TW201203306A - Transmission electron microscope grid and method for making same - Google Patents

Transmission electron microscope grid and method for making same Download PDF

Info

Publication number
TW201203306A
TW201203306A TW99122958A TW99122958A TW201203306A TW 201203306 A TW201203306 A TW 201203306A TW 99122958 A TW99122958 A TW 99122958A TW 99122958 A TW99122958 A TW 99122958A TW 201203306 A TW201203306 A TW 201203306A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
graphene layer
nanotube film
layer
carbon
Prior art date
Application number
TW99122958A
Other languages
Chinese (zh)
Other versions
TWI413150B (en
Inventor
xiao-yang Lin
Chen Feng
Li-Na Zhang
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99122958A priority Critical patent/TWI413150B/en
Publication of TW201203306A publication Critical patent/TW201203306A/en
Application granted granted Critical
Publication of TWI413150B publication Critical patent/TWI413150B/en

Links

Abstract

The present invention relates to a transmission electron microscope grid. The transmission electron microscope grid includes a carrier and a graphene layer-carbon nanotubes film composite structure covered on the carrier. The carrier includes at least one through hole. The graphene layer-carbon nanotubes film composite structure includes a graphene layer and at least one carbon nanotubes film structure. The carbon nanotubes film structure includes a plurality of micropores. The micropores of the carbon nanotubes film structure are covered by the graphene layer. The present invention also relates to a method for making the transmission electron microscope grid.

Description

201203306 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及一種透射電鏡微栅及其製備方法,尤其涉及 一種使用奈米碳管膜狀結構的透射電鏡微栅及其製備方 法。 【先前技術】 ~ [0002]在透射電子顯微鏡中,微柵係用於承載粉末樣品’進行 透射電子顯微鏡高分辨像(HRTEm)觀察的重要工具。隨 著奈米材料研究的不斷發展,微郴在奈米材料的電子顯 微學表徵領域的應學日益廣泛'先前翁_中,該應用於 透射電子顯微鏡的微柵通常係在銅網或鎳網等金屬載體 上覆蓋一層多孔有機膜,再蒸鍍一層非晶碳膜製成的。 然而,在實際應用中,在觀察奈米級顆粒的透射電鏡高 分辨像時,微柵中的非晶碳膜較厚,襯度噪聲較大,對 奈米級顆粒的透射電鏡成像分辨率的提高影響很大,尤 其係對於尺寸小於5nm的顆粒。 Q 【發明内容】 [0003] 有鑒於此,提供一種對於奈米級顆粒,更容易獲得透射 電鏡高分辨像的透射電鏡微柵及其製備方法實為必要。 [0004] —種透射電鏡微栅,包括一載體,該載體包括至少一個 通孔,其中,所述透射電鏡微柵進一步包括一覆蓋所述 載體通孔的石墨烯層-奈米碳管膜複合結構,該石墨烯層 -奈米碳管膜複合結構包括一個石墨烯層和至少一層奈米 碳管膜狀結構,該奈米碳管膜狀結構具有複數個微孔, 所述石墨稀層覆蓋所述複數個微孔並通過該複數個微孔 099122958 表單編號A0101 第3頁/共37頁 0992040471-0 201203306 [0005] [0006] [0007] [0008] 099122958 部分懸空。 一種透射電鏡微柵的製備方法,包括以下步驟:提供一 基底,並在基底表面形成一石墨稀層;提供一奈米碳管 膜狀結構,該奈米碳管膜狀結構具有複數個微孔,將該 奈米碳管膜狀結構覆蓋於所述石墨烯層表面,形成一基 底-石墨烯層-奈米碳管膜狀結構的三層結構;去除該基 底-石墨烯層-奈米碳管膜狀結構的三層結構中的基底, 得到一石墨烯層-奈米碳管膜複合結構;以及將所述石墨 烯層-奈米碳管膜複合結構覆蓋一載體,使奈米碳管膜狀 結構與所述載體直接接觸。 與先前技術相較,所述的透射電鏡微柵及其製備方法, 通過將該奈米碳管膜狀結構作為一種具有自支撐性和黏 性的支撐骨架,可以在不破壞或減少破壞石墨烯層的條 件下,方便的使石墨烯層從基底轉移並穩定依附於奈米 碳管膜狀結構表面,從而製備出尺寸達到釐米級的石墨 烯層-奈米碳管膜複合結構;並且由於石墨烯層具有極薄 的厚度,在透射電鏡觀察中產生的槻度噪聲較小,從而 可獲得分辨率較高的透射電鏡照片。 【實施方式】 下面將結合附圖及具體實施例,對本發明作進一步的詳 細說明。 請參閱圖1、圖2及圖3,本發明第一實施例提供一種透射 電鏡微栅100,該透射電鏡微柵100包括:一金屬載體 110及覆蓋於該金屬載體110表面的一石墨烯層-奈米碳管 膜複合結構120。其中,所述石墨烯層-奈米碳管膜複合 表單編號A0101 第4頁/共37頁 0992040471-0 201203306 結構120包括至少一層奈米碳管骐狀結構122及一個石墨 烯層124,所述奈米碳管膜狀結構122直接與所述金屬載 體110接觸◊該奈米碳管臈狀結構122具有複數個微孔 126,該石墨烯層124設置於所述奈米碳管膜狀結構122 的表面,並覆蓋所述奈米碳管祺狀結構122的複數個微孔 126,所述石墨烯層124在位於該微孔126的位置懸空設 置。優選地,該透射電鏡微栅1〇〇為直徑為3毫米,厚度 為3微米〜20微米的圓片狀結構。 [0009] ❹ Ο 所述金屬載體110包括至少一個通孔112。該至少一個通 孔112的形狀可以為圓形、四邊形、六邊編、八邊形或橢 圓形等。可以理解’該金屬載體110主要起到機械承載石 墨烯層-奈米碳管膜複合結構120和防止該透射電鏡1〇〇在 使用時電子在該透射電鏡微柵100累積的導電作用。該石 墨烯層-奈米碳管膜複合結構120完全覆蓋該金屬載體no 。該石墨稀層-奈米碳管膜複合結構1 2 0在位於所述金屬 載體110的通孔112位置懸空設置。具體地,所述金屬載 體110形成有複數個通孔112。所述通孔112的尺寸大於 所述奈米碳管膜狀結構122中微孔126的尺寸,該通孔 112的尺寸可以為1微米〜2毫米。其中,該微孔126的尺 寸係指從該微孔126内一點到另一點的最大直線距離。可 以理解,所述複數個通孔112的形狀及排列方式不限,可 根據實際應用需求調整。所述複數個通孔11 2之間的距離 可相等或不等。優選地,所述金屬載體具有複數個均 勻分佈的通孔U2 ’相鄰的通孔112之間的距離大於1微米 。所述金屬載體110的材料可以為銅、鎳或其他金屬材料 099122958 表單編號Α0101 第5頁/共37頁 0992040471-0 201203306 ,所述載體110的複數個通孔112可以通過蝕刻的方法形 成。 [0010] 可以理解,該透射電鏡微柵100亦可採用合金或陶瓷等其 他導電材料製成的載體代替該金屬載體110。 [0011] 本實施例中,所述金屬載體110為一直徑為3毫米的圓形 銅片,所述石墨烯層-奈米碳管膜複合結構120亦為圓片 狀,且所述金屬載體110的直徑與所述石墨烯層-奈米碳 管膜複合結構120的直徑相等。所述通孔11 2的形狀為圓 形,所述通孔112均勻分佈於所述金屬載體110,相鄰的 通孔112之間的距離相等。該通孔112的直徑在100微米-1毫米之間。 [0012] 所述石墨烯層-奈米碳管膜複合結構120為一雙層的複合 結構。該石墨烯層-奈米碳管膜複合結構120包括至少一 層奈米碳管膜狀結構122及一個石墨烯層124。該石墨烯 層124為一連續的一體結構,並與所述奈米碳管膜狀結構 122重疊設置。所謂重疊設置,係指該石墨烯層124與該 奈米碳管膜狀結構122具有完全相同的形狀和面積,當將 該石墨烯層124設置於奈米碳管膜狀結構122表面時,該 石墨烯層124可以完全覆蓋所述奈米碳管膜狀結構122。 可以理解,將所述一個石墨烯層124設置於所述奈米碳管 膜狀結構122表面,該一個石墨烯層124可以完全覆蓋該 奈米碳管膜狀結構122的所有微孔126。 [0013] 所述石墨烯層-奈米碳管膜複合結構120設置於所述金屬 載體110的表面,所述奈米碳管膜狀結構122與所述金屬 099122958 表單編號A0101 第6頁/共37頁 0992040471-0 201203306201203306 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a TEM micro-grid and a method of fabricating the same, and more particularly to a TEM micro-gate using a carbon nanotube film structure and a method of preparing the same. [Prior Art] ~ [0002] In transmission electron microscopy, a microgrid is used to carry a powder sample' as an important tool for observation by transmission electron microscopy (HRTEm). With the continuous development of nanomaterial research, microscopy has become more and more widely used in the field of electron microscopy characterization of nanomaterials. In the previous article, the microgrid applied to transmission electron microscopy is usually copper or nickel. A metal carrier such as a mesh is coated with a porous organic film and then vapor deposited with an amorphous carbon film. However, in practical applications, when observing the high-resolution image of the TEM of the nano-sized particles, the amorphous carbon film in the micro-gate is thicker, the contrast noise is larger, and the transmission electron microscope imaging resolution of the nano-sized particles is The impact is greatly increased, especially for particles smaller than 5 nm in size. Q [ SUMMARY OF THE INVENTION] [0003] In view of the above, it is necessary to provide a TEM micro-grid which is more easily obtained for a nano-sized particle, and which is easy to obtain a high-resolution image of a transmission electron microscope. [0004] A TEM microgrid comprising a carrier, the carrier comprising at least one via, wherein the TEM microgate further comprises a graphene layer-carbon nanotube film composite covering the carrier via Structure, the graphene layer-nanocarbon tube film composite structure comprises a graphene layer and at least one layer of carbon nanotube film structure, the carbon nanotube film structure having a plurality of micropores, the graphite thin layer covering The plurality of micropores pass through the plurality of micropores 099122958 Form No. A0101 Page 3 / Total 37 Page 0992040471-0 201203306 [0005] [0006] [0008] 00008122958 Partially suspended. A method for preparing a transmission electron microstrip, comprising the steps of: providing a substrate and forming a graphite thin layer on the surface of the substrate; providing a carbon nanotube film structure having a plurality of micropores Covering the surface of the graphene layer with the film structure of the carbon nanotube to form a three-layer structure of a base-graphene layer-carbon nanotube film structure; removing the base-graphene layer-nanocarbon a substrate in a three-layer structure of a tubular structure to obtain a graphene layer-nanocarbon tube film composite structure; and covering the graphene layer-carbon nanotube film composite structure with a carrier to make a carbon nanotube The film structure is in direct contact with the carrier. Compared with the prior art, the TEM microgrid and the preparation method thereof can prevent the graphene from being damaged or reduced by using the carbon nanotube film structure as a self-supporting and viscous support skeleton. Under the condition of the layer, the graphene layer is conveniently transferred from the substrate and stably adhered to the surface of the carbon nanotube film structure, thereby preparing a graphene layer-nanocarbon tube film composite structure having a size of centimeter; and The olefin layer has an extremely thin thickness, and the enthalpy noise generated in the transmission electron microscope observation is small, so that a TEM image with a higher resolution can be obtained. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings and specific embodiments. Referring to FIG. 1 , FIG. 2 and FIG. 3 , a first embodiment of the present invention provides a TEM micro-gate 100. The TEM micro-gate 100 includes a metal carrier 110 and a graphene layer covering the surface of the metal carrier 110 . - a carbon nanotube film composite structure 120. Wherein, the graphene layer-carbon nanotube film composite form No. A0101, page 4 / 37 pages 0992040471-0 201203306 structure 120 includes at least one layer of carbon nanotube-shaped structure 122 and a graphene layer 124, The carbon nanotube film structure 122 is in direct contact with the metal carrier 110. The carbon nanotube structure 122 has a plurality of micropores 126 disposed on the carbon nanotube film structure 122. The surface covers a plurality of micropores 126 of the carbon nanotube-shaped structure 122, and the graphene layer 124 is suspended at a position at the microhole 126. Preferably, the TEM micro-gate 1 is a disk-like structure having a diameter of 3 mm and a thickness of 3 μm to 20 μm. [0009] The metal carrier 110 includes at least one through hole 112. The shape of the at least one through hole 112 may be a circle, a quadrangle, a hexagonal, an octagon or an ellipse. It can be understood that the metal carrier 110 mainly functions as a mechanically-loaded graphene layer-carbon nanotube film composite structure 120 and a conductive effect of preventing electrons from accumulating in the TEM micro-gate 100 when the TEM 1 is used. The graphene layer-carbon nanotube film composite structure 120 completely covers the metal carrier no. The graphite thin layer-carbon nanotube film composite structure 120 is suspended at a position of the through hole 112 of the metal carrier 110. Specifically, the metal carrier 110 is formed with a plurality of through holes 112. The size of the through hole 112 is larger than the size of the micro hole 126 in the carbon nanotube film structure 122, and the size of the through hole 112 may be 1 micrometer to 2 mm. The size of the microhole 126 refers to the maximum linear distance from one point to another point in the microhole 126. It can be understood that the shape and arrangement of the plurality of through holes 112 are not limited and can be adjusted according to actual application requirements. The distance between the plurality of through holes 11 2 may be equal or unequal. Preferably, the metal carrier has a plurality of uniformly distributed vias U2' adjacent to each other with a distance greater than 1 micron. The material of the metal carrier 110 may be copper, nickel or other metal material. 099122958 Form No. 1010101 Page 5 of 37 0992040471-0 201203306, a plurality of through holes 112 of the carrier 110 may be formed by etching. [0010] It can be understood that the TEM micro-gate 100 can also replace the metal carrier 110 with a carrier made of other conductive materials such as alloy or ceramic. [0011] In this embodiment, the metal carrier 110 is a circular copper piece having a diameter of 3 mm, and the graphene layer-carbon nanotube film composite structure 120 is also in the form of a disk, and the metal carrier The diameter of 110 is equal to the diameter of the graphene layer-carbon nanotube film composite structure 120. The through holes 11 2 have a circular shape, and the through holes 112 are evenly distributed on the metal carrier 110, and the distance between the adjacent through holes 112 is equal. The through hole 112 has a diameter of between 100 micrometers and 1 millimeter. [0012] The graphene layer-carbon nanotube film composite structure 120 is a two-layer composite structure. The graphene layer-carbon nanotube film composite structure 120 includes at least one layer of carbon nanotube film structure 122 and a graphene layer 124. The graphene layer 124 is a continuous unitary structure and is disposed to overlap the carbon nanotube film structure 122. The overlapping arrangement means that the graphene layer 124 has exactly the same shape and area as the carbon nanotube film structure 122. When the graphene layer 124 is disposed on the surface of the carbon nanotube film structure 122, the The graphene layer 124 may completely cover the carbon nanotube film structure 122. It can be understood that the one graphene layer 124 is disposed on the surface of the carbon nanotube film structure 122, and the one graphene layer 124 can completely cover all the micropores 126 of the carbon nanotube film structure 122. [0013] The graphene layer-carbon nanotube film composite structure 120 is disposed on the surface of the metal carrier 110, the carbon nanotube film structure 122 and the metal 099122958 Form No. A0101 Page 6 / 37 pages 0992040471-0 201203306

