TW201203875A - Wireless sensor reader - Google Patents

Wireless sensor reader Download PDF

Info

Publication number
TW201203875A
TW201203875A TW100109414A TW100109414A TW201203875A TW 201203875 A TW201203875 A TW 201203875A TW 100109414 A TW100109414 A TW 100109414A TW 100109414 A TW100109414 A TW 100109414A TW 201203875 A TW201203875 A TW 201203875A
Authority
TW
Taiwan
Prior art keywords
frequency
signal
wireless sensor
reader
circuit
Prior art date
Application number
TW100109414A
Other languages
Chinese (zh)
Other versions
TWI504165B (en
Inventor
Harry D Rowland
Roger Dwight Watkins
Balamurugan Sundaram
Bryan Paul
In Soo Ahn
Michael Nagy
Original Assignee
Endotronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/727,306 external-priority patent/US8493187B2/en
Application filed by Endotronix Inc filed Critical Endotronix Inc
Publication of TW201203875A publication Critical patent/TW201203875A/en
Application granted granted Critical
Publication of TWI504165B publication Critical patent/TWI504165B/en

Links

Abstract

A wireless sensor reader is provided to interface with a wireless sensor. The wireless sensor reader transmits a narrowband, fixed frequency excitation pulse to cause the wireless sensor to generate a ring signal. The ring signal corresponds to the value of the physical parameter being sensed. The wireless sensor reader receives and amplifies the ring signal and sends the signal to a phase-locked loop. A voltage-controlled oscillator in the phase-locked loop locks onto the ring signal frequency and generates a count signal at a frequency related to the ring signal frequency. The voltage-controlled oscillator is placed into a hold mode where the control voltage is maintained constant to allow the count signal frequency to be determined. The low power, simple circuitry required to generate the excitation pulse allows the reader to be a small, battery operated unit. Alternative methods of frequency determination are also disclosed.

Description

201203875 六、發明說明: 【發明所屬之技術領域】 本案係為2009年4月7所提美國專利申請職9,326號案之部份 接續申請案’該案又為纖年3月14所提類專辦請讓乃獅 餘之部份接射請案’後者主張細年3月Μ所提美國專利臨時 申請60/918,164號案之優先權,上述各案於此列為參照。 本發明大絲相被動式無__之讀取,且制是有關於可 由被動無線感測器之處激發並感測資料之一讀取器電路及其方法。 【先前技術】 採用共振電路技術的被動無線感測器系統係屬習知。此類系統使用 激發及讀取器電路而將被動無線感測器使用於遠端通訊上。通常無線 感測器被植置於一個特定位置上,諸如在人體内,以便偵測並報告其 所感測到的參數。此些被感測到之參數隨著無線感測器的共振電路頻 率而變動。讀取器裝置對無線感測器的共振頻率進行取樣以便判定其 所感測到的參數。 早期的研究者Haynes揭示了一種安裝有無線壓力感測器的可吞食 藥丸,其使用環繞著目標人體的一部大讀取裝置,並利用判別電路而 量測其頻率(Η· E. Haynes and A. L. Witchey,"Medical electronics, the pill that 'talks'”,RCA Engineer, vol 5, pp. 52-54. 1960)。Nagumo 亦揭示一類 似系統,其感測器包括有可在共振時驅動感測器的一能源儲存電容(j.201203875 VI. Description of the invention: [Technical field to which the invention belongs] This case is a partial application for the US Patent Application No. 9,326 filed on April 7, 2009, which is also a special class for the March 14th. Please let the lions of the lions take part in the case. 'The latter advocates the priority of the US patent provisional application No. 60/918,164 in March of the following year. The above cases are listed here for reference. The filament phase of the present invention is passively readable, and is a reader circuit and method thereof for exciting and sensing data from a passive wireless sensor. [Prior Art] Passive wireless sensor systems employing resonant circuit technology are well known. Such systems use an excitation and reader circuit to use a passive wireless sensor for remote communication. Typically, the wireless sensor is placed in a specific location, such as in a human body, to detect and report the parameters it is sensing. These sensed parameters vary with the frequency of the resonant circuit of the wireless sensor. The reader device samples the resonant frequency of the wireless sensor to determine the parameters it senses. Early researcher Haynes revealed a swallowable pill with a wireless pressure sensor that uses a large reading device that surrounds the target human body and measures the frequency using a discriminating circuit (Η· E. Haynes and AL Witchey, "Medical electronics, the pill that 'talks'", RCA Engineer, vol 5, pp. 52-54. 1960). Nagumo also reveals a similar system in which the sensor includes a sense of driving at resonance An energy storage capacitor of the detector (j.

Nagumo, A. Uchiyama, S. Kimoto, T. Watanuki, M. Hori, K. Suma, A. Ouchi, M. Kumano, and H. Watanabe, "Echo capsule for medical use (a batteryless radioendosonde)", IRE Transactions on Bio-Medical Electronics. vol. BME-9, pp. 195-199,1962)。 201203875Nagumo, A. Uchiyama, S. Kimoto, T. Watanuki, M. Hori, K. Suma, A. Ouchi, M. Kumano, and H. Watanabe, "Echo capsule for medical use (a batteryless radioendosonde)", IRE is on Bio-Medical Electronics. vol. BME-9, pp. 195-199, 1962). 201203875

Bullara之美國專利4,127,11〇號揭示可量測腦液壓力的一種感測 器。c〇sman的美國專利4,206,762職示可量測顧内壓(i福⑽㈤ pressure)的種類似感測器。特定而言,c〇sm肪之專利所描述的是使 用-種定格探測系統_ dip system)而以無線方式量測感測器的共振 頻率。 在其他先前專利之中亦有描述數種讀取被動式無線感測器的方 法。例如’ C〇sman之專利揭示了使用植入感測器以供調波的一種外部 式振逵H電路n種可量測制H共振鮮的定格探測量測系 統。Kensey等人的美國專利6肌386號揭示—種讀取器,其可利用發 射掃描辭,並騎傳送的信號使[相賴卿,⑽識掃描期間 其所發射之頻率與❹之共振頻率相符合的頻率點,以便激發被動 感測器。Spillman等人之美國專利6,2〇6,835號揭示一種可供讀取器技 術使用的-歸龜人賤,_㈣技術係由柳咖等人揭示於 美國專利5,581,248號案中。此讀取器技術係❹傻之被侧到的 參數而細讀取n的-個隨解_的—種可變阻抗貞載效應。Euis 等人之美國專彳】7,432,723號揭示—種具多個充能迴路的讀取器,其具 有各破調絲發射分隔開的率,以便確賴·的頻寬可容納 感測器的共振辭。Ellis _輕統鹏的振鈐下降反應㈣加n response)而判定感測器的共振頻率。她n #人的美國專利6,⑴,52〇號 則揭不可對感測器發射白雜訊的「鳴鳴」並_振鈐下降反應的一種 方法。 某些讀取器利用鎖相迴路(ΡΙχ,_____ t $⑽Μ 4 201203875 測器的共振頻率。Joy等人的美國專利7,245,117號揭示一種主動式PLL 電路以及信聽理· ’其可_整發射PLL解直至所接收到的信 號相位與發射PLL信號相位相符合時為止。當發生符合的情況時,發 射PLL頻率便等於感測器之共振頻率。 PLL電路可以採用取樣及固持(sampie and hdd, S/H)功能以對輸入 頻率進行取樣,並將PLL固定在一個給定頻率上。具有S/H的pLL可 應用於多種不_聽之巾。例如,Genest的細專利4,531,526號揭 不-種讀取器,其使用具有S/H的一 PLL電路來調整讀取器所發射的 頻率,使之與由感測器之處所接收到的共振頻率相符合。此係用以使 相對於下-次發射喊·反應放至最大,並制感·共振振幅的 农減率以便抽取出所感測到的參數數值。Buchan的美國專利4,644,420 號也述-種具有S/Η的PLL,其被用來對—串磁帶資料串流進行取樣, 並維持-個適當的取樣鮮,以便估算磁帶上的數位龍脈波 ° Buchan 等人的美國專利5,006,819號對此設計觀念提供額外的補強 。Denny 的 美國專利5,92〇,:233號描述-種高速取樣技術,其使用具有pLL的S/H 電路以降絲自_位辭細II的充電雜訊,以便魏其一頻率 。成電路的健性能。Charavit等人的美國專利4,511,858號揭示一種 ’、有S/Η電路的pll,其可以在pll的鎖定頻率改變時將電壓控制 振盘器的㈣電翻先定位^此伽以麵需之合賴賴動時增進 PLL的響應速度。Fischer的美國專利6,57〇,457號與砲如等人的美 國專利6,680,654號揭-種具有S/H f路的pll,其可增itPLL之頻 率步進’其亦提供-種偏移改正的功能。Fullei_等人的美國專利 201203875 3,872,455號揭示一種PLL,其具有可在ρχχ之相位鎖定時凍結頻率之 顯示並預先載入一頻率計數器的一數位S/Η。 可執行直接取樣及頻率分析技術的讀取器亦已為習知。其一實例係 為Eggers等人的美國專利7,048,756號’其使用一共振感測器來量測體 内溫度’其以居里溫度顯示溫度臨限值範圍内的反應之改變。 此外,應用數位信號分析以增進性能及響應的讀取器亦屬習知。 Miller等人的美國專利7,466,120號描述利用數位信號處理器(DSp)來估 算已被一頻率所激發的一被動血壓感測器的響應,並再估算三頻激發 的響應信號,以算出相對的相位延遲。 被動感測器s賣取器的目前設計’諸如以上所描述者,各皆受限於數 種缺點。Haynes與Nagumo早期的「脈波回音振鈐系統」(”puisedech〇 ringing systems")需要使用大型的,高功率的讀取器裝置。此外,如 Collins所揭示的,此類系統會因量測短期振鈐信號頻率上的困難之故 而飽受不精確及解析度不佳所苦,並導致其逐漸被放棄,轉而改用各 種不同的掃頻方法(見 C. Collins,"Miniature Passive Pressure Transensor for Implanting in the Eye*1, IEEE Transactions on Bio-Medical Engineering, vol BME-14, no. 2, April 1967)。 類似於Cosman ’ Kensey ’ Ellis及Spillnm等專利所描述的掃頻感 測器讀取H ’以及AUen所描述雜波方法,㈣政府無線電傳輸法規 要求’而需要相驗寬賴帶料度。這會關鮮的其侧途,並 亦使干擾成為潛在的問題。以可變頻發射器來追尋被動共振感測器之 振頻率的^冑取H ,諸如Genest ’ Ellis與:c>y等人者,亦受類似問題 6 201203875 之苦。掃頻及/或數位追尋所需的額外電路亦顯龐大,增加了讀取器的 尺寸,成本’以及失效率n應職健制鮮料鱗頻系統 的感測$,其發射,信號處理’取樣,以及共振頻率之追尋所需之電 源量亦極顯著’並限制了在讀取器上利用電池進行操作的能力,並也 在以電池驅動的讀取n上限制了其電池壽命。因此,本技藝中極需有 增進效能之被動式感測器讀取器系統。 【發明内容】 3無線感測器在傳輸結束時立即以其共振頻率或 1中係,將信號送至鎖找感測器“ίίί-,⑽ase-locked loop ("PLL"))而執行此量測。一旦 p 3 f 上,PLL 的電壓控制振盈器(voltage c〇mr〇lled 〇sdlla "vc〇 持觀之中:以將vc◦的鮮維持在鎖定的更 頻率被計數以便判定感測器的共振頻率。依另種作法, 本身即可被取樣’並觀依據-種已知之 。本發明亦揭示牽涉到數位頻譜分析的進-步 【實施方式】 一被動無線感測器系統包含有可與一感測器12進行遠端通 讀取器10。讀取器10可利用在感測器12的共振頻率I迮或接近= 頻率附近發射一信號,諸如射頻(radio frequency,"RP")脈波,而激 j器12(見圖1)<^測器12可反應於來自讀取器1〇的激發脈波而發^ 出振鈴信號並持續一段短時間。 、被動式褒置’不包含有其自身的電源,並可反應 於激心信號14而在感測器12的共振頻率上或接近共振頻率附近發送 二信振鈴信號16。感測器12可被組構來感測一特定參數。例如,感測 器12可以包括有一固定電感器π與可依所感測參數而變動的一電容 器15。變動的,感或電容會改變感測器12的共振頻率。不過’應可理 ^的是,感測器12可為本技藝中所習知的任何無線感測器,其可以進 行與讀取器10的遠端通訊。此外,雖然本說明之感測器被形容是 201203875 為一汉17 ^振感測器,但可以理解的是,感測器丨2亦可為任何的聲音 共振^測器,光學共振感測器,或本技藝中所習知的其他類似感測器。 讀取器10可以採用對應的信號來致動感測器12。此外,感測.器I]可 為主動式感測器,或為被動式的感測器。 在一實施例中,感測器12包含有至少一電感性元件丨3與一電容性 元件15。若要與所感測之參數成比例地變動感測器12的共^頻率,不 f定。此等元件的典型實例是^iUii 力的改變而改㈣電容。此等電容式壓力感_乃是4於習知。 12 Λ一 =斤甘iff 12中的至少一電感性元件13亦作為感測器 的天線力月b,其在與感測器12中的另一天線26之間來回地麵合能 、目丨『哭。賣可^用在感測器12的附近發射一激發脈波14而激發感 nm’ f取器可以在感測器12的共振頻率或附近發送一即 iif 相⑽於紐脈波14崎送-麟信號⑹ 讀^Vf ϋ疋振鈴信號16的頻率以便判定其所感應參數之值。 驟之-說明j取器10由感測器12上進行讀取過程所牽涉步 母—步驟各由多個次步驟所構成,且此些步驟更可分 過叫只有最基礎的’頂層步驟被顯示於^中以 Ϊ或則的感測參數之實例為壓力’溫度,加速度,ί速 ί解度’濃度’介電常數,濕度,近接程i 其他已知的參數'謂峨感測。 一個到其所感測參數之時之範圍中的 ‘率脈沖。脈波14 μ的頻帶可能满。宠相220正中央或其附近,而脈波 8 201203875 易於,S有關=電磁頻譜應用上相關的政府及產業規範。在一實施例 中,脈波14是為以13.56 MHz為中心的窄頻,此為國際通訊聯盟 (International Telecommunications Union,ITU)所指定供商用 RF 裝置使 用的所謂工業,科學及醫療(Industrial,Scientific, and Medical,ISM)頻 f頻帶脈波的又—好處是,其只需要比相當於等效但 連射作法更低的功率,此可使讀取器1〇更適於以電池進行操作, f容H、的ΐ件,其所需之散熱通常比其較高功率之對照者為 之步驟2〇4中以固定頻率發射脈波14的一個優點是, §貝取ϋ的ΐ射電路比起掃頻或連續發射作法者來得簡單。 0 感/彳^ 12位於緊鄰接近於讀取器1〇之處,圖2步驟206接著 12經由耦接於其天線與讀取器1〇之天線兩者之 巧波14致使電流在感測器12的天線内流動, = f形成的「LC槽」充能。脈波14通常是短 y 3 步ϋ〇8 * ’讀取器10突然地中斷脈波14。立即地,儲存 電^^能量便開始發散,並因此而以感測& 16Γ在Χ结束傳輸之^12 ®此即在此頻率上發送出振鈴信號 所示,以,測振鈴信號16並將之貝放大ρ。也進入接收翻,如步驟210 或。況測的期間’振鈐信號可能較弱,有雜訊, 與解析度上的問題。因此之故,在步驟 鈴信號,以w☆中 之^頻換域:頻 測其所需要的物理定操作數值範圍來感 頻率細220。當;^G 對到一個對應的操作 最小值時,曲線2^ 頻率是為其操作頻率範圍22〇中的 的峰值是出現在感測器,輸功能224 圍内變動,感測器傳輸功能亦對疯地為则的參數在操作範 數的數值對應。當所感測亦與所感測參 亦變為感測器傳輸功能222呆的乍^大^。的另一極端時,感測 其以fxmt所是^中所顯示的激發脈波14。 脈波14通常是為窄頻,短時範圍220的中心。 ^其他讀取n,財了其所發射頻率 件’較少的内部散熱,對於外部來源電磁力感S小Ϊ; 201203875 =裝置的電磁干擾的較低的可能性,以及較易於符合政府頻率分派 沃規。 ,>1臨lit^示一 1重要性質是’代表讀取器10的最低信號镇 ,平線。在激發脈波14侧斷之後,感測器12便會 巧ΐ由ίίίϊϋΙΛ所,㈣的能量。在沒有強迫激發脈波14的 1器12以共振頻率雜,發送* 一個振鈴信 。振鈐域16的信號強度係由激發脈波14與 斤決定:振龄信號振幅會被兩函數在該點 亡,乘積所限制。此乘積振幅,其在交叉點處 Ι:ίϊϊϊϊΓ值226 ’以便讓振龄信號二 明性mu音器-2與感測器12之間典型信號交換的一說 數之值可使感測器12傳輸函數228 傳輸函數228)係以比在感二器12個^^ ° 感^數3即, 為較慢读的a#M庠系燃如m , ό賣取器1〇之間來回的電子信號遠 :謚平ί取 到产^圖1 中’ 5發脈波14係由讀取器10所產生。脈波Μ是為_ n號’ ^中心在頻率fxnitJl,其係為操 ^r;〇 ίϊ; 取器脈波μ與感測器傳輸函數兰8 之内。注意到讀 振幅接的ίΐΐΑ定振&信號16的振^幅 點上的兩 而具相位誤差,偏移至丰隨寺射頻率共振之故 的被動共振特性,約在及^遭而定之-頻率上 内之共振能量之故,環繞著感測器由於在感測器12的電感 ίϊ=Γ場,其可被_1G當做作 f t f幅!減小’導致交又位準230 ’亦it數隨I’貝/曲,二8土 f-點的 fnm ’交叉點的振幅230即等於讀取^〗^者fres進一步增加並達到 輸函數228更進-步向右=最小谓測臨限值226。若傳 讀取器10的偵測臨限值226 f’交又點振幅230便降至 (卜此時魏H 1G财測到振龄 201203875 i系統的操作頻率範圍220之外。注意 傳輸函數228具有足夠的頻寬以便將交 2^l^2ϊί#ίί;ί 220 彳°又计成具有寬的傳輸函數228,一般而 輸咖皮 t 半,Ik者糸統U,以及振鄰信號16的時間翻 顯示於圖4中傳輸函數228,信號 形狀僅係說明性質之實例。在某些實施例中 S;iS3S=可能會而鍫 ii鈴^號p偏移其g^f。’以便在傳輸函數228激發信號π, 的中f t器10可以發射不在感測器12操作範圍220 測器12^操作範圍220内^_器10f射其鮮與感 漯ί發皮脈 間T,5以,線匹配’臨限監看,時 17 10亦可與一資料介面17進行通訊,如圖5所示。杳祖入& H,^1^11 1G係屬外部’且被組構來接收來自於讀取器10的^早 “器t 介t" “供電力給 包括-主電腦,—靠接站,—電話網路,二蜂巢式以 201203875 網路’ 一光纖網路,一藍牙網路’ 一儲存區網路,一網際網路網頁’ 一遠端資料庫,一資料輸入裝置,一可聽聞聲音,以及一顯示幕。 讀取器10與資料介面17可以直接互相連結,或透過一中間裝置而 間接連結,或經由一遠端連結而進行通訊。兩者可位於同一外殼之内。 讀取器10與資料介面17可經由纜線或利用無線鏈結而連接士來。讀 取器10可對資料介面17送出資訊。其實例包括與感測器12相關的資 料,來自感測器12的量測值,時間戳記資料,料號,序號,物體更新 資訊’使用記錄,診斷資料,歷史資料’狀態資料,組構資料,有關 於主機位置與感測器之應用,以及使用者所定義之資料等。資料介面 Π可提供資料及指令給讀取器10。例如,資料介面17可對讀取器1〇 提供有關於對感測器12進行取樣的排程及間隔,調校係數或搜尋^表, 完成系統功能所需之軔體,軔體升級,組構設定,診斷指令,重置, 重開機,使用者所定義資訊,以及使用者所發出指令等之資訊。 資料介面17更可與一遠端資料系統18進行通訊以便交換狀態及控 制4s號’以及提供感測資料。遠端資料系統18可包括有一資料收集模 組19以便接收來自於資料介面17的資料,一資料記錄模组2〇以^儲 存所接收到的資料,·以及一資料顯示21以便顯示所感測到的資料。盥 資料介面17相似’遠端資料系統18可以儲存並處理資料,發出指令^ 以及分配此些資料及指令,以容許在一資料網崦上與多名使用者進行 通訊。與讀取器10及資料介面17之間的連結相似的,資料介面17及 遠知> 料系18之間可透過規線或無線方式而連結。顯示於圖$中的 組構係為一實施例之例子,其中讀取器1〇係透過纜線而連接至資料介 面^7,而資料介面17則以無線方式連接至遠端資料系統18。雖然圖5 之貫例係利用遠端資料系統18而將資料記錄與顯示的功能聯纟士 1所可理解的是,此些功能亦可利用外部資^介面 17或讀取态10而執行。 4魅以ϋ描述3取胃1〇,感測器12 ’以及資料介面17的系統對 生醬遙測(biomedical telemetry)領域的實施例而言乃是特別有其優點 在此^施例中’感測器12被植人於人體内以感測諸如動脈内二壓‘等 生理參數。感測器12自於利用習知技藝即可製作得極小,因此乃^ 途且由於其是為被動式的感測器,不需要逐 iff ί内’因此乃疋特別地適於此種用途。讀取器10,就 可小到可以手持,以電池驅動,散熱性質上 產生前述窄頻帶,111定鮮的激發脈波之故, 舒服地穿戴於—個人的衣服上,靠近於植入的 if ^ n 便頻繁地採讀並處理/儲存其資料。週期性地,例如 料12置於製作成靠泊站形式的資料介面 新有可對讀取器1G電池進行充電的電路, 了更新讀取# 1G如认及軟體’並τ載其賴。f料介面17亦可 12 201203875 此/料傳遞給使时,⑽其他相關人 何其他内部生理參數動感測益上造成共振頻率改變的任 杆變化雜之巾,感_12係結合於另—個可執 2的醫療中置之中。例如,感測器12可為與 吕閉鎖裝置、,,〇合的血壓感測器,諸如來自於明尼蔽逵 Minn)^ S#,Av 51 (s, Jude Medfcal> : it 。貝取态10 了附接在一行動電話上,一付眼鏡上,一手持 -動晝遊5機上,衣服的配件上,或—只手\上/捋日義放器上’ 器I2’其包含有電容μ與電感1;3’可將此些電路元件 另種作法,在某些騎巾其電容15被安置於^開 電感,13产處有其優點,但兩元件仍以導線連接在一起。作 12被植入人體的實施例中,對壓力靈敏的電容15可能會被 女置測目標壓力所會出現之處,而作為天線之用的電感13, 能被設置於較接近皮膚表面之處,以將感測器12與讀取器1〇問 耦接距離減至最短。其連接的導線可為一般所知的多種形式中 一 在可植入式之實施例中,將感測器12設計成為最低侵入性植入 法亦可有其優點,例如以導管為基礎的植送方法。此外,其亦 需要將可植入式感測器的一部份製作成對無線電不透通或具超音^ 射性,以便輔助植入及植入後之診斷。 、 感測器12可利用數種廣為習知的技術進行產製。電容性咸測器Μ 可利用微機電系統(MEMS)的技術,微影技術,或傳統的加1技巧製 作。電感13可為一纏繞線圈;一 FR4,鐵伏隆(Teflon),羅傑斯(R0gers), 或其他印刷電路板,低溫共燒陶磁(Low Temperature Cofired Cleramie LTCC),綠帶(greentape),或其他陶磁印刷電路板;或本技藝令所習知’ 的其他電感技術。電感13可以擁有核心或沒有核心,並可^一步使用 結合於前述印刷電路板或陶磁技術的電磁材料。電感與電容可以如同 多晶片模組(multi-chip module,MCM)—樣地被包裝在一起。 在^另一實施例中,圖1的系統更可包含有一中間天線240,如圖6 所顯示。中間天線240包含有二天線··讀取器側天線242與感測器側 天線244,兩者串聯連接。中間天線240可增進讀取器1〇與感測^ 12 之間的信號耦合’並且在讀取器10與感測器12之間有多重障礙246 與248時可能有其有用之處,此些障礙可能無法利用導電性連線加以 穿透。作為一實例’對於植入血管中的一只感測器12而言,障礙2 (248) 13 201203875 存在時所引起的不對正所導致的誤差。中間 製ί。另亦iimu線纏繞線圈’或其他廣為使用的方式而 此觀念即ΐ,一 ΐ=ΐ==ΐ5ίΓ綱24° ’則 路,t另有分中感與圖電1 容中:包ίί 其間有1¾個Itis的感ii、振器相同的材料’製程與元件而製作,但 Si 5 參考共振器的組件之值係為固定’其並 5的裔所獲取的感測器讀數。會造 κ讀向力感= 供璜取11便可依據參考讀數而對感測頻率提 到的讀數計算(或由4尋表中媒if ’ 3步驟210所獲得的即將來 改 的方法可以刹田岵a七收式響參考共振器’但此種自我調校」 增進兩f振器中所常見的某些不精確便得以 ίίϊί; -ϊίϊίί^ίίΚίί^^^ 發射電路增W號並送測 201203875 ,it ΐΐ及控制電路22在激發脈波被發射以避免洩漏或耦接至系统 的^點的期間,可以只提供处信號給發射電路24。 26/it器1〇更包括有連接至發射電路24與接收電路28的一天線 二H電,24使用天線26來發射激發脈波14,而接收電路28則使 收振f信號16。在—實施例中,除了在發射及接收之間 者:二2,,線26隨時皆被連接至發射電路24與接收電路28兩 僖。牲天線的設計需要特別的考量以避免對接收電路28造成損 tl·必須要注意不要讓接收電路28的靈敏放大級形成過載: 开=現m需發射電路24驅動天線26而極端高功驅動的情 之H、佳天線處於接收與放大階段而低電壓的情況出現,兩者 舍速的切換。例如,在發射激發脈波時,天線26的電壓可能 ί超f峰至峰值,並當緊接在激發脈波14之後立 ^ 快速地衰減到微伏。不過雖然讀取器 =田這為f,用天線26,但可以理解的是,讀取器⑴ 的天線以便分別執行其發射激發脈波14與接》 PLL30 16 ° 當接收到感測器共振頻見率’或者, vco 32與決定計數信肋至一計 力消耗。為達此目的,讀件取白有=的方式操作並減低其電 件的功率狀態。(圖8)。在減低模態iV醒^制其每-組 以便^寺其組構,但其電路則進入靜民^二更^二乍’此^夺^電源仍持續 眠或降低功率的模態之中。此外:整個^^且,未被使用時係置於睡 置於-種低功率的模態,並持續一外在系統位階上被 控刺電路22可以包括有-_衝= 1=¾¾¾ 15 201203875 電路36的時序指令。在進入降低功率掇能 時週期’以及叫S!計時H 38的其他計日建立計 之外部的計時指令,進入/離開降低功率來自於讀取器10 -或多個信號之臨限值被超越而被觸發讀取器上的 定進入/離開減降功率模態的演算法。讀取益10的軔體可包括有決 每一個組件$的確;可#適:的:夺間將讀取器10的 特定而言,侧件 醒並控制讀取器1G的各別組件」日進;=分別叫 控制並將每_各_件啟動1進彳^^夺t 以便啟始其料時科,,計時!! 38可㈣说 秒.。如圖8所顯示的,啟始信號52並未被顯 ^醒;時^了 各別計時㈣-連續線,赠避免_交又以及日g 8至 5電8路產的排序及週期’以《當地 電路24以及發射頻率產生态44進行排序。電源控制作號54 it ^ 1電源狀態以及睡眠狀態。減緩控制信號56控^ 了發射電路 量。Q控制信號58控制發射電路24中的一個切換電 更 ,率產生器44對發射電路24送出一個虹信號。在 發射電路24發射一激發脈波14時的期間,發射頻率產生写匕 射電路24提供RF信號》 干度王β %、對驶 接收計時器46被組構來相對於電力控制信號62建立適當的序及 週期,以便適當地將接收電路28加以排序。 PLL計時_器48對電源控制64與S/Η模態66信號建立了適當的排 序及计數間隔,以便適當地將PLL 30加以排序。電源控制64控制PLL 30的電源狀態以及睡眠狀態。s/H模態信號66控制PLL 30中的一取 樣及固持電路,用來使PLL鎖定在所發射的頻率,並再在振鈴信號% 頻率上,接著再將VCO 32計數信號250的頻率固持所定的頻率上,直 到該頻率被計數器34量測到時為止。 頻率計數器計時器50對電源控制68與開始/停止計數7〇信號建立 了適當的排序及計數間隔,以便適當地將頻率計數器34加以排序。電 源控制信號68控制了頻率計數器34的電源狀態以及睡眠狀態。開始/ 停止計數信號70控制了量測VCO 32計數信號250頻率的開始及停止 時間。 注意到雖然圖8包含了共用名稱的信號,諸如「啟始」,「組構」, 以及「電源控制」’但對於其所連接的電路方塊而言,此些信號各皆有 其獨特性。例如,來自於頻率計數器計時器方塊50的電源控制信號68 16 201203875 ^說明°十時器方塊48的電源控制信號64並不相同,如同以上 發動=⑽ ㈣5頻率的=的帶頻以^ 麵定紐速_的鮮叢束或掃描,其頻率為, ^皮14會;地相關聯於感測器12的共振頻率的一個解。激·^脈 ° 16 ^«»ί?ΐ4 ί止之後才被接收的,因此激發脈波14的此此多樣性作法县 。因此,激發脈波14的發射便可能被限 谷’振幅,以及調變程序。由於感測器12純是被動I 的裝故無線電頻帶法規可能無法適用於感測器12上。 π im14目其能量的單-短暫發射會造絲鈴信號16的單-次 ί樣,因此並不需要明顯的發射時間。利用較低的發射任務 的消耗可被降低’因此而減低了發射,接收,計數,以ϊ 電路的任務週期。利用降低電力的雜’以電池驅動變成了 驅動讀取ϋ 1G的-種输為可行的作法。 ㈣輯了 激發脈波14可被組構來將數種系統參數放至最大。例如, ,疋頻率激發脈波14,則其脈叢的頻率可被組構來將參數放大至最 ,垃!m可容^發射峰值功率,在pll被鎖定於振龄信號16而在 期間之時,離頻帶内或近頻帶干擾的最大自由度,可供讀取 =為其所需之感測目的進行發射的一特定頻率的最大世界性可接 度,或其他諸如此類的標準。 圖9顯示發射電路24。發射電路24的一個位準偏移器72接受來自 時序^控制電路22的控制信號54,56,58與RF信號。位準偏移器 72緩衝^入並將控邏輯位準轉換為電路驅動位準。一發射驅動器%放 大RF彳§號以提供足夠的電源以便驅動天線26。Q控制電路76在接收 期間被致動以便降低天線26與調諧及D.C.方塊82的總合Q ^ —阻尼 電路78在激發脈波14的發射終止時,立即被短暫地致動,以便吸收 天線中的能置並谷許天線對振鈐信號16進行反應。卩且尼電路%可對 天線提供不同的Q因素以便增進振鈴信號16的接收^電源控制電路 8〇控制發射電路24中組件的電源啟動及睡眠模態。調諧及DC方塊 巧調整天線26的調諧並避免直接電流不適當地對阻尼電路78進行偏 壓。來自發射電路的激發脈波14之RF輸出被繞接至天線26與接收電 路28兩者。 一旦激發脈波14被發射電路24發射,接收電路28即被組構來聽 取振鈴信號16。參考圖10,一高z緩衝器/谈位器84包括有一高阻g ("high Z”)輸入裝置’其可限制接收電路28在調諧及D.C.方塊82所執 行調諧上的效果。高Z緩衝器/嵌位器84更可保護放大級86免於承受 17 201203875 f激發脈波14被發射期間所出現在天線26上的極端電壓。在激 波發射期間,天線26上的電壓可能高達2〇〇伏峰值至峰值,要 ,·严需要大約60微微法拉(pico-farad}的電容。在一實施例中,一只j ,微法拉的電容被利用作為一個13.56 MHz發射電路的高阻抗輸义雷 〜限制裝置々可將過電壓旁路至電源供應器,並將過低電壓旁路至 地的低電容二極體接面可被置於1 pF電容的接收器侧,以便電容可以 限制通過二極體的電流,其可保護接收放大器以免承受通過天線26 行發射期間之高電壓。 放大級86將振鈴信號16放大至足夠的位準以便驅動pLL 3〇輸入。 =心設計放大級86是有必要的,如此才能在被發射的激發脈波14被 移除並被嵌位,且低位準的振鈐信號16被接收到時達成適當的暫態反 應:具有低Q調错反應性沒極負載的共同閘極放大級可被用來調節高 Z緩衝器/嵌位器84輸出,其後跟著有散置於高增益放大級之間的數個 ,卞器。此些濾波器若非電阻電容("Rc")濾波器就是電感電容(,,LC")濾 ^皮p。在一實施例中,此些濾波器可全為RC帶通濾波器。具有低$ 調諧^應性汲極負載的另一共同閘極放大級可在信號被饋至PLL3〇輸 入,,進行最終帶通調節。此種設計可使所有此些放大器型式在從極 低信號輪入位準至極高信號輸入位準範圍全皆可以操作,且無諸如因 為級飽和特性所造成的頻率加倍或減半的信號失真,以及利用、共同閘 極放大級所可達成的極佳高輸入阻抗,與散置於高增益放大級之間的 RC濾波器的出眾暫態反應特性。特別應注意級至級電源與信號隔絕以 避免因為與放大級86相關的極端增益所引起的不利振盪情形。 電源控制電路88可向放大級86以及高Z緩衝器/嵌位器84中的緩 ^器供應電力及撤除其電力以便降低電力消耗。應注意的是,高Z緩 衝器/嵌位器84係被設計來提供即便是電力已被撤除時的完整保護,因 為直到能量消散之前’過高的能量會啟動放大級86。其輸入阻抗會高 到足以避免過度供應電力給放大級86。在一實施例中,接收電路28在 激發脈波14發射的期間是啟動的,以便減短pll 30鎖定在振鈴信號 16上所需要的時間。 PLL 30由接收電路28之處接收已被放大並經調節過的振鈴信號 16。參考圖丨〇及11 ’來自接收電路28放大級86的RF信號饋入PLL 30 ^一 RF緩衝器9〇 » RF緩衝器90可將RF信號饋至一選擇性RF切分 器’其以一整數值而將RF信號頻率加以切分(圖11)。RF切分器92 接著便將RF信號饋至一相位頻率偵測器94的一第一輸入。頻率偵測 器94的輸出係饋至一取樣固持(S/H)誤差放大器96。此s/h誤差放大 器96控制VC0 32的頻率。VC0 32的計數信號250輸出饋至VC0切 分器98 ’後者之輸出接著饋至頻率偵測器94的一第二輸入。PLL 30 包括一輸出緩衝器1〇2以便減低VC0 32的負載,而同時亦將計數 信號$50的頻率前送至頻率計數器34。VC0切分器98容許VC0 32 以顯著高於振鈴信號16的頻率操作。其結果,計數及記錄VC0信號 201203875 間便可賴著地減短。此外’較短輯數_亦可減低 VCO在计數時的漂移情形,並容許較高的取樣率。 vrrf二f率j貞測器94被組構來判定分離開的耵信號及分離開的 士間的頻率及相位誤差。此最好可以利用將饋至S/H誤差放 if P的^號加以渡波並放大而達成。此外,其S/H特定亦可選擇性 地ίί 波並已放大之信號以便控制VCC> 32。依此種方式即 二=控制迴路,其可致使VC0 32計數信號25〇之頻率, ΪΪΪ 乘上分離VC〇切分器98之整數,再除以即切#器2 潛的頻率除分器以最佳化電路之設計, 計時器48對PLL 30的S/H誤差放大器96發送一個S/Η楛離 ,制#號66。S/Η模態控制信號66可將VCO 32置於一取;能‘心 被f = vc◦計數錢辭被加 先續描述。# S/H模態控制信號66被置於 的,誤差放大11 96便會_其輸出常數,造成VCO 32 ssii:在足以片定vc〇32計數信號25°頻率的一段時間之中大 可判t自言至電源控制電路104的電源控制信號64 ί之所ί用ΐ特疋定處二電或可保存電力的睡眠/電源關閉模 率偵測芎94之於屮菸使仏山ί祕s 77器%之整數’以及相位頻 3d 其輸出_ °通訊鍵針對所使用之特定PLL 30 制雷Hi數包括有計數級106 ’ 一計數緩衝器108,與-電源# i’、圖12所示。頻率計數計時㈣對計數級Ϊ 發送-個啟動/停止控制輸入7〇。頻率ί ϋ1G2的VC〇信號之鮮。當啟 並在啟動/停止控制指1=日^1 = 曰令停止時,計數緩衝器ι〇"Ρ被載入來:二二: 數值中判定出來 其接續的破感測參數’皆可由頻率計 讀取在以的時所 201203875 定的取•遲或取關隔。在特 便確保當有需要時每處一原開啟或將其叫醒,以 最卜序 理,而寻/時序卜及内部或外部控制器加以處 RF信號-段短序及控制電路22雜射電路24提供 信“接著以且電 1微2:少:上= ° 冊·24 滕 天線26上接收振鈴信號16。在一實^“ 接收振鈐,號!6時’天線26的衰減大於振^號^天的線^被組構來 26戶ίίϋίΪ射的期f ;接收電路28接收,調節,並欲位天線 ίΪίΪίΪί<更轉換進入一種高增益接收模態, 始接= 的」接收電路28的輸出。當天線26開 上的狀態Λί46:振二=仏 之後,PLL3〇便移至固持模態以便^5 ϊ ί 或^可為在被領測pll鎖定條件之基礎上的適應性作 關閉電ΐίί於ίίίί中28與發射電路24便可依何種情況適ΐ而被 34 頻 ms PLL 30的組件便視何者適合而被關斷電源或被 盆 數值即被移轉到外部介面電路36。頻率:器ΐ 或被置於睡眠狀態,接著時序及控制電路2^^ 者亦視何者適合而被關斷電源或被置於睡眠狀態。 間取樣,則時序及控制電路22叫醒計時器38 ^進 取樣應該要進行時為止。否則,時序及控制電路工⑽2:-苁 士以及:^自卩介面電路36的任何其他需要的指令^ ^叢束樣【 備需要的電源開啟時間可能超越電源關斷的時間,在ί 種情f H她彳t便會轉獅開啟直棘職束完成^止 圖13所顯不,讀取器10的PLL電路3〇的一實施例,巧 個特點可峨力认至PLL 3。以達餘騎前述PLL 3G之電 ,但等效的功能。其可見於圖U及圖13的某些或全部變 來增進圖11之PLL30的操作性能。選擇性輸人rf緩衝器 論是來自於放大級86的RF信號,或在讀取器10中的其‘地 201203875 轉換113件位j=)轉換器113,一數位至類比_ 言持功能。“ ^二,之 12的期間可被選緩衝^ 28/處麟時為止。此參考信號此 ii t 在—侧韻參考親上,以便在 以任何大於或等於1的任何H分, π'^ΪΪμ 龙送黾trn π田輸入A時,開關115將誤差放大器112信號 轉換器113兩者。滿轉換器113接著便被用 來對VCO的控制電壓進行取樣,以便判定vc〇32 :二 器田1 Γρ弓的輸入A的一頻率之控制電壓位準:_ ,定D/A轉換器114的適當設ί,以US ^將VC〇 32維持在被鎖定頻率輸入位準並持續任何長 itm^m 11 笠^/ϋ前ϋ13電路之操作的數種輕微修改,可以容許功能性上的 it严i的修改係為’彻觀以已知鮮的可選擇 之輸入B’而將_轉換器113的電壓調校到特 ί 好信號之頻率。—旦經過調校而使得处緩衝器之作 換器113的數位輸出之間的關係被清楚定義,规# 用來代表振鈴信號16之頻率。鳩轉換器出 輸出。依此方式操作即可容許趟轉換器⑴得以 ^或凡王地取代輸出緩衝器102與頻率計數器34的功能翻譯有問 哭前述操作之另一種修改作法,係使用來自於^轉換 ί㈣進行PLL3G的鎖定分析,以便減短鎖定_並增進^ 度。由於當接收電路28的輸出上可取得感測器12信號 12俨骑器112的輸出會收敛至鎖定電壓值上’接著當感測器 散,言準农減通過鎖定可以維持之處時,再以可預測的方式發 21 201203875 用二1另"種修改作法係利用頻率計數器%,使 恭P5U轉丨ί !^!14來在VC〇 32之輸入產生特定的電壓,在此此特定 Ϊί之^,以及決定出現在輸出緩衝11 1(^的輸 校此Μ·頻率咖34在—«個頻率上進 易知就’對於圖13電路的些微修改當屬明顯 誤差放大器112之間的位置。此種重新安 控制電壓的適當比例,其可糊不論是 預f定,:而非使用可選擇㈣入緩衝ί 盥镅垄叫·鲂哭二此種安排若與前述可以省卻輸出緩衝器102 ,,车梢$ 34的A/D轉換II⑴調校程序結合,便可A sensor that measures brain fluid pressure is disclosed in U.S. Patent No. 4,127,11, the entire disclosure of which is incorporated herein. U.S. Patent No. 4,206,762 to c.sman teaches a similar sensor that can measure internal pressure (i). In particular, the c〇sm patent describes the use of a freeze detection system _ dip system to wirelessly measure the resonant frequency of the sensor. Several methods of reading passive wireless sensors are also described in other prior patents. For example, the 'C〇sman' patent discloses an externally-type vibrating H circuit that uses an implanted sensor for tuning. U.S. Patent No. 6, Muscle No. 386, to Kensey et al., discloses a reader that utilizes a scanning scan and rides a transmitted signal to cause [Zi Laiqing, (10) to know the frequency of the emission during the scanning period and the resonant frequency of the chirp. Match the frequency points to excite the passive sensor. U.S. Patent No. 6,2,6,835 to the disclosure of U.S. Patent No. 5,581,248, the disclosure of which is incorporated herein by reference. This reader technology is used to read the variable-impedance effect of n--with a side-by-side parameter. U.S. Patent No. 7,432,723, the disclosure of which is incorporated herein by reference in its entirety in its entire entire entire entire entire entire entire entire entire entire entire entire-- Resonance. Ellis _ light Tong Peng's vibration drop response (four) plus n response) and determine the resonant frequency of the sensor. Her US patents 6, (1), and 52 nicknames of n # people are not a way to emit a white noise from the sensor and to sway the reaction. Some readers utilize a phase-locked loop (ΡΙχ, _____ t $(10) Μ 4 201203875, the resonant frequency of the detector. US Pat. No. 7,245,117 to Joy et al. discloses an active PLL circuit and a sense of hearing. The PLL solution is transmitted until the phase of the received signal coincides with the phase of the transmitted PLL signal. When a coincidence occurs, the transmit PLL frequency is equal to the resonant frequency of the sensor. The PLL circuit can be sampled and held (sampie and hdd) , S / H) function to sample the input frequency and fix the PLL at a given frequency. pLL with S / H can be applied to a variety of non-listening. For example, Genest's fine patent 4,531,526 A reader-type reader that uses a PLL circuit with S/H to adjust the frequency emitted by the reader to match the resonant frequency received by the sensor. The singularity of the S/Η is also described in U.S. Patent No. 4,644,420, the disclosure of which is incorporated herein by reference. It is used to Streaming for sampling and maintaining an appropriate sampling to estimate the number of dragon pulses on the tape. U.S. Patent No. 5,006,819 to Buchan et al. provides additional reinforcement to this design concept. Denny's U.S. Patent 5,92,: Description No. 233 - A high-speed sampling technique that uses an S/H circuit with pLL to reduce the charge noise from the _ bits of the word II to the frequency of the circuit. The performance of the circuit. Charavit et al. , No. 858 reveals a kind of pll with S/Η circuit, which can adjust the voltage of the voltage-controlled vibrator when the lock frequency of pll changes, and the PLL is used to improve the PLL. The responsiveness of the method is disclosed in U.S. Patent No. 6,57, 457 to Fischer, and U.S. Patent No. 6,680,654, the entire disclosure of which is incorporated herein by reference. A function of the offset correction. U.S. Patent No. 201203875, the entire disclosure of which is incorporated herein by reference in its entirety, the entire disclosure of the disclosure of the disclosure of the entire disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of the disclosure of Direct sampling and A reader of the rate analysis technique is also known. An example of this is the U.S. Patent No. 7,048,756 to Eggers et al., which uses a resonance sensor to measure the temperature in the body, which displays the temperature threshold at Curie temperature. In addition, it is also known to use a digital signal processor (DSp) to estimate that a digital signal processor (DSp) has been used to estimate the performance of the response. The response of a passive blood pressure sensor excited by the frequency, and then the response signal of the tri-frequency excitation is re-estimated to calculate the relative phase delay. The current design of passive sensors s sellers, such as those described above, are each limited by several drawbacks. Haynes and Nagumo's early "puisedech〇ringing systems" ("puisedech〇ringing systems") required the use of large, high-power reader devices. In addition, as Collins reveals, such systems will measure short-term The difficulty in vibrating the signal frequency suffers from inaccuracy and poor resolution, and it is gradually abandoned, and instead uses a variety of different frequency sweeping methods (see C. Collins, "Miniature Passive Pressure Transensor For Implanting in the Eye*1, IEEE Transactions on Bio-Medical Engineering, vol BME-14, no. 2, April 1967). Sweep sensor reading similar to that described by Cosman ' Kensey 'Ellis and Spillnm et al. H 'and the clutter method described by AUN, (iv) the requirements of government radio transmission regulations' and the need for comparison is more dependent on the degree of material. This will close its sideways and also make interference a potential problem. Pursuing the vibration frequency of the passive resonance sensor, such as Genest 'Ellis and :c>y, is also suffering from the similar problem 6 201203875. Sweep and/or digital pursuit The extra circuit is also huge, increasing the size of the reader, the cost and the failure rate n of the sensory system of the fresh-keeping system, its transmission, signal processing 'sampling, and the pursuit of resonance frequency The amount of power is also extremely significant' and limits the ability to operate on the battery with the reader, and also limits the battery life of the battery-driven read n. Therefore, there is a need in the art for passive performance to improve performance. Sensor reader system. [Summary] 3 wireless sensor immediately sends the signal to the lock to find the sensor at the end of the transmission with its resonant frequency or 1 medium. "(O) ase-locked loop (&quot ; PLL")) and perform this measurement. Once p 3 f , the PLL's voltage-controlled oscillator (voltage c〇mr〇lled 〇sdlla " vc 观 观 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Resonance frequency. According to another method, it can be sampled by itself. It is also known. The invention also discloses a step involving digital spectrum analysis. [Embodiment] A passive wireless sensor system includes A remote-pass reader 10 is implemented with a sensor 12. The reader 10 can transmit a signal, such as a radio frequency (radio frequency, "RP", using a signal near the resonant frequency I 迮 or near = frequency of the sensor 12 . ) pulse wave, and stimulate j device 12 (see Figure 1) The <detector 12 can respond to the excitation pulse from the reader 1 发 to generate a ringing signal for a short period of time. The passive device does not include its own power source and can transmit a two-signal ringing signal 16 at or near the resonant frequency of the sensor 12 in response to the heart signal 14. Sensor 12 can be organized to sense a particular parameter. For example, sensor 12 can include a fixed inductor π and a capacitor 15 that can vary depending on the sensed parameters. The varying, sense or capacitance changes the resonant frequency of the sensor 12. However, it should be understood that the sensor 12 can be any wireless sensor known in the art that can communicate with the remote end of the reader 10. In addition, although the sensor of the present description is described as 201203875 as a Hansen 17 ^ vibration sensor, it can be understood that the sensor 丨 2 can also be any sound resonance detector, optical resonance sensor , or other similar sensors as are known in the art. The reader 10 can actuate the sensor 12 with a corresponding signal. In addition, the sensor I] can be an active sensor or a passive sensor. In one embodiment, the sensor 12 includes at least one inductive component 丨3 and a capacitive component 15. To change the total frequency of the sensor 12 in proportion to the sensed parameter, it is not fixed. A typical example of such components is a change in the force of the ^iUii (4) capacitor. These capacitive pressure senses are 4 in the conventional. At least one of the inductive elements 13 of the first and second volts 12 also serves as the antenna force b of the sensor, which is grounded back and forth between the other antenna 26 in the sensor 12, "cry. The sensor can be used to emit an excitation pulse wave 14 in the vicinity of the sensor 12 to excite the sense that the nm' f can be sent at or near the resonance frequency of the sensor 12, ie, the iif phase (10) is sent to the New Pulse wave 14 The Lin signal (6) reads the frequency of the ^Vf ϋ疋 ringing signal 16 to determine the value of the parameter it senses. In the following, the step-by-step steps involved in the reading process performed by the sensor 10 on the sensor 12 are composed of a plurality of sub-steps, and the steps are further divided into the most basic top-level steps. Examples of sensing parameters displayed in ^ or 为 are pressure 'temperature, acceleration, ί speed ' 'concentration' dielectric constant, humidity, near relay i other known parameters 'predicted 峨 sensing. A 'rate pulse' in the range to the time when the parameter is sensed. The 14 μ pulse band may be full. Pampus 220 is in the center or near it, and Pulse 8 201203875 is easy, S related = relevant government and industry specifications for electromagnetic spectrum applications. In one embodiment, the pulse wave 14 is a narrow frequency centered at 13.56 MHz, which is the so-called industrial, scientific, and medical designation for commercial RF devices designated by the International Telecommunications Union (ITU) (Industrial, Scientific , and Medical, ISM) The advantage of the frequency f-band pulse is that it only requires less power than the equivalent equivalent, but the interpolating method makes the reader 1 〇 more suitable for battery operation, f The heat dissipation required for H, which is usually higher than that of its higher power, is one of the advantages of the pulse wave 14 being transmitted at a fixed frequency in step 2〇4, which is that the ΐ ϋ ϋ ΐ ϋ 比 比 比 比Frequency or continuous emission is simple. 0 sense / 彳 ^ 12 is located in close proximity to the reader 1 ,, step 206 of Figure 2 followed by 12 via the antenna 14 coupled to both its antenna and the antenna of the reader 1 致 causes current in the sensor The antenna in 12 flows, and the "LC slot" formed by = f is charged. The pulse wave 14 is typically short y 3 steps * 8 * ' The reader 10 abruptly interrupts the pulse wave 14. Immediately, the stored energy ^^ energy begins to diverge, and thus the sensing & 16Γ at the end of the transmission of the ^12 ® which is sent at this frequency as indicated by the ringing signal, to measure the ringing signal 16 and The shell is enlarged by ρ. Also enter the receive flip, as in step 210 or . During the period of the survey, the vibrating signal may be weak, with noise, and resolution problems. Therefore, in the step bell signal, the frequency range is changed in the frequency range of w ☆: the frequency of the physical operation value range required for the frequency measurement is 220. When ^G pairs to a corresponding operation minimum value, the curve 2^ frequency is the peak value of the operating frequency range 22〇 which appears in the sensor, the transmission function 224 changes, the sensor transmission function also The parameters for the madness correspond to the values of the operational norms. When the sensed parameter also becomes the sensor transmission function 222, the 呆^大^ is left. At the other extreme, it senses the excitation pulse 14 shown in fxmt. The pulse wave 14 is typically at the center of a narrow frequency, short time range 220. ^ Others read n, and the part of the transmitted frequency is 'less internal heat dissipation, for external sources of electromagnetic force S small Ϊ; 201203875 = lower probability of electromagnetic interference of the device, and easier to comply with government frequency allocation War rules. , > 1 Pro lit ^ shows an important property is 'the lowest signal town on behalf of the reader 10, flat line. After the excitation pulse 14 is side-broken, the sensor 12 will illuminate the energy of (4) by ίίίϊϋΙΛ. In a device 12 that does not force the excitation of the pulse wave 14, a ringing signal is transmitted * at a resonance frequency. The signal strength of the vibrating field 16 is determined by the excitation pulse 14 and the amplitude: the amplitude of the amplitude signal is limited by the product at which the two functions are lost. This product amplitude, which is at the intersection, ϊϊϊϊΓ: ϊϊϊϊΓ 226 226 ′ to allow the value of the typical signal exchange between the illuminating signal illuminator 2 and the sensor 12 to be a sensor 12 The transfer function 228 transfer function 228) is compared with the sensor 2 in the sensor 2, that is, the slow reading of the a#M 庠 is like the m, the 来回 器 1 1 The signal is far: 谥平ί取到出^ Figure 1 '5 hair pulse wave 14 is produced by the reader 10. The pulse wave is _ n ', the center is at the frequency fxnitJl, which is the operation of ^r; 〇 ί ϊ; the pick pulse μ and the sensor transfer function blue 8. It is noted that the two amplitudes on the amplitude of the amplitude of the amplitude-and-amplitude signal are shifted to the passive resonance characteristics of the resonance frequency of the temple, and it is determined by - The resonance energy in the frequency surrounds the sensor. Because of the inductance in the sensor 12, it can be used as ftf by _1G! Decrease 'causes the intersection and the position 230' also the number of it with the I' Bayer/curve, the amplitude of the intersection of the fnm 'points of the two 8 soil f-points 230 is equal to the reading ^ ^ ^ the fres further increases and reaches the input function 228 More forward-to-right = minimum pre-measured threshold 226. If the detection threshold 226 f' of the reader 10 is reduced, the amplitude 230 will be reduced. (At this time, the Wei H 1G is measured to the operating frequency range 220 of the system 201203875 i system. Note the transfer function 228. Having sufficient bandwidth to calculate the intersection 2^l^2ϊί#ίί; ί 220 彳° is also calculated to have a wide transfer function 228, generally a half-transfer, an Ik system U, and a neighboring signal 16 The time flip is shown in transfer function 228 in Figure 4, and the signal shape is merely an example of the nature of the description. In some embodiments S; iS3S = may be 鍫 铃 铃 ^ ^ p offset its g ^ f. 'for transmission The function 228 excites the signal π, and the middle ft 10 can be emitted not in the operating range 220 of the sensor 12, the detector 12 is within the operating range 220, and the device 10f shoots its fresh and sensuous 漯 发 皮 T T, 5, 线Matching 'pre-monitoring, time 17 10 can also communicate with a data interface 17, as shown in Figure 5. 杳祖入& H,^1^11 1G is external' and is organized to receive from Reader 10's early "device t t" "power supply to include - the main computer, - docking station, - telephone network, two honeycomb type to 201203875 network 'one light Network, a Bluetooth network 'a storage area network, an internet page' a remote database, a data input device, an audible sound, and a display screen. The reader 10 and the data interface 17 can Directly connected to each other, indirectly through an intermediate device, or via a remote connection. Both can be located within the same housing. The reader 10 and the data interface 17 can be connected via a cable or using a wireless link. The reader 10 can send information to the data interface 17. Examples include data related to the sensor 12, measured values from the sensor 12, time stamp data, item number, serial number, and object update information. 'Use records, diagnostic data, historical data' status data, fabric data, application of host location and sensor, and user-defined data, etc. Data interface can provide information and instructions to reader 10 For example, the data interface 17 can provide the reader 1 with the schedule and interval for sampling the sensor 12, the tuning coefficient or the search table, and the functions required to complete the system function, Information such as physical upgrades, fabric settings, diagnostic commands, resets, reboots, user-defined information, and instructions issued by the user. The data interface 17 can also communicate with a remote data system 18 to exchange status and Controlling the 4s' and providing the sensing data. The remote data system 18 can include a data collection module 19 for receiving data from the data interface 17, and a data recording module 2 to store the received data. And a data display 21 for displaying the sensed data. The data interface 17 is similar. 'The remote data system 18 can store and process data, issue commands^, and assign such data and instructions to allow for access to a data network. Multiple users communicate. Similar to the connection between the reader 10 and the data interface 17, the data interface 17 and the far-reaching > material system 18 can be connected by a line or a wireless method. The architecture shown in Figure $ is an example of an embodiment in which the reader 1 is connected to the data interface via a cable and the data interface 17 is wirelessly coupled to the remote data system 18. Although the example of FIG. 5 utilizes the remote data system 18 to link the functions of data recording and display, it is understood that such functions can also be performed using the external interface 17 or the read mode 10. 4 The following is a description of the embodiment of the field of biomedical telemetry, which is described in the example of the biomedical telemetry. The detector 12 is implanted in the human body to sense physiological parameters such as intra-arterial pressure. The sensor 12 can be made very small by utilizing conventional techniques, and therefore is not particularly versatile because it is a passive sensor, and thus is particularly suitable for such use. The reader 10 can be small enough to be hand-held, driven by a battery, and the above-mentioned narrow frequency band is generated in the heat dissipation property, and the 111 pulsed excitation pulse wave is comfortably worn on the personal clothes, close to the implanted if ^ n frequently read and process/store their data. Periodically, for example, the material 12 is placed in a data interface in the form of a docking station. A new circuit for charging the reader 1G battery is newly updated, and the reading #1G is recognized as the software '. The material interface 17 can also be 12 201203875. If the material is transmitted to the time, (10) other related people and other internal physiological parameters, the other internal physiological parameters, the dynamic measurement of the resonance frequency changes, the sense of change, the sense _12 is combined with another Can be implemented in 2 medical centers. For example, the sensor 12 can be a blood pressure sensor that is coupled to the L-lock device, such as from Minni), Sf, Av 51 (s, Jude Medfcal>: it. Attached to a mobile phone, on a pair of glasses, a hand-held shuttle 5 on the machine, on the accessories of the clothes, or - hand \ on / on the next day, the device I2' contains the capacitor μ and the inductor 1; 3' can be used to make these circuit components different. In some bicycles, the capacitance 15 is placed in the inductor, and the 13 has its advantages, but the two components are still connected by wires. In the embodiment implanted in the human body, the pressure sensitive capacitor 15 may be placed by the female to determine where the target pressure will occur, and the inductor 13 used as the antenna can be placed closer to the skin surface. The coupling distance between the sensor 12 and the reader 1 is minimized. The wires to be connected can be of various forms generally known. In the implantable embodiment, the sensor 12 is designed. Being a minimally invasive implant can also have advantages, such as a catheter-based grafting method. In addition, it also requires A portion of the implantable sensor is made radio-impermeable or super-acoustic to aid in the diagnosis of implantation and implantation. The sensor 12 can utilize several kinds of widely used Known technology for production. Capacitive salt detector Μ can be fabricated using microelectromechanical systems (MEMS) technology, lithography, or traditional plus 1 technique. Inductor 13 can be a wound coil; a FR4, Teflon (Teflon), R0gers, or other printed circuit boards, Low Temperature Cofired Cleramie LTCC, greentape, or other ceramic printed circuit boards; or other Inductor technology. Inductor 13 can have a core or no core, and can use electromagnetic materials combined with the aforementioned printed circuit board or ceramic technology. The inductor and capacitor can be like a multi-chip module (MCM). In another embodiment, the system of Figure 1 may further include an intermediate antenna 240, as shown in Figure 6. The intermediate antenna 240 includes two antennas, a reader side antenna 242 and a sensor. Side antenna 244, both connected in series The intermediate antenna 240 can enhance the signal coupling between the reader 1 and the sensing device 12 and may have useful features when there are multiple obstacles 246 and 248 between the reader 10 and the sensor 12. These obstacles may not be penetrated by conductive wires. As an example, for a sensor 12 implanted in a blood vessel, the obstacle 2 (248) 13 201203875 caused by the misalignment caused by Error. Intermediate system ί. Also iimu line winding coil ' or other widely used methods and this concept is ΐ, one ΐ = ΐ = = ΐ 5 Γ 24 24 ° ' 、 、 、 、 、 、 、 、 、 、 、 In the middle: the package ίί has 13⁄4 Itis sense ii, the same material of the vibrator is made of process and components, but the value of the component of the Si 5 reference resonator is fixed by the sensing of the '5' Reader reading. Will create κ reading force sense = supply for 11 can be based on the reference readings on the sensing frequency mentioned readings (or by the 4 finder in the media if ' 3 step 210 obtained soon to change the method can be Tian Hao a seven-received reference resonator 'but this self-adjustment' enhances some of the inaccuracies common in the two f-vibrators. -ϊίϊίί^ίίΚίί^^^ The transmitting circuit increases the W number and sends the test 201203875, the ΐΐ and control circuit 22 may only provide a signal to the transmitting circuit 24 during the period in which the excitation pulse wave is emitted to avoid leakage or coupling to the system. The 26/it device further includes a connection to the transmission. The circuit 24 is coupled to an antenna 2 of the receiving circuit 28, 24 using the antenna 26 to transmit the excitation pulse 14, and the receiving circuit 28 is configured to oscillate the f signal 16. In the embodiment, except between transmitting and receiving : 2, the line 26 is connected to the transmitting circuit 24 and the receiving circuit 28 at any time. The design of the antenna requires special consideration to avoid damage to the receiving circuit 28. It must be noted that the receiving circuit 28 is not sensitive. The amplification stage forms an overload: On = now m needs to transmit circuit 2 4 driving the antenna 26 and the extreme high-power driving H, the good antenna is in the receiving and amplifying phase and the low voltage occurs, and the two are switched. For example, when the excitation pulse is transmitted, the voltage of the antenna 26 may be ί. Super f peak to peak, and quickly decays to microvolts immediately after excitation pulse wave 14. However, although reader = field this is f, antenna 26 is used, but it is understandable that reader (1) The antennas are respectively configured to perform their excitation pulse 14 and the PLL 30 16 ° when receiving the sensor resonance frequency rate 'or, vco 32 and determine the counting ribs to a metering power consumption. For this purpose, the reading Take the white mode to operate and reduce the power state of its electrical components (Fig. 8). In the reduced mode iV wake up ^ each group to make it the structure of the temple, but its circuit enters the quiet people ^ two more ^二乍 'This ^ ^ ^ power is still in the sleep or reduce the power of the mode. In addition: the entire ^ ^ and, when not used, is placed in a low-power mode of sleep - and continue The controlled spur circuit 22 at the system level may include a timing of -_ rush = 1 = 3⁄43⁄43⁄4 15 201203875 circuit 36 At the time of entering the reduced power capability, the cycle 'and the other timings of the S! timer H 38 are established. The entry/exit power is reduced from the reader 10 - or the threshold of multiple signals. The algorithm that is overridden and triggered to determine the entry/exit reduction power mode on the reader. Reading the body of benefit 10 can include determining that each component is $; Specifically, the side member wakes up and controls the respective components of the reader 1G to advance; = respectively, the control is called and each of the _ pieces is activated by 1 to win t to start the material time section. ,, timing!! 38 can (four) say seconds. As shown in Figure 8, the start signal 52 is not awake; when the time is different (four) - continuous line, the gift is avoided _ cross and the day g 8 to 5 electric 8 production sort and cycle 'to The local circuit 24 and the transmit frequency generation state 44 are ordered. Power control number 54 it ^ 1 power state and sleep state. The mitigation control signal 56 controls the amount of the transmission circuit. The Q control signal 58 controls a switching power in the transmitting circuit 24, and the rate generator 44 sends an a rainbow signal to the transmitting circuit 24. During the transmission of the excitation pulse 14 by the transmitting circuit 24, the transmission frequency produces the write beam circuit 24 to provide the RF signal "dryness king beta %", and the on-going timer 46 is configured to establish the appropriate relative to the power control signal 62. The sequence and period are so as to properly sequence the receiving circuits 28. PLL Timer_48 establishes the appropriate sequencing and counting intervals for power control 64 and S/Η mode 66 signals to properly sequence PLL 30. The power control 64 controls the power state and sleep state of the PLL 30. The s/H modal signal 66 controls a sample and hold circuit in the PLL 30 for locking the PLL at the transmitted frequency and then at the ringing signal % frequency, and then the frequency of the VCO 32 count signal 250 is fixed. On the frequency until the frequency is measured by the counter 34. The frequency counter timer 50 establishes an appropriate sequencing and counting interval for the power control 68 and the start/stop count 7 〇 signals to properly sequence the frequency counters 34. The power control signal 68 controls the power state of the frequency counter 34 as well as the sleep state. The start/stop count signal 70 controls the start and stop times of the frequency of the VCO 32 count signal 250. Note that although Figure 8 contains signals for common names, such as "Start", "Composition", and "Power Control", these signals are unique for each circuit block to which they are connected. For example, the power control signal 68 16 201203875 from the frequency counter timer block 50 illustrates that the power control signal 64 of the chronograph block 48 is not the same, as the above-mentioned launch frequency = (10) (four) 5 frequency = band frequency The fresh bundle _ bundle or scan, the frequency of which is , is a solution of the resonant frequency of the sensor 12 . The pulse of the pulse is only received after the 16 ^«»ί?ΐ4 ̄, so this diversity of the pulse wave 14 is stimulated. Therefore, the emission of the excitation pulse wave 14 may be limited by the amplitude, as well as the modulation procedure. Since the sensor 12 is purely passive I, the radio band regulations may not be applicable to the sensor 12. The single-transient emission of the energy of π im14 causes a single-times of the wire signal 16, so that no significant emission time is required. The consumption of lower transmit tasks can be reduced' thus reducing the transmit, receive, count, and 任务 circuit duty cycles. It is feasible to use the battery to drive the battery to drive the read ϋ 1G. (4) The excitation pulse 14 can be organized to maximize several system parameters. For example, if the 疋 frequency excites the pulse wave 14, the frequency of its plexus can be organized to amplify the parameters to the maximum! m can accommodate the peak power, the maximum degree of freedom from interference in the band or near-band when pll is locked to the age signal 16 and during the period, available for reading = transmitting for the sensing purpose required The maximum worldwide reach of a particular frequency, or other such criteria. FIG. 9 shows the transmitting circuit 24. A level shifter 72 of the transmit circuit 24 receives the control signals 54, 56, 58 and RF signals from the timing control circuit 22. The level shifter 72 buffers and converts the control logic level to the circuit drive level. A transmit driver % enlarges the RF number to provide sufficient power to drive the antenna 26. The Q control circuit 76 is actuated during reception to reduce the sum of the antenna 26 and the tuning and DC block 82. The damping circuit 78 is briefly actuated immediately upon termination of the emission of the excitation pulse 14 to absorb the antenna. The capable antenna can react to the vibrating signal 16. The 电路尼尼电路% can provide different Q factors to the antenna to enhance the reception of the ringing signal 16. The power control circuit 8 controls the power-on and sleep modes of the components in the transmitting circuit 24. The tuning and DC blocks adjust the tuning of the antenna 26 and prevent the direct current from improperly biasing the damping circuit 78. The RF output of the excitation pulse 14 from the transmitting circuit is wound to both the antenna 26 and the receiving circuit 28. Once the excitation pulse 14 is transmitted by the transmitting circuit 24, the receiving circuit 28 is configured to listen to the ringing signal 16. Referring to Figure 10, a high z buffer/talker 84 includes a high impedance g ("high Z" input device which limits the effect of the receiving circuit 28 on tuning and tuning performed by the DC block 82. High Z The buffer/clamp 84 further protects the amplification stage 86 from the extreme voltages that appear on the antenna 26 during the emission of the excitation pulse 14 during the transmission. The voltage on the antenna 26 may be as high as 2 during the shock transmission. The peak to peak of the sag, to, need to be approximately 60 picofarad capacitors. In one embodiment, a j, microfarad capacitor is utilized as a high impedance input of a 13.56 MHz transmit circuit. The Yilei~Restriction device bypasses the overvoltage to the power supply, and the low-capacitance diode junction that bypasses the low-voltage to ground can be placed on the receiver side of the 1 pF capacitor so that the capacitor can be limited. The current through the diode protects the receiving amplifier from the high voltage during transmission through antenna 26. The amplifier stage 86 amplifies the ringing signal 16 to a sufficient level to drive the pLL 3〇 input. Is necessary, such as This is achieved when the transmitted excitation pulse 14 is removed and clamped, and a low level of vibration signal 16 is received to achieve an appropriate transient response: a common gate with low Q error-modulating reactivity and no pole load The pole amplifier stage can be used to adjust the output of the high Z buffer/clamp 84, followed by a number of transistors that are interspersed between the high gain amplifier stages. If these filters are not resistors and capacitors ("Rc&quot ;) The filter is the inductor-capacitor (,, LC") filter. In one embodiment, these filters can all be RC bandpass filters. Another one with low $tuning bucker load The common gate amplifier stage allows the signal to be fed to the PLL3 input for final bandpass adjustment. This design allows all of these amplifier types to range from very low signal rounding levels to very high signal input levels. Operates without signal distortion such as doubling or halving the frequency due to stage saturation characteristics, and excellent high input impedance that can be achieved with a common gate amplifier stage, and interspersed between high gain amplification stages The outstanding transient response characteristics of the RC filter. It should be noted that the stage-to-stage power supply is isolated from the signal to avoid unfavorable oscillations due to the extreme gain associated with the amplifier stage 86. The power control circuit 88 can be slowed down to the amplifier stage 86 and the high Z buffer/clamper 84. The device supplies power and removes its power in order to reduce power consumption. It should be noted that the high Z buffer/clamp 84 is designed to provide complete protection even when power has been removed, because until the energy is dissipated The high energy will activate the amplification stage 86. Its input impedance will be high enough to avoid over-supplying power to the amplification stage 86. In one embodiment, the receiving circuit 28 is activated during the firing of the excitation pulse 14 to reduce the pll 30 The time required to lock on the ringing signal 16. The PLL 30 receives the amplified and adjusted ringing signal 16 from the receiving circuit 28. Referring to FIGS. 11 and 11 'the RF signal from the amplifier stage 28 is fed to the PLL 30 ^ RF buffer 9 〇» The RF buffer 90 can feed the RF signal to a selective RF slicer' The RF signal frequency is split by an integer value (Figure 11). The RF slicer 92 then feeds the RF signal to a first input of a phase frequency detector 94. The output of frequency detector 94 is fed to a sample hold (S/H) error amplifier 96. This s/h error amplifier 96 controls the frequency of VC0 32. The count signal 250 output of VC0 32 is fed to the VC0 splitter 98' and the latter output is then fed to a second input of frequency detector 94. The PLL 30 includes an output buffer 1〇2 to reduce the load of the VC0 32 while also feeding the frequency of the count signal $50 to the frequency counter 34. The VC0 slicer 98 allows VC0 32 to operate at a frequency significantly higher than the ring signal 16. As a result, counting and recording the VC0 signal between 201203875 can be shortened. In addition, the 'short number of episodes' can also reduce the drift of the VCO during counting and allow for higher sampling rates. The vrrf two f rate detector 94 is configured to determine the frequency and phase error between the separated chirp signals and the separated clocks. This can preferably be achieved by using the ^ number fed to the S/H error and if P to be waved and amplified. In addition, its S/H specific can also selectively illuminate and amplify the signal to control VCC > 32. In this way, the second = control loop, which can cause the VC0 32 to count the frequency of the signal 25 ,, 乘 multiply the integer of the split VC 〇 splitter 98, and then divide by the # 2 2 potential frequency divider to Optimized circuit design, timer 48 sends an S/Η楛, ## 66 to S/H error amplifier 96 of PLL 30. The S/Η modal control signal 66 can place the VCO 32 in one; the ‘heart is f = vc◦ count money is added. # S / H modal control signal 66 is placed, error amplification 11 96 will _ its output constant, resulting in VCO 32 ssii: in a period of time sufficient to determine the frequency of vc 〇 32 count signal 25 ° can be judged t Talk to the power control signal of the power control circuit 104 64 ΐ 疋 二 二 二 二 二 或 或 或 或 睡眠 睡眠 睡眠 ί ί ί ί ί ί ί ί ί ί ί The integer % of the device 'and the phase frequency 3d. Its output _ ° communication key for the particular PLL 30 used to mine the Hi number includes a count stage 106 ' a count buffer 108, and - power # i', shown in Figure 12. Frequency count timing (4) Pair count level Ϊ Send - start/stop control input 7〇. The frequency ί ϋ 1G2 VC 〇 signal is fresh. When the start/stop control finger 1 = day ^1 = stop command, the count buffer ι〇"Ρ is loaded: 22: The value of the broken break sensing parameter is determined by The frequency meter reads the time delay or the separation time at the time of 201203875. In particular, it is ensured that each place is turned on or wakes up when necessary, and in the most order, the seek/sequence and the internal or external controller are placed in the RF signal-segment short-sequence and control circuit 22 the noise circuit 24 Provide the letter "Next and then electricity 1 micro 2: less: on = ° book · 24 Teng antenna 26 received the ringing signal 16. In a real ^ "receiving vibrating, number! At 6 o'clock, the attenuation of the antenna 26 is greater than the line of the vibration number ^ day ^ is constructed to 26 times ίίϋί 的 period f; the receiving circuit 28 receives, adjusts, and desires the antenna ίΪίΪίΪί <More converted into a high gain receive mode, starting with the output of the "receive circuit 28". When the state of the antenna 26 is Λί46: vibrate two = ,, the PLL3 is moved to the holding mode so that ^5 ϊ ί or ^ can be turned off for the adaptability based on the measured pll lock condition. The 28 and the transmit circuit 24 can be turned off by the components of the 34-frequency ms PLL 30 depending on which conditions are appropriate, or the pad values are transferred to the external interface circuit 36. Frequency: The device is placed in a sleep state, and then the timing and control circuit 2^^ is also turned off or placed in a sleep state as appropriate. During the inter-sampling, the timing and control circuit 22 wakes up the timer 38. The sampling should be performed. Otherwise, the timing and control circuit (10) 2: - gentleman and: ^ any other required instructions from the interface circuit 36 ^ ^ bundle sample [the required power on time may exceed the power off time, in the situation f H she will turn the lion to open the straight spine to complete the end of Figure 13 shows an embodiment of the PLL circuit 3 of the reader 10, a feature that can be recognized to PLL 3. Take the ride of the aforementioned PLL 3G, but the equivalent function. It can be seen that some or all of Figures U and 13 change the operational performance of PLL 30 of Figure 11. The selective input rf buffer theory is an RF signal from the amplification stage 86, or its 'ground 201203875 conversion 113 piece j=) converter 113 in the reader 10, a digital to analogy function. " ^ 2, the period of 12 can be selected buffer ^ 28 / at the time of Lin. This reference signal ii t in the side rhyme reference pro, so in any H greater than or equal to 1, π '^ When ΪΪμ龙送黾trn π field input A, switch 115 will both error amplifier 112 signal converter 113. Full converter 113 is then used to sample the control voltage of the VCO to determine vc〇32: Erda 1 控制ρ bow input A's control voltage level of a frequency: _, set the appropriate setting of D/A converter 114, to maintain VC〇32 at the locked frequency input level and continue for any length itm^ Several minor modifications to the operation of the m 11 笠^/ϋ前ϋ13 circuit allow the modification of the functionality of the circuit to be 'completely known as the freshly selectable input B'. The voltage is adjusted to the frequency of the special signal. Once adjusted, the relationship between the digital outputs of the buffer 113 is clearly defined, and the gauge # is used to represent the frequency of the ringing signal 16. The converter outputs the output. In this way, the 趟 converter (1) can be allowed to be replaced by The function translation of the buffer 102 and the frequency counter 34 has another modification to the above operation, using the lock analysis from PLL3G from the conversion ί (4) in order to reduce the lock _ and improve the degree. The output of the sensor 12 can be obtained on the output of the sensor 12, and the output of the rider 112 will converge to the locked voltage value. Then, when the sensor is scattered, the quasi-agricultural reduction can be maintained by locking, and then in a predictable manner. Send 21 201203875 Use the second one and the other to change the method using the frequency counter %, so that Christine P5U turns 丨 ί ! ^! 14 to generate a specific voltage at the input of VC 〇 32, in this specific Ϊ ί ^, and the decision Appears in the output buffer 11 1 (^ the transmission of this Μ · frequency coffee 34 at - "frequency is easy to know" for the slight modification of the circuit of Figure 13 is the position between the obvious error amplifier 112. The appropriate ratio of control voltage, which can be pasted, is not pre-determined, instead of using optional (four) into the buffer ί 盥镅 鲂 鲂 鲂 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种 此种34 A/D conversion II (1) tone Combined program, you can

Uf振頻率的所需時間,而操作讀取器10 低°則述實施例的另—些微修改作法,係將 適當的位置上。這樣的修改可能會使設 處ϋ,,由—轉換器⑴,或D/A轉換器114,或頻 置於遠端倾緣18,讀取11⑴,或外部f料介面 巾又丨—實關巾’數賴譜分㈣路取代了圖7 3的脑34 ’其結果為® 14所顯示的修改版本方塊 路260取代了 PLL 3〇,而頻譜分析電路262則取 植 類比計數㈣25G同樣亦由數位計數信號264加以 神取樣電路26°在振鈴信號16的練_間由振 二Ιίί 6中抽取出貝訊並予數位化。接收電路28可在發送至數位取 將振龄信號16放大並進行調節。數位取樣電路260 路i8的無線電頻率輸出進行取樣,以使獲取以時域為 巷礎的貝料供進一步的分析。 V tfe"!實施例中,讀取器10更包含有頻譜分析電路262以將來自數 士,的時域資料輸出轉換為頻域資料,並緩衝頻域資料以 電路36。頻错分析電路262亦可包括區分功能以便 1疋振鈴化唬的振鈴頻率。如同習於本技藝者所可理解,頻譜分析電 力能可由讀取器1G或遠端資料系統18直接執行, 法的主要差異係在於經由外部介面電路36所送出的資料之形式與 數厘:,以及其處理所進行之處所需要的處理能量。 〃、 數位取樣電5^260與頻譜分析電路262係由時序及控制電路22利 用與圖8所描述實施例相類似的方式而控制的。圖15中的方塊圖描繪 22 201203875 ϋ另—種實施例,其可適於控制® 14戶斤顯示另種 if·,、匕气路。圖8中的PLL計時器48係由圖15的數位取樣計時器 路26°的電_態及睡眠狀態。取樣啟始信號272造 iSiSiiSfli]:叢束取樣模態中收集一個適當數量的樣本以 頻率計時序器5°可被圖15的頻譜分析計時器 -r5;; - ΐί 析電路262的電源狀態及睡眠狀態。分析啟 “叢電路262嶋估算由數位取樣電路260所提 ήτίΙΒΒ1 …,。1(l之方塊圖係說明數位取樣電路260的一實施例。來自於接收 求並的^^ 在此被稱為-個數位樣本的叢束264。午鄕⑦此,.且時間相關之樣本 ϊ逆㉝頻的譜^^26此2 ϋβ4ί?ϊ ㈡ ίί 多 :縮值直= ί 2;;ί 段計算得的_,赠麟-數娜樣 ii 以品4 23 201203875 ==蝴態。接著, 可以獲取,供^輸至|^Uf8本資料保持讓外部介面電路36 次要It文可加以各種The Uf vibration frequency is required for the time, while the operation of the reader 10 is low. The other minor modifications of the embodiment will be in place. Such a modification may result in a setting, by - converter (1), or D/A converter 114, or by placing the frequency at the distal tip 18, reading 11 (1), or external f material interface. The towel's 'reciprocal spectrum' (four) road replaces the brain 34 of Figure 73. The result is that the modified version of the square road 260 shown in ® 14 replaces the PLL 3〇, while the spectrum analysis circuit 262 takes the plant analogy count (four) 25G as well. The digital count signal 264 is extracted by the god sampling circuit 26° from the vibration signal 16 by the vibration signal 并 ίί 6 and digitized. The receiving circuit 28 can amplify and adjust the amplitude signal 16 as it is sent to the digital position. The radio frequency output of the digital sampling circuit 260, i8, is sampled to obtain the material in the time domain for further analysis. In the embodiment of the V tfe "!, the reader 10 further includes a spectrum analysis circuit 262 for converting the time domain data output from the digital to the frequency domain data and buffering the frequency domain data to the circuit 36. The frequency error analysis circuit 262 may also include a ringing frequency that distinguishes the function so as to ring. As can be appreciated by those skilled in the art, the spectrum analysis power can be directly executed by the reader 1G or the remote data system 18. The main difference of the method is the form and number of data sent via the external interface circuit 36: And the processing energy required for where it is processed. 〃, digitally sampled power 5^260 and spectrum analysis circuit 262 are controlled by timing and control circuit 22 in a manner similar to the embodiment depicted in FIG. The block diagram in Figure 15 depicts 22 201203875. Another embodiment that can be adapted to control ® 14 kg to display an alternative if·, 匕 gas path. The PLL timer 48 of Fig. 8 is an electrical state and a sleep state of 26° by the digital sampling timer of Fig. 15. The sampling start signal 272 is made iSiSiiSfli]: an appropriate number of samples are collected in the cluster sampling mode by frequency. The sequencer 5° can be analyzed by the spectrum analysis timer of FIG. 15 -r5; - ΐ 电路 262 262 Sleep state. The analysis "cluster circuit 262" is estimated by the digital sampling circuit 260. The block diagram of l illustrates an embodiment of the digital sampling circuit 260. The ^^ from the reception summation is referred to herein. A cluster of digital samples of 264. In the afternoon, 7 times, and the time-dependent sample is inversion of the 33-frequency spectrum ^^26 This 2 ϋβ4ί?ϊ (2) ίί Multi: The value of the straight = ί 2;; _, gift lin - number Na sample ii to product 4 23 201203875 == butterfly state. Then, you can get, for ^ to lose to | ^ Uf8 this data to keep the external interface circuit 36 secondary It can be various

,由器2:種,是實際上將頻:斤S %Τ^ΙΤ,%%' lo lit SSiiS形塑,分析“以5Ϊ, by the device 2: species, is actually the frequency: kg S % Τ ^ ΙΤ, %% ' lo lit SSiiS shape plastic, analysis "to 5 Ϊ

刺藝者將可容純誠到,此地紅各種頻率 il: 在不同的用途之中有各有其優K _號16 路可與數_譜分機合使帛,喊將振鈐 ii/SSS 12 n t ° ^ 4 ⑽外的-頻率 本發明實施例已詳細說明如上,顯然地,習於本技藝者在閱讀並瞭 解本說明書之後當可進行修改及變化。後列申請專利顧應包含有在 本發明所界定發明範鳴内的所有此等修改及變化。 【圖式簡單說明】 本發明圖式之中: 圖為一被動式無線感測器系統之方塊圖; 圖2係為說明用以由感測器上進行讀取之方法的一流程圖; 率if的線圖以性f方式綱感測器與讀取11之’信號交換之頻 圖4依續包含有二曲線圖,其以性質方式說明在進行獲取讀取的 間,感測器與讀取器之間其信號交換之頻率上的特性; 24 201203875 外部圖資之方塊® ’其_大以包容-線;圖6係為圖1被動式無線感測器系統之方塊圖,其補充有一中間天 ! 電路之頂階方塊圖; ⑵之時控及控制部份的方塊圖; ,η ίίΐΤι态電路-之頻率計數器部份的方塊圖; 塊圖,讀取1111路之軸迴路部份另-實施例的方 龙圖圖14、固持所需的數位取樣計時器及產生功能; 频内部電路另—實施例的方塊圖,其中PLL盘 mi樣電路及頻譜分析電路加以取代;.” 時控制電路另—實施例的方塊圖,其中PLL計 L 3 f找料時#係以數位取樣計時器及頻譜分析計時器分別 圖I6係為圖Μ數位取樣電路方塊之内部構造的方塊圖;與 圖Π係為圖14頻譜分析電路方塊之内部構造的方塊圖。 【主要元件符號說明】 10讀取器 Θ遠端資料收集 21遠端資料顯示 24發射電路 28接收電路 32電壓控制振盪器 36外部資料介面 40組構緩衝器 44發射頻率產生器 48 PLL計時器 52啟私 56減緩控制 6〇致能 64電源控制 68電源控制 72位準偏移器 76 Q控制電路 80電源控制電路 U外部資料介面 20遠端資料記錄 22時序及控制電路 26至天線 30相位鎖定迴路 34頻率計數器 3号叫醒計時器 42發射計時器 46接收計時器 50頻率計數器計時器 54電源控制 58 Q控制 62電源控制 66 S/Η模態 7〇開始/停止計數器 74發射驅動器 78阻尼電路 82調諧及D.C·方塊 25 201203875 ---------- 115開關 ^ 5始?態:感測器之共振頻率與被感測之參數成比例 204續取器以固定頻率發射激發脈波 22= 感性輛合而充能,將能量健存於持样雷路Φ 出振“ifi號; ; 210讀取器接收振鈴信號並放大 212讀取器鎖定並固持振鈴信號 = 測其所固持信號之頻率 84高Z緩衝器/嵌位器 88電源控制電路 92 RF切分器 96 S/Η誤差放大器 102輸出緩衝器 106計數器級 110電源控制電路 112誤差放大器 114數位至類比轉換器 250計數信號 264數位取樣叢束 270電源控制 274數位取樣計時器 278分析開始 290類比至數位轉換器 86放大器級 90 RF緩衝器 94相位頻率偵測器 98 VCO切分器 104電源控制電路 108計數緩衝器 111選擇輸入RF緩衝器 •113類比至數位轉換器 260數位取樣電路 262頻譜分析電路 272取樣開始 276電源控制 280頻譜分析計時器 292電源控制電路 26The singer will be able to meet the pure acquaintance, the red frequency of this place il: in each of the different uses, there are their excellent K _ number 16 road can be combined with the number _ spectrum extension, shouting will vibrate ii / SSS 12 The present invention has been described in detail above with reference to the embodiments of the present invention. It is obvious that modifications and variations can be made by those skilled in the art after reading and understanding the specification. The following application patents contain all such modifications and variations within the scope of the invention as defined by the invention. BRIEF DESCRIPTION OF THE DRAWINGS In the drawings: Figure is a block diagram of a passive wireless sensor system; Figure 2 is a flow chart illustrating a method for reading from a sensor; The line graph of the f-mode sensor and the frequency diagram 4 of the 'signal exchange' of reading 11 successively include a two-graph, which is described in a qualitative manner between the acquisition and the reading, the sensor and the reading. The characteristics of the frequency of signal exchange between the devices; 24 201203875 The square of the external diagrams® 'its _ large to contain-line; Figure 6 is a block diagram of the passive wireless sensor system of Figure 1, supplemented by an intermediate day The top-level block diagram of the circuit; (2) the block diagram of the time control and control part; the block diagram of the frequency counter part of the η ίίΐΤι state circuit; the block diagram, the part of the axis circuit of the 1111 way is read - implementation Example of the square dragon diagram Figure 14, the digital sampling timer and the generation function required for holding; the frequency internal circuit is another - block diagram of the embodiment, in which the PLL disk mi-like circuit and the spectrum analysis circuit are replaced; - a block diagram of an embodiment in which the PLL meter L 3 f The material time is a block diagram of the internal structure of the digital sampling circuit block, and the block diagram is the block diagram of the internal structure of the spectrum analysis circuit block of FIG. 14 . [Main component symbol description] 10 reader Θ remote data collection 21 remote data display 24 transmitting circuit 28 receiving circuit 32 voltage control oscillator 36 external data interface 40 fabric buffer 44 transmitting frequency generator 48 PLL timer 52 Kaiqi 56 mitigation control 6 〇 enable 64 power control 68 power control 72-bit quasi-offset 76 Q control circuit 80 power control circuit U external data interface 20 remote data record 22 timing and control circuit 26 to antenna 30 phase lock loop 34 Frequency Counter No. 3 Wake-up Timer 42 Transmit Timer 46 Receive Timer 50 Frequency Counter Timer 54 Power Control 58 Q Control 62 Power Control 66 S/Η Mode 7〇 Start/Stop Counter 74 Transmit Driver 78 Damping Circuit 82 Tuning and DC Block 25 201203875 ---------- 115 Switch ^ 5 Start State: The resonant frequency of the sensor is proportional to the sensed parameter. The transmitter emits the excitation pulse at a fixed frequency. 22= Sensitive and recharged, and the energy is stored in the sample-holding ray Φ. “Ifi number; 210 reader receives the ringing signal and amplifies 212 reader lock and holds Ringing signal = measuring the frequency of the held signal 84 high Z buffer / clamper 88 power control circuit 92 RF splitter 96 S / Η error amplifier 102 output buffer 106 counter stage 110 power control circuit 112 error amplifier 114 digital Analog to converter 250 count signal 264 digital sampling bundle 270 power control 274 digital sampling timer 278 analysis start 290 analog to digital converter 86 amplifier stage 90 RF buffer 94 phase frequency detector 98 VCO splitter 104 power control Circuit 108 Count Buffer 111 Select Input RF Buffer • 113 Analog to Digital Converter 260 Digital Sampling Circuit 262 Spectrum Analysis Circuit 272 Sampling Start 276 Power Control 280 Spectrum Analysis Timer 292 Power Control Circuit 26

Claims (1)

201203875 七、申請專利範圍: 1·由一遠端位置獲得一量測值之一方法,該方法包含: 以固定頻率將至少一激發脈波發送至一無線感測器; 反應於該至少-激發脈波而由該無線感測器之處接收至少—信號; 對該接受到之信號進行取樣及固持;與 確定該接收到信號之頻率,其中該無線感測器被組構來以與至少一被感 測到參數成比例之方式而改變其共振頻率。 2. 申請專利範圍第丨項之方法’其更包含以該蚊頻率發送複數個的 該些激發驗,接《數_馳錢,與確定該則請的頻率。 3. 申請專穩Μ 2項之方法,其帽些複數_被確定頻率被取平 均0 4. 申#專繼圍第1項之方法,其巾該激發脈波麵射頻阳)信號。 5. 申請專利範圍第4項之方法,其中該激發脈波之頻率係約為⑽ MHz 〇 6. 申請專利範圍第1項之方法,其更包含將該無線感㈣與提供一不 同功能之一裝置相結合之步驟。 7. 申請專利範@第1項之方法,其中該信號係為_振龄信號。 27 201203875 8·申請專利範圍第1項之方法,其更包含以下步驟: 以不同於該固定頻率之一參考頻率發送至少一參考激發脈波; 反應於該至少一參考激發脈波而由與該無線感測器結合之一固定參考 共振器之處接收至少一參考反應信號; 對該參考反應信號進行取樣及固持; 確定該參考反應信號之頻率;與 依據該被確定之頻率而改進該被接收信號對該至少一被感測到參數之 關聯。 9. 由一遠端位置獲得一量測值之一系統,該系統包含: 一無線感測器,其被組構來反應於至少一被感應到之參數而改變其共振 頻率之;與 一讀取器,其被組構來以固定頻率將至少一激發脈波發送至一無線感測 器,以反應於該激發脈波而由該無線感測器之處接收至少一信號,並對該 接受到之信號進行取樣及固持。 10. 申清專利範圍第9項之系統’其中該無線感測器包含至少一電容 與至少-電感,且其中該至少一電感隨該至少一被感應到之參數而變動。 11. 申α專利範圍第9項之彳、統,其巾該無職測II包含至少一電容 與至少-電感’且其中該至少一電容隨該至少—被感應到之參數而變動。 12. 申請專利範圍第9項之系統,其中該無線感測器係與提供一不同 28 201203875 功能之一裝置結合。 申月專利第9項之系統,其更包含—巾間天線,設置於該讀 取器與該無線感測器之間。 14.申請專利範圍第13項之系統,其中該中間天線包含有二天線,其 利用導電連線而連接在一起。 申清專利涵第14項之系統,其中該二天線中之第—天線係被設 置且被設計來與_㈣進行最佳化通訊。 6.申明專她圍第Μ項之系統,其中該二天線中之第二天線係被設 置且被設計來_無域>聰撕最佳化通訊。 Π.申請專利第9項之系統,其中該至少__紐脈波係為以下其 中之至少其一: -脈衝,其包含在馳接收聰號之辩其正或負百分之二十頻帶内之 頻率; —脈衝’其包含在該被接收到信號之—次諧波之頻率其正或負百分之二 十頻帶内之頻率; 一超寬頻脈波’其具有小於雜魏_倍之錢寬度錢*少於該被 接收到彳g號其頻率三分之一之頻帶内容;與 -脈衝,其係由不低於該被接收舰號頻斜分之人且不高於該信號頻 率十分之十二的-頻率下,不少於其十個且不多於其—萬侧週期所構成。 29 201203875 申請專利範圍第9項之系统 申請專利範圍第9項之系統 申請專利翻第9項之系統 18. 19. 20. ’其中該信號係為一振鋒信號。 ’其中該讀取器係為一手持裝置。 ’其中該讀取器係以一電池驅動。 申咕專利縫第9項之系統,其中該無線感測器更包含有一額外 共振電路,其具有不同於無線感測器之固定共振頻率之-共振頻率。 22.申請專利範圍第21項之系統,其中該讀取器更被組構來以該額外 共振電路之制㈣率而發送—第二激發脈波,並接絲自綱外共振電 路之一反應。 23. 巾4專利|a圍第22項之系統,其中該讀取器更被組構來確定來自 該額外共振電路之該反應之頻率,以供雛該至少—被接收信號。 24. —無線感測器之讀取器,其包含·· 發射電路,其被組構來產生至少一激發脈波以致使一無線感測器發 送出至少一反應信號; 至J一天線,其被組構來發射該激發脈波並接收該反應信號; 鎖相迴路電路,其被組構來由該至少—天線之處接收該反應信號’ 韻相迴路電路包含有一電麵制振盈器 ,其被組構來以相對於該反應信 號頻率之—頻率而產生—計數信號; —第一電路’其被組構來對該電壓控制振盪器之控制電壓輸入進行取 201203875 .. 、她構來產生—控制電壓錢以供輸人至該電壓控制 振 , /、,路可被置於-取賴態之接㈣反應信號並依 據該反應信號之頻率而調整該計數信號的頻率; _ w k路電路更可被餘―固持_之巾崎料數信號的頻 率固持吊&並維持足以判定該計數信號頻率的時間;且 ’、4 H路及該第二電路職鎖购路電路再組構於該取樣模態 與該固持模態之間。 5.申π專利範圍第%項之無線感測器之讀取器,其中該第一電路更 包含有類比至數位轉換電路。 · 26·申清專利範圍第Μ項之無線感測器之讀取器,其中由該類比至數 位轉換電路之麵獲得的數值被用於㈣鎖相迴路電馳構於細持模態 之中。 27.申請專利範圍第25項之無線感測器之讀取器,其中由該類比至數 位轉換電狀處顺得的數值被驗欺帛⑽計料數信號頻率之一 點。 28. 申請專利範圍第24項之無線感測器之讀取器,其中該第二電路更 包含有數位至類比轉換電路。 29. 申請專利範圍第24項之無線感測器之讀取器,其更包含有一切換 31 201203875 開關以供由該被產生之控制電壓信號與該鎖相迴路之相位偵測器之輪出 兩者之中選擇對該電壓控制振盪器之輸入。 30. 申請專利範圍第24項之無線感測器之讀取器,其中該讀取器被会 構來在該反應彳s號不存在時的至少一部份時間之期間内將該電壓控制持還 器頻率固持在一被產生之固定頻率上。 31. 申請專利範圍第24項之無線感測器之讀取器,其中該電壓控制振 盪器之反應於該計數信號頻率的該控制電壓輸入係直接由該鎖相迴路電路 輸出。 32. 申請專利範圍第24項之無線感測器之讀取器,其中該鎖相迴路電 路更包含有可供内部調校之電路。 33. 申請專利範圍第32項之無線感測器之讀取器,其中該調校電路可 致動該電壓控制振盪器之該控電壓輸入以便與該反應信號頻率產生關聯。 34. 申睛專利範圍第33項之無線感測器之讀取器,其中該調校電路可 致動以一參考信號取代該反應信號之輸入至該鎖相迴路。 35. 申請專利範圍第33項之無線感測器之讀取器,其中該調校電路可 致動以一參考電壓取代該控制電壓輸入之輸入至該電壓控制振盪器,以及 該電壓控制振盪器輸出頻率之估計。 36. 申請專利範圍第24項之無線感測器之讀取器,其中該反應信號係 32 201203875 為一振鈐信號。 37. 申請專利範圍第24項之無線感測器之讀取器,其中該激發脈波具 有一固定頻率。 38. 申請專利範圍第24項之無線感測器之讀取器,其中該發射電路更 被組構來以-固定頻率產生至少一激發脈波,以導致在該無線感測器上之 一參考振盪器發射一參考反應信號。 39. 申請專利範圍第38項之無線感測器之讀取器,其中該無線感測器 之讀取器更被組構來量測該參考反應信號之鱗,並_以改進由該無線 ' 感測器之處所獲得之讀數的精確度。 40. 讀取一無線感測器之方法,其包含: 對一無線感測器發射至少一激發脈波; 反應於該激發脈波而由該無線感測器之處接收至少一反應信號; 放大該反應信號; 將一振盪器鎖定在相對於該反應信號的一諧波頻率上; 以數位方式對該振盪器之控制電壓進行取樣; 將該振盪器之數位取樣控制電壓再生;與切換該再生之電壓以控制該 振盪器以便判定該振盪器之頻率。 41.申請專利範圍第40項之方法,其包含有在該反應信號不存在時的 至少一部份時間之期間内以一參考電壓控制該振盪器之一額外步驟β 33 201203875 42. 申請專利範圍第40項之方法,其包含有在該反應信號不存在時的 至少一部伤時間之期間内以供應一參考信號取代該反應信號而進行頻率鎖 定之一額外步驟。 43. 申請專利範圍第40項之方法,其中該反應信號係為一振鈴信號。 44. 讀取一無線感測器之方法,其包含: 調校一讀取裝置以在一振盪器控制電壓與該振盪器之振盪頻率之間獲 得一個關聯; 由該讀取裝置對一無線感測器發射至少一激發脈波; 反應於該激發脈波而由該無線感測器之處接收至少一反應信號; 放大該反應信號; 將一振盪器鎖定在相對於該反應信號的一諧波頻率上; 以數位方式對該振盪器之控制電壓進行取樣;與 利用該關聯而估計該控制電壓以獲得該範應信號頻率。 45. 申請專利範圍第44項之方法,其中該調校牽涉到該振盪器頻率之 計數* 46. 申請專利範圍第44項之方法,其中該調校牵涉到引入具有以已知 頻率之一參考信號以取代該反應信號。 47. 申請專利範圍第44項之方法,其更包含有在該反應信號不存在時 的至少一部份時間之期間内以一參考電壓控制該電壓控制振盪器的一額外 34 201203875 步驟。 48. 申請專利範圍第44項之方法,其包含有在該反應信號不存在時的 至少一部份時間之期間内以供應一參考信號取代該反應信號而進行頻率鎖 定之一額外步驟。 49. 申請專利範圍第44項之方法,其中該反應信號係為一振鈴信號。 50. —無線感測器之讀取器,其包含: 一發射電路,其被組構來產生至少一激發脈波以致使一無線感測器發 送出對應於一被感測參數值之至少一反應信號; 至少一天線,其被組構來發射該至少一激發脈波並接收該至少一反應 信號; 一接收電路,可供放大該至少 一被接收到之反應信號; 一數位取樣電路, 數位之表示方式; 可將該至少一被放大之被接收到的反應信號轉換為 一頻譜分析電路 表示方式;與 β將該至v—反應化號之該數位表示轉換為頻域之 一頻域電路 參數值。 35 201203875 52. 申明專圍第50項之無線感測器之讀取器,其中該反應信號之 該數位絲方式之轉換為_麵方式係至少局部地以軟體執行。 53. 申明專利犯圍第5〇項之無線感測器之讀取器,其中該反應信號係 為一振铃信號。 …54·辦細第5G狀罐鞭_,其中該無線感測 係為一手持裝置。 器 55.申請專利範圍第5〇項之無線感測器之讀取器 以供驅動該無線感測器之讀取器。 ’其更包含有一電池 56.讀取一無線感測器之方法,其包含: 對一無線感測器發射至少一激發脈波; 反應於該激發脈波而由該無線感測器之處接收至少 放大該至少一反應信號; 一反應信號 對該至少一反應信號之值進行取樣,以獲得多個時域樣本. 將該些時域樣本轉換為頻域,以便獲得頻域之資訊;與 估算該頻域資訊,以便獲得該反應信號之頻率。 57.申請專利範Μ 56項之方法’ S包含有處理該步員崎訊之一額外 步驟》 Μ.申請專利範圍第%項之方法’其包含有分彳物_f訊之一額外 步驟。 36 201203875 59·申請專利範圍第56項之t、+ 步驟。 項之方法,其包含有儲存顧域資訊之一額外 6〇,申請專利範圍第56項 項之方法,其包含有以下之額外 將該時域樣本前送至-遠端處理襄置; 以s玄达端處理裂置接收該時域資气,與 於該遠端處理裝置之處估算該些時域樣本以獲得該至少-反應信號之 該頻率。 61.申明專利範圍第56項之方法,其中該反應信號係為一振铃信號。 62·申請專利範圍第56項之方法,其更包含有利用一電池驅動該讀取 器之步驟。 37201203875 VII. Patent application scope: 1. A method for obtaining a measurement value from a remote location, the method comprising: transmitting at least one excitation pulse wave to a wireless sensor at a fixed frequency; reacting to the at least-excitation And receiving, by the wireless sensor, at least a signal; sampling and holding the received signal; and determining a frequency of the received signal, wherein the wireless sensor is configured to be at least one The resonant frequency is changed by sensing how the parameters are proportional. 2. The method of applying for the scope of the patent scope ‘they further includes transmitting the plurality of stimuli at the mosquito frequency, and then counting the number of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3. The method of applying for the specialization of 2 items, the caps of the plural _ are determined to be equalized by the frequency of 0. 4. The method of the first step is to follow the method of the first item, and the signal of the pulse wave surface is positive. 5. The method of claim 4, wherein the frequency of the excitation pulse is about (10) MHz 〇 6. The method of claim 1 of the patent scope further includes one of the different functions of the wireless sense (four) The combination of devices. 7. The method of applying for patent paradigm @1, wherein the signal is a _ vibration age signal. The method of claim 1, further comprising the steps of: transmitting at least one reference excitation pulse wave at a reference frequency different from the fixed frequency; reacting with the at least one reference excitation pulse wave The wireless sensor receives at least one reference response signal in combination with one of the fixed reference resonators; samples and holds the reference response signal; determines a frequency of the reference response signal; and improves the received according to the determined frequency The signal is associated with at least one sensed parameter. 9. A system for obtaining a measurement from a remote location, the system comprising: a wireless sensor configured to react to at least one of the sensed parameters to change its resonant frequency; a device configured to transmit at least one excitation pulse wave to a wireless sensor at a fixed frequency to receive at least one signal from the wireless sensor in response to the excitation pulse wave, and to receive the signal The signal is sampled and held. 10. The system of claim 9 wherein the wireless sensor comprises at least one capacitor and at least an inductance, and wherein the at least one inductance varies with the at least one sensed parameter. 11. In the ninth aspect of the patent application, the unserviced test II includes at least one capacitance and at least an inductance 'and wherein the at least one capacitance varies with the at least one sensed parameter. 12. The system of claim 9, wherein the wireless sensor is combined with a device that provides a different function of 201203875. The system of claim 9 of the present invention further comprises an inter-cloth antenna disposed between the reader and the wireless sensor. 14. The system of claim 13 wherein the intermediate antenna comprises two antennas that are connected together using electrically conductive wires. The system of claim 14 is the system wherein the first antenna of the two antennas is set and designed to be optimally communicated with _(d). 6. Declare a system dedicated to her, in which the second antenna of the two antennas is set and designed to _no-domain>系统. The system of claim 9, wherein the at least __New pulse wave is at least one of the following: - a pulse, which is included in the positive or negative 20% band of the Chi Cong Cong The frequency; - the pulse 'which contains the frequency within the frequency band of the positive or negative 20 percent of the frequency of the received harmonic of the signal; an ultra-wide frequency pulse 'which has less than the Wei Wei times The width money* is less than the frequency band of the frequency that is received by the 彳g number of one-third of the frequency; and the -pulse, which is not less than the frequency of the received ship's number and is not higher than the signal frequency ten At the frequency of twelve, the frequency is not less than ten and not more than its 10,000-side period. 29 201203875 System for applying for patent scope item 9 System for applying for patent scope No. 9 System for applying for patent ninth item 18. 19. 20. 'This signal is a vibration signal. Wherein the reader is a handheld device. Where the reader is driven by a battery. The system of claim 9, wherein the wireless sensor further comprises an additional resonant circuit having a resonant frequency different from a fixed resonant frequency of the wireless sensor. 22. The system of claim 21, wherein the reader is further configured to transmit a second excitation pulse at a rate of the additional resonant circuit, and the wire is reacted from one of the external resonant circuits. . 23. The system of claim 22, wherein the reader is further configured to determine a frequency of the reaction from the additional resonant circuit to provide for at least a received signal. 24. A reader for a wireless sensor, comprising: a transmitting circuit configured to generate at least one excitation pulse to cause a wireless sensor to transmit at least one response signal; to a J antenna Constructed to emit the excitation pulse wave and receive the reaction signal; a phase-locked loop circuit configured to receive the reaction signal from the at least antenna: the rhythm loop circuit includes an electrical surface vibrator It is configured to generate a -counting signal with respect to the frequency of the reaction signal frequency; - the first circuit 'is configured to take the control voltage input of the voltage controlled oscillator into 201203875 .. Producing - controlling voltage money for input to the voltage control vibration, /, the path can be placed in the - dependent state (four) reaction signal and adjust the frequency of the counting signal according to the frequency of the reaction signal; _ wk road The circuit can be held by the frequency of the residual-holding signal, and maintains a time sufficient to determine the frequency of the counting signal; and the ', 4H road and the second circuit occupational circuit purchase circuit re-structuring Take the Between the mode and the holding mode. 5. The reader of the wireless sensor of the ninth patent scope, wherein the first circuit further comprises an analog to digital conversion circuit. · 26. The reader of the wireless sensor of the third paragraph of the patent scope, wherein the value obtained by the analog to the surface of the digital conversion circuit is used for (4) the phase-locked loop is electrically coupled to the fine mode . 27. The reader of the wireless sensor of claim 25, wherein the value obtained by the analog-to-digital conversion electrical mode is determined to be one of the frequency of the (10) counting number signal. 28. The reader of a wireless sensor of claim 24, wherein the second circuit further comprises a digital to analog conversion circuit. 29. The reader of the wireless sensor of claim 24, further comprising a switch 31 201203875 switch for the rotation of the generated phase control signal and the phase detector of the phase locked loop Among them, the input to the voltage controlled oscillator is selected. 30. The reader of a wireless sensor of claim 24, wherein the reader is configured to control the voltage during at least a portion of the time when the reaction 彳s number does not exist The counter frequency is held at a fixed frequency that is generated. 31. The reader of a wireless sensor of claim 24, wherein the control voltage input of the voltage control oscillator responsive to the frequency of the count signal is directly output by the phase locked loop circuit. 32. The reader of the wireless sensor of claim 24, wherein the phase locked loop circuit further comprises a circuit for internal adjustment. 33. The reader of a wireless sensor of claim 32, wherein the calibration circuit is operative to activate the control voltage input of the voltage controlled oscillator to correlate with the frequency of the reactive signal. 34. The reader of a wireless sensor of claim 33, wherein the calibration circuit is actuatable to replace the input of the reaction signal with the reference signal to the phase locked loop. 35. The reader of a wireless sensor of claim 33, wherein the calibration circuit is actuatable to replace an input of the control voltage input with the reference voltage to the voltage controlled oscillator, and the voltage controlled oscillator Estimation of the output frequency. 36. The reader of the wireless sensor of claim 24, wherein the reaction signal system 32 201203875 is a vibrating signal. 37. The reader of a wireless sensor of claim 24, wherein the excitation pulse has a fixed frequency. 38. The reader of a wireless sensor of claim 24, wherein the transmitting circuit is further configured to generate at least one excitation pulse at a fixed frequency to cause a reference on the wireless sensor. The oscillator emits a reference response signal. 39. The reader of a wireless sensor of claim 38, wherein the reader of the wireless sensor is further configured to measure a scale of the reference response signal, and to improve by the wireless The accuracy of the readings obtained at the sensor. 40. A method of reading a wireless sensor, comprising: transmitting at least one excitation pulse wave to a wireless sensor; receiving at least one reaction signal from the wireless sensor in response to the excitation pulse wave; The reaction signal; locking an oscillator at a harmonic frequency relative to the reaction signal; sampling the control voltage of the oscillator in a digital manner; regenerating the digital sampling control voltage of the oscillator; and switching the regeneration The voltage is used to control the oscillator to determine the frequency of the oscillator. 41. The method of claim 40, comprising the step of controlling one of the oscillators with a reference voltage during at least a portion of the time when the reaction signal is absent. β 33 201203875 42. Patent Application Range The method of item 40, comprising the additional step of frequency locking by supplying a reference signal in place of the reaction signal during at least one injury time in the absence of the reaction signal. 43. The method of claim 40, wherein the reaction signal is a ringing signal. 44. A method of reading a wireless sensor, comprising: calibrating a reading device to obtain an association between an oscillator control voltage and an oscillation frequency of the oscillator; a wireless sense by the reading device The detector emits at least one excitation pulse wave; receiving at least one reaction signal from the wireless sensor in response to the excitation pulse wave; amplifying the reaction signal; locking an oscillator to a harmonic with respect to the reaction signal Frequency; sampling the control voltage of the oscillator in a digital manner; and estimating the control voltage using the correlation to obtain the frequency of the analog signal. 45. The method of claim 44, wherein the tuning involves counting the oscillator frequency* 46. The method of claim 44, wherein the tuning involves introducing a reference having a known frequency A signal is substituted for the reaction signal. 47. The method of claim 44, further comprising the step of controlling an additional 34 201203875 of the voltage controlled oscillator with a reference voltage during at least a portion of the time when the reaction signal is absent. 48. The method of claim 44, comprising the additional step of frequency locking by supplying a reference signal in place of the reaction signal for at least a portion of the time when the reaction signal is absent. 49. The method of claim 44, wherein the response signal is a ringing signal. 50. A reader for a wireless sensor, comprising: a transmitting circuit configured to generate at least one excitation pulse to cause a wireless sensor to transmit at least one corresponding to a sensed parameter value a reaction signal; at least one antenna configured to emit the at least one excitation pulse wave and receive the at least one reaction signal; a receiving circuit for amplifying the at least one received reaction signal; a digital sampling circuit, digital Representation manner; converting the at least one amplified reaction signal into a spectrum analysis circuit representation; and converting the digital representation of the v-resonation number to a frequency domain circuit in the frequency domain Parameter value. 35 201203875 52. A reader for a wireless sensor according to item 50, wherein the conversion of the digital signal of the reaction signal to the _ plane mode is performed at least partially in software. 53. A reader of a wireless sensor of claim 5, wherein the response signal is a ringing signal. ...54. The 5G-shaped can whip _, wherein the wireless sensing system is a handheld device. The reader of the wireless sensor of claim 5 is for driving the reader of the wireless sensor. The method further includes a battery 56. A method of reading a wireless sensor, comprising: transmitting at least one excitation pulse wave to a wireless sensor; receiving the excitation pulse wave and receiving by the wireless sensor At least amplifying the at least one reaction signal; and a response signal sampling the value of the at least one response signal to obtain a plurality of time domain samples. Converting the time domain samples into a frequency domain to obtain frequency domain information; and estimating The frequency domain information is used to obtain the frequency of the reaction signal. 57. The method of applying for a patent model of 56 items 'S includes an additional step of processing one of the steps of the person's essays. Μ. Method of applying for the scope of patent item ’, which includes an additional step of branching. 36 201203875 59 · The t, + steps of the 56th patent application scope. The method of the item, comprising the method of storing an additional information of one of the fields, and applying for the 56th item of the patent scope, including the following additional time domain samples to be sent to the remote processing device; The Honda processing burst receives the time domain asset and estimates the time domain samples at the remote processing device to obtain the frequency of the at least-reactive signal. 61. The method of claim 56, wherein the reaction signal is a ringing signal. 62. The method of claim 56, further comprising the step of driving the reader with a battery. 37
TW100109414A 2010-03-19 2011-03-18 Wireless sensor reader TWI504165B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/727,306 US8493187B2 (en) 2007-03-15 2010-03-19 Wireless sensor reader

Publications (2)

Publication Number Publication Date
TW201203875A true TW201203875A (en) 2012-01-16
TWI504165B TWI504165B (en) 2015-10-11

Family

ID=46756473

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104128680A TWI559691B (en) 2010-03-19 2011-03-18 Wireless sensor reader
TW100109414A TWI504165B (en) 2010-03-19 2011-03-18 Wireless sensor reader

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104128680A TWI559691B (en) 2010-03-19 2011-03-18 Wireless sensor reader

Country Status (2)

Country Link
HK (1) HK1147906A2 (en)
TW (2) TWI559691B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006262287A1 (en) 2005-06-21 2007-01-04 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US10003862B2 (en) 2007-03-15 2018-06-19 Endotronix, Inc. Wireless sensor reader
US8154389B2 (en) 2007-03-15 2012-04-10 Endotronix, Inc. Wireless sensor reader
WO2014070316A1 (en) 2012-09-14 2014-05-08 Endotronix, Inc. Pressure sensor, anchor, delivery system and method
US9996712B2 (en) 2015-09-02 2018-06-12 Endotronix, Inc. Self test device and method for wireless sensor reader
US11615257B2 (en) 2017-02-24 2023-03-28 Endotronix, Inc. Method for communicating with implant devices
CA3053497A1 (en) 2017-02-24 2018-08-30 Endotronix, Inc. Wireless sensor reader assembly
CA3062861A1 (en) 2017-04-20 2018-10-25 Endotronix, Inc. Anchoring system for a catheter delivered device
WO2019018644A1 (en) 2017-07-19 2019-01-24 Endotronix, Inc. Physiological monitoring system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3872455A (en) * 1971-11-17 1975-03-18 Monitron Ind Physiological measurement display system
US4531526A (en) * 1981-08-07 1985-07-30 Genest Leonard Joseph Remote sensor telemetering system
US4966034A (en) * 1988-04-28 1990-10-30 Schrader Automotive, Inc. On-board tire pressure indicating system performing temperature-compensated pressure measurement, and pressure measurement circuitry thereof
US6926670B2 (en) * 2001-01-22 2005-08-09 Integrated Sensing Systems, Inc. Wireless MEMS capacitive sensor for physiologic parameter measurement
US7452334B2 (en) * 2002-12-16 2008-11-18 The Regents Of The University Of Michigan Antenna stent device for wireless, intraluminal monitoring
US7245117B1 (en) * 2004-11-01 2007-07-17 Cardiomems, Inc. Communicating with implanted wireless sensor

Also Published As

Publication number Publication date
TWI504165B (en) 2015-10-11
TW201603505A (en) 2016-01-16
HK1147906A2 (en) 2011-08-19
TWI559691B (en) 2016-11-21

Similar Documents

Publication Publication Date Title
TW201203875A (en) Wireless sensor reader
EP3202309B1 (en) Wireless sensor reader
US10003862B2 (en) Wireless sensor reader
US8493187B2 (en) Wireless sensor reader
US6579498B1 (en) Implantable blood glucose sensor system
US8749358B2 (en) Passive transponder for an RFID system, and method of transmitting data from/to a data source of such a passive transponder
US7918801B2 (en) Sensors for monitoring movements, apparatus and systems therefor, and methods for manufacture and use
US20070164752A1 (en) Biometric information transmitter
Aldaoud et al. Design of a miniaturized wireless blood pressure sensing interface using capacitive coupling
Pichorim et al. A novel method to read remotely resonant passive sensors in biotelemetric systems
Liang et al. A novel implantable saw sensor for blood pressure monitoring
JP2018137815A (en) Wireless sensor reader
JP2001286447A (en) Resonance based pressure transducer system
CN101084825A (en) Wrist watch for detecting human body physiological state
JPH08261915A (en) Tactile sensor probe and tactile sensor
AU2015264867A1 (en) Wireless sensor reader
JP2017038396A (en) Wireless sensor reader
JPS63171331A (en) In-vivo temperature measuring instrument
WO2002060215A2 (en) Wireless battery-less microphone
JP4849884B2 (en) Biological information transmitter
JPS635228A (en) Temperature or pressure sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees