201203847 • 六、發明說明: 【發明所屬之技術領域】 本發明是大致關於陶瓷多層元件,且尤關於用於整合 ' 電感與ESD保護功能的陶瓷多層元件。 【先前技術】 第10 2005 025 680 A1號德國專利文件係揭露一種 具有變阻器(varistor)與LC濾波器的多層元件。 第10 2008 019 127 A1號德國專利係描述一種具有 亞鐵鹽(ferrite)陶瓷的多層元件,該多層元件具有形成電 感的電極結構。該多層元件進一步具有由變阻器陶竞所知 成的電容區。 【發明内容】 本發明的目的是要具體提出一種用以整合電感與esd 保護功能的陶瓷多層元件。 _該目標是藉由具有中請專利範圍第^的特徵的多層 兀件來達成。細微的區別是揭露在_項中請專利範圍中。 該陶竟多層元件具有基礎本體、亞鐵鹽陶兗與變阻 陶莞,該基礎本體具有與其本身配接的連接觸點,該 ,=是提供做為該基礎本體中的感應區並且將電感配置 ?該感應區中,該電感是由電導體所形成,該變阻器喊 疋位於該基礎本體中’其中’該變阻 礎本體的體積的40%。 该基 =個實_中’該變”喊是配置在該 的外表面上。 95117 3 201203847 在進一步的實施例中,該變阻器陶 底層(stratum layer),且該表面變ρ且^疋表面變阻器的 包括最多該基礎本 體的體積的20% 在進一步的實施例中,金屬或氧 '化的中門居曰 鐵鹽陶瓷與該變阻器陶瓷之間。可 0增疋配置在 擴散阻障(diffusion barrier),m A 中間層供為 抑制摻雜物的則 該亞 例來說’若沒有中間層’摻雜物可 散。舉 面而進到該亞鐵鹽陶瓷中、或捨’擴散到該變阻器陶瓷外 瓷外面而進到該變阻器陶竟φ ” 可擴散到該亞鐵鹽陶 陶瓷中 在進一步的實施例中 護功能。 在進一步的實施例中 一起形成電容。特別的是, 器。 舉例來說,該亞鐵鹽陶 亞鐵鹽、NiZnCo亞鐵鹽、Ni可包括NiZn亞鐵鹽、NiCuZn 舉例來說,該變阻器陶瓷可UZnC〇亞鐵鹽或六角毖鐵鹽。 陶瓷。 L括ZnO-Bi-Sb陶瓷或加〇一打 舉例來說,該連接觸、 地栅陣列(land grid arra f其是可提供做為球柵降歹" ) 〇 電容區或電感區在該多 佳為對稱於層平面。尤其,q疋件的結構中的配釁是 具有優勢、且進-步具有製^稱結構是對於渡波器的特 該變阻器陶莞具有相優勢。 w的介電常數,這是因為其邊 95117 讀變 Ρ且器陶瓷是要用於ESD保 變阻器陶瓷連同該連接觸點 、電容與該電感可形成LC濾波 4 201203847 :電谷。亞鐵鹽陶瓷的使用容許達到非常高的電感值,這 '是因^鐵鹽陶莞具有比較高的導磁率(permeability), 且通吊在1與50之間。具有相對低的介電常數的亞鐵鹽陶 瓷減少不想要的電容耦合。如果該變阻器配置在該元件的 外表面上,則儘管是緊密的尺寸,該元件的大多數體積可 用來做為電感的建造,這是因為相較於具有相等功能的習 知元件是可達到較高的電感。 ^ 變阻器陶瓷與亞鐵鹽陶瓷的結合使得能夠產生多樣 性的不同LC濾波器設計。此外,可整合該濾波功能與ESD 保護功能在一個元件中。在此情況申,該ESD保護功能是 藉由變阻器陶瓷的使用來提供,且該濾波器功能是藉由亞 鐵鹽陶瓷的使用來提供。特別是可在一個元件中配置複數 個LC遽波器成一個陣列。為了這個目的,例如將複數個 LC濾波器沿著共同元件中彼此的邊來配置。 【實施方式】 下列文字係參照所附圖式而更詳細描述多層元件的 範例。 第1圖顯示該多層元件的一個實施例的剖視示意圖。 該多層元件包括在基礎本體中的電感區與電容區。該電 感區是位在亞鐵鹽陶瓷2中,該亞鐵鹽陶瓷2包含形成電 感12的導體鲒構。 該電感12通吊可由捲繞似線圈的.導體結構所形成.。 該電容區是位在變阻器陶瓷4中,該變阻器陶究4包括最 多該基礎本體10的體積的40%,且是較佳地配置在該基礎 5 95117 201203847 本體10的外表面14上。該電容區包括同樣由導體結構所 形成的電容,且該電容可具有電阻。這些導體結構特別是 可包括電極堆疊。尤其,該電感與該電容可形成LC濾波 器。該多層元件在外面提供有連接觸點la, lb,以連接該 導體結構。舉例來說,如第1圖所示,該連接觸點la,lb 是配置在該基礎本體10的末端表面上。例如由介電質組成 的中間層3可配置在該亞鐵鹽陶瓷2與該變阻器陶瓷4之 間。該中間層3特別是可為氧化物。舉例來說,鎂、鍅或 鈦的氧化物是適合於此目的,上述成分的混合物也可使用 在該中間層3中。除此之外,該中間層3可為金屬中間層。 第2圖顯示進一步實施例的側視圖。在此實施例中, 該基礎本體具有由變阻器陶瓷所構成的表面變阻器5。相 較於第1圖所示的實施例的情況,該亞鐵鹽陶瓷2組成該 基礎本體的極大部分,且該表面變阻器5佔據至多該基礎 本體的體積的20%。如第1圖所示的實施例的情況,可在 該亞鐵鹽陶瓷2與該表面變阻器5之間設有中間層3。除 此之外,該中間層3可被省略。除了設於該基礎本體的末 端表面上的連接觸點la,lb之外,彼此平行配置且為條狀 形式的複數連接觸點lc,Id, le,If是設於側表面上用以電 性連接。 第3圖顯示第2圖所示的實施例中設有該表面變阻器5 的側面的平面圖。第3圖顯示外部電性連接的位置。連接 導體11,13的路線排定是從該連接觸點la, lb,lc,ld,le,If 至該表面變阻器5。 95117 201203847 第4圖顯示進一步實施例的側視圖,其中,該中間層 3已經被省略,且將該亞鐵鹽陶瓷2與該變阻器陶瓷4配 置成彼此相鄰。在此實施例中,該變阻器陶瓷4僅佔據至 多該基礎本體的體積的20%。這導致該元件的大體積能用 於對應大的電感。 第5圖顯示進一步實施例的側視圖,其中,表面變阻 器5是配置在該基礎本體的外表面上的亞鐵鹽陶瓷2上。 該基礎本體幾乎是完全由該亞鐵鹽陶瓷2所構成。相較於 第4圖所示的實施例的情況,這導致更多該元件的體積能 用於特別大的電感。 第6圖顯示進一步實施例的側視圖,其中,如同第5 圖所示的實施例的情況,表面變阻器5是配置在該基礎本 體的外表面上的亞鐵鹽陶瓷2上,且該基礎本體是幾乎完 全由該亞鐵鹽陶瓷2所構成。除了配置在該基礎本體的末 端表面上的連接觸點la, lb之外,有彼此平行配置且是條 狀形式的複數連接觸點ld,le是設於該側表面上以電性連 接。 第7圖顯示具有相似於第1圖所示的實施例的情況的 結構的多層元件的進一步實施例。包含金屬的緩衝層6是 位在具有電感區的該亞鐵鹽陶瓷2與具有電容區的變阻器 陶瓷4之間。該缓衝層6在該亞鐵鹽陶瓷2與該變阻器陶 瓷4之間作用為擴散阻障。 第8圖顯示該外部電性連接是由球柵陣列所形成的實 施例。連接觸點7是配置在該變阻器陶瓷4上,且各設有 7 95117 201203847 球柵陣列觸點8。 第9圖顯示該外部電性連接是由地柵陣列所形成的實 施例。複數區的亞鐵鹽陶瓷2與變阻器陶瓷4是實質地垂 直於該基礎本體的縱向地配置。在各該區上有連接觸點7。 同樣地在此實施例中,該變阻器陶瓷4包括至多該基礎本 體的體積的40%,這是因為該元件的大體積能用於該亞鐵 鹽陶瓷中的電感。 在多重電路中可使用所述陶瓷多層元件的實施例。