containing the polar solvent can be separated from the non-polar solution by the second cyclone 140. In step S115, the oil phase fluid in the polar solvent can be mixed and separated by the second mixing tank 200, also referred to as a polar liquid extractor. The polar solvent in the second mixing tank 200 is, for example, acetonitrile, and at a boiling point of 550 K to 950 K, acetonitrile can be easily separated from the sulfone by distillation. Solvent-to-oil weight percentage retention 201204825 At 1:Bu, for example: 1 gram of diesel fuel, a plurality of emulsified foams each having a diameter of 1 gram of acetonitrile. The shape of the foam is less than i mm, preferably at 1 mm = the diameter of the foam is maintained at about 1 G micron, and most of the diameter is less than about 0.1 mm. In the step S1G5\ the remaining majority of the bubble bed of the instant foaming rabbit and the step S115, the produced sputum may be a milk foam or an immiscible liquid foam.

界面活性劑與金屬觸媒聚由集第並m請,可將 内的蒸顧程序,可將:工:!1!5:’藉由蒸一 劑,例如:乙腈,進行收::簾中所使用的溶 、、二=40中,藉由蒸發塔_,可將位於第二 ϊ旋風分_ 24g中_等副產物從 2 非極性流體中分離。於步驟⑽中,石風從 =發& 300中被移送至硬保持容器财。之後,於步 S135中’無極性且幾無礙含量的有機流體被收 乾淨的柴油保持槽11中。 本發明以實施例說明如上,然其並非用以限定本 明所主張之專利權利範圍。其專利保護範圍當視後 附之申請專利範圍及其等同領域而定。凡本領域具有 通常知識者,在不脫離本專利精神或範圍内,所作之 更動或潤飾,均屬於本發明所揭示精神下所完成之等 效改變或設計,且應包含在下述之申請專利範圍内。 【圖式簡單說明】 圖1所繪示為本實施例之連續脫硫裝置。 201204825 圖2所繪示為圖1之可攜式連續脫硫裝置的脫硫 程序。 【主要元件符號說明】 10 :連續脫硫裝置 11 :柴油保持槽 20 :柴油供給槽 30 :氧化劑供給槽 40 :界面活性劑容器 50 :金屬觸媒容器 55 :觸媒活化容器 65 :溶液恢復槽 70 :砜保持容器 100 :第一混合槽 200 :第二混合槽 110 :混合器 140 :第一旋風分離器 240 :第二旋風分離器 300 :蒸發塔 S100〜S150 :流程圖步驟The surfactant and the metal catalyst are collected from the collection and the m is required. The steaming process can be carried out in the following:: 1:5: 'by steaming a dose, for example: acetonitrile, in the curtain: In the solution used, in the second = 40, the by-products in the second cyclone _ 24g can be separated from the 2 non-polar fluid by the evaporation column _. In step (10), the stone wind is transferred from the = hair & 300 to the hard holding container. Thereafter, in step S135, the non-polar and unobstructed organic fluid is collected in the diesel holding tank 11. The invention is described above by way of example, and is not intended to limit the scope of the claims. The scope of patent protection is subject to the scope of the patent application and its equivalent. Modifications or modifications made by those skilled in the art, without departing from the spirit or scope of the invention, are equivalent to the equivalents or modifications made in the spirit of the invention and should be included in the following claims. Inside. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a continuous desulfurization apparatus of the present embodiment. 201204825 Figure 2 is a diagram showing the desulfurization procedure of the portable continuous desulfurization apparatus of Figure 1. [Main component symbol description] 10: Continuous desulfurization device 11: Diesel holding tank 20: Diesel supply tank 30: Oxidizer supply tank 40: Surfactant container 50: Metal catalyst container 55: Catalyst activation container 65: Solution recovery tank 70: sulfone holding vessel 100: first mixing tank 200: second mixing tank 110: mixer 140: first cyclone separator 240: second cyclone separator 300: evaporation tower S100 to S150: flow chart steps

