TW201203374A - In line type substrate processing apparatus - Google Patents

In line type substrate processing apparatus Download PDF

Info

Publication number
TW201203374A
TW201203374A TW100114278A TW100114278A TW201203374A TW 201203374 A TW201203374 A TW 201203374A TW 100114278 A TW100114278 A TW 100114278A TW 100114278 A TW100114278 A TW 100114278A TW 201203374 A TW201203374 A TW 201203374A
Authority
TW
Taiwan
Prior art keywords
reaction chamber
substrate
unit
plasma
processing apparatus
Prior art date
Application number
TW100114278A
Other languages
Chinese (zh)
Inventor
Su-Woong Kim
Kyung-Ho Lee
Soon-Bin Jung
Original Assignee
Tera Semicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tera Semicon Corp filed Critical Tera Semicon Corp
Publication of TW201203374A publication Critical patent/TW201203374A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Disclosed is an inline substrate-treating apparatus. The inline substrate-treating apparatus according to the present invention comprises a first chamber (100) in which a substrate (10) is pre-heated; a second chamber (200) in which the substrate (10) pre-heated in the first chamber (100) is transferred, heated and plasma-treated; and a third chamber (300) in which the substrate (10) plasma-treated in the second chamber (200) is transferred, cooled and plasma-treated, wherein the first chamber (100), the second chamber (200) and the third chamber (300) are sequentially connected and arranged in a line.

Description

201203374 六、發明說明: 【發明所屬之技術領域】 發明領域 本發明係有關於一種直列型基板處理裝置。較詳細而 言’係有關於一種可使對於基板之電漿處理步驟之生產性 提升之直列型基板處理裝置。201203374 VI. Description of the Invention: [Technical Field of the Invention] Field of the Invention The present invention relates to an in-line type substrate processing apparatus. More specifically, it relates to an in-line type substrate processing apparatus which can improve the productivity of a plasma processing step for a substrate.