載體110接觸。該奈米碳管獏狀結構122包括至少兩層層 ==膜。請參閱圖4,所述奈米碳管膜係二 =Ί g A成的自线結構。所述複數個奈米碳管為 方向擇優取向㈣,所述擇棘向_係指在奈 .官膜中大多數奈米碳管的整體延伸方向 方向。而且^述大多數奈米碳管的整體㈣方向基本 平行於奈米碳管膜的表面。進—击 ,也,所述奈米碳管膜 中夕數奈米碳管係通過凡得瓦力首尾相連。具體地,所 述奈米碳管膜中基本朝同-方向延伸的大多數奈米碳管 中每一奈米碳管婦延伸方向上相鄰的奈米碳管通過凡 得瓦力首尾㈣。當然,所述奈米料財存在少數隨 機排列的奈米破管,這些奈米碳管不會對 大多數奈米礙管的整體取向排列構成明顯影響。所述自 支撐為奈米碳管膜不需要大面積的栽體切,而σ要相 對兩邊提供线力即能整體上懸空請持自身膜;;狀態 ,即將該奈米碳管膜置於(或固定於)間隔一定距離設 置的兩個支樓體上時’位於兩個支標體之間的奈米碳管 膜能夠懸空保持自身膜狀狀態。所述自支推主要通過奈 米碳管膜中存在連續的通過凡得瓦力首尾相連延伸排列 的奈米碳管而實現。 [_具體地,所述奈米碳管膜中基本朝同—方向延伸的多數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上_ ’可以適當的偏離延伸方 向。因此,不能排除奈米碳管膜的基本朝同一方向延伸 的多數奈米碳管中並列的奈来碳管之間可能存在部分接 099122958 表單編號Α0101 第7頁/共37頁 0992040471-0 201203306 觸。 [0015] 具體地,所述奈米碳管膜包括複數個連續且定向排列的 奈米碳管片段。該複數個奈米碳管片段通過凡得瓦力首 尾相連。每一奈米碳管片段包括複數個相互平行的奈米 碳管,該複數個相互平行的奈米碳管通過凡得瓦力緊密 結合。該奈米碳管片段具有任意的長度、厚度、均勻性 及形狀。該奈米碳管膜中的奈米碳管沿同一方向擇優取 向排列。 [0016] 當該奈米碳管膜狀結構122中包括多層奈米碳管膜時,該 多層奈米碳管膜相互交叉且層疊設置,由於在每層奈米 碳管膜中,奈米碳管沿一個方向擇優取向排列,相鄰兩 層奈米碳管膜令的奈米碳管間具有一交叉角度α,0°<α 90、 [0017] 所述奈米碳管膜狀結構122中包括複數個交叉的奈米碳管 線128,該奈米碳管線128包括複數個並排且通過凡得瓦 力聚攏的奈米碳管,進一步地,該奈米碳管線128包括通 過凡得瓦力首尾相連且基本沿同一方向擇優取向排列的 奈米碳管。該交叉的奈米碳管線128在該奈米碳管膜狀結 構122中形成複數個微孔126。該奈米碳管膜狀結構122 的微孔126的尺寸與奈米碳管膜的層數有關。該奈米碳管 膜狀結構122中奈米碳管膜的層數不限,優選為2〜4層。 該奈米碳管膜狀結構122中微孔126的尺寸可為1奈米〜1 微米。 [0018] 本實施例中,請參閱圖5,所述奈米碳管膜狀結構122包 099122958 表單編號Α0101 第8頁/共37頁 0992040471-0 201203306 括兩層層疊設置的奈米碳管膜。各個奈米碳管膜為如圖4 所示的奈米碳管膜,該奈米碳管膜中的奈米碳管基本朝 同一方向延伸。所述奈米碳管膜狀結構122中相鄰奈米碳 管膜中的奈米碳管線128相互垂直,並在該奈米碳管膜狀 結構122中形成複數個微孔126,所述微孔126的尺寸在 100奈米~1微米之間。 [0019] 所述石墨烯層124設置於所述奈米碳管膜狀結構丨22的表 面,且位於所述奈米碳管膜狀結構122中複數個微孔126 Ο 的石墨筛廣懸空^置。該石墨烯層用於承載待測樣品。 該石墨麻124包括單層或多層石該石 墨稀層124㈣㈣子可㈣奈米碳管中的碳原子通過 SP3雜化鍵合,從喊該石料層124穩定地駭㈣夺 米碳管膜狀結構122。 [0020] 本實施例中,所述石墨烯層為一圓片狀 該石墨烯層的 Ο 的直徑為3毫米,並完全覆蓋所述*半丁…卞妷管膜狀結構122 。該石墨稀層包括1〜3層石墨炼,兮τ 5亥石墨烯層124中的碳 原子與該奈米碳管中的碳原子可通過咖雜化鍵合從而 使該石墨穩定地固定於該奈米碳管紐結構122 [0021] 本發明實施例透射電鏡微柵100在應用時,將待觀察的樣 品設置於該透射電鏡微柵100表面。i Μ 具體地,將待觀察樣 品設置於覆蓋所述微孔126的石墨稀層124的表面。該樣 品可以為奈米顆粒,如奈米線、奈米球戈奈米與等 主 參閲圖6 ’其為將一奈米金顆粒分散液滴加至上述透射電 鏡微柵100的表面’乾燥後在透射電鏡下觀察得到的透射 099122958 表單編號Α0101 第9頁/共37頁 0992040471-0 201203306 電鏡照片。圖中黑色顆粒為待觀察的奈米金顆粒。 [0022] [0023] [0024] [0025] 請參閱圖7 ’本發明進一步提供一所述第一實施例透射電 鏡微柵100的製備方法,該製備方法主要包括以下步驟。 (S101)提供一基底’並在該基底表面形成一石墨稀層 ;(S102)提供一奈米碳管膜狀結構,該奈米碳管膜狀 結構具有複數個微孔,將該奈米碳管骐狀結構覆蓋於所 述石墨烯層表面,形成一基底—石墨烯層-奈米碳管膜狀 結構的三層結構;(S103)去除該基底-石墨烯層-奈米 碳管膜狀結構的三層結構中的基底,得到一石墨烯層-奈 米碳管膜複合結構;(S104)將所述石墨烯層-奈米碳管 膜複合結構覆蓋一載體,使奈米碳管膜狀結構與所述載 體直接接觸。 步驟S101,提供一基底,並在該基底表面形成一石墨浠 層。 該基底主要作為石墨烯生長和穩定存在的載體,其本身 具有一定的穩定性,但可以遂過化學反應方法或物理方 法而去除。該基底根據不同的應用可選用金屬材料、合 金材料或金屬氧化物材料。本實施例中選用面積為2cm2 '厚度為25/zm的銅箔作為基底,並使用低壓化學氣相沈 積法在該基底表面形成一均勻的石墨烯層。 該石墨烯層為由單層或多層石墨烯組成的一連續的一體 結構。優選地,該石墨烯層中的石墨烯的層數為1〜3層, 從而使透射電鏡微柵具有更好的襯度。所述石墨烯為由 碳原子通過sp2雜化形成的二維層狀結構。該石墨烯層的 099122958 表單編號A0101 第10頁/共37頁 0992040471-0 201203306 尺寸為3毫米〜2釐米。所述石墨烯層的尺寸係指從該石墨 烯層邊緣一點到另一點的最大直線距離。該石墨烯層平 整均勻的覆蓋在銅箔基底的表面。本實施例中石墨烯層 的尺寸為3毫米~2釐米。 [0026] 步驟S102,提供一奈米碳管膜狀結構,該奈米碳管膜狀 結構具有複數個微孔,將該奈米碳管膜狀結構覆蓋於所 述石墨烯層表面,形成一基底-石墨烯層-奈米碳管膜狀 結構的三層結構。 0 [0027] 所述奈米碳管膜狀結構包括多層交叉層疊的奈米碳管膜 。該奈米碳管膜為從一奈米碳管陣列中直接拉取獲得, 其製備方法具體包括以下步驟: [0028] 首先,提供一形成於一生長基底的奈米碳管陣列,該陣 列為超順排的奈米碳管陣列。 [0029] 該奈米碳管陣列採用化學氣相沈積法製備,該奈米碳管 陣列為複數個彼此平行且垂直於生長基底生長的奈米碳 ❹ 管形成的純奈米碳管陣列。通過上述控制生長條件,該 定向排列的奈米碳管陣列中基本不含有雜質,如無定型 碳或殘留的催化劑金屬顆粒等,適於從中拉取奈米碳管 膜。本發明實施例提供的奈米碳管陣列為多壁奈米碳管 陣列。所述奈米碳管的直徑為0. 5〜50奈米,長度為50奈 米〜5毫米。本實施例中,奈米碳管的長度優選為100微米 〜900微求。 [0030] 其次,採用一拉伸工具從所述奈米碳管陣列中拉取奈米 碳管獲得一奈米碳管膜,其具體包括以下步驟:(a)從 099122958 表單編號A0101 第11頁/共37頁 0992040471-0 201203306 所述超順排奈米碳管陣列中選定一個或具有一定寬度的 複數個奈米碳管,本實施例優選為採用具有一定寬度的 膠帶接觸奈米碳管陣列以選定一個或具有一定寬度的複 數個奈米碳管;(b)以一定速度拉伸該選定的奈米碳管 ,從而形成首尾相連的複數個奈米碳管片段,進而形成 一連續的奈米碳管膜。該拉取方向沿基本垂直於奈米碳 管陣列的生長方向。 [0031] 在上述拉伸過程中,該複數個奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離生長基底的同時,由於凡得瓦力 作用,該選定的複數個奈米碳管片段分別與其他奈米碳 管片段首尾相連地連續地被拉出,從而形成一連續、均 勻且具有一定寬度的自支撐的奈米碳管膜。所謂“自支 撐結構”即該奈米碳管膜無需通過一支撐體支撐,亦能 保持一膜的形狀。請參閱圖4,該奈米碳管膜包括複數個 基本沿同一方向擇優取向排列且通過凡得瓦力首尾相連 的奈米碳管,該奈米碳管基本沿拉伸方向排列並平行於 該奈米碳管膜表面。該直接拉伸獲得奈米碳管膜的方法 簡單快速,適宜進行工業化應用。 [0032] 該奈米碳管膜的寬度與奈米碳管陣列的尺寸有關,該奈 米碳管膜的長度不限,可根據實際需求制得。當該奈米 碳管陣列的面積為4英寸時,該奈米碳管膜的寬度為3毫 米~10釐米,該奈米碳管膜的厚度為0. 5奈米〜100微米。 [0033] 製備出奈米碳管膜之後,將所述複數個奈米碳管膜層疊 且交叉鋪設以形成所述奈米碳管膜狀結構。具體地,可 以先將一奈米碳管膜沿一個方向覆蓋至一框架上,再將 099122958 表單編號A0101 第12頁/共37頁 0992040471-0 201203306 另一奈米碳管膜沿另一方向覆蓋至先前的奈米碳管膜表 面,如此反復多次,在該框架上鋪設複數個奈米碳管膜 。該複數個奈米碳管膜可沿各自不同的方向鋪設,亦可 僅沿兩個交叉的方向鋪設。可以理解,如此鋪設的奈米 碳管膜狀結構中相鄰奈米碳管膜中的奈米碳管交叉一定 角度,該奈米碳管膜狀結構亦為一自支撐結構。該奈米 碳管膜狀結構的邊緣通過該框架固定,並通過該框架部 分懸空設置。 [0034] ❹ 由於該奈米碳管膜具有較大的比表面積,因此該奈米碳 管膜具有較大黏性,故多層奈米碳管膜可以相互通過凡 得瓦力緊密結合形成一穩定地奈米碳管膜狀結構。該奈 米碳管膜狀結構中,奈米碳管膜的層數不限,且相鄰兩 層奈米碳管膜之間具有一交叉角度α,0°<α 90°。在 本實施例中,所述奈米碳管膜狀結構中的奈米碳管膜的 層數為兩層,且該兩層奈米碳管膜中奈米碳管的延伸方 向相互垂直。 〇 [〇_ 形成上述奈米碳管膜狀結構後,將該奈米碳管膜狀結構 覆蓋於所述石墨烯層表面,由於奈米碳管膜狀結構本身 具有一定的黏性,當把奈米碳管膜狀結構貼合設置於石 墨烯層表面時,會形成一基底-石墨烯層-奈米碳管膜狀 結構的三層結構。 [0036] 可以理解,該基底-石墨烯層-奈米碳管膜狀結構的三層 結構的製備方法可進一步包括:使用有機溶劑處理所述 基底-石墨烯層-奈米碳管膜狀結構的三層結構,使奈米 碳管膜狀結構與石墨烯層緊密結合,該步驟為可選步驟 099122958 表單編號Α0101 第13頁/共37頁 0992040471-0 201203306 [0037] 該有機溶劑為常溫下易揮發的有機溶劑,可選用乙醇、 曱醇、丙酮、二氣乙烷和氯仿中一種或者幾種的混合, 本實施例中的有機溶劑採用乙醇。該有機溶劑應與該奈 米碳管具有較好的潤濕性。所述使用有機溶劑處理的步 驟具體為:將有機溶劑均勻滴灑在基底-石墨烯層-奈米 碳管膜狀結構的三層結構中奈米碳管膜狀結構的表面上 並浸潤整個奈米碳管膜狀結構,或者,亦可將上述基底-石墨烯層-奈米碳管膜狀結構的三層結構浸入盛有有機溶 劑的容器中浸潤。 [0038] 所述的基底-石墨烯層-奈米碳管膜狀結構的三層結構經 有機溶劑浸潤處理後,奈米碳管膜狀結構中並排且相鄰 的奈米碳管會聚攏,從而收縮成間隔分佈的奈米碳管線 ,該奈米碳管線包括複數個通過凡得瓦力首尾相連的奈 米碳管。基本沿相同方向排列的奈米碳管線之間具有一 間隙。由於相鄰兩層奈米碳管膜中的奈米碳管具有一交 叉角度α,且0<α 90°,有機溶劑處理後相鄰兩層奈米 碳管膜中的奈米碳管線相互交叉,形成複數個微孔。該 奈米碳管膜狀結構中微孔的尺寸為1奈米〜10微米,優選 為100奈米〜1微米。本實施例中,該交叉角度α=90°, 故該奈米碳管膜狀結構中相鄰奈米碳管膜中的奈米碳管 線基本相互垂直交叉,形成大量微孔。可以理解,該層 疊的碳米管膜數量越多,該奈米碳管膜狀結構的微孔的 尺寸越小。因此,可通過調整該奈米碳管膜的數量得到 需要的微孔尺寸。 099122958 表單編號Α0101 第14頁/共37頁 0992040471-0 201203306 [0039] 所述的基底-石墨烯層-奈米碳管膜狀結構的三層結構經 有機溶劑浸潤處理後’相鄰的奈米碳管和石墨烯會通過 凡得瓦力的吸引和溶劑表面張力的作用相互聚攏,使得 奈米碳管膜狀結構和石墨烯層緊密結合。 [0040] 步驟S103 ’去除該基底-石墨烯層-奈米碳管膜狀結構的 二層結構中的基底’得到一石墨烯層-奈米碳管膜複合結 構。 [0041] Ο ο 將基底-石墨缔層-奈米碳管膜狀結構的三層結構浸沒於 一處理液中使基底與所述處理液發生化學反應,直至去 除所述基底,從而製備出所述的石墨烯層-奈米碳管膜複 合結構。可以理解,由於奈米碳管膜散結構本身具有一 定的自支撐作用’可以作為石墨烯層穩定存在的載體而 不破壞或減少破壞所述石墨烯層的整體結構。所述的處 理液根據基底的不同可以係酸液、域液或鹽溶液。本實 施例當中的處理液為氣化鐵溶液^該氣化鐵溶液中三價 鐵離子可以與銅镇基底發生氧化-還原反應,從而去除所 述銅箔基底。所述的石墨烯層-奈米碳管膜複合結構可以 穩定存在於該氯化鐵溶液。該使用氣化鐵溶液處理的步 驟具體為:將基底-石墨烯層—奈米碳管膜狀結構的三層 結構浸沒於濃度為〇. 5g/mL的氣化鐵溶液中腐蝕24小時 。可以理解,由於銅箔基底的大小和厚度以及所使用處 理液的濃度的不同,其所需要的腐蝕時間亦不同。此外 ,還可以使用其他含有三價鐵的鹽溶液腐蝕所述的鋼箔 基底,如氣化鐵、硫酸鐵及其混合物等。 [0042] 099122958 形成上述石墨烯層_奈米碳管膜複合結構後,可進一步使 表單編號A0101 第15頁/共37頁 0992040471-0 201203306 用清洗液清洗該石墨烯層-奈米碳管膜複合結構。由於所 述基底與處理液發生化學反應後,會再溶液中產生一些 金屬離子,而該金屬離子在溶液中易發生水解反應,從 而產生一些顆粒狀雜質。通過該清洗液的進一步清洗, 可以去除石墨烯層-奈米碳管膜複合結構中的顆粒狀雜質 0 [0043] 該清洗液為酸溶液,可選用稀硫酸、稀鹽酸及稀硝酸中 的一種或幾種的混合。本實施例中採用稀鹽酸。該清洗 液可以抑制氯化鐵溶液的水解並去除石墨烯層-奈米碳管 膜複合結構中顆粒狀雜質》該具體步驟包括:將石墨烯 層-奈米碳管膜複合結構浸沒於該清洗液中清洗1 min ~15miη。 [0044] 其中,使用清洗液清洗該石墨烯層-奈米碳管膜複合結構 後,還可以進一步使用去離子水清洗所述的石墨烯層-奈 米碳管膜複合結構,以去除所述清洗祆,形成所述石墨 烯層-奈米碳管膜複合結構。 [0045] 形成所述石墨烯層-奈米碳管膜複合結構後,還可進一步 處理該石墨烯層-奈米碳管膜複合結構,使該石墨烯層中 的碳原子與該奈米碳管膜中的碳原子鍵合連接。 [0046] 該處理步驟具體可為通過雷射或紫外光照射該石墨烯層-奈米碳管膜複合結構,或通過高能粒子(high-energy par t i c 1 e)爲擊該石墨烯層-奈米碳管膜複合結構。經處 理後,該石墨烯層中的碳原子與奈米碳管中的碳原子通 過sp3雜化形成共價鍵連接,從而使石墨烯層更穩定地固 099122958 表單編號A0101 第16頁/共37頁 0992040471-0 201203306 [0047] [0048] Ο ο [0049] [0050] 定於該奈米碳管膜狀結構的表面。該步驟為可選擇步驟 ,當本方法不包括該步驟時,該石墨烯層通過凡得瓦力 與該奈米碳管結合。 步驟S104,將所述石墨烯層_奈米碳管膜複合結構覆蓋一 載體,使奈米碳管膜狀結構與所述載體直接接觸。 首先提供至少一個載體,該載體包括至少一個通孔。 D玄至ν —個通孔的形狀可以為圓形、四邊形、六邊形、 八邊形、橢圓形等。可以理解,該載體主要起到機械承 載石墨烯層-奈米碳管膜複合結構的作機。具體地,所述 載體形成有複數個通孔^所述複數個通孔.的形狀及排列 方式不限,可根據實際應用需_求調整所述複數個通孔 之間的距離可相等或不#。優選地,所述複數個通孔均 勻分钸在所述載體,相鄰的通孔之間的距離大於丨微米。 所述載體的複數個通孔可以通過蝕刻的方法形成。本實 施例中,提供複數個載體,並使該載體間隔排列。所述 載體為-很薄的圓形鋼片。該載體具有複數個圓形通孔 ,該通孔的孔徑在10 米〜i毫米之間且均勻分佈在所 述載體,相鄰的通孔之間的距離大於丨微米。 其次,將該石祕層-奈米碳管膜複合結構覆蓋該複數個 載體,使奈来碳管膜狀結構與所述載體直接接觸。 然後,從相鄰的兩個載體之間斷開該石墨烯層_奈米碳管 膜複合結構。 具體地,可以採用雷射光束聚焦照射兩相鄰的載體之間 ,燒斷該石墨烯層-奈米碳管膜複合結構。本實施例中, 099122958 表單編號A0101 第Η頁/共37頁 0992040471-0 [0051] 201203306 該雷射光束功率為5〜30瓦(W),優選為18W。 [0052] 進一步地,可使用有機溶劑處理覆蓋在載體上的石墨烯 層-奈米碳管膜複合結構,使該石墨烯層-奈米碳管膜複 合結構和載體結合緊密,並沿載體邊沿去除多餘的石墨 烯層-奈米碳管膜複合結構,即製成透射電鏡微柵。 [0053] 上述有機溶劑為常溫下易揮發的有機溶劑,如乙醇、曱 醇、丙酮、二氣乙烷或氯仿,本實施例中採用乙醇。該 有機溶劑可直接滴在石墨烯層-奈米碳管膜複合結構表面 ,使該石墨烯層-奈米碳管膜複合結構和載體結合緊密。 另外,亦可將上述覆蓋有石墨烯層-奈米碳管膜複合結構 的載體整個浸入盛有有機溶劑的容器中浸潤。該去除載 體以外多餘的石墨烯層-奈米碳管膜複合結構的步驟可為 通過一雷射光束聚焦,並沿該載體邊沿照射一週,燒蝕 該石墨烯層-奈米碳管膜複合結構,從而去除載體外多餘 的石墨烯層-奈米碳管膜複合結構。該步驟為可選擇步驟 〇 [0054] 請參閱圖8及圖9,本發明第二實施例提供一種透射電鏡 微柵200,所述透射電鏡微柵200為直徑為3毫米,厚度為 3微米〜20微米的圓片狀結構。所述透射電鏡微栅200包 括··一金屬載體210及覆蓋於該金屬載體210表面的一石 墨烯層-奈米碳管膜複合結構220。該石墨烯層-奈米碳管 膜複合結構220包括兩層奈米碳管膜狀結構222及一石墨 烯層224。 [0055] 該石墨烯層224設置於所述兩層奈米碳管膜狀結構222之 099122958 表單編號A0101 第18頁/共37頁 0992040471-0 201203306 間,即該石㈣層224挾持於所述的兩層奈米碳管膜狀結 構222之間,從而使該石墨烯層224穩定地固定於所述兩 層奈米碳管膜狀結構222之間。所述奈米碳管膜狀結構 222包括複數個微孔226,所述複數個微孔226均被所述 一個石墨烯層224覆蓋。 闺其令,所述金屬載體210、所述兩層奈来碳管膜狀結構 222以及所述石墨烯層224的結構分別與本發明第一實施 例中的金屬載體110、奈米碳管膜狀結構122以及石墨烯 層12 4相同。 [0057] 本發明進-步提供-所述第二實關透射電鏡微拇的製 備方法,該製備方法包括以下步驟。 [0058] S201 .