舉 例來說,在具有第一線的電感的LC濾波器中的輸入側與輸 出侧上的線之間可連接變阻器,且在該第一線與平行於第 一線的第二線之間具有電容。該變阻器作用為該LC濾波器 的ESD保護元件。該Lc濾波器可為Pi型LC濾波器的形式, 在各情況中在該輸入側與輸出側上的第一線與第二線之間 有電容。進-步的實施例在該多層元件的表面上可具有電 阻或相似的電子元件,且這些連接至該LC濾波器。這特別 是使得旎夠形成RLC濾波器,其中,電感與電阻是串聯連 接。同樣地在此情況中’使用變阻器做為ESD保護元件。 【圖式簡單說明】 第1圖顯示該多層元件的一個實施例的剖視示意圖; 第2圖顯示具有表面變阻器的一個實施例的側視圖; 第3圖顯示第2圖所示的實施例的平面圖; 第4圖顯示不具有中間層的一實施例的侧視圖; 第5圖顯示具有表面變阻器的進一步實施例的側視圖; 第6圖顯示具有表面變阻器的進一步實施例的侧視圖; 8 95117 201203847 第7圖顯示進一步實施例的剖視示意圖; 第8圖顯示具有球柵陣列的進一步實施例的侧視圖; 以及 " 第9圖顯示進一步實施例的的剖視示意圖。 【主要元件符號說明】 la、lb、lc、ld、le、lf 連接觸點 2 亞鐵鹽陶瓷 3 中間層 4 變阻器陶瓷 5 表面變阻器 6 緩衝層 7 連接觸點 8 球柵陣列觸點 10 基礎本體 11、13 連接導體 12 電感 14 外表面 9 95117201203847 • VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to ceramic multilayer components, and more particularly to ceramic multilayer components for integrating 'inductance and ESD protection functions. [Prior Art] The German Patent Publication No. 10 2005 025 680 A1 discloses a multilayer component having a varistor and an LC filter. The German Patent Publication No. 10 2008 019 127 A1 describes a multilayer component having a ferrite ceramic having an electrode structure that forms an inductance. The multilayer component further has a capacitance region known by the varistor Tao Xing. SUMMARY OF THE INVENTION It is an object of the present invention to specifically provide a ceramic multilayer component for integrating an inductor and an esd protection function. _ This goal is achieved by a multi-layer element having the features of the patent scope. The subtle difference is revealed in the scope of the patent in the _ item. The ceramic multilayer component has a base body, a ferrous salt pottery and a variable resistance pottery, the base body has a connecting contact mated with itself, and the = is provided as a sensing area in the base body and the inductor is In the sensing region, the inductance is formed by an electrical conductor, and the varistor shouts 40% of the volume of the damper body in the base body. In the further embodiment, the varistor is a stratum layer, and the surface is changed to ρ and the surface varistor is 疋 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 Included up to 20% of the volume of the base body. In a further embodiment, a metal or oxygenated intermediate gated yttrium iron salt ceramic is interposed between the varistor ceramic and the ytterbium barrier. ), the m A intermediate layer is provided to suppress the dopant, then the sub-example 'if there is no intermediate layer' dopant can be dispersed. The surface enters the ferrous salt ceramic, or diffuses into the varistor Outside the ceramic outer porcelain, the varistor can be diffused into the ferrous salt ceramics in a further embodiment. In a further embodiment, the capacitors are formed together. In particular, the device. For example, the ferrous salt, ferrous salt, NiZnCo ferrous salt, Ni may include NiZn ferrous salt, NiCuZn. For example, the varistor ceramic may be a UZnC ferrous salt or a hexagonal strontium iron salt. ceramics. L includes ZnO-Bi-Sb ceramic