t Λ* 'J 發明背景 隨著預測如石油或石炭之既存化石能源資源之枯竭、 及對於環境之關切高漲,可解決此問題之替代能源中,眾 所嗎目在一種有關於具有無限制/無公害之特徵之太陽電 池技術。 可接受光並將之轉換成電能之太陽電池,大致可區分 為大容 3:型(單結晶(single crystalline)、多晶(p〇ly crystalline))太陽電池、薄膜型(非晶(amorphous)、多晶(p〇ly crystalline))太陽電池CdTe或CIS(CuInSe2)等化合物薄膜太 陽電池、III-V族太陽電池、染料敏化型太陽電池、及有機 太陽電池等。 另一方面’現在已通用化之太陽電池大多數是使用石夕 作為光吸收層之材料,在此情況下’為使太陽電池之光電 轉換效率提升’有提出一種將矽予以氫電漿處理使石夕原子 之懸空鍵(dangling bond)鈍化之方法。 為將矽予以氫電漿處理,必須將矽加熱至預定溫度以 上。因此,在習知’亦曾使用設置在進行電毁步驟之反應 201203374 室之外部或内部的加熱器來加熱矽,但最近為使盡可能節 省耗費在矽加熱之時間,多利用分群方式來加熱矽。 分群方式係一種具備複數反應室、並將電漿處理步驟 分成複數步驟後,在各反應室進行各個步驟之方式。 於下說明習知之分群方式之電漿裝置。第1圖係顯示習 知之分群方式之電漿裝置之圖。 參考第1圖’分群方式係藉由將複數反應室42配置呈圓 形之後’使用仇在中央之基板移送部40將基板搬入及搬出 各反應室42而進行。 但,依據此種習知之分群方式,為建構前述裝置,不僅 會耗費大量費用,且位於中央之基板移送部4〇在移送基板時 亦會耗費多餘的時間,故而有使生產性略為下降之問題。 為解決上述問題,有提議一種在丨個反應室同時將複數 矽予以氫電漿處理之批次型電漿處理方式。但,依據此種 批次型電漿處理方式,從同時將複數矽予以氫電漿處理之 角度看來,雖有提升生產性之優點,卻有無法進行較多複 數石夕之均勻性氫電漿處理之問題。 C 明内3 發明概要 發明欲解決之課題 妥此’本發明係用以解決上述習知技術之諸項問題所 形成者,其目的在於提供—種可提升對於基板之電聚處理 步驟之生產性之直列型基板處理裝置。 又,本發明之目的在於提供一種可均勻地將複數基板 201203374 予以電漿處理之直列型基板處理裝置。 此外,本發明之目的在於提供一種可將藉由複數電漿 電極間之相互作用而產生之電磁場之抵消予以最小化之直 列型基板處理裝置。 而,本發明之目的在於提供一種可有效防止矽層之氫 之向外擴散(out diffusion)之直列型基板處理裝置。 用以欲解決課題之機構 為達成上述目的,本發明之直列型基板處理裝置之特 徵在於包含:第1反應室,可預熱基板;第2反應室,可一 面接收、加熱在前述第1反應室所預熱之前述基板,並進行 電漿處理;及第3反應室,可一面接收、冷卻在前述第2反 應室所電漿處理之前述基板,並進行電漿處理,且前述第1 反應室、前述第2反應室、及前述第3反應室係依序連接成 一列而配置。 發明效果 依據本發明,由於反應室係依序配置成一列,因此可 利用分群方式、並可將耗費在基板移送之時間予以最小 化。所以,可提升對於基板之電漿處理步驟之生產性。 又,依據本發明,藉由將進行同一步驟之反應室配置 呈垂直一列,可均勻地將複數基板予以電漿處理。 此外,依據本發明,藉由將電漿電極構成折彎之形狀, 可將因複數電漿電極間之相互作用而產生之電磁場之抵消 予以最小化。 而,依據本發明可有效防止石夕層之氫之向外擴散。 201203374 圖式簡單說明 第1圖係顯示習知之分群方式之電漿裝置之圖。 第2圖係顯示本發明之一實施形態之直列型基板處理 裝置之構成圖。 第3圖係顯示本發明之一實施形態中配置有第1電漿電 極之第2反應室之構成圖。 第4圖係概略顯示本發明之一實施形態之第1電漿電極 中RF訊號流動之態樣之圖。 第5圖係顯示本發明之其他實施形態之直列型基板處 理裝置之構成圖。 第6圖係顯示本發明之其他實施形態中配置有第1電毅 電極之第2單元反應室組件之構成圖。 第7圖係概略顯示本發明之其他實施形態之第1電漿電 極中RF訊號流動之態樣之圖。 第8圖係顯示本發明之另一種其他實施形態之直列型 基板處理裝置之構成圖。 I:實施方式3 用以實施發明之形態 有關後述之本發明之詳細説明,將參考將本發明可實 施之特定實施形態作為例示顯示之附加圖式。充分詳細説 明該等實施形態,以使熟知此項技藝之人士可實施本發 明。應理解:本發明之多樣實施形態雖彼此相異、但無相 互排他性之必要。例如,於此所記載之特定形狀、特定構 造、及特性係與一實施形態相關聯,在未脫離本發明之精 6 201203374 神及範圍之範_,可以其他實施形態而實現q,應理 解:各個所揭示之實施形態之個別構成要素之位置:配 置’可在未脫離本發明之精神及範圍之範_進行變更。 因此,後述之詳細㈣並非作為限定之涵義而理解者,本 發明之範圍在經適當购之情況下,僅受限於 利範圍主張者均等之全部範圍、及所附加之巾請專利範 圍。圖式中,類似之參考符號係含括各種側面指示同一戋 類似之功能’長度、面積、厚度、及形態在枝^可能^ 5夸張表現之情況。 以下,為使具有本發明所屬之技術領域之—般知識者 可輕易實施本發明’將參考所附加之圖式詳細說明本發明 之適當實施形態。 首先,以本發明之直列型基板處理裝置將基板予以電 漿處理,並非限於在半導體元件用基板、液晶表示裝置用 基板、及太陽電池用基板等領域中,將一般所謂之基板一 如矽晶圓基板、玻璃基板等一予以電漿處理,亦可解釋為 將形成在前述基板上之預定膜或圖案予以電聚處理之涵 義。因此’很明顯地’使用本發明之直列型基板處理裝置 處理基板’可解釋為包含將形成在基板上之碎層予以電毁 處理之涵義。 第2圖係顯示本發明之一實施形態之直列型基板處理 襄置之構成圖。 參考第2圖,本發明之一實施形態之直列型基板處理裝 置卜基本上係包含3個反應室100、200、300而構成。較具 201203374 體而言,乃包含預熱基板10之第1反應室100、將在第1反應 室100所預熱之基板1〇予以電漿處理之第2反應室200、及將 在第2反應室2〇〇所電漿處理之基板10加以冷卻之第3反應 室300而構成。以下,將說明各反應室之各別構成及功能。 首先,說明第1反應室100。 進一步參考第2圖’第1反應室1〇〇實質上係密閉内部空 間而構成,可發揮提供用以預熱基板10之空間之功能。第1 反應室100之形狀並未有特別限定,但以長方體為宜。第1 反應室100之材質可為不鏽鋼、鋁合金、或石英等,但並非 限於該等者。 進一步參考第2圖,可確認前述3個反應室中,第1反應 室100係設置於左側。在此,第1反應室1〇〇位在左側之態樣 與基板10之移動方向相關聯。亦即,由於以第1反應室1〇〇 所預熱之基板10係往右方移動朝位在第1反應室100右側之 第2反應室200移動’因此將第1反應室1〇〇顯示為位在左 側。當然’基板10往右方移動乃説明之方便上任意設定者, 基板10之行進方向是向右或向左在本發明中並不重要。 但,以下,將以基板10之行進方向假設為右方加以説明。 •進一步參考第2圖,第1反應室1〇〇可包含第1力〇熱器u〇 而構成。第1加熱器110可發揮對複數基板1〇加熱使基板1〇 預熱之功能。例如,當使用電漿對基板1〇進行氫鈍化步驟 時,第1加熱器110可使基板10之溫度預熱至 之範圍。 此時,第1加熱器11〇係以複數第1單元加熱器丨12而構 8 201203374 成。在此,第1單元加熱器112為一般長形棒狀之加熱器, 在石英管内部插有發熱體,並透過設在兩端之端子接收外 部電源使熱產生。藉由以複數第1單元加熱器112預熱基板 10’可壟罩基板10之全面積進行均勻的熱處理。複數第1單 元加熱器112宜與基板10之長邊方向平行隔著一定間隔而 配置’但並非限於此,與基板10之短邊方向平行隔著一定 間隔而配置亦可。又,配置在第1反應室1〇〇之第1單元加熱 器112之個數並未有特別限定,依照本發明之利用目的可有 多樣變更。 第2圖中雖顯示基板1〇為單獨搬入第1反應室1〇〇而預 熱者’但理想上是在將基板10載置在基板座(未圖示)之狀態 下搬入第1反應室100而預熱。在第2反應室200及第3反應室 300中,亦可將基板1〇載置在前述基板座加以處理。有關前 述基板座,在以下之第2反應室200及第3反應室300之説明 中將予以省略。 接下來’第1反應室100可包含第1移送部而構成,該第 1移送部可將基板10搬入第1反應室100、或將從第1反應室 100完成預熱之基板10予以搬出。此時,前述第1移送部可 包含具有預定長度、並沿著基板10之移動方向之右方設置 之複數第1驅動滾輪組件120而構成。複數第1驅動滾輪組件 120可發揮支撐基板10、並以直列型方式使基板10移動之功 能。較具體而言,複數第1驅動滾輪組件120可發揮下述功 能’即:與基板10之下面接觸、並往基板10之移動方向旋 轉,使基板10搬入第1反應室100之内部,並在基板1〇被搬 9 201203374 入後’於進行對於基板10之電漿處理之期間支撐基板10, 且一完成對於基板10之電漿處理,便與基板10之下面接 觸、並往基板ίο之移動方向旋轉,從第1反應室1〇〇將基板 1 〇予以搬出。 為使此種功能順利進行,如第2圖顯示,複數第1驅動 滾輪組件120宜在第1反應室1〇〇之内部設置於同一高度。 又’複數第1驅動滾輪組件120以相互連動為宜。另一方面, 複數第1驅動滾輪組件120可因設置位置之不同而彼此以不 同的寬度形成,但直徑以全部同一形成為宜。 接下來,進一步參考第2圖,可於第1反應室1〇〇之左側 面一較具體而言,為與後述之第1負載鎖定室400接觸之面 —形成具有預定寬度及高度之第1搬入部130。第1搬入部 130呈開口狀’可發揮作為搬入基板1〇之通路之功能。在進 行基板10之預熱步驟之期間,為將第1反應室1〇〇予以密閉 必需關閉第1搬入部130 ’因此可於第1搬入部130設置可在 上下方向運動並將第1反應室1〇〇予以開關之門(未圖示)。 接下來’進一步參考第2圖,可於第1反應室100之右側 面一較具體而έ ’為與配置第1搬入部130之面相對向、並 與第2反應室2〇〇接觸之第1反應室100之面—形成具有預定 寬度及高度之第1搬出部140。第1搬出部140係呈開口狀, 可發揮作為搬出基板10之通路之功能。與第1搬入部130同 樣地在進行熱處理步驟之期間,為將第1反應室1〇〇予以密 閉,必需關閉第1搬出部140,因此可於第i搬出部丨4〇設置 可在上下方向運動並將第1反應室1〇〇予以開關之其他門 10 201203374 (未圖示)。 另一方面’第1反應室100可包含第1單元反應室組件 102(參考第5圖)而構成,第1單元反應室組件102基本上具備 上下獨立配置之第丨上部反應室1〇4(參考第5圖)及第1下部 反應室106(參考第5圖)。此部分將於後述。 接下來,說明第2反應室200。 進一步參考第2圖,第2反應室200實質上係密閉内部空 間而構成,可發揮提供用以將基板10予以電漿處理之空間 之功能。與第1反應室100同樣地,第2反應室200之形狀以 長方體為宜。另一方面,第2反應室200之材質可為不鏽鋼、 鋁合金、或石英等,但並非限於該等者。 進一步參考第2圖,可確認第2反應室200係位在第1反 應室100與第3反應室300之間。如前述,此乃與基板10之移 動方向相關聯。 進一步參考第2圖,第2反應室200可包含第2加熱器21〇 而構成。為進行基板10之電漿處理,必需將基板10加熱及 維持在預定溫度以上,在此種涵義下,第2加熱器210可發 揮對基板10加熱之功能。例如’當使用電槳對基板10進行 氫鈍化步驟時,第2加熱器210可使基板10之溫度維持在約 400°C〜1000°C之範圍。 此時,如第2圖顯示,第2加熱器210係以複數第2單元 加熱器212而構成。第2單元加熱器212實質上與第1單元加 熱器112具有同一構成及功能、且配置相同,因此有關第2 單元加熱器212之詳細説明將予以省略。 201203374 接下來,進一步參考第2圖,第2反應室200可包含複數 第1電漿電極250而構成。第1電漿電極25〇可發揮藉由電感 式耦合電漿(Inductively Coupled Piasma: ICP)之產生方法來 生成電漿之功能。即,可發揮藉由接收供給高頻電壓之Rf 電源生成電磁場,來生成及維持電漿之功能。 第3圖係顯示本發明之一實施形態之配置有第j電漿電 極之第2反應室之構成圖。 參考第3圖,第1電漿電極250可包含第1上部電極部 254、折彎部252、及第1下部電極部256而構成,且可具有 夾基板10而折彎之形狀。較具體而言,第1電漿電極25〇可 以折彎部252為基準,包含存於基板10上部之第1上部電極 部254、及存於基板10下部之第1下部電極部256而構成。在 此,折彎部252可具有1個以上折彎點,理想係如第3圖顯示 具有2個折彎點亦可。藉此’第1電漿電極250可具有「〔」 或逆「匚」之形狀。此時’基板10可配置在「C」或逆「c 形狀之間。 進一步參考第3圖’可確認:於第1上部電極部254之末 端有連接RF天線260、並於第1下部電極部256之末端有連接 地線(Ground)270。在此,RF天線260可發揮對第1電聚電極 250施加RF訊號之功能’地線270可發揮所施加iRF訊號透 過第1電漿電極250而流動之功能。 第4圖係概略顯示本發明之一實施形態之第1電漿電極 中RF訊號流動之態樣之圖。 參考第4圖,可對位在基板10上部之第1電漿電極250之 12 201203374 第1上部電極部254施加RF訊號、並使RF訊號流出位在基板 10下部之第1電漿電極250之第1下部電極部256。即,從Rp 天線260施加之RF訊號,在基板1〇上部經施加後可沿著第丄 電漿電極250移動,並在基板1〇下部透過地線270流出,藉 由該過程可產生及維持電漿。 因上述構成’由於在第1上部電極部254與第1下部電極 部256間來自流動之RF天線260之訊號方向相反,因此在某 特定區域RF訊號會變弱而使電漿密度減少之現象消失。 即,從配置基板10之位置起至靠近地線270之區域間,電磁 場之強度雖會變小’但由於該區域亦為靠近rF天線26〇之區 域’因此可補償電磁場之強度。而且,在靠近折彎部252之 區域’第1上部電極部254之電磁場及第1下部電極部256之 電磁場會產生相互補償效果,結果而言,可盤罩基板1〇之 全面獲得均一的電漿密度。 接下來,進一步參考第2圖,第2反應室2〇〇可包含第2 移送部而構成。該第2移送部可將基板1〇搬入第2反應室 200、或從第2反應室200將已完成電衆處理之基板1〇予以搬 出。與刖述第1移送部同樣地,前述第;2移送部可包含複數 第2驅動滾輪組件220而構成,該複數第2驅動滾輪組件220 具有預定長度、並沿著基板10之移動方向設置。 除將基板10搬入第2反應室200、並從第2反應室200將 已完成電衆處理之基板10予以搬出以外,複數第2驅動滾輪 組件22〇與第1反應室100之複數第1馬區動滾輪組件12〇實質 上具有同一構成及功能、且配置相同,因此有關第2驅動滾 13 201203374 輪組件220之詳細説明將予以省略。 接下來,進一步參考第2圖,可於第2反應室200之左側 面—較具體而言,為與第1反應室100相接觸之面一形成具 有預定寬度及高度之第2搬入部230。又,可於第2反應室200 之右側面一較具體而言’為與配置有第2搬入部230之面相 對向、且與第3反應室300相接觸之第2反應室200之面一形 成具有預定寬度及高度之第2搬出部240。由於此種第2搬入 部230及第2搬出部240與上述第1搬入部130及第1搬出部 140具有同一構成及功能,故將詳細説明予以省略。 另一方面,第2反應室200可包含第2單元反應室組件 202而構成,第2單元反應室組件202基本上具備上下獨立所 配置之第2上部反應室204(參考第5圖)與第2下部反應室 (206)(參考第5圖)。此部分將於後述。 接下來,說明第3反應室300。 進一步參考第2圖,第3反應室300係實質上密閉内部空 間而構成,可發揮提供用以冷卻基板1〇之空間之功能。冷 卻方式可利用水冷方式或空冷方式,視情況亦可利用自然 冷卻方式。與第2反應室200同樣地,第3反應室300之形狀 以長方體為宜。第3反應室300之材質可為不鏽鋼、鋁合金、 或石英等,但並非限於該等者。 進一步參考第2圖,可確認第3反應室300係位在第2反 應室200之右側。如前述,此乃與基板1〇之移動方向相關聯。 接下來’進一步參考第2圖,第3反應室300可包含用以 生成及維持電漿之複數第2電漿電極350而構成。第2電漿電 14 201203374 極350係以折彎部(未圖示)為基準’包含存於基板ι〇上部之 第2上部電極部(未圖示)、及存於基板1〇下部之第2下部電極 部(未圖示)而構成。由於第2電漿電極350實質上與第1電漿 電極250具有同一構成及功能 '且配置相同,因此詳細説明 將予以省略。 接下來’進一步參考第2圖,第3反應室300可包含第3 移送部而構成。該第3移送部可將基板1〇搬入第3反應室 3〇〇、或從第3反應室300將完成冷卻之基板1〇予以搬出。前 述第3移送部與前述第1移送部同樣地,可包含具有預定長 度、且沿著基板10之移動方向設置之複數第3驅動滾輪組件 320而構成。除將基板10搬入第3反應室300、並從第3反應 室300將已完成冷卻之基板10予以搬出以外,複數第1驅動 滾輪組件120與複數第3驅動滾輪組件320實質上具有同一 構成及功能、且配置相同,因此有關第3驅動滾輪組件320 之詳細説明將予以省略。 接下來,進一步參考第2圖,可於第3反應室300之左側 面一較具體而言,為與第2反應室200相接觸之第2反應室 200之面一形成具有預定寬度及高度之第3搬入部330。又, 可於第3反應室300之右側面一較具體而言,為與配置有第3 搬入部330之面相對向、並與後述之第2負載鎖定室500相接 觸之第3反應室300之面一形成具有預定寬度及高度之第3 搬出部340。第3搬入部330及第3搬出部340與上述第1搬入 部130及第1搬出部140具有同一構成及功能,故將詳細説明 予以癌略。 15 201203374 以上,已就直列型基板處理裝置丨之基本構成要素之第 1反應室100、第2反應室200、第3反應室300加以說明。以 下,將說明直列型基板處理裝置〖之其他構成要素。 進一步參考第2圖,本發明之一實施形態之直列型基板 處理裝置1可包含第1負載鎖定室4〇〇而構成。第【負載鎖定 室400可發揮臨時保管搬入第1反應室ι〇〇之基板1〇之功 能。又’第1負載鎖定室400可發揮雖在大氣壓下搬入基板 10’但不會在封閉第1閘閥41〇之狀態下搬入基板10,使第i 反應室100暴露在非真空狀態之功能。 第2圖中雖然顯示出將丨片基板10搬入並保管在第1負 載鎖定室400者,但視情況,亦可將複數基板10搬入並保管 在第1負載鎖定室400。 進一步參考第2圖,第1負載鎖定室400可包含從第1負 載鎖定室400搬出基板1〇之第4移送部而構成。前述第4移送 部與前述第1移送部同樣地,可包含具有預定長度、且沿著 基板10之移動方向設置之複數第4驅動滾輪組件420而構 成。複數第1驅動滾輪組件120與複數第4驅動滚輪組件420 實質上具有同一構成及功能,故將詳細説明予以省略。 接下來,進一步參考第2圖,本發明之一實施形態之直 列型基板處理裝置1可包含第2負載鎖定室500而構成。第2 負載鎖定室500可發揮臨時保管已完成冷卻之基板10之功 能。又,第2負載鎖定室500可發揮雖在大氣壓下將基板10 予以搬出,但不會在密閉第2閘閥510之狀態下搬出基板 10 ’使第3反應室300暴露在非真空狀態之功能。 16 201203374 進一步參考第2圖,第2負載鎖定室500可包含將基板10 搬入第2負載鎖定室500之第5移送部而構成。前述第5移送 部與前述第1移送部同樣地,可包含具有預定長度、且沿著 基板10之移動方向設置之複數第5驅動滾輪組件520而構 成。複數第1驅動滚輪組件120與複數第5驅動滾輪組件520 實質上具有同一構成及功能,故將詳細説明予以省略。 進一步參考第2圖可確認係依照第1負載鎖定室400、第 1反應室100、第2反應室200、第3反應室300、第2負載鎖定 室500之順序配置呈一列。若考慮前述各反應室100、200、 300、400、500之功能,基板10可依照第1負載鎖定室400、 第1反應室100、第2反應室200、第3反應室300、及第2負載 鎖定室500之順序移動進行處理。進行此種基板10之移動之 構成要素為配置在各反應室1〇〇、200、300、400、500之前 述第1移送部、前述第2移送部、前述第3移送部、前述第4 移送部、及前述第5移送部。 接下來,進一步參考第2圖,本發明之一實施形態之直 列型基板處理裝置1可包含將基板川搬入第1負載鎖定室 400之第1機械手臂600、及從第2負載鎖定室500搬出基板10 之第2機械手臂700而構成。 第1機械手臂600係配置在第1負載鎖定室400之外側’ 可將基板10搬入第1負載鎖定室400。例如,第1機械手臂600 係配置在第1負載鎖定室400之左側,可發揮從保管有複數 基板10之匣件(未圖示)取出基板1〇、並將基板10搬入第1負 載鎖定室400之功能。 17 201203374 與第1機械手臂600同樣地,第2機械手臂7〇〇係配置在 第2負載鎖定室500之右側,可發揮從第2負載鎖定室搬出 基板10、並傳達至外部之功能。第2圖中係分別顯示有—個 第1機械手臂600及第2機械手臂700之手臂6丨〇、7丨〇,但並非 限於此,可於第1機械手臂600及第2機械手臂7〇〇分別採用多 數的手臂610、710。第1機械手臂600及第2機械手臂7〇〇之構 成及功flb相g於公知技術,故省略更進一步之詳細説明。 在如此所構成之本貫施形態之直列型基板處理裝置1 中,可實施多樣的電漿處理步驟,例如使用電漿之矽層之 氫純化步驟等。本實施形態之直列型基板處理裝置i可利用 分群方式、並可將移送基板1〇之前述第i移送部〜第5移送部 用以移送基板10所耗費之時間予以最小化,因此可縮短全 體的電锻步驟時間。結果,可使電聚步驟之生產性提升。 第5圖係顯示本發明之其他實施形態之直列型基板處 理裝置之構成圖。 參考第5圖,依據本發明之其他實施形態之直列型基板 處理裝置2,各反應室1〇〇、200、300可包含具有相互獨立 所配置之上部反應室及下部反應室之反應室組件而構成。 較具體說明,第1反應室100可包含具備相互獨立且配 置在上下之第1上部反應室104及第1下部反應室106之第i 單元反應室組件102而構成。第2反應室200可包含具備相互 獨立且配置在上下之第2上部反應室204及第2下部反應室 206之第2單元反應室組件202而構成。第3反應室300可包含 具備相互獨立且配置在上下之第3上部反應室304及第3下 18 201203374 部反應室306之第3單元反應室組件302而構成。 此時,如第5圖顯示,第1單元反應室組件丨〇2、第2單 元反應室組件202、及第3單元反應室組件302可連接呈一列 而配置。較具體而言’第1單元反應室組件1〇2之第1上部反 應室104、第2單元反應室組件202之第2上部反應室204、及 第3單元反應室組件302之第3上部反應室304可連接呈一列 配置、且第1單元反應室組件102之第1下部反應室1〇6、第2 單元反應室組件202之第2下部反應室206、及第3單元反應 室組件302之第3下部反應室306可連接呈一列而配置。 在以複數層形態構成各反應室100、200、300之情況下, 由於可一次處理多數的基板10,因此具有可進一步使電漿 步驟之生產性提升之優點。 另一方面,在各反應室100、200、300包含具備相互獨 立所配置之上部反應室104、204、304及下部反應室1〇6、 206、306之反應室組件1〇2、202、302而構成之情況下,第 配置於第2反應室200及第3反應室300之第1電漿電極280及 第2電漿電極380可具有不同於第3圖中所示之第1電漿電極 250之構成。 第1負載鎖定室400及第2負載鎖定室500亦可對應於第 1反應室〜第3反應室100、200、300,以相互上下獨立之上 部反應室及下部反應室而構成。 第6圖係顯示本發明之其他實施形態之配置有第1電漿 電極之第2單元反應室組件之構成圖。 參考第6圖可確認:不同於將第3圖之第1電漿電極250 19 201203374 配置在以1個空間而形成之第2反應室200者,第6圖之第1電 漿電極280係配置在第2上部反應室204及第2下部反應室 206兩者。因此,第6圖之第1電漿電極280與第3圖之第1電 漿電極250同樣地,係以折彎部282、第1上部電極部284、 及第1下部電極部286而構成,但乃將第1上部電極部284配 置在第2上部反應室204、並將第1下部電極部286配置在第2 下部反應室206而構成。因此,第6圖之第1電漿電極280之 折彎部282宜以長於第3圖之第1電漿電極250之折彎部252 的方式形成。 進一步參考第6圖可確認:於第1上部電極部284之末端 有連接RF天線260、並於第1下部電極部286之末端有連接地 線270。此種構成雖類似第3圖中所示之構成,但有下述構 成上之差異,即:在第3圖中,RF天線260及地線270係配置 在以1個空間所形成之第2反應室200之側面,在第6圖中, RF天線260及地線270係分別配置在彼此獨立之第2上部反 應室204及第2下部反應室206之側面。 第7圖係概略顯示本發明之其他實施形態之第1電漿電 極中RF訊號流動之態樣之圖。 參考第7圖,可對配置在第2上部反應室204之第1上部 電極部284施加RF訊號,並使RF訊號流出配置在第2下部反 應室206之第1下部電極部286。藉由此種RF訊號之流動,在 第2上部反應室204可藉由第1上部電極部284來產生及維持 電漿,且在第2下部反應室206可藉由第1下部電極部286來 產生及維持電漿。 20 201203374 另一方面,配置在第6圖之第3反應室300之第2電漿電 極380實質上與第}電漿電極28〇具有同一構成,故有關第2 電黎電極380之詳細説明將予以省略。 又,第5圖之直列型基板處理裝置2之構成中,除各反 應室100、200、300包含具備相互獨立且配置在上下之上部 反應室104、204、304及下部反應室106、206、306之反應 室組件102、202、302之構成、及第1電漿電極280及第2電 漿電極380之構成以外,與第2圖之基板處理裝置1為同一構 成’故有關其他構成要素之詳細説明將予以省略。 第8圖係顯示本發明之另一種其他實施形態之直列型 基板處理裝置之構成圖。 參考第8圖,在本發明之另一種其他實施形態之直列型 基板處理裝置3中,各反應室1〇〇、200、300可包含配置呈 垂直一列之複數反應室組件而構成。較具體而言,第1反應 室100可包含配置呈垂直一列之複數第1單元反應室組件 102而構成。第2反應室200可包含配置呈垂直一列之複數第 2單元反應室組件202而構成。第3反應室300可包含配置呈 垂直一列之複數第3單元反應室組件302而構成。在如此構 成之情況下,可一次將多數的基板1〇予以電漿處理,因此 可將步驟之生產性予以極大化。 第8圖中雖將第1反應室100、第2反應室200、及第3反 應室300分別顯示為各包含2個第1單元反應室組件1〇2、第2 單元反應室組件202、及第3單元反應室組件302者,但並非 限於此,各反應室可包含多數之反應室組件而構成。 21 201203374 想當然耳,第1負載鎖定室400及第2負載鎖定室5〇〇亦可 對應於第1反應室~第3反應室100、200、300之構成而構成。 第8圖之直列型基板處理裝置3除為上部反應室及下部 反應室包含配置呈垂直一列之複數反應室組件之構成以外 與第5圖之基板處理裝置2為同一構成,因此有關其他構成 要素之詳細説明將予以省略。 以下,將參考第2圖説明使用本發明之一實施形態之直 列聖基板處理骏置1,將矽層予以電漿處理之步驟。 首先’石夕層係藉由第1機械手臂600往第1負載鎖定室 400移送。經移送之矽層可臨時保管在第1負載鎖定室4〇〇之 後,藉由複數第4驅動滚輪組件420從第1負載鎖定室4〇〇搬 出、並搬入第1反應室100。 接下來,可將搬入第丨反應室100之矽層予以預熱。較 具體而言,搬入第1反應室100之矽層可藉由第丨加熱器11〇 預熱,從第1溫度上昇至第2溫度。在此,第丨溫度可在3〇〇 °C~600°C之範圍,第2溫度可在400°C〜10〇〇t之範圍。 經預熱之石夕層可藉由複數第1驅動滾輪組件12〇從第1 反應室100搬出、並搬入第2反應室200。 接下來,搬入第2反應室200之矽層係維持在第2溫度、 並可藉由第1電漿電極250進行電漿處理。此時,可驅動第2 加熱器210使石夕層維持在第2溫度’且可驅動第1電毁電極 250將矽層予以電漿處理。藉此,矽層可進行在第2反應室 200之氫鈍化。即,氫可擴散至矽層 '且經擴散之&可與存 於矽層之懸空鍵(dangling bond)結合使矽層穩定化。另一方 22 201203374 面,產生於第2反應室200之電漿理想上可為包含氫或氨之 電漿。 經電漿處理過之石夕層可藉由複數第2驅動滾輪組件22〇 從第2反應室200搬出、並搬入第3反應室3〇〇。 接下來,搬入第3反應至300之石夕層可從第2溫度冷卻至 第3溫度。此時,可驅動備置在第3反應室3〇〇之第2電漿電 極350。即,在第3反應室300中使矽層冷卻之期間,亦可藉 由第2電漿電極350持續進行矽層之電漿處理。