TW201204171A - Adaptive current regulation for solid state lighting - Google Patents
Adaptive current regulation for solid state lighting Download PDFInfo
- Publication number
- TW201204171A TW201204171A TW100116450A TW100116450A TW201204171A TW 201204171 A TW201204171 A TW 201204171A TW 100116450 A TW100116450 A TW 100116450A TW 100116450 A TW100116450 A TW 100116450A TW 201204171 A TW201204171 A TW 201204171A
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- coupled
- current
- transistor
- resistor
- Prior art date
Links
Classifications
-
- Y02B20/345—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
201204171 六、發明說明: 【相關申請案之交互參照】 本申請案係有關於2㈣年5月12日中請,發明人為 Anat〇ly Shteynberg等人’名稱為“用於固態照明之適應性電 流調整”的美國㈣申請案序號12/778,767且為其之一部分 接續案’並且本中請案係有關於2009年12月16日申請, 發月人為Anatoly Shteynberg等人,名稱為“用於固態照明 之適應性電流調整”的美國專利申請案序號WOW且為 其之-部分接續案,該美國專利申請案序號12,㈣,255係 有關於2007年1月19日申請,發明人為Anat〇ly 等人,名稱為“用於固態照明的電流調整之阻抗匹配電路” 的美國專利申請案序號1 1/655,558,現為年2月2日 獲准的美國專利號7,656,1G3且為其之_部分接續案,該美 國專利申請㈣號1 1/655,558係主張2⑼6丨丨日申 凊’發明人為Anatoly Shteynberg等人,名稱為“具有相位 調變之離線式LED驅動器,,的美國臨時專利申請案序號 60/760, i 57的優先權且為其轉換的正式申請案,所有的申請 案都在此共同讓與’每個申請案的内容係被納入在此作為 參考,且具有如同以其整體在此闡述般相同的完整效力, 並且對於所有共同揭露之標的主張優先權。 【發明所屬之技術領域】 本發明係大致有關於電力轉換,並且更明確地說係有 關於一種用於供應電力至固態照明裝置的系統、裝置及方 201204171 法,例如用於提供電力至發光二極體(“led”)。 【先前技術】 β用於提供電力至LED之廣泛種類的離線式電源供應器 疋已知的。這些電源供應器(亦即,驅動器)t的許多種實際 上與現有的照明系統(例如,典型用於白熾或螢光照明的照 明系統)基礎結構(例如,大致上利用相位調變的“調光器”開 關來改I從白熾燈泡輸出的光亮度或強度的基礎結構)不相 容的。於是,白熾燈被LED的取替係面對一項挑戰·進行 照明基礎結構的完全重新佈線,此係昂貴且不太可能發生 的、或者是開發出與市售的且已經裝設的調光器開關相容 的新賴LED驅動器。此外’由於許多白織燈或其它類型的 燈,报可能保留在任何特定照明環境中,因此高度所期望 的是使得LED及白熾燈能夠平行且在共同控制下運作。 此問題的一種習知技術解決方案係見於Em〇t的美國 專利申請案公開號2005/0168 168,名稱為“用於]lED及㈣ 燈:調光器”,其中白熾燈及LED係連接至一共同的燈電源 匸μ排其中光輸出強度係利用一具有兩個電源成分之複 °的波形來控制。此提案是複雜的’ f要過多的構件來實 施,並且不是特別針對AC(交流)市電的照明。 種驾知技術解決方案係被描述在Mednik等人的名 稱為具有回的DC轉換率及改良的AC線諧波的AC/DC串 級的電力轉換器,,的美國專利號6,781,35 1、以及在Alex Mednik的“驅動HBLED中的交換模式技術”,2〇〇5年發光 201204171 二極體研討會會議記錄的刊物中。這些參考資料揭示一具 有功率因數校正功能的離線式LED驅動器。然而,當和一 調光器麵接時,其LED的調整是不良的,而且其並不完整 地支援調光器在輸出負載的全範圍中(明確地說當白熾燈及 LED燈平行使用時)的穩定動作。 圖1是一種連接至一調光器開關75的習知技術的電流 調整器50的電路圖,該調光器開關75係提供相位調變。 圖2是此種習知技術(順向)調光器開關乃的電路圖。電阻 器摩1)及電容器77(C1)的時間常數係控制三端交流開關 (tnaC)80的點弧角(firing angle) “ α ”(描繪在圖3中)。該二 端交流開關(diaC)85係被用來最大化在輸人Ac線電壓(35) 的正及負半週期的點弧角間之對稱性。電容器45(C2)及電 感器40(L 1)係形成一低通濾波器以協助降低由調光器開關 75產生的雜说。二端交流開關8〇是一實際等效於共用一共 同閘極之逆並聯(reverse para丨lel)矽控整流器(scr)的開關 元件單個SCR疋一個當導通時行為像是二極體的閘控半 導體、在閘極(70)的信號係被用來導通該三端交流開關 80並且負載電流係被用來保持或維持該三端交流開關8〇 導通。因此,該閘極信號無法關斷一 SCR,因而該ScR將 會保持導通直到負載電流變為零為止。一個三端交流開關 8〇的行為像是一 SCR,但是在兩個方向上導通。三端交流 開關眾所週知的是對於正及負傳導具有不同的導通臨界 值。此差異通常是藉由利用一個二端交流開關85耦接至三 端交流開關80的閘極70以控制該三端交流開關8〇的導通 201204171 電壓來最小化β 三端交流開關80亦具有最小的閉鎖(latehing)電流及保 持電流。閉鎖電流是當給予一足夠的閘極脈波時導通三端 交流開關80所需的.最小電流,保持電流是一旦導通後保 持三端交流開關80於導通狀態所需的最小電流。當電流下 降到此保持電流以下時,二端交流開關8〇將會關斷。該閉 鎖=流通常是高於該保持電流。對於使用三端交流開關(例 食b夠刀換3至8 A)的調光器開關而言,保持電流及閉鎖電 /成疋1 0mA至大約7〇mA的數量級,此亦為舉例且非限制的。 ▲三端交流開關80的點弧角(6〇係控制從Ac線的零點 父越的延遲’並且理論上是限制在0。及180。之間,其中〇。 等於全力率’❿180為沒有電力傳送至負載’-範例的相 位調變後的輸出電壓係描繪在圖3中(如同一“截斷的”正弦 ^ 典型的調光器開關可具有分別為大約25 3及201204171 VI. Description of invention: [Reciprocal reference of related application] This application is related to the mid-term of May 12, 2, 4, and the inventor is Anat〇ly Shteynberg et al. 'Name is for adaptive current adjustment for solid-state lighting. The US (4) application number is 12/778,767 and is part of its succession' and the application is for December 16, 2009. The person who sent the month is Anatoly Shteynberg and others, entitled "For Solid State Lighting." U.S. Patent Application Serial No. WOW, which is hereby incorporated by reference in its entirety in its entirety in its entirety, in the U.S. Patent Application Serial No. 12, (d), 255 is filed on January 19, 2007, the inventor is Anat〇ly et al. U.S. Patent Application Serial No. 1 1/655,558, entitled "The Current-Adjusting Impedance Matching Circuit for Solid-State Lighting," is now US Patent No. 7,656,1G3, which was approved on February 2, and is part of the continuation case. The U.S. Patent Application (4) No. 1 1/655,558 claims 2 (9) 6 丨丨 凊 凊 'Inventor Anatoly Shteynberg et al., entitled "Off-line LED driver with phase modulation," At the time of the patent application No. 60/760, i 57, and the formal application for its conversion, all the applications are hereby given together. 'The content of each application is hereby incorporated by reference and has the same The full validity of the same is set forth herein as a whole, and the claims of all common disclosures are prioritized. [Technical Field of the Invention] The present invention relates generally to power conversion, and more specifically to one Systems, devices, and methods for supplying power to solid state lighting devices, 201204171, for example, to provide power to light-emitting diodes ("led"). [Prior Art] β is used to provide a wide range of off-line power supplies for power to LEDs. Known. Many of these power supplies (ie, drivers) t are actually integrated with existing lighting systems (eg, lighting systems typically used for incandescent or fluorescent lighting) (eg, generally utilized) The phase-modulated "dimmer" switch is incompatible with the underlying structure of the brightness or intensity of the light output from the incandescent bulb. Thus, white The replacement of LEDs with LEDs is a challenge to complete the rewiring of the lighting infrastructure, which is expensive and unlikely to occur, or the development of commercially available and already installed dimmer switches. The new LED driver is also available. In addition, due to many white woven lamps or other types of lamps, the report may remain in any particular lighting environment, so it is highly desirable to enable LEDs and incandescent lamps to operate in parallel and under common control. A conventional technical solution to this problem is found in U.S. Patent Application Publication No. 2005/0168, 168, entitled "for lED and (iv) lamps: dimmers, in which incandescent lamps and LEDs are connected to A common lamp power supply 其中μ row in which the light output intensity is controlled using a complex waveform having two power supply components. This proposal is complex and requires too many components to implement, and is not specifically directed to AC (alternative) utility lighting. A technical solution for driving is described in Mednik et al., entitled AC/DC Cascade Power Converters with Returned DC Conversion Rate and Improved AC Line Harmonics, U.S. Patent No. 6,781, 35 1 , And in Alex Mednik's "Exchange Mode Technology in Driving HBLEDs", the publication of the 2,5-year illuminating 201204171 diode seminar meeting. These references reveal an off-line LED driver with power factor correction. However, when it is interfaced with a dimmer, its LED adjustment is poor, and it does not fully support the dimmer in the full range of output load (specifically when incandescent and LED lights are used in parallel) ) Stable action. 1 is a circuit diagram of a prior art current regulator 50 coupled to a dimmer switch 75 that provides phase modulation. Figure 2 is a circuit diagram of such a prior art (forward) dimmer switch. The time constant of resistor 1) and capacitor 77 (C1) controls the firing angle "α" of the three-terminal AC switch (tnaC) 80 (depicted in Figure 3). The two-terminal AC switch (diaC) 85 is used to maximize the symmetry between the arc angles of the positive and negative half cycles of the input Ac line voltage (35). Capacitor 45 (C2) and inductor 40 (L 1) form a low pass filter to assist in reducing the artifacts produced by dimmer switch 75. The two-terminal AC switch 8〇 is a switching element that is actually equivalent to a reverse parallel of a common gate (scr), a single SCR, and a gate that acts like a diode when turned on. The control semiconductor, the signal at the gate (70) is used to turn on the three-terminal AC switch 80 and the load current is used to maintain or maintain the three-terminal AC switch 8 〇 conducting. Therefore, the gate signal cannot turn off an SCR, so the ScR will remain on until the load current becomes zero. A three-terminal AC switch 8〇 behaves like an SCR but turns on in both directions. Three-terminal AC switches are known to have different conduction thresholds for positive and negative conduction. This difference is usually minimized by using a two-terminal AC switch 85 coupled to the gate 70 of the three-terminal AC switch 80 to control the turn-on 201204171 voltage of the three-terminal AC switch 8A. The beta three-terminal AC switch 80 also has a minimum. The latching current and holding current. The latching current is the minimum current required to turn on the three-terminal AC switch 80 when a sufficient gate pulse is applied. The holding current is the minimum current required to maintain the three-terminal AC switch 80 in an on state once turned on. When the current drops below this holding current, the two-terminal AC switch 8〇 will turn off. The lock = flow is typically higher than the hold current. For a dimmer switch that uses a three-terminal AC switch (for example, a food knife with a knife for 3 to 8 A), the current and latching power are reduced to 10 mA to about 7 mA, which is also an example. limited. ▲The arc angle of the three-terminal AC switch 80 (6〇 controls the delay from the zero point of the Ac line) and is theoretically limited between 0 and 180. Where 〇. equals the full force rate '❿180 is no power The phase-modulated output voltage delivered to the load'-example is depicted in Figure 3 (as the same "truncated" sinusoidal ^ typical dimmer switch can have approximately 25 3 and
的最小"值及最^值,相較於直接從交流幹線(AC 作其合許大約98〇/。至2%的電力流向負載。 類似地,一種播A 士 種逆向相位調變後的調光器會如圖4中所繪地 k供一輸出電懕搭休 _ 5電阻性負載,其例如是在每個週期 的。处(例如攸〇至9〇。)提供能量給負載,而在每個 的後^分(被描繪為間㈣)中沒有能量被傳送。 5月參照圖2,點孤& β 角α疋由電容器77(C1)、電阻器76(R1) 及負載(例如,—白$ ^ 熾4泡或—led驅動器電路(Zu)ad81)) 的阻抗的RC時間奮叙〜 ’The minimum "value and the maximum value are compared to the direct current from the AC mains (AC is about 98〇/. to 2% of the power flow to the load. Similarly, a kind of broadcast A-special reverse phase modulation The dimmer will provide an output 懕 5 resistive load as depicted in Figure 4, which provides energy to the load, for example, at each cycle (e.g., 攸〇 to 9 〇). No energy is transmitted in each of the following points (depicted as (4)). Referring to Figure 2, May, point l & β angle α疋 from capacitor 77 (C1), resistor 76 (R1), and load ( For example, - white $ ^ blazing 4 bubble or - led driver circuit (Zu) ad81)) the impedance of the RC time to fend ~ '
9 , 數所決定。在典型的調光應用中,ZU>AD9, the number is decided. In a typical dimming application, ZU>AD
將會疋幾個數量級小於 L0AD 久且為電阻性,因此將不會顯著 201204171 響點弧角。然而,當負載和R1 ;^可比較的、或負載不是電 阻性時,調光器開關的點弧角及特性可能會顯著改變。 典型習知技術的利用來自一調光器開關的相位調變以 驅動LED的離線式AC/DC轉換器有數個與提供優質驅動給 LED有關的問題,例如:⑴來自一調光器開關的相位調變 可能在光學輸出中產生-低頻(大約12〇Hz),其被稱為“閃 燦”,此可被人眼感測到' 或者使人們產生振盪的光的反應; (2)對輸入電壓濾波可能需要相當大值的輸入電容器,使得 轉換器的尺寸及其使用壽命受到不利影響;⑺當三端交产 開關80被導通時,因為輸入渡波器的低阻抗,一大的渴二 電流可能產生’此可能損壞調光器開關75及任何LED驅動 器的元件;以及(4)電力管理控制器通常並非設計用於運作 在具有輸入電壓的相位調變的環境令,因而可能故障。 於疋仍需要有一種LED驅動器電路能夠和現有昭明 基礎結構之典型或標準的順向或逆向相位調變的調光器、開 關-致地運作並且避免上述的問題,同時提供咖照明環 境上及即能的益處。此種LED驅動器電路應該能夠藉由現 有照明基礎結構的標準開關加以控制,以例如為了生產、 彈性、美觀、氣氛以及節能提供相同調整後的亮度…範 例的LED驅動器電路庫咳不It will be several orders of magnitude smaller than L0AD and resistive, so it will not be significant 201204171 ring angle. However, when the load is comparable to R1; or the load is not resistive, the arc angle and characteristics of the dimmer switch may vary significantly. A typical prior art utilizing phase modulation from a dimmer switch to drive an LED's off-line AC/DC converter has several problems associated with providing a high quality drive to the LED, such as: (1) phase from a dimmer switch Modulation may occur in the optical output - low frequency (about 12 〇 Hz), which is called "flashing", which can be sensed by the human eye 'or react to people's oscillating light; (2) input Voltage filtering may require a relatively large value of the input capacitor, so that the size of the converter and its service life are adversely affected; (7) when the three-terminal switch 80 is turned on, because of the low impedance of the input ferrite, a large thirst and two currents It is possible to generate 'this element that may damage the dimmer switch 75 and any LED drivers; and (4) the power management controller is typically not designed to operate in an environmental order with phase modulation of the input voltage and may therefore malfunction. Yu still needs an LED driver circuit that can operate with the typical or standard forward or reverse phase modulation dimmers and switches of the existing Zhaoming infrastructure and avoid the above problems, while providing a coffee lighting environment. The benefits of energy. Such LED driver circuits should be controllable by standard switches of existing lighting infrastructure to provide the same adjusted brightness, for example for production, flexibility, aesthetics, atmosphere and energy savings... the LED driver circuit library of the example does not cough
电峪應°亥不4夠獨立運作,也能夠和I 它類型的照明,例如白熾、小 耸光或其匕的照明平行運 作運作,並且可藉由和此種白 開關,例如,調光器開㈣二:匕的照明所用相同的 w法,η 關或其匕適應性或可程式化的開關 來控制。一範例的咖驅動器電路亦應該可運作在現有的 201204171 照明基礎結構内,而不須重新佈線或是其它改造 【發明内容】 本發明範例的實施例係提供許多的優點。嗜些矿如、 實施例容許固態照明(例如LED)被利用於目前現^日^ 基礎結構(包含螺旋燈座),並且能夠藉由各種開關⑼如相 位調變的調光器開關)的任一種控制,否則將會對於習知的 交換式電源供應器或電流調整器造成嚴重的動作問題。°該 些範例的實施例進一步容許此種固態照明的輸出亮度或強 f的複雜控帝卜並且可利用肖少且相對較低成本的構件來 貫施。此外,該些範例的實施例可被利用於獨立的固態照 明系統、或是可和其它類型之現有的照明系統(例如白熾燈; 平行利用。 本發明範例的實%例不僅辨識及適應纟種狀態的開關 (例如相位調變的調光器開關),而且進一步利用一種新穎的 見解以同時辨硪及適應各種狀態的交換式電源供應器,使 得相位凋變的調光器開關以及交換式電源供應器不間斷且 只夤穩又地一起運作。更具體而言,該些範例的實施例辨 减及適應至少三個狀態的相位調變的調光器開關,亦即, 其中調光器開關並未導通,而是在該期間一觸發電容器 (C卜77)正在充電的第一狀態;其中調光器開關已經導通且 而要一閉鎖電流的第二狀態;以及其中該調光器開關完全 導通且需要一保持電流的第三狀態。同時,組合該開關的 狀態’ s亥些範例的實施例係辨識及適應一交換式電源供應 201204171 窃的至少二個狀態,並且在各種不同實施例令為四個狀 '’亦即,第-狀態,交換式電源供應器的起動(start up) 狀態,在此期間其產生其電源供應(Vcc電壓位準)·第二狀 態,交換式電源供應器的平緩(逐漸的或是“軟”)開始(S㈣ 狀態’在此期間其從起動至完全的操作模式斜坡提升電力 至負載(例如LED)的提供(例如,透過脈波寬度調變(“pwM”) 的切換);第三狀態,在此期間交換式電源供應器是在一完 全的操作模式中;以及選配的第四狀態,纟此期間交換式 電源供應器可能遭遇到-異常或反常的動作並且進入到-保。蒦的#作模式。對於利用穩定操作之對應標準的開關(例 如’調光器開關)及交換式電源供應器的狀態的每一種組 合’該些範例的實施例係提供一實質匹配的電氣環境以符 合此種用於該開關及交換式電源供應器的穩定操作的標 t,此係致能兩個構件無縫且穩定的操作。在各種範例的 貫施例中,相同類剞夕荀^肪 ^之貫質匹配的電氣環境可被利用於多 種狀態的組合’並且在其它實例中’其它類型的實質匹配 電氣衣兄將會被利用於該開關及交換式電源供應器的狀 態的一種所選的組合。 本發明範例的實施例係提供一種介接㈣池响)一交 換式電源供應$至-輕接至_交流(AC)電源的第一開關之 f法’其係用於提供電力至固態照明。在各種的實施例中, /第開關疋-順向或是逆向相位調變調光器開關。一範 Ο的方法係包括.感測—輪入電流位準;感測一輸入電壓 4準’利帛一適應性介面電路’提供一電阻性阻抗至 10 201204171 :第心’關以及在一預設的模式中從該第一開關導通電 1 ;以及利用一第二適應性介面電路,當該第一開關導通 日”產生-諧振過程以及在該交換式電源供應器的諧振過 程期間提供一電流路徑。 在-範例的實施例中’該方法可進一步包括:在該交 換式電源供應器的魏過程期間利用該第二適應性介面電 路以調變該第一開關的一電汚· J J 4 /瓦,及/或在该交換式電源供應 器的諧振過程期間利用—筮:@ a J用第二適應性介面電路以調變該第 :開關的-電流;及/或利用該第一適應性介面電路以在該 :換式電源供應器的一起動狀態或是一平緩開始狀態期間 傳導電流;及/或利用該第一適應性介面電路以在該第一開 關的:觸發電容器的充電期間 '在該第—開關的導通期 間、以及在戎第一開關的傳導期間傳導電流。 、在各種範例的實施例中’該提供一電阻性阻抗的步驟 可進-步包括.切換該第—適應性介面電路以提供一固定 的電阻性阻抗至該第—開關;及/或調變該第—適應性介面 電路以提供一可變的電阻性阻抗至該第一開關;及/或建立 -操作電Μ,以及當該操作電壓已到達一預設的位準時, 調變該第一適應性介面電路並 . ”成乐開關的狀態非同 ,地轉換至該交換式電源供應器的一平緩開始。 在各種範例的實施你丨φ,4 中 在该5白振過程期間提供一雷 流路徑的該步驟可進一步句衽. ^ V包括.決疋一峰值輸入電流位 準;以及切換一電阻性阻抗以產生該電流路^。在 種範例的實施例中,在該譜振過程期間提供—電流 201204171 忒步驟可進一步包括:決定一峰值輸入電流位準;以及調 變一經切換的電阻性阻抗以產生該電流路徑。 在-範例的實施例中’該方法可進一步包括:在該交 換式電源供應器的-全功率模式期間以及在該第一開關的 -觸發電容器的充電期間’以一百分之百工作週期或是以 -沉模式操作該交換式電源供應器。在另—範例的實施例 中。亥方法可進一步包括:在該交換式電源供應器的一全 功率模式期間以及在該第一開關的導通期間,以一實質最 大的瞬間功率操作該交換式電源供應器_預設的時間期 F曰,° ’ 在各種範例的實施例中,該第二適應性介面電路係包 括一與—電阻器並聯的電感器,並且該方法可進一步包 括:在該交換式電源供應器的一全功率模式期間以及在該 第-開關的導通期間,以一實質最大的瞬間功率操作該交 換式電源供應器直到該電感器已實質放電為止。 同樣在各種範例的實施例中,該方法可進一步包括: 利用該第二適應性介面電路以在該交換式電源供應:的丄 :全操作功率狀態期間傳導電流;及/或在該交換式電源供The electric cymbal should not operate independently and can operate in parallel with the illumination of its type, such as incandescent, small light or its sin, and can be used with such white switches, for example, dimmers. On (4) 2: The illumination of the 匕 is controlled by the same w method, η off or its adaptive or programmable switch. An exemplary coffee driver circuit should also operate within the existing 201204171 lighting infrastructure without rewiring or other modifications. SUMMARY OF THE INVENTION Exemplary embodiments of the present invention provide numerous advantages. Some of the minerals, for example, allow solid-state lighting (such as LEDs) to be utilized in the current infrastructure (including spiral lamp holders), and can be switched by various switches (9) such as phase-modulated dimmer switches) A control that would otherwise cause serious motion problems for conventional switched power supplies or current regulators. The embodiments of these examples further allow for the complex control of the output brightness or intensity of such solid state illumination and can be utilized with relatively low cost and relatively low cost components. Moreover, the exemplary embodiments may be utilized in a stand-alone solid state lighting system, or may be used in parallel with other types of existing lighting systems (eg, incandescent lamps; parallel use of the examples of the present invention not only identify and adapt to the species) State-of-the-art switches (such as phase-modulated dimmer switches), and further utilize a novel insight to simultaneously identify and adapt to various states of the switching power supply, resulting in phase-dimmed dimmer switches and switched-mode power supplies The supplies operate uninterruptedly and only together and more stably. More specifically, embodiments of the examples discriminate and adapt to phase-modulated dimmer switches of at least three states, ie, where the dimmer switches Not conducting, but a first state during which a trigger capacitor (Cb 77) is being charged; wherein the dimmer switch has been turned on and a second state of latching current; and wherein the dimmer switch is fully Turning on and requiring a third state of holding current. At the same time, combining the state of the switch, the embodiment of the example is identified and adapted to an exchange power supply 2012041 71 stealing at least two states, and in various embodiments, four-shaped, that is, the first-state, the start-up state of the switched-mode power supply, during which it generates its power supply ( Vcc voltage level) · Second state, the gradual (gradual or "soft") start of the switched-mode power supply (S (four) state" during which it ramps power from load to full operating mode ramp to load (eg LED Provided (eg, by pulse width modulation ("pwM") switching); a third state during which the switched power supply is in a full mode of operation; and an optional fourth state, During this period, the switched-mode power supply may encounter an abnormal or abnormal action and enter the -safe mode. For the switch that uses the corresponding standard for stable operation (such as 'dimmer switch') and switching power supply Each combination of states of the supply 'the embodiments of the examples provide a substantially matched electrical environment to comply with such a standard for stable operation of the switch and the switched power supply. This system enables a seamless and stable operation of the two components. In the various examples of the examples, the same type of electrical environment can be utilized in a combination of multiple states' and in other In the example, 'other types of substantially matched electrical clothing brothers will be utilized in a selected combination of the state of the switch and the switched power supply. Embodiments of the present invention provide an interface (four) pooling) exchange Power supply to the first switch of the _AC (AC) power supply is used to provide power to solid state lighting. In various embodiments, / switch 疋 - forward or reverse Phase modulation dimmer switch. A method of sensing includes: sensing - wheeling current level; sensing an input voltage 4 quasi - an adaptive interface circuit to provide a resistive impedance to 10 201204171: The heart 'offs and conducts a current from the first switch in a predetermined mode; and utilizes a second adaptive interface circuit when the first switch conducts a day-to-resonance process and at the switched power supply Resonant process A current path is provided between them. In an exemplary embodiment, the method may further include utilizing the second adaptive interface circuit to modulate an electrical contamination JJ 4 /W of the first switch during a process of the switched power supply. And/or utilizing a second adaptive interface circuit to modulate the current of the first switch during the resonant process of the switched power supply; and/or utilizing the first adaptive interface circuit Conducting current during the active state of the switched power supply or a gradual start state; and/or utilizing the first adaptive interface circuit to be during the charging of the trigger capacitor of the first switch The current is conducted during the on-time of the first switch and during the conduction of the first switch. In various exemplary embodiments, the step of providing a resistive impedance may include: switching the first adaptive interface circuit to provide a fixed resistive impedance to the first switch; and/or modulating The first adaptive interface circuit provides a variable resistive impedance to the first switch; and/or establishes an operational power, and modulates the first when the operating voltage has reached a predetermined level The interface of the adaptive interface is different. The state of the switch is different, and the ground switch to a smooth start of the switched power supply. In the implementation of various examples, you 丨φ, 4 provide a mine during the 5 white vibration process. This step of the flow path may be further recited. ^V includes a peak input current level; and switching a resistive impedance to generate the current path. In an exemplary embodiment, during the spectral process Providing a current 201204171 忒 step may further comprise: determining a peak input current level; and modulating the switched resistive impedance to generate the current path. In an exemplary embodiment, the method may further Included: operating the switched power supply in a one hundred percent duty cycle or in a sink mode during the full power mode of the switched power supply and during charging of the first switch's -trigger capacitor. In an exemplary embodiment, the method can further include operating the switched power supply at a substantially maximum instantaneous power during a full power mode of the switched power supply and during conduction of the first switch _Preset time period F 曰, ° ' In various exemplary embodiments, the second adaptive interface circuit includes an inductor in parallel with the resistor, and the method may further include: the switching power supply During a full power mode of the supply and during the conduction of the first switch, the switched power supply is operated at a substantially maximum instantaneous power until the inductor has substantially discharged. Also in various exemplary embodiments, The method can further include: utilizing the second adaptive interface circuit to supply the switched power supply: a full operating power state Between conduction current; and / or in the switching mode power supply
〜益的-平緩開始階段期間調整來自該第一開關 功率。 取J 在各種範例的實施例中,豸第二適應性介面電路進一 步。括-可切換的電阻性阻抗,並且該方法可進—步勺 ==二適應性介面電路以在該交換式電源供應: 白奴期間、在該交換式電源供應器的—平緩起動 12 201204171 的一完全的操作模式期 期間、或是在該交換式電源供應器 間提供一電流路徑。 在—範例的實施例中,該方法可進—步包括:利用— 柄接至該交換式電源供應㈣操作電壓轨帶式(b。。⑻ 電路以產生-操作電壓。該第—適應性介面電路可進—步 包括δ玄操作電壓勒;帶式電路。 在各種範例的實施例中,該方法可進-步包括1定 一對應於該感測到的輸人電屋位準之最大的工作週期;、利 用-小於該最大的工作週期的切換工作週期以提供一脈波 寬度調變操作模式給該交換式電源供應器;以及當該工作 週期是在該最大的工作週期的一預設的範圍内日夺,提供一 ,流脈波操作模式給該交換式電源供應器^在各種範例的 :施例中’該方法可進—步包括:決定或是從一記憶體獲 仔一對應於該感測到的輸入電壓位準之最大的工作週期; 及/或決定或改變該工作週期以提供一預設的或是所選的平 均或峰值輸出電流位準;及/或決I最高到-最大的伏秒 值(V〇ltSeC〇ndS)參數的峰值輸出電流位準。 々—在—範例的實施例中,肖方法可進—步包括:伯測該 開關的一故障。例如,該方法可藉由在該八匸電源的一 半週』期間決定至少兩個輸人電麼波峰或是兩個輸入電塵 零點父越以偵測該故障。 其匕範例的實施例係提供一種用於電力轉換之系統, 其中該系統可為;咕 祸接至一第一開關(例如一相位調變調光器開 關)。亥第開關係耦接至一交流(AC)電源,且其中該範例 13 201204171 的系統係包括:一交換式電源供應器係包括一第二電源開 關;耦接至該交換式電源供應器的固態照明;一電壓感測 器;一電流感測器;一記憶體·; 一第一適應性介面電路, 其包括一電阻性阻抗以在一預設的模式中從該第一開關傳 導電流,一第一適應性介面電路,其用以在該第一開關導 通時產生一諧振過程;以及一控制器,其耦接至該電壓感 測器、該電流感測器 '該記憶體、該第二開關、該第一適 應性介面電路以及該第二適應性介面電路,並且當該第一 開關導通時,該控制器係調變該第二適應性介面電路以在 5亥父換式電源供應器的谐振過程期間提供一電流路徑。 在各種範例的實施例中,該控制器進一步係在該交換 式電源供應器的諧振過程期間調變該第二適應性介面電路 以凋邊6亥第一開關的一電流^在一範例的實施例中,該系 統可進一步包括:一用以在該交換式電源供應器的諧振過 程期間調變該第一開關的一電流之第三適應性介面電路。 在各種範例的實施例中,該控制器進一步係在該交換 式電源供應器的一起動狀態或是一平緩開始狀態期間使用 該第一適應性介面電路以傳導電流;及/或在該第一開關的 一觸發電容器的充電期間、在該第一開關的導通期間、以 及在該第一開關的傳導期間使用該第一適應性介面電路以 傳導電流;及/或切換該第一適應性介面電路以提供一固定 的電阻性阻抗至該第一開關;及/或調變該第一適應性介面 電路以提供一可變的電阻性阻抗至該第一開關。 在一範例的實施例中,當一操作電壓已到達一預設的 14 201204171 位準時,該控制器進-步可調變該第一適應性介面電路並 且與该弟-開關的狀態非同步地轉換至該交換< 電源供應 -的-平緩開始。在各種範例的實施例中,該第二適庫性 介面電路係包括一電阻性阻抗,其中該控制器進_步^> 疋:峰值輸入電流位準’以及當該峰值輸入電流位準已到 達w,該控制器係進-步切換該電阻性阻抗以產生該電法 路徑。在其它各種範例的實施例中該第二適應性介面電^ 包括-經切換的電阻性阻抗,其十該控制器進—步可決 定-峰值輸入電流位準,以及當該峰值輸入電流位準已到 達時,該控制器係進-步調變該經切換的電阻性阻抗以產 生邊電流路徑。 在一範例的實施例中,在該交換式電源供應器的一全 率核式』間以及在②第—開關的—觸發電容器的充贫期 …該控制器係進一步以一百分之百工作週期或是以一 dc 模式操作該交換式電源供應器;及/或在㈣換式電源供應 盗的一全功率模式期間以及在該第一開關的導通期間,該 控制器係進—步以—實質最大的瞬間功率操作《換式電 源供應器—預設的時間期間。在另—範例的實施例中,該 弟二適應性介面電路係包括—與—電阻器並聯的電感器, 並且其中在該交換式電源供應器的一全功率模式期間以及 在該第-開關的導通期間,該控制器係進一步以一實質最 大的瞬間功率操作該交換式電源供應器直到該電感器已實 質放電為止。 在各種範例的實施例令,該控制器進一步可使用該第 15 201204171 二適應性介面電路以在該交換式電源供應器的一完全操作 功率狀態期間傳導電流。在另一範例的實施例中,該控制 器進一步可在該交換式電源供應器的一平緩開始階段期間 調整來自該第一開關之一最小功率。在各種範例的實施例 中’其中該第二適應性介面電路進一步包括一可切換的電 阻性阻抗,並且其中該控制器進一步可使用該第二適應性 "面電路以在該交換式電源供應器的一起動階段期_、在 該交換式電源供應器的一平緩起動期間、或是在該交換式 電源供應器的一完全的操作模式期間提供一電流路徑。 在另一範例的實施例中,該系統進一步包括:一搞接 至忒父換式電源供應器以產生一操作電壓的操作電壓靴帶 式電路。纟-範例的實施例中,該第—適應性介面電路進 一步包括該操作電壓靴帶式電路。 在各種範例的實施例中,該控制器進一步可決定—童 應於該感測到的輸入電壓位準之最大的工作週期丨利用_ :i、於該最大的工作週期的切換工作週期以提供二脈波寬肩 调變操作模式給該交換式電源供應器;以及當該工作週势 是在該最大的工作週期的-預設的範圍内時,提供十 脈波操作模式給該交換式電源供仙 例中,該控制器進一步可夺定今^在各種抵例的貫摊 於該感測到的輪入電壓位 于對應 定七拎礙兮 +义敢大的工作週期;及/或可決 值輸出電流位準m㈣^ ^所選的平均或峰 可決定… 靡貫施例中’該控制器進-步 、 …最大.的伏秒值參數之峰值輸出電流位 16 201204171 準。 在各種範例的實施例中該控制器進一步可例如是藉由 在該AC電源的/半週期期間決定至少兩個輸入電壓波峰 或是兩個輸入電壓零點交越以偵測該第一開關的一故障。 在一範例的實施例中,該第一適應性介面電路可包 括.一第一電阻器;一串聯耦接至該第一電阻器的電晶體, 該電晶體係具有一耦接至該控制器的基極或是具有一耦接 至該控制器的閘極·,以及—耦接至該電晶體的基極或閉極 的第二電阻器。 在另一範例的實施例中,該第一適應性介面電路可包 括 第電阻盗,一串聯耦接至該第一電阻器的電晶體, 該電晶體係具有一耦接至該控制器的基極或是具有一耦接 至忒控制器的閘極;一耦接至該電晶體的一源極或一射極 的第二電阻器;以及—鉍拉芯斗而。从 輕接至该電晶體的基極或閘極且柄 接至該第二電阻器的齊納二極體。 ..在-範例的實施例t,該第:適應性介面電路可包 電感器’以及一與該電感器並聯耦接的電阻器。在 另一範例的實施例中,㈣二適應性介面電路可包括:一 電感态’與„亥電感器耦接的第一電阻器;一具有一基極 或-閘極搞接至該第_電阻器的電晶^。在另—範例的實 施例中,該第二適廄把人& + α 、 矛迴應14 "面電路可進一步包括:一耦接至 垓電感益且耦接至該電晶體的一集極或汲極的第二電阻 益::耦接至該電晶體的一射極或源極的第一齊納二極 體;以及-耦接至該電感器以及該第一齊納二極體的第二 17 201204171 二極體。在另1例的實施射,該第二適應性介面電路 可包括:一電感器;一第一電阻器…微分器;—輕= 該微分器的一輸出的留h 铷出的早擊(one Shot)電路;以及一串 至°亥第一電阻盗且進一步具有一麵接至該單擊電路的—輸 出的閘極或基極之電晶體。 别 在各種範例的實施例中,該固態照明是一或多個發光 二極體。該交換式電源供應器可具有任意的配置,例如且 有-種非隔離或是—種隔離的返馳配置。該系統可具有: - A19標準相容的—形狀因數,例如以裝配在—螺旋插座 之内。該系統可以是可透過一整流器耦接至該第一開關。 該系統可以是可透過一整流器及一電感器麵接至該第-開 關。 在另一範例的實施例中,一種裝置係被提供用於電力 轉換’該裝置可耗接至一第_相位調變調光器開關,該調 光器開關係輕接至-交流(Ac)電源,該裝置可麵接至一固 態照明,並且其中該範例的裝置係包括:一包括一第二電 源開關的交換式電源供應器;一電壓感測器;一電流感測 .器乂記憶體卜第一適應性介面電路,其係包括一電阻 !·生阻抗以在一預设的模式中從該第一開關傳導電流;—第 二適應性介面電路,其係用以在該第—開關導通時產生一 «白振過& ’以及-控制器,其係麵接至該電壓感測器該 電流感測器、該記憶體、該第二開關、該第一適應性介面 電路以及5玄第一適應性介面電路,並且當該第一開關導通 夺°玄控制器係s周變该第二適應性介面電路以提供一電流 18 201204171 路徑,並且在该父換式電源供應器的諧振過程期間調變該 第一開關的一電流。 在另一範例的實施例中,一種裝置係被提供用於電力 轉換,該系統具有和一A19標準相容的一形狀因數,該系 統可耦接至一相位調變的調光器開關’該調光器開關係搞 接至-交流(AC)電源,並且其中該範例的系統係 一 包括一電源開關的交換式電 換式電源供應器的發光二極 準的電壓感測器;一用以在 關傳導電流的第一適應性介 路進一步提供一實質匹配的 適應性介面電路’其係用以 諸振過程並且在該交換式電 一電流路徑;一記憶體;以 一電壓感測器、該記憶體以 用一小於一最大的工作週期 調變操作模式,並且當該工 的一預設的範圍内時,提供 在另一範例的實施例中 轉換,其中該裝置可耦接至 該調光器開關係耦接至—交 接至一固態照明’並且該裝 器;一第一適應性介面電路 性的阻抗’以在一預設的模 源供應器;至少一耦接至該交 體’一用以感測一輸入電壓位 一預設的模式中從該調光器開 面電路,該第一適應性介面電 阻抗至該調光器開關;一第二 產生該交換式電源供應器的一 源供應器的諧振過程期間提供 及一控制器,其係耦接至該第 及S玄電源開關,該控制器係利 之工作週期以提供一脈波寬度 作週期是在該最大的工作週期 —電流脈波操作模式。 ’ 一種裝置係被提供用於電力 —第一相位調變調光器開關, 流(AC)電源,其中該裝置可雜 置係包括:一交換式電源供應 ,其係包括一至少部分為電阻 式中從該第一開關傳導電流; 19 201204171 以及一第二適應性介面電路 時產生一谐振過程。 其係用以在㈣1關導通 在各種範例的實施例中,該裝置可進 至該第-鬥^匕括一麵接 至乂第一開關、該第一適應性介面電路以 介面常故沾知+丨 第一適應性 、控制器,並且當該第一開關導通 係調轡贫筮-、A ί·Χ·制 。第一適應性介面電路以在該交換式電 諧振過程期間提供一雷泣 供應益的 扠供電,瓜路徑。该控制器進一步可調變古玄 第一適應性介面電路以在該 #n „ ^ 你^ 乂換式電源供應态的諧振過程 期間凋支該第一開關的一電流。 /同樣在各種範例的實施财,該第一適應性介面電路 Λ I阻器’並且可進一步包括一與該電I5且器並聯搞 接的二極體。該第二適應性介面電路可包括:-耦接至該 電阻器的電感器’·以及一串聯耦接至該電阻器的電容器。 在另一範例的實施例中,該第一適應性介面電路以及 該第二適應性介面電路係包括:-電感器―耗接至該電 感斋的電阻器;一串聯耦接至該電阻器的電容器;以及一 與忒電阻器並聯耦接且進一步耦接至該電感器的二極體。 "亥裝置亦可進一步包括一與該串聯耦接的電阻器及電容器 並聯耦接的濾波器電容器。 在另一 la例的實施例中’—種系統係被提供用於電力 轉換,該系統可耦接至一第一開關,該第一開關係耦接至 一交流(AC)電源,並且該系統係包括:一交換式電源供應 器’耗接至該交換式電源供應器的固態照明;一第一適應 性介面電路,其係包括一至少部分為電阻性的阻抗以在一 20 201204171 預设的模式中從該第一開關傳導電流;以及一第二適應性 介面電路,其係用以在该第—開關導通時產生一諧振過程。 在又一範例的實施例中,一種裝置係被提供用於電力 轉換’其中該裝置可耦接至—第一相位調變調光器開關, 6玄调光器開關係耦接至一交流(AC)電源,並且其中該裝置 可耗接至一固態照明,該裝置 器’一第一適應性介面電路, 抗性阻抗的電阻性阻抗,以在 關傳導電流在一第一電流路徑 電路’其係包括一柄接至該電 第一開關傳導電流在一第二電 應性介面電路進一步在該第一 盪。 在各種範例的實施例中, 至該第二開關的控制器,並且 制器係調變該第二開關以在該 電凌路徑。該控制器進一步可 以在該阻尼的振盪過程期間調 在一範例的實施例中,該 串聯耦接至一第一電容器的 開關可包括一電晶體,並且該 步包括串聯搞接至該第一電容 性介面電路可進一步包括:一 接至一第三電阻器的第二電阻 係包括:一交換式電源供應 其係包括一串聯耗接至-一電 —預設的模式中從該第一開 中;以及一第二適應性介面 抗性阻抗的第二開關以從該 流路徑中,該第一及第二適 開關導通時阻尼(damping)振 該裝置可進一步包括一耦接 當該第一開關導通時,該控 阻尼的振盪期間提供該第二 調變該第二適應性介面電路 炎5亥第一開關的一電流。 第—適應性介面電路係包括 第—電阻器。此外,該第二 第一適應性介面電路巧進一 器的該電晶體。該第二適應 分壓器,其係包括一串聯耦 器,該第二及第三電卩且器進 21 201204171 一步耦接至該電晶體的一閘極;以及一與該第三電阻器並 聯耦接的電容器。 在另一範例的實施例中’用於電力轉換的系統係被揭 示,該系統可搞接至一第一開關,該第一開關係耦接至一 交流(AC)電源’其中該枣統係包括:一交換式電源供應器; 耦接至該交換式電源供應器的固態照明;—第—適靡性# 面電路,其係包括一 _聯搞接至一電抗性阻抗的電阻性阻 抗以在一預設的模式中從該第一開關傳導電流在一第一電 流路徑中;以及一第二適應性介面電路,其係包括一輕接 至遠電抗性阻抗的第二開關以從該第一開關傳導電流在— 第二電流路徑中,該第一及第二適應性介面電路進一步在 該第一開關導通時阻尼振盛。 在 被揭示 調光器 固態照 及一適 抗的電 流在 性阻抗 路徑中 尼振盪 係包括 開關可 另一範例的實施例中,一種 ’該裝置可耦接至一第一相 開關係搞接至一交 明’其中該裝置係包括:一 應性介面電路,其係包括一 阻性阻抗以在一預 第一電流路徑中, 的第二開關以從該 ,該適應性介面電 。同樣在各種範例 一串聯耦接至一 包括—電晶體,並 之裝置係 開關,該 搞接至一 應器;以 電抗性阻 關傳導電 至該電抗 第二電流 導通時阻 介面電路 。該第二 且該適應性介面電路可進一步包 位調變調光器 流(AC)電源’該裝置可 交換式電源供 串聯耦接至一 設的模式中從該第一開 並且進一步包括一耦接 第一開關傳導電流在一 路進一步在該第一開關 的實施例中,該適應性 第一電容器的第一電阻器 22 201204171 括串聯轉接至該第一電容器的該電晶體。該適應性介面電 路可進—步包括··一分壓器,其係包括一串聯耦接至一第 二電阻器的第二電阻器,該第二及第三電阻器進一步辑接 至該電晶體的一閑極;以及一與該第三電阻器並聯耦接的 電容器。 在另一範例的實施例中,一種用於電力轉換之裝£係 被揭示,該裝置可耦接至一第一相位調變調光器開關,該 周光器開關係麵接至一交流(AC)電源,該裝置可耗接趸一 固態照明,其中該裝置係包括:一交換式電源供應器;一 可刀換的適應性介面電路,其係包括一串聯耦接至一 第二開關及一電抗性阻抗的第一電阻性阻抗,以在該第一 開,在-關斷狀態或是在該交換式電源供應器在一起動模 式日:,在-預設的模式中從該第一開關傳導電流在一第一 電流路徑中;以及一第二可切換的適應性介面電路,其係 ^括-串聯叙接至一第三開關的第二電阻性阻抗,以在該 =換式電源供應器在一完全操作模式時,從該第一開關傳 在—第二電流路徑中。在-範例的實施例中,該第 適f !“面電路係包括一串聯耦接至該第二開關的第一 一^ ’該第二開”接至—耗接到—第—電容器的第 二:Π ’並且該第二開關係包括一具有-耦接至該第三 開關的閉極之第—雪曰艘。+ 在—範例的實施例中,該第二 適應性介面電路係包括一电 ^ 、 知耦接至該第三開關且進一步 柄接至該第一雷曰㈣的一 ¥日日體的閘極之第三電阻器。 在另-範例的實施例巾,該範例的裝置進一步包括一 23 201204171 感測器;以及一耦接至該感測器及該第三開關的第四開 關。一範例的感測器係包括:一具有一透過一個二極體耦 接至該第四開關的集極之電晶體;以及一包括一串聯#才妾 至一第四電阻器的第三電阻器之分壓器,該第二及第三電 阻器係進一步耦接至該電晶體的一基極。 在另一範例的實施例中,該範例的裝置進一步包括一 漣波消除電路。在一範例的實施例中,該漣波消除電路係 包括:一包括一第一電晶體及一第二電晶體的差動放大 器;一耦接至該差動放大器的傳遞電晶體(pass transist〇r); 一耦接至S亥第一電晶體的第一齊納二極體;以及一耦接至 S亥第一電晶體的第二齊納二極體 中,該漣波消除電路進一步包括: 的低通濾波器。 >在另一範例的實施例 一輕接至該第一電晶體 在另一範例的實施例中,一種用於電力轉換之系統 , π,,’先可耦接至一第一相位調變調光器開關, f 一相位調變調光器開關係耦接至-交流(AC)電源,該 統係包括:—交換式電源供應器;—耗接至該交換式電 :應:㈣波消除電路m該連波消除電路的固態 接至—第_ °刀換的適應性介面電路,其係包括一串聯 兮笛一”二開關及—電抗性阻抗的第-電阻性阻抗,以 :動模::在―關斷狀態或是在該交換式電源供應器在 -第1流二了模式中從該[開關傳導電流 路,其係包括-由 第二可切換的適應性介面 串聯輕接至一第三開關的第二電阻性 24 201204171 抗’以在該交換式電源供應器在-完全操作模式時,從該 第一開關傳導電流在一第二電流路徑中。 本發明的許多其它優點及特點從以下本發明的詳細說 明及本發明的實施例、⑼申請專利範圍以及從所附的圖式 將會變為相當顯明。 【實施方式】 儘管本發明係容許有諸多不同形式之實施例,但顯示 於圖式且將於本文詳細描述的是其特定範例實施例,瞭解 的是:本發明揭示内容係視為本發明之原理的範例而非意 圖為限制本發明於圖示的特定實施例。有關於此,在詳細 解說符合於本發明的至少一個實施例之前,要瞭解的是: 本發明係不限制其應用於上下文所述、或於圖式所述或 如同在實例中所述的構成細節與構件配置。符合於本發明 之方法及裝置係能夠為其它的實施例且能夠以各種方式實 施及實行。此外’要瞭解的是:運用於本文之用語與術語、 以及納入於下文之摘要係為了說明而不應視為限制性質。 如上所述,習知技術LED驅動器電路當和習知的調光 器開關75 -起利用時經常是有問題的,其造成例如是可感 知的閃爍及大的湧入電流之問題。例如,如圖5中所繪, 切換離線式LED驅動器90 if常包含一具有一電容性液波 器的全波整流g 20,當輸人電壓大於橫跨遽波器電容器 fFILT)l5的電壓時’其係容許電流流向該電容器、至該電 谷益的湧入電流係藉由與該電容器串聯的電阻來限制。在 25 201204171 正常的操作條件下可以有一負溫度係數電阻器(NTC)或熱 敏電阻和該電容器串聯以最小化在最初充電期間的湧入電 滴 °此電阻在操作期間將會顯著地降低,容許快速的電容 器充電°此電路將會持續地峰值充電該電容器至輸入波形 的峰值電壓,對於標準的12〇 V AC線電壓為169 V DC。 然而’當和一調光器開關75 —起使用時,該濾波器電 容器的充電電流係受到調光電阻R1 (的電阻器76)的限制, 並且為 Icharge=(V1n - VLOAD - VCI)/R1(圖 2 及 5)。因為在 Cl(77)以及CFILT(15)間之大的差異,橫跨該濾波器電容器 的電壓可近似於一 DC電壓源。該濾波器電容器的充電電流 也是控制該調光器的點弧角之C1的充電電流。因為橫跨該 濾波器電容器15的大電壓降(VC1),C1的充電電流將會比 正常的調光器操作低。對於大的值之VC1而言,進入C1的 電流將會是小的,因此緩慢地充電。因此,且如圖6中所 繪,該小的充電電流可能不足以在一半週期期間充電C 1至 該二端交流開關85導通(breakover)電壓。若該導通電壓未 到達(93),則該三端交流開關80將不會導通。此將會持續 許多週期直到在該濾波器電容器上的電壓小到足夠讓C1充 電至該導通電壓為止。一旦該導通電壓已經到達(94),則該 三端交流開關80將會導通,並且該電容器將會充電至剩下 的另一半週期的輸入電壓峰值。此現象係被描繪在圖6中, 其需要60Hz(92)的四個週期以到達此導通’電壓,使得該三 端交流開關80只以一個次諸波頻率(例如,如圖所繪的每 15Hz)導通。 26 201204171 ^ s周光器開關使用於一吸取或汲取小量的電流負 載使传對於所有的AC輸入值而言,ILOAD都小於保持電 μ日夺’ 5玄二端交流開關8〇將會提供反覆無常的特性而不適 合"用於且右Τ Ρ n bj- # ^ 驅動器的應用。標稱的(nominal)點弧角將 會由於ZL0AD 81,增加的電阻而增高。當電容器(C1)電壓超 出該一端交流開關的導通電壓時,該二端交流開關85將會 放電S玄電容器到該三端交流開關80的閘極,短暫地導通該 一纟而交流開關。然而,因為負載電阻過高而不容許有必需 的保持電流’該三端交流開關8〇接著將會關斷。當該三端 父流開關關斷時’該電容器C1再次開始透過R1及Zload(81) 充電。若在該半週期中剩餘還有足夠的時間,該三端交流 開關將會再次點弧,並且此過程在每個半週期反覆重複。 此種過早的且無法維持的三端雙向可控矽開關8〇的導通狀 怨係被描綠在圖7中,顯示該三端雙向可控矽開關80的多 個點孤(過早的起動嘗試)91,此可能造成可感知的LED閃 爍。 對於在正常的操作狀態中的習知技術電源供應器,一 種用以提供足夠的電流通過該調光器開關75之效率相當差 的習知技術方法只是使用一並聯(橫跨)該調光器開關75的 負載電阻器RL,藉此在該三端交流開關80正在點弧時提供 至少為VTR1AC/RL的負載電流。藉由將該電阻器的值設定的 夠小,可使得該電流夠高以確保其總是在保持該三端交流 開關80在導通狀態所需的臨界電流(通常是在 50mA〜100mA的附近)之上。當該相位角(點弧角α )是小 27 201204171 的,橫跨電阻器rl的功率消耗將會是極高#,亦即, ⑽仏’此進一步導致大量熱的產生。此種負載電阻典型 是白熾燈所提供,但電子或可切換的負_如,交換式咖 驅動器系統)並不必然提供。 此外,當該三端交流開關8G正導通時,將更多電流加 到該開關8G並不-定是必要的,尤其是吸取大量電流的多 個燈(白熾燈泡或剛正被使用時。因此,根據本發明各種 範例的實施例,取代“虛擬(dummy)”電阻器的是,能夠 根據該調光器開關7 5的需要調整的主動電路可被利用:該 些範例的實施例係提供電流調整以容許該三端交流開關^ 切換導通(點弧)並且隨所需要的使其保持在導通狀“㈣ 範例的實施例也是功率更有效率的,當有其它提供或絲 電流的負載或是當該相位角α是小的時候,其降低所增補 的電流(以及I2R功率損失)。 儘管固態照明(例如LED照明)有相當大的環境及節能 好處’但若是其無法被整合到現有的照明基礎結構、或是 做成操作上與現有的照明基礎結構相容的,則其被採用作 為照明技術的選項便較為不可能。因此,根據本發明,一 種led驅動器電路係被提出,其係操作上與現有的照明基 礎結構(例如調光器開關)相容的,並且可直接 光器開關且藉由該調光器開關控制’而不論是否有其它負 載(例如另外的白熾或螢光的照明)也轉接至此種調光写或 其它開關且受該調光器或其它開關控制。儘管該些範例的 實施例在以下係相關於和調光器開關(7 5) 一起利用來描繪 28 201204171 及論述’但應注意到的是,除了那些可能特別為了其它目 的而設計或實施的開關或其它基礎結構以外,該些範例的 實施例係適用於和實際任何類型的開關元件或其它照明基 礎結構一起利用。 如上所指出地,本發明範例.的實施例不僅辨識及適應 各種狀態的開關(例如相位調變的調光器開關),而且進一步 利用一種新穎的見解以同時辨識及適應各種狀態的交換式 電源供應器,使得相位調變的調光器開關以及交換式電源 供應器不間斷且實質穩定地一起運作。更具體而言,該些 範例的實施例辨識及適應至少三個狀態的相位調變的調光 器開關,亦即,其中調光器開關並未導通,而是在該期間 -觸發電容器(C1’77)正在充電的第一狀態;其中調光器開 關已經導通且需要一閉鎖電流的第二狀態;以及其中該調 光器開關完全導通且需要一例如是用於三端交流開關⑽) 或閉流體的保持電流的第三狀態,,組合該開關的狀 態,該些範例的實㈣係辨識及適應―交換式電源供應器 的至少二個狀態’並且在各種不同實施例中為四個狀態, 亦即’第-狀態,交換式電源供應器的起動狀態,在此期 間其產生其電源供應(Vcc電壓位準);第二狀態交換式電 源供應器的平緩開始狀態,纟此期間其從起動至完全的操 作模式斜坡提升至負載(例如LED)的功率提供(例如,透過 脈=度調變的切換);第三狀態,在此期間交換式電源供 應。„疋在一疋全的操作模式中;以及選配的第四狀態,在 此期間交換式電源供應器可能遭遇到一異常或反常的動作 29 201204171 且進入到一保護的操作模式。對於利用籍~ 4II ^ Μ 耵於扪用穩疋操作之對應 ..^ 及父換式電源供應器的狀態 …-種組合’該些範例的實施例係提供一實質匹配的電 轧%<垅以捋合此種用於該開關及交換式電源供應器的穩定 操作的標準’此係致能兩.個構件無縫且穩定的操作。在各 種範例的實施例中,相同類型之實質匹配的電氣環境可被 利用於多種狀態的組合’並且在其它實例中,丨它類型的 實質匹配的電氣環境將會被利用於該開關及交換式電源供 應器的狀態的一種所選的組合。 圖8是根據本發明的教示之一第一範例的裝置1〇〇實 施例、以及一第一範例的系統1〇5實施例的方塊圖。該裝 置100係提供電力至一或多個LED 14〇,其可以是具有任意 類型或色彩的LED 140的一個陣列或多個陣列,其中該裝 置100及LED 140係形成一第一系統1〇5。該裝置1〇〇係和 現有的照明基礎結構相谷的’並且可直接搞接至一調光器 開關75 ’该調光器開關75係用於接收源自AC線電壓(交流 幹線)(35)的一 AC電壓(可能是相位調變後的、或不具有任 何調變)’並且例如而非限制性地可被建構以裝配在一 A19(例如,螺旋)插座中。此外,該裝置10〇可與其它或額 外的負載95(例如’白熾燈或其它LED 140)在該調光器開關 75的共同控制下平行運作。 更一般來說’該裝置100可被利用於任何現有的照明 基礎結構。此外’由於(例如製造商)事先可能不知道該裝置 100及系統105將會被最終使用者如何配置,所以此種和任 30 201204171 可有的,、'、明基礎結構的相容性是本發明範例的實施例之 -確貫的優點。例如’裝置100的製造商、經銷商或其它 的供應者通常不會事先知道該裝i H)〇及系統1()5可能會 搞接的^開關類型(例如,調光器開關75 $是非調光的開 關)、是否可能存在其它負載95,並且若存在的#,它是何 種類型的負載(例如,白熾、LED、螢光、等等)。 如圖所繪,该裝置! 〇〇係包括一或多個感測器i 25、一 ,多個適應性介面115、—控制器120、-交換式電源供應 器(或驅動器)13〇、一記憶體(例如,暫存器、RAM)l6〇、以 及根據所用的交換式電源供應器13〇的類型通常亦可包括 一整流器110。控制器12〇(及其變化的任—種例如在以 下所述的1 20A)及記憶體i 60的實施例或其它實施方式係在 以下更加詳細地描述。該一或多個感測器125係被利用以 感測或量測一參數,例如一電壓或電流位準,其中電壓感 測益1 25 A及電流感測器i 25B在以下被描繪與論述。為了 本發明之目的,可假設存在一整流器丨丨〇,並且具有此項技 術的技能者將會體認到無數種其它變化亦可被實施,並且 是等效的且在本發明的範疇内。在範例的實施例中,如圖 所繪,該交換式電源供應器13〇及/或該控制器12〇亦可以 從LED 140接收回授而且通常會如此。一或多個適應性介 面1 1 5可以是不同類型的,並且可依據所選的實施例置放 在該裝置100内的許多種位置,例如:如圖8中所纷,除 了在該整流器110及該交換式電源供應器丨3〇之間外,在 該整流器110及該調光器開關75之間、或是與該交換式電 31 201204171 源供應器130平行、或是在該交換式電源供應器i3〇之中(並 且更一般來說,-適應性介δ 115可以有該所繪的電路位 ,的任-個,例如和該整流器或交換式電源供應器(或驅動 器)130串聯或平行的,此為舉例且非限制的)。範例的適應 性介面115及/或其構件一般可利用主動或被動構件、或是 兩者都用來加以實施。一或多個感測器丨25也可以是不同 類型的,並且可依據所選的實施例置放在該裝置ι〇〇内的 沣多種位置,例如用於各種輸入及/或輸出電壓位準的偵測 之電壓感測器125 A、或是用於電感器電流位準(例如,在交 換式電源供應器丨3〇内)的偵測之電流感測器i 25b及/戋 LED 1 40電流,例如在以下更加詳細地敘述的各種感測器 1 25。亦應該注意到各種的構件(例如控制器丨2〇)可用類比 或數位形式實施,並且所有此類的變化都被視為等效的且 在本發明的範疇内。該整流器110可以是任何類型的整流 ,其包含但不限於:一全波整流器、一全波電橋、一半 波整流器、一機電整流器、或是另一已知或是此項技術中 變成已知的整流器類型。該裝置1 〇〇及系統105亦可用任 何形式(例如’包含以和A19(螺旋)或T8插座相容的形式) 貫施。 根據範例的實施例,對於一或多個適應性介面丨丨5的 動態控制係被實施,以考量到該交換式電源供應器13〇的 目則狀態(或時序週期)以及該調光器開關75的目前狀態(或 時序週期)’以提供該裝置 100及系統1 〇5實質穩定的操作, 而不引起各種形式的閃爍或是其它上述的故障。換言之, 32 201204171 -匹配的電氣(或電子)環境係提供給該調光器開_ 75 個狀態(非傳導及充電一觸發電容器、具有一閉鎖電流的導 通、以及導通且具有—保持電流的傳導)結合該交換式電源 供應器U0的每個狀態,例如:一起動狀態、—平緩或軟 開始電力狀態、-完全的操作模式電力狀態、以及一保^ 模式狀態4彳如’假設—調光器開關75係被安農且不是任 何感測及功能控制直接可利用的,—範例的方法實施例係 提供-相位調變調光器開關75 α及一交換式電源供應器 130的介接,其係藉由以—種適應性及時的方式且同時辨識 該調光器開關75令目前的過程來控制該交換式電源供應器 130的功能,並且其係提供一實質匹配的電氣環境以用於此 調光器75過程之穩定的完成並且轉換至另一調光器開關π 過程,例如:從一充電過程轉換至一導通過程再轉換至一 傳導過程。同樣是舉例且非限制的,一實質匹配的電氣環 土兄之提供可藉由控制該交換式電源供應器13〇(例如,控制 :諧振過程及電流成形)、或是藉由控制該交換式電源供應 為1 30的一輸入阻抗、或是控制該裝置丨〇〇的—輸入電流、 或是藉由控制該交換式電源供應器13〇的一輸入功率,包 含藉由關閉該交換式電源供應器13〇的控制。. 圖9是根據本發明的教示之一第二範例的裝置實施例 00A —第一範例的系統實施例丄〇5 A以及一第二範例的適 應性介面實施例115A的方塊圖。除了先前參考該第一範例 的裴置實施例論述的構件之外,該第二範例的裝置實施例 亦被描繪為選配地包括濾波器電容器235,其係在以下更加 33 201204171 詳細描述。如圖9中所繪,一範例的適應性介面i 15A係包括 一或多個五介面電路,亦即,一起動介面電路2〇〇'一平緩 或軟開始電力介面電路210、一完全操作介面電路22〇、一 諧振過程介面電路195、以及一保護模式介面電路23〇。在 任何所選的實施例中,應注意到的是’該五介面電路195、 200、210、220及/或230除了可能包括單獨的電路之外, 可共用共同的電路或是利用相同的電路來實施,並且在某 些實例中也可共用共同的控制參數。儘管被描繪為位在i 整流器110以及該交換式電源供應器13〇之間但如上所 論述,該範例的適應性介面U5A及/或其構件介面195、 200、210、220及/或230除了該些描綠的位置之外或是取 代該些描繪的位置,而可具有在一裝置1〇〇A内的各種電路 位置的任一種。 如上所述,有關該範例的適應性介面丨15A,吾人可區 別該父換式電源供應器130的至少四個獨立的功能階段或 狀態’,结合一調光器開關75的至少三個操作狀態。該範例 的適應性介面115A係利用該構件介面195、2〇〇、21〇 22〇 及/或2 3 0的一或多個以辨識及適應該調光器開關7 5以及該 交換式電源供應器130的狀態的各種組合。在交換式電源 供應器130起動期間,範例的起動介面電路2〇〇係被利用 於產生一用於一電源供應器之控制器12〇的操作電壓 (vcc),在此期間所有其它的交換式電源供應器i3〇電路係 被禁能’因而能量消耗是相當小的,並且用於提供或容許 足夠的電流流到該調光器開關75以用於其三個狀態的任— 34 201204171~ Benefits - Adjust the power from the first switch during the smooth start phase. Taking J in various exemplary embodiments, the second adaptive interface circuit is further advanced. Including - switchable resistive impedance, and the method can be stepped into the == two adaptive interface circuit for the switched power supply: during the white slave, at the switched power supply - the gentle start 12 201204171 A current path is provided during a full operational mode period or between the switched power supplies. In an exemplary embodiment, the method can further include: utilizing a handle to the switched power supply (4) operating a voltage rail (b. (8) circuit to generate an operating voltage. the first adaptive interface The circuit may further include a δ 操作 operating voltage; a band circuit. In various exemplary embodiments, the method may further include: determining a maximum corresponding to the sensed input electric house. a duty cycle; utilizing a switching duty cycle that is less than the maximum duty cycle to provide a pulse width modulation mode of operation to the switched power supply; and when the duty cycle is a preset at the maximum duty cycle Within the scope of the Japanese, provide a, pulse wave operation mode to the switching power supply ^ In various examples: In the example, the method can further include: determining or obtaining a correspondence from a memory The maximum duty cycle of the sensed input voltage level; and/or determining or changing the duty cycle to provide a predetermined or selected average or peak output current level; and/or To - the largest volt The peak output current level of the value (V〇ltSeC〇ndS) parameter. In the exemplary embodiment, the sigma method can include: detecting a fault of the switch. For example, the method can be performed by During the half-week period of the gossip power supply, at least two input power peaks or two input power zero points are used to detect the fault. The exemplary embodiment provides a system for power conversion. The system can be connected to a first switch (for example, a phase modulation dimmer switch). The Hi-Open relationship is coupled to an alternating current (AC) power supply, and wherein the system of the example 13 201204171 includes: An switched power supply includes a second power switch; solid state illumination coupled to the switched power supply; a voltage sensor; a current sensor; a memory; a first adaptive interface a circuit comprising a resistive impedance to conduct current from the first switch in a predetermined mode, a first adaptive interface circuit for generating a resonant process when the first switch is turned on; and a control , Is coupled to the voltage sensor, the current sensor 'the memory, the second switch, the first adaptive interface circuit, and the second adaptive interface circuit, and when the first switch is turned on, the The controller modulates the second adaptive interface circuit to provide a current path during a resonant process of the 5 Phillips power supply. In various exemplary embodiments, the controller is further coupled to the switched power supply During the resonant process of the device, the second adaptive interface circuit is modulated to withe a current of the first switch. In an exemplary embodiment, the system may further include: a switch for the power supply The third adaptive interface circuit that modulates a current of the first switch during the resonant process. In various exemplary embodiments, the controller is further coupled to the active state of the switched power supply or a gentle start The first adaptive interface circuit is used during the state to conduct current; and/or during charging of a trigger capacitor of the first switch, during conduction of the first switch, and Using the first adaptive interface circuit to conduct current during conduction of the first switch; and/or switching the first adaptive interface circuit to provide a fixed resistive impedance to the first switch; and/or modulating the The first adaptive interface circuit provides a variable resistive impedance to the first switch. In an exemplary embodiment, when an operating voltage has reached a predetermined 14 201204171 level, the controller further adjusts the first adaptive interface circuit and is asynchronous with the state of the younger switch. Switch to the exchange < Power supply - the - start slowly. In various exemplary embodiments, the second expansive interface circuit includes a resistive impedance, wherein the controller enters a step &: a peak input current level 'and when the peak input current level has been Upon reaching w, the controller switches the resistive impedance in a step-by-step manner to generate the electrical path. In other various exemplary embodiments, the second adaptive interface includes a switched resistive impedance, wherein the controller further determines a peak input current level and when the peak input current level When it has arrived, the controller modulates the switched resistive impedance in a step-by-step manner to produce a side current path. In an exemplary embodiment, during a full-rate nucleus of the switched power supply and during the charging of the trigger capacitor of the 2nd switch, the controller is further 100% duty cycle or Operating the switched power supply in a dc mode; and/or during a full power mode of the (4) switched power supply piracy and during the conduction of the first switch, the controller is stepped in - substantially maximum Instantaneous power operation "Switching power supply - preset time period. In another exemplary embodiment, the second adaptive interface circuit includes an inductor in parallel with the resistor, and wherein during a full power mode of the switched power supply and at the first switch During turn-on, the controller further operates the switched-mode power supply at a substantially maximum instantaneous power until the inductor has substantially discharged. In various exemplary embodiments, the controller can further use the 15th 201204171 two adaptive interface circuit to conduct current during a fully operational power state of the switched power supply. In another exemplary embodiment, the controller is further operative to adjust a minimum power from one of the first switches during a gentle start phase of the switched power supply. In various exemplary embodiments, wherein the second adaptive interface circuit further includes a switchable resistive impedance, and wherein the controller is further operative to use the second adaptive "face circuit for the switched power supply The active phase of the device provides a current path during a gentle start of the switched power supply or during a full operating mode of the switched power supply. In another exemplary embodiment, the system further includes: an operating voltage bootstrap circuit that engages the parental power supply to generate an operating voltage. In an exemplary embodiment, the first adaptive interface circuit further includes the operating voltage bootstrap circuit. In various exemplary embodiments, the controller may further determine that the maximum duty cycle of the sensed input voltage level is utilized by the _:i, during the switching duty cycle of the maximum duty cycle to provide a two-pulse wide shoulder modulation operation mode is provided to the switching power supply; and when the working cycle is within a preset range of the maximum duty cycle, a ten-pulse operation mode is provided to the switched power supply In the case of the immortality, the controller can further capture the various round-trips in the sensed round-in voltage at a corresponding duty cycle; and/or a decision value Output current level m (four) ^ ^ The selected average or peak can be determined... In the example, the controller's step-in, ... maximum. volt-second value parameter peak output current bit 16 201204171. In various exemplary embodiments, the controller may further detect, for example, one of the first switches by determining at least two input voltage peaks or two input voltage zero crossings during the /half period of the AC power source. malfunction. In an exemplary embodiment, the first adaptive interface circuit may include: a first resistor; a transistor coupled in series to the first resistor, the transistor system having a coupling to the controller The base has either a gate coupled to the controller and a second resistor coupled to the base or the closed pole of the transistor. In another exemplary embodiment, the first adaptive interface circuit may include a first resistor, a transistor coupled in series to the first resistor, and the transistor system has a base coupled to the controller. The pole has either a gate coupled to the 忒 controller, a second resistor coupled to a source or an emitter of the transistor, and a ferrule. From the base or gate of the transistor to the Zener diode of the second resistor. In an exemplary embodiment t, the first: adaptive interface circuit can include an inductor' and a resistor coupled in parallel with the inductor. In another exemplary embodiment, the (IV) two-adaptive interface circuit may include: an inductor state coupled to the first inductor of the inductor; and a base or gate connected to the first In another embodiment, the second appropriate embodiment of the human & + α, spear response 14 " surface circuit may further include: a coupling to the inductor and coupling a second resistor to a collector or a drain of the transistor: a first Zener diode coupled to an emitter or source of the transistor; and - coupled to the inductor and the The second 17 201204171 diode of the first Zener diode. In another example, the second adaptive interface circuit may include: an inductor; a first resistor... a differentiator; a one shot circuit of an output of the differentiator; and a series of gates or bases connected to the output of the click circuit The transistor is not in various exemplary embodiments, the solid state illumination is one or more light emitting diodes. The supply can have any configuration, for example, and has a non-isolated or isolated isolation configuration. The system can have: - A19 standard compatible - form factor, for example, to fit within a screw socket. The system can be coupled to the first switch through a rectifier. The system can be interfaced to the first switch through a rectifier and an inductor. In another exemplary embodiment, a device is provided For power conversion 'the device can be consuming a _ phase modulation dimmer switch, the dimmer is lightly connected to an alternating current (Ac) power supply, the device can be connected to a solid state illumination, and wherein The exemplary device includes: a switching power supply including a second power switch; a voltage sensor; a current sensing device, a memory, and a first adaptive interface circuit, including a resistor! The raw impedance conducts current from the first switch in a predetermined mode; the second adaptive interface circuit is configured to generate a «white vibration & ' and - controller when the first switch is turned on , its surface is connected to The current sensor, the memory, the second switch, the first adaptive interface circuit, and the first flexible interface circuit, and when the first switch is turned on Varying the second adaptive interface circuit to provide a current 18 201204171 path and modulating a current of the first switch during a resonant process of the parent-changing power supply. In another exemplary embodiment, A device is provided for power conversion, the system having a form factor compatible with an A19 standard, the system being coupled to a phase modulated dimmer switch 'the dimmer open relationship to - An alternating current (AC) power source, and wherein the system of the example is a light-emitting diode voltage sensor comprising a switching power exchange power supply of a power switch; a first adaptability for conducting current in the off The interface further provides a substantially matched adaptive interface circuit 'which is used for the vibration process and is in the switched electrical current path; a memory; a voltage sensor, the memory uses one less than one The large duty cycle modulates the mode of operation and, when within a predetermined range of the work, provides a transition in another exemplary embodiment, wherein the device is coupled to the dimmer switch relationship to - Transferring to a solid state lighting 'and the device; a first adaptive interface circuit impedance' to a predetermined mode source supply; at least one coupled to the body 'to sense an input voltage The first adaptive interface is electrically resisted to the dimmer switch in a predetermined mode, and the second is generated during the resonant process of a source supply of the switched power supply. And a controller coupled to the first and the S-th power switch, the controller is configured to provide a pulse width for the cycle at the maximum duty cycle - the current pulse mode of operation. A device is provided for power-first phase modulation dimmer switch, flow (AC) power supply, wherein the device miscible system comprises: an exchange power supply, comprising at least partially resistive A resonant process is generated when the current is conducted from the first switch; 19 201204171 and a second adaptive interface circuit. It is used to conduct the (four) 1 turn in various exemplary embodiments, the device can be connected to the first switch to the first switch, the first adaptive interface circuit is interfaced + 丨 first adaptability, controller, and when the first switch is turned on, the system is tuned to poor, - A Χ Χ 。. The first adaptive interface circuit provides a fork-powered, melon path for providing a thundering benefit during the switched electrical resonance process. The controller further adjusts the ancient first adaptive interface circuit to withstand a current of the first switch during the resonance process of the #n „ ^ ^ 乂 换 换 power supply state. In the implementation, the first adaptive interface circuit Λ I is a resistor and can further include a diode connected in parallel with the electric I5. The second adaptive interface circuit can include: - coupling to the resistor The inductor of the device 'and a capacitor coupled in series to the resistor. In another exemplary embodiment, the first adaptive interface circuit and the second adaptive interface circuit comprise: - an inductor - consume a resistor connected to the inductor; a capacitor coupled in series to the resistor; and a diode coupled in parallel with the 忒 resistor and further coupled to the inductor. The hex device may further include a filter capacitor coupled in parallel with the series coupled resistor and capacitor. In another embodiment of the present invention, a system is provided for power conversion, the system can be coupled to a first switch The first open The relationship is coupled to an alternating current (AC) power source, and the system includes: a switched power supply device 'solid state lighting that is consuming to the switched power supply; a first adaptive interface circuit that includes at least one A portion of the resistive impedance conducts current from the first switch in a preset mode of 20 201204171; and a second adaptive interface circuit for generating a resonant process when the first switch is turned on. In still another exemplary embodiment, an apparatus is provided for power conversion 'where the apparatus is coupled to - a first phase modulation dimmer switch, 6 Xuo dimmer open relationship coupled to an alternating current (AC) a power supply, and wherein the device is consuming a solid state illumination, the device 'a first adaptive interface circuit, resistive impedance resistive impedance, to conduct current in a first current path circuit' a handle connected to the electrical first switch conducts current in a second electrical interface circuit further in the first swing. In various exemplary embodiments, to the controller of the second switch, The second switch is modulated to be in the electrical path. The controller may further be tuned during the damped oscillation process in an exemplary embodiment, the switch coupled to a first capacitor may include an electrical a crystal, and the step of connecting to the first capacitive interface circuit in the step further comprising: connecting the second resistor to the third resistor comprises: a switched power supply comprising a series connected to the - An electric-preset mode from the first opening; and a second adaptive interface resistant impedance second switch to damp (damping) the first and second adaptive switches from the flow path The device may further include a current coupled to provide the second modulation of the second adaptive interface circuit during the oscillation of the controlled damping when the first switch is turned on. The first-adaptive interface circuit includes a first-resistor. In addition, the second first adaptive interface circuit is incorporated into the transistor of the device. The second adaptive voltage divider includes a series coupler, the second and third electric devices 21 201204171 are coupled in one step to a gate of the transistor; and a parallel connection with the third resistor Coupling capacitors. In another exemplary embodiment, a system for power conversion is disclosed, the system can be coupled to a first switch, the first open relationship being coupled to an alternating current (AC) power source, wherein the system is The utility model comprises: a switched power supply; a solid-state illumination coupled to the switched power supply; and a first-order circuit comprising a resistive impedance connected to a reactive impedance Conducting current from the first switch in a first current path in a predetermined mode; and a second adaptive interface circuit including a second switch that is lightly coupled to the far-circuit resistant impedance from the first A switch conducts current in the second current path, and the first and second adaptive interface circuits further dampen the oscillation when the first switch is turned on. In another embodiment in which the dimmer of the dimmer is exposed to a solid-state illumination and a suitable current in the impedance path in the impedance path including the switch, the device can be coupled to a first phase-to-open relationship to In the case of the device, the device comprises: a capacitive interface circuit comprising a resistive impedance in a pre-first current path, the second switch from which the adaptive interface is electrically connected. Also in various examples, a series coupling is coupled to a transistor, and the device is a switch that is coupled to the reactor; the conductive resistor is conductive to the reactance of the second current conduction blocking interface circuit. The second and the adaptive interface circuit can further include a modulated dimmer flow (AC) power supply. The device is switchable power supply for serial coupling into a mode from the first switch and further including a coupling The first switch conducts current in one way further in the first switch embodiment, the first resistor 22 201204171 of the adaptive first capacitor includes a series transfer to the transistor of the first capacitor. The adaptive interface circuit can further include a voltage divider comprising a second resistor coupled in series to a second resistor, the second and third resistors being further coupled to the power a dummy of the crystal; and a capacitor coupled in parallel with the third resistor. In another exemplary embodiment, a device for power conversion is disclosed, the device can be coupled to a first phase modulation dimmer switch that is connected to an alternating current (AC) power source. The device can consume a solid-state lighting, wherein the device comprises: an exchange power supply; a switchable adaptive interface circuit comprising a series coupling to a second switch and a reactive a first resistive impedance of the impedance to conduct current from the first switch in the first open, in-off state, or in the switched mode power supply mode: in a preset mode In a first current path; and a second switchable adaptive interface circuit, the system is coupled to the second resistive impedance of the third switch to be in the = power supply In a full operation mode, the first switch is passed in the second current path. In an exemplary embodiment, the first f! "face circuit includes a first series coupled to the second switch. The second open is connected to the first capacitor. Two: Π ' and the second open relationship includes a first-closed-coupled-coupled to the third switch. In an exemplary embodiment, the second adaptive interface circuit includes a gate electrically coupled to the third switch and further stalked to the first thunder (four) The third resistor. In another exemplary embodiment, the device of the example further includes a 23 201204171 sensor; and a fourth switch coupled to the sensor and the third switch. An exemplary sensor system includes: a transistor having a collector coupled to the fourth switch through a diode; and a third resistor including a series connection to a fourth resistor And a voltage divider, the second and third resistors are further coupled to a base of the transistor. In another exemplary embodiment, the apparatus of the example further includes a chopping cancellation circuit. In an exemplary embodiment, the chopping cancellation circuit includes: a differential amplifier including a first transistor and a second transistor; and a pass transistor coupled to the differential amplifier (pass transist〇) r); a first Zener diode coupled to the first transistor of the S-hai; and a second Zener diode coupled to the first transistor of the S-hai, the chopping cancellation circuit further comprising : Low pass filter. > In another exemplary embodiment, the first transistor is lightly connected to the first transistor. In another exemplary embodiment, a system for power conversion, π,, ' can be coupled to a first phase modulation. The optical switch, the f-phase modulation dimmer is coupled to the alternating current (AC) power supply, and the system includes: - an exchange power supply; - is connected to the switched power: should: (4) a wave cancellation circuit m The solid-state connection of the continuous wave elimination circuit is connected to the _° knife-changing adaptive interface circuit, which includes a series 兮 一 ” 二 switch and a resistance-resistance first-resistive impedance to: : in the "off state" or in the switching power supply in the - first flow two mode from the [switch conduction current path, which includes - by the second switchable adaptive interface in series to one The second resistive of the third switch 24 201204171 is resistant to conduct current from the first switch in a second current path while the switched power supply is in the full operating mode. Many other advantages and features of the present invention From the following detailed description of the invention and the practice of the invention And (9) the scope of the patent application and the accompanying drawings will become quite obvious. [Embodiment] While the invention is susceptible to various embodiments, it is shown in the drawings and The specific examples are to be understood as illustrative of the principles of the invention, and are not intended to limit the invention. Before an embodiment, it is to be understood that the present invention is not limited to the configuration details and component configurations described in the context or described in the drawings or as described in the examples. Methods and apparatus consistent with the present invention It is to be understood that the following description of the language and terminology, and the As is known, conventional LED driver circuits are often problematic when used with conventional dimmer switches 75, which cause, for example, perceptible Squeeze and large inrush current problems. For example, as depicted in Figure 5, the switched off-line LED driver 90 if often includes a full-wave rectification g 20 with a capacitive liquid wave, when the input voltage is greater than the cross When the voltage of the chopper capacitor fFILT)l5 is 'the allowable current flows to the capacitor, the inrush current to the electric current is limited by the resistance in series with the capacitor. Under normal operating conditions of 25 201204171, there may be one A negative temperature coefficient resistor (NTC) or thermistor is placed in series with the capacitor to minimize inrush current drops during initial charging. This resistor will be significantly reduced during operation, allowing for fast capacitor charging. This circuit will The peak voltage of the capacitor is continuously peaked to the input waveform, which is 169 V DC for a standard 12 〇V AC line voltage. However, when used with a dimmer switch 75, the charging current of the filter capacitor is limited by the dimming resistor R1 (resistor 76) and is Icharge=(V1n - VLOAD - VCI)/R1 (Figures 2 and 5). Because of the large difference between Cl(77) and CFILT(15), the voltage across the filter capacitor can be approximated to a DC voltage source. The charging current of the filter capacitor is also the charging current of C1 which controls the arc angle of the dimmer. Because of the large voltage drop across the filter capacitor 15 (VC1), the charging current of C1 will be lower than that of a normal dimmer. For a large value of VC1, the current into C1 will be small and therefore slowly charged. Thus, and as depicted in Figure 6, this small charging current may not be sufficient to charge C1 to the two-terminal AC switch 85 during the half cycle. If the turn-on voltage does not reach (93), the three-terminal AC switch 80 will not conduct. This will continue for many cycles until the voltage on the filter capacitor is small enough to charge C1 to the turn-on voltage. Once the turn-on voltage has reached (94), the three-terminal AC switch 80 will turn on and the capacitor will charge to the input voltage peak of the remaining half cycle. This phenomenon is depicted in Figure 6, which requires four cycles of 60 Hz (92) to reach this conduction 'voltage, such that the three-terminal AC switch 80 has only one wave frequency (eg, as depicted in the figure) 15Hz) conduction. 26 201204171 ^ s The illuminator switch is used to pick up or draw a small amount of current load so that for all AC input values, ILOAD is less than the holding power μ ' ' 5 玄 二 二 交流 〇 〇 〇 〇 〇 〇 〇 〇 The features are not suitable for "for and right Τ n bj- # ^ drive applications. The nominal (nominal) arc angle will increase due to the increased resistance of ZL0AD 81. When the voltage of the capacitor (C1) exceeds the conduction voltage of the AC switch of the one end, the two-terminal AC switch 85 discharges the S-capacitor to the gate of the three-terminal AC switch 80, and briefly turns on the AC switch. However, since the load resistance is too high, the necessary holding current is not allowed. The three-terminal AC switch 8〇 will then be turned off. When the three-terminal parent switch is turned off, the capacitor C1 starts charging again through R1 and Zload (81). If there is enough time remaining in the half cycle, the three-terminal AC switch will point to the arc again, and the process repeats repeatedly in each half cycle. The premature and unsustainable three-terminal two-way controllable switch 8 is turned green in Figure 7, showing the multiple points of the three-terminal bidirectional controllable switch 80 (premature) Start attempt 91, this may cause a perceived LED flicker. For prior art power supplies in normal operating conditions, a conventional technique for providing sufficient current through the dimmer switch 75 is relatively inefficient, using only a parallel (cross) dimmer The load resistor RL of the switch 75 thereby provides a load current of at least VTR1AC/RL when the three-terminal AC switch 80 is in an arc. By setting the value of the resistor small enough, the current can be made high enough to ensure that it is always at the critical current required to maintain the three-terminal AC switch 80 in an on state (typically in the vicinity of 50 mA to 100 mA) Above. When the phase angle (point arc angle α) is small 27 201204171, the power consumption across the resistor rl will be extremely high #, that is, (10) 仏' which further leads to a large amount of heat generation. Such load resistors are typically provided by incandescent lamps, but electronic or switchable negatives, such as switched coffee drive systems, are not necessarily provided. In addition, when the three-terminal AC switch 8G is being turned on, it is not necessary to apply more current to the switch 8G, especially when a plurality of lamps that draw a large amount of current (the incandescent bulb or just being used). In accordance with various exemplary embodiments of the present invention, instead of a "dummy" resistor, an active circuit that can be adjusted according to the needs of the dimmer switch 75 can be utilized: the exemplary embodiments provide current regulation In order to allow the three-terminal AC switch to switch on (point arc) and keep it in conduction as needed, the embodiment of the (4) example is also more efficient, when there are other loads that provide or wire current or when When the phase angle α is small, it reduces the added current (and I2R power loss). Although solid-state lighting (such as LED lighting) has considerable environmental and energy-saving benefits', if it cannot be integrated into the existing lighting foundation Whether structurally or operatively compatible with existing lighting infrastructures, it is less likely to be used as an option for lighting technology. Thus, in accordance with the present invention, A led driver circuit is proposed that is operatively compatible with existing lighting infrastructure (eg, dimmer switches) and is directly switchable by the dimmer switch and controlled by any other load (eg, additional incandescent or fluorescent illumination) is also switched to and controlled by such dimming writes or other switches. Although the examples of these examples are related to and dimmer switches (7 5) Used together to depict 28 201204171 and discussion 'But it should be noted that the examples of these examples apply and be practical except for switches or other infrastructure that may be designed or implemented specifically for other purposes. Any type of switching element or other illumination infrastructure is utilized. As indicated above, embodiments of the present invention not only recognize and adapt to various states of the switch (e.g., phase modulated dimmer switches), but further utilize a novel Insights to identify and adapt to various states of the switching power supply, making phase-modulated dimmer switches and Switched power supplies operate uninterruptedly and substantially stably together. More specifically, embodiments of the examples identify and accommodate phase-modulated dimmer switches of at least three states, that is, where the dimmer switches Not conducting, but during this period - the first state in which the trigger capacitor (C1 '77) is charging; the second state in which the dimmer switch has been turned on and requires a latch current; and wherein the dimmer switch is fully turned on And a third state, such as a three-terminal AC switch (10) or a holding current for holding a fluid, is required, and the state of the switch is combined, and the actual (four) identification and adaptation of the examples are at least two of the switched power supply. "States" and in various embodiments are four states, namely the 'first-state, the starting state of the switched-mode power supply, during which it generates its power supply (Vcc voltage level); the second state exchange The gradual start state of the power supply, during which time it ramps from start to full operating mode to the power supply of the load (eg LED) (eg, through pulse = degree adjustment) Switching); a third state, during which the switching power supply.疋 疋 in a full operating mode; and the optional fourth state, during which the switching power supply may encounter an abnormal or abnormal action 29 201204171 and enter a protective operating mode. 4II ^ 耵 扪 扪 扪 疋 疋 . . . . 及 及 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 父 <垅 to match this standard for stable operation of the switch and the switched power supply' This enables seamless and stable operation of the two components. In various exemplary embodiments, the same type of substantially matched electrical environment can be utilized in combination of multiple states' and in other instances, a substantially matched electrical environment of its type would be utilized for the switch and switch. A selected combination of states of the power supply. Figure 8 is a block diagram of an embodiment of a first embodiment of the apparatus 1 and a first exemplary embodiment of the system 1 根据 5 in accordance with the teachings of the present invention. The device 100 provides power to one or more LEDs 14A, which may be an array or array of LEDs 140 of any type or color, wherein the device 100 and the LEDs 140 form a first system 1〇5 . The device 1 is connected to the existing lighting infrastructure and can be directly connected to a dimmer switch 75. The dimmer switch 75 is for receiving AC line voltage (AC mains) (35) An AC voltage (which may be phase modulated, or without any modulation)' and can be constructed, for example and without limitation, to be assembled in an A19 (eg, spiral) socket. In addition, the device 10 can operate in parallel with other or additional loads 95 (e.g., 'incandescent or other LEDs 140) under the common control of the dimmer switch 75. More generally, the device 100 can be utilized with any existing lighting infrastructure. In addition, since (for example, the manufacturer) may not know in advance how the device 100 and the system 105 will be configured by the end user, such compatibility with the 30 201204171 may be, and the compatibility of the basic structure is The embodiment of the inventive example - a definite advantage. For example, the manufacturer, distributor or other supplier of the device 100 usually does not know in advance the type of switch that the system 1() 5 may engage in (for example, the dimmer switch 75 $ is non- Dimming switch), is it possible to have other loads 95, and if there is a #, what type of load it is (eg, incandescent, LED, fluorescent, etc.). As shown in the picture, the device! The lanthanide system includes one or more sensors i 25, one, a plurality of adaptive interfaces 115, a controller 120, an exchange power supply (or driver), and a memory (eg, a temporary memory) , RAM)16, and depending on the type of switching power supply 13A used, may also include a rectifier 110. Embodiments or other embodiments of controller 12 (and variations thereof, such as 1 20A described below) and memory i 60 are described in greater detail below. The one or more sensors 125 are utilized to sense or measure a parameter, such as a voltage or current level, wherein the voltage sense 1 25 A and the current sensor i 25B are depicted and discussed below. . For the purposes of the present invention, it is assumed that a rectifier 存在 is present, and those skilled in the art will recognize that numerous other variations can be implemented and are equivalent and within the scope of the present invention. In the exemplary embodiment, as shown, the switched power supply 13 and/or the controller 12 can also receive feedback from the LEDs 140 and this is typically the case. The one or more adaptive interfaces 1 15 may be of different types and may be placed in a variety of locations within the device 100 in accordance with selected embodiments, such as in FIG. 8, except at the rectifier 110. And between the rectifier power supply 丨3〇, between the rectifier 110 and the dimmer switch 75, or parallel to the switching power supply 31 201204171 source supply 130, or the switching power supply Between the suppliers i3〇 (and more generally, the adaptive δ 115 may have any of the circuit locations depicted, for example in series with the rectifier or switched power supply (or driver) 130 or Parallel, this is an example and not a limitation). The exemplary adaptive interface 115 and/or its components can generally be implemented using active or passive components, or both. The one or more sensors 丨 25 can also be of different types and can be placed in various locations within the device ι according to selected embodiments, such as for various input and/or output voltage levels. The detected voltage sensor 125 A or the current sensor i 25b and/or LED 1 40 for detecting the inductor current level (for example, in the switching power supply 丨3〇) Current, such as various sensors 125, are described in more detail below. It should also be noted that various components (e.g., controllers) can be implemented in analog or digital form, and all such variations are considered equivalent and within the scope of the present invention. The rectifier 110 can be any type of rectification including, but not limited to, a full wave rectifier, a full wave bridge, a half wave rectifier, an electromechanical rectifier, or another known or known in the art. The type of rectifier. The device 1 and system 105 can also be implemented in any form (e.g., including in a form compatible with the A19 (spiral) or T8 socket). According to an exemplary embodiment, a dynamic control system for one or more adaptive interfaces 丨丨5 is implemented to take into account the state of the switching power supply 13〇 (or timing period) and the dimmer switch The current state (or timing period) of 75 is to provide substantially stable operation of the device 100 and system 1 〇 5 without causing various forms of flicker or other such failures. In other words, 32 201204171 - A matched electrical (or electronic) environment is provided to the dimmer for _75 states (non-conducting and charging-triggering capacitors, conduction with a latching current, and conduction and conduction with holding current) Combining each state of the switched power supply U0, for example: a dynamic state, a gradual or soft start power state, a full operating mode power state, and a guaranteed mode state 4 such as 'hypothesis-dimming The switch 75 is directly available to Annon and is not any sensing and functional control. The exemplary method embodiment provides an interface between the phase modulation dimmer switch 75α and an switched power supply 130. The function of the switched power supply 130 is controlled by the current process in an adaptive and timely manner and simultaneously identifying the dimmer switch 75, and provides a substantially matched electrical environment for use in this The dimmer 75 process is completed steadily and switched to another dimmer switch π process, for example, switching from a charging process to a conducting process and then to a conducting Cheng. Also by way of example and not limitation, a substantially matched electrical loop can be provided by controlling the switched-mode power supply 13 (eg, controlling: resonant process and current shaping), or by controlling the switching The power supply is an input impedance of 1 30, or an input current to control the device, or an input power by controlling the switching power supply 13〇, including by turning off the switched power supply Control of the device 13〇. Figure 9 is a block diagram of an apparatus embodiment 00A of a first example, a system embodiment 丄〇5 A of the first example, and a second embodiment of the accommodative interface embodiment 115A, in accordance with the teachings of the present invention. In addition to the components previously discussed with reference to the embodiment of the first example, the device embodiment of the second example is also depicted as optionally including a filter capacitor 235, which is described in more detail below in 201204171. As shown in FIG. 9 , an exemplary adaptive interface i 15A includes one or more five-interface circuits, that is, a dynamic interface circuit 2 一 a gentle or soft start power interface circuit 210 , a full operation interface The circuit 22A, a resonant process interface circuit 195, and a protection mode interface circuit 23A. In any selected embodiment, it should be noted that the five interface circuits 195, 200, 210, 220, and/or 230 may share a common circuit or utilize the same circuit, except that they may include separate circuits. To implement, and in some instances, common control parameters can also be shared. Although depicted as being located between the i-rectifier 110 and the switched-mode power supply 13A, as discussed above, the adaptive interface U5A of this example and/or its component interfaces 195, 200, 210, 220, and/or 230 Any of these various circuit locations within a device 1A may be external to or in place of the depicted locations. As described above, with respect to the adaptive interface 丨 15A of the example, we can distinguish at least four independent functional phases or states of the parent-changing power supply 130 from at least three operational states of a dimmer switch 75. . The adaptive interface 115A of the example utilizes one or more of the component interfaces 195, 2〇〇, 21〇22〇, and/or 230 to identify and accommodate the dimmer switch 75 and the switched power supply Various combinations of states of the device 130. During startup of the switched power supply 130, an exemplary starting interface circuit 2 is utilized to generate an operating voltage (vcc) for a controller 12 of a power supply, during which all other switching The power supply i3〇 circuit is disabled' thus the energy consumption is quite small and is used to provide or allow sufficient current to flow to the dimmer switch 75 for its three states - 34 201204171
:始=由:交換式電源供應器13°供應電力的平緩或軟 ° 於一供應的電氣過程係增加至輸出負載(LED ⑽)的能量位準’因而能量消耗是相當小的能量,平載缓(或軟 開始電力介面電路210係被利用以容許輸出能量的斜坡提 升以及足夠的電流流到該調光器開關75以用於其三個狀能 的任-個。在該交換式電源供…3〇的完全操作期二 此具有標稱的能量消耗,諧振過程介面電路195以及士入 操作介面電路220係被利用以提供電流成形(一般是控:: 入電流位準),並且亦容収夠的電流流到該調光器開關乃 以用於其三個狀態的任一個。一保護的操作模式(其中該交 換式電源供應器130或其各種的構件係被關閉因而能量消 耗是相當小的)亦利用保護模式介面電路23 〇來實施,其依 據所選的實施例亦可實際關閉該調光器開關75或是可容許 足夠的電流流到該調光器開關75以用於其三個狀態的任一 個。 藉由控制該適應性介面11 5及/或其構件介面丨9 5、 200、210、220及/或230 ’該調光器開關75的各種過程丨,或 狀態)亦受到控制,其包含但不限於:(a)該觸發電容器(c 的充電以及該二端交流開關(Dl)85的點弧(以及,為了保留 該調光器開關75相關於由使用者提供之所要的調光位準的 機械位置(R1的值)’充電電路的外部阻抗(該裝置的輪入阻 抗)係實質接近由一白熾燈泡(例如,Zload 81)提供的阻拍., 並且沒有能量被供應至該電源供應器);(b)該調光器開關 75(例如’三端交流開關80)以一實質最小但是足以超過該 35 201204171 二端交流開關8 0的閉鎖電流之電流的導通,其係牽涉到該 裝置100的一暫態輸入,從零功率至由AC線35所供應的 任意功率;以及(c)以一可能是所需但足以超過該三端交流 開關80的保持電流之電流,透過該調光器開關75(三端交 流開關80)傳導電流至目前AC週期的結束為止(例如,直到 在相位α期間的零電壓為止,其可等同地(儘管非精確地) 稱為一零點交越),具有由AC線供應至該交換式電源供應 器130的任意功率。對於逆向的調光器而言,該充電過程(上 述的(a))—般是接在該傳導過程(上述的(c))之後,並且具有 此項技術的技能者將會體認到在此教示的該些範例的實施 例及原理對於此種情況的應用,所有的情況都被視為等同 的且在所主張的本發明的範疇内。 圖1 〇是根據本發明的教示之一第一範例的方法實施例 的流程圖。該交換式電源供應器13〇以及該調光器開關75 的各種狀態可破視為構成一矩陣,使得該交換式電源供應 器130的功能係以一種及時且適應性方式被控制,其係辨 識該調光器開關75目前的過程、該交換式電源供應器13〇 目刖的狀態並且提供一對應的實質匹配的電氣環境以用於 該調光器開Μ 75的實質穩定的操作,適當的功率提供至 LED 140’以及對應的從狀態到狀態實質穩定的轉換。請參 照圖10,該方法開始在AC線的導通,例如是藉由一使用 者機械地導通一調光器開關75(開始步驟)。該裝置 1〇〇、舰(或是在以下論述的其它裝置實施例)(及/或該控 制盗120、120A)接著決定該交換式電源供應器⑽的功能 36 201204171 的任一個,保護模式、 。對於該交換式電源供應器 ' 丨小咬保八、完 、或是預設在起動模式: Start = by: Switching power supply 13 ° supply power is gentle or soft ° The electrical process of a supply is increased to the energy level of the output load (LED (10)) and thus the energy consumption is quite small energy, flat load The slow (or soft start power interface circuit 210 is utilized to allow for ramping up of the output energy and sufficient current to flow to the dimmer switch 75 for any of its three states. On the switched power supply The full operating period of ... 3 has a nominal energy consumption, and the resonant process interface circuit 195 and the input operation interface circuit 220 are utilized to provide current shaping (generally control:: current level), and also A sufficient current is flown to the dimmer switch for either of its three states. A protected mode of operation (where the switched-mode power supply 130 or its various components are turned off and the energy consumption is equivalent) Small) is also implemented using a protection mode interface circuit 23, which may also actually turn off the dimmer switch 75 or allow sufficient current to flow to the dimmer switch 75 for use in accordance with selected embodiments. Any of the three states. By controlling the adaptive interface 145 and/or its component interfaces 丨9 5, 200, 210, 220, and/or 230 'the various processes, or states of the dimmer switch 75) Also controlled, including but not limited to: (a) the charging of the trigger capacitor (c and the point arc of the two-terminal AC switch (D1) 85 (and, in order to retain the dimmer switch 75, is provided by the user The desired mechanical position of the dimming level (the value of R1) 'the external impedance of the charging circuit (the wheel-in impedance of the device) is substantially close to the resistance provided by an incandescent bulb (eg, Zload 81), and there is no Energy is supplied to the power supply; (b) the dimmer switch 75 (eg, 'three-terminal AC switch 80') is substantially minimum but sufficient to exceed the current of the latching current of the 35 201204171 two-terminal AC switch 80 Turning on, which involves a transient input of the device 100, from zero power to any power supplied by the AC line 35; and (c) a hold that may be required but sufficient to exceed the three-terminal AC switch 80 Current through the dimming Switch 75 (three-terminal AC switch 80) conducts current until the end of the current AC cycle (eg, until zero voltage during phase a, which may equally (although not precisely) be referred to as a zero crossing), Having any power supplied by the AC line to the switched power supply 130. For a reverse dimmer, the charging process ((a) above) is generally followed by the conducting process ((c) above) After that, and those skilled in the art will recognize the application of the examples and principles of the examples taught herein, all of which are considered equivalent and in the claimed form. Within the scope of the invention. Figure 1 is a flow diagram of an embodiment of a method in accordance with one of the teachings of the present invention. The switching power supply 13A and the various states of the dimmer switch 75 can be broken to form a matrix, so that the function of the switched power supply 130 is controlled in a timely and adaptive manner. The current process of the dimmer switch 75, the state of the switched power supply 13 and the provision of a corresponding substantially matching electrical environment for substantially stable operation of the dimmer opening 75, appropriate Power is provided to LED 140' and a corresponding substantially stable transition from state to state. Referring to Figure 10, the method begins to conduct on the AC line, e.g., by a user mechanically turning on a dimmer switch 75 (starting step). The device, the ship (or other device embodiment discussed below) (and/or the control thief 120, 120A) then determines any of the functions of the switched power supply (10) 36 201204171, protection mode, . For the switched power supply ' 丨 咬 bit eight, finished, or preset in start mode
流開關80)正在導通(步驟312、318、324及/或33〇)、或是 在電流正通過該調光器開關75傳導(步驟314、32〇、:丨% 狀態’是否在上述的四個狀態中的 全的操作模式、平緩或軟開始模式 中(步驟 302、304、306 及 308)。到 130的這些可能的狀態的每一個,^ 態係被決定出(例如,透過一式玄 及/或332)時被提供。在步驟314、320、326及/或332之後 的是,該方法決定該AC線(調光器開關75)是否已經關斷(步 驟334),並且若無的話’則該方法回到步驟302且重複, 並且若有的話,則該方法可以結束(返回步驟336)。因此, 該裝置100、100A(或是在以下論述的其它裝置實施例)係提 供一對應於該調光器開關75以及該交換式電源供應器13〇 兩者的狀態之實質匹配的電氣環境。各種狀態的組合、狀 態的監視、以及實質匹配的電氣環境的提供係在以下更加 洋細描述。 對於這些狀態或過程的12種組合的每一個組合,並且 根據意圖的配置(例如,1 10V、220V),對應的參數被預設 且儲存在記憶體1 60中’因而接著在後續的動作中從該記 37 201204171 憶體160被該控制器12〇擷取並且利用以提供該對應的實 f匹配的電氣環境。如上料,_實質匹配的電氣環境可 藉由。亥控制器12G提供’其係藉由控制該交換式電源供應 器130(例如,控制一諧振過程、電流成形、以及其它以; 論述的方法)' 或是藉由控制該交換式電源供應器π〇的一 輸入ΠΜ几、或疋控制該I置i 的—輸人電流、或是藉由 控制該交換式電源供應3 13G的—輸人功率,包含藉由關 P才1該交換4電源供應H 130的控制,此為舉例且非限制的。 然而,應該注意的是,對於各種狀態的組合而言,對應的 :數及/或控制的類型可能實質類似或相同的,根據所選的 實施例而(。该對應的參數及/或控制&類型彳以用許多種 方式决疋母種方式都被視為等同的且在本發明的範疇 内’例如’根據任何及/或所有國家的最小的電壓位準構 件值、一交換式電源供應器130及/或LED140所能承受的 最大電壓位準、調光器開關75的特徵(例如最小保持及閉鎖 電流)、等等’其中預設對應的參數之範例的方法係在以下 更加詳細描述。舉例^非限制的是…最小電流參數(例如, 50mA)可被利用且經由一電流感測器125B來感測,其中— 控制器12G、12GA接著提供該各種的開關及包括—適應性 介面115的其它電路之對應的閘控或調變,以確保此最小 電流的流通。於是,當該調光器開關75以及交換式電源供 應器130改變其個別的功能狀態時,本發明藉由一裝置 100、100A-G(或是在以下論料其它裝置實施例)實施的方 法係自動地利用該調光器開M 75 交換式電源供應器 38 201204171 1 3 0的狀恶之對應的組合之一組新的對應的參數來適應及 調整。 例如’一種藉由提供—實質匹配的電氣環境以介接一 電源供應器130的方法,其係在—裝置1〇〇、1〇〇A G(交換 式電源供應器130)的起動狀態期間透過一調光器開關7:5來 供電,該方法可包括以下的順序(圖1〇,步驟31〇_ 314): 1 ·監視該調光器開關75的狀態(步驟3丨〇 _ 3丨4)。 2·辨識該調光器開關乃狀態是充電其觸發電容器77的 狀態(步驟310)。 3. 提供一相當低的阻抗至該調光器開關75(步驟31〇_ 3 14) ’藉此容許足夠的電流流通以充電該觸發電路,並且進 -步有效地模擬一白熾燈。例如’該提供的阻抗可以是固 定的,具有-最大值以在調光器開關75導通時產生稍微超 過該閉鎖及保持電流臨界值的電流(步驟312_ Μ句。在一 可利用的獨立的控制電壓的情形中,匹配的阻抗可以是 適應性的,根.據觸發電路充電時間改變其值,以汲取猶T 於閉鎖及保持電流臨界值的電流,其可以在調光器導通^ 根據瞬間的AC電壓值來對應地界定。 4. 感測該調光器開關75何時被導通及傳導,並且繼續 提供該匹配的阻抗給該調光器開關75以没取稍高於保 流臨界值的電流(步驟3 12)。 、 ?始一建立一用於該裝置1〇。' i〇〇a_g的 (藉由主動或被動電路)的過程,例如,提供—操作 至該控制請。該提供的匹配介面阻抗將會在此過程中:) 39 201204171 保持啟動的,該過程可能用該調光器開關75的幾個完整的 連續週期,亦即’充電該觸發電容器77、導通該調光器開 關75(三端交流開關80)以及傳導電流通過該調光器開= 75(步驟 310 - 314)。 6. 監視該裝置100、1〇〇A-G的操作電壓位準。 7. 在一接通電源重置臨界電壓位準時,致能該控制器 120並且轉換至該交換式電源供應器13〇的平緩或軟開始°。 8. 在該轉換至平緩或軟開始期間,繼續提供一匹配的阻 抗至該調光器開關75以充電觸發電容器、導通該調光器開 關75以及適應性地汲取夠高於該閉鎖以及接著的保持電流 臨界值的電流(步驟3 1 0 - 3 14)。 於是,在該裝置100、1〇〇A-G以及其内含的交換式電 源供應器1 30的起動期間,對於該調光器開關75的任何狀 態而言,一介面電路(例如,1 15、2〇〇、21〇及/或在以下論 述的其它介面電路)係被利用於提供一適當的阻抗以容許有 足夠的電流用於該調光器開關75之對應的狀態,藉此產生 一辦應的實質匹配的電氣環境給每個狀態組合。 圖Π是根據本發明的教示之一第三範例的裝置實施例 100B、一第三範例的系統實施例i 〇5B以及一第三範例的適 應性介面實施例1 1 5B的方塊及電路圖。未個別繪出的是, 該裝置100B可耦接至如同先前在圖8及9中所繪的—調光 器開關75以及一 AC線35。舉例且非限制的,該第三範例 的適應性介面實施例11 5B可被利用在起動、平緩或軟開始 以及其它過程(以及該交換式電源供應器13 0的狀態)期 40 201204171 間’並且可被利用膏 貫施以下的任一者或是全部:一起動 ’丨面電路200、—平雄at b日,/ 十緩或軟開始電力介面電路2 1 0、及/或一 完全操作介面電路22◦’此為舉例且非限制的。請參照圖 第三範例的適應性介面實施例U5B係包括—電阻性阻 Μ電阻器202)、開關2〇5以及選配的電阻器如,其中該 電阻器2〇2係藉由一開關(空乏模式M〇SFET)2〇5的切換而 :妾至m器開關75(並且和該交換式電源供應器1 %並 聯4開關205在沒有任何控制信號從該控制$ 12〇提供 下疋導通且傳導的,其係提供_相當低的阻抗作為一實質 配的電氣% i兄並且進一步提供該相當低的阻抗作為一預 5又的模式,例如,在Vcc產生期間(步驟310 - 3 14)或是在 :緩或軟開始期間(步驟316_ 32〇)。提供此一相當低的阻 乍為預°又的模式係作用為確保例如當該控制器1 20及. 又換式電源供應器13〇正在產生其個別的操作電壓並且可 月匕尚未元全地運作時,例如,當該調光器開關75最初藉由 一使用者導通時,該調光器開關75適當地運作並且有足夠 的觸發電容器充電、閉鎖及保持電流透過該電阻性阻抗(電 器2 〇 2)以及開關2 〇 5來提供。若在此最初的起動時間期 間該控制器120具有一獨立的電壓源(例如一電池)或是其 發展出—操作電壓,該控制器120可以改變(適配)此阻抗至 如同可藉由一電壓及/或電流感測器125A、i25B感測出的 5周光器效能的最佳條件。在此種起動之後,該控制器12〇 可提供—控制信號至該開關(MOSFET) 205的閘極,例如, 用以調變流過電阻器202及開關205的電流,以例如用於 41 201204171 β玄父換式電源供應器13〇的平緩或軟開始電力模式、或例 在°亥交換式電源供應器丨3 〇的完全的操作模式期間,冬 足夠的電流可被該交換式電源供應器13〇取出時,減少或 終止流過適應性介面實施例丨15B之額外的電流。熟習此項 技術者在利用本發明的原理下,可建議出各種其它電路以 在不須任何用於此種起動過程及預設的模式的控制信號下 提供一相當低的電阻性阻抗給該調光器。 在該系統105B的平緩或軟開始期間(圖i丨),該控制器 120係與該裝置1〇〇B(以及其它裝置1〇〇、i〇〇a、1卯c二 的穩定操作相容地斜坡提升至該負載(LED)14〇的功率。操 作切換頻率、輸出電壓及輸出電流通常是在平緩或軟開= 期間增加。一用於該適應性介面115B的重要參數是增加^ 入功率至該交換式電源供應器130,從低於符合該調光器開 關75的最小需求的位準到遠超過該最小位準的位準,以提 供電力至該LED 140。一種藉由一調光器開關75供電的一 交換式電源供應器130之平緩或軟起動的範例方法是藉由 提供一實質匹配的電氣環境給該調光器開關75,例如,利 用提供一電阻性阻抗的介面11 5B,該方法可句祍 J巴秸以下的順 序(圖 10 ,步驟 316 - 320): 1.和該調光器開關75的狀態非同步地從一起動階段轉 換至一平緩或軟開始階段,亦即,平緩或軟開始可以開始 而不論該調光器開關75的狀態為何,例如當該領本。。 田0乂啊益開關 75是在充電其觸發電容器、導通該調光器開關75、戈是傳 導電流通過該調光器開關75的三個週期性狀態中的任何— 42 201204171 個。 2.例如是利用介面U5B以繼續提供(經由一適應性介 面115) —實質匹配的電氣環境(如同該電源供應器13〇起動 的情形)’以保持該調光器開關75在其可能的三個狀態的每 一個狀態的動作穩定,直到該輪入電壓實質為零(例如,一 零點交越)為止。 .在—零點交越後監視該調光器開關75的狀態,使得 若該調光器開關75是關斷的(一順向調光器),則經由一適 應性介面1 15提供一匹配的電阻性阻抗給該調光器75的觸 發電路,並且若該調光器開關75是導通的(一逆向調光 器)’則經由一適應性介面115提供一匹配的適應性功诞汲 取給該調光器。至該調光器開關75總共的匹配功率汲取係 等於該交換式電源供應g 13G的輸人功率以及由—適應性 介面115消耗的額外功率的總和。範例匹配的適應性功率 沒取係在以下參考圖14-1 6更加詳細描述。 4.對於一順向調光器而言,監視該調光器開關乃從充 電改變到導通及傳導電流的狀態,並且經由一適應性介面 115提供一匹配的適應性功率汲取給該調光器開關乃,以 及提供-E西己的電阻性阻抗給—逆向_ &器的1Μ 5. 和該調光器開關75的週期性狀態相容且對應地週期 性地改變該調光器的匹配電氣環境。 ° 6. 隨著該交換式電源供應器13〇的輸入功率增加並且 變成超過該調光器開關75持續的穩定操作所需的最小位 43 201204171 準,逐步將一適應性介面115所取出的額外電流變為零。 7.轉換至一完全操作電力模式,並且視必要或期望的情 形中斷可應用的適應性介面115的動作。 於疋,在該裝置100、100A_G以及其内含的交換式電 源供應器1 30的平緩或軟開始期間,對於該調光器開關75 的任何狀態,一介面電路(例如,2〇〇、2丨〇及/或以下論述者) 係被利用於提供一適當的阻抗以容許有足夠的電流以用於 该调光益開關75對應的狀態,並且在調光器導通(如同在以 下更加詳細論述的)期間提供電流成形/控制,藉此對於每個 狀態組合產生一對應的實質匹配的電氣環境。隨著該交換 式電源供應器130斜坡提升至一完全的操作模式,由該適· 應性介面115提供之額外的電流汲取係減少,同時維持足 夠的電流通過該調光器開關以用於其充電、導通及傳導狀 態的任一個。 圖1 2是根據本發明的教示之一第四範例的裝置實施例 100C、一第四範例的系統實施例i〇5C以及一第四範例的適 應性介面實施例115 C的方塊及電路圖。未個別繪出的是, 該裝置100C可耦接至如同先前在圖8及9中所繪的一調光 器開關75以及一 AC線35。圖13是根據本發明的教示之 一調光器開關之範例的切換、一範例的適應性介面1 1 5實 施例、提供至一範例的交換式電源供應器丨3〇的功率、以 及範例的適應性介面功率利用的圖示時序圖。舉例且非限 制的,該第四範例的適應性介面實施例115 c可以在起動及 平緩或軟開始過程兩者期間被利用於該調光器開關75的任 44 201204171 可大態(步w 310 - 320),亦可在完全的操作模式期間被利 用(步驟322),並且可被利用以實施一起動介面電路?㈧及 /或-平緩或軟開始電力介面電路21〇的任—個或是兩者, 此為舉例且非限制的。該第四範例的適應性介面實施例 U5C係包括藉由一開關(M〇SFET) 215連接至該調光器開 關75的-匹配電阻性阻抗斯及扇,以在該交換式電源 供應器' 130的起動期間及/或平緩或軟開始期間提供一實質 :配的電氣環境給該調光器開關75(用於其三個狀態的任 :個)。此匹配的電阻性阻抗可以是藉由利用一選配的齊納 一極體211所界定的閘極至源極電壓而為固定的、或者是 可變的且藉由-來自控制器120的控制電壓驅動。該調光 器開關75的狀態在此範例的實施财是藉由該電壓感測器 125A來感測的。當該調光器開關7.5正在導通該控制器 ία係調整由電阻器207、208、212、213以及開關(m〇sfet) 215所構成的電流汲取電路。該適應性介面】15(:係有效地 =整該系統1()5C的輸入功率,使得為了調光器開關乃穩 定的操作所需通過其的最小電流會被超過。當該交換式電 源供應器13G的平缓或軟開始進行到其完全的操作狀態並 且當該調光器開關75正在導通且傳導時,由一適應性介面 U5C所消耗的額外功率係逐漸地變為零,即如圖13中所繪 者0 於是,在該交換式電源供應器13〇的起動或平緩或軟 開始狀態期間,一適應性介面115(例如n5B或n5C)係提 供對應且實質匹配的電氣環境給該調光器開關75,例如 45 201204171 固疋或可變的阻抗容許足夠的電流通過該調光器開關乃 而大於或等於—閉鎖或保持電流(當該調光器正在導通或是 在導通狀態,步驟312、314、318及域wo),並且提供一 電机路仏以用於充電該觸發電容器(當該調光器是在關斷或 非,導的狀態’圖10 ’步驟310、3 16)。在該交換式電源供 〇的70王的操作模式期間,此一用於該調光器開關 之貫質匹配的電氣環境(例如一固定或可變的阻抗)亦可 破利用以提供一電流路徑以用於充電該觸發電容器(當該調 光器是在關斷或非傳導的狀態,圖10,步驟322)。 一實質匹配的電氣環境亦在該交換式電源供應器130 的完全的操作模式期間主動(動態地)或被動地提供。在各種 範例的實施例中,一諧振的模式係被產生用於在該調光器 開關75導通時控制一汤入的峰值電流,該電流係進一步被 主動調變以避免過大的電流位準,而同時維持該調光器開 關75的最小閉鎖及保持電流’即如同在以下更加詳細論述 者。請再次參照圖9 ’ 一選配的濾波器電容器235例如可被 實施以提供功率因數校正。該濾波器電容器235可如圖所 繪地連接在該整流H 110之後、或是在該整流器"〇及調 光器開關75之間。然而,此種濾波器電容器235的納入可 以作用來延長及延遲該觸發電容器77所需的充電時間。例 如,各種的模型已顯示當此濾波器電容器235被利用時, 用於充電當連接至一白熾燈泡時的觸發電容器77之3 4ms 延遲可能被延長到4.2ms ’因為觸發電容器77的低電壓, 此潛在可能導致該二端交流開關85的非觸發’即使是在半 46 201204171 週期的充電之後。為了避免在該觸發電容器77的充電中之 過度的延遲,根據該些範例的實施例,該濾波器電容器2 3 5 的電容不應該超過該觸發電容器77的電容三個大小數量 級。在一範例的實施例中,該濾波器電容器235是相當小 的,大約0.5 - 2.5 // F的數量級’並且在各種範例的實施例 中更特定為大約或實質為0.1 - 0.2" F的數量級,因為較大 的濾波器電容器23 5將會妨礙該觸發電容器(77)的充電。 然而,此種相當小的濾波器電容器2 3 5的使用,而沒 有範例的新穎實施例所提出且以下論述的額外構件時,將 會在該調光器開關7 5被導通時,容許一大量且潛在過高的 峰值電流進入該交換式電源供應器13〇,此尤其對該交換式 電源供應器1 3 0可能是有害的。於是,為了避免此一峰值 湧入電流,本發明範例的實施例係在該調光器開關75正在 導通時,在該交換式電源供應器130的完全的操作模式期 間產生及調變一諧振過程(圖1〇,步驟324),例如是藉由利 用一適應性介面115D、115E、及/或115F,即如以下參考 圖14-16及圖20-23更加詳細描繪及論述者。此種諧振過程 的產生及調變亦可在該交換式電源供應器130以及調光器 開關75的其匕狀態期間被利用,例如,在該調光器開關π 正導通時的平緩或軟開始期間(步驟3 1 8)或者是在從平緩或 軟開始至完全的操作模式的轉換期間。 、一 …_的裝置咖及1〇〇(:亦包括一可被利用來感測該 5周光器開關75的狀態之電壓感測器125A。或者是,其它類 尘的感測S 125亦可等同地被利用以決定該調光器開關75 47 201204171 的狀態。當該感測器! 25指出該調光器開關75是因為一順 向調光器的零電壓而關冑、或是對於—逆向類型的調光器 而言該調光器關閉時,橫跨該輸入濾波器電容器235的電 壓係下降至-非常小的值。大約在此時,纟完全的操作模 式期間,該控制g 120係導通該交換式電源供應$ 的 至少-開關(例如’在圖17中的285),該開關係經由至少 -磁性的繞組(如圖17中的返驰變壓器28〇的初級繞組.、或 例如是圖14-16的電感器236的一電感器所示)串聯連接至 輸入。由於工作在頻率從5〇KHZ至1MHZ的實際範圍中之 交換式電源供應器中的;慮波器電容3 235的電容以及電感 器的電感相當小的值,充電該觸發電容$ 77的外部阻抗是 相當小的並且是在—白熾燈泡值的範圍中因而容許有足 夠的電流來充電該觸發電容器77(圖1〇,步驟322)。於是, 在完全的操作模式以及從平緩或軟開始轉換至完全的操作 模式期間,且在該觸發電容器77的充電期間,在該交換式 電源供應3 130中的電路可被利用以確保有足夠的充電電 流(除了確保有足夠的閉鎖及保持電流之外),而不需要為此 目的有額外的電阻性阻抗或電流没取、等等以吸取額外的 種在一 70全操作模式期間且在由一調光器開關75所 供電時,#由提供一實質匹配的電氣環境給該調光器開關 75二操作一個具有一交換式電源供應器130以及一輸入濾 波态電容器235(具有一相當低電容,亦即,小的電容器)的 裝置之範例的卜方法可包括以下.的順序(圖1〇,步驟 48 201204171 322): 1 監視該調光器開關75的狀態。 2·田忒§周光器開關75已經關斷時,以一實質最大的實 際工作週期(最高到100%)導通該交換式電源供應器1儿之 主,的開關在-第-切換模式中(圖1〇 ’步驟322)(並且例 如是根據電壓或電流位準的監視(例如,115B、115C)而若 '、、要的或所期望的話,亦例如是利用一適應性介面1 1 $ 以有效提供一額外的電流路徑以容許該觸發電容器的充 電)。對於此種該觸發電容器在完全的操作模式期間的充 電’應注意到的是’肖交換式電源供應器13G内部的構件 可被利用以提供該電流路徑以容許此種充電,而不是其 額外的構件。 ~ 3. 繼續以該實質最大的工作週期(若其小於百分之百 (ioo°/〇時)切換該交換式電源供應器13〇在該第一模式、或 是保持該交換式電源供應器13〇在一 DC模式(若該實質最 大的工作週期為100%時)。 4. 田°亥凋光器開關75導通時,操作該交換式電源供應 益130在一第二切換模式中,其具有藉由來自該交換式電 源供應器130 ’例如是經由電壓或電流感測器125A、125B 的回授、或是來自另一電路構件,例如lED丨4()電流的回 板所決定的工作週期。 士上所述,某種類型的一磁性的繞組(例如一電感器 236或變壓器)將會在該交換式電源供應器130的切換週期 期間的某個時點串聯連接至該整流器丨丨〇。内含此一濾波器 49 201204171 電容器235及磁性的繞組(電感器236)可作用為降低調光器 開關7 5的效能可靠度而不須引入根據該些範例的實施例之 :對應的實質匹配的電氣環境’其係利用除了那些針對該 交換式電源供應器13〇的起動以及平緩或軟開始的功能階 段所論述者以外的方法’以在完全的操作模式期間(在平緩 或軟開始之後)提供該交換式電源供應器13〇 一更佳的效 能。 圖20是描繪若内含一電感器或其它磁性的繞組(沒有 額外的電路).,例如是圖14的電路,且若沒有包含電阻器 2 3 7 (相對於本發明各種範例的實施例而言)時,一開關在一 諧振的模式中導通之範例的電壓及電流波形的波形圖。儘 管該峰值電流611及電壓612波形是阻尼的震盪,並且藉 由包含一電感器236而在過高的電流位準之下,但在t3至 t4的時間期間,另一問題可能產生,如同該所繪的模型指 出,調光器開關75的電流實質為零,此可能導致該調光器 開關75的故障並且造成可感知的閃爍。The flow switch 80) is conducting (steps 312, 318, 324, and/or 33 〇), or is conducting current through the dimmer switch 75 (steps 314, 32 〇, 丨% state' is in the above four In the full mode of operation, in the gradual or soft start mode (steps 302, 304, 306, and 308). Each of these possible states to 130 is determined (eg, through a pattern) / or 332) is provided. Following steps 314, 320, 326 and/or 332, the method determines if the AC line (dimmer switch 75) has been turned off (step 334), and if not, ' The method then returns to step 302 and repeats, and if so, the method can end (return to step 336). Thus, the apparatus 100, 100A (or other apparatus embodiments discussed below) provides a correspondence The electrical environment in which the state of both the dimmer switch 75 and the switched-mode power supply 13 is substantially matched. The combination of various states, the monitoring of the state, and the provision of the substantially matching electrical environment are more detailed below. Description. For these shapes Or each combination of the 12 combinations of processes, and depending on the intended configuration (eg, 1 10V, 220V), the corresponding parameters are preset and stored in memory 1 60 'and thus proceed from the note in subsequent actions 37 201204171 The memory 160 is captured by the controller 12 and utilized to provide the corresponding real f-matched electrical environment. As noted above, the substantially matching electrical environment can be provided by the controller 12G. Controlling the switched-mode power supply 130 (e.g., controlling a resonant process, current shaping, and other methods discussed;) or by controlling an input ΠΜ or 疋 of the switched power supply π〇 The input current of the I-I, or the input power of the 3 13G by controlling the switching power supply, includes the control of switching the power supply H 130 by the P1, which is an example and not However, it should be noted that for combinations of various states, the corresponding: number and/or type of control may be substantially similar or identical, depending on the selected embodiment (. the corresponding parameter and / Or control &a The mp; type 彳 is considered equivalent in a number of ways and is considered to be equivalent within the scope of the invention 'for example' according to any and/or all country minimum voltage level component values, a switched power supply The maximum voltage level that the supplier 130 and/or the LED 140 can withstand, the characteristics of the dimmer switch 75 (eg, minimum hold and latch current), etc. 'The method of presetting the corresponding parameters is more detailed below. Description. By way of example, without limitation, a minimum current parameter (e.g., 50 mA) can be utilized and sensed via a current sensor 125B, wherein - the controllers 12G, 12GA then provide the various switches and include - adaptability Corresponding gating or modulation of other circuits of interface 115 to ensure the flow of this minimum current. Thus, when the dimmer switch 75 and the switched-mode power supply 130 change their individual functional states, the present invention is implemented by a device 100, 100A-G (or other device embodiments as discussed below). The dimmer is automatically used to open and adapt the M 75 switching power supply 38 201204171 1 3 0 to the corresponding combination of the new corresponding parameters. For example, a method of providing a substantially matched electrical environment to interface a power supply 130 through a state during the startup state of the device 1〇〇, 1〇〇AG (switched power supply 130) The dimmer switch 7:5 is used to supply power. The method may include the following sequence (Fig. 1A, step 31〇_314): 1 • Monitor the state of the dimmer switch 75 (step 3丨〇_ 3丨4) . 2. Identifying the state of the dimmer switch is to charge its trigger capacitor 77 (step 310). 3. Provide a relatively low impedance to the dimmer switch 75 (step 31 〇 _ 3 14)' thereby allowing sufficient current to flow to charge the trigger circuit, and to actively simulate an incandescent lamp. For example, the impedance provided may be fixed with a maximum value to produce a current that slightly exceeds the threshold of the latching and holding current when the dimmer switch 75 is turned on (step 312_ Μ. In an available independent control) In the case of voltage, the matched impedance can be adaptive, and the value is changed according to the charging time of the trigger circuit to capture the current of the latching and holding current threshold, which can be turned on in the dimmer. The AC voltage value is correspondingly defined. 4. Sensing when the dimmer switch 75 is turned on and conducting, and continuing to provide the matched impedance to the dimmer switch 75 to take no more current than the current-preserving threshold ( Step 3)), first establish a process for the device 1 'i〇〇a_g (by active or passive circuit), for example, provide - operation to the control please. The provided matching interface The impedance will be in the process:) 39 201204171 Keeping on, this process may use several complete consecutive cycles of the dimmer switch 75, ie 'charging the trigger capacitor 77, turning on the dimmer switch 75 ( Diac 80) and conducting current through the dimmer 75 = open (step 310--314). 6. Monitor the operating voltage levels of the device 100, 1A, A-G. 7. Upon activation of the power supply reset threshold voltage level, the controller 120 is enabled and switched to a gentle or soft start of the switched power supply 13A. 8. During the transition to a gentle or soft start, continue to provide a matched impedance to the dimmer switch 75 to charge the trigger capacitor, turn the dimmer switch 75 on, and adaptively capture above the latch and then The current holding the current threshold (steps 3 1 0 - 3 14). Thus, during startup of the device 100, the device AG, and the included switching power supply 130, an interface circuit (e.g., 1 15, 2) for any state of the dimmer switch 75 〇〇, 21〇 and/or other interface circuits discussed below) are utilized to provide a suitable impedance to allow sufficient current for the corresponding state of the dimmer switch 75, thereby generating a response The substantial matching of the electrical environment gives each state a combination. Figure 1 is a block diagram and circuit diagram of an apparatus embodiment 100B according to a third example of the teachings of the present invention, a system embodiment i 〇 5B of a third example, and an adaptive interface embodiment 1 1 5B of a third example. Not individually depicted, the device 100B can be coupled to a dimmer switch 75 and an AC line 35 as previously depicted in Figures 8 and 9. By way of example and not limitation, the adaptive interface embodiment 11 5B of the third example can be utilized during startup, gradual or soft start, and other processes (and the state of the switched power supply 130) during period 40 201204171' and Any one or all of the following can be utilized: the same as the 'kneading circuit 200, pingxiong at b day, / ten slow or soft start power interface circuit 2 1 0, and / or a fully operational interface circuit 22◦ 'This is an example and not limiting. Referring to the third embodiment of the adaptive interface embodiment U5B includes a resistive resistive resistor 202), a switch 2〇5, and an optional resistor such as, wherein the resistor 2〇2 is connected by a switch ( Switching of the depletion mode M〇SFET) 2〇5: 妾 to the m-switch 75 (and parallel with the switched-mode power supply 1% 4 switch 205 is provided with no control signal from the control $ 12 〇 Conductive, which provides a relatively low impedance as a substantially matched electrical component and further provides the relatively low impedance as a pre-5 mode, for example, during Vcc generation (steps 310 - 3 14) or It is during the slow or soft start (step 316_32〇). Providing this relatively low resistance is a pre-mode to ensure, for example, that the controller 1 20 and the replacement power supply 13〇 While the individual operating voltages are being generated and may not be fully operational, for example, when the dimmer switch 75 is initially turned on by a user, the dimmer switch 75 operates properly and has sufficient triggering Capacitor charging, latching and holding current through The resistive impedance (electrical appliance 2 〇 2) and switch 2 〇 5 are provided. If during this initial starting time the controller 120 has an independent voltage source (eg a battery) or it develops an operating voltage, The controller 120 can change (adapte) this impedance to an optimum condition as a five-period performance that can be sensed by a voltage and/or current sensor 125A, i25B. After such a start, the controller 12〇 can provide a control signal to the gate of the switch (MOSFET) 205, for example, to modulate the current flowing through the resistor 202 and the switch 205, for example, for the 41 201204171 β-father switching power supply 13 The gradual or soft start power mode of the cymbal, or during the full mode of operation of the ohmic power supply 丨3 ,, during the winter sufficient current can be removed by the switching power supply 13 to reduce or terminate the flow The additional current of the adaptive interface embodiment B 15B. Those skilled in the art, using the principles of the present invention, may suggest various other circuits to be used without any control for such a starting process and a preset mode. A relatively low resistive impedance is provided to the dimmer under the signal. During the gentle or soft start of the system 105B (Fig. i), the controller 120 is associated with the device 1 (and other devices). The stable operation of 〇, i〇〇a, 1卯c2 is ramparily increased to the power of the load (LED) 14 。. The operating switching frequency, output voltage, and output current are typically increased during a gentle or soft on = period. An important parameter for the adaptive interface 115B is to increase the power to the switched power supply 130 from a level below the minimum required to meet the dimmer switch 75 to a bit far beyond the minimum level. Precise to provide power to the LED 140. An exemplary method of gradual or soft start of an switched power supply 130 powered by a dimmer switch 75 is to provide a substantially matched electrical environment to the dimmer switch 75, for example, by providing a resistor The interface of the impedance is 11 5B, the method can be followed by the sequence of the following steps (Fig. 10, steps 316-320): 1. The state of the dimmer switch 75 is switched from the simultaneous phase to the gentleness asynchronously. Or a soft start phase, that is, a gentle or soft start can begin regardless of the state of the dimmer switch 75, such as when the collar is used. . The field switch 75 is any of the three periodic states of charging the trigger capacitor, turning on the dimmer switch 75, and conducting the current through the dimmer switch 75 - 42 201204171. 2. For example, using interface U5B to continue to provide (via an adaptive interface 115) - a substantially matched electrical environment (as is the case with the power supply 13 〇 starting) to keep the dimmer switch 75 in its possible three The action of each state of a state is stable until the turn-in voltage is substantially zero (eg, a zero crossing). Monitoring the state of the dimmer switch 75 after the zero crossing, such that if the dimmer switch 75 is off (a forward dimmer), a matching resistor is provided via an adaptive interface 1 15 The impedance is given to the trigger circuit of the dimmer 75, and if the dimmer switch 75 is conductive (an inverse dimmer), then a matching adaptive interface is provided via an adaptive interface 115 for the adjustment. Light. The total matching power draw to the dimmer switch 75 is equal to the sum of the input power of the switched power supply g 13G and the additional power consumed by the adaptive interface 115. The adaptive power of the example match is not described in more detail below with reference to Figure 14-1. 4. For a forward dimmer, monitoring the dimmer switch from a charge change to a conduction and conduction current state, and providing a matched adaptive power to the dimmer via an adaptive interface 115 The switch is, and provides a resistive impedance of -E hexine to -1 of the reverse _ & 5. is compatible with the periodic state of the dimmer switch 75 and correspondingly periodically changes the match of the dimmer Electrical environment. 6. As the input power of the switched-mode power supply 13 turns increases and becomes the minimum bit required for the stable operation of the dimmer switch 75 to continue, the additional interface of the adaptive interface 115 is gradually removed. The current becomes zero. 7. Switch to a fully operational power mode and interrupt the action of the applicable adaptive interface 115 as necessary or desired. In the meantime, an interface circuit (eg, 2〇〇, 2) for any state of the dimmer switch 75 during the gradual or soft start of the device 100, 100A_G and its included switching power supply 130 And/or the following discussion) is utilized to provide a suitable impedance to allow sufficient current for the corresponding state of the dimming switch 75 and to conduct the dimmer (as discussed in more detail below). Current shaping/control is provided during which a corresponding substantially matched electrical environment is created for each state combination. As the switched-mode power supply 130 ramps up to a full mode of operation, the additional current draw provided by the adaptive interface 115 is reduced while maintaining sufficient current through the dimmer switch for its Any of the charging, conducting, and conducting states. Figure 12 is a block and circuit diagram of an apparatus embodiment 100C, a system example embodiment iC of a fourth example, and an adaptive interface embodiment 115C of a fourth example, in accordance with one of the teachings of the present invention. Not individually depicted, the device 100C can be coupled to a dimmer switch 75 and an AC line 35 as previously depicted in Figures 8 and 9. 13 is a diagram of an example of switching of a dimmer switch, an exemplary adaptive interface 1 15 embodiment, power supplied to an exemplary switched power supply, and exemplary, in accordance with the teachings of the present invention. Graphical timing diagram for adaptive interface power utilization. By way of example and not limitation, the adaptive interface embodiment 115c of the fourth example can be utilized in any of the dimmer switches 75 during the start-up and gradual or soft start processes. - 320), may also be utilized during the full mode of operation (step 322), and may be utilized to implement a joint interface circuit? (8) and / or - gradual or soft start of the power interface circuit 21 〇 either or both, this is by way of example and not limitation. The adaptive interface embodiment U5C of the fourth example includes a matching resistive impedance and a fan connected to the dimmer switch 75 by a switch (M〇SFET) 215 to be in the switched power supply' During the start-up of 130 and/or during the gentle or soft start period, a substantial electrical environment is provided to the dimmer switch 75 (for any of its three states). The matched resistive impedance may be fixed or variable by the gate-to-source voltage defined by an optional Zener diode 211 and controlled by the controller 120 Voltage driven. The state of the dimmer switch 75 is sensed by the voltage sensor 125A in this example implementation. When the dimmer switch 7.5 is turning on the controller, the current extraction circuit composed of the resistors 207, 208, 212, 213 and the switch (m〇sfet) 215 is adjusted. The adaptive interface] 15 (: is effectively = the input power of the system 1 () 5C, so that the minimum current through which the dimmer switch is required for stable operation will be exceeded. When the switched power supply The gentle or soft start of the device 13G proceeds to its full operational state and when the dimmer switch 75 is conducting and conducting, the additional power consumed by an adaptive interface U5C gradually becomes zero, ie as shown in FIG. Illustrated in the present invention, an adaptive interface 115 (e.g., n5B or n5C) provides a corresponding and substantially matched electrical environment for the dimming during the startup or gentle or soft start state of the switched-mode power supply 13A. The switch 75, such as 45 201204171, has a fixed or variable impedance that allows sufficient current to pass through the dimmer switch and is greater than or equal to - latching or holding current (when the dimmer is conducting or conducting, step 312) , 314, 318 and domain wo), and provide a motor path for charging the trigger capacitor (when the dimmer is turned off or not, the conducting state is 'Fig. 10', steps 310, 3 16). In the switched power supply During the operating mode of the 70 kings, the electrical environment (eg, a fixed or variable impedance) for the quality matching of the dimmer switch can also be utilized to provide a current path for charging the trigger. Capacitor (when the dimmer is in an off or non-conducting state, Figure 10, step 322). A substantially matched electrical environment is also actively (dynamically) during the full mode of operation of the switched power supply 130 Or passively provided. In various exemplary embodiments, a resonant mode is generated for controlling a peak current when the dimmer switch 75 is turned on, the current system being further actively modulated to avoid excessive The current level while maintaining the minimum latching and holding current of the dimmer switch 75 is as discussed in more detail below. Referring again to Figure 9 an optional filter capacitor 235 can be implemented, for example, to provide Power Factor Correction. The filter capacitor 235 can be connected after the rectification H 110 as shown or between the rectifier " 调 and dimmer switch 75. However, such filtering The inclusion of capacitor 235 can act to extend and delay the charging time required for the trigger capacitor 77. For example, various models have shown that when this filter capacitor 235 is utilized, it is used to charge when connected to an incandescent bulb. The 3 ms delay of capacitor 77 may be extended to 4.2 ms 'because of the low voltage of trigger capacitor 77, this potential may cause the non-trigger of the two-terminal AC switch 85 even after charging for half of the 201204171 period. To avoid this Excessive delay in charging of the flip-flop capacitor 77, according to embodiments of the example, the capacitance of the filter capacitor 2 3 5 should not exceed the magnitude of the capacitance of the trigger capacitor 77 by three orders of magnitude. In an exemplary embodiment, the filter capacitor 235 is relatively small, on the order of 0.5 - 2.5 // F' and is more specific in the various exemplary embodiments to be approximately or substantially 0.1 - 0.2 " It is on the order of magnitude because the larger filter capacitor 23 5 will prevent charging of the trigger capacitor (77). However, the use of such a relatively small filter capacitor 253, without the additional components set forth in the exemplary novel embodiments and discussed below, will allow for a large amount of time when the dimmer switch 75 is turned "on" And potentially excessive peak currents enter the switched power supply 13A, which may be particularly detrimental to the switched power supply 130. Thus, in order to avoid this peak inrush current, an exemplary embodiment of the present invention generates and modulates a resonant process during the full mode of operation of the switched-mode power supply 130 while the dimmer switch 75 is conducting. (FIG. 1, step 324), for example, by utilizing an adaptive interface 115D, 115E, and/or 115F, as described and discussed in more detail below with reference to Figures 14-16 and Figures 20-23. The generation and modulation of such a resonant process can also be utilized during the chirp state of the switched power supply 130 and the dimmer switch 75, for example, a gentle or soft start when the dimmer switch π is conducting. The period (step 3 1 8) is either during the transition from a gentle or soft start to a full mode of operation. , a device _ and a 〇〇 (: also includes a voltage sensor 125A that can be utilized to sense the state of the 5 illuminator switch 75. Alternatively, other dust-like sensing S 125 may be equivalent The ground is utilized to determine the state of the dimmer switch 75 47 201204171. When the sensor ! 25 indicates that the dimmer switch 75 is off due to the zero voltage of a forward dimmer, or In the case of a type of dimmer, when the dimmer is turned off, the voltage across the input filter capacitor 235 drops to a very small value. About this time, during the full operating mode, the control g 120 is Turning on at least a switch of the switched power supply $ (eg, '285 in FIG. 17), the open relationship via at least a magnetic winding (such as the primary winding of the flyback transformer 28〇 in FIG. 17, or for example An inductor of inductor 236 of Figures 14-16 is shown in series connected to the input. Because it operates in a switching power supply in the actual range of frequencies from 5 〇 KHZ to 1 MHz; the filter capacitor 3 235 The capacitance of the capacitor and the inductor is quite small, charging the trigger The external impedance of $77 is quite small and is in the range of - incandescent bulb values thus allowing sufficient current to charge the trigger capacitor 77 (Fig. 1A, step 322). Thus, in full operation mode and from During a gentle or soft start transition to a full mode of operation, and during charging of the trigger capacitor 77, circuitry in the switched mode power supply 3 130 can be utilized to ensure sufficient charging current (in addition to ensuring adequate latching) And maintaining the current) without the need for additional resistive impedance or current draw for this purpose, etc. to draw additional species during a 70 full mode of operation and when powered by a dimmer switch 75 Providing a substantially matched electrical environment for the dimmer switch 75 to operate with a switched power supply 130 and an input filter capacitor 235 (having a relatively low capacitance, i.e., a small capacitor) The method of the device may include the following sequence (Fig. 1A, step 48 201204171 322): 1 Monitor the state of the dimmer switch 75. 2. Tian Tian § Luminaire switch When the 75 has been turned off, the switch of the switching power supply 1 is turned on in a substantially maximum actual duty cycle (up to 100%), and the switch is in the -first-switch mode (Fig. 1 〇 'Step 322) ( And, for example, monitoring based on voltage or current levels (eg, 115B, 115C), if ', desired, or desired, for example, using an adaptive interface 1 1 $ to effectively provide an additional current path. Allowing charging of the trigger capacitor.) For such charging of the trigger capacitor during the full mode of operation, it should be noted that components within the Schottky power supply 13G can be utilized to provide the current path to accommodate this Kind of charging, not its extra components. ~ 3. Continue with the substantial maximum duty cycle (if it is less than 100% (ioo ° / 〇) switch the switching power supply 13 该 in the first mode, or keep the switching power supply 13 〇 a DC mode (if the substantially maximum duty cycle is 100%). 4. When the Tianhe light fader switch 75 is turned on, operating the switched power supply benefit 130 in a second switching mode with The switching power supply 130' is, for example, a feedback period determined by voltage or current sensors 125A, 125B, or a return period from another circuit component, such as a return current of the IED 丨 4 () current. As mentioned above, a certain type of magnetic winding (e.g., an inductor 236 or transformer) will be connected in series to the rectifier 某个 at some point during the switching cycle of the switched power supply 130. This filter 49 201204171 capacitor 235 and magnetic winding (inductor 236) can function to reduce the performance reliability of the dimmer switch 75 without introducing an embodiment according to the examples: corresponding substantially matched electrical The system 'utilizes methods other than those discussed for the start-up and smooth or soft start of the switched-mode power supply 13' to provide this during a full mode of operation (after a gentle or soft start) The switching power supply 13 has a better performance. Figure 20 is a diagram depicting an inductor or other magnetic winding (without additional circuitry), such as the circuit of Figure 14, and if no resistor 2 is included. 3 7 (relative to embodiments of the present invention), a waveform diagram of an exemplary voltage and current waveform that is turned on in a resonant mode, although the peak current 611 and voltage 612 waveforms are damped oscillations. And by including an inductor 236 at an excessive current level, but during the time from t3 to t4, another problem may arise, as indicated by the depicted model, the current of the dimmer switch 75 Substantially zero, this may result in failure of the dimmer switch 75 and cause perceptible flicker.
然而’各種的實驗模型及理論的分析指出,在具有習 知技術的交換式電源供應器之典型的電感及電容值的情 形,因為該濾波器電容器235可能在該調光器開關75導通 時被放電,所以該調光器開關75的導通將會產生暫態電壓 及電流位準,此可能會和該調光器開關75.產生一不穩定之 振盪的介面。為了避免此種和該調光器開關75之不穩定的 振盪的介面,根據該些範例的實施例,利用一塑形或者是 改變透過該調光器開關75提供的電流之適應性介面115D 50 201204171 以帶來一實質匹配的電氣環境。圖14是根據本發明的教示 之一第五範例的裝置實施例100D、一第五範例的系統實施 例1 05D、以及一第五範例的適應性介面實施例n 5D的方 塊及電路圖。圖21是描繪根據本發明的教示之一第五範例 的裝置貫施例、一第五範例的系統實施例、以及一第五範 例的適應性介面實施例之範例模型化的暫態電壓6丨6及電 流ό 1 5波形的波形圖。未個別繪出的是,該裝置1 〇〇D可耦 接至如同先則在圖8及9中所繪的一調光器開關75以及一 AC線35。該適應性介面115D是—完全操作介面電路22〇 之一範例被動的實施例,此為舉例且非限制的。該適應性 介面1 1 5D係包括一與電感器236並聯連接的電阻器237, 並且該電感器236及電容器235A形成一諧振的電路。當該 諧振的電流到達其峰值時,橫跨該電感器236的電壓係改 變極性並且透過該電阻器237部分地放電’藉此減少該渴 入電流進入該交換式電源供應器13〇並且防止電流進一步 充電濾波器電容器235A,而同時容許足夠的閉鎖及保持電 流給該調光器開關75。適應性介面U5D係提供該調光器開 關75以及交換式電源供應器13〇的介接方法之一種被動的 貝施方式其係藉由透過在該諧振過程中塑形調光器開關 75的電流來提供一實質匹配的電氣環境,並且適應性介面 115D係提供夠高於一調光器開關75的任何典型的最小值 的閉鎖及保持電流。如圖2】中所繪,實驗的模型係指出在 開關導通之後,顯著的阻尼以及有效的消除任何非所要的 振盪(波形613),並且進—步可提供一大約96mA的最小的 51 201204171 調光器開關75電流(電流波形615),此為一個高於典型的 保持電流位準(例如,50mA)的值,同時閉鎖電流已顯示為 大約782mA,也夠高於典型的最小閉鎖電流臨界值。 根據範例的實施例,在該調光器開關75外部之諧振的 構件的電感及電容值(或者是一特徵阻抗,例如以下提到的 大約250歐姆值)的預設或預選的方式是使得該峰值諧振的 電流超出該調光器開關75在任何AC值且在導通時的閉鎖 電流的值,並且進一步為了避免損及調光器開關75以及交 換式電源供應器1 30的構件而為合理或相當低的。對於一 110V(220V)操作環境,具有一大約 16 _ 24mH(4〇 — 5〇mH), 並且更特定為18_ 22mH(43_ 47mH)的組合電感的一或多 個電感器係被利用(例如,以每個6 8mH(每個15mH)實施電 感器236的二個電感器)’對於先前所述該濾波器電容器 的電容值範圍,提供一在大約2〇〇_3〇〇歐姆間、並且更具體 而言大致約250歐姆的整體特徵阻抗。 圖24是描繪根據本發明的教示之一第九範例的裝置實 施例100H、一第九範例的系統實施例1〇5H、以及一第八範 例的適應14 "面貫施例1丨5 H的方塊及電路圖。圖2 5是描 繪根據本發明的教示之—第九範例的裝置實施例i〇〇h、一 第九範例的系統實施例105H、以及一第八範例的適應性介 面實施例1咖之-範例模型化的暫態電流波形之波形圖。 未個別繪出的是,該裝置1〇〇H可耦接至如同先前在圖8及 9中所繪的一調光器開關75以及—Ac線35。同樣未個別 繪出的是,該裝置100H亦可包括額外或其它的電流及/或 52 201204171 • ( 電壓感測器。舉例且非限制的,該範例的適應性介面n 5H 可以在起動及平緩或軟開始過程兩者期間被利用於該調光 器開關75的任何狀態(步驟31〇_ 32〇),亦可在完全的操作 模式’月間被利用(步驟322) ’並且可被利用以實施一起動介 面電路200及/或一平緩或軟開始電力介面電路21〇的任一 個或是兩者,此為舉例且非限制的◊該適應性介面丨15H也 疋疋全操作介面電路220之一範例被動的實施例,此也 疋舉例且非限制的。該適應性介面丨丨5H係包括一串聯迴接 至電谷器445且亦和電感器236連接的電阻器44〇,並且該 電感器236及電容器445係形成一諧振的電路。該電阻器 440亦和“極體45〇並聯,此亦提供一放電路徑給該電容器 445進入該交換式電源供應器13〇,藉此避免大量的電阻性 功率損失。當該諧振的電流到達其峰值時,橫跨該電感器 236的電壓係改變極性並且透過該電阻器44〇部分地放電且 進入電容器445(且亦進入電容器235A),藉此減少該湧入電 流進入該交換式電源供應器13〇,阻尼振盪,並且防止電流 進一步充電濾波器電容器235A,而同時容許足夠的閉鎖及 保持電流給該調光器開關75。適應性介面U5H係提供該調 光器開關75以及交換式電源供應器13〇的介接方法之一種 被動的實施方式,其係藉由透過在該諧振過程中塑形調光 器開關75的電流來提供一實質匹配的電氣環境,並且適應 性介面U5D係提供夠高於一調光器開關75的任何典型= ^小值的閉鎖及保持電流。如圖25中所繪,實驗的模型係 指出在開關導通之後,顯著的阻尼以及有效的消除任何非 53 201204171 所要的振盪(波形640) ’並且進一步 7 了知:供一大約200mA的 最小的調光器開關75電流,此A 一伽一 此馮個鬲於典型的保持電流 位準(例如,50mA)的值,並且亦鈞古 力约阿於典型的最小閉鎖電 流臨界值。 如上所述,根據適應性介面U5H夕r Αι & — a ,丨^ i 〇 it之把例的貫施例,在 該調光器開關75外部之諧据的播彼&册β &撖的構件的電感及電容值(或者 是一特徵阻抗)的預設或預選的方放县 θ %旧乃式疋使得該峰值諧振的電 流超出該調光器開關75在任何ΑΓ佶0 — $ 2 + 你1士 17 AL值且在導通時的閉鎖電 流的值,並且進一步為了避免指乃士 。 / q J粑兄損及凋先态開關75以及交換 式電源供應器1 30的構件而為合理或相當低的。 該適應性介面115H亦可被視為包括兩個介面電路,一 第一介面電路(單獨電阻器44〇、或是結合電容器445(作為 一電抗性阻抗)及/或二極體45〇),其係在一預設的模式中提 供-(至少部分)電阻性阻抗、以及一第二介面電路(電感器 236及電合器445及/或電容器235A),其係在該調光II開關 75導通時產生一諧振過程。該至少部分為電阻性的阻抗(電 阻器440)進一步作用以阻尼振盪並且限制任何最初的電流 湧入,同時進一步避免在震盪結束後減少該電流至零。 一種用於電力轉換的裝置1〇〇H,其中該裝置可耦接至 一第一相位調變調光器開關,該第一相位調變調光器開關 係耦接至一交流(AC)電源,該裝置1〇〇H亦可耦接至一固態 照明,可被視為包括:一交換式電源供應器(丨3 〇) ’· 一第一 適應性介面電路,其係包括一至少部分為電阻性的阻抗以 在一預設的模式中從該第一開關傳導電流,·以及一第二適 54 201204171 應性介面電路’其係用以在該第一開關導通時產生一諧振 過程。該第一適應性介面電路可包括一電阻器(440),並且 可進一步包括一與該電阻器並聯耦接的二極體(45〇)。該第 二適應性介面電路可被視為包括:一耦接至該電阻器(44〇) 的電感器(236);以及一串聯耦接至該電阻器(44〇)的電容器 (445)。換言之’該第一適應性介面電路以及該第二適應性 介面電路係包括:一電感器(236); 一耦接至該電感器(236) 的電阻β (440); —串聯耦接至該電阻器(44〇)的電容器 (445);以及一與該電阻器(44〇)並聯耦接且進一步耦接 電感器(236)的二極體(450)。一濾波器電容器(235Α)亦可以 和該串聯耦接的電阻器(44〇)及電容器(445)並聯耦接。 圖26是根據本發明的教示之描繪一第十範例的裝置實 施例iooj、一第十範例的系統實施例l〇5j、以及一第九範 例的適應性介面實施例115J的方塊及電路圖。圖27是描繪 根據本毛月的教示之一第十範例的裝置實施例^ 、一第 十範例的系、·先貫施例i〇5J、以及一第九範例的適應性介面 實把例11 5 J之範例的模型化暫態電壓及電流波形的波形 圖未個別、會出的是,該裝置1 〇〇J可搞接至如同先前在圖 8及9中所綠的_胡止5^日g日日,产 "周光裔開關75以及一 AC線35。同樣未 個別繪出的是,古女租罢 、 °裝置1 00 J亦可包括額外或其它的電流及/ 或電[感則态。舉例且非限制的,該第十範例的裝置實施 ' 可X在起動及平緩或軟開始過程兩者期間被利用於 該調光器開關7 ς & , 5的任何狀態(步驟310- 32〇),亦可在完全 的操作模式期間被利 用(步驟322),並且可被利用以實施一 55 201204171 起動介面電路200及/或一平緩或軟開始電力介面電路21〇 的任一個或是兩者,此為舉例且非限制的。該第十範例的 裝置實施例iooj係包括一串聯耦接至(濾波器)電容器46〇 的匹配的電阻性阻抗(電阻器48〇),兩者係和另一匹配的電 阻性阻抗(電阻器470及475)並聯耦接(其亦透過整流器11〇 連接至s亥调光器開關75),以在該交換式電源供應器丨3〇的 起動期間及/或在平緩或軟開始期間提供一實質匹配的電氣 環境給該調光器開關75(用於其三個狀態的任一個)。當該 調光器開關75是導通時,該電容器46〇係透過該電阻器48〇 而被充電,該電阻器480係作用以限制峰值電流,其中電 令器460亦提供功率因數校正。該串聯耦接至(濾波器)電容 器460之匹配的電阻性阻抗(電阻器48〇)係提供一第一電流 路徑’並且s亥電容器460串聯該開關(M〇SFET) 455係提供 一第二電流路徑,以在一預設的模式中維持足夠的保持及 閉鎖電流。該額外的匹配阻抗(電阻器47〇及475)除了提供 輸入電壓感測功能之外,該電阻器470、475 —起或是進 一步結合電容器465亦可被視為提供一第三電流路徑。 此外,該電阻器47〇、475及電容器465容許該開關 (MOSFET) 455在沒有主動控制下被動地導通,儘管主動控 制亦可選配地被提供(利用—虛線描繪的連線485),亦藉此 透過忒開關455提供另一電流路徑(電流汲取)以維持足夠 的保持及閉鎖電流’同時減少電阻性功率損失。此後者的 匹配阻抗可藉由利用電阻器475及電容器465所界定的一 間極至源極電壓來控制、或為可變的且藉由來自控制器1 2〇 56 201204171 的一控制電壓驅動。該適應性介面115J係有效地調節該系 統105J的輸入功率,使得為了調光器開關75穩定的操作而 要通過該調光器開關75所需的最小電流會被超過。一對應 的電壓波形642及電流波形641係被描繪在圖27中,其顯 示峰值電流限制到大約18〇 mAe此一峰值電流限制可根據 電阻器480的電阻值來預設或預選。此外,該開關(μ⑽f已丁) 455的尺寸可針對一對應的輸入電壓來決定,例如,在美國 為2〇〇V或在歐洲為4〇〇v,此為舉例且非限制的。. 。。由電阻器470、475(或是亦結合電容器465)所構成的分 壓器亦作用為—電壓《測器(例如用於輸入電壓位準)。該電 阻器47G 475(或疋亦結合電容器465)亦可被視為構成一介 面抆制器其於疋自動地調變該開關(MOSFET) 455的閘 極,藉此亦調節通過該開關(M〇SFET) 455以及電容器彻 的電流。 ° 該適應性介面115J亦可被視為包括一或多個介面電 路’例如-第—介面電路,其係在—預設的模〇提供一 :阻性以及一電抗性阻抗用於傳導電流(電阻器彻結合電 容器460)以及―第:介面電路(電^ _結合開關 (MOSFET) 455)’纟係在該調光器開關75已經導通且足夠 的電屢已經產生在開關_SFET) 455㈣極時提供一第二 電流路徑,該兩個介面電路進一步用以在該調光器開關Μ 導通時產.生一振盈阻尼過程並且限制任何最初的電流消 ^,同時進-步容許足夠的電流流通以維持保持及閉鎖電 流位準。或者是’該適應性介面!⑸可被視為—提供這些 57 201204171 功能的單一介面電路。 於是,在該交換式電源供應器13〇的起動或是平緩或 軟開始狀態期間,一例如是11511或115J的適應性介面115 亦提供一對應且貫質匹配的電氣環境給該調光器開關75, 例如一固定或可變的阻抗,其係容許通過該調光器開關75 有足夠的電流大於或等於一閉鎖或保持電流(當該調光器正 在導通或是在導通狀態,步驟312、314、318及/或32〇)以 及提供一用於充電該觸發電容器的電流路徑(當該調光器是 在關斷或非傳導的狀態,圖丨〇,步驟3丨〇、3丨在該交換 式電源供應器13 0的完全的操作模式期間,如上所論述, 此一給該調光器開關75的實質匹配的電氣環境(例如一固 疋或可變的阻抗)亦可被利用以提供一用於充電該觸發電容 器的電流路徑(當該調光器是在關斷或非傳導的狀態,圖 10,步驟 322)。 圖2 8是描繪根據本發明的教示之一第_j--範例的裝置 貫施例100K、一第Η一範例的系統實施例105Κ以及一第 十範例的適應性介面實施例丨〖5 κ之方塊及電路圖。未個別 繪出的是,該裝置100Κ可耦接至如同先前在圖8及9中所 ’會的一凋光器開關75以及一 AC線35。同樣未個別繪出的 疋,该裝置100Κ亦可包括額外或其它的電流及/或電壓感 、貝J器舉例且非限制的’該範例的適應性介面1 1 5 Κ可以在 起動及平緩或軟開始過程兩者期間被利用於該調光器開關 75的任何狀態(步驟31〇_ 32〇),亦可在完全的操作模式期 間被利用(步驟322),並且可被利用以實施一起動介面電路 58 201204171 200平緩或軟開始電力介面電路210、及/或一完全操作 ®電路220的任-個。該適應性介面i i 5K的運作係類似 於先則參考圖24所述的適應性介面1 1 5Η,但此為一範例的 主動貫把W而且為舉例且非限制的。該適應性介面 係包括串聯連接至電容器445並且亦和電感器連接 的電阻器440,並且該電感器236及電容器445係構成一諧 振的電路。亥電阻器44〇亦和二極體並聯,此亦提供 放電路位給该電容器445進入該交換式電源供應器㈣, 藉此避免大里的電阻性功率損失。當該諸振的電流到達其 峰值寺橫跨°亥電感器236的電壓係改變極性並且透過該 電阻器440部分地放電且進入電容器445(且亦進入電容器 235A)藉此減少該湧入電流進入該交換式電源供應器 P尼振盪、並且防止電流進一步充電濾波器電容器 235A ’而同時容許有^夠的閉鎖及保持電流給該調光器開 關75 〇 適應f生"面11 5K係提供該調光器開關75以及交換式 電源供應1 130的介接方法之—種主動的實施方式,其係 藉由透過在該諧振過程中塑形調光器開關75的電流來提供 實貝匹配的電氣環境,並且適應性介面115K係提供夠高 於-調光H開Μ 75的任何典型的最小值的閉鎖及保持電 流。在此範例的實施例中,該電阻性網路(由串聯配置成一 分壓器的電阻器446及447所構成)係提供有關調光器開關 75的狀態資訊給控制器12〇,其中該控制器12〇於是(透過 MOSFET驅動器電路(未個別繪出d控制開關 59 201204171 455A的導通及關斷狀態。在一範例的實施例中,該開關 (m〇SFET) 455A在調光器開關75是關斷時係在一導通狀 態,並且接著在調光器開關75導通之後,以2〇〇_3〇〇微秒 的數量級的些微延遲後才關斷,此係在開關(m〇sfet) 4乃A 在一導通狀態時提供起動及平緩或軟開始過程,並且接著 在開關(MOSFET) 455A在一關斷狀態時提供在完全的操作 模式期間降低可能的功率損失。 如上所述,根據適應性介面115Κ的範例實施例,在該 凋光器開關75外部之諧振的構件的電感及電容值(或者是 一特徵阻抗)的預設或預選的方式是使得該峰值諧振的電流 超出s亥调光器開關75在任何AC值且在導通時的閉鎖電流 的值,並且進一步為了避免損及調光器開關75以及交換式 電源供應器1 30的構件而為合理或相當低的。 該適應性介面1 15Κ亦可被視為包括兩個介面電路,一 第一介面電路(單獨電阻器440、或是結合電容器445(作為 一電抗性阻抗)及/或二極體45〇),其係在一預設的模式中提 供一(至少部分)電阻性阻抗、以及一第二介面電路(電感器 236、開關(MOSFET) 455 A及電容器445及/或電容器 23 5A),其係在該調光器開關75導通時產生一諧振過程。 s亥至少部分為電阻性的阻抗(電阻器440)進一步作用以阻尼 振盪並且限制任何最初的電流湧入,同時進一步避免在震 盪結束後減少該電流至零。 一種用於電力轉換的裝置100K,其中該裝置可耦接至 一第一相位調變調光器開關,該第一相位調變調光器開關 60 201204171 係耦接至一交流(AC)電源,該裝置 照明,可被視為包括:-交換式電二亦可耗接至-固態 適應性介面電路,其係包括一至少 )’第— 在一褚机沾婼斗Λ你#妨 〇刀為電阻性的阻抗以 ^預,又的模式中從該第—開關傳導電流; 應性介面電路,其係用以在 第一適 .a . 開關導通時產生一增获 過程,並且之後關斷且容許航 ”振 ^ # ^A '、、、額外的功率損失之完全 的細作模式。4第-適應性介 (,,並且可進一步包括…^ '路了包括-電阻器 M 卜 ” 電阻器並聯耦接的二極體 (45 0)。該第二適應性介面電路 雪阳电路了被視為包括:一耦接至該 電阻裔(440)的電感器(236); 一 甲w祸接至該電阻器(440) 的電容器叫以及一串聯耦接至該電容器(445)且進一步 麵接至-控制器⑽)的開關(455Α)β換言之,該第一適應 陳h面電路以及該第二適應性介面電路係包括:一電感器 (236); -輕接至該電感器(236)的電阻器(4你—串聯麵接 至該電阻器(440)及言亥開關(455A)的電容器(445);以及一虚 該電阻器(440)並聯搞接且進一步搞接至該電感器(236)的二 極體(45G)。-濾'波器電容器(235A)亦可以和該串聯叙接的 電P器(440)及電谷器(445)並聯耗接。此外,亦可内含一.電 阻性網路(例如,包括電阻器446、447的分壓器)以提供調 光器開關75的狀態資訊給該控制器ι2〇。 圖29是描繪根據本發明的教示之一第十二範例的裝置 貫施例1 00L、一第十二範例的系統實施例1 〇5L以及一第十 一範例的適應性介面實施例115L之方塊及電路圖。未個別 繪出的是’該裝置100L可耦接至如同先前在圖8及9中所 61 201204171 、,的調光器開關75以及一 AC線35。同樣未個別綠出的 疋4裝置1 00L亦可包括額外或其它的電流及/或電壓感測 杰。舉例且非限制的是,該範例的適應性介面1 1 5L·可以在 起動及平緩或軟開始過程兩者期間被利用於該調光器開關 75的任何狀態(步驟3 10 - 320) ’亦可在完全的操作模式期 間被利用(步驟322),並且可被利用以實施一起動介面電路 200、一平緩或軟開始電力介面電路210、及/或一完全操作 "面電路220的任一個。此範例的適應性介面i丨5L亦特別 適。1 . 10,000數量級之寬廣且擴充的調光器範圍,同時提 供卓越的穩定性。 對於此範例的實施例,當調光器開關75關斷時,一相 對低且固定的阻抗係提供至該調光器開關75以充電該觸發 電容器(C1,77)。一開關(M0SFET) 74〇係經由電阻器7〇3 連接至整流過的電壓線(線746)。在起動時,該開關(m〇sfet) 740係導通且(經由二極體712)充電Vcc電容器46〇,以在 交換式電源供應器丨30的起動期間及/或在平緩或軟開始期 間提供一實質匹配的電氣環境(及第一電流路徑)給該調光 器開關75(用於其三個狀態的任一狀態)。當Vcc電容器46〇 已經充電到大約該交換式電源供應器13〇的一接通電源重 置電壓位準時,該交換式電源供應器13〇係導通並且在線 745上產生一電壓(或其它信號),該電壓(或其它信號)係導 通開關(MOSFET) 730且關斷開關(MOSFET) 740,此係有效 地結束該Vcc電容器460的預充電並且提供一第二電流路 徑(串聯的電阻器702與開關(M〇SFET) 730)。在大致同一 62 201204171 時間,開關(MOSFET) 735係被導通並且與開關(MOSFET) 740串聯,此於是接著在開關(MOSFET) 740可能被切換回 導通時提供一第三電流路徑(串聯的電阻器703與開關 (MOSFET) 740 及開關(MOSFET) 735)。 雙載子接面電晶體(BJT) 720係被利用作為一感測器, 以判斷該調光器開關75的狀態,並且進一步控制開關 (MOSFET) 740及730的切換。雙載子接面電晶體(BJT) 720 係連接在該Vcc電壓位準(在線747上)以及該整流過的線電 壓(在線746上)之間。當該整流過的電壓小於橫跨齊納二極 體714的電壓(一般約5V)時,該電晶體(BJT) 720是關斷的 (或是開路的),開關(MOSFET) 725是在一導通狀態,此係 關斷開關(MOSFET) 730且導通開關(MOSFET) 740。於是, 當該調光器開關75是關斷時,開關(MOSFET) 740是導通 的,並且另一電流路徑係透過電阻器703、開關(MOSFET) 740以及開關(MOSFET) 735來加以提供。該調光器開關75 的觸發電容器(C1,77)現在是透過(相對小的)電阻器703之 相對低的電阻來加以充電,直到到達一觸發電壓位準且該 調光器開關75導通為止。該整流過的電壓係(實質上是立即 地)增高,此係導通電晶體(BJT) 720且關斷開關(MOSFET) 740,其中另一電流路徑係透過電阻器702及開關(MOSFET) 730來加以提供。 該第十二範例的裝置實施例100L係包括一匹配的電阻 性阻抗(電阻器703),該電阻性阻抗係經由開關(MOSFE':T) 740及二極體7 1 2可切換地串聯耦接至(濾波器或Vcc)電容 63 201204171 器460,並且該些串聯的構件係可切換地與另一匹配的電阻 |·生阻抗(電阻器702)及開關(MOSFET) 730 (電阻器709也一 起)並聯耦接(該些構件亦透過整流器1 10連接至調光器開 關75),以在交換式電源供應器13〇的起動期間及/或在平緩 或軟開始期間提供—實質匹配的電氣環境給該調光器開關 75(用於其三個狀態的任一狀態)。當調光器開關75是導通 時’該電容器460係透過電阻器703(以及開關(M〇SFET) 74〇 及二極體712)來加以充電,該電阻器7〇3係用來限制峰值 電肌,其中電容器460亦潛在提供功率因數校正。該可切 換地(經由開關(MOSFET) 740以及二極體712)串聯耦接至 (濾波器或vcc)電容器460之匹配的電阻性阻抗(電阻器7〇3) 係提供一第一電流路徑,該與開關(M〇SFET)73〇串聯之匹 配的電阻性阻抗(電阻器7〇2)係提供一第二電流路徑並且 該可切換地(經由開關(M〇SFET) 74〇及開關(m〇sfet)乃5 耦接之匹配電阻性阻抗(電阻器7〇3)係提供一第三電流路 徑,以在一預設的模式中維持足夠的保持及閉鎖電流。除 了提供一輸入電壓感測功能之外,該額外的匹配阻抗(電阻 盗470及475)亦可被視為提供一第四電流路徑。 在典型的動作期間,通過適應性介面丨丨5 L的功率損失 疋相畲小的,因為其係在非常低的線電壓下導通。此外, 調光角係破降低約1〇_15度,此係將調光器開關乃移到較 高操作電壓的範圍中,並且藉此使其更為穩定。 於是,在該交換式電源供應器130的起動或平緩或軟 幵1始狀態期間’ _適應性介面i i 5(例如i ^ 5K或11 5L)亦提 64 201204171 供一對應且實質匹配的電氣環境給該調光器開關75,例如 一固定或可變的阻抗容許足夠的電流通過該調光器開關Μ 而大於或等於一閉鎖或保持電流(當該調光器正在導通或是 在導通狀態,步驟312、314、318及/或32〇),並且提供一 電流路徑以用於充電該觸發電容器(當該調光器是在關斷或 非傳導的狀態,圖10,步驟31〇、316)。在該交換式電源供 應器130的完全的操作模式期間,此一用於該調光器開關 75之實質匹配的電氣環境(例如一固定或可變的阻抗)亦可 被利用以提供一電流路徑以用於充電該觸發電容器(當該調 光器疋在關斷或非傳導的狀態,圖1 〇,步驟322)。 圖3 0是描繪根據本發明的教示之一第十三範例的裝置 貫施例100M以及一第十三範例的系統實施例1〇5M之方塊 及電路圖。該裝置1〇ΟΜ及系統1〇5M係如同先前對於(圖 17的)裝置100G及1 〇5G所述地運作,但現在是包含漣波消 除電路80(^此一漣波消除電路8〇〇可被利用於在此所述的 裝置及系統實施例中的任一個,並且被描繪成裝置1〇〇M及 系統105M的部份以展示其位置是在交換式電源供應器 130(在圖30中被描繪成交換式電源供應器i3〇a)以及l:ed 140之間。圖31是描繪根據本發明的教示之一範例的漣波 消除電路800A貫施例之方塊及電路圖。 一範例的漣波消除電路8〇〇、800A對於例如是1: 1 〇,〇〇〇 之極低的調光而言是特別有用的’其中調光器開關75的輸 出可能降到小於1W,例如在0.5-0.6W的範圍中。不論任意 的介面電路115為何’一被設計工作在6〇〇w或i〇〇〇w的 65 201204171 裝置在0.5W之下可能是相當不可預期的,並且其可能導致 一低頻的調光器漣波抖動,此係產生可見的led 140閃爍。 如同在以下更加詳細論述的,一範例的漣波消除電路8〇〇、 800A可被利用以消除此種在低功率位準的漣波,同時在較 问的功率位準下谷許該漣波且避免造成增高的功率損失。 請參照圖31,來自交換式電源供應器13〇的一輸入電 壓VIN係在節點865處被提供,並且一輸出至LED 14〇的 輸出電壓係在節點870處被提供。第—及第二(BJT)電晶體 8〇5、810以及電阻器845及85〇係作用為一差動放大器電 路。利用第一齊納二極體820及電阻器83〇、835 , 一參考 電壓係在節點880被提供至第一電晶體8〇5的基極,而第 二電晶體810的基極係利用齊納二極體825及電阻器855、 860以在節點875接收一回授電壓。一負回授迴路係利用第 一電晶體805的集極、傳遞電晶體815、第二齊納二極體 825以及電阻器855、86〇來加以形成。該差動放大器電路 以及傳遞電晶體815係有效地類似一運算放大器電路運 作’此係使得在節黑"75的回授電壓實質和節點88〇的參 考電壓相同。例如,若在節點8 7 5的回授電壓大於在節點 870的參考電壓,則在第二電晶體8丨〇的射極之電壓被拉成 較高的’此係關斷第-電晶體8〇5、容許在第一電晶體8〇5 的集極之電壓上升、降低橫跨電阻器845的電壓降,藉此 關斷或調變傳遞電晶體815’因為其閘極至源極的電壓二經 降低’此係導致在節點870之—較低的輸出電M,其係降 低在節點875的回授電壓(來自包括電阻器855、86〇的分壓 66 201204171 L〇二樣舉例而5 ’若在節‘點875的回授電壓小於在節點 、·^考電壓,則該第一電晶體8〇5更被導通,此係増加 才頁跨電阻琴+ r- 二 、電壓降、降低在第一電晶體8〇5的集極 &藉在匕導通或是更導通該傳遞電晶體815,因為其閘 極至源極的電壓已經增高,此係'導致在節‘點870有-較高 的輸出電壓,而摇斗卢^ 〇〇 挺升在即點875的回授電壓(來自包括f阻 ^ 855、860的分壓器)。該電阻器830、835、855及860 的值可被凋整以容許在節點87〇所提供的輸出電壓是在節 』⑹所提供的輸人電壓^之任意所要的分數(或倍數)。 、一包括電容器84G及電阻器835、840的低通遽波器係 被利用以避免在節點㈣的參考電麗跟隨在節點如的輸 入電壓ViN的擾動(例如Ac漣波),藉此防止在節點865的 輸電左VlN的AC漣波或其它擾動出現在節點87〇所提供 之輸出電壓中。該電阻器請、835及電容器_的值可被 調整以提供所要或所選的頻率響應。 然而,在較高的電壓及/或電流位準,當閃爍在較高的 亮度位準下將不會被察覺時,該些範例的實施例係避免(,從 傳遞電晶體8丨5的)效率損失。於是,在較高的輸出電壓位 準,第二齊納二極體825係被利用以箝位在節點875的回 授電壓的電壓位準。此係導致該第一電晶體8〇5相當強地 (或是相當強烈地)導通’增高橫跨電阻器845的電壓,此係 導致在傳遞電晶體8 1 5上有大的閘極至源極的電廢,該傳 遞電晶體815接著亦相當強地(或是相當強烈地)導通,此係 有效地使得在節點870所提供的輸出電壓短路到節點865 67 201204171 的輸入電壓Vin,藉此容許該AC漣波出現在節點87〇所提 供的輸出電壓,並且避免橫跨傳遞電晶體815的電壓降(且 相應地避免功率損失)。 額外的控制穩定性係透過第一齊納二極體82〇的使用 來加以提供。例如,在從輸入電壓及電流位準提供對應的 輸出電壓及電流位準上的.延遲可能在控制器12〇所提供的 控制上產生不穩定性,此可能過度校正且產生振盪。於是, 第一齊納二極體820係被利用以在節點865的輪入電壓Vin 快速增高時,快速地上拉在節點88〇的參考電壓並且充電 電容器840,此係容許在節點87〇所提供的輸出電壓快速地 反;應於節點865的輸入電壓vIN上之大的增高。 一攀操作一具有一交換式電源供應器13〇以及一輸入 濾波器電容器235(具有一相當低的電容’亦即,一小電容 器)的裝置100、100A-H之範例的第二方法,在一完全操作 模式期間且當藉由一調光器開關7 5所供電時,該方法係藉 由在該調光器開關75已經導通時提供一實質匹配的電氣環 境給該調光器開關75,該方法可包括以下的順序(圖1 〇,步 驟326或是步驟324 - 326): 1 ·在調光器開關75導通後監視諧振的電流。 2.當該諧振的電流已經到達其峰值時,刹用一適應性 面115(例如,Π5Ε、U5F)以適應性地提供—第一介面模 作為一用於該電流之額外的暫態路徑,以將該電流轉移 避免該濾波器電容器235諧振的充電,同時維持該調光 開關75的電流高於該保持(或閉鎖)電流臨界值。 68 201204171 3. 在該適應性介面115(作為一額外的暫態電路)啟動, 且不超過在該市電週期期間後續由該交換式電源供應器 1 30所消耗的平均功率下,以對應的回授所決定或設定之實 負最大可允3午的瞬間輸入功率驅動該交換式電源供應器 130 ° 4. 大約在該諧振的電感器已放電其儲存的能量時、或是 當該諧振的電流已實質到達其峰值後經過—預設的時間期 間時’中斷該適應性介面1 15的使用並且轉換至該調光器 開關75以及該交換式電源供應器1 30的一第二介面模式。 此範例的方法可例如利用圖15 - 17中所繪的電路來實 施。 圖1 5是根據本發明的教示之一第六範例的裝置實施例 100E、一第六範例的系統實施例! 〇5E、以及一第六範例的 適應性介面實施例1 15E的方塊及電路圖。圖22是描繪根 據本發明的教示之一第六範例的裝置實施例、一第六範例 的系統實施例、以及一第六範例的適應性介面實施例之範 例的模型化暫態電壓621及電流620、622波形之波形圖.。 未個別繪出的是,該裝置100E可耦接至如同先前在圖8及 9中所繪的一調光器開關75以及一八〇線35。該適應性介 面115E係實施一完全操作介面電路22〇,此為舉例且非限 制的。該適應性介面115E係包括電感器236、電阻器238 及239、開關(電晶體)240、齊納二極體24丨、以及阻隔二極 體242。該電感器236以及濾波器電容器235A係形成—古皆 振的電路。一電晶體240係與該電阻器239以及二極體丄 69 201204171 及242串聯且橫跨(並聯)該電感器236連接。電晶體240的 基極亦經由一電阻器238連接至該電感器236。阻隔二極體 242以及齊納二極體241係在該電源供應器13〇的非諧振 (或非暫態)的切換週期期間避免該電晶體240的導通。當通 過該調光器開關7 5之諧振的電流到達其峰值時,橫跨電感 器236的電壓極性會改變並且電晶體240開始傳導,此係 提供一通過電阻器239的暫態電流路徑並且防止該濾波器 電容器235A過度的充電。如圖22中所繪,實驗的模型(橫 跨濾波器電容器235的電壓波形621、由調光器開關75提 供之模型化的電壓波形623 '通過調光器開關75的電流 620、以及通過電晶體24〇的電流622)係指出顯著的阻尼以 及有效的消除·任何非所要的振盪,此係提供該調光器開關 75貫質穩定的操作,並且進一步提供一大約1 〇7A的最大 電流以及一大約1 56mA的最小調光器開關75電流,此為一 個高於典型的最小保持及閉鎖電流臨界值的值。 圖16是根據本發明的教示之一第七範例的裝置實施例 100F、一第七範例的系統實施例i〇5F、以及一第七範例的 適應性介面實施例11 5F的方塊及電路圖。圖23是描綠根 據本發明的教示之一第七範例的裝置實施例、一第七範例 的系統實施例、以及一第七範例的適應性介面實施例之範 例的模型化暫態電壓及電流波形之波形圖。未個別繪出的 是’該裝置100F可耦接至如同先前在圖8及9中所繪的一 调光器開關75以及一 AC線35。該適應性介面1丨5F係實 施一完全操作介面電路220,此為舉例且非限制的。該適應 70 201204171 性介面115F係包括電感器236、微分器261,單擊電路252、 開關(MOSFET電晶體)250、以及電阻器251。一電流感測 器125B係被描繪為藉由一電流感測電阻器26〇所體現,該 電流感測器125B係被描繪為提供回授給該微分器261以及 亦選配地提供回授給該控制器120。除了如在此論述的控制 器1 20之其它控制功能外,控制器1 20A可進一步包括一微 分器261。一橫跨電流感測電阻器26〇產生的電壓可被利用 作為例如是通過該調光器開關75(未個別地繪出)的電流之 一指示器。如上所論述,電感器236及輸入濾波器電容器 235A亦形成一諧振的電路。一包括運算放大器255、電容 器256以及電阻器253及254的微分器261係連接(經由其 反相的輸入處之電容器256)到電流感測電阻器260。該微分 器26 1的輸出係耦接至一單擊電路252以驅動具有一電阻 性負載251的開關(MOSFET) 250。當通過該調光器開關75 之諧振的電流到達其峰值時,該微分器26 1係觸發該單擊 電路252,該單擊電路252係導通開關(MOSFET) 250 —預 設或預選的持續期間,其係提供一額外的路徑給來自電感 器236的電流’以避免濾波器電容器235A額外的充電。描 繪在圖23中的各種波形係包含通過該調光器開關75的電 流之電流波形630、橫跨該濾波器電容器235A的電壓之電 壓波形63卜輸入AC電壓波形623(當藉由該調光器開關75 導通時)、以及通過該MOSFET開關250的電流之電流波形 632。實驗的模型係指出顯著的阻尼以及有效的消除任何非 所要的振盪,此係提供該調光器開關75實質穩定的操作, 71 201204171 λ進步可提供一大約10〇 mA的最小調光器開關75電 流,’此為一個高於典型的最小保持及閉鎖電流臨界值的 值纟其中電阻器251及開關25〇對於_ 1A峰值電流係汲取 大約60 mA的電流,並且其中該開關25〇的導通持續期間 (來自該單擊電路252)是大約2〇〇"。除了該具有一固定的 主動持續㈣料擊電㉟252《外的電路可等效地被替 代,例如藉由在該控制器丨2〇、12〇A的控制下之一可變或 動態的主動時間所替代’並且具有此項技術的技能者可使 用許多種適應性時序電路以使用此一選項。 圖Π是根據本發明的教示之一第八範例的裝置實施例 1〇〇G以及一第八範例的系統實施例105G的方塊及電路 圖1該裝置100G係實施一完全操作介面電路22〇(利用適應 性介面U5D及115F)以及—組合的起動介面及平緩或軟開 始電力介面電路200、210(利用適應性介面ll5B,其係操 作亦作用為一適應性介面的電壓靴帶式電路1 I5G),此為舉 例且非限制的。此外’女0同在以下更加詳細論述的,透過 各種的感測器125以及該控制器120A(包含用於驅動該單擊 電路252的微分器261)的使用,該裝置1〇〇G亦實施一保護 模式介面電路230。該裝置1〇〇G係被視為一諧振過程介面 電路195(利用介面115D實施的)、—完全操作介面電路 220、一起動介面2〇〇、一平緩或軟開始電力介面電路、 以及一保護模式介面電路23〇的各種組合的任—者的範 例,並且具有電子技術技能者將會艟認出無數個視為在所 主張的發明的範疇内之等效組合。 72 201204171 如同所繪,該裝置10〇G係包括一控制器120A、一記 隐體16〇(例如’暫存器、RAM)、複數個感測器125、複數 個適應性介面電路丨15、考配的耦合電感器27〇以及電容器 271、一橋式整流器110A、濾波器電容器235A、用於一操 作電壓Vcc的快速產生之靴帶式電路η5〇(在方塊29〇 中)(並且如下所論述,靴帶式電路115G亦用於作用為一適 應〖生’I面電路115B)、一交換式電源供應器13〇A(被描繪為 具有以一種返馳配置的變壓器280)、以及一選配的電阻 295(在範例的實施例中,其亦可作用為一電壓或電流感測 器)。本發明的教示並不限制該裝置100G的拓撲為該參照 的返驰配置’而是任何類型或種類的電源供應器130配置 都可被利用’並且可如該電子技術中已知或將變為已知的 來實施。該裴置l〇〇G係經由電感器27〇及電容器271耦接 至凋光器開關75以及一 AC線35,該電感器270及電容 益271係接著耦接至一橋式整流器丨丨〇A,作為透過其它構 件耦接至該調光器開關75之範例的整流器i 1〇的一個例 子。该適應性介面115B以及適應性介面丨丨5D係如上所論 述地作用以在起動、平緩或軟開始、以及完全的操作模式 期間提供該實質匹配的電氣環境給該調光器開關乃。一調 光器狀態感測器125C亦被繪出,其可利用任何類型的感測 益’例如利用一如上所論述的電壓感測器125A來實施。如 同所繪,除了該調光器狀態感測器.125C之外,複數個感測 器125係被利用,亦即’兩個電流感測器ι25Βι、ι25Β2以 及電壓感測器125A。該裝置100G係提供電力至一或多個 73 201204171 LED 1 40 ’該些LED 1 40可以是一陣列或多個陣列的具有任 意類型或色彩的LED 140,其中該裝置i〇〇G以及LED 140 係形成系統105G。 一控制器1 20A以及一記憶體i 6〇之範例的實施例或其 匕實施方式係在以下更加詳細地描述。該一或多個感測器 係被利用以感測或量測一參數,例如一電壓或電流位準, 並且可如該電子技術中已知或將變為已知的來實施。該交 換式電源供應器130A及/或該控制器12〇八可以且通常會是 如圖所繪,經由感測器125A、125B|、125B2從該led 14〇 接收回授。 該裝置100G的適應性介面電路U5係如先前論述地運 作。靴帶式電路115G可被利用以在起動期間產生一操作電 壓以及在該s周光器開關75的任一狀態期間提供額外的電流 汲取功能。電晶體285的開關係被利用於經由變壓器28〇 傳送電力到該複數個LED 140。 該控制器120A係實施一種由兩個部份所構成的第一控 制方法,該交換式電源供應器130A利用一最高到最大的工 作週期(“DMAX”)之彳變的工作週期(“D”)的一脈波寬度調變 (PWM)的切換(經由電晶體285),接著是被稱為—電流脈波 模式之一額外的操作模式,以維持該調光器開關乃穩定的 操作並且提供光輸出之適當的調光。該工作週期d係藉由 °玄控制器12 0根據一積測到的輸入電壓位畢 — ^ ' 千水決疋,因而 遠裴置100G及系統105G可以適應廣範圍的輪入電壓(其可 ^㈣變H及在㈣及國際間變化’例如,從9〇 74 201204171 130V) °However, 'various experimental models and theoretical analysis indicate the case of typical inductance and capacitance values of a conventional switched power supply because the filter capacitor 235 may be turned on when the dimmer switch 75 is turned "on" Discharge, so the turn-on of the dimmer switch 75 will generate transient voltage and current levels, which may be related to the dimmer switch 75. An unstable oscillatory interface is created. In order to avoid such an unstable oscillating interface with the dimmer switch 75, an adaptive interface 115D 50 utilizing a shape or changing the current supplied through the dimmer switch 75 is utilized in accordance with the exemplary embodiments. 201204171 to bring a substantial matching electrical environment. Figure 14 is a block diagram and circuit diagram of an apparatus embodiment 100D, a fifth example system embodiment 051D, and a fifth example adaptive interface embodiment n 5D, in accordance with one of the teachings of the present invention. 21 is an exemplary modeled transient voltage 6 描绘 depicting a device embodiment according to a fifth example of the teachings of the present invention, a system embodiment of a fifth example, and an adaptive interface embodiment of a fifth example. 6 and current ό 1 5 waveform waveform. Not individually depicted, the device 1 〇〇D can be coupled to a dimmer switch 75 and an AC line 35 as previously depicted in Figures 8 and 9. The adaptive interface 115D is an exemplary passive embodiment of the fully operational interface circuit 22, which is by way of example and not limitation. The adaptive interface 1 1 5D includes a resistor 237 connected in parallel with the inductor 236, and the inductor 236 and the capacitor 235A form a resonant circuit. When the resonant current reaches its peak, the voltage across the inductor 236 changes polarity and is partially discharged through the resistor 237 ' thereby reducing the dip input current into the switching power supply 13 and preventing current The filter capacitor 235A is further charged while allowing sufficient latching and holding current to the dimmer switch 75. The adaptive interface U5D provides a passive method of interfacing the dimmer switch 75 and the switching power supply 13A by transmitting a current that shapes the dimmer switch 75 during the resonance process. To provide a substantially matched electrical environment, and the adaptive interface 115D provides latching and holding currents that are above any typical minimum of a dimmer switch 75. As depicted in Figure 2, the experimental model indicates significant damping and effective elimination of any unwanted oscillations after the switch is turned on (waveform 613), and the step-by-step provides a minimum of approximately 96 mA. Photonic switch 75 current (current waveform 615), which is a value above the typical holding current level (eg, 50 mA), while the blocking current has been shown to be approximately 782 mA, which is also above the typical minimum blocking current threshold. . According to an exemplary embodiment, the predetermined or preselected manner of the inductance and capacitance of the resonating member external to the dimmer switch 75 (or a characteristic impedance, such as the approximately 250 ohm value mentioned below) is such that The peak resonant current exceeds the value of the latching current of the dimmer switch 75 at any AC value and when conducting, and further reasonable to avoid damaging the dimmer switch 75 and the components of the switched power supply 1 30 or Quite low. For a 110V (220V) operating environment, one or more inductors having a combined inductance of approximately 16 _ 24mH (4 〇 - 5 〇 mH), and more specifically 18 _ 22 mH (43 _ 47 mH) are utilized (eg, Implementing two inductors of inductor 236 at each 6 8 mH (each 15 mH)) provides a range of capacitance values of about 2 〇〇 _ 3 〇〇 ohms for the filter capacitor range described previously, and Specifically, the overall characteristic impedance is approximately 250 ohms. FIG. 24 is a diagram showing an apparatus embodiment 100H according to a ninth example of the teachings of the present invention, a system embodiment 1〇5H of a ninth example, and an adaptation of an eighth example 14 " face embodiment 1丨5 H Block and circuit diagram. FIG. 25 is a diagram illustrating an apparatus embodiment of a ninth example, a system embodiment 105H of a ninth example, and an adaptive interface embodiment of an eighth example in accordance with the teachings of the present invention. A waveform diagram of the modeled transient current waveform. Not individually depicted, the device 1H can be coupled to a dimmer switch 75 and an -Ac line 35 as previously depicted in Figures 8 and 9. Also not individually depicted, the device 100H may also include additional or other currents and/or 52 201204171 • (voltage sensor. For example and without limitation, the adaptive interface n 5H of this example can be started and smoothed Any state during which the soft start process is utilized for the dimmer switch 75 (step 31〇_32〇) may also be utilized during the full operational mode 'month (step 322)' and may be utilized to implement One or both of the start interface circuit 200 and/or a gradual or soft start power interface circuit 21A, which is an example and non-limiting, the adaptive interface 丨 15H is also one of the full operation interface circuits 220 Example passive embodiment, which is also by way of example and not limitation. The adaptive interface 丨丨5H includes a resistor 44〇 connected in series to the electric grid 445 and also connected to the inductor 236, and the inductor 236 and capacitor 445 form a resonant circuit. The resistor 440 is also connected in parallel with the "pole body 45", which also provides a discharge path for the capacitor 445 to enter the switching power supply 13 〇, thereby avoiding a large number of resistors. Power loss. When the resonant current reaches its peak, the voltage across the inductor 236 changes polarity and is partially discharged through the resistor 44 and enters the capacitor 445 (and also into the capacitor 235A), thereby reducing the An inrush current enters the switched-mode power supply 13A, dampens the oscillations, and prevents current from further charging the filter capacitor 235A while allowing sufficient latching and holding current to the dimmer switch 75. The adaptive interface U5H provides the A passive embodiment of the dimmer switch 75 and the method of interfacing the switched power supply 13A provides a substantially matched electrical conductivity by shaping the current of the dimmer switch 75 during the resonant process. The environment, and the adaptive interface U5D provides latching and holding currents that are higher than any typical = ^ small value of a dimmer switch 75. As depicted in Figure 25, the experimental model indicates significant after the switch is turned on. Damping and effectively eliminating any oscillations (waveform 640) that are not required for 201204171 'and further 7 know: for a minimum dimmer of about 200 mA to open Turn off the 75 current, which is the value of the typical holding current level (for example, 50 mA), and also the typical minimum blocking current threshold. As mentioned above, according to the adaptation Sexual interface U5H 夕r Αι & - a , 丨 ^ i 〇it example of the example, the harmony of the components outside the dimmer switch 75 and the inductance of the components of the beta & The preset value of the capacitance value (or a characteristic impedance) is pre-selected or pre-selected. The current of the peak resonance exceeds the dimmer switch 75 at any ΑΓ佶0 — $ 2 + you 1 士17 AL value and the value of the blocking current when conducting, and further to avoid fingering. / q J粑 Brothers and the state switch 75 and the components of the switched power supply 1 30 are reasonable or relatively low. The adaptive interface 115H can also be considered to include two interface circuits, a first interface circuit (either a separate resistor 44A, or a combined capacitor 445 (as a reactive impedance) and/or a diode 45〇), It provides - (at least partially) resistive impedance in a predetermined mode, and a second interface circuit (inductor 236 and coupler 445 and/or capacitor 235A) that is coupled to the dimming II switch 75 A resonant process occurs when turned on. The at least partially resistive impedance (resistor 440) acts further to dampen the oscillations and limit any initial current inrush while further avoiding reducing the current to zero after the end of the oscillation. A device for power conversion, wherein the device is coupled to a first phase modulation dimmer switch, the first phase modulation dimmer is coupled to an alternating current (AC) power source, The device 1〇〇H can also be coupled to a solid state illumination, which can be considered to include: a switched power supply (丨3 〇) '· a first adaptive interface circuit comprising an at least partially resistive The impedance conducts current from the first switch in a predetermined mode, and a second suitable circuit is used to generate a resonant process when the first switch is turned on. The first adaptive interface circuit can include a resistor (440) and can further include a diode (45A) coupled in parallel with the resistor. The second adaptive interface circuit can be considered to include: an inductor (236) coupled to the resistor (44A); and a capacitor (445) coupled in series to the resistor (44A). In other words, the first adaptive interface circuit and the second adaptive interface circuit comprise: an inductor (236); a resistor β (440) coupled to the inductor (236); A capacitor (445) of the resistor (44); and a diode (450) coupled in parallel with the resistor (44A) and further coupled to the inductor (236). A filter capacitor (235 Α) can also be coupled in parallel with the series coupled resistor (44 〇) and capacitor (445). Figure 26 is a block diagram and circuit diagram of an apparatus embodiment iooj, a tenth exemplary system embodiment l〇5j, and a ninth exemplary adaptive interface embodiment 115J depicting a tenth example in accordance with the teachings of the present invention. Figure 27 is a diagram showing an apparatus embodiment according to a tenth example of the teachings of the present invention, a tenth example system, a prior embodiment i〇5J, and a ninth example adaptive interface example 11 The waveform diagram of the modeled transient voltage and current waveforms of the example of 5 J is not individual, and the device 1 〇〇J can be connected to the green as in the previous figures 8 and 9 Day g, day, production " Zhou Guangshi switch 75 and an AC line 35. Also not individually drawn is that the ancient female rent, ° device 100 00 J can also include additional or other current and / or electricity [sense state. By way of example and not limitation, the apparatus of the tenth example can be utilized in any state of the dimmer switch 7 ς & 5 during both the start-up and the gradual or soft start process (steps 310-32). ), may also be utilized during a full mode of operation (step 322), and may be utilized to implement either or both of the 55 201204171 start interface circuit 200 and/or a gentle or soft start power interface circuit 21A This is an example and not limiting. The device embodiment iooj of the tenth example includes a matched resistive impedance (resistor 48A) coupled in series to the (filter) capacitor 46A, which is coupled to another matched resistive impedance (resistor) 470 and 475) are coupled in parallel (which is also connected to the shai dimmer switch 75 via the rectifier 11 ,) to provide a during the startup of the switched-mode power supply 及3〇 and/or during a gentle or soft start A substantially matched electrical environment is given to the dimmer switch 75 (for any of its three states). When the dimmer switch 75 is turned "on", the capacitor 46 is charged through the resistor 48, which acts to limit the peak current, and the driver 460 also provides power factor correction. The matched resistive impedance (resistor 48A) coupled in series to the (filter) capacitor 460 provides a first current path 'and the s-capacitor 460 is connected in series with the switch (M〇SFET) 455 to provide a second The current path maintains sufficient hold and latch current in a preset mode. In addition to providing an input voltage sensing function, the additional matching impedances (resistors 47A and 475) may be considered to provide a third current path in conjunction with the resistors 470, 475 or further in combination with the capacitor 465. In addition, the resistors 47A, 475 and capacitors 465 allow the switch (MOSFET) 455 to be passively turned on without active control, although active control is optionally provided (using the line 485 depicted by the dashed line). Thereby another current path (current draw) is provided through the helium switch 455 to maintain sufficient holding and blocking currents while reducing resistive power losses. The latter matching impedance can be controlled by a pole-to-source voltage defined by resistor 475 and capacitor 465, or can be varied and driven by a control voltage from controller 1 2〇 56 201204171. The adaptive interface 115J effectively adjusts the input power of the system 105J such that the minimum current required to pass the dimmer switch 75 for stable operation of the dimmer switch 75 is exceeded. A corresponding voltage waveform 642 and current waveform 641 are depicted in Figure 27, which shows that the peak current is limited to approximately 18 mA. This peak current limit can be preset or preselected based on the resistance of resistor 480. In addition, the size of the switch (μ(10)f) 455 can be determined for a corresponding input voltage, for example, 2 〇〇V in the United States or 4 〇〇v in Europe, which is by way of example and not limitation. . . . The voltage divider formed by resistors 470, 475 (or also in combination with capacitor 465) also functions as a voltage detector (e.g., for input voltage levels). The resistor 47G 475 (or 疋 also incorporates capacitor 465) can also be considered to constitute an interface tamper that automatically modulates the gate of the switch (MOSFET) 455, thereby also regulating through the switch (M) 〇SFET) 455 and the capacitor's full current. ° The adaptive interface 115J can also be considered to include one or more interface circuits 'eg, a first interface circuit, which is provided in a preset mode: a resistive and a reactive impedance for conducting current ( The resistor is combined with the capacitor 460) and the "the: interface circuit (electrical ^ _ switch MOSFET) 455) 纟 is in the dimmer switch 75 has been turned on and sufficient power has been generated in the switch _SFET) 455 (four) pole Providing a second current path, the two interface circuits are further used to produce when the dimmer switch Μ is turned on. A compensating damping process is generated and any initial current dissipation is limited, while the further steps allow sufficient current to flow to maintain the holding and blocking current levels. Or is the 'adaptive interface!' (5) can be considered as a single interface circuit that provides these 57 201204171 functions. Thus, during the start-up or gentle or soft start state of the switched-mode power supply 13A, an adaptive interface 115 such as 11511 or 115J also provides a corresponding and quality-matched electrical environment for the dimmer switch 75, such as a fixed or variable impedance, which allows sufficient current through the dimmer switch 75 to be greater than or equal to a latching or holding current (when the dimmer is conducting or conducting, step 312, 314, 318 and/or 32 〇) and providing a current path for charging the trigger capacitor (when the dimmer is in an off or non-conducting state, Figure 3, steps 3, 3) During the full mode of operation of the switched power supply 130, as discussed above, a substantially matched electrical environment (e.g., a solid or variable impedance) for the dimmer switch 75 can also be utilized to provide a current path for charging the trigger capacitor (when the dimmer is in an off or non-conducting state, Figure 10, step 322). Figure 28 is a diagram depicting one of the teachings in accordance with the present invention. Example device embodiment 100 K, a system example 105 of a first example, and an adaptive interface embodiment of a tenth example, a block and circuit diagram of 5 κ. It is not separately depicted that the device 100 can be coupled to the same as in the previous figure. 8 and 9 are a lighter switch 75 and an AC line 35. Also, the device 100Κ may include additional or other current and/or voltage senses, and The non-limiting 'adapted interface of the example 1 1 5 Κ can be utilized in any state of the dimmer switch 75 during both the start-up and the gentle or soft start process (step 31〇_32〇), or The full mode of operation is utilized (step 322) and can be utilized to implement any of the dynamic interface circuit 58 201204171 200 gentle or soft start power interface circuit 210, and/or a full operation ® circuit 220. The operation of the interface ii 5K is similar to the adaptive interface 1 1 5 先 described earlier with reference to Figure 24, but this is an exemplary active traverse and is by way of example and not limitation. The adaptive interface includes a series connection To capacitor 445 and also The inductor is connected to the resistor 440, and the inductor 236 and the capacitor 445 form a resonant circuit. The resistor 44 is also connected in parallel with the diode, which also provides a discharge circuit for the capacitor 445 to enter the switching power supply. The supplier (4), thereby avoiding a large loss of resistive power loss. When the current of the vibrations reaches their peak, the voltage across the inductor 236 changes polarity and is partially discharged through the resistor 440 and enters the capacitor 445 ( And also entering the capacitor 235A) thereby reducing the inrush current into the switching power supply P oscillating, and preventing the current from further charging the filter capacitor 235A' while allowing sufficient latching and holding current to the dimmer The switch 75 〇 adapts to the f " face 11 5K provides an active implementation of the dimmer switch 75 and the switching power supply 1 130, which is shaped by the transmission during the resonance process The current of the dimmer switch 75 provides a solid-matched electrical environment, and the adaptive interface 115K provides latching above any typical minimum of the dimming H switch 75. And keep current. In this exemplary embodiment, the resistive network (consisting of resistors 446 and 447 configured in series as a voltage divider) provides status information about the dimmer switch 75 to the controller 12, wherein the control The device 12 then passes through the MOSFET driver circuit (the d control switch 59 201204171 455A is not individually depicted in an on and off state. In an exemplary embodiment, the switch (m〇SFET) 455A is at the dimmer switch 75 When turned off, it is in an on state, and then after the dimmer switch 75 is turned on, it is turned off after a slight delay of the order of 2 〇〇 3 〇〇 microseconds, which is at the switch (m〇sfet) 4 A provides a start-up and smooth or soft start process in an on state, and then provides a reduction in possible power loss during a full mode of operation when the switch (MOSFET) 455A is in an off state. As described above, depending on the adaptation In an exemplary embodiment of the interface 115, the predetermined or preselected manner of the inductance and capacitance (or a characteristic impedance) of the resonant component outside the illuminator switch 75 is such that the peak resonant current exceeds s The value of the latching current of the switch 75 at any AC value and when conducting, and further reasonable or relatively low to avoid damaging the components of the dimmer switch 75 and the switched power supply 1 30. The adaptive interface 1 15Κ can also be considered to include two interface circuits, a first interface circuit (single resistor 440, or a combination capacitor 445 (as a reactive impedance) and/or a diode 45〇), which is tied to A predetermined mode provides an (at least partial) resistive impedance and a second interface circuit (inductor 236, switch (MOSFET) 455 A and capacitor 445 and/or capacitor 23 5A) to which the dimmer is attached A resonant process occurs when switch 75 is turned on. At least a portion of the resistive impedance (resistor 440) acts further to dampen the oscillations and limit any initial current inrush while further avoiding reducing the current to zero after the end of the oscillation. The device 100K for power conversion, wherein the device is coupled to a first phase modulation dimmer switch, the first phase modulation dimmer switch 60 201204171 is coupled to an alternating current AC) power supply, the device lighting, can be considered to include: - Switched electric two can also be consuming to - solid-state adaptive interface circuit, which includes at least one of the first - in a smashing machine The knives are resistive impedances, and the current is conducted from the first switch in a mode; the interface circuit is used in the first place. a . When the switch is turned on, an accelerating process is generated, and then the shutdown mode is allowed and the full "mechanical mode" of additional power loss is allowed. 4th-adaptability (, and may further include... ^ 'The road includes - resistor M Bu" The resistor is coupled in parallel with the diode (45 0). The second adaptive interface circuit Xueyang circuit is considered to include: a coupling to the resistor (440 An inductor (236); a capacitor connected to the resistor (440) and a switch (455Α) β coupled in series to the capacitor (445) and further connected to the controller (10) In other words, the first adaptive interface circuit and the second adaptive interface circuit comprise: an inductor (236); - a resistor that is lightly connected to the inductor (236) (4 you-series face to the A resistor (440) and a capacitor (445) of the switch (455A); and a dummy resistor (440) are connected in parallel and further connected to the diode (45G) of the inductor (236).- The filter 'wave capacitor (235A) can also be connected in parallel with the serially connected electric P (440) and the electric bar (445). Can also contain one. A resistive network (e.g., a voltage divider including resistors 446, 447) provides information about the status of the dimmer switch 75 to the controller. 29 is a block diagram of a device embodiment 1 00L according to a twelfth example of the teachings of the present invention, a system example 1 〇 5L of a twelfth example, and an adaptive interface embodiment 115L of an eleventh example. And circuit diagram. Not individually depicted is that the device 100L can be coupled to a dimmer switch 75 and an AC line 35 as previously described in Figures 8 and 9 of 201204171. Also, the 疋4 device 100L, which is not individually green, may also include additional or other current and/or voltage sensing. By way of example and not limitation, the adaptive interface of the example 1 1 5L· can be utilized in any state of the dimmer switch 75 during both the start-up and the gentle or soft start process (steps 3 10 - 320). It may be utilized during a full mode of operation (step 322) and may be utilized to implement either a dynamic interface circuit 200, a gentle or soft start power interface circuit 210, and/or a fully operational & surface circuit 220 . The adaptive interface i丨5L of this example is also particularly suitable. 1 . A wide and expanded dimmer range of 10,000 orders of magnitude while providing excellent stability. For the illustrated embodiment, when the dimmer switch 75 is turned off, a relatively low and fixed impedance is provided to the dimmer switch 75 to charge the trigger capacitor (C1, 77). A switch (M0SFET) 74 is connected to the rectified voltage line (line 746) via resistor 7〇3. At start-up, the switch (m〇sfet) 740 is turned on and charges (via diode 712) the Vcc capacitor 46A to provide during startup of the switched-mode power supply port 30 and/or during a gentle or soft start. A substantially matched electrical environment (and first current path) is given to the dimmer switch 75 (for any of its three states). When the Vcc capacitor 46A has been charged to approximately a power-on reset voltage level of the switched-mode power supply 13A, the switched-mode power supply 13 is turned "on" and generates a voltage (or other signal) on line 745. The voltage (or other signal) is a turn-on switch (MOSFET) 730 and turns off the switch (MOSFET) 740, which effectively terminates the pre-charging of the Vcc capacitor 460 and provides a second current path (connected resistor 702 and Switch (M〇SFET) 730). At approximately the same 62 201204171 time, the switch (MOSFET) 735 is turned "on" and in series with the switch (MOSFET) 740, which then provides a third current path (switch in series) when the switch (MOSFET) 740 may be switched back on. 703 and switch (MOSFET) 740 and switch (MOSFET) 735). A dual carrier junction transistor (BJT) 720 is utilized as a sensor to determine the state of the dimmer switch 75 and to further control switching of the switches (MOSFETs) 740 and 730. A dual carrier junction transistor (BJT) 720 is connected between the Vcc voltage level (on line 747) and the rectified line voltage (on line 746). When the rectified voltage is less than the voltage across the Zener diode 714 (typically about 5V), the transistor (BJT) 720 is turned off (or open), and the switch (MOSFET) 725 is in In turn-on state, this turns off the switch (MOSFET) 730 and turns on the switch (MOSFET) 740. Thus, when the dimmer switch 75 is off, the switch (MOSFET) 740 is conductive, and another current path is provided through resistor 703, switch (MOSFET) 740, and switch (MOSFET) 735. The trigger capacitor (C1, 77) of the dimmer switch 75 is now charged through the relatively low resistance of the (relatively small) resistor 703 until a trigger voltage level is reached and the dimmer switch 75 is turned "on" . The rectified voltage is (substantially immediately) increased, the system conducts a crystal (BJT) 720 and turns off the switch (MOSFET) 740, wherein the other current path passes through the resistor 702 and the switch (MOSFET) 730. Provide it. The device embodiment 100L of the twelfth example includes a matched resistive impedance (resistor 703) that is switchably coupled in series via a switch (MOSFE': T) 740 and a diode 7 1 2 Connected to (filter or Vcc) capacitor 63 201204171 460, and the series connected components are switchably matched to another resistor | raw impedance (resistor 702) and switch (MOSFET) 730 (resistor 709 also Parallel coupling together (the components are also connected to the dimmer switch 75 via the rectifier 1 10) to provide substantially - matching electrical during startup of the switched-mode power supply 13 及 and/or during a gentle or soft start The environment is given to the dimmer switch 75 (for any of its three states). When the dimmer switch 75 is turned on, the capacitor 460 is charged through a resistor 703 (and a switch (M〇SFET) 74A and a diode 712), which is used to limit the peak current. The muscle, in which capacitor 460 also potentially provides power factor correction. The switchable ground (via switch (MOSFET) 740 and diode 712) is coupled in series with a matched resistive impedance (resistor 7 〇 3) of (filter or vcc) capacitor 460 to provide a first current path, The matched resistive impedance (resistor 7〇2) in series with the switch (M〇SFET) 73〇 provides a second current path and is switchably (via a switch (M〇SFET) 74〇 and a switch (m) 〇sfet) is a 5 coupled matching resistive impedance (resistor 7〇3) that provides a third current path to maintain sufficient hold and latch current in a predetermined mode. In addition to providing an input voltage sense In addition to the function, the additional matching impedance (resistance thief 470 and 475) can also be considered to provide a fourth current path. During typical operation, the power loss through the adaptive interface 丨丨5 L is relatively small. Because it is turned on at a very low line voltage. In addition, the dimming angle is reduced by about 1 〇 15 degrees, which shifts the dimmer switch to a higher operating voltage range, and thereby It is more stable. Thus, at the switched power supply 130 During the start or smooth or soft start period, the ' _ adaptive interface ii 5 (eg i ^ 5K or 11 5L) also mentions 64 201204171 for a corresponding and substantially matching electrical environment for the dimmer switch 75, such as a fixed Or a variable impedance allows sufficient current to pass through the dimmer switch Μ greater than or equal to a latching or holding current (when the dimmer is conducting or conducting, steps 312, 314, 318, and/or 32〇) And providing a current path for charging the trigger capacitor (when the dimmer is in an off or non-conducting state, Figure 10, steps 31, 316). Complete at the switched power supply 130 During the mode of operation, the substantially matching electrical environment (eg, a fixed or variable impedance) for the dimmer switch 75 can also be utilized to provide a current path for charging the trigger capacitor (when the The dimmer is in a closed or non-conducting state, Figure 1 〇, step 322). Figure 30 is a diagram depicting a device 100M and a thirteenth example of a thirteenth example in accordance with the teachings of the present invention. System embodiment 1〇5M square And the circuit diagram. The device 1〇ΟΜ and the system 1〇5M operate as previously described for the devices 100G and 1〇5G (of FIG. 17), but now include a chopping cancellation circuit 80 (^ a chopping cancellation circuit) 8〇〇 can be utilized in any of the apparatus and system embodiments described herein, and is depicted as part of device 1〇〇M and system 105M to demonstrate that its location is at switched power supply 130 ( Illustrated in Figure 30 as a switched power supply i3a)) and a 1:ed 140. Figure 31 is a block diagram and circuit diagram depicting a chopping cancellation circuit 800A in accordance with one example of the teachings of the present invention. An exemplary chopping cancellation circuit 8A, 800A is particularly useful for very low dimming, for example, a 1: 1 ' 'where the output of the dimmer switch 75 may drop to less than 1 W, For example at 0. 5-0. In the range of 6W. Regardless of any interface circuit 115, one is designed to work at 6〇〇w or i〇〇〇w 65 201204171 devices at 0. Below 5W may be quite unpredictable, and it may cause a low frequency dimmer chopping, which produces a visible LED 140 flicker. As discussed in more detail below, an exemplary chopping cancellation circuit 8A, 800A can be utilized to eliminate such chopping at low power levels while at the same power level. Avoid causing increased power loss. Referring to Figure 31, an input voltage VIN from the switched power supply 13A is provided at node 865, and an output voltage output to LED 14A is provided at node 870. The first and second (BJT) transistors 8〇5, 810 and the resistors 845 and 85 are used as a differential amplifier circuit. Using a first Zener diode 820 and resistors 83A, 835, a reference voltage is applied to the base of the first transistor 〇5 at node 880, and the base of the second transistor 810 is utilized. Nanodiode 825 and resistors 855, 860 receive a feedback voltage at node 875. A negative feedback loop is formed using the collector of the first transistor 805, the transfer transistor 815, the second Zener diode 825, and resistors 855, 86A. The differential amplifier circuit and transfer transistor 815 are effectively analogous to an operational amplifier circuit operation. This allows the feedback voltage at the blackout'75 to be substantially the same as the reference voltage at node 88〇. For example, if the feedback voltage at node 875 is greater than the reference voltage at node 870, then the voltage at the emitter of second transistor 8 被 is pulled higher 'this is off-first transistor 8 〇5, allowing the voltage at the collector of the first transistor 8〇5 to rise, lowering the voltage drop across the resistor 845, thereby turning off or modulating the transfer transistor 815' because of its gate-to-source voltage The second reduction 'this leads to a lower output power M at node 870, which lowers the feedback voltage at node 875 (from the partial pressure including resistors 855, 86 66 66 201204171 L 〇 two examples and 5 'If the feedback voltage at point 875 is less than the voltage at the node, the first transistor 8〇5 is turned on. This system is added to the page across the resistance piano + r- II. Voltage drop and decrease The collector & at the first transistor 8〇5 is turned on or more conductive to the pass transistor 815 because its gate-to-source voltage has increased, which leads to 'at the node' point 870- Higher output voltage, while the 摇 ^ ^ 〇〇 〇〇 在 在 在 875 875 875 875 875 875 875 875 875 875 875 875 875 875 875 The values of the resistors 830, 835, 855, and 860 can be trimmed to allow the output voltage provided at node 87 to be any desired fraction (or multiple) of the input voltage provided at node (6). A low-pass chopper comprising a capacitor 84G and resistors 835, 840 is utilized to avoid a disturbance in the reference voltage of the node (4) following the input voltage ViN of the node (eg Ac chopping), thereby Preventing AC chopping or other perturbations in the left VlN of the node 865 from appearing in the output voltage provided by node 87. The values of the resistors, 835, and capacitor_ can be adjusted to provide the desired or selected frequency response. However, at higher voltage and/or current levels, embodiments of the example are avoided when the flicker is not perceived at a higher brightness level (from the pass transistor 8丨5) The efficiency loss. Thus, at a higher output voltage level, the second Zener diode 825 is utilized to clamp the voltage level of the feedback voltage at node 875. This results in the first transistor 8 〇5 is quite strong (or quite strongly) conductive The voltage across resistor 845 results in a large gate-to-source electrical waste on the transfer transistor 815, which is then also relatively strongly (or quite strongly) turned on, This effectively shorts the output voltage provided at node 870 to the input voltage Vin of node 865 67 201204171, thereby allowing the AC chopping to occur at the output voltage provided by node 87 and avoiding across the pass transistor 815. Voltage drop (and correspondingly avoiding power loss). Additional control stability is provided by the use of the first Zener diode 82. For example, providing a corresponding output voltage from the input voltage and current levels and Current level. The delay may create instability on the control provided by controller 12, which may overcorrect and produce oscillation. Thus, the first Zener diode 820 is utilized to quickly pull up the reference voltage at node 88 and charge capacitor 840 when the turn-on voltage Vin of node 865 rises rapidly, which is allowed at node 87. The output voltage is rapidly reversed; it should be a large increase in the input voltage vIN of node 865. A second method of equipping a device 100, 100A-H having an switched power supply 13A and an input filter capacitor 235 (having a relatively low capacitance 'ie, a small capacitor), During a full mode of operation and when powered by a dimmer switch 75, the method provides the dimmer switch 75 by providing a substantially matching electrical environment when the dimmer switch 75 has been turned on, The method can include the following sequence (Fig. 1 〇, step 326 or steps 324-326): 1 • Monitor the resonant current after the dimmer switch 75 is turned on. 2. When the resonant current has reached its peak, an adaptive surface 115 (eg, Π5Ε, U5F) is used to adaptively provide the first interface mode as an additional transient path for the current to This current transfer avoids resonant charging of the filter capacitor 235 while maintaining the current of the dimmer switch 75 above the hold (or latch) current threshold. 68 201204171 3. Starting at the adaptive interface 115 (as an additional transient circuit) and not exceeding the average power consumed by the switched power supply 1 30 during the mains cycle, determined by the corresponding feedback or Set the real negative to allow the instantaneous input power of 3 noon to drive the switching power supply 130 ° 4. 'interrupting the use of the adaptive interface 1 15 and switching to the state when the resonant inductor has discharged its stored energy or after the resonant current has substantially reached its peak value - a predetermined period of time A dimmer switch 75 and a second interface mode of the switched power supply 1 30. The method of this example can be implemented, for example, using the circuitry depicted in Figures 15-17. Figure 15 is a system embodiment of a device embodiment 100E, a sixth example of a sixth example in accordance with the teachings of the present invention!方块5E, and a block and circuit diagram of the adaptive interface embodiment 1 15E of a sixth example. 22 is a modeled transient voltage 621 and current depicting an embodiment of a sixth example, a system embodiment of a sixth example, and an example of an adaptive interface embodiment of a sixth example, in accordance with the teachings of the present invention. 620, 622 waveform waveform diagram. . Not individually depicted, the device 100E can be coupled to a dimmer switch 75 and a gossip line 35 as previously depicted in Figures 8 and 9. The adaptive interface 115E implements a fully operational interface circuit 22, which is by way of example and not limitation. The adaptive interface 115E includes an inductor 236, resistors 238 and 239, a switch (transistor) 240, a Zener diode 24A, and a blocking diode 242. The inductor 236 and the filter capacitor 235A form a circuit that is ancient. A transistor 240 is connected in series with the resistor 239 and the diodes 69 201204171 and 242 and across (parallel) the inductor 236. The base of transistor 240 is also coupled to inductor 236 via a resistor 238. The barrier diode 242 and the Zener diode 241 prevent conduction of the transistor 240 during a non-resonant (or non-transient) switching period of the power supply 13A. When the current through the resonant of the dimmer switch 75 reaches its peak, the polarity of the voltage across the inductor 236 changes and the transistor 240 begins to conduct, which provides a transient current path through the resistor 239 and prevents The filter capacitor 235A is overcharged. As depicted in Figure 22, the experimental model (voltage waveform 621 across filter capacitor 235, modeled voltage waveform 623' provided by dimmer switch 75, current 620 through dimmer switch 75, and pass through electricity The current 24 晶体 of the crystal 622) indicates significant damping and effective elimination of any undesired oscillations, which provides a stable operation of the dimmer switch 75 and further provides a maximum current of approximately 1 〇 7A and A minimum dimmer switch 75 current of approximately 1 56 mA, which is a value above the typical minimum hold and latch current threshold. Figure 16 is a block diagram and circuit diagram of an apparatus embodiment 100F, a seventh embodiment of the system embodiment i〇5F, and a seventh example of the adaptive interface embodiment 11 5F, in accordance with one of the teachings of the present invention. 23 is a modeled transient voltage and current for describing an apparatus embodiment according to a seventh example of the present invention, a system embodiment of a seventh example, and an example of an adaptive interface embodiment of a seventh example. Waveform of the waveform. Not individually depicted is that the device 100F can be coupled to a dimmer switch 75 and an AC line 35 as previously depicted in Figures 8 and 9. The adaptive interface 1丨5F implements a fully operational interface circuit 220, which is by way of example and not limitation. The adaptation 70 201204171 interface 115F includes an inductor 236, a differentiator 261, a click circuit 252, a switch (MOSFET transistor) 250, and a resistor 251. A current sensor 125B is depicted as being embodied by a current sense resistor 26B that is depicted as providing a feedback to the differentiator 261 and optionally providing a feedback The controller 120. Controller 1 20A may further include a differentiator 261 in addition to other control functions of controller 110 as discussed herein. A voltage generated across current sense resistor 26A can be utilized as an indicator of current through, for example, the dimmer switch 75 (not individually drawn). As discussed above, inductor 236 and input filter capacitor 235A also form a resonant circuit. A differentiator 261 comprising an operational amplifier 255, a capacitor 256 and resistors 253 and 254 is coupled (via capacitor 256 at its inverted input) to current sense resistor 260. The output of the differentiator 26 1 is coupled to a click circuit 252 to drive a switch (MOSFET) 250 having a resistive load 251. When the resonant current through the dimmer switch 75 reaches its peak value, the differentiator 26 1 triggers the click circuit 252, which is a conduction switch (MOSFET) 250 - a preset or preselected duration It provides an additional path to the current from inductor 236 to avoid additional charging of filter capacitor 235A. The various waveforms depicted in FIG. 23 include a current waveform 630 through the current of the dimmer switch 75, a voltage waveform 63 across the voltage of the filter capacitor 235A, and an input AC voltage waveform 623 (when the dimming is performed by the dimming) The current waveform 632 of the current through the MOSFET switch 250 when the switch 75 is turned on. The experimental model indicates significant damping and effectively eliminates any unwanted oscillations, which provides a substantially stable operation of the dimmer switch 75, 71 201204171 λ advance provides a minimum dimmer switch 75 of approximately 10 mA. Current, 'This is a value above the typical minimum hold and blocking current threshold, where resistor 251 and switch 25 汲 draw approximately 60 mA for the _ 1A peak current system, and the conduction of the switch 25 持续 continues The period (from the click circuit 252) is approximately 2 〇〇". In addition to having a fixed active continuous (four) hitting power 35252, the circuit can be equivalently replaced, for example by a variable or dynamic active time under the control of the controller 〇2〇, 12〇A Those skilled in the art and having the skill of the art can use a variety of adaptive timing circuits to use this option. Figure Π is a block diagram of a device embodiment 1 〇〇 G according to an eighth example of the present invention and a system embodiment 105G of an eighth example. FIG. 1 shows that the device 100G implements a fully operational interface circuit 22 〇 Adaptive interface U5D and 115F) and the combined start interface and the smooth or soft start power interface circuit 200, 210 (using the adaptive interface ll5B, the operation also acts as an adaptive interface voltage bootstrap circuit 1 I5G) This is an example and not limiting. In addition, as described in more detail below, the device 1〇〇G is also implemented through the use of various sensors 125 and the controller 120A (including the differentiator 261 for driving the click circuit 252). A protection mode interface circuit 230. The device 1〇〇G is considered to be a resonant process interface circuit 195 (implemented by interface 115D), a fully operational interface circuit 220, a dynamic interface 2〇〇, a gentle or soft start power interface circuit, and a protection Any of the various combinations of mode interface circuits 23A, and those having electronic skill, will recognize numerous equivalent combinations that are considered to be within the scope of the claimed invention. 72 201204171 As shown, the device 10〇G includes a controller 120A, a hidden body 16〇 (eg, 'scratch register, RAM), a plurality of sensors 125, a plurality of adaptive interface circuits 、15, Coupling coupled inductor 27A and capacitor 271, a bridge rectifier 110A, filter capacitor 235A, a rapidly generated bootstrap circuit η5〇 for an operating voltage Vcc (in block 29〇) (and discussed below) The boot strap circuit 115G is also used to function as an adaptive 'I-side circuit 115B', an switched power supply 13A (depicted as having a transformer 280 in a flyback configuration), and an optional The resistor 295 (which in the exemplary embodiment can also function as a voltage or current sensor). The teachings of the present invention do not limit the topology of the device 100G to the flyback configuration of the reference 'but any type or type of power supply 130 configuration may be utilized' and may be known or will become as in the electronic technology It is known to be implemented. The device is coupled to the illuminator switch 75 and an AC line 35 via an inductor 27 〇 and a capacitor 271. The inductor 270 and the capacitor 271 are then coupled to a bridge rectifier 丨丨〇A. As an example of the rectifier i 1 耦 coupled to the dimmer switch 75 through other components. The adaptive interface 115B and the adaptive interface 丨丨5D function as discussed above to provide the substantially matched electrical environment to the dimmer switch during start-up, gradual or soft start, and a full mode of operation. A dimmer state sensor 125C is also depicted that can be implemented using any type of sensing benefit, e.g., using a voltage sensor 125A as discussed above. As painted, except for the dimmer state sensor. In addition to the 125C, a plurality of sensors 125 are utilized, i.e., 'two current sensors ι25Βι, ι25Β2, and a voltage sensor 125A. The device 100G provides power to one or more 73 201204171 LED 1 40 'The LEDs 1 40 may be an array or array of LEDs 140 of any type or color, wherein the device i 〇〇 G and LED 140 System 105G is formed. An embodiment of a controller 1 20A and a memory i 6〇 or an embodiment thereof is described in more detail below. The one or more sensors are utilized to sense or measure a parameter, such as a voltage or current level, and can be implemented as known or will become known in the art. The switchable power supply 130A and/or the controller 12 can and will typically receive feedback from the led 14A via the sensors 125A, 125B|, 125B2 as shown. The adaptive interface circuit U5 of the device 100G operates as previously discussed. The boot strap circuit 115G can be utilized to generate an operating voltage during startup and to provide an additional current draw function during either state of the s-perimeter switch 75. The open relationship of the transistor 285 is utilized to transfer power to the plurality of LEDs 140 via the transformer 28A. The controller 120A implements a first control method consisting of two parts, the switched power supply 130A utilizing a ramp up duty cycle ("D") up to the maximum duty cycle ("DMAX"). a pulse width modulation (PWM) switching (via transistor 285), followed by an additional mode of operation known as one of the current pulse modes to maintain stable operation of the dimmer switch and provide Appropriate dimming of the light output. The duty cycle d is based on the input voltage level measured by the quaternary controller 12 0 - ^ ' thousands of water, so that the remote set 100G and the system 105G can adapt to a wide range of wheel-in voltage (which can ^ (four) change H and change between (four) and international 'for example, from 9〇74 201204171 130V) °
率於式電源供應器13〇A傳送到led 140的輸出功 D kV2DThe output power of the type power supply 13A is transmitted to the led 140. D kV2D
1 OUT 其中F是RMS輸入電壓; 平均it作週期’其係對於該輸人AC電壓的—個半週期 /是該電源供應器13〇A的切換頻率;以及 4是該交換式電源供應器u〇A的變壓器的 對於該電源供應器130A之一固定的切換頻率而言,.該 工週期D係和該輸人電壓的平方成反比,亦即,當電座 增加時,該工作週期係下降以傳送相同的輸出功率。固定 的切換頻率只是被給作為—例子而已,並且—種以下所述 的方法是可在頻域中應用的。根據該輸出功率,—最大的 工作週期DMAX係、發生在最小的輸人電壓處。由於—交換式 電源供應H 130-般是以—預設或者是某個最大的工作週 '月又冲以用於其磁性構件的穩定操作因此該最大的工作 週期DMAX是以最小的輸入電壓來預設或預選的。當該交換 式電源供應器130的輸出是被一調光器開關75控制時,該 控制器120係被配置以具有根據由該調光器開關75所調節 的平均輸入電愿而定的一平均工作週期。 除了獨立地控制通過該調光器開關75的電流量以維持 穩定的操作外’以下是一例子來說明本發明帶來兩種個別 的控制方法的特點之見解,其沒有只依賴如習知技術中典 75 201204171 型可見的透過PWM的控制。舉例而言,在一 9〇v RMS的 輸入電壓(平均81V),一 dmax=〇 6係在一相位角α = 〇時被 選出。應注意到的是,用以磁化該磁性構件(28〇)的最大的 伏秒值(voltsecs)將會出現在該輸入電壓的波峰處。在該輸 入電壓是130VRM或變成130VRM(平均120V)的情形中, 由該控制g 12G所產生、決定或計算出的工作週期係減小 到D=〇.29’並且如同對於在130V的波峰之相㈣磁化伏秒 值而言,該工作週期是D = 0.415。因此,卩㈣415運作是 安全的、或適用於該變壓器28〇的磁性構件。對於此例子 假設在130V,接著藉由該調光器開關乃帶來的相位調變是 Λ = 90。。該平均輸入電壓將會“〇V,並且控制器120將會 產生一最大可能的工作週期D=Dmax=〇6以補償該較低的 輸入電Μ。“ ’從電源供應器13GA的角度來看,在該波 峰處的磁化電壓將仍然是吾人計算該最大可允許的工作週 期為D = 0.415所針對的輸人電壓之振幅。該電源供應器 130A接著將會被強迫以一提升的工作週期d = 〇 6工作在該 波峰處而不是D=G.415 ’此可能表示該磁性構件(綱的飽 和以及電源供應n 13G的失效m忍到只有pwm將 不會達成在調光條件下所要的穩定性]^日寺吸取足夠的電 流以用於適當的調光器操作並且提供所要的照明輸出該 些範例的實施例係提供另一種從一調光器開關Μ供電一交 換式電源供應器130以用於該調光器開關75及交換式電源 供應器1 3 0的穩定介面的第二控制機構。 一種第一控制方法是根據該工作週期依據平均輸入電 76 201204171 [的凋整纟中最大的平均工作週期是在最小的輸入 電壓下預選的並且儲存在該控制器i胤(或是該控制器 〇 A的„己隐體或a己憶體i 6〇)中。對於該預設或預選的…ΑΧ 值而言,該交換式電源供應器130的另一最大的參數(亦 [在最小的輸入電壓的波峰或峰值之最大的伏秒值 (vsecmax ))係被預没或預選的並且儲存在該控制器 2〇(或疋及控制益12〇的記憶體或記憶體16咐。根據各 種範㈣實施例’該交換式電源供應器隱係被致能以利 用範圍的輸入電壓運作,同時該操作工作週期總是維持 在DMAX之下,並且相同的操作伏秒值係被保持在最大儲存 的伏❼值VSECMAX之下。於是,該交換式電源供應器 以-可能為固定的或是可調整的工作週期運作以產生一 南的功率因數,並且每當對於最大預選的伏秒值VSECmax 而言該工作週期是過大(亦即,在〜AX的一預設的範圍内) 時,其係進—步切換至該伏秒值限制。該第一控制方法的 此種第二發明的調節機構的實施方式可藉由在該交換式電 源供應器U0A的開關285的導通期間量測輸入電壓且將宜 積分(例如,在該控制器12〇A内利用—未個別地緣出的積 分器)來達成(並且伏秒值亦可透過—種前饋技術來獲得,未 =顯示在圖17上)。其亦可藉由利用圖17中所縿的感測器 冲的開關電流量測,Ipeak控制而被實施。取代利用— 最大的伏秒值VSECMAX#數的是,用於此兩層的控制方法 的第二層之另一替代性的控制方法將會利用—峰 準(“V’)參數(變歷器的主要電感器的峰值電流位:或 77 201204171 輸出峰值電流位準),以調整在調光條件下傳送到LED 1 40的功率。 法圖18 {根據本發明的教示之—第二範例的方法實施例 圖並且提供該兩層的控制方法之有用的解說及摘 要,該方法係利用該最大的伏秒值VSECmax參數或是該峰 值:流位準(“Ip”)參數。該方法開始於開始步驟400,其係 決定-輸人電壓(步驟彻)。該方法係利用該決定或感測出 的輸入電壓以決定-用於脈波寬度調變的工作週期D(步驟 410) ’ 5亥工作週#月D係小於(或等於)該最大的工作週期 Dmax,以提供該所選的或是預設的平均輸出冑流位準, 1-。該交換式電源供應器係接著利用該工作週期D來切換 (步驟415)』此係提供該所選的或是預設的平均輸出電流位 UV °该方法接著決定該卫作週期D是否在該最大的工 作週期〇ΜΑΧ的—預設的範圍内(或實質相等的)(步驟 420),並且若是的話,轉換至電流脈波模式(步驟似),並 且右否的話’該方法係繼續(㈣4叫,反複地回到步驟 405此係根據5亥感測到的輸入電磨而可能需要調整該工作 週期D以提供6亥所選的或是預設的平均輸出電流位準, Iav,並且繼續以提供用你姑丄1 OUT where F is the RMS input voltage; the average it is the period 'which is the half cycle of the input AC voltage / is the switching frequency of the power supply 13A; and 4 is the switching power supply u For a fixed switching frequency of the power supply 130A of the transformer of the A, the duty cycle D is inversely proportional to the square of the input voltage, that is, when the electric seat is increased, the duty cycle is decreased. To deliver the same output power. The fixed switching frequency is only given as an example, and the methods described below are applicable in the frequency domain. Depending on the output power, the maximum duty cycle DMAX occurs at the lowest input voltage. Since the switching power supply H 130 is normally pre-set or a certain maximum working week' month is used for the stable operation of its magnetic components, the maximum duty cycle DMAX is the minimum input voltage. Preset or pre-selected. When the output of the switched power supply 130 is controlled by a dimmer switch 75, the controller 120 is configured to have an average based on the average input power adjusted by the dimmer switch 75. Working period. In addition to independently controlling the amount of current through the dimmer switch 75 to maintain stable operation, 'the following is an example to illustrate the insights that the present invention brings to the characteristics of two individual control methods that do not rely solely on conventional techniques. Zhongdian 75 201204171 type visible through PWM control. For example, at an input voltage of 9〇v RMS (average 81V), a dmax=〇 6 is selected at a phase angle α = 〇. It should be noted that the maximum voltsecs used to magnetize the magnetic member (28 〇) will occur at the peak of the input voltage. In the case where the input voltage is 130 VRM or becomes 130 VRM (average 120 V), the duty cycle generated, determined or calculated by the control g 12G is reduced to D = 〇.29' and as for the peak at 130V In terms of phase (iv) magnetization volt-seconds, the duty cycle is D = 0.415. Therefore, the 卩(四)415 operation is safe or suitable for the magnetic member of the transformer 28〇. For this example, assume that at 130V, then the phase modulation caused by the dimmer switch is Λ = 90. . The average input voltage will be "〇V, and the controller 120 will generate a maximum possible duty cycle D = Dmax = 〇 6 to compensate for the lower input power. " 'From the perspective of the power supply 13GA The magnetization voltage at this peak will still be the amplitude of the input voltage for which the maximum allowable duty cycle is D = 0.415. The power supply 130A will then be forced to operate at the peak at an elevated duty cycle d = 〇6 instead of D = G.415 'This may indicate the failure of the magnetic component (saturation and power supply n 13G) m endures that only pwm will not achieve the desired stability under dimming conditions. ^^ Temple absorbs enough current for proper dimmer operation and provides the desired illumination output. Examples of these examples provide another A second control mechanism for supplying a switching power supply 130 from a dimmer switch 以 for a stable interface of the dimmer switch 75 and the switching power supply 130. A first control method is based on The duty cycle is based on the average input power of 76 201204171 [the largest average duty cycle is preselected at the minimum input voltage and stored in the controller i胤 (or the controller 〇A's hidden body) Or a ** 体 。. For the preset or preselected ΑΧ value, the other maximum parameter of the switched power supply 130 (also [the peak or peak of the minimum input voltage) Largest volt The value (vsecmax)) is pre-existed or pre-selected and stored in the controller 2 or (or memory and memory 16咐). According to various exemplary embodiments, the switched power supply The hidden system is enabled to operate with a range of input voltages while the operating duty cycle is always maintained below DMAX, and the same operational volt-second value is maintained below the maximum stored volts value VSECMAX. The switched power supply operates with a possible fixed or adjustable duty cycle to produce a south power factor, and the duty cycle is too large each time for the maximum preselected volt-second value VSECmax (ie, at When it is within a predetermined range of ~AX, it is switched to the volt-second value limit. The embodiment of the second invention of the first control method can be implemented by the switching power supply The input voltage is measured during the on period of the switch 285 of the supplier U0A and is preferably integrated (eg, utilized in the controller 12A) - an integrator that is not individually grounded (and the volt-second value is also permeable) Feedforward technology Obtained, not = shown in Figure 17). It can also be implemented by the Ipeak control using the sensor current measurement of the sensor rush in Figure 17. Instead of using - the maximum volt-second value VSECMAX# Alternatively, another alternative control method for the second layer of the two-layer control method would utilize the peak-to-peak ("V') parameter (the peak current level of the main inductor of the avatar: or 77) 201204171 Output peak current level) to adjust the power delivered to the LED 1 40 under dimming conditions. Figure 18 {In accordance with the teachings of the present invention - method embodiment diagram of the second example and providing the two layer control method A useful explanation and summary of the method utilizes the maximum volt-second value VSECmax parameter or the peak: flow level ("Ip") parameter. The method begins at start step 400, which determines the input voltage (steps are thorough). The method uses the determined or sensed input voltage to determine - the duty cycle D for pulse width modulation (step 410) '5H working week# month D is less than (or equal to) the maximum duty cycle Dmax to provide the selected or preset average output turbulence level, 1-. The switched power supply is then switched using the duty cycle D (step 415). The system provides the selected or preset average output current bit UV °. The method then determines whether the guard cycle D is in the The maximum duty cycle is - within the preset range (or substantially equal) (step 420), and if so, to the current pulse mode (step-like), and if the right is not the case - the method continues ((4) 4 Calling, repeating back to step 405, it may be necessary to adjust the duty cycle D according to the input electric grind that is sensed by 5 hai to provide a 6 hai selected or preset average output current level, Iav, and continue To provide you with your aunt
,、用於該父換式電源供應器13Θ、130A 的PWM。當該工作週期 UA, PWM for the parent switching power supply 13Θ, 130A. When the work cycle UA
月D疋在該最大的工作週期D 預設的範圍内(或實質相笙、卩主 AX^ 買相4)時,電流脈波模式係被 驟425),此係在-所遝沾叫 的或是變化的峰值電流j 電流位準或是該輸出峰值的主要電感器的峰值 ®嗶值電4位準)的電流脈波,以增加輸 78 201204171 出電流位準,最高到一最大的峰值電流位 1 \上M A X ), 矣隹 木該輸出電流(通常是該所選或預設的平均輸出電流位準、” 1…高於-預設或預選的最小位準,持足 ^ 咖⑽來發射光,並且同時容許有一調光效果。或者:: 步驟425中,電流脈波模式亦被實施(步驟々μ),此係 隔期間提供一具有動態可調整的或是變二: 電-ΙΚ變壓器280的主要電感器的峰值電流位 ,電流位準)的電流脈波,以增加該輸出電流位準了 : 的伏秒值VSECMAX參數,以維持該輪出電流(通 =或預設的平均輸出電流位準,Iav)高於1設或預 選的最小位準,以維持足夠的電流給咖14〇發射光,並 ^時容許有-調光效果。當該方法是繼續時(㈣4叫,’ 違方法回到步驟405並且重複,否則 步驟435)。 以⑺束(返回When the monthly D疋 is within the preset range of the maximum duty cycle D (or substantially opposite, the main AX^ buy phase 4), the current pulse mode is step 425), and the system is squeaked in the Or the peak current of the changing peak current j or the peak value of the main inductor of the output peak 哔 哔 电 4 , , , 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 Current bit 1 \Up MAX), the output current of the elm (usually the selected or preset average output current level, "1...higher than the preset or preselected minimum level, hold the coffee (10) To emit light, and at the same time to allow a dimming effect. Or:: In step 425, the current pulse mode is also implemented (step 々μ), which provides a dynamically adjustable or variable during the interval: ΙΚ Transformer 280 main inductor's peak current bit, current level) current pulse to increase the output current level: volt-second value VSECMAX parameter to maintain the wheel current (pass = or preset The average output current level, Iav) is higher than the 1st or preselected minimum level, Hold enough current to emit light, and allow the dimming effect. When the method is continued ((4) 4, 'By the method back to step 405 and repeat, otherwise step 435). (7) bundle ( return
:工作週期控制、峰值電流控制、及/或最大的伏秒值 & max控制係藉由該控制器12〇、12〇a來實施,其可以 2地增加或減少該工作週期D以維持—所選或預設的平 輪出電流(“Iav”) ’最高到該最大的工作週期。於是, 匕设或是當該裝置100(及其變化1〇〇A_ 1〇〇〇的任一種)以 及系統!05(及其㈣1〇5A— 1〇5〇}的任一種)賴接至一調光 '開關75並且使用者調整該調光器開關以提供調光時,該 :作週期係被動態地調整且增加最高到該最大的卫作週期 :’在該點之後,至㈣14〇的平均輪出電流可以開始 / ^ ’並且輸出發光係變暗 '然而,該控制器12G、120A 79 201204171 將會轉換至該額外的電流脈波模式,並且維持該可容許的 峰值電流(振幅)(亦即,最高到一預設或預選的最大的峰值 電流或是最大的伏秒值VSECmax參數)以支持足夠的電流 至该LED 140使得光持續被提供,而且不會變得過低而使 得該LED 140實際關閉且停止發光。在這些各種的實施例 中,-調光器開關75係自動地被考慮到,而不需額外或個 別的偵測此一調光器。該第一控制方法之一重要的優點是 沒有利用額外電流,且因此沒有如同習知技術中可見的額 外之對應的功率損失。 該控制器120' 120A亦作用為一適應性介面(電路23〇) 以貫施該保護操作模式。該控制器可利用各種的感測器⑵ 的任-種以決定當有來自一調光器開目75或是其它開關 (此為舉例且非限制的、夕推人沾I丄a _ .: duty cycle control, peak current control, and/or maximum volt-second value & max control is implemented by the controller 12 〇, 12 〇 a, which may increase or decrease the duty cycle D to maintain - The selected or preset flat wheel current ("Iav") is up to the maximum duty cycle. So, set up or when the device 100 (and any of its changes 1〇〇A_ 1〇〇〇) and the system! 05 (and any of its (4) 1〇5A-1〇5〇}) is connected to a dimming 'switch 75 and the user adjusts the dimmer switch to provide dimming: the cycle is dynamically adjusted And increase the maximum to the maximum guard cycle: 'After this point, the average wheel current to (four) 14〇 can start / ^ ' and the output illumination is dimmed' However, the controller 12G, 120A 79 201204171 will convert Up to the additional current pulse mode and maintaining the allowable peak current (amplitude) (ie, up to a preset or preselected maximum peak current or maximum volt-second value VSECmax parameter) to support sufficient Current to the LED 140 causes the light to continue to be supplied and does not become too low for the LED 140 to actually turn off and stop emitting light. In these various embodiments, the dimmer switch 75 is automatically considered without additional or separate detection of the dimmer. An important advantage of one of the first control methods is that no additional current is utilized and therefore there is no corresponding corresponding power loss as seen in the prior art. The controller 120' 120A also functions as an adaptive interface (circuit 23A) to implement the protected mode of operation. The controller can utilize any of a variety of sensors (2) to determine when there is a dimmer from the opening 75 or other switches (this is an example and non-limiting, and the illuminating I 丄a _ .
只是在例如因為有閃爍或其它觸發的 疋的邊緣或邊界處。例如,且如 ’其係藉由保持該調光器開關 ’輪出冤流(例如, 或是過低的或不存 構件的任一構件内 120、120A可提供 :例如是控制器12〇 闲閉該裝置100、 心逻琢驭遭界處。例如,且如以上圖 有許多種類型的調光器不穩定性或 第三範例的方法實施例 句關7 5穩定地操作,但 的問題而可能變成不穩 匕圖6及7中所缘的, 80 201204171 非限制的):(1)該調光器開關75在被提供的AC(35)的一個 半週期内並不導通;(2)該調光器開關75在該AC(35)的一 個半週期内導通超過—次;(3)在—零點交越及傳導後,— 順向調光器開關75並未在下_ AC線電壓零點交越時關 斷’(4)一逆向调光器開關75在第一 Ac零點交越後並未導 通;(5)該相位角α從一半週期至另一半週期以不同變化的正 負號改變,暗示振盪的存在。調光器開關75的穩定操作可 利用相反的裇準來描述其特點,例如(非限制的):(1)該調光 器開關75在每個半週期期間導通一次;⑺該調光器開關 75在AC零點交越處關斷(導通);及/或(3)該相位角α單調 地改變。利用各種感測n 125的任一種,該控制器12〇可 被利用以偵測不正確或正確的動作的這些特點中之任一 例士利用電壓感測器125Α以偵測指示該調光器開關 75在一半週期期間導通多次的電壓變化、或是未在適當的 時間關斷,此為舉例且非限制的。 請參照圖19,該方法開始(開始步驟5〇〇),其中該系統 1〇5被接通電源’例如藉由施加AC電壓至該調光器開 關75,並且其中適應性介面電路U5如上所論述地被設定 至其預設的位準(步驟5G5),使収夠的電流位準透過該調 光器開關75被吸取。電壓或電流位準係被監視(步驟51〇” 虽該電壓或電流位準指出—調光器開關的存在時(步驟 5=,該方法係決定該調光器開關正確或*正確地運作,例 二藉由谓測閃爍的存在(步驟52〇)。例如,一調光器開關乃 可以存在並且也正確地運作,例如是因為其它與該系統⑻ 81 201204171 2聯的負載存在,其中足夠的電流被所有的負載吸取以維 :該;周光器開關75正確的動作。此外,不同的調光器開關 不同的保持或閉鎖電流下可能會不正綠地(或正確地) 運作,使得對於相同的LED刚而言某些調光器開關75可 以正確地運作Μ它的調光器_ 75則不正確地運作,因 此伯測閃爍可能是必要的或是所期望的。於是,當該方法 ❹驟520中0㈣光器_乃正在不正確地運作時, ,如藉由偵測閃蝶的存在’該方法係在所選的間隔期間調 郎來自該調光器_ 75的電流(步驟525),例如是透過上 迷且亦如下所論述的各種適應性介面電路的任—個的控 制。 另一種替代方式可被利用以減少功率消耗。當在步驟 中沒有凋光器開關75存在時、或是在步驟52〇甲正在 正確地運作時’該控制$ j 2〇可被利用以減少被該些適應 性介面電路115在其預設的模式中所吸取的電流(及功 率)决疋任何具有功率消耗的適應性介面電路1 1 5是否為 作用中的(步驟530卜若是的話,且若該調光器開關75尚 未呈現不穩定性,則一作用中的適應性介面電路1 1 5可被 選擇,其目前的參數被儲存在記憶體丨6〇中(並且若該調光 益開關75接著呈現不穩定性時用以返回),並且其功率消耗 係破降低(步驟535),例如藉由降低通過一適應性介面電路 115Β的電流量,其中例如這些參數被儲存在記憶體16〇中 作為下一參數。該方法接著回到步驟2〇5並且重複其係 繼續監視電壓及/或電流位準並且因此提供電流調整。在步 82 201204171 驟525' 530 < 535之後,當該方法是繼續時(步驟洲, 該方法回到步驟510並且重複,其係繼續監視電屡及/或電 流位準並且因此提供電流調整’否則(例如當該系統1〇5被 關斷)該方法可以結束(返回步驟545)。 例如,在此利用調光器狀態感測器125C或電壓感測器 125A的範例方法中’該範例的裝置1〇〇(}係偵測一調光器 開關75的存在。當—調光器開關75被價測到,該控制器 120以及一或多個適應性介面電路(例如,及或 是任何其它的該些被描繪的介面電路)係提供以下的實質匹 配的電氣環境的-或多個給該調光器開關75 :⑴利用由控 制器120控制的適應性介面電路U5B提供一小的匹配阻抗 給该調光器開g 75的觸發電路;⑺當該靴帶式電路115〇 是作用中且充電- Vcc電容器(29〇)時,支持大於該調光器 開關75的保持電 '流,該辄帶式電路i%因而亦構成一由 控制益1 20控制的適應性介面電路i丨5 ; 同樣是利用由 控制器120控制的適應性介面電路i UB,在該交換式電源 供應器m的平緩或&開始時調整來自該調光器開關75的 最小功率:⑷同樣是在該控制器12〇的控制下,藉由保持(該 又換式電源供應器13〇的)工作週期D接近.丨以提供一匹配 的小阻抗給該調光器開關75的觸發電路;及/或在該諧 振過%中,利用適應性介面電路丨15〇、丨i5E、丨l5F的—或 多個塑形該調光器開關75的電流。 邊控制S 120可利用_或複數個控制$或是其它類似 的電路來加以實施,其係通常被配置以比較該感測的輸出 83 201204171 電壓及電流位準與對應的預設電壓及電流值,該預設電麼 及電流值可被程式化且儲存在記憶冑16〇中、或是可根據 其它感測的值(例如感測的輸入電壓位準)而從記憶體 160(例如透過-查找表)來獲得。在此比較後,_誤差= 或是誤差位準(例如一在該感測的位準及預設的位準間之差 值)係被決定出,並且對應的回授係被提供,例如,在一第 一模式中,透過調變該電源開關285的導通時間(導通時間 脈波寬度)以一所選的切換頻率、或是以一可變的切換頻; (其一般是以一實質高於AC線頻率的頻率)、以及在一第二 模式中藉由調變該峰值電流料,來增加或減少輪出電^ 或電流位準。 數個新㈣特點係被實施在這些裝置1〇〇(及其變化 100A- 100M的任一個)、系統1〇5(及其變化i〇5a_复㈣ 的任-個)以及控制器120的實施例中。第一,該適應性介 面電路"5在沒有習知技術之非所要的閃燦及過早的起動 問題下獨立地致能和一相位調變調光器開關75的操作。第 二,該適應性介面電路115係根據該調光器開關75的狀態 以及該交換式電源供應1 13G的狀態的組合提供控制。第 三,一具有輸入f流成形或控制之諧振的模式係在調光器 開關75導通期間被引入。第四觸控制係被實施作 為一種兩部份的控制方法㈣-部份,其係、根據該(感測的) 輸入電壓而具有一動態及可調整的最大的工作週期Dmax, 其具有一理論的零至一百八十度的動態範圍,並且適應一 廣範圍之可能變化的輸入電壓。帛五,—電流脈波模式係 84 201204171 被實施,作為該兩部份的控制方法的第二部份,其係具有 一可變的且動態地可調整的峰值電流位準,以用ς主要的 電感器峰值電流位準或是輸出峰值電流位準、或是最高到 —最大伏秒值VSECMAX的參數。 巧1 本發明範例的實施例之額外的優點是相當明顯的1 些I,實施例容許例如是LED的固態照明能夠被利用: 目則現有的照明基礎結構並且藉由各種開關的任一種,例 如相位調變的調光器開關來控制,此原本會造成嚴重的操 作問題。該些範例的實施例進—步容許有此種固態照明的 輸出亮度或強度之複雜的控制’並且可利用較少且相當低 成本的構件來實施。此外,該些範例的實施例可被利用於 獨立的固態照明系統、或是可和例如是白熾燈的其它類型 之現有的照明系統平行利用。該些範例的實施例實質可和 任何高阻抗的負冑及/或任何透過一調光器開關吸取相當低 電流者一起工作。 上述的各種方法亦可用額外的方式組合。例如,不需 要調光器谓測,而是-串聯元件可被程式化以在預設的間 隔切換來適應一調光器開關、或是亦如上參考圖9及10所 述,切換工作週期可從輸入參數,例如感測的輸入電壓位 準來決定。此外,當調光器偵測可被利用日夺,不同的策略 是可利用的,例如:阻擋電流以避免電容器充電,例如透 過一串聯電流控制元件、或是提供電流的旁路,例如是透 過一適應性電流控制元件。 許多種控制方法及可供選擇的適應性介面電路115己 85 201204171 經說明來實施所提出的一調光器開關及交換式電源供應器 的介接之方法’其係藉由調變調光器電流且進一步藉由在 一諧振過程中塑形調光器電流。本揭露内容係被視為本發 明的原理的一例證而並非意圖限制本發明至所說明的特定 實施例。就此方面,將瞭解到的是’本發明並不限於其應 用為先前及以下所闡述、圖式中所繪、或是如例子中所述 之結構的細節及構件的配置。與本發明相符的方法及裝置 係能夠有其它實施例且能夠以各種方式實施及實行。 儘管本文已經針對本發明的特定實施例說明過本發 明,但該些實施例僅為作例證的而並非要限制本發明。在 本文的說明中針對電子構件、電子與結構連接、材料、以 及結構性差異提供許多明確的細節,以便透激地理解本發 明的實施例。然而,熟習相關技術者將會瞭解,即使沒有 該等明確細節中其中一或多項,或是利用其它裝置系统、 裝配件、構件、材料、部件等亦能夠實行本發明的實施例。 於其它實例中’並未明確顯示或詳細說明眾所熟知的結 構、材料、或操作,以避免混清本發明實施例的特點。此 :卜,各圖式並未依照比例繪製而且不應被視為具有限 義。 具有電子技術技能者將會體認到除了那些已說明的轉 :益外,各種的單級或雙級轉換器可用許多種方式實施, 二如、·返馳、降壓、升壓以及升降壓’此為舉例且非限制 礦,並且可以用任意數目的模式操作(斷續的電流模式、連 續的電流模式、以及臨界傳導模式),前述的任—者及全部 86 201204171 都視為等同的且在本發明的範疇.内。 在整篇說明書中所提及的“ 一個實施例”、“一實施例,,、 5、疋特疋貫施例的意義為關於該實施例所說明的一特 殊特點、結構、或特徵係内含在本發明的至少一實施例令 而未必係内含在所有實施例中,且進一步言之,其未必係 指相同的實施例。再者,本發明任何特定實施例的特殊特 點、、、口構、或特徵可以任何適當的方式來結合並且可以任 仃適备的方式來結合一或多個其它實施例,其包含使用選 定的特點而不相應使用其它特點。此外,亦可進行許多修 正以便讓-特殊應用、情況、或材料適應於本發明的基本 範嘴與精神。應該瞭解的是’可以依照本文的教示内容來 對本文所述及所示的本發明實施例進行其它變化與修改, 且該等其它變化與修改應被視為本發明之精神與範嘴的一 部分。 亦將明白的疋,圖式中所示之元件中的一或多者亦可 2更刀離或更整合的方式來施行甚至在特定的情況中將 它們移除或讓它們無法運作,這在特殊的應用中可能會有 助益。、體成形的構件組合方式同樣落在本發明的範嘴 内尤,、疋針對離散構件之分離或組合不明_或難以辨識 的實她例此外,本文中使用到“被麵接(圓一詞,包 3其各種开/式(例如,“輕接(coupling),,或是“可耦接 (couplable)”)在内,並杳# ”〜、義為且包含任何直接或間接電氣、 結構的、或是磁性輕接 '連接或附接,或是此等直接或間 接電氣、結構的、或是磁性耗接、連接或附接的適應性或 87 201204171 .能力’其包含-體成形的構件以及透過或 耦接的構件。 ^再彳干被 如本文的用法,為達本發明的目的,“LED,,一詞及其複 數形“多自LED”應該被理解為包含任何俨: 是能夠響應於一電氣信號來產生輕射的其它類== 型或接面型系,统,其包含但不限於:響應於電流或電壓來 發先的各種半導體型或碳型結構、發光聚合物、有機咖、 等’其包含落在可見光光譜或其它光譜内(例如紫外光或红 外光)、或是具有任何頻寬、或是具有任何色彩或色溫。 -“控制器”或“處理器” 120可以是任何類型的控制器或 處理器,並且可被具體化成—或多個控制器12〇,其 適 '設計、程式化、或適配以實施本文所討論的功能。杏 本文中使用到控制器或處理器一詞時,一控制@ 12〇可: 含使用單一積體電路(IC);或者可包含使用被連接、配置、 或是群集在一起的複數個積體電路或其它構件,例如.多 個控制器、多個微處理器、多個數位信號處理器(Dsp)、多 個平行處理器、多個多核心處理器、多個客製多個特 定應用積體電路(纖)、多個現場可程式化閘陣列 (FPGA)、多個適應性計算1C、相關聯的記憶體(例如RAM、 _、以及麵)、以及多個其它ic與構件。因此,如 本文中所使用般’控制器(或處理器)—詞應該被理解為等效 表示且包含單-IC,或是由多個客製ic、”固臟、多個 處理器 '多個微處理器、多個控制器、多個脱、多個適 應性計算1C所組成的配置’或是會實施下文所討論之功能 88 201204171 的多個積體電路的特定其它群集,其會具有相關聯的記憶 體,例如,微處理器記憶體或額外的RAM、DRAM、SDR4M、 SRAM、MRAM、ROM、FLASH、EPROM、或是 E2pR〇M。 如下所論述,一控制器(或處理器)(例如控制器i6〇、26〇)It is only at the edge or boundary of the sputum, for example because of flicker or other triggers. For example, and as such, by "holding the dimmer switch", it is possible to provide turbulence (for example, either 120a or 120A in either component that is too low or not present: for example, the controller 12 is idle Closing the device 100, the heart is smashed. For example, and as shown in the above figure, there are many types of dimmer instability or the third example method implementation example 7.5 is stable operation, but the problem may Become unstable. In Figures 6 and 7, 80 201204171 non-limiting): (1) The dimmer switch 75 does not conduct during one half cycle of the supplied AC (35); (2) The dimmer switch 75 is turned on more than once in one half cycle of the AC (35); (3) after the zero crossing and conduction, the forward dimmer switch 75 is not at the zero point of the lower _AC line voltage The more time off, '(4) an inverse dimmer switch 75 is not turned on after the first Ac zero crossing; (5) the phase angle α changes from half cycle to the other half cycle with different signs of positive change, suggesting oscillation The presence. The stable operation of the dimmer switch 75 can be characterized by the opposite criteria, such as (non-limiting): (1) the dimmer switch 75 is turned on once during each half cycle; (7) the dimmer switch 75 is turned off (on) at the AC zero crossing; and/or (3) the phase angle α changes monotonically. Using any of the various sensing n 125, the controller 12 can be utilized to detect an incorrect or correct action. Any one of these features utilizes a voltage sensor 125 to detect the indicator switch. 75 is a plurality of voltage changes during a half cycle or is not turned off at an appropriate time, which is exemplified and non-limiting. Referring to Figure 19, the method begins (starting step 5A), wherein the system 1〇5 is powered on, e.g., by applying an AC voltage to the dimmer switch 75, and wherein the adaptive interface circuit U5 is as above The discussion is set to its preset level (step 5G5), so that the received current level is drawn through the dimmer switch 75. The voltage or current level is monitored (step 51〇). Although the voltage or current level indicates the presence of the dimmer switch (step 5 =, the method determines that the dimmer switch is operating correctly or * correctly, Example 2 by means of presumping the presence of flicker (step 52〇). For example, a dimmer switch can exist and also function correctly, for example because other loads associated with the system (8) 81 201204171 2 are present, of which sufficient The current is drawn by all the loads in order to: this; the ambient light switch 75 operates correctly. In addition, different dimmer switches may not operate in green (or correctly) under different holding or blocking currents, so that for the same LED just Some dimmer switches 75 can operate correctly, and their dimmers _75 operate incorrectly, so that a subtest flicker may be necessary or desirable. Thus, when the method is in step 520 0 (four) illuminator _ is operating incorrectly, such as by detecting the presence of a flash butterfly' method for calibrating the current from the dimmer _ 75 during the selected interval (step 525), for example Through fans Any of a variety of adaptive interface circuits as discussed below. Another alternative can be utilized to reduce power consumption. When no glaze switch 75 is present in the step, or in step 52, the armor is When properly functioning, the control $ j 2 can be utilized to reduce the current (and power) drawn by the adaptive interface circuit 115 in its preset mode, relying on any adaptive interface circuit with power consumption. 1 1 5 is active (step 530 if yes, and if the dimmer switch 75 has not yet exhibited instability, an active adaptive interface circuit 115 can be selected, its current parameters are Stored in memory (6〇 (and used to return if the dimming switch 75 then exhibits instability), and its power consumption is reduced (step 535), for example by reducing through an adaptive interface circuit 115 Β of current, where for example these parameters are stored in memory 16 作为 as the next parameter. The method then returns to step 2 〇 5 and repeats its continued monitoring of voltage and / or current levels And thus provide current adjustment. After step 82 201204171, 525' 530 < 535, when the method is continued (step continent, the method returns to step 510 and repeats, which continues to monitor the electrical and/or current level And thus providing a current adjustment 'otherwise (eg when the system 1 〇 5 is turned off) the method can end (return to step 545). For example, here an example of using a dimmer state sensor 125C or a voltage sensor 125A In the method, the device of the example 1 detects the presence of a dimmer switch 75. When the dimmer switch 75 is priced, the controller 120 and one or more adaptive interface circuits ( For example, and or any other of the depicted interface circuits, the following substantially matched electrical environments are provided - or a plurality of the dimmer switches 75 are: (1) utilizing an adaptive interface circuit controlled by the controller 120 U5B provides a small matching impedance to the dimmer to open g 75 trigger circuit; (7) when the bootstrap circuit 115 is active and charging - Vcc capacitor (29 〇), support is greater than the dimmer switch 75 Keep the electricity 'flow, the 辄The circuit i% thus also constitutes an adaptive interface circuit i丨5 controlled by the control device 1 20; again with the adaptive interface circuit i UB controlled by the controller 120, the switching power supply m is gentle or & Initially adjusts the minimum power from the dimmer switch 75: (4) Also under the control of the controller 12, by maintaining (the switching power supply 13 )) the duty cycle D is close. To provide a matching small impedance to the trigger circuit of the dimmer switch 75; and/or in the % resonance, using - or more of the adaptive interface circuits 丨15〇, 丨i5E, 丨l5F The current of the dimmer switch 75. Side control S 120 can be implemented using _ or a plurality of control $ or other similar circuits, which are typically configured to compare the sensed output 83 201204171 voltage and current levels with corresponding preset voltage and current values. The preset voltage and current value can be programmed and stored in the memory port 16 or can be from the memory 160 according to other sensed values (eg, sensed input voltage level) (eg, through - Look up the table) to get. After this comparison, _error = or error level (eg, a difference between the sensed level and the preset level) is determined, and a corresponding feedback system is provided, for example, In a first mode, the on-time (on-time pulse width) of the power switch 285 is modulated by a selected switching frequency, or by a variable switching frequency; (which is generally a substantially high At the frequency of the AC line frequency, and by modulating the peak current material in a second mode, the turn-off or current level is increased or decreased. Several new (four) features are implemented in these devices (and any of the changes 100A-100M), the system 1〇5 (and any of its changes i〇5a_复(四)), and the controller 120 In the examples. First, the adaptive interface circuit &5; independently enables the operation of a phase modulated dimmer switch 75 without the undesirable flash and premature startup problems of the prior art. Second, the adaptive interface circuit 115 provides control based on the combination of the state of the dimmer switch 75 and the state of the switched power supply 1 13G. Third, a mode with resonance of the input f-flow shaping or control is introduced during the turn-on of the dimmer switch 75. The fourth touch control system is implemented as a two-part control method (four)-part, which has a dynamic and adjustable maximum duty cycle Dmax according to the (sensed) input voltage, which has a theory The dynamic range of zero to one hundred and eighty degrees, and adapts to a wide range of possible varying input voltages.帛5, the current pulse mode system 84 201204171 is implemented as the second part of the two-part control method, which has a variable and dynamically adjustable peak current level for the main The inductor peak current level is either the output peak current level or the parameter up to the maximum volt-second value VSECMAX. An additional advantage of the exemplary embodiment of the present invention is that it is quite obvious that the embodiment allows a solid state illumination such as an LED to be utilized: the existing illumination infrastructure and by any of a variety of switches, for example Phase-tuned dimmer switches are used to control this, which would otherwise cause serious operational problems. Embodiments of these examples further allow for complex control of the output brightness or intensity of such solid state lighting' and can be implemented with fewer and relatively low cost components. Moreover, these exemplary embodiments can be utilized in stand-alone solid state lighting systems, or can be utilized in parallel with other types of existing lighting systems, such as incandescent lamps. Embodiments of these examples can work with any high impedance negative and/or any relatively low current drawn through a dimmer switch. The various methods described above can also be combined in additional ways. For example, instead of dimmer pre-measurement, the series elements can be programmed to switch at a preset interval to accommodate a dimmer switch, or as described above with reference to Figures 9 and 10, the duty cycle can be switched. It is determined from input parameters such as the sensed input voltage level. In addition, when dimmer detection can be utilized, different strategies are available, such as blocking current to avoid capacitor charging, such as through a series current control element, or by providing a current bypass, such as through An adaptive current control element. A variety of control methods and alternative adaptive interface circuits 115 have been described in the 201204171 to implement the proposed method of interfacing a dimmer switch and an exchange power supply by adjusting the dimmer current And further shaping the dimmer current during a resonance process. The disclosure is to be considered as an illustration of the principles of the invention and is not intended to limit the invention. In this regard, it will be appreciated that the invention is not limited to the details of the structure and the configuration of the components as set forth in the foregoing and in the drawings. The method and apparatus in accordance with the present invention are capable of other embodiments and of various embodiments. Although the present invention has been described herein with respect to the specific embodiments of the present invention, these embodiments are merely illustrative and not intended to limit the invention. In the description herein, numerous specific details are set forth in connection with the electronic components, the electronic and structural connections, materials, and structural differences in order to understand the embodiments of the invention. It will be appreciated by those skilled in the art, however, that the embodiments of the present invention can be practiced without the use of one or more of these specific details, or other device systems, assemblies, components, materials, components, and the like. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring the features of the embodiments of the invention. This: The drawings are not drawn to scale and should not be considered as limiting. Those with electronic technology skills will realize that in addition to those that have been described, various single-stage or two-stage converters can be implemented in a variety of ways, such as, return, buck, boost, and buck-boost. 'This is an example and non-restricted mine, and can be operated in any number of modes (intermittent current mode, continuous current mode, and critical conduction mode), all of which are considered equivalent and all 86 201204171 Within the scope of the invention. The meaning of "an embodiment", "an embodiment,", "5" and "an embodiment" as used throughout the specification is a particular feature, structure, or feature within the embodiment. The at least one embodiment of the invention is not necessarily included in all embodiments, and further, it is not necessarily referring to the same embodiment. Further, the particular features of any particular embodiment of the invention, The mouthpiece, or features, may be combined in any suitable manner and may be combined in any suitable manner with one or more other embodiments, including the use of selected features without corresponding use of other features. In addition, many modifications may be made to - The particular application, the situation, or the material is adapted to the basic scope and spirit of the present invention. It should be understood that other variations and modifications of the embodiments of the invention described and illustrated herein may be made in accordance with the teachings herein. These other variations and modifications are considered to be part of the spirit and scope of the present invention. It will also be appreciated that one or more of the elements shown in the drawings may also be Knife separation or more integrated means to remove or even disable them in certain situations, which may be beneficial in special applications. The combination of body-formed components also falls within the present invention. In the mouth of the mouth, especially for the separation or combination of discrete components is unknown _ or difficult to identify the actual example. In addition, this article uses "faced (circle of the word, package 3 its various open / style (for example, "light Coupling, or "couplable", and 杳# ”, meaning and including any direct or indirect electrical, structural, or magnetically connected 'connections or attachments, Or such direct or indirect electrical, structural, or magnetically consumable, connected or attached adaptability or 87 201204171. Capabilities - which include - body-formed components and transmitted or coupled components. As used herein, for the purposes of the present invention, "LED," and its plural "multi-self-LED" should be understood to include any 俨: other classes that are capable of producing light shots in response to an electrical signal. == type or junction type system It includes, but is not limited to, various semiconductor or carbon-type structures, luminescent polymers, organic coffee, etc. that are responsive to current or voltage. They are included in the visible or other spectrum (eg, ultraviolet or infrared). Or having any bandwidth, or having any color or color temperature. - "Controller" or "Processor" 120 can be any type of controller or processor and can be embodied as - or multiple controllers 12 〇, it is appropriate to 'design, program, or adapt to implement the functions discussed in this article. April uses the term controller or processor in this article, a control @ 12〇 can: include the use of a single integrated circuit (IC Or may include the use of multiple integrated circuits or other components that are connected, configured, or clustered together, such as multiple controllers, multiple microprocessors, multiple digital signal processors (Dsp), multiple Parallel processors, multiple multi-core processors, multiple custom application-specific integrated circuits (fibers), multiple field programmable gate arrays (FPGAs), multiple adaptive calculations 1C, associated memory style The RAM, _, and face), and a plurality of other components and ic. Therefore, as used herein, a 'controller (or processor)-word should be understood as equivalent and includes a single-IC, or by multiple custom ic, "solid dirty, multiple processors" a microprocessor, a plurality of controllers, a plurality of configurations, a configuration of multiple adaptive calculations 1C, or a specific other cluster that implements a plurality of integrated circuits of function 88 201204171 discussed below, which may have Associated memory, such as microprocessor memory or additional RAM, DRAM, SDR4M, SRAM, MRAM, ROM, FLASH, EPROM, or E2pR〇M. As discussed below, a controller (or processor) (eg controller i6〇, 26〇)
及其相關聯的記憶體可被調適或配置(透過程式化、F 互連、或是硬繞線(hard-wiring))以實施本發明的方法。舉 例來說,該方法可被程式化且储存在一具有其相關聯記憶 體(及/或記憶體160)以及其它等效構件的控制器12〇之中, 變成一組程式指令或是其它編碼(或是等效的組態或其它程 式),用以在該處理器操作(也就是,被開機並且運作)時的 後續執行。同樣地,當該控制器120 .可整個或部分被施行 為FPGA、客製1C、及/或ASIC時,該等FPGA、客製IC ' 或是ASIC亦可被設計、配置、及/或硬繞線成用以施行本 發明的方法。舉例來說,該控制器12〇可被施行為由多個 控制器、多個微處理器、多個Dsp、及/或多個織所組 成的配置’它們均統稱為一“控制器”,它們會分別被程式 :匕、破設計、被調適、或被配置以配合一記憶體16〇來施 行本發明的方法。 〇亥3己憶體1 6 〇可办八 次』丨a 且 了包3 一育枓貯存體(或資料庫),其可被 ;:任何數量的形式’其包含在任何電腦或其它機器 =取:料儲存媒體内的記憶體器件或是目前已知或未來 ^件立儲存資5fl或進行f訊交換的其它儲存體或通訊 窃仵,其包令4曰:C Μ —义於:記憶體積體電路(1C)或是一積體電 路的§己憶體部分(仞Ua私 位於一控制器120或處理器IC内的常 89 201204171 駐記憶體)’不論是揮發性或非揮發性,不論是抽取式或非 抽取式,其包含但不限於RAM、FLASH、DRAM、SDRAM、 SRAM、MRAM、FeRAM、ROM、EPROM、或 E2PR〇m、或 是任何其它形式的記憶體器件,例如磁性硬碟機、光碟機、 磁片或磁帶機、硬碟機、其它機器可讀取儲存體或記憶體 媒體,例如:軟碟、CDROM、CD — RW、數位多功能碟片 (DVD)、或疋其匕光學§己憶體、或是任何其它類型的記憶 體、儲存媒體' 或是已知或將會知道的資料儲存裝置或電 路’端視選定的實施例而定。此外,此電腦可讀取媒體包 含會於一資料信號或經調變信號中(例如電磁或光學載波或 是其它傳輸機制)具體化電腦可讀取指令、資料結構 '程式 模組、或是其它資料的任何形式通訊媒體,其包含任何資 訊傳遞媒體,其可以有線或無線的方式將資料或其它資訊 編碼在一信號中,其包含電磁信號、光學信號、聲音信號、 RF信號、或紅外線信號、等。該記憶體16〇可被調適成 用以儲存各種查找表、參數、係數、其它資訊與資料、(本 發明的軟體的)程式或指令、以及其它類型的表格(例如資料 庫表格)。 如上文所述,舉例來說,該控制器120會使用本發明 的軟體與資料結構而被程式化成用以實施本發明的方法。 本發明的系統與方法可被具體化成會提供此程式化 才曰令或其它指令的軟體,例如,被具體化在一電腦可讀取 媒體内的—組指令及/或元資料(metadata),其討論如上。此 一資料亦可被用來定義一查找表或一資料庫的各種資 90 201204171 料結構。舉例來說,但是並沒有任何限制意義,此軟體的 形式可以是原始碼或目的碼。原始碼進一步可被編譯成某 種形式的指令或目的碼(其包含組合語言指令或組態資 汛)。本發明的軟體、原始碼、或元資料可被具體化為任何 類型的編碼,例如,C、C++、SystemC、LISA、XML、Java、The associated memory and its associated memory can be adapted or configured (via stylized, F-interconnected, or hard-wiring) to implement the method of the present invention. For example, the method can be programmed and stored in a controller 12 with its associated memory (and/or memory 160) and other equivalent components, becoming a set of program instructions or other encodings. (or an equivalent configuration or other program) for subsequent execution when the processor is operating (ie, powered on and operating). Similarly, when the controller 120 can be implemented in whole or in part on FPGAs, custom 1Cs, and/or ASICs, the FPGAs, custom ICs, or ASICs can also be designed, configured, and/or hardened. The wire is wound into a method for carrying out the invention. For example, the controller 12 can be configured to be composed of a plurality of controllers, a plurality of microprocessors, a plurality of Dsps, and/or a plurality of fabrics. They are collectively referred to as a "controller". They will each be executed by the program: 匕, broken design, adapted, or configured to fit a memory 16 施 to perform the method of the present invention. 〇 3 3 己 己 己 1 1 1 1 1 1 1 1 1 且 且 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一Take: the memory device in the storage medium or other storage or communication stolen goods that are currently known or in the future, or are exchanged for f-exchange, and the order is 4:C Μ—meaning: memory The volume circuit (1C) or the § memory portion of an integrated circuit (仞Ua privately located in a controller 120 or a processor IC) is either volatile or non-volatile, Whether removable or non-removable, including but not limited to RAM, FLASH, DRAM, SDRAM, SRAM, MRAM, FeRAM, ROM, EPROM, or E2PR〇m, or any other form of memory device, such as magnetic hard Disk, CD, disk or tape drive, hard drive, other machines can read storage or memory media, such as: floppy disk, CDROM, CD-RW, digital versatile disc (DVD), or 疋Other optical § memory, or any other type of memory, storage medium It may be 'are either known or will be known in the data storage device or circuit' end view a selected embodiment. In addition, the computer readable medium includes computer readable instructions, data structures, program modules, or other information embodied in a data signal or modulated signal (eg, electromagnetic or optical carrier or other transmission mechanism). Any form of communication medium containing any information delivery medium that can encode data or other information in a signal, including electromagnetic signals, optical signals, sound signals, RF signals, or infrared signals, in a wired or wireless manner, Wait. The memory 16 can be adapted to store various lookup tables, parameters, coefficients, other information and materials, programs or instructions (of the software of the present invention), and other types of forms (e.g., database tables). As described above, for example, the controller 120 is programmed to implement the method of the present invention using the software and data structures of the present invention. The system and method of the present invention can be embodied as software that provides such stylized commands or other instructions, such as group instructions and/or metadata embodied in a computer readable medium. Its discussion is as above. This information can also be used to define a look-up table or a database of various resources. For example, but without any limitation, the form of this software can be source code or destination code. The source code can be further compiled into some form of instruction or destination code (which includes combined language instructions or configuration resources). The software, source code, or metadata of the present invention can be embodied in any type of encoding, for example, C, C++, SystemC, LISA, XML, Java,
Brew、SQL及其變化形式(舉例來說,SQL 99或是SQL的 特許版本)、DB2、0racle、或是用以實施本文所討論之功能 的任何其它類型程式語言,其包含各種硬體定義或硬體模 擬語言(舉例來說,Verilog、VHDL、RTL)以及所生成的資 料庫檔案(舉例來說,GDSII)e因此,本文中等效使用的“構 造”、“程式構造,,、“軟體構造,,、或是“軟體”均意謂且表示 具有任何語法或簽章的任何種類的任何程式化語言,其提 供或者可被解譯成用以提供所指定的相關聯功能或方法(舉 例來說,當其被引用或載入至一包含該控制器16〇、26〇的 處理或電腦之中並且被執行時)。 本發明的軟體 '元資料、或其它原始碼以及任何生成 的位π檔案(目的碼、資料庫、或查找表)均可被具體化在任 何實體儲存媒體内(例如任何的電腦或其它機器可讀取的資 料儲存媒體)成為電腦可讀取的指令、資料結構、程式模組、 或是其它資料,例如,上文配合記憶體丨6〇所討論者,舉 例來說,軟碟、CDROM、CD-RW、DVD、磁性硬碟機、光 碟機、或是任何其它類型的資料儲存設備或媒體,如上文 所述。 在先前的說明中且在圖式中,感測電阻器係被展示在 91 201204171 範例的配置及位 其它類型及配置 在其它位置中。 範嘴内。 置中’然而,熟習此項技術者將會體認到 的感測器亦可被利用,並且感測器可置放 交替的感測器配置及設置也是在本發明的 如本文的用法,贫 、 一詞係表示波動的DC(例如從 整流的AC而得、w β —咖广 乂及固疋電壓的DC(例如從電池、電壓調 節器、或是以—電容器作電力渡波而得)。如本文的用法, 该AC”-詞係表示具有任何波形(正弦的、正弦平方的、整 流正弦的、方形的、矩形 _ ' 二角的、鑛齒的、不規則的、 备等)且具有任何Dr & & + γ , c偏移之任何形式的交流,並且可包含 任何變化,例如截波或是順向或逆向相位調變後的交流, 例如是來自一調光器開關。 有關感測器,吾人为,卜卜B 4t <t ,丄 θ 口 A在此疋指代表,,一特定度量的參數或 疋一特定度量的“代矣m献社丄 代表性參數,其中一度量是該調節器或是 其輸入或輸出的至少部份的_ ^ 狀嘘的量測。若一參數夠直 接相關於-度量,調整該參數會令人滿意地調整該度量,則 該參數係、被視為代表該度量。例如,咖冑流的度量可藉 由一電感器電流來代表,因為它 曰 Π疋類似的’並且因為調 電感盗電流會令人甚音!士士岡身欠 ' θ' 滿意地5周整led電流。若一參數是代 表一度量的一倍數或分數,則贫姿# 数則。玄參數可被視為該度量的一 可接受的表示。將注音到的县, 忍到的疋—參數可能實際上是一電 壓,但仍然代表一電流值。例如, 知跨一感測電阻器的雷 壓係“代表”通過該電阻器的電流。 在先前作例證的實施例的說 乃甲以及在其中二極體被 92 201204171 展不的圖式中’將瞭解到 s 、,ώ。。/ J的疋,同步的二極體或同步的整 器(例如,藉由一括告,f 士口备j_从Brew, SQL and its variants (for example, SQL 99 or a licensed version of SQL), DB2, 0racle, or any other type of programming language used to implement the functions discussed in this article, including various hardware definitions or Hardware simulation language (for example, Verilog, VHDL, RTL) and the generated database file (for example, GDSII) e Therefore, the equivalents of "construction", "program construction," and "soft construction" are used herein. , , or "software" means any stylized language of any kind that has any grammar or signature, which is provided or can be interpreted to provide the specified associated function or method (for example Said to be when it is referenced or loaded into a process or computer containing the controller 16〇, 26〇 and executed. The software 'metadata, or other source code of the present invention, and any generated bit π files (destination code, database, or lookup table) can be embodied in any physical storage medium (eg, any computer or other machine The read data storage medium) becomes a computer readable command, data structure, program module, or other information, for example, as discussed above in conjunction with the memory, for example, a floppy disk, a CDROM, A CD-RW, DVD, magnetic hard drive, optical drive, or any other type of data storage device or media, as described above. In the previous description and in the drawings, the sense resistors are shown in the 91 201204171 example configuration and bits other types and configurations in other locations. Inside the mouth. Centering 'However, sensors that will be recognized by those skilled in the art can also be utilized, and the sensor can be placed with alternate sensor configurations and settings as well as in the present invention. The term is used to mean a fluctuating DC (eg, derived from a rectified AC, wβ-Chang-Dong and a solid-state DC (eg, from a battery, a voltage regulator, or a capacitor-powered wave). As used herein, the AC"-word system means having any waveform (sinusoidal, sinusoidal squared, rectified sinusoidal, square, rectangular _ 'dual, orthodontic, irregular, prepared, etc.) and having Any form of communication in which Dr && + γ , c is offset, and may include any changes, such as chopping or alternating current after reverse or phase modulation, such as from a dimmer switch. The sensor, the person, the Bub B 4t <t, 丄 θ mouth A is represented here, a parameter of a specific metric or a specific metric of the representative parameter, one degree The amount is the regulator or at least part of its input or output _ ^ Measurement of the condition. If a parameter is directly related to the - metric, adjusting the parameter will adjust the metric satisfactorily, then the parameter is considered to represent the metric. For example, the metric of the curry flow can be It is represented by an inductor current, because it is similar to 'and because of the inductive current, it will make people very loud! Shishigang owes 'θ' satisfactorily 5 weeks of LED current. If a parameter is representative A multiple or a fraction of a metric, then a poor number. The sinusoidal parameter can be considered an acceptable representation of the metric. The county that will be phonetic to the 疋--the parameter may actually be a voltage, but Still represents a current value. For example, the lightning pressure across a sense resistor "represents" the current through the resistor. In the previously exemplified embodiment, it is said that the diode is in the 92 201204171 exhibition. In the pattern, you will know s, , ώ.. / J's 疋, synchronized diode or synchronized whole (for example, by a bracket, f 士口jj_
就切換通斷的繼電器或MOSFET 或疋其它電晶體)或是其它類兜丨沾_ &诚山 、 匕類1的一極體在本發明的範疇内 用來代替標準的:極體。在此提出的範例的實施例 身又疋產生才目對接地為正的輸出電麼;然而,本發明的 教示亦適用到產生一倉輪φ φ 貞W出電壓的電力轉換器,其中互補 的拓樸可藉由反轉丰道 導體及其匕極化的構件的極性來建 構。 為了便於標示及說明,例如是變壓器280的變塵器係 被稱為―“變壓器,,’㈣在作例證的加列中,#在許多方 面中亦動作為-電感器。類似地,利用在此項技術中已知 的方法’電感器可在適當的條件下由變壓器所取代。吾人 稱變麼器及電感器為“電感的”或是“磁性的,,元件,其中認知 到其係執行類似的功能並且在本發明的範疇内是可以互換 的。 再者,在圖式中任何的信號箭頭除非另有明確指出, 否則都.應該被視為只是舉例的,而非限制的。構件或步驟 ’、且®亦將被視為在本發明的範疇内,特別是其中分開或結 。的忐力是不明確的或是可以預見的情形。如同在此及整 個隨附的申請專利範圍所用的,該分離的用語“或,’除非 另有指出,一般是意圖表示“及/或”,具有連接及分離的意 心(並且不限於“互斥或”的意思)。如同在此說明及整個隨附 的申請專利範圍所用的,‘‘一”及“該,’除非上下文清楚敘明, 否則係包含複數的參照。同樣如同在此說明及整個隨附的 93 201204171 申請專利範圍所用的,“在…中”的意義除非上下文清楚敘 明,否則係包含“在…中,,及“在…上, 本發明之圖示實施例的前述說明(包含發明内容或摘要 中所述者)係無意為竭盡性質或限制本發明於本文所揭示的 精確形式》由前文將觀察到的是:諸多的變化、修改與替 代是所意圖的’且可被實現而未脫離本發明之新穎概念的 精神與範疇。將瞭解到的是:並無相關於本文所述之特定 方法與裝置的任何限制是所意圖或應為推論的。誠然,意 圖疋由隨附的申請專利範圍涵蓋如為落入申請專利範圍的 範疇内之所有該等修改。 【圖式簡單說明】 本發明之目的、特點與優點在參考上述的揭示内容且 連同於伴隨的圖式考量時將會更容易理解,其中同樣的元 件符號係被用以識別於種種視圖的相同構件,並且其中具 有字母符號的元件符號係被用以識別於種種視圖的一選擇 的構件實施例之額外的類型、例證或變化,其中: 圖1是描繪一習知技術的電流調整器的電路圖。 圊2是描繪一代表性習知技術的調光器開關的電路圖。 圖3是描繪來自一標準的相位調變調光器開關之相位 調變後的輸出電壓的波形圖。 圖4是描繪來自一逆向相位調變調光器開關之相位調 變後的輸出電壓的波形圖。 圖5是描繪一般性習知技術的電流調整器(或轉換器 94 201204171 的高階方塊及電路圖。 圖6疋描繪在一耦接至一調光器開關的習知技術電流 調整器中,一具有造成可感知的LED閃爍的次諧波起動頻 率的三端交流開關電壓之波形圖。 圖7是描繪在一耦接至一調光器開關的習知技術踅流 調整器中,一具有一 20K歐姆負載的三端交流開關電壓並 且描繪造成可感知的LED閃爍之過早的起動的波形圖c 圖8疋描繪根據本發明的教示之一第一範例的裝置實 施例以及一第一範例的系統實施例之方塊圖。 圖9是描繪根據本發明的教示之—第二範例的裝置實 施例、一第二範例的系統實施例以及一第二範例的適應性 介面實施例之方塊圖》 圖10是描繪根據本發明的教示之—第一範例的方法實 .施例之流程圖。 圖11是描繪根據本發明的教示之—第三範例的裝置實 施例、一第三範例的系統實施例以及一第三範例的適應性 介面實施例之方塊及電路圖。 圖12疋·1¾繪根據本發明的教示之—第四範例的裳置實 施例、一第四範例的系統實施例以及一第四範例的適應性 介面實施例之方塊及電路圖。 圖1 3是根據本發明的教示之一調光器開關的範例的切 換、一範例的適應性介面實施例、提供至一範例的交換式 電源供應器之功率、以及範例的適應性介面功率之圖示時 序圖。 95 201204171 圖14是描繪根據本發明的教示之一第五範例的裝置實 施例、一第五範例的系統實施例.以及一第五範例的適應性 介面實施例之方塊及電路圖。 圖15是描繪根據本發明的教示之一第六範例的裴置實 施例、一第六範例的系統實施例以及一第六範例的適應性 介.面實施例之方塊及電路圖。 圖16是描繪根據本發明的教示之一第七範例的裝置實 施例、一第七範例的系統實施例以及一第七範例的適應性 介面實施例之方塊及電路圖。 圖17是描繪根據本發明的教示之一第八範例的裝置實 施例以及一第八範例的系統實施例之方塊及電路圖。 圖1 8疋描繪根據本發明的教示之一第二範例的方法實 施例之流程圖。 圖19疋描繪根據本發明的教示之一第三範例的方法貧 施例之流程圖。 圖20是描繪在一諧振的模式中一開關導通之範例的暫 態電壓及電流波形之波形圖。 圖2 1疋描繪根據本發明的教示之一第五範例的裝置實 施例、一第五範例的系統實施例以及一第五範例的適應性 介面實施例之範例的、模型化的暫態電壓及電流波形之波 形圖。 圖2 2疋描繪根據本發明的教示之一第六範例的裝置實 施例、一第六範例的系統實施例以及一第六範例的適應性 介面實施例之範例的、模型化的暫態電壓及電流波形之波 96 201204171 形圖。 圖2 3是描繪根據本發明的教示之一第七範例的褒置實 施例、一第七範例的系統實施例以及一第七範例的適應性 介面實施例之範例的、模梨化的暫態電壓及電流波形之波 形圖。 圖24是描繪根據本發明的教示之一第九範例的裝置實 施例、一第九範例的系統實施例以及一第八範例的適應性 介面實施例之方塊及電路圖。 圖25是描繪根據本發明的教示之一第九範例的裝置實 施例、一第九範例的系統實施例以及一 ·第八範例的適應性 介面實施例之一範例的、模型化的暫態電流波形之波形圈。 圖26是描繪根據本發明的教示之一第十範例的裝置實 施例、一第十範例的系統實施例以及一第九範例的適應性 介面實施例之方塊及電路圖。 圖27是描繪根據本發明的教示之一第十範例的裝置實 施例、一第十範例的系統實施例以及一第九範例的適應性 介面實施例之範例的、模型化的暫態電壓及電流波形之波 形圖。 圖28是描繪根據本發明的教示之一第十一範例的裝置 實施例、一第十一範例的系統實施例以及一第十範例的適 應性介面貫施例之方塊及電路圖。 圖29是描繪根據本發明的教示之一第十二範例的裝置 實施例、一第十二範例的系統實施例以及一第十一範例的 適應性介面實施例之方塊及電路圖。 97 201204171 圖30是描繪根據本發明的教示之一第十三範例的裝置 貫施例以及一第十三範例的系統實施例之方塊及電路圖。 圖3 1是描繪根據本發明的教示之一範例的漣波消除電 路實施例之方塊及電路圖。 【主要元件符號說明】 15 濾波器電容器 20 全波整流器 35 AC線 40 電感器 45 電容器 50 電流調整器 70 閘極 75 調光器開關 76 電阻器 77 電容器 80 三端交流開關 81 ^load 85 二端交流開關 90 切換離線式led驅動器 91 點弧 92 60 Hz處之4個週期 93 未達到導通電壓 94 已達到導通電壓 98 201204171 95 其 它 負 載 100 裝 置 100A 〜100M 裝 置 105 系 統 105A-105M 系 統 110 整 流 器 1 10A 橋 式 整 流 器 115 適 應 性 介 面 115A〜115L 適 應 性 介 面 1 15G 操作 電 壓 帶 式 電路 120,120A 控 制 器 125 感 測 器 125A 電 壓 感 測 器 125B 電 流 感 測 器 125B1〜125B2 電 流 感 測 器 125C 調 光 器狀 態 感 測 器 130,130A 交 換 式 電 源供 應 器 140 LED 160 記 憶 體 195 諧振 過 程 介 面 電 路 200 起動 介 面 電 路 202, 203 電 阻 器 205 開 關 207, 208 電 阻 器 99 201204171 210 軟 開 始 電 力 介 面 電路 21 1 齊 納 二 極 體 212, 213 電 阻 器 215 開 關 220 完 全 操作 介 面 電 路 230 保 護 模 式 介 面 電 路 235, 235A 電 容 器 236 電 感 器 237- '239 電 阻 器 240 開 關 241 齊 納 二 極 體 242 阻 隔 二 極 體 250 開 關 251 電 阻 器 252 單 擊 電 路 253〜254 電 阻 器 255 運算 放 大 器 256 電 容 器 260 電 阻 器 261 微 分 器 270 電 感 器 271 電 容 器 272, 273 電 阻 器 274, 278 齊 納 _ - 極 體 100 201204171 275 開關 276 電容器 277 二極體 280 返驰變壓器 285 開關 286, 287 二極體 288 電容器 290 Vcc方塊 295 電阻器 300〜336 步驟 400〜435 步驟 440 電阻器 445 電容器 446, 447 電阻器 450 二極體 455, 455A 開關 460〜465 電容器 470〜480 電阻器 485 連線 500〜545 步驟 611 峰值電流波形 612 電壓波形 615 電流波形 616 模型化的暫態電壓波形 101 201204171 620 電流波形 621 模型化的暫態電壓波形 622 電流波形 623 模型化的電壓波形 630 電流波形 63 1 電壓波形 632 電流波形 640, 641 電流波形 642 電壓波形 701〜710 電阻器 711〜713 二極體 714〜715 齊納二極體 720 電晶體 725〜740 開關 745〜747 線 800, 800A 漣波消除電路 805〜810 電晶體 815 傳遞電晶體 820, 825 齊納二極體 830〜835 電阻器 840 電容器 845〜860 電阻器 865〜880 節點 102In the context of the present invention, a polar body is used in the context of the present invention to switch on or off relays or MOSFETs or other transistors (or other types of transistors) or other types of poles. The exemplary embodiment presented herein again produces an output power that is positive for grounding; however, the teachings of the present invention are also applicable to power converters that generate a voltage of a rim φ φ ,W, where complementary The topology can be constructed by reversing the polarity of the Fengdao conductor and its 匕-polarized components. For ease of labeling and description, for example, the dust collector of transformer 280 is referred to as "transformer," and (d) is exemplified in the addition, #in many aspects also acts as an inductor. Similarly, utilized The method known in the art 'inductors can be replaced by transformers under appropriate conditions. We call the transformers and inductors "inductive" or "magnetic," components that are known to perform their functions. Similar functions are interchangeable within the scope of the invention. Furthermore, any signal arrows in the drawings, unless otherwise explicitly indicated, should be considered as illustrative and not limiting. The components or steps 'and ® will also be considered to be within the scope of the invention, particularly where they are separated or knotted. The power of ambiguity is unclear or foreseeable. As used herein and throughout the scope of the appended claims, the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> is intended to mean "and/or" unless otherwise indicated, having the meaning of connection and separation (and not limited to "mutually" </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; The meaning of "in", the meaning of "in", unless otherwise clearly indicated by the context, includes "in," and "in" the preceding description of the illustrated embodiment of the invention. It is not intended to be exhaustive or to limit the precise form of the invention disclosed herein. It is to be understood that the various changes, modifications and substitutions are intended to be The spirit and scope of the novel concept of the invention is realized without departing from the spirit and scope of the invention. Or, it should be inferred. It is true that the scope of the patent application is intended to cover all such modifications as fall within the scope of the patent application. [Simplified Description of the Drawings] The objects, features and advantages of the present invention are incorporated by reference. The above disclosure will be more readily understood in conjunction with the accompanying drawings in which the same element symbols are used to identify the same components in various views, and in which the element symbols with the letter symbols are used to identify Additional types, illustrations, or variations of a selected component embodiment of various views, wherein: Figure 1 is a circuit diagram depicting a conventional current regulator. 圊 2 is a dimmer switch depicting a representative prior art. Figure 3 is a waveform diagram depicting the phase-modulated output voltage from a standard phase-modulated dimmer switch. Figure 4 is a diagram showing the phase-modulated output voltage from a reverse phase-modulated dimmer switch. Figure 5 is a high level block and circuit diagram depicting a conventional current regulator (or converter 94 201204171. Figure 6 A waveform diagram of a three-terminal AC switching voltage having a sub-harmonic starting frequency that causes a perceived LED flicker in a conventional current regulator coupled to a dimmer switch. FIG. 7 is a diagram depicting A conventional technique choke regulator coupled to a dimmer switch, a three-terminal AC switching voltage having a 20K ohm load and depicting a waveform that causes premature activation of the perceived LED flicker c. Figure 8 A block diagram of a device embodiment in accordance with a first example of the teachings of the present invention and a system embodiment of a first example is depicted. FIG. 9 is a block diagram depicting an apparatus embodiment, a second example of a second example in accordance with the teachings of the present invention. FIG. 10 is a flow chart depicting a method embodiment of a first example in accordance with the teachings of the present invention. FIG. 11 is a flowchart depicting a method according to the teachings of the present invention. FIG. The teachings of the invention are a block diagram and a circuit diagram of an apparatus embodiment of a third example, a system embodiment of a third example, and an adaptive interface embodiment of a third example. Figure 12 is a block diagram and circuit diagram of an adaptive interface embodiment in accordance with the teachings of the present invention, a skirting embodiment of the fourth example, a system embodiment of a fourth example, and a fourth example. 13 is an exemplary switching of a dimmer switch, an exemplary adaptive interface embodiment, power to an exemplary switched power supply, and an exemplary adaptive interface power, in accordance with the teachings of the present invention. The timing diagram is shown. 95 201204171 Figure 14 is a block diagram and circuit diagram depicting an apparatus embodiment, a fifth exemplary system embodiment, and a fifth exemplary adaptive interface embodiment in accordance with one fifth embodiment of the present teachings. Figure 15 is a block diagram and circuit diagram depicting an embodiment of a sixth example, a system embodiment of a sixth example, and a sixth embodiment of an adaptive embodiment in accordance with the teachings of the present invention. Figure 16 is a block diagram and circuit diagram depicting an embodiment of a seventh embodiment of the apparatus, a system embodiment of a seventh example, and a seventh embodiment of an adaptive interface embodiment in accordance with the teachings of the present invention. Figure 17 is a block diagram and circuit diagram depicting an embodiment of an apparatus according to an eighth example of the teachings of the present invention and an embodiment of an eighth example. Figure 1 is a flow chart depicting an embodiment of a method in accordance with a second example of the teachings of the present invention. Figure 19A depicts a flow diagram of a method embodiment of a third example in accordance with the teachings of the present invention. Fig. 20 is a waveform diagram showing transient voltage and current waveforms of an example in which a switch is turned on in a resonant mode. FIG. 2A depicts a modeled transient voltage and an exemplary embodiment of a fifth exemplary embodiment of a device according to a fifth example of the teachings of the present invention. Waveform of the current waveform. 2A depicts a modeled transient voltage and an exemplary embodiment of a sixth exemplary embodiment of a device according to a sixth example of the teachings of the present invention. Wave of current waveform 96 201204171. FIG. 23 is a schematic diagram of a transient operation of an exemplary embodiment of a seventh embodiment, a system embodiment of a seventh example, and an adaptive interface embodiment of a seventh example, in accordance with one of the teachings of the present invention. FIG. Waveform of voltage and current waveforms. Figure 24 is a block diagram and circuit diagram depicting an embodiment of a device, a system embodiment of a ninth example, and an adaptive interface embodiment of an eighth example, in accordance with one of the teachings of the ninth example. 25 is a modeled transient current depicting an example of an apparatus embodiment, a system embodiment of a ninth example, and an adaptive interface embodiment of an eighth example, in accordance with one of the teachings of the ninth example of the present invention. The waveform circle of the waveform. Figure 26 is a block diagram and circuit diagram depicting an apparatus embodiment, a system embodiment of a tenth example, and an adaptive interface embodiment of a ninth example, in accordance with one tenth example of the teachings of the present invention. 27 is a modeled transient voltage and current depicting an embodiment of a device according to a tenth example, a system embodiment of a tenth example, and an example of an adaptive interface embodiment of a ninth example, in accordance with the teachings of the present invention. Waveform of the waveform. Figure 28 is a block diagram and a circuit diagram depicting an embodiment of an apparatus according to an eleventh example of the teachings of the present invention, a system embodiment of an eleventh example, and an adaptive interface of a tenth example. Figure 29 is a block diagram and circuit diagram depicting an embodiment of a device according to a twelfth example of the teachings of the present invention, a system embodiment of a twelfth example, and an adaptive interface embodiment of an eleventh example. 97 201204171 Figure 30 is a block diagram and circuit diagram depicting a system embodiment of a thirteenth example and a thirteenth exemplary embodiment of the teachings in accordance with the teachings of the present invention. Figure 31 is a block and circuit diagram depicting an embodiment of a chopping cancellation circuit in accordance with one example of the teachings of the present invention. [Main component symbol description] 15 Filter capacitor 20 Full-wave rectifier 35 AC line 40 Inductor 45 Capacitor 50 Current regulator 70 Gate 75 Dimmer switch 76 Resistor 77 Capacitor 80 Three-terminal AC switch 81 ^load 85 Two-terminal AC switch 90 Switching off-line led driver 91 Point arc 92 4 cycles at 60 Hz 93 Not reaching conduction voltage 94 Having reached conduction voltage 98 201204171 95 Other load 100 Device 100A ~ 100M Device 105 System 105A-105M System 110 Rectifier 1 10A Bridge Rectifier 115 Adaptive Interface 115A~115L Adaptive Interface 1 15G Operating Voltage Band Circuit 120, 120A Controller 125 Sensor 125A Voltage Sensor 125B Current Sensor 125B1~125B2 Current Sensor 125C Dimmer Status sensor 130, 130A Switching power supply 140 LED 160 Memory 195 Resonant process interface circuit 200 Start interface circuit 202, 203 Resistor 205 Switch 207, 208 Resistor 99 201204171 210 Soft Start Power Interface Circuit 21 1 Zener Diode 212, 213 Resistor 215 Switch 220 Fully Operated Interface Circuit 230 Protection Mode Interface Circuit 235, 235A Capacitor 236 Inductor 237- '239 Resistor 240 Switch 241 Zener Diode 242 Barrier Diode 250 Switch 251 Resistor 252 Click Circuit 253~254 Resistor 255 Operational Amplifier 256 Capacitor 260 Resistor 261 Inverter 270 Inductor 271 Capacitor 272, 273 Resistor 274, 278 Zener _ - polar body 100 201204171 275 switch 276 capacitor 277 diode 280 flyback transformer 285 switch 286, 287 diode 288 capacitor 290 Vcc block 295 resistor 300~336 step 400~435 step 440 resistor 445 capacitor 446, 447 resistor 450 diode 455, 455A switch 460~465 capacitor 4 70~480 Resistor 485 Connection 500~545 Step 611 Peak Current Waveform 612 Voltage Waveform 615 Current Waveform 616 Modeled Transient Voltage Waveform 101 201204171 620 Current Waveform 621 Modeled Transient Voltage Waveform 622 Current Waveform 623 Modeled Voltage Waveform 630 Current Waveform 63 1 Voltage Waveform 632 Current Waveform 640, 641 Current Waveform 642 Voltage Waveform 701~710 Resistor 711~713 Diode 714~715 Zener Diode 720 Transistor 725~740 Switch 745~747 Line 800, 800A chopper cancellation circuit 805~810 transistor 815 transfer transistor 820, 825 Zener diode 830~835 resistor 840 capacitor 845~860 resistor 865~880 node 102
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/778,767 US8558470B2 (en) | 2006-01-20 | 2010-05-12 | Adaptive current regulation for solid state lighting |
US12/969,316 US8742674B2 (en) | 2006-01-20 | 2010-12-15 | Adaptive current regulation for solid state lighting |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201204171A true TW201204171A (en) | 2012-01-16 |
TWI479942B TWI479942B (en) | 2015-04-01 |
Family
ID=46756516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100116450A TWI479942B (en) | 2010-05-12 | 2011-05-11 | Adaptive current regulation for solid state lighting |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI479942B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI450639B (en) * | 2012-03-21 | 2014-08-21 | Vastview Tech Inc | Methods and apparatus for driving led-based lighting units |
TWI575854B (en) * | 2015-01-08 | 2017-03-21 | 群光電能科技股份有限公司 | Speedydischarging circuit and power supply apparatus with speedydischarging circuit |
CN110139432A (en) * | 2019-05-09 | 2019-08-16 | 矽诚科技股份有限公司 | The carrier Control LED light lamp and its lamp string of low power consumption |
US11683869B2 (en) | 2019-05-09 | 2023-06-20 | Semisilicon Technology Corp. | Light-emitting diode light string control system using carrier signal control and signal control method thereof |
TWI824556B (en) * | 2021-11-08 | 2023-12-01 | 立錡科技股份有限公司 | Power factor correction converter, controller and digital peak-hold circuit thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7358679B2 (en) * | 2002-05-09 | 2008-04-15 | Philips Solid-State Lighting Solutions, Inc. | Dimmable LED-based MR16 lighting apparatus and methods |
CN1809867A (en) * | 2003-04-21 | 2006-07-26 | 彩色动力公司 | Tile lighting methods and systems |
WO2006031810A2 (en) * | 2004-09-10 | 2006-03-23 | Color Kinetics Incorporated | Power control methods and apparatus for variable loads |
TWM433713U (en) * | 2012-03-14 | 2012-07-11 | Xin-Zuo Lin | Structure of assembled frame |
-
2011
- 2011-05-11 TW TW100116450A patent/TWI479942B/en active
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI450639B (en) * | 2012-03-21 | 2014-08-21 | Vastview Tech Inc | Methods and apparatus for driving led-based lighting units |
TWI575854B (en) * | 2015-01-08 | 2017-03-21 | 群光電能科技股份有限公司 | Speedydischarging circuit and power supply apparatus with speedydischarging circuit |
CN110139432A (en) * | 2019-05-09 | 2019-08-16 | 矽诚科技股份有限公司 | The carrier Control LED light lamp and its lamp string of low power consumption |
US11085620B2 (en) | 2019-05-09 | 2021-08-10 | Semisilicon Technology Corp. | Carry-signal controlled LED light with low power consumption and LED light string having the same |
US11683869B2 (en) | 2019-05-09 | 2023-06-20 | Semisilicon Technology Corp. | Light-emitting diode light string control system using carrier signal control and signal control method thereof |
US11725808B2 (en) | 2019-05-09 | 2023-08-15 | Semisilicon Technology Corp. | Carry-signal controlled LED light with low power consumption and LED light string having the same |
TWI824556B (en) * | 2021-11-08 | 2023-12-01 | 立錡科技股份有限公司 | Power factor correction converter, controller and digital peak-hold circuit thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI479942B (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9148922B2 (en) | Power conversion apparatus and system for solid state lighting | |
US8704462B2 (en) | Adaptive current regulation for solid state lighting | |
US8558470B2 (en) | Adaptive current regulation for solid state lighting | |
TWI514928B (en) | Led driver with open loop dimming control | |
US8716957B2 (en) | Powering high-efficiency lighting devices from a triac-based dimmer | |
US8294379B2 (en) | Dimmable LED lamp and dimmable LED lighting apparatus | |
US8013544B2 (en) | Dimmer control leakage pull down using main power device in flyback converter | |
US8310172B2 (en) | Current ripple reduction circuit for LEDs | |
CN102802301B (en) | Dimming signal generation device and illumination control system using same | |
US8928235B2 (en) | Damper circuit for switched dimming | |
US20140063857A1 (en) | Method and apparatus for controlling a lighting device | |
US20100141177A1 (en) | Dimmer-controlled leds using flyback converter with high power factor | |
WO2010068641A1 (en) | Improved linearity in led dimmer control | |
WO2009138104A1 (en) | Led-based lighting system with high power factor | |
TW201204171A (en) | Adaptive current regulation for solid state lighting | |
WO2017069784A1 (en) | Switching power converter with magnetizing current shaping | |
EP3095182B1 (en) | Two-wire load control device for low-power loads | |
CN106489303B (en) | The device and method of phase cut power control | |
CN106797686B (en) | Boost conversion grade switch controller | |
TWI555438B (en) | Adaptive current regulation for solid state lighting | |
JP5669447B2 (en) | Lighting system | |
Yim et al. | A behavioral model of a two-stage average-current-mode-controlled PFC converter for dimmable MR16 LED lamps | |
Lohaus et al. | A power supply topology operating at highly discontinuous input voltages for two-wire connected control devices in digital load-side transmission (DLT) systems for intelligent lighting | |
CN103238268B (en) | Coordinate the compatibility function of dimmer | |
TWM347659U (en) | Improvement of over-current breaker controller with current-transformer in lantern |