or a twisted one. For example, the connection touch grid array (land grid arra f can be provided as a ball grid drop), the tantalum capacitor region or the inductor region More is symmetrical to the layer plane. In particular, the configuration in the structure of the q-piece is advantageous, and the step-by-step structure has the advantage of being a special varistor for the ferrite. The dielectric constant of w, because its side 95117 is read and the ceramic is used for the ESD-preserving resistor ceramic together with the connection contact, the capacitor and the inductor can form an LC filter 4 201203847 : Electric Valley. The use of ferrous salt ceramics allows for very high inductance values, which is due to the relatively high permeability of the iron salt pottery and the hanging between 1 and 50. Ferrous salt ceramics having a relatively low dielectric constant reduce unwanted capacitive coupling. If the varistor is disposed on the outer surface of the component, most of the volume of the component can be used as the construction of the inductor, albeit in a tight size, because it is achievable compared to conventional components having equal functions. High inductance. ^ The combination of varistor ceramics and ferrous salt ceramics enables the generation of diverse LC filter designs. In addition, the filtering function and ESD protection can be integrated in one component. In this case, the ESD protection function is provided by the use of a varistor ceramic, and the filter function is provided by the use of a ferrous salt ceramic. In particular, a plurality of LC choppers can be arranged in one component into one array. For this purpose, for example, a plurality of LC filters are arranged along the sides of each other in the common element. [Embodiment] The following texts describe an example of a multilayer element in more detail with reference to the accompanying drawings. Figure 1 shows a schematic cross-sectional view of one embodiment of the multilayer component. The multilayer component includes an inductive region and a capacitive region in the base body. The susceptor zone is located in the ferrous salt ceramic 2, which comprises a conductor structure forming the electrical inductance 12. The inductor 12 can be formed by winding a coil-like conductor structure. The capacitor region is located in the varistor ceramic 4, which includes up to 40% of the volume of the base body 10 and is preferably disposed on the outer surface 14 of the body 5 95117 201203847 body 10. The capacitor region includes a capacitor that is also formed by a conductor structure, and the capacitor can have a resistance. These conductor structures may in particular comprise an electrode stack. In particular, the inductor and the capacitor form an LC filter. The multilayer component is provided with connection contacts la, lb on the outside to connect the conductor structure. For example, as shown in FIG. 1, the connection contacts la, lb are disposed on the end surface of the base body 10. An intermediate layer 3 composed of, for example, a dielectric material may be disposed between the ferrous salt ceramic 2 and the varistor ceramic 4. The intermediate layer 3 can in particular be an oxide. For example, an oxide of magnesium, barium or titanium is suitable for this purpose, and a mixture of the above components may also be used in the intermediate layer 3. In addition to this, the intermediate layer 3 may be a metal intermediate layer. Figure 2 shows a side view of a further embodiment. In this embodiment, the base body has a surface varistor 5 constructed of a varistor ceramic. Compared to the case of the embodiment shown in Fig. 1, the ferrous salt ceramic 2 constitutes a very large portion of the base body, and the surface varistor 5 occupies at most 20% of the volume of the base body. In the case of the embodiment shown in Fig. 1, an intermediate layer 3 may be provided between the ferrous salt ceramic 2 and the surface varistor 5. In addition to this, the intermediate layer 3 can be omitted. Except for the connection contacts la, lb provided on the end surface of the base body, a plurality of connection contacts lc, Id, le, If arranged in parallel with each other and in the form of strips are provided on the side surface for electrical connection. Fig. 3 is a plan view showing the side surface of the embodiment shown in Fig. 2 in which the surface varistor 5 is provided. Figure 3 shows the location of the external electrical connections. The route connecting the conductors 11, 13 is routed from the connection contacts la, lb, lc, ld, le, If to the surface varistor 5. 95117 201203847 Figure 4 shows a side view of a further embodiment in which the intermediate layer 3 has been omitted and the ferrous salt ceramic 2 and the varistor ceramic 4 are arranged adjacent to each other. In this embodiment, the varistor ceramic 4 occupies only up to 20% of the volume of the base body. This results in a large volume of the component that can be used for a correspondingly large inductance. Fig. 5 shows a side view of a further embodiment in which the surface varistor 5 is disposed on the ferrous salt ceramic 2 on the outer surface of the base body. The base body is almost entirely composed of the ferrous salt ceramic 2. This results in more volume of the component for a particularly large inductance compared to the embodiment of Figure 4. Figure 6 shows a side view of a further embodiment in which, as in the case of the embodiment shown in Figure 5, the surface varistor 5 is a ferrous salt ceramic 2 disposed on the outer surface of the base body, and the base body It is composed almost entirely of the ferrous salt ceramics 2. In addition to the connection contacts la, lb disposed on the end surface of the base body, a plurality of connection contacts ld, le disposed in parallel with each other and in a strip form are provided on the side surfaces to be electrically connected. Fig. 7 shows a further embodiment of a multilayer component having a structure similar to the case of the embodiment shown in Fig. 1. The metal-containing buffer layer 6 is located between the ferrous salt ceramic 2 having an inductance region and the varistor ceramic 4 having a capacitance region. The buffer layer 6 acts as a diffusion barrier between the ferrous salt ceramic 2 and the varistor ceramic 4. Figure 8 shows an embodiment in which the external electrical connection is formed by a ball grid array. The connection contacts 7 are disposed on the varistor ceramic 4, and each is provided with a 7 95117 201203847 ball grid array contact 8. Figure 9 shows an embodiment in which the external electrical connection is formed by a grid array. The ferrous salt ceramic 2 of the complex region and the varistor ceramic 4 are disposed substantially perpendicular to the longitudinal direction of the base body. There are connection contacts 7 on each of these zones. Also in this embodiment, the varistor ceramic 4 includes at most 40% of the volume of the base body because the large volume of the element can be used for the inductance in the ferrous salt ceramic. Embodiments of the ceramic multilayer component can be used in multiple circuits. For example, a varistor can be connected between the input side and the line on the output side in the LC filter having the inductance of the first line, and between the first line and the second line parallel to the first line capacitance. The varistor acts as an ESD protection component of the LC filter. The Lc filter can be in the form of a Pi-type LC filter, in each case having a capacitance between the first line and the second line on the input side and the output side. The further embodiment may have a resistor or similar electronic component on the surface of the multilayer component and these are connected to the LC filter. This in particular makes it possible to form an RLC filter in which the inductance and the resistance are connected in series. Also in this case, a varistor is used as an ESD protection element. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an embodiment of the multilayered component; Fig. 2 is a side view showing an embodiment having a surface varistor; and Fig. 3 is a view showing the embodiment of Fig. 2; Figure 4 shows a side view of an embodiment without an intermediate layer; Figure 5 shows a side view of a further embodiment with a surface varistor; Figure 6 shows a side view of a further embodiment with a surface varistor; 8 95117 201203847 Figure 7 shows a schematic cross-sectional view of a further embodiment; Figure 8 shows a side view of a further embodiment with a ball grid array; and " Figure 9 shows a cross-sectional schematic view of a further embodiment. [Main component symbol description] la, lb, lc, ld, le, lf connection contact 2 ferrous salt ceramic 3 intermediate layer 4 varistor ceramic 5 surface varistor 6 buffer layer 7 connection contact 8 ball grid array contact 10 base body 11,13 connecting conductor 12 inductor 14 outer surface 9 95117