在第3反應室 300中進行之電漿處理並非是持續進行直到矽層達至常 溫’而是可在㈣達至第3溫度時中斷。在此,第3溫产可 為之顧。在㈣之冷卻持續進行之期間亦 可藉由持續驅動第2電激電極35〇,有效地防止因在第2反應 室200之氫電聚處理岐切層之氫之向外擴散現象。 已完成冷卻處理切層可藉由複數第3驅動滾輪組件 職第3反應室搬出、並搬人㈣載蚊謂。搬入 第2負載鎖疋至之妙層經臨時保管後,可藉由第2機械手 在以上詳細説明中,雖藉由具體的構成要素等之特定 事項及所限定之實施形態及圖式説明本發明,但此乃用以 提供輔助本發明讀全㈣之理解者,iUN林發明限於 =述貫施㈣者’只要為具有本發明所屬技術領域之一般 識人士 ’可從此種記裁構想多樣地修正及變形。因此, 2明之思想並非限定於上述實施形態所制定,且非僅只 述之專利巾㈣® ’與該專利t請範圍均等或等價變形 23 201203374 之全部態樣皆屬本發明之思想範_。 【圖式簡單説明】 第1圖係顯示習知之分群方式之電漿裝置之圖。 第2圖係顯示本發明之一實施形態之直列型基板處理 裝置之構成圖。 第3圖係顯示本發明之一實施形態中配置有第1電漿電 極之第2反應室之構成圖。 第4圖係概略顯示本發明之一實施形態之第1電漿電極 中RF訊號流動之態樣之圖。 第5圖係顯示本發明之其他實施形態之直列塑基板處 理裝置之構成圖。 第6圖係顯示本發明之其他實施形態中配置有第1電漿 電極之第2單元反應室組件之構成圖。 第7圖係概略顯示本發明之其他實施形態之第j電漿電 極中RF訊號流動之態樣之圖。 第8圖係顯示本發明之另一種其他實施形態之直列梨 基板處理裝置之構成圖。 【主要元件符號說明】 104…第1上部反應室 106…第1下部反應室 110···第1加熱器 112···第1單元加熱器 120···第1驅動滾輪組件 130···第1搬入部 卜2、3…直列型基板處理裝置 10…基板 40…基板移送部 42…反應室 100…第1反應室 102…第1單元反應室組件 24 201203374 140…第1搬出部 200.··第2反應室 202···第2單元反應室組件 204…第2上部反應室 206···第2下部反應室 210···第2加熱器 212···第2單元加熱器 220···第2驅動滾輪組件 230…第2搬入部 240…第2搬出部 250、280…第1電漿電極 252、282…折彎部 254、284…第1上部電極部 256、286···第1下部電極部 260",RF 天線 270…地線 300…第3反應室 302···第3單元反應室組件 304…第3上部反應室 306…第3下部反應室 320···第3驅動滾輪組件 330…第3搬入部 340…第3搬出部 350、380…第2電漿電極 400···第1負載鎖定室 410···第1閘閥 420…第4驅動滚輪組件 500···第2負載鎖定室 510…第2閘閥 520···第5驅動滾輪組件 600…第1機械手臂 610、710…手臂 700…第2機械手臂 25t Λ* 'J Background of the invention With the prediction of the exhaustion of existing fossil energy resources such as oil or charcoal,  And concerns about the environment are high, Among the alternative energy sources that can solve this problem, The public is in a solar cell technology with unrestricted/non-polluting characteristics.  a solar cell that accepts light and converts it into electrical energy, Can be roughly divided into large capacity 3: Type (single crystal, Polycrystalline (p〇ly crystalline) solar cells, Thin film type (amorphous, Polycrystalline silicon battery such as CdTe or CIS (CuInSe2) III-V solar cell, Dye-sensitized solar cells, And organic solar cells, etc.  On the other hand, most of the solar cells that have been generalized now use Shi Xi as the material of the light absorbing layer. In this case, in order to improve the photoelectric conversion efficiency of the solar cell, there has been proposed a method of subjecting the crucible to hydrogen plasma treatment to passivate the dangling bond of the Shixia atom.  In order to treat the hydrazine with hydrogen plasma, The crucible must be heated to a predetermined temperature or higher. therefore, In the conventional case, heaters installed outside or inside the room of the 201203374 room were used to heat the enthalpy, But recently, in order to save as much time as possible, Multi-grouping is used to heat the crucible.  Grouping method is a type with multiple reaction chambers, After dividing the plasma processing step into multiple steps, The manner in which the various steps are carried out in each reaction chamber.  A plasma device of a conventional grouping method will be described below. Fig. 1 is a view showing a plasma device of a conventional grouping method.  Referring to Fig. 1 'the grouping method, the plurality of reaction chambers 42 are arranged in a circular shape, and then the substrates are carried in and out of the respective reaction chambers 42 using the substrate transfer unit 40 in the center.  but, According to this conventional grouping method, To construct the aforementioned device, Not only will it cost a lot of money, Moreover, the substrate transfer unit 4 located at the center also takes extra time when transferring the substrate. Therefore, there is a problem that the productivity is slightly reduced.  To solve the above problems, There is a proposal for a batch type plasma treatment method in which a plurality of hydrazines are simultaneously subjected to hydrogen plasma treatment in one reaction chamber. but, According to this batch type plasma processing method, From the point of view of simultaneously treating a plurality of cesiums with hydrogen plasma treatment, Although it has the advantage of improving productivity, However, there is a problem that it is impossible to carry out a plurality of complexes of uniform plasma hydrogen plasma treatment.  C 明内 3 SUMMARY OF THE INVENTION Problem to be Solved by the Invention The present invention has been made to solve the problems of the above-mentioned conventional techniques. It is an object of the invention to provide an in-line type substrate processing apparatus which can improve the productivity of an electropolymerization process for a substrate.  also, It is an object of the present invention to provide an in-line type substrate processing apparatus which can uniformly plasma-treat a plurality of substrates 201203374.  In addition, SUMMARY OF THE INVENTION An object of the present invention is to provide an in-line substrate processing apparatus which can minimize the cancellation of an electromagnetic field generated by the interaction between a plurality of plasma electrodes.  and, SUMMARY OF THE INVENTION An object of the present invention is to provide an in-line type substrate processing apparatus which can effectively prevent out-diffusion of hydrogen in a germanium layer.  The organization to solve the problem, in order to achieve the above objectives, The in-line type substrate processing apparatus of the present invention is characterized by comprising: First reaction chamber, Preheating the substrate; Second reaction chamber, Can be received, Heating the substrate preheated in the first reaction chamber, And performing plasma treatment; And the third reaction room, Can receive, Cooling the substrate processed by the plasma in the second reaction chamber, And plasma treatment, And the first reaction chamber, The aforementioned second reaction chamber, The third reaction chamber is arranged in series in a row.  Effect of the Invention According to the present invention, Since the reaction chambers are arranged in a row, So you can use clustering, The time spent on substrate transfer can be minimized. and so, The productivity of the plasma processing step for the substrate can be improved.  also, According to the invention, By arranging the reaction chambers in the same step in a vertical column, The plurality of substrates can be plasma treated uniformly.  In addition, According to the invention, By forming the plasma electrode into a shape of a bend,  The offset of the electromagnetic field due to the interaction between the plurality of plasma electrodes can be minimized.  and, According to the present invention, the outward diffusion of hydrogen in the layer can be effectively prevented.  201203374 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a conventional plasma device of a grouping method.  Fig. 2 is a view showing the configuration of an in-line type substrate processing apparatus according to an embodiment of the present invention.  Fig. 3 is a view showing the configuration of a second reaction chamber in which a first plasma electrode is disposed in an embodiment of the present invention.  Fig. 4 is a view schematically showing a state in which an RF signal flows in a first plasma electrode according to an embodiment of the present invention.  Fig. 5 is a view showing the configuration of an in-line type substrate processing apparatus according to another embodiment of the present invention.  Fig. 6 is a view showing the configuration of a second unit reaction chamber unit in which a first electrical-electrode electrode is disposed in another embodiment of the present invention.  Fig. 7 is a view schematically showing a state in which an RF signal flows in a first plasma electrode according to another embodiment of the present invention.  Fig. 8 is a view showing the configuration of an in-line type substrate processing apparatus according to still another embodiment of the present invention.  I: Embodiment 3 Mode for Carrying Out the Invention A detailed description of the present invention to be described later will be described. Specific embodiments in which the present invention may be implemented will be described as additional figures for illustration. Explain in sufficient detail the implementation forms, The invention may be practiced by a person skilled in the art. It should be understood that: The various embodiments of the present invention are different from each other, But there is no need for mutual exclusivity. E.g, The specific shape described herein, Specific structure, And characteristics are associated with an embodiment, Without departing from the essence of the present invention 6 201203374 q can be implemented in other embodiments, Should understand: The location of the individual components of each disclosed embodiment: The configuration may be modified without departing from the spirit and scope of the invention.  therefore, The details (4) described later are not understood as limitations. The scope of the invention is appropriately purchased, Limited only to the full extent of the equal scope claim, And the scope of the attached towel is patented. In the schema, Like reference numerals include various sides that indicate the same function as the same length. area, thickness, And the situation in the branch ^ may ^ 5 exaggerated performance.  the following, The present invention may be readily implemented by those skilled in the art to which the invention pertains.  First of all, The substrate is subjected to plasma treatment by the in-line substrate processing apparatus of the present invention. It is not limited to the substrate for a semiconductor element, Liquid crystal display device substrate, And fields such as substrates for solar cells, The so-called substrate is generally a wafer substrate, The glass substrate and the like are treated by plasma, It can also be interpreted as the meaning of electropolymerizing a predetermined film or pattern formed on the aforementioned substrate. Therefore, it is apparent that the use of the in-line type substrate processing apparatus of the present invention to process a substrate 'is interpreted to include the meaning of electrically destroying the layer formed on the substrate.  Fig. 2 is a view showing the configuration of an in-line type substrate processing apparatus according to an embodiment of the present invention.  Referring to Figure 2, An in-line substrate processing apparatus according to an embodiment of the present invention basically includes three reaction chambers 100, 200, 300. More than the 201203374 body, The first reaction chamber 100 including the preheating substrate 10, a second reaction chamber 200 in which the substrate 1 which is preheated in the first reaction chamber 100 is subjected to plasma treatment, And the third reaction chamber 300 in which the substrate 10 subjected to the plasma treatment in the second reaction chamber 2 is cooled. the following, The respective configurations and functions of the respective reaction chambers will be explained.  First of all, The first reaction chamber 100 will be described.  Further, referring to Fig. 2, the first reaction chamber 1 is substantially configured to seal the internal space. The function of providing a space for preheating the substrate 10 can be exerted. The shape of the first reaction chamber 100 is not particularly limited. However, it is appropriate to use a rectangular parallelepiped. The material of the first reaction chamber 100 can be stainless steel. Aluminum alloy, Or quartz, etc. But it is not limited to these people.  Further reference to Figure 2, It can be confirmed that among the above three reaction chambers, The first reaction chamber 100 is provided on the left side. here, The state in which the first reaction chamber 1 is positioned on the left side is associated with the moving direction of the substrate 10. that is, The substrate 10 preheated in the first reaction chamber 1 is moved to the right in the second reaction chamber 200 on the right side of the first reaction chamber 100. Therefore, the first reaction chamber 1 is displayed in position. Left side. Of course, the movement of the substrate 10 to the right is convenient for any setting.  It is not important in the present invention that the traveling direction of the substrate 10 is rightward or leftward.  but, the following, The direction in which the substrate 10 travels is assumed to be right.  • Further reference to Figure 2, The first reaction chamber 1〇〇 may be configured to include a first force heat exchanger u〇. The first heater 110 can function to heat the plurality of substrates 1 to preheat the substrate 1〇. E.g, When the plasma is used to perform the hydrogen passivation step on the substrate 1 The first heater 110 can preheat the temperature of the substrate 10 to a range thereof.  at this time, The first heater 11 is made up of a plurality of first unit heaters 丨12 and is made up of 201203374. here, The first unit heater 112 is a generally elongated rod-shaped heater.  A heating element is inserted inside the quartz tube. Heat is generated by receiving an external power source through terminals provided at both ends. The uniform heat treatment is performed by preheating the substrate 10' by the plurality of first unit heaters 112 to cover the entire area of the substrate 10. The plurality of first unit heaters 112 are preferably disposed at a predetermined interval in parallel with the longitudinal direction of the substrate 10, but are not limited thereto. It may be arranged in parallel with the short side direction of the substrate 10 at regular intervals. also, The number of the first unit heaters 112 disposed in the first reaction chamber 1 is not particularly limited. Various changes can be made in accordance with the purpose of use of the present invention.  In the second drawing, the substrate 1 is placed in the first reaction chamber 1 〇〇 and is preheated, but it is preferable to carry the substrate 1 into the first reaction chamber while being placed on the substrate holder (not shown). Preheated by 100. In the second reaction chamber 200 and the third reaction chamber 300, The substrate 1A may also be placed on the substrate holder for processing. Regarding the aforementioned substrate holder, It will be omitted in the following description of the second reaction chamber 200 and the third reaction chamber 300.  Next, the first reaction chamber 100 may be configured to include a first transfer unit. The first transfer unit can carry the substrate 10 into the first reaction chamber 100, Alternatively, the substrate 10 which has been preheated from the first reaction chamber 100 is carried out. at this time, The first transfer unit may include a predetermined length, The plurality of first drive roller assemblies 120 are disposed along the right side of the moving direction of the substrate 10. The plurality of first driving roller assemblies 120 can function as the supporting substrate 10, And the function of moving the substrate 10 in an in-line manner. More specifically, The plurality of first drive roller assemblies 120 can perform the following functions: Contacting the lower surface of the substrate 10, And rotating in the moving direction of the substrate 10, The substrate 10 is carried into the interior of the first reaction chamber 100, And after the substrate 1 is moved 9 201203374, the support substrate 10 is supported during the plasma treatment of the substrate 10,  And once the plasma processing of the substrate 10 is completed, It is in contact with the lower surface of the substrate 10, And rotate in the direction of movement of the substrate ίο, The substrate 1 is carried out from the first reaction chamber 1 .  In order for this function to proceed smoothly, As shown in Figure 2, The plurality of first drive roller assemblies 120 are preferably disposed at the same height inside the first reaction chamber 1A.  Further, the plurality of first drive roller assemblies 120 are preferably interlocked with each other. on the other hand,  The plurality of first drive roller assemblies 120 may be formed with different widths from each other depending on the set position. However, it is preferred that the diameters are all formed in the same manner.  Next, Further reference to Figure 2, It can be on the left side of the first reaction chamber 1〇〇, more specifically, The first loading unit 130 having a predetermined width and height is formed on a surface in contact with the first load lock chamber 400 to be described later. The first loading unit 130 has an opening shape, and functions as a passage for loading the substrate 1〇. During the preheating step of the substrate 10, In order to seal the first reaction chamber 1〇〇, it is necessary to close the first loading unit 130'. Therefore, the first loading unit 130 can be provided with a door that can move in the vertical direction and open and close the first reaction chamber 1 (not shown). ).  Next' further reference to Figure 2, It may be more specific on the right side of the first reaction chamber 100, and ’' is opposite to the surface on which the first loading unit 130 is disposed. The first reaction chamber 140 having a predetermined width and height is formed on the surface of the first reaction chamber 100 which is in contact with the second reaction chamber 2A. The first carry-out unit 140 has an opening shape.  It functions as a path for carrying out the substrate 10. The same as the first loading unit 130, during the heat treatment step, In order to close the first reaction chamber, It is necessary to close the first carry-out unit 140, Therefore, the other door 10 201203374 (not shown) that can move in the vertical direction and open and close the first reaction chamber 1 can be provided in the i-th moving portion 丨4〇.  On the other hand, the first reaction chamber 100 may include a first unit reaction chamber assembly 102 (refer to Fig. 5). The first unit reaction chamber unit 102 basically includes a second upper reaction chamber 1〇4 (refer to Fig. 5) and a first lower reaction chamber 106 (refer to Fig. 5) which are disposed independently of each other. This section will be described later.  Next, The second reaction chamber 200 will be described.  Further reference to Figure 2, The second reaction chamber 200 is substantially configured to seal the internal space. A function of providing a space for plasma-treating the substrate 10 can be exerted. Similarly to the first reaction chamber 100, The shape of the second reaction chamber 200 is preferably a rectangular parallelepiped. on the other hand, The material of the second reaction chamber 200 can be stainless steel.  Aluminum alloy, Or quartz, etc. But not limited to those.  Further reference to Figure 2, It can be confirmed that the second reaction chamber 200 is located between the first reaction chamber 100 and the third reaction chamber 300. As mentioned above, This is associated with the direction of movement of the substrate 10.  Further reference to Figure 2, The second reaction chamber 200 may be configured to include a second heater 21A. In order to perform the plasma treatment of the substrate 10, It is necessary to heat and maintain the substrate 10 above a predetermined temperature. In this sense, The second heater 210 can function to heat the substrate 10. For example, when the substrate 10 is subjected to a hydrogen passivation step using an electric paddle, The second heater 210 can maintain the temperature of the substrate 10 in the range of about 400 ° C to 1000 ° C.  at this time, As shown in Figure 2, The second heater 210 is constituted by a plurality of second unit heaters 212. The second unit heater 212 has substantially the same configuration and function as the first unit heater 112, And the configuration is the same, Therefore, a detailed description of the second unit heater 212 will be omitted.  201203374 Next, Further reference to Figure 2, The second reaction chamber 200 may be composed of a plurality of first plasma electrodes 250. The first plasma electrode 25〇 can function as an inductively coupled plasma (Inductively Coupled Piasma:  The method of generating ICP) is to generate the function of the plasma. which is, It is possible to generate an electromagnetic field by receiving an Rf power source that supplies a high-frequency voltage. To generate and maintain the function of the plasma.  Fig. 3 is a view showing the configuration of a second reaction chamber in which a j-th plasma electrode is disposed in an embodiment of the present invention.  Referring to Figure 3, The first plasma electrode 250 may include a first upper electrode portion 254, Bending portion 252, And the first lower electrode portion 256 is configured to It may have a shape in which the substrate 10 is folded and bent. More specifically, The first plasma electrode 25A can be based on the bent portion 252. The first upper electrode portion 254 stored in the upper portion of the substrate 10 is included, The first lower electrode portion 256 is disposed in the lower portion of the substrate 10. here, The bent portion 252 can have more than one bend point. The ideal system is shown in Figure 3 with 2 bend points. Thereby, the first plasma electrode 250 may have a shape of "[" or inverse "匚". At this time, the substrate 10 can be disposed between the "C" or the inverse "c shape.  Further reference to Figure 3 can confirm: The RF antenna 260 is connected to the end of the first upper electrode portion 254. A ground line 270 is connected to the end of the first lower electrode portion 256. here, The RF antenna 260 can function to apply an RF signal to the first electro-converging electrode 250. The ground 270 can function to pass the applied iRF signal through the first plasma electrode 250.  Fig. 4 is a view schematically showing a state in which an RF signal flows in a first plasma electrode according to an embodiment of the present invention.  Refer to Figure 4, An RF signal can be applied to the first upper electrode portion 254 of the first plasma electrode 250 of the first plasma electrode 250 located at the upper portion of the substrate 10, The RF signal is caused to flow out of the first lower electrode portion 256 of the first plasma electrode 250 located at the lower portion of the substrate 10. which is, The RF signal applied from the Rp antenna 260, After the upper portion of the substrate 1 is applied, it can move along the second plasma electrode 250. And flowing out through the ground wire 270 in the lower portion of the substrate 1 The plasma can be generated and maintained by this process.  In the above configuration, since the signal from the RF antenna 260 flowing between the first upper electrode portion 254 and the first lower electrode portion 256 is opposite to each other, Therefore, the RF signal will be weakened in a certain area and the phenomenon of reducing the plasma density will disappear.  which is, From the position of the configuration substrate 10 to the area near the ground line 270, Although the intensity of the electromagnetic field is small, 'because the region is also close to the region of the rF antenna 26', the intensity of the electromagnetic field can be compensated. and, The electromagnetic field of the first upper electrode portion 254 and the electromagnetic field of the first lower electrode portion 256 in the region near the bent portion 252 cause a mutual compensation effect. As a result, A uniform plasma density can be obtained from the disk substrate 1 .  Next, Further reference to Figure 2, The second reaction chamber 2A may be configured to include a second transfer unit. The second transfer unit can carry the substrate 1 into the second reaction chamber 200, Alternatively, the substrate 1 that has been subjected to the power treatment is carried out from the second reaction chamber 200. Similar to the first transfer unit, The aforementioned The transfer unit may include a plurality of second drive roller assemblies 220. The plurality of second drive roller assemblies 220 have a predetermined length, And arranged along the moving direction of the substrate 10.  In addition to moving the substrate 10 into the second reaction chamber 200, Further, the substrate 10 having completed the electricity processing is carried out from the second reaction chamber 200, The plurality of second drive roller assemblies 22A and the plurality of first horse moving roller assemblies 12 of the first reaction chamber 100 have substantially the same configuration and function, And the configuration is the same, Therefore, a detailed description of the second drive roller 13 201203374 wheel assembly 220 will be omitted.  Next, Further reference to Figure 2, It can be on the left side of the second reaction chamber 200 - more specifically, A second loading unit 230 having a predetermined width and height is formed for the surface in contact with the first reaction chamber 100. also, The right side surface of the second reaction chamber 200 may be more specifically opposed to the surface on which the second loading unit 230 is disposed. Further, the second reaction portion 240 having a predetermined width and height is formed on the surface of the second reaction chamber 200 which is in contact with the third reaction chamber 300. The second loading unit 230 and the second loading unit 240 have the same configuration and function as the first loading unit 130 and the first loading unit 140. Therefore, the detailed description will be omitted.  on the other hand, The second reaction chamber 200 may be configured to include a second unit reaction chamber assembly 202. The second unit reaction chamber unit 202 basically includes a second upper reaction chamber 204 (refer to Fig. 5) and a second lower reaction chamber (206) which are disposed independently of each other (see Fig. 5). This section will be described later.  Next, The third reaction chamber 300 will be described.  Further reference to Figure 2, The third reaction chamber 300 is configured to substantially seal the internal space. It can function to provide space for cooling the substrate. The cooling method can use water cooling or air cooling. Natural cooling can also be used as appropriate. Similarly to the second reaction chamber 200, The shape of the third reaction chamber 300 is preferably a rectangular parallelepiped. The material of the third reaction chamber 300 can be stainless steel. Aluminum alloy,  Or quartz, etc. But not limited to those.  Further reference to Figure 2, It can be confirmed that the third reaction chamber 300 is located on the right side of the second reaction chamber 200. As mentioned above, This is associated with the direction of movement of the substrate 1〇.  Next' further reference to Figure 2, The third reaction chamber 300 may include a plurality of second plasma electrodes 350 for generating and maintaining plasma. 2nd plasma electric power 14 201203374 The extreme 350 series is based on a bent portion (not shown), and includes a second upper electrode portion (not shown) stored in the upper portion of the substrate The second lower electrode portion (not shown) is disposed on the lower portion of the substrate 1. Since the second plasma electrode 350 has substantially the same configuration and function as the first plasma electrode 250, and the arrangement is the same, Therefore, the detailed description will be omitted.  Next' further reference to Figure 2, The third reaction chamber 300 may be configured to include a third transfer unit. The third transfer unit can carry the substrate 1 into the third reaction chamber 3〇〇, Alternatively, the substrate 1 that has been cooled is carried out from the third reaction chamber 300. The third transfer unit described above is similar to the first transfer unit described above. Can include a predetermined length, And a plurality of third drive roller assemblies 320 are disposed along the moving direction of the substrate 10. In addition to moving the substrate 10 into the third reaction chamber 300, Further, the substrate 10 that has been cooled is carried out from the third reaction chamber 300, The plurality of first drive roller assemblies 120 and the plurality of third drive roller assemblies 320 have substantially the same configuration and function, And the configuration is the same, Therefore, a detailed description of the third drive roller assembly 320 will be omitted.  Next, Further reference to Figure 2, It may be on the left side of the third reaction chamber 300, more specifically, A third carry-in portion 330 having a predetermined width and height is formed on the surface of the second reaction chamber 200 that is in contact with the second reaction chamber 200. also,  It may be more specifically on the right side of the third reaction chamber 300, Facing the surface on which the third loading unit 330 is disposed, A third carry-out portion 340 having a predetermined width and height is formed on the surface of the third reaction chamber 300 that is in contact with the second load lock chamber 500, which will be described later. The third loading unit 330 and the third loading unit 340 have the same configuration and function as the first loading unit 130 and the first loading unit 140. Therefore, it will be explained in detail.  15 201203374 Above, The first reaction chamber 100 of the basic components of the in-line type substrate processing apparatus The second reaction chamber 200, The third reaction chamber 300 will be described. the following, Other components of the in-line substrate processing apparatus will be described.  Further reference to Figure 2, The in-line substrate processing apparatus 1 according to an embodiment of the present invention may be configured to include a first load lock chamber 4A. [The load lock chamber 400 functions to temporarily store the substrate 1 into the first reaction chamber. Further, the first load lock chamber 400 can be carried into the substrate 10 under atmospheric pressure, but does not carry the substrate 10 while the first gate valve 41 is closed. The function of exposing the i-th reaction chamber 100 to a non-vacuum state.  In the second drawing, the slab substrate 10 is carried in and stored in the first load lock chamber 400. But depending on the situation, The plurality of substrates 10 can also be carried in and stored in the first load lock chamber 400.  Further reference to Figure 2, The first load lock chamber 400 may include a fourth transfer portion that carries out the substrate 1 from the first load lock chamber 400. The fourth transfer unit is the same as the first transfer unit described above. Can include a predetermined length, And a plurality of fourth drive roller assemblies 420 are disposed along the moving direction of the substrate 10. The plurality of first drive roller assemblies 120 and the plurality of fourth drive roller assemblies 420 have substantially the same configuration and function. Therefore, the detailed description will be omitted.  Next, Further reference to Figure 2, The in-line substrate processing apparatus 1 according to an embodiment of the present invention may be configured to include a second load lock chamber 500. The second load lock chamber 500 can function to temporarily store the substrate 10 that has been cooled. also, The second load lock chamber 500 can exhibit the substrate 10 to be carried out under atmospheric pressure. However, the third reaction chamber 300 is not exposed to the non-vacuum state by carrying out the substrate 10' while the second gate valve 510 is sealed.  16 201203374 Further reference to Figure 2, The second load lock chamber 500 may include a fifth transfer unit that carries the substrate 10 into the second load lock chamber 500. The fifth transfer unit is the same as the first transfer unit described above. Can include a predetermined length, And a plurality of fifth drive roller assemblies 520 are disposed along the moving direction of the substrate 10. The plurality of first drive roller assemblies 120 and the plurality of fifth drive roller assemblies 520 have substantially the same configuration and function. Therefore, the detailed description will be omitted.  Further referring to FIG. 2, it can be confirmed that the first load lock chamber 400 is in accordance with the first load. First reaction chamber 100, The second reaction chamber 200, The third reaction chamber 300, The order of the second load lock chambers 500 is arranged in a row. Considering each of the aforementioned reaction chambers 100, 200,  300, 400, 500 features, The substrate 10 can be locked in accordance with the first load lock chamber 400,  First reaction chamber 100, The second reaction chamber 200, The third reaction chamber 300, The second load lock chamber 500 is moved in sequence to perform processing. The components for performing the movement of the substrate 10 are arranged in each reaction chamber 1 200, 300, 400, 500 before the first transfer unit, The second transfer unit, The third transfer unit, The fourth transfer unit, And the fifth transfer unit.  Next, Further reference to Figure 2, The inline substrate processing apparatus 1 according to the embodiment of the present invention may include the first robot arm 600 that carries the substrate into the first load lock chamber 400, And the second robot arm 700 of the substrate 10 is carried out from the second load lock chamber 500.  The first robot arm 600 is disposed outside the first load lock chamber 400. The substrate 10 can be carried into the first load lock chamber 400. E.g, The first robot arm 600 is disposed on the left side of the first load lock chamber 400. The substrate 1 can be taken out from a member (not shown) in which a plurality of substrates 10 are stored. The substrate 10 is carried into the first load lock chamber 400.  17 201203374 Similarly to the first robot arm 600, The second robot arm 7 is disposed on the right side of the second load lock chamber 500. The substrate 10 can be carried out from the second load lock chamber. And communicate to external functions. In Fig. 2, the arm of the first robot arm 600 and the second robot arm 700 are respectively displayed. 7丨〇, But not limited to this, Most of the arm 610 can be used in the first robot arm 600 and the second robot arm 7 710. The configuration and workability of the first robot arm 600 and the second robot arm 7〇〇 are known in the art. Therefore, further detailed explanation is omitted.  In the in-line type substrate processing apparatus 1 of the present embodiment configured as above, Various plasma processing steps can be implemented, For example, a hydrogen purification step using a plasma layer of a plasma or the like. The in-line substrate processing apparatus i of the present embodiment can utilize a grouping method, The time taken for the transfer of the substrate 10 by the ith transfer portion to the fifth transfer portion of the transfer substrate 1 can be minimized. Therefore, the entire electroforming step time can be shortened. result, The productivity of the electropolymerization step can be improved.  Fig. 5 is a view showing the configuration of an in-line type substrate processing apparatus according to another embodiment of the present invention.  Refer to Figure 5, According to another embodiment of the present invention, the in-line substrate processing apparatus 2 Each reaction chamber 200, 300 may comprise a reaction chamber assembly having an upper reaction chamber and a lower reaction chamber disposed independently of each other.  More specific instructions, The first reaction chamber 100 may include an i-th unit reaction chamber assembly 102 including the first upper reaction chamber 104 and the first lower reaction chamber 106 which are disposed independently of each other. The second reaction chamber 200 may include a second unit reaction chamber unit 202 including the second upper reaction chamber 204 and the second lower reaction chamber 206 which are disposed independently of each other. The third reaction chamber 300 may include a third unit reaction chamber assembly 302 having a third upper reaction chamber 304 and a third lower portion of the reaction chamber 306, which are disposed independently of each other.  at this time, As shown in Figure 5, Unit 1 reaction chamber assembly 丨〇 2 The second unit reaction chamber assembly 202, And the third unit reaction chamber assembly 302 can be connected in a row. More specifically, the first upper reaction chamber 104 of the first unit reaction chamber assembly 1〇2, The second upper reaction chamber 204 of the second unit reaction chamber assembly 202, And the third upper reaction chamber 304 of the third unit reaction chamber assembly 302 can be connected in a row, And the first lower reaction chamber 1〇6 of the first unit reaction chamber assembly 102, The second lower reaction chamber 206 of the second unit reaction chamber assembly 202, And the third lower reaction chamber 306 of the third unit reaction chamber assembly 302 can be connected in a row.  Each reaction chamber 100 is configured in a plurality of layers, 200, In the case of 300,  Since most of the substrates 10 can be processed at one time, Therefore, there is an advantage that the productivity of the plasma step can be further improved.  on the other hand, In each reaction chamber 100, 200, 300 includes an upper reaction chamber 104 configured to be independent of each other, 204. 304 and lower reaction chamber 1〇6,  206, Reaction chamber assembly 306 of 306 202, In the case of 302, The first plasma electrode 280 and the second plasma electrode 380 disposed in the second reaction chamber 200 and the third reaction chamber 300 may have a configuration different from that of the first plasma electrode 250 shown in Fig. 3.  The first load lock chamber 400 and the second load lock chamber 500 may correspond to the first to third reaction chambers 100, 200, 300, The upper and lower reaction chambers and the lower reaction chamber are formed independently of each other.  Fig. 6 is a view showing the configuration of a second unit reaction chamber unit in which a first plasma electrode is disposed in another embodiment of the present invention.  Refer to Figure 6 to confirm: Unlike the second reaction chamber 200 in which the first plasma electrode 250 19 201203374 in FIG. 3 is disposed in one space, The first plasma electrode 280 of Fig. 6 is disposed in both the second upper reaction chamber 204 and the second lower reaction chamber 206. therefore, Similarly to the first plasma electrode 280 of Fig. 3, the first plasma electrode 280 of Fig. 6 is With a bent portion 282, The first upper electrode portion 284,  And the first lower electrode portion 286 is configured to However, the first upper electrode portion 284 is disposed in the second upper reaction chamber 204, The first lower electrode portion 286 is disposed in the second lower reaction chamber 206. therefore, The bent portion 282 of the first plasma electrode 280 of Fig. 6 is preferably formed to be longer than the bent portion 252 of the first plasma electrode 250 of Fig. 3.  Further reference to Figure 6 confirms: Connected to the RF antenna 260 at the end of the first upper electrode portion 284, A grounding wire 270 is connected to the end of the first lower electrode portion 286. This composition is similar to the composition shown in Figure 3, However, there are differences in the following constitutions, which is: In Figure 3, The RF antenna 260 and the ground line 270 are disposed on the side of the second reaction chamber 200 formed in one space. In Figure 6,  The RF antenna 260 and the ground line 270 are disposed on the side surfaces of the second upper reaction chamber 204 and the second lower reaction chamber 206 which are independent of each other.  Fig. 7 is a view schematically showing a state in which an RF signal flows in a first plasma electrode according to another embodiment of the present invention.  Refer to Figure 7, An RF signal can be applied to the first upper electrode portion 284 disposed in the second upper reaction chamber 204, The RF signal is caused to flow out in the first lower electrode portion 286 of the second lower reaction chamber 206. With the flow of such RF signals, In the second upper reaction chamber 204, the plasma can be generated and maintained by the first upper electrode portion 284. Further, in the second lower reaction chamber 206, plasma can be generated and maintained by the first lower electrode portion 286.  20 201203374 On the other hand, The second plasma electrode 380 disposed in the third reaction chamber 300 of Fig. 6 has substantially the same configuration as the first plasma electrode 28A. Therefore, the detailed description of the second electric electrode 380 will be omitted.  also, In the configuration of the in-line type substrate processing apparatus 2 of Fig. 5, In addition to each reaction room 100, 200, 300 includes mutually independent reaction chambers 104 arranged in the upper and lower portions, 204. 304 and lower reaction chamber 106, 206, Reaction chamber component 102 of 306, 202, 302 composition, In addition to the configuration of the first plasma electrode 280 and the second plasma electrode 380, The substrate processing apparatus 1 of Fig. 2 has the same configuration. Therefore, detailed descriptions of other components will be omitted.  Fig. 8 is a view showing the configuration of an in-line type substrate processing apparatus according to still another embodiment of the present invention.  Refer to Figure 8, In the in-line type substrate processing apparatus 3 of another embodiment of the present invention, Each reaction chamber 200, 300 can comprise a plurality of reaction chamber assemblies configured in a vertical column. More specifically, The first reaction chamber 100 may include a plurality of first unit reaction chamber assemblies 102 arranged in a vertical column. The second reaction chamber 200 may be configured to include a plurality of second unit reaction chamber assemblies 202 arranged in a vertical row. The third reaction chamber 300 may be configured to include a plurality of third unit reaction chamber assemblies 302 arranged in a vertical row. In the case of such a configuration, Most of the substrates can be plasma treated at one time. Therefore, the productivity of the steps can be maximized.  In the eighth drawing, the first reaction chamber 100, The second reaction chamber 200, And the third reaction chamber 300 is shown as each of the two first unit reaction chamber components. Unit 2 reaction chamber assembly 202, And the third unit reaction chamber assembly 302, But not limited to this, Each reaction chamber can be constructed with a plurality of reaction chamber components.  21 201203374 Of course, ears, The first load lock chamber 400 and the second load lock chamber 5A may correspond to the first reaction chamber to the third reaction chamber 100, 200, The composition of 300 constitutes.  The in-line type substrate processing apparatus 3 of Fig. 8 has the same configuration as the substrate processing apparatus 2 of Fig. 5 except that the upper reaction chamber and the lower reaction chamber are configured to include a plurality of reaction chamber modules arranged in a vertical row. Therefore, a detailed description of other components will be omitted.  the following, An in-line holy substrate processing apparatus 1 using an embodiment of the present invention will be described with reference to FIG. The step of plasma treatment of the ruthenium layer.  First, the Shishi layer is transferred to the first load lock chamber 400 by the first robot arm 600. The transported layer can be temporarily stored in the first load lock chamber 4〇〇, The plurality of fourth drive roller assemblies 420 are carried out from the first load lock chamber 4, And moved into the first reaction chamber 100.  Next, The layer of the crucible that is carried into the third reaction chamber 100 can be preheated. More specifically, The layer of the layer that is carried into the first reaction chamber 100 can be preheated by the second heater 11〇. The temperature rises from the first temperature to the second temperature. here, The second temperature can range from 3 ° C to 600 ° C. The second temperature may range from 400 ° C to 10 〇〇t.  The preheated layer can be carried out from the first reaction chamber 100 by the plurality of first drive roller assemblies 12 And moved into the second reaction chamber 200.  Next, The layer that is carried into the second reaction chamber 200 is maintained at the second temperature,  The plasma treatment can be performed by the first plasma electrode 250. at this time, The second heater 210 can be driven to maintain the layer at the second temperature & and the first electro-destructive electrode 250 can be driven to plasma-treat the layer. With this, The ruthenium layer can perform hydrogen passivation in the second reaction chamber 200. which is, Hydrogen can diffuse to the ruthenium layer 'and diffuse & The ruthenium layer can be stabilized in combination with a dangling bond present in the ruthenium layer. The other side 22 201203374, The plasma generated in the second reaction chamber 200 may desirably be a plasma containing hydrogen or ammonia.  The plasma-treated layer can be carried out from the second reaction chamber 200 by the plurality of second drive roller assemblies 22 And moved into the third reaction chamber 3〇〇.  Next, The layer of the third reaction to 300 can be cooled from the second temperature to the third temperature. at this time, The second plasma electrode 350 disposed in the third reaction chamber 3 can be driven. which is, During the cooling of the ruthenium layer in the third reaction chamber 300, The plasma treatment of the ruthenium layer can also be continued by the second plasma electrode 350. The plasma treatment performed in the third reaction chamber 300 is not continued until the ruthenium layer reaches normal temperature ‘but can be interrupted when (4) reaches the third temperature. here, The third warmth can be taken care of. The second electric shock electrode 35〇 can also be driven continuously while the cooling of (4) is continued. The outward diffusion of hydrogen due to the hydrogen electropolymerization treatment in the second reaction chamber 200 is effectively prevented.  The cooling treatment cut layer can be carried out by the third reaction roller assembly, the third reaction chamber, And moving people (four) carrying mosquitoes. After moving into the second load lock to the wonderful layer, after temporary storage, By the second robot, in the above detailed description, The present invention will be described with respect to specific matters such as specific constituent elements and the embodiments and drawings defined therein. However, this is to provide an understanding to assist the reader in reading (4). The iUN Lin invention is limited to a person who has a general knowledge of the technical field to which the present invention pertains, and can be variously modified and modified from such a concept. therefore,  2 The idea of Ming is not limited to the above embodiment. Moreover, not only the patented towel (4)®', but also the scope of the patent t-equal or equivalent deformation 23 201203374 are all in the scope of the present invention.  BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing a conventional plasma device of a grouping method.  Fig. 2 is a view showing the configuration of an in-line type substrate processing apparatus according to an embodiment of the present invention.  Fig. 3 is a view showing the configuration of a second reaction chamber in which a first plasma electrode is disposed in an embodiment of the present invention.  Fig. 4 is a view schematically showing a state in which an RF signal flows in a first plasma electrode according to an embodiment of the present invention.  Fig. 5 is a view showing the configuration of an inline plastic substrate processing apparatus according to another embodiment of the present invention.  Fig. 6 is a view showing the configuration of a second unit reaction chamber unit in which a first plasma electrode is disposed in another embodiment of the present invention.  Fig. 7 is a view schematically showing the state of the RF signal flow in the jth plasma electrode of the other embodiment of the present invention.  Fig. 8 is a view showing the configuration of an in-line pear substrate processing apparatus according to still another embodiment of the present invention.  [Description of main component symbols] 104: First upper reaction chamber 106: First lower reaction chamber 110···First heater 112···1st unit heater 120···1st drive roller unit 130··· The first moving part 2 3...Inline substrate processing apparatus 10...substrate 40...substrate transfer unit 42...reaction chamber 100...first reaction chamber 102...first unit reaction chamber unit 24 201203374 140...first carry-out unit 200. ·2nd reaction chamber 202···2nd unit reaction chamber unit 204...2nd upper reaction chamber 206···2nd lower reaction chamber 210···2nd heater 212··· 2nd unit heater 220 Second drive roller unit 230...Second loading unit 240...Second carrying unit 250,280...First plasma electrode 252,282...Bending unit 254,284...First upper electrode unit 256, 286·· - First lower electrode portion 260 ", RF antenna 270 ... ground line 300 ... third reaction chamber 302 · · third unit reaction chamber assembly 304 ... third upper reaction chamber 306 ... third lower reaction chamber 320 · · · 3 drive roller unit 330... third carry-in unit 340... third carry-out unit 350, 380... second plasma electrode 400···first load lock chamber 410···first gate valve 420...fourth drive roller unit 500· ·2nd load lock chamber 510...2nd gate valve 520···5th drive roller unit 600...1st robot arm 610,710...arm 700...2nd robot arm 25

Claims (1)

201203374 七、申請專利範圍: 1· 一種直列型基板處理裝置,其特徵在於包含: 第1反應室’可預熱基板; 第2反應室,可一面接收、加熱在前述第丨反應室經 預熱之前述基板,並進行電漿處理;及 第3反應室,可接受、冷卻在前述第2反應室經電漿 處理之前述基板’並進行電聚處理; 且前述第1反應室、前述第2反應室、及前述第3反 應室係依序連接成一列而配置。 2.如申請專利範圍第1項之直列型基板處理裝置,其中於 前述第1反應室設置有: 第1加熱器’可預熱前述基板;及 第1移送部,可在支撐住前述基板之狀態下,將前 述基板搬入前述第1反應室、或自前述第1反應室將在前 述第1反應室中完成預熱之前述基板搬出; 於前述第2反應室設置有: 第1電漿電極,可使電漿產生; 第2加熱器,可加熱前述基板;及 第2移送部’可在支撐住前述基板之狀態下,將前 述基板搬入前述第2反應室、或自前述第2反應室將在前 述第2反應室中完成電漿處理之前述基板搬出; 於前述第3反應室設置有: 第2電漿電極,可使電漿產生;及 第3移送部,可在支撐住前述基板之狀態下,將前 26 201203374 述基板搬入前述第3反應室、或自前述第3反應室將在前 述第3反應室中經冷卻之前述基板搬出。 3.如申請專利範圍第2項之直列型基板處理裝置,其中前 述第1移送部包含複數第1驅動滾輪組件,前述複數第1 驅動滾輪組件係、沿著前述基板之移動方向設置’可將前 述基板搬入前述第1反應室、並自前述第1反應室搬出前 述基板者, 刚述第2移送部包含複數第2驅動滾輪組件,前述複 數第^驅動滾輪組件係沿著前述基板之移動方向設置, 可將月j述基板搬入則述第2反應室、並自前述第2反應室 搬出前述基板者, 月J述第3移送部包含複數第3驅動滚輪組件,前述複 數第3驅動滾輪組件係沿著前述基板之移動方向設置, 可將1述基板搬入前述第3反應室'並自前述第3反應室 搬出前述基板者。 4. Μ請專利範圍第3項之直列型基板處理裝置,其中前 二:复:第1驅動滾輪組件彼此連動,前述複數第2驅動滾 ==此_’前述魏第_滚輪組件彼此連動。 5. 如申晴專利範圍第2項之直列型基板處理裝置,其中前 述第1加熱器包含複數第丨 _ ' 包含複數第2單元加熱器。凡U’前述第2加熱器 .如申⑺專利fcai第5項之直列型基板處 述複數約單元加熱器及 U則 ^... ^ ,c 边複數第2早兀加熱器係與 ,L 土之長邊方向平行隔著一定間隔而配置。 27 201203374 7. 如申請專利範圍第2項之直列型基板處理裝置,其中前 述第1電漿電極係在前述第2反應室配置複數個、且前述 第2電漿電極係在前述第3反應室配置複數個, 前述第1電漿電極包含:具有1個以上折彎點之折彎 部、位在前述基板之上部之第1上部電極部、及位在前 述基板之下部之第1下部電極部, 前述第2電漿電極包含:具有1個以上折彎點之折彎 部、位在前述基板之上部之第2上部電極部、及位在前 述基板之下部之第2下部電極部。 8. 如申請專利範圍第7項之直列型基板處理裝置,其中前 述第1及第2上部電極部之末端係連接在RF(Radio Frequency :無線電頻率)天線,前述第1及第2下部電極 部之末端係接地,且前述RF天線可施加用以使電漿生成 之電磁場產生之RF訊〗虎。 9. 如申請專利範圍第7項之直列型基板處理裝置,其中前 述第1電漿電極及前述第2電漿電極具有由「匚」或逆 「匚」中所選擇之任一形狀。 10. 如申請專利範圍第2項之直列型基板處理裝置,其中更 包含暫時保管將搬入前述第1反應室之前述基板的第1 負載鎖定室、及暫時保管自前述第3反應室所搬出之前 述基板的第2負載鎖定室, 前述第1負載鎖定室、前述第1反應室、前述第2反 應室、前述第3反應室、及前述第2負載鎖定室係依序配 置成一列。 28 201203374 11 ·如申s青專利範圍第1 〇項之直列塑基板處理裝置’其中前 述第1負載鎖定室包含第4移送部,該第4移送部可在支 撐住前述基板之狀態下,自前述第1負載鎖定室搬出前 述基板;而前述第2負載鎖定室包含第5移送部’該第5 移送部可在支撐住前述基板之狀態下,將前述基板搬入 前述第2負載鎖定室。 12·如申請專利範圍第11項之直列蜇基板處理裝置,其中前 述第4移送部包含複數第4驅動滚輪組件’前述複數第4 驅動滾輪組件係沿著前述基板之移動方向設置,可自前 述第1負載鎖定室搬出前述基板者,而前述第5移送部包 含複數第5驅動滾輪組件,前述複數第5驅動滾輪組件係 沿著前述基板之移動方向設置,可將前述基板搬入前述 第2負載鎖定室者。 13. 如申請專利範圍第2項之直列型基板處理裝置,其中前 述第1反應室包含具備相互獨立上下配置之第1上部反 應室及第1下部反應室的第1單元反應室組件, 前述第2反應室包含具備相互獨立上下配置之第2 上部反應室及第2下部反應室的第2單元反應室組件, 刖述第3反應室包含具備相互獨立上下配置之第3 上部反應室及第3下部反應室的第3單元反應室組件。 14. 如申請專利範圍第13項之直列型基板處理裝置,其中前 述第1單元反應室組件、前述第2單元反應室組件、及前 述第3單元反應室組件係依序連接成一列而配置。 15. 如申請專利範圍第13項之直列型基板處理裝置,其中於 29 201203374 前述第1上部反應室設置前述第1加熱器之第1上部加熱 器、於前述第1下部反應室設置前述第1加熱器之第1下 部加熱器、於前述第2上部反應室設置前述第2加熱器之 第2上部加熱器、並於前述第2下部反應室設置前述第2 加熱器之第2下部加熱器, 前述第1上部加熱器包含複數第1上部單元加熱 器、前述第1下部加熱器包含複數第1下部單元加熱器、 前述第2上部加熱器包含複數第2上部單元加熱器、且前 述第2下部加熱器包含複數第2下部單元加熱器。 16.如申請專利範圍第13項之直列型基板處理裝置,其中前 述第1電黎·電極係在前述第2單元反應室組件配置複數 個、且前述第2電漿電極係在前述第3單元反應室組件配 置複數個, 前述第1電漿電極具備:具有i個以上折彎點之折彎 部、配置在前述第2上部反應室之第丨上部電極部、及配 置在前述第2下部反應室之第〗下部電極部, 前述第1上部電極部可使前述第2上部反應室之内 部產生«、且前述第1T部電極部可使前述第2下部反 應室之内部產生電漿, 則述第2電聚電極具備:具有以上折幫點之折弯 部、配置在前述第3上部反應室之第2上部電極部、及配 置在前述第3下部反應室之第2下部電極部, 前述第2上部電極部可使前述第3上部反應室之内 β產生電漿、且前述第2下部電極部可使前述第3下部反 30 201203374 應室之内部產生電製。 17.如申請專利範圍第16項之直列型基板處理裝置其中前 述第1及第2上部電極部之末端係分別連接在RF(Radi〇 Frequency :無線電頻率)天線,前述第丨及第2下部電極 部之末端係分別接地,且前述R F天線可施加用以使電漿 生成之電磁場產生之RF訊號。 18‘如申請專利範圍第16項之直列型基板處理裝置,其中前 述第1電漿電極及前述第2電漿電極具有由「匚」或逆 「匚」中所選擇之任一形狀。 19. 如申請專利範圍第13項之直列型基板處理裝置,其中前 述第1反應室包含配置成垂直一列之複數前述第1單元 反應室組件,前述第2反應室包含配置成垂直一列之複 數前述第2單元反應室組件,且前述第3反應室包含配置 成垂直一列之複數前述第3單元反應室組件。 20. 如申請專利範圍第19項之直列型基板處理裝置其中前 述複數第2單元反應室組件分別包含前述複數第丨電漿電 極且則述複數第3單元反應室組件分別包含前述複數第 2電漿電極。 21. 如申請專利範圍第2項之直列型基板處理裝置其係以 前述第1反應室將前述基板從第丨溫度上昇至第2溫度, 以前述第2反應室將前述基板維持在前述第2溫度, 並在以前述第2反應室將前述基板維持在前述第2 溫度期間,驅動前述第丨電漿電極,並且, 以前述第3反應室將前述基板自前述第2溫度冷卻 31 201203374 至第3溫度, 並在以前述第3反應室將前述基板冷卻至前述第3 溫度期間,驅動前述第2電漿電極。 32201203374 VII. Patent Application Range: 1. An in-line substrate processing apparatus, comprising: a first reaction chamber 'preheating substrate; a second reaction chamber capable of preheating in the first reaction chamber while receiving and heating The substrate is subjected to a plasma treatment; and the third reaction chamber receives and cools the substrate 'which is subjected to plasma treatment in the second reaction chamber and performs electropolymerization treatment; and the first reaction chamber and the second portion The reaction chamber and the third reaction chamber are arranged in series in a row. 2. The in-line type substrate processing apparatus according to claim 1, wherein the first reaction chamber is provided with: a first heater 'preheating the substrate; and a first transfer portion supporting the substrate In the state, the substrate is carried into the first reaction chamber, or the substrate that has been preheated in the first reaction chamber is carried out from the first reaction chamber; and the first plasma chamber is provided with: the first plasma electrode The second heater can heat the substrate; and the second transfer portion can carry the substrate into the second reaction chamber or from the second reaction chamber while supporting the substrate. The substrate in which the plasma treatment is completed in the second reaction chamber is carried out; in the third reaction chamber, the second plasma electrode is provided to generate plasma; and the third transfer portion supports the substrate In this state, the substrate of the first 26 201203374 is carried into the third reaction chamber, or the substrate cooled in the third reaction chamber is carried out from the third reaction chamber. 3. The in-line type substrate processing apparatus according to claim 2, wherein the first transfer unit includes a plurality of first drive roller units, and the plurality of first drive roller units are disposed along a moving direction of the substrate. When the substrate is carried into the first reaction chamber and the substrate is carried out from the first reaction chamber, the second transfer unit includes a plurality of second drive roller units, and the plurality of second drive roller units are moved along the substrate. Provided that the substrate can be carried into the second reaction chamber and the substrate is carried out from the second reaction chamber. The third transfer unit includes a plurality of third drive roller assemblies, and the plurality of third drive roller assemblies The substrate is placed along the moving direction of the substrate, and the substrate can be carried into the third reaction chamber and the substrate can be carried out from the third reaction chamber. 4. The in-line type substrate processing apparatus of claim 3, wherein the first two: the first driving roller assembly are interlocked with each other, and the plurality of second driving rollers == this _' the aforementioned Wei _ roller assemblies are interlocked with each other. 5. The in-line type substrate processing apparatus according to claim 2, wherein the first heater comprises a plurality of second unit heaters. Where U' aforementioned second heater. For example, the in-line type substrate of the fifth item of the application (f) of the application (f) is described as a multi-unit heater and U is ^^ ^, c side plural second early heater system, and L The long sides of the soil are arranged in parallel at regular intervals. In the in-line type substrate processing apparatus of the second aspect of the invention, the first plasma electrode is disposed in the second reaction chamber, and the second plasma electrode is in the third reaction chamber. The plurality of plasma electrodes include: a bent portion having one or more bending points, a first upper electrode portion positioned on the upper portion of the substrate, and a first lower electrode portion positioned on the lower portion of the substrate The second plasma electrode includes a bent portion having one or more bending points, a second upper electrode portion positioned on the upper portion of the substrate, and a second lower electrode portion positioned on the lower portion of the substrate. 8. The in-line type substrate processing apparatus according to claim 7, wherein the end of the first and second upper electrode portions is connected to an RF (Radio Frequency) antenna, and the first and second lower electrode portions are provided. The end is grounded, and the RF antenna can apply an RF signal to generate an electromagnetic field generated by the plasma. 9. The in-line type substrate processing apparatus according to claim 7, wherein the first plasma electrode and the second plasma electrode have any one of a shape selected from "匚" or "逆". 10. The in-line type substrate processing apparatus according to the second aspect of the invention, further comprising a first load lock chamber for temporarily storing the substrate loaded into the first reaction chamber, and temporarily storing the first load lock chamber from the third reaction chamber. In the second load lock chamber of the substrate, the first load lock chamber, the first reaction chamber, the second reaction chamber, the third reaction chamber, and the second load lock chamber are arranged in a line. The invention relates to an inline plastic substrate processing apparatus according to the first aspect of the invention, wherein the first load lock chamber includes a fourth transfer portion, and the fourth transfer portion can support the substrate. The first load lock chamber carries out the substrate, and the second load lock chamber includes a fifth transfer unit. The fifth transfer unit can carry the substrate into the second load lock chamber while supporting the substrate. 12. The in-line substrate processing apparatus according to claim 11, wherein the fourth transfer unit includes a plurality of fourth drive roller assemblies. The plurality of fourth drive roller assemblies are disposed along a moving direction of the substrate, and the foregoing The first load lock chamber carries out the substrate, and the fifth transfer unit includes a plurality of fifth drive roller units, and the plurality of fifth drive roller units are disposed along a moving direction of the substrate, and the substrate can be carried into the second load. Lock the room. 13. The in-line substrate processing apparatus according to claim 2, wherein the first reaction chamber includes a first unit reaction chamber unit including a first upper reaction chamber and a first lower reaction chamber that are disposed independently of each other, and the first unit 2 The reaction chamber includes a second unit reaction chamber unit having a second upper reaction chamber and a second lower reaction chamber which are disposed independently of each other, and the third reaction chamber includes a third upper reaction chamber and a third reaction chamber which are disposed independently of each other. The third unit reaction chamber assembly of the lower reaction chamber. 14. The in-line type substrate processing apparatus according to claim 13, wherein the first unit reaction chamber unit, the second unit reaction chamber unit, and the third unit reaction chamber unit are arranged in series in a row. 15. The in-line type substrate processing apparatus according to claim 13, wherein the first upper heater of the first heater is provided in the first upper reaction chamber at 29 201203374, and the first upper heater is provided in the first lower reaction chamber. a first lower heater of the heater, a second upper heater in which the second heater is disposed in the second upper reaction chamber, and a second lower heater in which the second heater is disposed in the second lower reaction chamber; The first upper heater includes a plurality of first upper unit heaters, the first lower heater includes a plurality of first lower unit heaters, and the second upper heater includes a plurality of second upper unit heaters, and the second lower unit The heater includes a plurality of second lower unit heaters. [16] The in-line substrate processing apparatus according to claim 13, wherein the first electro-electrode system is disposed in the plurality of second cell reaction chamber components, and the second plasma electrode is in the third unit. A plurality of reaction chamber components are disposed, and the first plasma electrode includes a bent portion having i or more bending points, a second upper electrode portion disposed in the second upper reaction chamber, and a second lower reaction portion In the lower electrode portion of the chamber, the first upper electrode portion may generate a «in the second upper reaction chamber, and the first T portion electrode portion may generate plasma in the second lower reaction chamber. The second electropolymer electrode includes: a bent portion having the above-mentioned folding point, a second upper electrode portion disposed in the third upper reaction chamber, and a second lower electrode portion disposed in the third lower reaction chamber, 2 The upper electrode portion can generate plasma in the inside of the third upper reaction chamber, and the second lower electrode portion can electrically generate the inside of the third lower portion 30 201203374 chamber. 17. The in-line substrate processing apparatus according to claim 16, wherein the ends of the first and second upper electrode portions are respectively connected to an RF (Radio Frequency) antenna, and the second and second lower electrodes are respectively connected. The ends of the portions are grounded separately, and the RF antenna can apply an RF signal for generating an electromagnetic field generated by the plasma. The in-line type substrate processing apparatus according to claim 16, wherein the first plasma electrode and the second plasma electrode have any one of a shape selected from "匚" or "逆". 19. The in-line substrate processing apparatus according to claim 13, wherein the first reaction chamber includes a plurality of the first unit reaction chamber assemblies arranged in a vertical row, and the second reaction chamber includes a plurality of the plurality of columns arranged in a vertical row. The second unit reaction chamber assembly, and the third reaction chamber includes a plurality of the third unit reaction chamber assemblies arranged in a vertical row. 20. The in-line substrate processing apparatus of claim 19, wherein the plurality of second unit reaction chamber assemblies respectively comprise the plurality of second plasma electrodes, and wherein the plurality of third unit reaction chamber assemblies respectively comprise the plurality of second electricity Slurry electrode. 21. The in-line type substrate processing apparatus according to claim 2, wherein the substrate is raised from a second temperature to a second temperature by the first reaction chamber, and the substrate is maintained in the second chamber by the second reaction chamber. a temperature, while driving the substrate in the second reaction chamber to maintain the second temperature, driving the second plasma electrode, and cooling the substrate from the second temperature 31 201203374 to the third reaction chamber At a temperature of 3, the second plasma electrode is driven while the substrate is cooled to the third temperature in the third reaction chamber. 32
TW100114278A 2010-04-26 2011-04-25 In line type substrate processing apparatus TW201203374A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100038603A KR101129038B1 (en) 2010-04-26 2010-04-26 In line type substrate processing apparatus

Publications (1)

Publication Number Publication Date
TW201203374A true TW201203374A (en) 2012-01-16

Family

ID=44862026

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100114278A TW201203374A (en) 2010-04-26 2011-04-25 In line type substrate processing apparatus

Country Status (5)

Country Link
JP (1) JP2013530514A (en)
KR (1) KR101129038B1 (en)
CN (1) CN102859722A (en)
TW (1) TW201203374A (en)
WO (1) WO2011136525A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371709B1 (en) * 2012-09-24 2014-03-07 주식회사 선익시스템 Preprocessing system for substrate
JP6285446B2 (en) 2012-10-09 2018-02-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Indexing type inline substrate processing tool
KR101446132B1 (en) * 2012-12-24 2014-10-06 엘아이지에이디피 주식회사 Apparatus for processing substrate
KR101392491B1 (en) * 2012-12-24 2014-05-27 엘아이지에이디피 주식회사 Apparatus for processing substrate
KR20150144585A (en) * 2014-06-17 2015-12-28 엘지전자 주식회사 Post-processing apparatus of solar cell
JP6449074B2 (en) * 2015-03-25 2019-01-09 住友化学株式会社 Substrate processing apparatus and substrate processing method
KR101713196B1 (en) * 2015-06-30 2017-03-09 주식회사 테라세미콘 In-line type heat treatment apparatus
JP6529914B2 (en) * 2016-01-05 2019-06-12 住重アテックス株式会社 HYDROGEN PLASMA PROCESSING APPARATUS AND HYDROGEN PLASMA PROCESSING METHOD
CN111850518A (en) * 2020-07-21 2020-10-30 上海理想万里晖薄膜设备有限公司 Tray preheating cavity and corresponding PECVD equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211356B2 (en) * 1992-04-22 2001-09-25 株式会社島津製作所 In-line type plasma CVD equipment
KR100691875B1 (en) * 2005-03-25 2007-03-09 최진문 Cleaning apparatus for dielectrics by atmospheric pressure plasma
KR100979189B1 (en) * 2007-12-20 2010-08-31 다이나믹솔라디자인 주식회사 Consecutive substrate processing system

Also Published As

Publication number Publication date
WO2011136525A3 (en) 2012-01-26
WO2011136525A2 (en) 2011-11-03
CN102859722A (en) 2013-01-02
KR20110119098A (en) 2011-11-02
JP2013530514A (en) 2013-07-25
KR101129038B1 (en) 2012-03-27

Similar Documents

Publication Publication Date Title
TW201203374A (en) In line type substrate processing apparatus
KR100456470B1 (en) Apparatuses for heat treatment of semiconductor films under low temperature
TWI336899B (en)
CN108470834B (en) A kind of large area perovskite solar battery and preparation method thereof
JPS6288372A (en) Manufacture of light weight photocell array
TW200816362A (en) Heating and cooling of substrate support
JP7376359B2 (en) Heating systems and heating elements
CN107881490A (en) Chemical vapor deposition unit and application thereof
TW201214581A (en) Method and system for depositing a thin-film transistor
KR101199210B1 (en) Apparatus, method and system for depositing layer of solar cell
KR101324292B1 (en) High efficiency solar cell and manufacturing method thereof, and solar cell manufacturing apparatus for the same
TW201203595A (en) Method for processing solar cell substrates
CN102203909A (en) Plasma processing apparatus
CN105118922B (en) A kind of cubic crystal structure Ca-Ti ore type light-sensitive material and preparation method thereof
KR101147658B1 (en) Plasma processing apparatus and method
Yoshimura et al. Liquid-Phase Molecular Layer Deposition: Potential Applications to Multi-Dye Sensitization and Cancer Therapy
TW201123519A (en) A method for fabricating a copper indium diselenide semiconductor film
KR100967923B1 (en) Substrate processing apparatus and substrate processing method
Zhao et al. Structure optimization of organic planar heterojunction solar cells
Yang et al. Laminating Fabrication of Bifacial Organic‐Inorganic Perovskite Solar Cells
KR101199972B1 (en) Batch type plasma treatment appartus and plasma treatment method using the same
JP2011192908A (en) Method of manufacturing polysilicon film, solar cell, and electronic device
JP2001007367A (en) Method and device for manufacturing film solar cell
KR101904802B1 (en) Substrate tray and substrate processing apparatus comprising the same
KR101943022B1 (en) Apparatus and method for manufacturing of transistor array substrate