Claims (1)

201204825 七、申請專利範圍: 1. 一種從液態化石燃料移除硫化物的方法,包括: ⑻將氧化劑溶液、金屬觸媒、及界面活性劑相結 合,以形成多相的反應介質;及 (b)在脫硫反應器中,將該多相的反應介質進行反應 混合一段充分時間,以使液態化石燃料中的硫化物氧 化為硬’且在脫硫反應器中還形成有多個泡珠,以增加反應 面積並促進反應效率。 2. 如申請專利範圍第1項所述之移除硫化物的方 法’更包括: 使用一第一旋風分離器,將油相流體從水相流體 中分離。 、3.如申請專利範圍第2項所述之移除硫化物的方 法,更包括: 藉由極性溶液萃取器,將油相流體混合並從極性 溶劑流體中分離出來。 4. 如申請專利範圍第3項所述之移除硫化物的方 法’更包括: 在極性溶液萃取器中產生多個泡沫’絕大多數的這些 ,包未之直徑小於1 mm。 5. 如申請專利範圍第2項所述之移除硫化物的方 & ’更包括: 將含有界面活性劑 水相溶劑溶液進行再循 、氧化劑溶液、及金屬觸媒的 環。 6·如申清專利範圍第2項所述之移除硫化物的方 201204825 法,更包括: 使用一第二旋風分離器,將油相流體從極性溶劑 流體中分離。 7. 如申請專利範圍第6項所述之移除硫化物的方 法,更包括: 將石風分離並聚集*用以產生基本上無礙存在的有 機相流體。 8. 如申請專利範圍第1項所述之移除硫化物的方 法,其中該界面活性劑為四級銨鹽,該四級銨鹽具有 鲁 四個取代基,這些取代基是選自於由具有1-20個碳原 子之烷基、芳基、及芳烷基所構成的族群中的一種材 質,其中至少一取代基為具有8個以上碳原子之烷基。 9. 如申請專利範圍第8項所述之移除硫化物的方 法,其中該界面活性劑為四辛基鱗鹽。 10. 如申請專利範圍第1項所述之移除硫化物的 方法,其中該氧化劑溶液包括過氧化氫、氫過氧化物、 或臭氧。 I 11. 如申請專利範圍第1項所述之移除硫化物的 方法,其中液態化石燃料與氧化劑溶液的混合比約介 於1:1到1:3之間。 12. 如申請專利範圍第1項所述之移除硫化物的 方法,其中金屬觸媒為選自由鐵II離子化合物、鐵III 離子化合物、銅I離子化合物、銅II離子化合物、鉻 III離子化合物、絡IV離子化合物、钥酸鹽、鶴酸鹽、 及釩酸鹽所構成的族群中的一種材質,該金屬觸媒與 20 201204825 液態化石燃料及氧化劑溶液一同形成多相的反應介 質。 13. 如申請專利範圍第12項所述之移除硫化物的 方法,其中金屬觸媒為磷鎢酸。 14. 如申請專利範圍第1項所述之移除硫化物的 方法’其中該液態化石燃料是選自於由原油、頁岩油、 柴油、汽油、煤油、液化石油氣、及石化殘餘燃料油。 15. 如申請專利範圍第1項所述之移除硫化物的 方法’其中該液態化石燃料是柴油或柴油燃料摻合物。 16. ~種從液態化石燃料移除硫化物的方法,包 括: ⑻將氧化劑溶液、金屬觸媒、及界面活性劑相結 合,以形成多相的反應介質,其中該氧化劑溶液包括 臭氧;及 (b)將多相的反應介質進行反應混合一段充分時 間,以使液態化石燃料中的硫化物氧化為砜。 —種從液態化石燃料移除硫化物的方法,包 括: ⑻將氧化劑溶液、金屬觸媒、及界面活性劑結 合,以形成多相的反應介質,其中該界面活性劑包括 四辛基鳞鹽; (b)將該多相的反應介質進行反應混合一段充分時 間,以使液態化石燃料中的硫化物氧化為砜。 18. —種連續脫硫裝置,包括·· 多個混合槽’每一混合槽連接有一混合器,該混合器是 21 201204825 用以攪拌和混合,以產生多個泡沫,絕大多數的這些泡沫之 直徑小於1 mm ; 多個旋風分離器,這些旋風分離器分別以串連的方 式和混合槽相連接; 一蒸發塔,該蒸發塔是連接到其中一旋風分離器,該 旋風分離器用以產生基本上無礙存在的有機相。 19. 如申請專利範圍第18項所述之連續脫硫裝 置,其中該混合器是與該混合槽相連接,且該混合槽連接 有一再循環迴路。 籲 20. 如申請專利範圍第18項所述之連續脫硫裝 置,更包括: 一柴油供給槽,於該柴油供給槽内容納有高含硫 量的柴油燃料; 一氧化劑供給槽,於該氧化劑供給槽内容納有氧 化劑水相溶液; 一界面活性劑容器,於該界面活性劑容器中容納 有界面活性劑;及 鲁 一金屬觸媒容器,於該金屬觸媒容器中容納有金 屬觸媒; 其中,該多個混合槽包括一第一混合槽,該多個旋風 分離器包括一第一旋風分離器,該第一旋風分離器為柴 油/水相分離槽;該柴油供給槽、該氧化劑供給槽、該 界面活性劑容器、與該金屬觸媒容器是與該第一混合槽 的入口相連接,而該第一旋風分離器與該第一混合槽的 出口相連接。 22 201204825 置,Γ中範圍第20項所述之連續脫硫裝 經由:再循環迴=流體是 23丄如中睛專利範则所 置,其中該多個混合槽更㈣續脫硫裂 1ST八舱哭Φ 6 k 9更匕括第一混。槽,該多個旋 風刀離aI括一第二旋風分離器,該201204825 VII. Patent application scope: 1. A method for removing sulfide from liquid fossil fuel, comprising: (8) combining an oxidant solution, a metal catalyst, and a surfactant to form a multi-phase reaction medium; and (b) In the desulfurization reactor, the heterogeneous reaction medium is subjected to reaction mixing for a sufficient period of time to oxidize the sulfide in the liquid fossil fuel to a hard' and a plurality of beads are formed in the desulfurization reactor. In order to increase the reaction area and promote the efficiency of the reaction. 2. The method of removing sulfides as recited in claim 1 further comprises: separating the oil phase fluid from the aqueous phase fluid using a first cyclone. 3. The method of removing sulfides as described in claim 2, further comprising: mixing the oil phase fluids and separating them from the polar solvent fluid by a polar solution extractor. 