提供-基底,並在該基底表面形成一石墨稀層.The carrier 110 is in contact. The carbon nanotube-shaped structure 122 includes at least two layers of == film. Referring to FIG. 4, the carbon nanotube film system has a line structure of Ί g A. The plurality of carbon nanotubes are oriented preferentially (4), and the selected spine direction refers to the overall direction of extension of most of the carbon nanotubes in the nanofilm. Moreover, the overall (four) direction of most carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. In the strike, also, the solar nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, in the majority of the carbon nanotube membranes, the carbon nanotubes adjacent to each other in the direction of the same direction extend in the direction in which the nanotubes extend in the direction of the vanadium (fourth). Of course, there are a few randomly arranged nanotubes in the nanometer, and these carbon nanotubes do not have a significant effect on the overall orientation of most of the nanotubes. The self-supporting carbon nanotube film does not require a large area of the carrier to cut, and the σ is to be provided with a line force on both sides, so that the whole film can be suspended; the state, that is, the carbon nanotube film is placed ( Or when it is fixed on two branch bodies arranged at a certain distance, the carbon nanotube film located between the two support bodies can be suspended to maintain its own membranous state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film. [_ Specifically, most of the carbon nanotube tubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or may not be properly deviated in the direction of extension _ ' Extend the direction. Therefore, it cannot be ruled out that there may be some connection between the carbon nanotubes juxtaposed in the majority of the carbon nanotube membranes extending in the same direction. The number of the carbon nanotubes may be 099122958. Form No. 1010101 Page 7 / Total 37 Page 0992040471-0 201203306 . [0015] Specifically, the carbon nanotube film includes a plurality of continuous and aligned carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by van der Waals force. Each of the carbon nanotube segments includes a plurality of mutually parallel carbon nanotubes, and the plurality of mutually parallel carbon nanotubes are tightly coupled by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The carbon nanotubes in the carbon nanotube film are preferentially aligned in the same direction. [0016] When the carbon nanotube film structure 122 includes a plurality of layers of carbon nanotube film, the plurality of carbon nanotube films are interdigitated and stacked, because in each layer of carbon nanotube film, nano carbon The tubes are arranged in a preferred orientation in one direction, and the adjacent two layers of carbon nanotube membranes have an angle of intersection α between the carbon nanotubes, 0° < α 90, [0017] the carbon nanotube membrane structure 122 A plurality of intersecting nanocarbon pipelines 128 are included, the nanocarbon pipelines 128 comprising a plurality of carbon nanotubes side by side and gathered by van der Waals, and further, the nanocarbon pipelines 128 include passages of van der Waals A carbon nanotube that is connected end to end and arranged in a preferred orientation along the same direction. The intersecting nanocarbon line 128 forms a plurality of micropores 126 in the carbon nanotube film structure 122. The size of the micropores 126 of the carbon nanotube film structure 122 is related to the number of layers of the carbon nanotube film. The number of layers of the carbon nanotube film in the carbon nanotube film structure 122 is not limited, and is preferably 2 to 4 layers. The pores 126 in the carbon nanotube film structure 122 may have a size of from 1 nm to 1 μm. [0018] In this embodiment, referring to FIG. 5, the carbon nanotube film structure 122 package 099122958 Form No. 1010101 Page 8/37 pages 0992040471-0 201203306 A two-layer stacked carbon nanotube film . Each of the carbon nanotube membranes is a carbon nanotube membrane as shown in Fig. 4, and the carbon nanotubes in the carbon nanotube membrane extend substantially in the same direction. The carbon nanotubes 128 in the adjacent carbon nanotube film in the carbon nanotube film structure 122 are perpendicular to each other, and a plurality of micropores 126 are formed in the carbon nanotube film structure 122, the micro The size of the aperture 126 is between 100 nanometers and 1 micrometer. [0019] The graphene layer 124 is disposed on the surface of the carbon nanotube film structure crucible 22, and the graphite sieve located in the plurality of micropores 126 Ο in the carbon nanotube film structure 122 is widely suspended. Set. The graphene layer is used to carry a sample to be tested. The graphite hemp 124 comprises a single layer or a plurality of layers of stone. The graphite thin layer 124 (four) (four) sub- (four) carbon nanotubes in the carbon nanotubes through the SP3 hybrid bonding, from the stone layer 124 stable 骇 (4) methine carbon tube membrane structure 122. [0020] In the embodiment, the graphene layer is in the form of a disk. The ruthenium layer has a diameter of 3 mm and completely covers the film structure 122. The graphite thin layer comprises 1 to 3 layers of graphite, and the carbon atoms in the 兮τ 5 石墨 graphene layer 124 and the carbon atoms in the carbon nanotubes can be bonded by a mash to make the graphite stably fixed to the graphite. Nano Carbon Tube New Structure 122 [0021] In the embodiment of the present invention, the TEM micro-gate 100 is disposed on the surface of the TEM micro-gate 100 when applied. i Μ Specifically, the sample to be observed is placed on the surface of the graphite thin layer 124 covering the micropores 126. The sample may be a nanoparticle, such as a nanowire, a nanosphere, a gonamid, and the like. Referring to FIG. 6 'which is a droplet of a nano gold particle dispersed to the surface of the above TEM microgrid 100' dry Transmission after observation under transmission electron microscopy 099122958 Form No. 1010101 Page 9/37 Page 0992040471-0 201203306 Electron micrograph. The black particles in the figure are the nano gold particles to be observed. [0025] [0025] Please refer to FIG. 7. The present invention further provides a method for fabricating the first embodiment of the transmission micromirror 100, which mainly includes the following steps. (S101) providing a substrate 'and forming a graphite thin layer on the surface of the substrate; (S102) providing a carbon nanotube film structure having a plurality of micropores, the nano carbon a tubular structure covering the surface of the graphene layer to form a three-layer structure of a base-graphene layer-carbon nanotube film structure; (S103) removing the base-graphene layer-nanocarbon tube film a substrate in a three-layer structure of the structure to obtain a graphene layer-nanocarbon tube film composite structure; (S104) covering the graphene layer-carbon nanotube film composite structure with a carrier to make a carbon nanotube film The structure is in direct contact with the carrier. In step S101, a substrate is provided, and a graphite crucible layer is formed on the surface of the substrate. The substrate is mainly used as a carrier for graphene growth and stabilization, and has a certain stability in itself, but can be removed by a chemical reaction method or a physical method. The substrate may be selected from metallic materials, alloy materials or metal oxide materials depending on the application. In the present embodiment, a copper foil having an area of 2 cm 2 'thickness of 25 / zm was used as a substrate, and a uniform graphene layer was formed on the surface of the substrate by a low pressure chemical vapor deposition method. The graphene layer is a continuous unitary structure composed of a single layer or a plurality of layers of graphene. Preferably, the number of layers of graphene in the graphene layer is 1 to 3 layers, so that the transmission electron micro-gate has a better contrast. The graphene is a two-dimensional layered structure formed by sp2 hybridization of carbon atoms. The graphene layer 099122958 Form No. A0101 Page 10 of 37 0992040471-0 201203306 Dimensions are 3 mm ~ 2 cm. The size of the graphene layer refers to the maximum linear distance from one point of the graphene layer edge to another point. The graphene layer is evenly and uniformly covered on the surface of the copper foil substrate. The size of the graphene layer in this embodiment is 3 mm to 2 cm. [0026] Step S102, providing a carbon nanotube film structure, the carbon nanotube film structure having a plurality of micropores, covering the surface of the graphene layer with the carbon nanotube film structure to form a A three-layer structure of a substrate-graphene layer-nanocarbon tube film structure. [0027] The carbon nanotube film structure comprises a plurality of layers of cross-laminated carbon nanotube films. The carbon nanotube film is obtained by directly drawing from a carbon nanotube array, and the preparation method thereof specifically comprises the following steps: [0028] First, an array of carbon nanotubes formed on a growth substrate is provided, the array is Super-aligned array of carbon nanotubes. [0029] The carbon nanotube array is prepared by chemical vapor deposition, and the carbon nanotube array is a plurality of pure carbon nanotube arrays formed by carbon nanotubes which are parallel to each other and grow perpendicular to the growth substrate. By controlling the growth conditions as described above, the aligned carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, and is suitable for drawing a carbon nanotube film therefrom. The carbon nanotube array provided by the embodiment of the present invention is a multi-walled carbon nanotube array. The carbon nanotubes have a diameter of 0.5 to 50 nm and a length of 50 nm to 5 mm. In this embodiment, the length of the carbon nanotubes is preferably from 100 micrometers to 900 microseconds. [0030] Next, a carbon nanotube film is obtained by pulling a carbon nanotube from the carbon nanotube array by using a stretching tool, which specifically includes the following steps: (a) from 099122958, form number A0101, page 11 / Total 37 pages 0992040471-0 201203306 The selected one of the super-sequential carbon nanotube arrays or a plurality of carbon nanotubes having a certain width, this embodiment preferably uses a tape having a certain width to contact the carbon nanotube array Selecting one or a plurality of carbon nanotubes having a certain width; (b) stretching the selected carbon nanotubes at a certain speed to form a plurality of carbon nanotube segments connected end to end, thereby forming a continuous nai Carbon tube film. The pull direction is substantially perpendicular to the growth direction of the carbon nanotube array. [0031] During the above stretching process, the plurality of carbon nanotube segments are gradually separated from the growth substrate in the stretching direction under the action of tension, and the selected plurality of carbon nanotube segments are selected due to the effect of van der Waals force. They are continuously pulled out end to end with other carbon nanotube segments, thereby forming a continuous, uniform and self-supporting carbon nanotube film having a certain width. The so-called "self-supporting structure" means that the carbon nanotube film can maintain the shape of a film without being supported by a support. Referring to FIG. 4, the carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction and connected end to end by van der Waals. The carbon nanotubes are arranged substantially in the stretching direction and parallel to the Nano carbon tube membrane surface. The direct stretching method for obtaining a carbon nanotube film is simple and rapid, and is suitable for industrial application. [0032] The width of the carbon nanotube film is related to the size of the carbon nanotube array, and the length of the carbon nanotube film is not limited and can be obtained according to actual needs. 5纳米〜100微米。 The carbon nanotube film has a thickness of from 0. 5 nm to 100 μm. [0033] After preparing the carbon nanotube film, the plurality of carbon nanotube films are laminated and cross-lapped to form the carbon nanotube film structure. Specifically, a carbon nanotube film may be first covered in one direction to a frame, and then another 099122958 form number A0101 page 12/37 pages 0992040471-0 201203306 another carbon nanotube film is covered in the other direction To the surface of the previous carbon nanotube film, as many times as this, a plurality of carbon nanotube films are laid on the frame. The plurality of carbon nanotube films may be laid in different directions or may be laid only in two intersecting directions. It can be understood that the carbon nanotubes in the adjacent carbon nanotube film in the film structure of the carbon nanotubes thus laid cross at a certain angle, and the film structure of the carbon nanotubes is also a self-supporting structure. The edge of the carbon nanotube film structure is fixed by the frame and suspended by the frame portion. [0034] Since the carbon nanotube film has a large specific surface area, the carbon nanotube film has a large viscosity, so that the multilayer carbon nanotube film can be closely combined with each other to form a stable Membrane carbon tube membrane structure. In the film structure of the carbon nanotube, the number of layers of the carbon nanotube film is not limited, and the adjacent two layers of carbon nanotube film have an intersection angle α, 0° < α 90°. In this embodiment, the number of layers of the carbon nanotube film in the film structure of the carbon nanotubes is two, and the extending directions of the carbon nanotubes in the two layers of carbon nanotube film are perpendicular to each other. 〇[〇_ After forming the film structure of the above carbon nanotube, the film structure of the carbon nanotube is covered on the surface of the graphene layer, since the film structure of the carbon nanotube itself has a certain viscosity, when When the carbon nanotube film structure is attached to the surface of the graphene layer, a three-layer structure of a base-graphene layer-carbon nanotube film structure is formed. [0036] It can be understood that the preparation method of the three-layer structure of the substrate-graphene layer-carbon nanotube film structure may further include: treating the substrate-graphene layer-carbon nanotube film structure with an organic solvent. The three-layer structure is such that the carbon nanotube film structure is tightly combined with the graphene layer. This step is an optional step. 099122958 Form No. 1010101 Page 13/37 Page 0992040471-0 201203306 [0037] The organic solvent is at room temperature The volatile organic solvent may be selected from a mixture of one or more of ethanol, decyl alcohol, acetone, di-ethane and chloroform. The organic solvent in this embodiment is ethanol. The organic solvent should have good wettability with the carbon nanotubes. The step of treating with an organic solvent is specifically: uniformly depositing an organic solvent on the surface of the film structure of the carbon nanotube film in the three-layer structure of the substrate-graphene layer-carbon nanotube film structure and infiltrating the whole The carbon nanotube film structure, or the three-layer structure of the above-mentioned base-graphene layer-carbon nanotube film structure may be immersed in a container containing an organic solvent to infiltrate. [0038] After the three-layer structure of the base-graphene layer-nanocarbon tube film-like structure is treated by organic solvent infiltration, the adjacent carbon nanotubes in the film structure of the carbon nanotubes are gathered together, Thereby shrinking into a spaced-apart nanocarbon pipeline, the nanocarbon pipeline comprising a plurality of carbon nanotubes connected end to end by van der Waals force. There is a gap between the nanocarbon lines arranged substantially in the same direction. Since the carbon nanotubes in the adjacent two layers of carbon nanotube film have a crossing angle α and 0 < α 90 °, the carbon nanotubes in the adjacent two layers of carbon nanotube film cross each other after the organic solvent treatment , forming a plurality of micropores. The size of the micropores in the film structure of the carbon nanotubes is from 1 nm to 10 μm, preferably from 100 nm to 1 μm. In this embodiment, the intersection angle α = 90°, so that the carbon nanotube wires in the adjacent carbon nanotube film in the carbon nanotube film-like structure substantially perpendicularly intersect each other to form a large number of micropores. It can be understood that the larger the number of laminated carbon nanotube films, the smaller the size of the micropores of the carbon nanotube film structure. Therefore, the desired pore size can be obtained by adjusting the number of the carbon nanotube membranes. 099122958 Form No. 1010101 Page 14/37 Page 0992040471-0 201203306 [0039] The three-layer structure of the base-graphene layer-nanocarbon tube film structure is treated by organic solvent infiltration and then adjacent to the nanometer The carbon tube and graphene are brought together by the attraction of van der Waals and the surface tension of the solvent, so that the membrane structure of the carbon nanotube and the graphene layer are tightly combined. [0040] Step S103' removes the substrate in the two-layer structure of the base-graphene layer-carbon nanotube film-like structure to obtain a graphene layer-carbon nanotube film composite structure. [0041] ο ο immersing a three-layer structure of a substrate-graphite layer-nanocarbon tube film structure in a treatment liquid to chemically react the substrate with the treatment liquid until the substrate is removed, thereby preparing a solution Graphene layer-nano carbon nanotube film composite structure. It is understood that since the carbon nanotube film bulk structure itself has a certain self-supporting action, it can serve as a carrier in which the graphene layer is stably present without destroying or reducing the overall structure of the graphene layer. The treatment liquid may be an acid solution, a domain liquid or a salt solution depending on the substrate. The treatment liquid in the embodiment is a gasified iron solution. The ferric ion in the gasification iron solution can undergo an oxidation-reduction reaction with the copper-based substrate to remove the copper foil substrate. The graphene layer-carbon nanotube film composite structure can be stably present in the ferric chloride solution. The step of treating with the gasified iron solution is specifically: immersing the three-layer structure of the base-graphene layer-carbon nanotube film structure in a gasification iron solution having a concentration of 5 g/mL for 24 hours. It will be understood that the corrosion time required for the copper foil substrate varies depending on the size and thickness of the substrate and the concentration of the treatment liquid used. In addition, other steel foil substrates such as gasified iron, iron sulfate, and mixtures thereof may be etched using other salt solutions containing ferric iron. [0042] 099122958 After forming the above graphene layer-nanocarbon tube film composite structure, the graphene layer-nanocarbon tube film can be further cleaned with a cleaning solution in Form No. A0101, page 15 of 37 pages 0992040471-0 201203306 Composite structure. Since the substrate chemically reacts with the treatment liquid, some metal ions are generated in the solution, and the metal ions are prone to hydrolysis reaction in the solution, thereby generating some particulate impurities. By further cleaning the cleaning solution, the particulate impurities in the graphene layer-nanocarbon tube film composite structure can be removed. [0043] The cleaning solution is an acid solution, and one of dilute sulfuric acid, dilute hydrochloric acid and dilute nitric acid can be selected. Or a mixture of several. In the present embodiment, dilute hydrochloric acid is used. The cleaning solution can inhibit hydrolysis of the ferric chloride solution and remove particulate impurities in the graphene layer-carbon nanotube film composite structure. The specific step includes: immersing the graphene layer-carbon nanotube film composite structure in the cleaning Wash in the liquid for 1 min ~ 15 miη. [0044] wherein after cleaning the graphene layer-carbon nanotube film composite structure using a cleaning solution, the graphene layer-carbon nanotube film composite structure may be further washed with deionized water to remove the The crucible is cleaned to form the graphene layer-carbon nanotube film composite structure. [0045] after forming the graphene layer-carbon nanotube film composite structure, the graphene layer-carbon nanotube film composite structure may be further processed to make carbon atoms in the graphene layer and the nano carbon The carbon atoms in the tubular membrane are bonded to each other. [0046] The processing step may specifically be to irradiate the graphene layer-carbon nanotube film composite structure by laser or ultraviolet light, or to hit the graphene layer by high-energy particles (e-energy par tic 1 e) Carbon tube membrane composite structure. After treatment, the carbon atoms in the graphene layer and the carbon atoms in the carbon nanotubes are covalently bonded by sp3 hybridization, thereby making the graphene layer more stable. 099122958 Form No. A0101 Page 16 of 37 Page 0992040471-0 201203306 [0048] [0050] [0050] The surface of the carbon nanotube film structure is defined. This step is an optional step in which the graphene layer is bonded to the carbon nanotube by van der Waals when the method does not include the step. In step S104, the graphene layer-nanocarbon tube film composite structure is covered with a carrier, and the carbon nanotube film structure is directly in contact with the carrier. First at least one carrier is provided, the carrier comprising at least one through hole. D Xuanzhi ν—The shape of a through hole may be a circle, a quadrangle, a hexagon, an octagon, an ellipse or the like. It can be understood that the carrier mainly functions as a mechanically supported graphene layer-nanocarbon tube membrane composite structure. Specifically, the carrier is formed with a plurality of through holes, and the shape and arrangement of the plurality of through holes are not limited, and the distance between the plurality of through holes may be equal or not according to actual application requirements. #. Preferably, the plurality of through holes are evenly distributed on the carrier, and the distance between adjacent through holes is greater than 丨 micron. A plurality of vias of the carrier may be formed by etching. In this embodiment, a plurality of carriers are provided and the carriers are arranged at intervals. The carrier is a very thin circular steel sheet. The carrier has a plurality of circular through holes having a pore diameter of between 10 m and i mm and uniformly distributed over the carrier, and the distance between adjacent through holes is greater than 丨 micron. Next, the stone-layer carbon nanotube film composite structure covers the plurality of carriers to directly contact the film structure of the carbon nanotubes with the carrier. Then, the graphene layer-carbon nanotube film composite structure was disconnected from the adjacent two carriers. Specifically, a laser beam can be used to focus and illuminate between two adjacent carriers, and the graphene layer-carbon nanotube film composite structure is blown. In this embodiment, 099122958 Form No. A0101 Page 3 of 37 0992040471-0 [0051] 201203306 The laser beam power is 5 to 30 watts (W), preferably 18 W. [0052] Further, the graphene layer-carbon nanotube film composite structure covered on the carrier may be treated with an organic solvent, so that the graphene layer-carbon nanotube film composite structure and the carrier are tightly combined and along the edge of the carrier The excess graphene layer-nanocarbon tube film composite structure is removed, which is made into a transmission electron microscope microgrid. The above organic solvent is an organic solvent which is volatile at normal temperature, such as ethanol, decyl alcohol, acetone, di-ethane or chloroform, and ethanol is used in the present embodiment. The organic solvent can be directly dropped on the surface of the graphene layer-carbon nanotube film composite structure, so that the graphene layer-nanocarbon tube film composite structure and the carrier are tightly combined. Alternatively, the above-mentioned carrier covered with the graphene layer-carbon nanotube film composite structure may be entirely immersed in a container containing an organic solvent to be infiltrated. The step of removing the excess graphene layer-nanocarbon tube film composite structure other than the carrier may be performed by focusing a laser beam and irradiating the edge of the carrier for one week to ablate the graphene layer-carbon nanotube film composite structure. Thereby, the excess graphene layer-nanocarbon tube film composite structure outside the carrier is removed. The step is an optional step. [0054] Referring to FIG. 8 and FIG. 9, a second embodiment of the present invention provides a TEM micro-gate 200 having a diameter of 3 mm and a thickness of 3 μm. 20 micron disk-like structure. The TEM micro-gate 200 includes a metal carrier 210 and a graphene layer-carbon nanotube film composite structure 220 covering the surface of the metal carrier 210. The graphene layer-carbon nanotube film composite structure 220 includes a two-layered carbon nanotube film structure 222 and a graphene layer 224. [0055] The graphene layer 224 is disposed between the two-layered carbon nanotube film structure 222, 099122958, Form No. A0101, page 18/37, 0992040471-0 201203306, that is, the stone (four) layer 224 is held in the Between the two layers of carbon nanotube film structure 222, the graphene layer 224 is stably fixed between the two layers of carbon nanotube film structure 222. The carbon nanotube film structure 222 includes a plurality of micropores 226, each of which is covered by the one graphene layer 224. The structure of the metal carrier 210, the two-layer carbon nanotube film structure 222, and the graphene layer 224 are respectively related to the metal carrier 110 and the carbon nanotube film in the first embodiment of the present invention. The structure 122 and the graphene layer 12 4 are the same. [0057] The present invention further provides a method for preparing a second solid-state transmission electron micro-figure, the preparation method comprising the following steps. [0058] S201. Providing a substrate and forming a graphite thin layer on the surface of the substrate.

[0059] 5202 :提供一奈米碳管膜狀結構,該奈米碳管膜狀結構 具有複數個微孔,將該奈米碳管攀狀結構覆蓋於所述石 〇 墨烯層表面,形成一基底-石墨烯層-奈米碳管膜狀結構 的三層結構。 ...... · (:: 'ϊ: .: . #::¾. : 3 [0060] 5203 :去除該基底-石墨烯層_奈米碳管膜狀結構的三層 結構中的基底’得到一石墨烯層-奈米碳管膜複合結構。 [0061] 所述三個步驟與本發明第一實施例的透射電鏡微柵的製 備方法的前三個步驟相同。 [0062] S204 :形成所述石墨烯層-奈米碳管膜複合結構後進— 步將另一奈米碳管膜狀結構覆蓋於該石墨烯層_奈米碳管 膜複合結構中石墨烯層的表面,形成一兩側為奈米碳管 099122958 表單編號A0101 第19頁/共37頁 0992040471-0 201203306 膜狀結構中間為石墨烯層的夾心結構;將所述夾心結構 覆蓋一載體,形成透射電鏡微柵。 [0063] [0064] [0065] 可以理解’該另一奈米碳管膜狀結構可包括單層或多層 奈米碳管膜,可具有與本發明第一實施例奈米碳管膜狀 結構具有相同或不同的結構。該夾心結構為兩層奈米碳 管膜狀結構與一層石墨烯層形成的三層夾心結構。該兩 層奈米碳管膜狀結構挾持中間的石墨烯層,從而使石墨 烤層更牢固地被固定。形成該夾心結構後,可進一步使 用第一實施例中步驟S102中易揮發的有機溶劑處理該夾 心結構,從而在所述另一奈米碳管膜狀結構中形成複數 個微孔並使另一奈米碳管膜狀結構與石墨烯層緊密結合 〇 本發明實施例提供的透射電鏡微柵具有以下優點: 第一,該石墨烯層起承載樣品作用,大量樣品可均勻分 佈於石墨烯層表面’可用於_量樣品粒親的統計分佈, 以及觀察該大量樣品车石墨烯層表面的自紱裝特性。由 於該石墨烯層覆蓋所述奈米複管膜狀結構中的微孔,該 樣T可以被該石墨烯層承載,均勻分佈於所述微孔上方 ,從而提高了該透射電鏡微栅對樣品的承載概率。並且 ’該待測樣品的㈣不受限制,例如僅比該微孔稱 樣品均可。 第二’石墨烯層具有較大的尺寸,尺寸達_米級可 完全覆蓋所述微孔,從而使所述微柵可用於觀察和表徵 樣品的有效面積達到最大。料,由於該石墨烯層為二 099122958 表早編號A〇 1〇1 第20頁/共37頁 0992040471-0 [0066] 201203306 連續的—體結構,其表面平整,不會產生明顯的縫隙, 有利於對待測樣品的觀察。 [_第三,石墨烯具有極薄的厚度,單層石墨烯的厚度約 〇.335奈米,在透射電鏡觀察中產生的襯度噪聲較小… 而可獲得分辨率更高的透射電鏡照片。另外,由於石墨处 稀片為錄構,與所述奈米碳管航結構此 同覆蓋於所述金屬載體’所以該金屬龍的孔徑無需;艮 小,因此,大大降低了該金屬載體的成本。 〇 國第四,由於所述奈米破管膜狀結構係從—奈米瑗管陣列 中拉取獲得的’該奈米碳管膜狀結構中奈米碳管膜中的 奈米碳管基本沿同一方向择優取向排列並且該奈米嗲 管膜狀結構純淨度高’因此,本實施騎射電鏡微柵對 承載於其上的待觀測樣品的形貌和結構分析等干擾小, 對奈米顆粒樣品的高分辨像影響很小。此外,該拉取製 備奈米碳管膜狀結構的方法簡單,有利於降低該透射電 鏡微栅的成本。 ❹闕進-步地,由於奈米碳管膜狀結構及石墨麟均由碳原 子鍵合形成,且具有相似的結構’故該奈米碳管膜狀結 構與石墨烯層具有良好的匹配性,可通過處理形成咖共 價鍵’從而形成一體結構,便於使用或長時間保存。 圃3外’所述石墨__奈米碳管膜複合結構可包括至少兩 層奈米碳管膜狀結構,所述石墨稀層挾持設置於該兩層 奈米碳管膜狀結構之間。此種結構可使該透射電鏡微桃 具有更穩定的結構,便於重複使用或長時間保存。 099122958 表單編號A0101 第21頁/共37頁 0992040471-0 201203306 [0071 ]本發明實施例所提供的物電鏡微栅的製備方法具有以 下優點首先,由於奈米碳管膜狀結構具有自支撐性和 黏性’因此’可以在不破壞核少破壞^,㈣層的條件 下,方便的使石墨烯層從基底中轉移並穩定依附於奈米 石反管膜狀結構表面,從而製備出尺寸達到H級的石墨 婦層-奈米礙管膜複合結構。另外,由於石墨稀層_奈米 碳官膜複合結構的形成主要係在溶液中進行,因此,可 以方便的添加各種溶液對所形成的石墨烯層_奈米碳管膜 複合結構進行清洗,去除石墨祕-奈米碳管膜複合結構 中的雜質。其次,該採用雷射、紫外先或高能粒子處理 該石墨稀層-奈来碳管膜複合結構的方法可使該石墨烯層 與奈米碳管膜通過共價鍵更牢固地結合。再次,由於該 奈米礙管膜狀結構具有極大的比表面積,因此具有較大 黏性,可良好的黏附於所述載體上,通過有機溶劑處理 ,該奈米碳管膜狀結構與該載體的結合更為牢固。進一 步地,所述石墨烯層—奈米4管膜複合褚播可一次覆蓋在 複數個載體上,方法簡單、快捷,通過去除載體以外的 石墨稀層-奈米碳管膜複合結構,可批量製備性質穩定的 透射電鏡微柵。 [0072]綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 099122958 表單編號A0101 第22頁/共37頁 0992040471-0 201203306 [0073] 圖1為本發明第一實施例透射電鏡微柵的結構示意圖。 [0074] 圖2為本發明第一實施例透射電鏡微栅中的石墨烯層-奈 米碳管膜複合結構的結構示意圖。 [0075] 圖3為本發明第一實施例透射電鏡微柵中的石墨烯層-奈 米碳管膜複合結構的透射電鏡照片。 [0076] 圖4為本發明第一實施例透射電鏡微柵中的石墨烯層-奈 米碳管膜複合結構中單層奈米碳管膜的掃描電鏡照片。 [0077] 〇 圖5為本發明第一實施例透射電鏡微柵中的石墨烯層-奈 米碳管膜複合結構中多層奈米碳管膜的掃描電鏡照片。 [0078] 圖6為使用本發明第一實施例透射電鏡微柵觀察承載在石 墨烯表面上的奈米金顆粒的高解析度透射電鏡照片。 [0079] 圖7為本發明第一實施例透射電鏡微柵製備方法的流程圖 〇 [0080] 圖8為本發明第二實施例透射電鏡微柵的結構示意圖。 〇 _] 圖9為本發明第二實施例透射電鏡微栅中的石墨烯層-奈 米碳管膜複合結構的結構示意圖。 [0082] 【主要元件符號說明】 100,200 :透射電鏡微柵 [0083] 110,210 :金屬載體 [0084] 112,212 :通孔 [0085] 120,220 :石墨烯層-奈米碳管膜複合結構 [0086] 122,222 :奈米碳管膜狀結構 099122958 表單編號A0101 第23頁/共37頁 0992040471-0 201203306 [0087] 124 [0088] 126 [0089] 128 224 :石墨烯層 226 :微孔 228 :奈米碳管線 099122958 表單編號A0101 第24頁/共37頁 0992040471-0[0059] 5202: providing a carbon nanotube film structure, the carbon nanotube film structure having a plurality of micropores, the carbon nanotube climbing structure covering the surface of the dendrite layer, forming A three-layer structure of a base-graphene layer-nanocarbon tube film structure. ...... · (:: 'ϊ: .: . #::3⁄4. : 3 [0060] 5203: removal of the substrate in the three-layer structure of the base-graphene layer_nanocarbon tube film structure 'A graphene layer-nano carbon nanotube film composite structure is obtained. [0061] The three steps are the same as the first three steps of the preparation method of the TEM microgrid of the first embodiment of the present invention. [0062] S204: Forming the graphene layer-nanocarbon tube film composite structure, and further covering another surface of the graphene layer in the graphene layer-nanocarbon tube film composite structure to form a film Carbon nanotubes on both sides 099122958 Form No. A0101 Page 19 / Total 37 pages 0992040471-0 201203306 The sandwich structure is a sandwich structure with a graphene layer in the middle; the sandwich structure is covered with a carrier to form a transmission electron microstrip. [0065] It can be understood that the other carbon nanotube film structure may comprise a single layer or a plurality of layers of carbon nanotube film, and may have a film structure similar to the first embodiment of the present invention. The same or different structure. The sandwich structure is a two-layered carbon nanotube film structure and a layer of graphene layer The three-layer sandwich structure. The two-layer carbon nanotube film structure holds the middle graphene layer, so that the graphite baking layer is more firmly fixed. After the sandwich structure is formed, the step S102 in the first embodiment can be further used. Treating the sandwich structure with a volatile organic solvent to form a plurality of micropores in the film structure of the other carbon nanotube and tightly bonding the film structure of the other carbon nanotubes to the graphene layer. The TEM microgate provided by the embodiment has the following advantages: First, the graphene layer functions as a sample carrying sample, and a large amount of sample can be uniformly distributed on the surface of the graphene layer, which can be used for statistical distribution of the sample grain, and the mass is observed. The self-armoring property of the surface of the graphene layer of the sample car. Since the graphene layer covers the micropores in the film structure of the nano tube, the sample T can be carried by the graphene layer and uniformly distributed in the micropores Above, thereby increasing the carrying probability of the TEM microgrid to the sample. And 'the fourth sample to be tested is not limited, for example, only the microporous sample can be said. Second 'graphene With a larger size, the size up to _m can completely cover the micropores, so that the microgrid can be used to observe and characterize the effective area of the sample to the maximum. Since the graphene layer is 299122958 A〇1〇1 Page 20 of 37 0992040471-0 [0066] 201203306 A continuous body structure with a flat surface that does not create a distinct gap, which is beneficial for the observation of the sample to be tested. [_ Third, graphite The olefin has an extremely thin thickness, and the thickness of the single-layer graphene is about 335 nm, and the contrast noise generated in the transmission electron microscope observation is small... The TEM image with higher resolution can be obtained. In addition, since the graphite thin film is recorded, and the carbon nanotube structure is covered with the metal carrier, the hole diameter of the metal dragon is not required; the size is small, thereby greatly reducing the cost of the metal carrier. . The fourth in the country, because the nano-membrane structure is pulled from the array of nano-tubes, the carbon nanotubes in the nano-carbon tube film structure are basically The preferred orientation is arranged in the same direction and the purity of the film structure of the nanotube is high. Therefore, the interference of the morphology and structure analysis of the sample to be observed carried on the microelectrogrib of the present embodiment is small, and the nanometer is small. The high resolution image of the particle sample has little effect. In addition, the method of drawing the film structure of the carbon nanotube is simple, and it is advantageous to reduce the cost of the micromirror of the transmission electron microscope. In the step-by-step manner, since the film structure of the carbon nanotubes and the graphite lining are both formed by carbon atom bonding and have a similar structure, the film structure of the carbon nanotube has a good match with the graphene layer. It can be formed into a unitary structure by processing the covalent bond of the coffee, which is convenient for use or long-term storage. The graphite__nanocarbon tube film composite structure may include at least two layers of carbon nanotube film-like structures, and the graphite thin layer is sandwiched between the two layers of carbon nanotube film structures. Such a structure allows the TEM micro-peach to have a more stable structure, which is convenient for repeated use or long-term storage. 099122958 Form No. A0101 Page 21 / Total 37 Page 0992040471-0 201203306 [0071] The method for preparing the electron micromirror of the present invention has the following advantages. First, since the carbon nanotube film structure is self-supporting and The viscous 'thus' can easily transfer the graphene layer from the substrate and stably adhere to the surface of the nano-steel film-like structure without destroying the core-damage layer (4), thereby preparing the size to reach H. Grade graphite layer - nano tube film composite structure. In addition, since the formation of the graphite thin layer-nano carbon film composite structure is mainly carried out in a solution, it is convenient to add various solutions to clean the formed graphene layer-nanocarbon tube film composite structure, and remove Impurities in the graphite secret-nano carbon nanotube film composite structure. Secondly, the method of treating the graphite thin layer-nai carbon nanotube film composite structure by using laser, ultraviolet first or high energy particles enables the graphene layer and the carbon nanotube film to be more firmly bonded by a covalent bond. Again, since the nano-membranous structure has a large specific surface area, it has a large viscosity and can adhere well to the carrier, and the carbon nanotube film structure and the carrier are treated by an organic solvent. The combination is stronger. Further, the graphene layer-nano 4-tube film composite rafting can be covered on a plurality of carriers at a time, and the method is simple and quick, and the batch can be batched by removing the graphite thin layer-nano carbon tube film composite structure other than the carrier. A TEM microgrid with stable properties was prepared. [0072] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a transmission electron microscope micro-gate according to a first embodiment of the present invention. FIG. 1 is a schematic diagram of a transmission electron micro-gate according to a first embodiment of the present invention. 2 is a schematic structural view of a graphene layer-carbon nanotube film composite structure in a transmission electron microscope micro-gate according to a first embodiment of the present invention. 3 is a transmission electron micrograph of a graphene layer-carbon nanotube film composite structure in a transmission electron microscope micro-gate according to a first embodiment of the present invention. 4 is a scanning electron micrograph of a single-layered carbon nanotube film in a graphene layer-carbon nanotube film composite structure in a transmission electron microscope micro-gate according to a first embodiment of the present invention. 5 is a scanning electron micrograph of a multilayer carbon nanotube film in a graphene layer-carbon nanotube film composite structure in a transmission electron microscope micro-gate according to a first embodiment of the present invention. 6 is a high-resolution transmission electron micrograph of a nano gold particle carried on a surface of a graphene using a transmission electron microstrip microgrid according to a first embodiment of the present invention. 7 is a flow chart of a method for preparing a TEM micro-gate according to a first embodiment of the present invention. [0080] FIG. 8 is a schematic structural view of a TEM micro-gate according to a second embodiment of the present invention. _ _] Figure 9 is a schematic view showing the structure of a graphene layer-carbon nanotube film composite structure in a TEM microgrid according to a second embodiment of the present invention. [Description of Main Component Symbols] 100,200: Transmission Electron Micromirror [0083] 110, 210: Metal Carrier [0084] 112, 212: Through Hole [0085] 120, 220: Graphene Layer-Nanocarbon Tube Membrane composite structure [0086] 122, 222: carbon nanotube film structure 099122958 Form No. A0101 Page 23 / Total 37 page 0992040471-0 201203306 [0087] 124 [0089] 128 224: Graphene layer 226 : Micropores 228: Nano Carbon Pipeline 099122958 Form No. A0101 Page 24 of 37 0992040471-0

Claims (1)

201203306 七、申請專利範圍: 1 . 一種透射電鏡微柵,包括一載體,該載體包括至少一個通 孔’其改良在於:所述透射電鏡微栅進一步包括一覆蓋所 述載體通孔的石墨烯層-奈米碳管膜複合結構,該石墨烯 層-奈米碳管膜複合結構包括一個石墨烯層和至少一層奈 米碳管膜狀結構,該奈米碳管膜狀結構具有複數個微孔, 所述石墨烯層覆蓋所述複數個微孔並通過該複數個微孔部 分懸空。 ^ 2 .如申請專利範圍第1項所述的透射電鏡微柵,其中,該奈 米碳管膜狀結構的複數個微孔均被該石墨烯層覆蓋。 3 .如申請專利範圍第1項所述的透射電鏡微柵,其中,該石 墨烯層與該奈米碳管膜狀結構重疊‘置。 4 ·如申請專利範圍第1項所述的透射電鏡微柵,其中,該石 墨烯層為一連續的一體結構。 5 ·如申請專利範圍第1項所述的透射電鏡徼柵,其中,該石 墨烯層包括1層〜3層石墨烯、 Q 6 .如申請專利範圍第1項所述的透射電鏡微柵,其中,該奈 米碳管膜狀結構包括多層層疊設置的奈米破管膜,所述奈 米碳管膜狀結構中相鄰兩層奈米碳管膜中的奈米碳管交又 一定角度。 7 ·如申請專利範圍第6項所述的透射電鏡微栅,其中,該奈 米碳營膜包括複數個基本沿同一方向延伸的奈米碳管。 8 .如申凊專利範圍第7項所述的透射電鏡微栅,其中,該奈 米碳管骐中基本沿同一方向延伸的奈米碳管中每一奈米碳 管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連 099122958 表單編號A0101 第25頁/共37頁 0992040471-0 201203306 9 .如申請專利範圍第1項所述的透射電鏡微柵,其中,所述 奈米碳管膜狀結構包括複數個交叉設置的奈米碳管線,該 複數個交叉設置的奈米碳管線在該奈米碳管膜狀結構中形 成所述複數個微孔。 10 .如申請專利範圍第1項所述的透射電鏡微柵,其中,該微 孔的尺寸為1奈米~10微米。 11 .如申請專利範圍第1項所述的透射電鏡微柵,其中,該石 墨烯層中的碳原子與該奈米碳管膜狀結構中的碳原子通過 sp3雜化鍵合。 12 .如申請專利範圍第1項所述的透射電鏡微栅,其中,該石 墨烯層-奈米碳管膜複合結構包括一個石墨烯層及兩層奈 米碳管膜狀結構,所述石墨烯層挾持設置於所述兩層奈米 碳管膜狀結構之間。 13 .如申請專利範圍第1項所述的透射電鏡微栅,其中,該通 孔的孔徑為1微米〜2毫米。 14 .如申請專利範圍第1項所述的透射電鏡微柵,其中,該載 體的材料為一金屬、合金或陶究。 15 . —種透射電鏡微柵的製備方法,其包括以下步驟: 提供一基底,並在基底表面形成一石墨烯層; 提供一奈米碳管膜狀結構,該奈米碳管膜狀結構具有複數 個微孔,將該奈米碳管膜狀結構覆蓋於所述石墨烯層表面 ,形成一基底-石墨烯層-奈米碳管膜狀結構的三層結構; 去除該基底-石墨烯層-奈米碳管膜狀結構的三層結構中的 基底,得到一石墨烯層-奈米碳管膜複合結構;以及 將所述石墨烯層-奈米碳管膜複合結構覆蓋一載體,使奈 099122958 表單編號A0101 第26頁/共37頁 0992040471-0 201203306 米碳管m狀結構與所述載體直接接觸。 16 .如申請專利範圍第15項所述的遂射電鏡微栅的製備方法, 其令,該基底為金屬基底、合金基底或金眉氧化物基底。 】7 .如申請專利範圍第15項所述的透射電鏡微柵的製備方法, 其中,形成一基底-石墨稀層-余米碳管膜狀結構的三層結 構之後進一步包括使用一揮發性有機溶劑處理所述基底_ 石墨烯層-奈米碳管膜狀結構的三層結構’使奈米碳管膜 狀結構形成複數個微孔,並使奈米碳管膜狀結構與石墨烯 層緊密結合® Ο 18 .如申請專利範圍第15項所述的透射電鏡微:柵的製備方法, 其中’去除該基底-石墨烯層-奈米碳管膜狀結構的三層結 構中的基底的方法為使用酸、城或鹽類)溶液與所述基底發 生化學反應以去除該基底。 19 .如申請專利範圍第15項所述的透射電鏡軟柵的製備方法, 其中,*除該基底〜石墨稀層_奈米碳管膜狀結構的三層結 構中的基底’传到—石墨稀層_奈米碳管膜複合結構後, n 冑纟包括使用雷射或紫外光照射該石墨稀層-奈米破管 ^ 膜複合結構,或以^Λ 、 阿此粒子轟擊該石墨烯層-奈米碳管膜 複合結構’使該石里 墨稀層與該奈米碳管膜狀結構鍵合連接 的步驟。 20 099122958 如申請專利範圍第 其中,去除該Λ底項所述的透射電鏡微柵的製備方法, 構十的基底,石墨稀層—奈来碳f膜狀結構的三層結 ,進-步包括將另所述石墨烯層'奈米碳管膜複合結構後 -奈米碳管膜複合、^'奈米碳管膜狀結構覆蓋於該石墨烯層 奈求碳管膜狀結攝中構中石墨稀層的表面,形成-兩側為 表單編號A0101 間為石墨晞層的夾心結構。 0992040471-0 第27頁/共37頁 201203306 21 .如申請專利範圍第15項所述的透射電鏡微柵的製備方法, 其中,將所述石墨烯層-奈米碳管膜複合結構覆蓋一載體 後,進一步包括使用揮發性有機溶劑處理所述石墨烯層-奈米碳管膜複合結構和載體,使該石墨烯層-奈米碳管膜 複合結構和載體結合緊密。 22 .如申請專利範圍第15項所述的透射電鏡微柵的製備方法, 其中,將所述石墨烯層-奈米碳管膜複合結構覆蓋一載體 後,進一步包括沿所述載體邊沿去除多餘的石墨烯層-奈 米碳管膜複合結構的步驟。 23 .如申請專利範圍第22項所述的透射電鏡微栅的製備方法, 其中,沿所述載體邊沿去除多餘的石墨烯層-奈米碳管膜 複合結構的步驟為用雷射光束聚焦照射並燒蝕該石墨烯層 -奈米碳管膜複合結構。 24 .如申請專利範圍第15項所述的透射電鏡微柵的製備方法, 其中,將所述石墨烯層-奈米碳管膜複合結構覆蓋一載體 的方法包括以下步驟: 提供複數個載體,該複數個載體間隔排列; 將該石墨烯層-奈米碳管膜複合結構整個覆蓋所述複數個 載體;以及 從相鄰的兩個載體之間斷開該石墨烯層-奈米碳管膜複合 結構。 099122958 表單編號A0101 第28頁/共37頁 0992040471-0201203306 VII. Patent application scope: 1. A TEM micro-gate comprising a carrier, the carrier comprising at least one via hole, wherein the TEM micro-gate further comprises a graphene layer covering the via hole of the carrier a carbon nanotube film composite structure, the graphene layer-nanocarbon tube film composite structure comprising a graphene layer and at least one layer of carbon nanotube film structure, the nano carbon tube film structure having a plurality of micropores And the graphene layer covers the plurality of micropores and is suspended by the plurality of micropores. The TEM microgrid according to claim 1, wherein the plurality of micropores of the carbon nanotube film structure are covered by the graphene layer. 3. The TEM microgrid according to claim 1, wherein the graphene layer overlaps with the carbon nanotube film structure. 4. The TEM microgrid of claim 1, wherein the graphene layer is a continuous unitary structure. The TEM grid according to claim 1, wherein the graphene layer comprises 1 to 3 layers of graphene, Q 6 , and the TEM microgrid according to claim 1 of the patent application, Wherein, the carbon nanotube film-like structure comprises a plurality of stacked nano-tubes, wherein the carbon nanotubes in the adjacent two layers of carbon nanotube film have a certain angle . 7. The TEM microgrid of claim 6, wherein the carbon nanotube film comprises a plurality of carbon nanotubes extending substantially in the same direction. 8. The TEM microgrid according to claim 7, wherein each of the carbon nanotubes extending substantially in the same direction in the carbon nanotube has a phase in the extending direction The neighboring carbon nanotubes are connected end to end by van der Waals. 099122958 Form No. A0101 Page 25 of 37 pp. 0992040471-0 201203306 9. The TEM microgrid according to claim 1, wherein the nai The carbon nanotube film structure comprises a plurality of cross-set nano carbon pipelines, and the plurality of cross-set nanocarbon pipelines form the plurality of micropores in the carbon nanotube membrane structure. 10. The TEM microgrid according to claim 1, wherein the micropores have a size of from 1 nm to 10 μm. The TEM microgrid according to claim 1, wherein the carbon atoms in the graphene layer and the carbon atoms in the film structure of the carbon nanotube are hybridized by sp3. 12. The TEM microgrid according to claim 1, wherein the graphene layer-carbon nanotube film composite structure comprises a graphene layer and a two-layer carbon nanotube film structure, the graphite The olefin layer is sandwiched between the two layers of carbon nanotube film structures. The TEM micro-gate according to claim 1, wherein the through hole has a pore diameter of 1 μm to 2 mm. The TEM micro-gate according to claim 1, wherein the material of the carrier is a metal, an alloy or a ceramic. A method for preparing a transmission electron microstrip, comprising the steps of: providing a substrate and forming a graphene layer on the surface of the substrate; providing a carbon nanotube film structure, the carbon nanotube film structure having a plurality of micropores covering the surface of the graphene layer to form a three-layer structure of a base-graphene layer-carbon nanotube film structure; removing the base-graphene layer a substrate in a three-layer structure of a carbon nanotube film structure to obtain a graphene layer-carbon nanotube film composite structure; and covering the graphene layer-carbon nanotube film composite structure with a carrier Nai 099122958 Form No. A0101 Page 26 of 37 0992040471-0 201203306 The carbon tube m-like structure is in direct contact with the carrier. The method for preparing a 电-electron micromirror according to claim 15, wherein the substrate is a metal substrate, an alloy substrate or a gold eye oxide oxide substrate. 7. The method for preparing a TEM micro-grid according to claim 15, wherein the forming of a three-layer structure of a base-graphite thin layer-respective carbon tube film structure further comprises using a volatile organic compound. Solvent treatment of the substrate _ graphene layer - the three-layer structure of the carbon nanotube film-like structure makes the nano-carbon tube film structure form a plurality of micropores, and the carbon nanotube film structure and the graphene layer are tight </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A chemical reaction with the substrate is performed to remove the substrate using an acid, city or salt solution. 19. The method of preparing a TEM soft grid according to claim 15, wherein the substrate is transferred to the graphite in a three-layer structure of the substrate-graphite thin layer-nanocarbon tube film-like structure. After the thin layer_nano carbon nanotube film composite structure, n 胄纟 includes irradiating the graphite thin layer-nano broken tube film composite structure with laser or ultraviolet light, or bombarding the graphene layer with the particles - a carbon nanotube film composite structure - a step of bonding the rare earth layer to the carbon nanotube film structure. 20 099122958 If the scope of the patent application is removed, the preparation method of the TEM micro-grid described in the item of the sputum is removed, the base of the structure, the three-layer junction of the graphite thin layer-nai carbon film structure, the step-by-step includes The graphene layer 'nanocarbon tube film composite structure post-nano carbon tube film composite, ^' nano carbon tube film-like structure is covered in the graphene layer to find the carbon tube film-like junction structure The surface of the graphite thin layer is formed on both sides with a sandwich structure of graphite crucible layer between the form numbers A0101. The method for preparing a TEM microgrid according to claim 15, wherein the graphene layer-carbon nanotube film composite structure covers a carrier Thereafter, the method further comprises treating the graphene layer-carbon nanotube film composite structure and the carrier with a volatile organic solvent, so that the graphene layer-carbon nanotube film composite structure and the carrier are tightly bonded. The method for preparing a TEM micro-gate according to claim 15, wherein the covering the graphene layer-nanocarbon tube film composite structure further comprises removing excess along the edge of the carrier The steps of the graphene layer-nanocarbon tube membrane composite structure. The method of preparing a TEM micro-gate according to claim 22, wherein the step of removing the excess graphene layer-carbon nanotube film composite structure along the edge of the carrier is focusing illumination with a laser beam And ablation of the graphene layer-nanocarbon tube film composite structure. The method for preparing a TEM micro-gate according to claim 15, wherein the method of covering the graphene layer-carbon nanotube film composite structure with a carrier comprises the steps of: providing a plurality of carriers, The plurality of carriers are spaced apart; the graphene layer-carbon nanotube film composite structure entirely covers the plurality of carriers; and the graphene layer-carbon nanotube film composite is disconnected from between two adjacent carriers structure. 099122958 Form No. A0101 Page 28 of 37 0992040471-0
TW99122958A 2010-07-13 2010-07-13 Transmission electron microscope grid and method for making same TWI413150B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99122958A TWI413150B (en) 2010-07-13 2010-07-13 Transmission electron microscope grid and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99122958A TWI413150B (en) 2010-07-13 2010-07-13 Transmission electron microscope grid and method for making same

Publications (2)

Publication Number Publication Date
TW201203306A true TW201203306A (en) 2012-01-16
TWI413150B TWI413150B (en) 2013-10-21

Family

ID=46756362

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99122958A TWI413150B (en) 2010-07-13 2010-07-13 Transmission electron microscope grid and method for making same

Country Status (1)

Country Link
TW (1) TWI413150B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452596B (en) * 2012-04-03 2014-09-11 Hon Hai Prec Ind Co Ltd Device for cutting grids
TWI714828B (en) * 2018-01-27 2021-01-01 鴻海精密工業股份有限公司 Method for manufacturing a transmission electron microscope micro-grid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003228092A1 (en) * 2002-06-05 2003-12-22 Quantomix Ltd. Methods for sem inspection of fluid containing samples
CN101276724B (en) * 2007-03-30 2011-06-22 北京富纳特创新科技有限公司 Transmission electron microscope micro grid and preparing method thereof
TWI362678B (en) * 2008-07-11 2012-04-21 Hon Hai Prec Ind Co Ltd Method for making transmission electron microscope grid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452596B (en) * 2012-04-03 2014-09-11 Hon Hai Prec Ind Co Ltd Device for cutting grids
TWI714828B (en) * 2018-01-27 2021-01-01 鴻海精密工業股份有限公司 Method for manufacturing a transmission electron microscope micro-grid

Also Published As

Publication number Publication date
TWI413150B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
US8623227B2 (en) Transmission electron microscope grid and method for making same
CN101964291B (en) Micro grid of transmission electron microscope and preparation method thereof
TWI362678B (en) Method for making transmission electron microscope grid
CN101964292B (en) Graphene sheet-carbon nanotube film composite structure and preparation method thereof
US8404070B2 (en) Carbon nanotube film composite structure, transmission electron microscope grid using the same, and method for making the same
CN101712468B (en) Carbon nanotube composite material and preparation method thereof
US9067791B2 (en) Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
US20110226960A1 (en) Carbon nanotube film composite structure, transmission electron microscope grid using the same, and method for making the same
TW200307574A (en) Method for assembling nano objects
TW201238892A (en) Graphene-carbon nanotube film structure
CN101837287A (en) Carbon nano-tube nano-particle composite material and preparation hereof
TWI573892B (en) A method for making a film of nanotue
TWI606008B (en) A film of nanotue
Zhou et al. Development of two-level porosity during glancing angle deposition
TWI411574B (en) Carbon nanotube composite material and method for making the same
TW201600454A (en) Method of making nanostructure
ai Hu et al. Template preparation of high-density, and large-area Ag nanowire array by acetaldehyde reduction
TW201137919A (en) Transmission electron microscope grid
TWI411572B (en) Transmission electron microscope grid and method for making same
TW201203306A (en) Transmission electron microscope grid and method for making same
TW201940419A (en) Method of transferring two-dimensional nanomaterials with carbon nanotube composite film
TWI714828B (en) Method for manufacturing a transmission electron microscope micro-grid
TW200842105A (en) Transmission electron microscope grid and method for making same
TWI417934B (en) Method for making transmission electron microscope grid
TWI438150B (en) Hydrophilic carbon nanotube composite structure