4. The method of removing sulfides as described in claim 3 of the patent application further includes: producing a plurality of foams in a polar solution extractor, the majority of which are less than 1 mm in diameter. 5. The method of removing sulfides as described in claim 2 of the patent application further includes: a ring containing a surfactant aqueous solvent solution for recirculation, an oxidizing agent solution, and a metal catalyst. 6. The method of removing sulfides as described in the second paragraph of the patent scope of claim 2, 201204825, further comprising: separating the oil phase fluid from the polar solvent fluid using a second cyclone. 7. The method of removing sulfides as described in claim 6 of the patent application, further comprising: separating and aggregating the stone winds* to produce an organic phase fluid that is substantially free of any presence. 8. The method of removing sulfide according to claim 1, wherein the surfactant is a quaternary ammonium salt having four substituents selected from the group consisting of A material of a group consisting of an alkyl group, an aryl group, and an aralkyl group having 1 to 20 carbon atoms, wherein at least one of the substituents is an alkyl group having 8 or more carbon atoms. 9. The method of removing sulfides according to claim 8, wherein the surfactant is a tetraoctyl scale salt. 10. The method of removing sulfides according to claim 1, wherein the oxidant solution comprises hydrogen peroxide, hydroperoxide, or ozone. I. The method of removing sulfides according to claim 1, wherein the mixing ratio of the liquid fossil fuel to the oxidant solution is between about 1:1 and 1:3. 12. The method of removing sulfide according to claim 1, wherein the metal catalyst is selected from the group consisting of an iron II ion compound, an iron III ion compound, a copper I ion compound, a copper II ion compound, and a chromium III ion compound. A material of a group consisting of a complex IV ion compound, a valerate, a sulphate, and a vanadate. The metal catalyst forms a heterogeneous reaction medium together with the 20 201204825 liquid fossil fuel and oxidant solution. 13. The method of removing sulfides according to claim 12, wherein the metal catalyst is phosphotungstic acid. 14. The method of removing sulfides as recited in claim 1, wherein the liquid fossil fuel is selected from the group consisting of crude oil, shale oil, diesel, gasoline, kerosene, liquefied petroleum gas, and petrochemical residual fuel oil. 15. The method of removing sulfides as described in claim 1 wherein the liquid fossil fuel is a diesel or diesel fuel blend. 16. A method of removing sulfide from a liquid fossil fuel, comprising: (8) combining an oxidant solution, a metal catalyst, and a surfactant to form a heterogeneous reaction medium, wherein the oxidant solution comprises ozone; b) The heterogeneous reaction medium is subjected to reaction mixing for a sufficient period of time to oxidize the sulfide in the liquid fossil fuel to the sulfone. A method for removing sulfide from a liquid fossil fuel, comprising: (8) combining an oxidant solution, a metal catalyst, and a surfactant to form a heterogeneous reaction medium, wherein the surfactant comprises a tetraoctyl scale salt; (b) reacting the heterogeneous reaction medium for a sufficient period of time to oxidize the sulfide in the liquid fossil fuel to the sulfone. 18. A continuous desulfurization apparatus comprising: a plurality of mixing tanks each having a mixer connected to the mixing tank, the mixer being 21 201204825 for stirring and mixing to produce a plurality of foams, most of which are foams The diameter is less than 1 mm; a plurality of cyclones, the cyclones are connected in series with the mixing tank; an evaporation tower is connected to one of the cyclones, the cyclone is used to generate The organic phase is essentially unaffected. 19. The continuous desulfurization apparatus of claim 18, wherein the mixer is coupled to the mixing tank and the mixing tank is connected to a recirculation loop. The continuous desulfurization apparatus according to claim 18, further comprising: a diesel supply tank in which a high sulfur content diesel fuel is contained; and an oxidant supply tank in the oxidant The supply tank contains an aqueous solution of an oxidant; a surfactant container containing a surfactant in the surfactant container; and a metal catalyst container, wherein the metal catalyst container contains a metal catalyst; Wherein, the plurality of mixing tanks comprise a first mixing tank, the plurality of cyclones comprising a first cyclone, the first cyclone is a diesel/water phase separation tank; the diesel supply tank, the oxidant supply The tank, the surfactant container, and the metal catalyst container are connected to the inlet of the first mixing tank, and the first cyclone separator is connected to the outlet of the first mixing tank. 22 201204825 The continuous desulfurization package described in item 20 of the zhongzhong range is: recirculation back = fluid is 23, as set in the patent specification of the middle eye, wherein the plurality of mixing tanks are further (4) continuous desulfurization crack 1ST eight Cabin crying Φ 6 k 9 is more than the first mix. a slot, the plurality of cyclones are separated from the aI by a second cyclone, 極性溶液萃取器且連接於該第-旋風分離器以為 旋風分離器之間。 兴β弟一 2上:申請專利範圍第”項所述之連 ==柴油保持槽,其中該第二旋風分離器: 3瓜量t的柴油分離出並儲存在該柴油保持槽中。 25.如申請專利範圍第23項所述之連續曰脫硫裝 置,更包括一再循環迴路,該再循環迴路連接至該第二 混合槽。 26.如申請專利範圍第25項所述之連續脫硫裝 置,於該再循環迴路中設有一溶液恢復槽。 27·如申凊專利範圍第18項所述之連續脫硫裝 置,其中混合器為一超音波震盪器、一機械授摔式 器、或一高壓水柱混合器。 σ 28. 一種連續脫硫裝置,包括: 一第一混合槽; 一柴油供給槽,於該柴油供給槽内容納有高含栌 量的柴油燃料,麵油供給槽是與該第-混合槽的入二 23 201204825 相連接; 一氧化劑供給槽,於該氧化劑供給槽内容納有氧 化劑水相溶液,該氧化劑供給槽是與該第一混合槽的入 口相連接; 一界面活性劑容器,於該界面活性劑容器中容納 有界面活性劑,該界面活性劑容器是與該第一混合槽的 入口相連接; 一金屬觸媒容器,於該金屬觸媒容器中容納有金 屬觸媒,該金屬觸媒容器是與該第一混合槽的入口相連 _ 接, 一第一旋風分離器,該第一旋風分離器為柴油/水相 分離槽且是以串連的方式和該第一混合槽相連接; 一第二混合槽,該第二混合槽為極性溶液萃取 器,該第二混合槽是與該第一旋風分離器相連接; 一第二旋風分離器,該第二旋風分離器與該第一 旋風分離器相連接,該第二旋風分離器用以產生基本 上無礙存在的有機相; Φ 一蒸發塔,該蒸發塔與該第二旋風分離器相連 接;及 一柴油保持槽,該柴油保持槽是與該第二旋風分 離器相連接; 其中,由該第一旋風分離器所分離出的水相流體 是經由一再循環迴路而再循環至該第一混合槽中,由 該第二旋風分離器所分離出的基本上無砜存在的有機 相是傳輸至該蒸發塔,且該第二旋風分離器是將含硫 24 201204825 量低的柴油分離出並儲存在該柴油保持槽中。A polar solution extractor is coupled to the first cyclone separator to be between the cyclones.兴β弟一2: The patent application scope of the above-mentioned paragraph == diesel retention tank, wherein the second cyclone separator: 3 of the amount of diesel is separated and stored in the diesel holding tank. The continuous helium desulfurization apparatus according to claim 23, further comprising a recirculation loop connected to the second mixing tank. 26. The continuous desulfurization apparatus according to claim 25 A continuous recovery device is provided in the recirculation circuit. The continuous desulfurization device according to claim 18, wherein the mixer is an ultrasonic oscillator, a mechanical drop device, or a High-pressure water column mixer σ 28. A continuous desulfurization device, comprising: a first mixing tank; a diesel supply tank, wherein the diesel fuel supply tank contains a high amount of diesel fuel, the surface oil supply tank is The first mixing tank is connected to the second 23 201204825; an oxidant supply tank, wherein the oxidant supply tank contains an oxidant aqueous phase solution, and the oxidant supply tank is connected to the inlet of the first mixing tank; a reagent container containing a surfactant in the surfactant container, the surfactant container being connected to an inlet of the first mixing tank; a metal catalyst container containing metal in the metal catalyst container a catalyst, the metal catalyst container is connected to the inlet of the first mixing tank, a first cyclone separator, the first cyclone separator is a diesel/water phase separation tank and is connected in series The first mixing tank is connected; a second mixing tank, the second mixing tank is a polar solution extractor, the second mixing tank is connected to the first cyclone; a second cyclone, the second a cyclone separator is coupled to the first cyclone separator, the second cyclone separator is configured to generate an organic phase that is substantially free from existence; Φ an evaporation tower, the evaporation tower is coupled to the second cyclone separator; and a a diesel holding tank connected to the second cyclone; wherein the aqueous phase fluid separated by the first cyclone is recirculated to the first via a recirculation loop In the mixing tank, the organic phase substantially free of sulfone separated by the second cyclone is transported to the evaporation tower, and the second cyclone separator separates the diesel fuel having a low sulfur content of 201204825 and Stored in the diesel holding tank. 2525
TW099136872A 2010-07-20 2010-10-28 A method for removing sulfides from a liquid fossil fuel and the device using the same TWI417375B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/840,259 US20120018350A1 (en) 2010-07-20 2010-07-20 Mixing-assisted oxidative desulfurization of diesel fuel using quaternary ammonium salt and portable unit thereof

Publications (2)

Publication Number Publication Date
TW201204825A true TW201204825A (en) 2012-02-01
TWI417375B TWI417375B (en) 2013-12-01

Family

ID=44496518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099136872A TWI417375B (en) 2010-07-20 2010-10-28 A method for removing sulfides from a liquid fossil fuel and the device using the same

Country Status (6)

Country Link
US (1) US20120018350A1 (en)
EP (1) EP2410038A3 (en)
JP (1) JP2012025933A (en)
CN (2) CN201952397U (en)
CA (1) CA2744257A1 (en)
TW (1) TWI417375B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106943A1 (en) * 2006-03-22 2007-09-27 Ultraclean Fuel Pty Ltd Process for removing sulphur from liquid hydrocarbons
US9441169B2 (en) 2013-03-15 2016-09-13 Ultraclean Fuel Pty Ltd Process for removing sulphur compounds from hydrocarbons
PT2970795T (en) * 2013-03-15 2020-08-26 Ultraclean Fuel Ltd Process for removing sulphur compounds from hydrocarbons
CN103450931B (en) * 2013-09-06 2015-04-15 余国贤 Ultrasonic oxidation-extraction and deep desulfurization method for diesel oil
CN103585954A (en) * 2013-11-04 2014-02-19 安阳工学院 Gasoline desulfurization catalytic adsorbent, and preparation method and desulfurization method thereof
CN104989944A (en) * 2015-06-30 2015-10-21 柳州市山泰气体有限公司 Cylindrical liquefied petroleum gas tank
WO2018170130A1 (en) 2017-03-14 2018-09-20 Alternative Petroleum Technologies, Inc. System and method for liquid hydrocarbon desulfurization
AU2017413746B2 (en) * 2017-05-08 2023-05-11 Solvay Sa Process for removing sulfur compounds from a liquid composition
BR102017012313B1 (en) 2017-06-09 2022-06-28 Petróleo Brasileiro S.A. - Petrobrás CATALYTIC SYSTEM FOR THE REMOVAL OF HETEROATOMIC SULFUR AND/OR NITROGEN COMPOUNDS DISSOLVED IN HYDROCARBONS
US11124709B2 (en) 2017-06-26 2021-09-21 Alternative Petroleum Technologies Holdings Corp. System and method for liquid hydrocarbon desulfurization
US10093868B1 (en) * 2017-11-15 2018-10-09 Baker Hughes, A Ge Company, Llc Ionic liquid-based hydrogen sulfide and mercaptan scavengers
US11198824B2 (en) * 2019-05-16 2021-12-14 Alternative Petroleum Technologies Holdings Corp. System and method for liquid hydrocarbon desulfurization

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US173571A (en) * 1876-02-15 Improvement in heat-radiators
US54538A (en) * 1866-05-08 Improved method of neutralizing acid on sheet-iron
US4410422A (en) * 1981-10-23 1983-10-18 General Electric Company Method for removing polyhalogenated hydrocarbons from nonpolar organic solvent solutions
JP3227521B2 (en) * 1992-04-06 2001-11-12 舟越 泉 Method for recovering organic sulfur compounds from liquid oil
US6402939B1 (en) 2000-09-28 2002-06-11 Sulphco, Inc. Oxidative desulfurization of fossil fuels with ultrasound
US7871512B2 (en) * 2001-05-10 2011-01-18 Petrosonics, Llc Treatment of crude oil fractions, fossil fuels, and products thereof
US6544409B2 (en) * 2001-05-16 2003-04-08 Petroleo Brasileiro S.A. - Petrobras Process for the catalytic oxidation of sulfur, nitrogen and unsaturated compounds from hydrocarbon streams
JP2003193066A (en) * 2001-12-26 2003-07-09 Mitsui Eng & Shipbuild Co Ltd Method for oxidative desulfurization of liquid petroleum product and oxidative desulfurization plant
EP1765959A4 (en) * 2004-05-31 2010-07-28 Agency Science Tech & Res Novel process for removing sulfur from fuels
US20060054538A1 (en) * 2004-09-14 2006-03-16 Exxonmobil Research And Engineering Company Emulsion neutralization of high total acid number (TAN) crude oil
CN100556992C (en) * 2005-03-18 2009-11-04 中国科学院化学研究所 A kind of catalytic oxidation desulfurization method of petroleum products
CA2662627C (en) * 2006-03-03 2013-04-30 Saudi Arabian Oil Company Catalytic process for deep oxidative desulfurization of liquid transportation fuels
CN100569917C (en) * 2006-04-27 2009-12-16 中国石油化工股份有限公司 The method of a kind of oxidation sweetening of light-end products and deodorization
US8197763B2 (en) * 2006-09-13 2012-06-12 University Of Southern California Ultrasound-assisted oxidative desulfurization of diesel fuel using quaternary ammonium fluoride and portable unit for ultrasound-assisted oxidative desulfurization
US7758745B2 (en) * 2008-03-20 2010-07-20 Shun-Sheng Cheng Diesel desulfurization method

Also Published As

Publication number Publication date
CN201952397U (en) 2011-08-31
CN102337149A (en) 2012-02-01
US20120018350A1 (en) 2012-01-26
EP2410038A3 (en) 2012-05-23
JP2012025933A (en) 2012-02-09
TWI417375B (en) 2013-12-01
CA2744257A1 (en) 2012-01-20
EP2410038A2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
TWI417375B (en) A method for removing sulfides from a liquid fossil fuel and the device using the same
US7758745B2 (en) Diesel desulfurization method
CN103189117B (en) Separation process
JP5444402B2 (en) Improved separation method
CN102834489B (en) Water, oxygenant and heavy oil are mixed under supercritical temperature and pressure condition, and finally makes mixture stand the method for microwave treatment
CN103805227B (en) A kind of pretreatment process method of high-acid crude oil
Lanju et al. Oxidative desulfurization of simulated gasoline over metal oxide-loaded molecular sieve
CN101402877B (en) Catalytic oxidation desulfuration method for gasoline
US20140374320A1 (en) Method for Removing Sulfides from a Liquid Fossil Fuel
CN104624033B (en) A kind of liquefied gas deep desulfuration combined method
Meiying et al. Ternary system of Fe-based ionic liquid, ethanol and water for wet flue gas desulfurization
WO2022140273A1 (en) Catalytic carbon fiber preparation methods
CN108410498A (en) A kind of recycle chemistry chain partial oxidizing heavy oil processing method
US11826741B2 (en) Catalytic carbon fiber preparation methods
CN104694151A (en) An oxidation regeneration method for a thiolate-containing alkali solution
CN104371781B (en) The sulfur method of liquefied petroleum gas and device
US11517889B2 (en) Catalytic carbon fiber contactor
WO2015065668A1 (en) Methods for treating hydrocarbon streams containing mercaptan compounds
CN106929089B (en) A kind of pre-oxidation regeneration method of sulfur-bearing alkoxide lye
CN104371786B (en) Alkali lye desulfurization method and device of liquefied petroleum gas
CN110643385B (en) Method for selective catalytic oxidation desulfurization of fuel oil
TWM406043U (en) Continuous desulfurization device
CN106929093B (en) A kind of alkylation and device of iso-butane and C3~C5 alkene
Cheng Ultra clean fuels via modified UAOD process with room temperature ionic liquid (RTIL) & solid catalyst polishing
CN105921144A (en) Nano-sized tungstic acid catalyst, and preparation method and application thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees