TW201202334A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
TW201202334A
TW201202334A TW100107568A TW100107568A TW201202334A TW 201202334 A TW201202334 A TW 201202334A TW 100107568 A TW100107568 A TW 100107568A TW 100107568 A TW100107568 A TW 100107568A TW 201202334 A TW201202334 A TW 201202334A
Authority
TW
Taiwan
Prior art keywords
resin composition
layer
resin
film
metal film
Prior art date
Application number
TW100107568A
Other languages
Chinese (zh)
Other versions
TWI564338B (en
Inventor
Shigeo Nakamura
Kazuhiko Tsurui
Genjin Mago
Original Assignee
Ajinomoto Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Kk filed Critical Ajinomoto Kk
Publication of TW201202334A publication Critical patent/TW201202334A/en
Application granted granted Critical
Publication of TWI564338B publication Critical patent/TWI564338B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09J161/14Modified phenol-aldehyde condensates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/107Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Disclosed is a resin composition with superior flexibility having superior laminating properties when used in the form of an adhesive film, and the coefficient of linear thermal expansion of an insulating layer obtained by curing this resin composition is low. Specifically disclosed is a resin composition containing two functional phenol resins that contain imide skeletons.

Description

201202334 六、發明說明: 【發明所屬之技術領域】 本發明係關於一含有特定苯酚樹脂之樹脂組成物。再 者,係關於一使用該樹脂組成物所成之接著薄膜、預浸體 、電路基板。又,關於一在樹脂組成物上使其含有特定的 無機塡充材之微細配線溝形成方法。再者,係關於使用其 之電路基板的製造方法。 【先前技術】 近年來,電子機器的小型化、高性能化不斷發展下, 多層印刷配線板爲了使電子零件的實裝密度向上提昇,導 體配線的微細化持續進展中。 對此,採取了各樣的手段。專利文獻1中,揭示有含 溶劑可溶性聚醯亞胺之樹脂組成物,且記載著藉由此組成 物所形成之絕緣層,可實現取得表面粗度、剝離強度、彈 性率、破斷強度、破斷延伸等平衡之樹脂物性。但是,其 性能並非有所滿足,就MIT耐折性方面,並無任何記載 。專利文獻2中,雖有關於使用聚醯亞胺薄膜之MIT耐 折性之記載,但在低線熱膨張率方面並無任何記載。專利 文獻3中,雖記有使用醯亞胺骨架樹脂之樹脂組成物,但 在MIT耐折性方面並無任何記載》 [先前技術文獻] [專利文獻] -5- 201202334 [專利文獻1]特開2〇〇7-224242號公報 [專利文獻2]特開2009-298065號公報 [專利文獻3]特開20 1 0- 1 8759號公報 【發明內容】 [發明所欲解決之課題] 本發明所欲解決之課題在於提供一種在接著薄膜使用 時的積層性上表現優異、使該樹脂組成物硬化所得之絕緣 層的線熱膨張率低、且在曲折性上表現優異之樹脂組成物 [解決課題之方法] 本發明者們,爲了解決上述課題而蓄意檢討之結果發 現,藉由含有特定苯酚樹脂之樹脂組成物,即可完成本發 明。意即,本發明係包含以下之內容者。 [1] —種樹脂組成物,其特徵係含有(A)含醯亞胺 骨架之2官能苯酚樹脂。 [2] 如上述[1]中記載之樹脂組成物,其中,(A)含 醯亞胺骨架之2官能苯酚樹脂的含量係對樹脂組成物中之 不揮發成分100質量%而言爲0.1〜30質量% » [3] 如上述[1]或[2]記載之樹脂組成物,其係進一步 含有(B)無機塡充材。 [4] 如上述[1]〜[3]中任一項記載之樹脂組成物,其 係進一步含有(C)環氧樹脂。 201202334 [5] 如上述[1]〜[4]中任一項記載之樹脂組成物,其 係用於絕緣層之樹脂組成物,而耐折次數爲50次以上。 [6] 如上述[1]〜[5]中任一項記載之樹脂組成物,其 係用於絕緣層之樹脂組成物,而線熱膨張率爲4〜40PPm 〇 [7] —種接著薄膜,其特徵係在支持薄膜上,有上述 [1 ]〜[6]中任一項記載之樹脂組成物予以層形成。 [8] —種預浸體,其特徵使係上述[1]〜[6]中任一項 記載之樹脂組成物含浸於由纖維所成之薄片狀纖維基材之 中〇 [9] —種電路基板,其特徵係藉由上述[1]〜[6]中任 一項記載之樹脂組成物的硬化物而形成有絕緣層。 [1〇] —種絕緣層之微細配線溝形成方法,其特徵係 使樹脂組成物中含有平均粒徑0.02〜5/zm之無機塡充材 〇 [11] 如上述[1〇]記載之絕緣層之微細配線溝形成方 法,其係由絕緣層之上部進行雷射照射。 [12] 如上述[10]〜[11]中任一項記載之絕緣層之微細 配線溝形成方法,其係於絕緣層上形成有金屬膜層。 [1 3]如上述[1 2]中記載之絕緣層之微細配線溝形成 方法,其中,金屬膜層之厚度係50〜5 OOnm。 [14] 如上述[12]〜[13]中任一項所記載之絕緣層之微 細配線溝形成方法,其中,金屬膜層係銅。 [15] —種溝型電路基板的製造方法,其係含有上述 201202334 [1 0]〜[1 4]中任一項記載之絕緣層之微細配線溝形成方法 〇 [16] 如上述[15]中記載之溝型電路基板的製造方法 ,其係進一步含有除膠渣步驟。 [17] 如上述[15]〜[16]中任一項所記載之溝型電路基 板的製造方法,其係進一步含有鍍敷步驟。 [18] 如上述[15]〜[17]中任一項記載之溝型電路基板 的製造方法,其係進一步含有去除銅層之步驟。 [發明之效果] 藉由本發明之含有具含醯亞胺骨架之2官能苯酚樹脂 之樹脂的樹脂組成物,係可提供一在接著薄膜使用時的積 層性上表現優異、使該樹脂組成物硬化所得之絕緣層的線 熱膨張率低、且在曲折性上表現優異之樹脂組成物。 【實施方式】 [實施發明之形態] 本發明係一樹脂組成物,其特徵係含有(A)含醯亞 胺骨架之2官能苯酚樹脂。 [(A)含醯亞胺骨架之2官能苯酚樹脂] 本發明中所使用之(A)含醯亞胺骨架之2官能苯酚 樹脂並無特別限定,但以一分子中具有2個苯酚性羥基與 醯亞胺骨架者爲佳。因一分子中苯酚性羥基僅存在2個, -8 - 201202334 樹脂組成物硬化後之絕緣層會有適度的交聯密度,而使耐 折性能與積層性能能同時發揮。例如,以下述一般式(j )、下述一般式(4)爲佳,下述一般式(2)、下述一般 式(5)更佳,下述一般式(3)、下述一般式(6)又更 佳,下述一般式(7)又再更佳。 [化1]201202334 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a resin composition containing a specific phenol resin. Further, it relates to a film, a prepreg, and a circuit board which are formed using the resin composition. Further, a method of forming a fine wiring groove containing a specific inorganic cerium material in a resin composition. Further, it relates to a method of manufacturing a circuit board using the same. [Prior Art] In recent years, the miniaturization and high performance of electronic devices have been progressing. In order to increase the mounting density of electronic components, the thickness of the conductor wiring has continued to progress. In this regard, various measures have been taken. Patent Document 1 discloses a resin composition containing a solvent-soluble polyimine, and describes an insulating layer formed by the composition, thereby achieving surface roughness, peel strength, elastic modulus, breaking strength, and Breaking the balance and other resin properties. However, its performance is not satisfactory, and there is no record on the MIT folding endurance. Patent Document 2 describes the MIT folding resistance using a polyimide film, but it does not describe any low-line thermal expansion rate. In Patent Document 3, a resin composition using a quinone imine skeleton resin is described, but there is no description on the MIT folding resistance. [Prior Art Document] [Patent Document] -5-201202334 [Patent Document 1] [Patent Document 2] JP-A-2009-298065 [Patent Document 3] Japanese Laid-Open Patent Publication No. Hei. The object of the present invention is to provide a resin composition which is excellent in the lamination property when the film is used, and which has a low thermal expansion coefficient of the insulating layer which is obtained by curing the resin composition, and which is excellent in tortuosity. In order to solve the above problems, the present inventors have deliberately reviewed the results, and found that the present invention can be completed by a resin composition containing a specific phenol resin. That is, the present invention includes the following contents. [1] A resin composition comprising (A) a bifunctional phenol resin containing a quinone imine skeleton. [2] The resin composition according to the above [1], wherein the content of the (A) quinone imine skeleton-containing bifunctional phenol resin is 0.1% by mass based on 100% by mass of the nonvolatile component in the resin composition. (3) The resin composition according to the above [1] or [2], further comprising (B) an inorganic cerium filler. [4] The resin composition according to any one of the above [1] to [3] further comprising (C) an epoxy resin. [0012] The resin composition according to any one of the above [1] to [4], which is used for the resin composition of the insulating layer, and has a folding resistance of 50 or more. [6] The resin composition according to any one of the above [1] to [5], which is used for a resin composition of an insulating layer, and has a linear thermal expansion ratio of 4 to 40 ppm. [7] The resin composition described in any one of the above [1] to [6] is formed on the support film. [8] A prepreg characterized in that the resin composition according to any one of the above [1] to [6] is impregnated into a sheet-like fibrous base material formed of fibers [9] The circuit board is characterized in that an insulating layer is formed by the cured product of the resin composition according to any one of the above [1] to [6]. [1] A method for forming a fine wiring groove of an insulating layer, characterized in that the resin composition contains an inorganic ruthenium filler having an average particle diameter of 0.02 to 5/zm [11] as described in the above [1〇] A method of forming a fine wiring trench of a layer by laser irradiation from an upper portion of the insulating layer. [12] The method for forming a fine wiring groove of an insulating layer according to any one of [10] to [11], wherein a metal film layer is formed on the insulating layer. [1] The method of forming a fine wiring groove of an insulating layer according to the above [1 2], wherein the thickness of the metal film layer is 50 to 500 nm. [14] The method of forming a fine wiring groove of an insulating layer according to any one of [12] to [13] wherein the metal film layer is copper. [15] A method of manufacturing a groove type circuit board, comprising the method of forming a fine wiring groove of the insulating layer according to any one of the above-mentioned items 201202334 to [14], [16] as described above [15] The method for producing a groove type circuit substrate described above further comprises a desmear step. [17] The method for producing a trench-type circuit substrate according to any one of [15] to [16], further comprising a plating step. [18] The method for producing a groove type circuit board according to any one of the above [15] to [17], further comprising the step of removing the copper layer. [Effect of the Invention] The resin composition containing the resin having a bifunctional phenol resin containing a quinone imine skeleton of the present invention can provide an excellent performance in laminating properties when the film is used, and harden the resin composition. The obtained insulating layer has a low linear thermal expansion ratio and a resin composition excellent in tortuosity. [Embodiment] The present invention is a resin composition characterized by containing (A) a bifunctional phenol resin containing a quinone imine skeleton. [(A) Bifunctional phenol resin containing a quinone imine skeleton] The (A) quinone imine skeleton-containing bifunctional phenol resin used in the present invention is not particularly limited, but has two phenolic hydroxyl groups in one molecule. It is better with the quinone imine skeleton. Since only one of the phenolic hydroxyl groups is present in one molecule, the insulating layer of the resin composition after hardening has a moderate crosslink density, and the folding resistance and the lamination performance can be simultaneously exerted. For example, the following general formula (j) and the following general formula (4) are preferred, and the following general formula (2) and the following general formula (5) are more preferable, and the following general formula (3) and the following general formula are used. (6) It is even better, and the following general formula (7) is even better. [Chemical 1]

(1) (式中’ R3爲氫原子、碳數1〜10之烴基或鹵素,複數 之r3可互爲相同或相異。又,鍵結於苯環上鄰接之碳原 子的2個R3可互相鍵結而形成含有碳數4〜20之芳香環 的環狀基。R4、R5、R6係各自獨立地爲氫原子、苯基或 碳數1〜1 0之烴基》) [化2](1) (wherein R3 is a hydrogen atom, a hydrocarbon group having a carbon number of 1 to 10 or a halogen, and the plural r3 may be the same or different from each other. Further, two R3 bonded to a carbon atom adjacent to the benzene ring may be Bonding to each other to form a cyclic group containing an aromatic ring having 4 to 20 carbon atoms. R4, R5 and R6 are each independently a hydrogen atom, a phenyl group or a hydrocarbon group having a carbon number of 1 to 10") [Chemical 2]

(式中,117爲氫原子、碳數1〜10之烴基或鹵素,複數 之R7可互爲相同或相異。又,鍵結於苯環上鄰接之碳原 子的2個R7可互相鍵結而形成含有碳數4〜20之芳香環 -9- 201202334 的環狀基。) [化3](wherein, 117 is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a halogen, and a plurality of R7 groups may be the same or different from each other. Further, 2 R7 bonded to a carbon atom adjacent to the benzene ring may be bonded to each other. And a cyclic group containing an aromatic ring-9-201202334 having a carbon number of 4 to 20 is formed.) [Chemical 3]

⑷ (式中,R3爲氫原子、碳數1〜10之烴基或鹵素,複數 之r3可互爲相同或相異。又,鍵結於苯環上鄰接之碳原 子的2個R3可互相鍵結而形成含有碳數4〜20之芳香環 的環狀基。R4、Rs、R6係各自獨立地爲氫原子、苯基或 碳數1〜10之烴基。2個R4、R5、R6可各自互爲相同或 相異。又,鍵結於苯環上鄰接之碳原子的R5、R6可互相 鍵結而形成含有碳數4〜20之芳香環的環狀基。Y爲由單 鍵、-S〇2-、-Ο-、-CO-、-C(CF3)2-、-S·、或碳數 1 〜2〇 之2價烴基所選出的基。) -10- 201202334 [化5](4) (wherein R3 is a hydrogen atom, a hydrocarbon group having a carbon number of 1 to 10 or a halogen, and the plural r3 may be the same or different from each other. Further, two R3 bonded to a carbon atom adjacent to the benzene ring may be bonded to each other. A cyclic group containing an aromatic ring having 4 to 20 carbon atoms is formed, and each of R4, Rs and R6 is independently a hydrogen atom, a phenyl group or a hydrocarbon group having 1 to 10 carbon atoms. Two R4, R5 and R6 may each be used. Further, R5 and R6 bonded to a carbon atom adjacent to the benzene ring may be bonded to each other to form a cyclic group having an aromatic ring having 4 to 20 carbon atoms. Y is a single bond, - A group selected from a divalent hydrocarbon group of S〇2-, -Ο-, -CO-, -C(CF3)2-, -S·, or a carbon number of 1 to 2〇.) -10- 201202334 [Chemical 5]

(式中,R7爲氫原子、碳數1〜丨〇之烴基或鹵素,複數 之R7可互爲相同或相異。又,鍵結於苯環上鄰接之碳原 子的2個R7可互相鍵結而形成含有碳數4〜20之芳香環 的環狀基。Y 爲由單鍵、_s〇2·、_〇·、_c〇 、_c(CF3)2_ 、-S-或碳數〗〜2〇之2價烴基選出的基。) [化6]Wherein R7 is a hydrogen atom, a hydrocarbon group having a carbon number of 1 to fluorene, or a halogen, and the plurality of R7 may be the same or different from each other. Further, two R7 bonded to a carbon atom adjacent to the benzene ring may be bonded to each other. Forming a cyclic group containing an aromatic ring having 4 to 20 carbon atoms. Y is a single bond, _s〇2·, _〇·, _c〇, _c(CF3)2_, -S- or carbon number 〜2 A base selected from a divalent hydrocarbon group of hydrazine.) [Chem. 6]

(6) (式中,Y 爲由單鍵、-S〇2-、-0-、-CO-、-C(CF3)2-、-S- 或碳數1〜20之2價烴基選出的基。) [化7](6) wherein Y is selected from a single bond, -S〇2-, -0-, -CO-, -C(CF3)2-, -S- or a divalent hydrocarbon group having 1 to 20 carbon atoms. Base.) [Chem. 7]

⑺ 本發明之樹脂組成物中,樹脂組成物中之(A )成分 的含量並無特別限定,但樹脂組成物中之(A)成分含量 -11- 201202334 的上限値若由使接著薄膜的積層性向上提昇之觀點來看, 係以對樹脂組成物中之不揮發成分100質量%而言爲30 質量%以下爲佳、20質量%以下更佳、15質量%以下又 更佳' 1 〇質量%以下又再更佳。而樹脂組成物中之(A ) 成分含量的下限値若由使自樹脂組成物所得之絕緣層的線 熱膨張率降低之觀點來看,係以對樹脂組成物中之不揮發 成分100質量%而言爲0.1質量%以上爲佳、1質量%以 上更佳、1.5質量%以上又更佳、3質量%以上又再更佳 、5質量%以上特別佳。 本發明之樹脂組成物中,(A)成分的重量平均分子 量並無特別限定,但(A)成分的重量平均分子量之上限 値,若由使接著薄膜之積層性向上提昇的觀點來看,係以 1 500以下爲佳、1 000以下更佳、750以下又更佳。另一 方面,(A)成分的重量平均分子量之下限値,若由防止 在樹脂組成物清漆中結晶化的觀點來看,係以2 0 0以上爲 佳、300以上更佳、400以上又更佳。本發明中的重量平 均分子量,係以膠體滲透層析(GPC )法(以聚苯乙烯換 算)所測定。GPC法之重量平均分子量具體而言,係使用 (股)島津製作所製LC-9A/RID-6A作爲測定裝置,管柱 方面是使用昭和電工(股)公司製Shodex K-800P/K-804L/K-804L,以氯仿等作爲移動相,在管柱溫度40°C進 行測定,利用標準聚苯乙烯之檢量線來算出。 本發明含有(A)成分之樹脂組成物的硬化物其耐折 次數係藉由後述之&lt;MIT耐折性的測定及評價 &gt; 中記載之 -12- 201202334 測定方法來掌握的。 本發明之樹脂組成物的硬化物其耐折次數的上限値係 以250次爲佳、300次更佳、350次又更佳、400次又再 更佳、5 00次又進而更佳、800次特別佳、1〇〇〇次極佳、 1 0000次又更極佳。本發明之樹脂組成物的硬化物其耐折 次數的下限値係以50次爲佳、100次更佳、150次又更佳 、170次又再更佳、190次又進而更佳、210次特別佳。 本發明含有(A)成分之樹脂組成物的硬化物其線熱 膨張率,係可藉由後述之 &lt; 玻璃轉移溫度(Tg)及線熱膨 張率的測定及評價&gt;中記載之評價方法來掌握。 本發明之樹脂組成物的硬化物其線熱膨張率的上限値 係以40ppm爲佳、39ppm更佳、38ppm又更佳。本發明之 樹脂組成物的硬化物其線熱膨張率的下限値係以36ppm 爲佳、35ppm更佳、34ppm又更佳、33ppm又再更佳、 30ppm又進而更佳、15ppm特別佳、4ppm極佳。 [(B)無機塡充材] 本發明之樹脂組成物中,爲了使得自該樹脂組成物的 絕緣層之熱膨張率進一步降低,係可使其含有無機塡充材 。無機塡充材方面,並無特別限制,但可舉出二氧化矽、 氧化鋁、硫酸鋇、滑石、黏土、雲母粉、氫氧化鋁、氫氧 化鎂、碳酸鈣、碳酸鎂、氧化鎂、氮化硼、硼酸鋁、鈦酸 鋇、鈦酸緦、鈦酸鈣、鈦酸鎂、鈦酸鉍、氧化鈦、錐酸鋇 、鉻酸鈣等,其中更以二氧化矽爲佳。此等之中,以無定 -13 - 201202334 形二氧化矽、溶融二氧化矽'結晶二氧化矽、合成二氧化 矽、粉碎二氧化矽、中空二氧化矽、球狀二氧化矽爲佳, 溶融二氧化矽、球狀二氧化矽更佳。此等可使用1種或組 合2種以上使用之》 無機塡充材的平均粒徑並無特別限定’但從使得自該 樹脂組成物的絕緣層之曲折性向上提昇的觀點來看’係可 對絕緣層形成微細配線,且以使雷射加工性向上提昇的觀 點來看,以5 y m以下爲佳、2.5 // m以下更佳、1 /z m以 下又更佳、〇.7#m以下又再更佳、0_5//m以下又進而更 佳、0.45 y m以下特別佳。又,無機塡充材的平均粒徑若 過小,則當樹脂組成物作爲樹脂清漆時,從避免因樹脂清 漆的黏度上昇而操作性降低之觀點,且使分散性向上提昇 之觀點來看,平均粒徑係以〇.〇2 // m以上者爲佳、0.0 5私m以上者更佳、Ο.ίμιη以上者又更佳、0.2//ra以上者 又再更佳。無機塡充材的平均粒徑係可藉由基於米氏( Mie )散射理論之雷射繞射•散射法來測定。具體而言, 係可藉由雷射.繞射式粒度分佈測定裝置,以體積基準製作 無機塡充材的粒度分佈,並將其中位數徑作爲平均粒徑來 進行測定。測定樣本較佳係可使用以超音波使無機塡充材 分散於水中者。雷射繞射式粒度分佈測定裝置方面,係可 使用(股)堀場製作所製LA-5 00等。 無機塡充材的添加量之上限値,爲了防止硬化物變脆 ,且由避免樹脂組成物的密著強度降低之觀點來看,當樹 脂組成物中之不揮發成分爲100質量%時,係以70質量 -14- 201202334 %以下爲佳、65質量%以下更佳、60質量%以下又更佳 、55質量%以下又再更佳、50質量%以下特別佳。另一 方面,無機塡充材的添加量之下限値若以絕緣層之熱膨張 率變低的觀點來看,當樹脂組成物中之不揮發成分爲100 質量%時,係以5質量%以上爲佳、1〇質量%以上更佳 、20質量%以上又更佳、30質量%以上又再更佳、35質 量%以上特別佳。 無機塡充材係以經矽烷系耦合劑、丙烯酸酯系矽烷耦 合劑、硫化物系矽烷耦合劑、乙烯基系矽烷耦合劑、毓基 矽烷系耦合劑、苯乙烯基系矽烷耦合劑、異氰酸酯系矽烷 耦合劑、有機矽氮化合物、環氧基矽烷耦合劑、胺基矽烷 耦合劑、脲基系矽烷耦合劑、鈦酸酯系耦合劑等之表面處 理劑進行表面處理而使其耐濕性、分散性向上提昇者爲佳 。此等可使用1種或組合2種以上使用之。表面處理劑方 面,可舉出3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧 基矽烷、3-胺基丙基二乙氧基甲基矽烷、N-苯基-3-胺基 丙基三甲氧基矽烷、N-甲基胺基丙基三甲氧基矽烷、N-2 (-胺基乙基)-3-胺基丙基三甲氧基矽烷、N-(2-胺基乙 基)-3-胺基丙基二甲氧基甲基矽烷等之胺基矽烷系耦合 劑;3-脲基丙基三乙氧基矽烷等之脲基系矽烷耦合劑:3-環氧丙基氧基丙基三甲氧基矽烷、3-環氧丙基氧基丙基三 乙氧基矽烷、3_環氧丙基氧基丙基甲基二乙氧基矽烷、3-環氧丙基氧基丙基(二甲氧基)甲基矽烷、環氧丙基丁基 三甲氧基矽烷、2-(3,4-環氧基環己基)乙基三甲氧基矽 -15- 201202334 烷等之環氧基矽烷系耦合劑;3 -毓基丙基三甲氧基砂院、 3 -锍基丙基三乙氧基矽烷、3 -毓基丙基甲基二甲氧基矽院 、11-巯基Η^ —基三甲氧基矽烷等之毓基矽烷系耦合劑; 甲基三甲氧基矽烷、十八烷基三甲氧基矽烷、苯基三甲氧 基砂院、甲基丙嫌醯氧基丙基三甲氧基砂院、咪哩砂院、 三嗪矽烷、t-丁基三甲氧基矽烷等之矽烷系耦合劑;乙烯 基三甲氧基矽烷、乙烯基三乙氧基矽烷、乙烯基甲基二乙 氧基矽烷等之乙烯基系矽烷耦合劑;P-苯乙烯基三甲氧基 矽烷等之苯乙烯基系矽烷耦合劑、3 -丙烯醯氧基丙基三甲 氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、3-甲基 丙烯醯氧基丙基二甲氧基矽烷、3-甲基丙烯醯氧基丙基三 乙氧基矽烷、3-甲基丙烯醯氧基丙基二乙氧基矽烷等之丙 烯酸龍系矽烷耦合劑;3-異氰酸酯丙基三甲氧基矽烷等之 異氛酸酯系矽烷耦合劑;雙(三乙氧基矽基丙基)二硫化 物、雙(三乙氧基矽基丙基)四硫化物等之硫化物系矽烷 耦合劑:六甲基二矽氮、1,3-二乙烯基-1,1,3,3-四甲基二 矽氮、六苯基二矽氮、三矽氮、環三矽氮、2,2,4,4,6,6·六 甲基環三矽氮、八甲基環四矽氮、六丁基二矽氮、六辛基 二矽氮、1,3-二乙基四甲基二矽氮、1,3-二- η-辛基四甲基 二矽氮、1,3-二苯基四甲基二矽氮、1,3_二甲基四苯基二 矽氮、1,3-二乙基四甲基二矽氮、丨,1,3,3·四苯基-1,3-二 甲基二矽氮、1,3-二丙基四甲基二矽氮、六甲基環三矽氮 、二甲基胺基三甲基矽氮、四甲基二矽氮等之有機矽氮化 合物;四-n -丁基鈦酸酯二聚物、鈦小丙氧基辛乙醇酸鹽 -16- 201202334 乙 辛 鈦 、 酯 酸 鈦 基 三駄} C }酸 雙銨磷 基酸焦 氧乳基 丙{辛 異雙二 二基C 、 羥雙 鹽二、 酸、醋 ^欽酸 酸鈦 乳稀 雙乙 基 &gt; 羥酸 二磷 ' 焦 鈦基 ) 辛 -T酸一一 -η胺 C 四醇雙 、 乙 、 氧基醋酸酯鈦酸酯、三-η-丁氧基單硬脂酸鈦、四-η-丁基 鈦酸酯、四(2 -乙基己基)鈦酸酯、四異丙基雙(二辛基 亞磷酸酯)鈦酸酯、四辛基二(雙十三基亞磷酸酯)鈦酸 酯、四(2,2-二烯丙基氧基甲基-1-丁基)二(雙十三基) 亞磷酸酯鈦酸酯、異丙基三辛醯基鈦酸酯、異丙基三異苯 丙基苯基鈦酸酯、異丙基三異硬脂醯基鈦酸酯、異丙基異 硬脂醯基二丙嫌基鈦酸酯、異丙基二甲基丙烯基異硬脂醯 基鈦酸酯、異丙基三(二辛基磷酸)鈦酸酯、異丙基參_ 十二基苯磺醯基鈦酸酯、異丙基參(二辛基焦磷酸)鈦酸 酯、異丙基三(Ν-醯胺乙基•胺基乙基)鈦酸酯等之鈦酸 酯系耦合劑等。 [(C )環氧樹脂] 本發明之樹脂組成物中,爲了使得自該樹脂組成物的 絕緣層之耐熱性、絕緣信賴性 '曲折性、與金屬膜之密著 性向上提昇,係可使其含有環氧樹脂。環氧樹脂方面,並 無特別限制’但可舉出雙酚Α型環氧樹脂、聯苯基型環 氧樹脂、萘酚型環氧樹脂、萘型環氧樹脂、雙酚F型環氧 樹脂、含磷環氧樹脂、雙酚S型環氧樹脂、脂環式環氧樹 脂、脂肪族鏈狀環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲 酚酚醛清漆型環氧樹脂、雙酚A酚醛清漆型環氧樹脂、 -17- 201202334 具有丁二烯構造之環氧樹脂、環己烷二甲醇型環氧樹脂、 環氧丙基胺型環氧樹脂、雙酚的二環氧丙基醚化物、萘二 醇的二環氧丙基醚化物、苯酚類的環氧丙基醚化物、及醇 類的二環氧丙基醚化物以及此等之環氧樹脂的烷基取代物 、鹵化物及氫化物等。此等可使用1種或組合2種以上使 用之。 環氧樹脂方面,在此等之中若由耐熱性、絕緣信賴性 、曲折性、與金屬膜之密著性之觀點來看,係以雙酚A 型環氧樹脂、萘酚型環氧樹脂、萘型環氧樹脂、聯苯基型 環氧樹脂、具有丁二烯構造之環氧樹脂爲佳。具體而言, 可舉出有液狀雙酚A型環氧樹脂(日本環氧樹脂(股) 製「Epicoat 828EL」)、萘型2官能環氧樹脂(大曰本 油墨化學工業(股)製「HP4032」、「HP4032D〕)、萘 型4官能環氧樹脂(大日本油墨化學工業(股)製「 HP4700」)、萘酚型環氧樹脂(東都化成(股)製「 ESN-47 5V」)、具有丁二烯構造之環氧樹脂(DAICEL化 學工業(股)製「PB-3600」)、具有聯苯基構造之環氧 樹脂(日本化藥(股)製「NC3000H」、「NC3000L」、 日本環氧樹脂(股)製「yx4000」)等。 本發明之樹脂組成物中,樹脂組成物中之(C )成分 的含量並無特別限定,但樹脂組成物中之(C )成分含量 的上限値,若從防止薄膜可撓性減少之觀點來看,對樹脂 組成物中之不揮發成分1〇〇質量%而言爲60質量%爲佳 、50質量%更佳、40質量%又更佳。另一方面,樹脂組 -18- 201202334 成物中之(C)成分含量的下限値,若從使絕緣層之玻璃 轉移溫度向上提昇,且使線熱膨張率降低之觀點來看,對 樹脂組成物中之不揮發成分1〇〇質量%而言爲5質量%爲 佳、10質量%更佳、15質量%又更佳。 [(D)硬化劑((A)成分除外)] 本發明之樹脂組成物中,爲使得自該樹脂組成物的絕 緣層之耐熱性向上提昇、使絕緣信賴性向上提昇、使耗散 因子降低等,係可使其含有(D)成分。(D)成分方面 ,若爲具有硬化環氧樹脂之機能者,則無特別限定,具體 而言,可舉出苯酚系硬化劑、萘酚系硬化劑、活性酯系硬 化劑、苯并噁嗪系硬化劑、氰酸酯系硬化劑等。此等可使 用1種或組合2種以上使用之。 本發明之樹脂組成物中,樹脂組成物中之(D)成分 的含量並無特別限定,但樹脂組成物中之(D)成分含量 的上限値,若從防止薄膜可撓性減少之觀點來看,對樹脂 組成物中之不揮發成分1〇〇質量%而言爲50質量%爲佳 、45質量%更佳、40質量%又更佳。另一方面,樹脂組 成物中之(D)成分含量的下限値,若從使絕緣層之玻璃 轉移溫度向上提昇之觀點來看,對樹脂組成物中之不揮發 成分100質量%而言爲5質量%爲佳、1〇質量%更佳、 15質量%又更佳。 本發明之樹脂組成物中之(C)環氧樹脂的環氧基數 與(A)成分及(D)成分的活性氫合計基數之比係以(1 -19- 201202334 :0.2)〜(1: 2)爲佳、(1: 0.3)〜(1: 1_5)更佳、 (1: 0.4)〜(1: 1)又更佳。當量比若在上述範圍外的 話,硬化物的機械強度或耐水性會有降低的傾向。 本發明之樹脂組成物可藉由使其含有苯酚系硬化劑' 萘酚系硬化劑,而使耐熱性、絕緣信賴性向上提昇。苯酚 系硬化劑、萘酚系硬化劑方面,若從耐熱性、耐水性之觀 點來看,係以具有酚醛清漆構造之苯酚系硬化劑或具有酚 醛清漆構造之萘酚系硬化劑爲佳。市售品方面,可舉出 MEH-7700、MEH-78 1 Ο、MEH-785 1 (明和化成公司製) ' NHN ' CBN、GPH (日本化藥(股)製)、SN170、 SN180 、 SN190 、 SN475 、 SN485 、 SN495 、 SN375 、 SN395 (東都化成(股)製)、LA7052、LA7054 (大日本油墨 化學工業(股)製)等。 本發明之樹脂組成物係因含有活性酯系硬化劑而得以 使耗散因子降低。本發明中所使用之活性酯系硬化劑係指 具有苯酚酯化合物、硫酚酯化合物、N-羥基胺酯化合物、 雜環羥基化合物的酯化化合物等之反應活性高的酯基,且 具有環氧樹脂的硬化作用者。活性酯系硬化劑並無特別限 制,但以1分子中具有2個以上活性酯基之化合物爲佳, 又以由具以多元羧酸之化合物與具有苯酚性羥基之芳香族 化合物所得之1分子中具有2個以上活性酯基之芳香族化 合物更佳,而由1分子中至少具有2個以上羧酸之化合物 與具有苯酚性羥基之芳香族化合物所得之芳香族化合物且 在該芳香族化合物的分子中具有2個以上活性酯基之芳香 -20- 201202334 族化合物又更佳。又,可爲直鏈狀或多分支狀。又, 1分子中至少具有2個以上羧酸之化合物若爲含有脂 鏈之化合物.的話,可使與環氧樹脂相溶性變高,且若 有芳香族環之化合物的話,則可使耐熱性變高。特別 耐熱性等之觀點來看,係以由羧酸化合物與苯酚化合 萘酚化合物所得之活性酯系硬化劑爲佳。羧酸化合物 ,具體而言,可舉出有安息香酸、醋酸、琥珀酸、馬 、伊康酸、鄰苯二甲酸、間苯二甲酸、對苯二甲酸、 石酸等。其中,從耐熱性的觀點來看,係以琥珀酸、 酸、伊康酸、鄰苯二甲酸、間苯二甲酸、對苯二甲酸 ,間苯二甲酸、對苯二甲酸更佳。苯酚化合物或萘酚 物方面,具體而言,可舉出對苯二酚、間苯二酚、雙 、雙酚F、雙酚S、酸式酚酞、甲基化雙酚A、甲基 酚F、甲基化雙酚S、苯酚、〇-甲酚、m-甲酚、p-甲 兒茶酚、萘酚、々·萘酚、1,5-二羥基萘、1,6-二 萘、2,6-二羥基萘、二羥基二苯基酮、三羥基二苯基 四羥基二苯基酮、藤黃酸、苯三醇、二環戊二烯基二 、苯酚酚醛清漆等。其中若從耐熱性、溶解性之觀點 ,係以雙酚Α、雙酚F、雙酚S、甲基化雙酚Α、甲 雙酚F、甲基化雙酚S、兒茶酚、1,5-二羥基萘' 1,6-基萘、2,6-二羥基萘、二羥基二苯基酮、三羥基二苯 、四羥基二苯基酮、藤黃酸、苯三醇、二環戊二烯基 酚、苯酚酚醛清漆爲佳,以兒茶酚、1,5-二羥基萘、 二羥基萘、2,6-二羥基萘、二羥基二苯基酮、三羥基 若爲 肪族 、 爲具 是從 物或 方面 來酸 焦蜜 馬來 爲佳 化合 酚A 化雙 酚、 羥基 酮、 苯酚 來看 基化 二羥 基酮 二苯 1,6- 二苯 •21 - 201202334 基酮、四羥基二苯基酮、藤黃酸、苯三醇、二環戊二烯基 二苯酚、苯酚酚醛清漆更佳,且以1,5-二羥基萘、1,6-二 羥基萘、2,6-二羥基萘、二羥基二苯基酮、三羥基二苯基 酮、四羥基二苯基酮、二環戊二烯基二苯酚、苯酚酚醛清 漆又更佳,二羥基二苯基酮、三羥基二苯基酮、四羥基二 苯基酮、二環戊二烯基二苯酚、苯酚酚醛清漆又再更佳, 而二環戊二烯基二苯酚、苯酚酚醛清漆又進而更佳,二環 戊二烯基二苯酚特別佳,此等可使用1種或組合2種以上 使用之。活性酯系硬化劑之製造方法並無特別限制,可藉 由公知的方法製造,但具體而言,可藉由羧酸化合物與羥 基化合物之縮合反應而得。活性酯系硬化劑方面,可使用 特開2004-277460號公報中記載之活性酯系硬化劑,亦可 使用市售者。 市售的活性酯系硬化劑方面,係以含有二環戊二烯基 二苯酚構造者、苯酚酚醛清漆之乙醯化物、苯酚酚醛清漆 之苯甲醯基化物等爲佳,其中以含有二環戊二烯基二苯酚 構造者更佳。具體而言,可舉出EXB9460S-65T (DIC ( 股)製、活性基當量約223 ) .、DC8 08 (日本環氧樹脂( 股)製、活性基當量約149 ) 、YLH 1 026 (日本環氧樹脂 (股)製、活性基當量約200 ) 、YLH 1 03 0 (日本環氧樹 脂(股)製、活性基當量約201) 、YLH 1048 (日本環氧 樹脂(股)製、活性基當量約 M5 )等,其中以 EXB9460S由清漆的保存安定性、硬化物的熱膨張率之觀 點來看爲佳。 -22- 201202334 本發明之樹脂組成物係因含有苯并噁嗪系硬化劑而得 以使絕緣層之玻璃轉移溫度上昇。苯并噁嗪系硬化劑方面 ,並無特別限定,但具體而言,可舉出HFB2006M (昭和 高分子(股))、P-d、F-a(四國化成工業(股)製)等 〇 本發明之樹脂組成物係因含有氰酸酯系硬化劑,而得 以使耗散因子降低。氰酸酯系硬化劑方面,並無特別限定 ,可舉出酚醛清漆型(苯酚酚醛清漆型、烷基苯酚酚醛清 漆型等)氰酸酯樹脂、二環戊二烯型氰酸酯樹脂、雙酚型 (雙酚A型、雙酚F型、雙酚S型等)氰酸酯樹脂及此 等之一部份經三曝化所成之預聚合物等》此等可單獨使用 ,亦可組合2種以上使用》氰酸酯系硬化劑的重量平均分 子量並無特別限定,但較佳爲500〜4500、更佳爲600〜 3000 ° 氰酸酯系硬化劑之具體例方面,可舉例如雙酚A二 氰酸酯、聚苯酚氰酸酯(寡聚(3-伸甲基-1,5-伸苯基氰酸 酯)、4,4’-伸甲基雙(2,6-二甲基苯基氰酸酯)、4,4’-亞 乙基二苯基二氰酸酯、六氟雙酚A二氰酸酯、2,2-雙(4-氰酸酯)苯基丙烷、1,1-雙(4-氰酸酯苯基甲烷)、雙( 4-氰酸酯-3,5-二甲基苯基)甲烷、1,3-雙(4-氰酸酯苯 基-1-(甲基亞乙基))苯、雙(4-氰酸酯苯基)硫醚、 雙(4-氰酸酯苯基)醚等之2官能氰酸酯樹脂;由苯酚酚 醛清漆、甲酚酚醛清漆、含有二環戊二烯構造之苯酚樹脂 等所衍生之多官能氰酸酯樹脂;此等氰酸酯樹脂之一部份 -23- 201202334 經三嗪化所成的預聚合物等。此等可使用1種或組 以上使用之。 市售之氰酸酯樹脂方面,可舉出下式(8)所 酚酚醛清漆型多官能氰酸酯樹脂(Lonza Japan ( 、PT30、氰酸酯當量124)、下式(9)所示之雙固 氰酸酯的一部份或全部經三嗪化而成三聚物之預聚 Lonza Japan (股)製、ΒΑ230、氰酸酯當量 23 2 ) (10)所示之含有二環戊二烯構造之氰酸酯樹脂 Japan (股)製、DT-4000、DT-7000 )等。 合2種 示之苯 股)製 } Α 二 合物( 、下式 Lonza [化8](7) In the resin composition of the present invention, the content of the component (A) in the resin composition is not particularly limited, but the upper limit of the content of the component (A) in the resin composition is -11 to 201202334, if the film is laminated From the viewpoint of the improvement of the non-volatile content in the resin composition, it is preferably 30% by mass or less, more preferably 20% by mass or less, more preferably 15% by mass or less, and more preferably 1 〇 by mass. % is better and below. The lower limit of the content of the component (A) in the resin composition is 100% by mass based on the non-volatile content in the resin composition, from the viewpoint of lowering the linear thermal expansion ratio of the insulating layer obtained from the resin composition. In particular, it is preferably 0.1% by mass or more, more preferably 1% by mass or more, more preferably 1.5% by mass or more, still more preferably 3% by mass or more, still more preferably 5% by mass or more. In the resin composition of the present invention, the weight average molecular weight of the component (A) is not particularly limited, but the upper limit of the weight average molecular weight of the component (A) is improved from the viewpoint of improving the buildup property of the film. It is preferably 1 500 or less, more preferably 1 000 or less, and even more preferably 750 or less. On the other hand, the lower limit 重量 of the weight average molecular weight of the component (A) is preferably 200% or more, more preferably 300 or more, and 400 or more, from the viewpoint of preventing crystallization in the resin composition varnish. good. The weight average molecular weight in the present invention is determined by a colloidal permeation chromatography (GPC) method (converted by polystyrene). Specifically, the weight average molecular weight of the GPC method is LC-9A/RID-6A manufactured by Shimadzu Corporation as a measuring device, and the pipe column is Shodex K-800P/K-804L manufactured by Showa Denko Co., Ltd. K-804L was measured by using chloroform or the like as a mobile phase at a column temperature of 40 ° C and using a calibration curve of standard polystyrene. The number of times of folding of the cured product of the resin composition containing the component (A) of the present invention is grasped by the measurement method of -12-201202334 described in the measurement & evaluation of &lt;MIT folding resistance, which will be described later. The upper limit of the number of folding resistance of the cured product of the resin composition of the present invention is preferably 250 times, more preferably 300 times, more preferably 350 times, more preferably 400 times, more preferably 500 times, and even more preferably 800. It was especially good, 1 time was excellent, and 1 000 times was even better. The lower limit of the number of folding resistance of the cured product of the resin composition of the present invention is preferably 50 times, more preferably 100 times, more preferably 150 times, more preferably 170 times, more preferably 190 times, and even more preferably 210 times. Especially good. In the present invention, the linear thermal expansion ratio of the cured product of the resin composition containing the component (A) can be determined by the following: <Measurement and evaluation of glass transition temperature (Tg) and linear thermal expansion rate> Come to master. The cured product of the resin composition of the present invention has an upper limit of the linear thermal expansion ratio of 40 ppm, more preferably 39 ppm, and still more preferably 38 ppm. The lower limit of the linear thermal expansion rate of the cured product of the resin composition of the present invention is preferably 36 ppm, more preferably 35 ppm, more preferably 34 ppm, more preferably 33 ppm, still more preferably 30 ppm, and even more preferably 15 ppm. good. [(B) Inorganic enamel filler] The resin composition of the present invention may contain an inorganic ruthenium material in order to further reduce the thermal expansion ratio of the insulating layer from the resin composition. The inorganic cerium filling material is not particularly limited, but examples thereof include cerium oxide, aluminum oxide, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitrogen. Boron, aluminum borate, barium titanate, barium titanate, calcium titanate, magnesium titanate, barium titanate, titanium oxide, barium titanate, calcium chromate, etc., of which more preferably cerium oxide. Among these, it is preferable to form cerium oxide, cerium dioxide, crystalline cerium oxide, synthetic cerium oxide, cerium cerium dioxide, hollow cerium oxide, and spherical cerium oxide. It is more preferable to melt cerium oxide and spherical cerium oxide. The average particle diameter of the inorganic ruthenium material may be one or a combination of two or more types, but the average particle diameter of the inorganic ruthenium material is not particularly limited, but from the viewpoint of increasing the tortuosity of the insulating layer from the resin composition. The fine wiring is formed on the insulating layer, and it is preferably 5 μm or less, more preferably 2.5 // m or less, more preferably 1 /zm or less, or less than 77#m from the viewpoint of improving the laser workability. It is even better, and it is more preferably 0_5//m or less and more preferably 0.45 ym or less. In addition, when the average particle diameter of the inorganic cerium material is too small, when the resin composition is used as a resin varnish, the average is improved from the viewpoint of avoiding an increase in the operability of the resin varnish and an increase in the dispersibility. The particle size is preferably 〇.〇2 // m or more, 0.05 private m or more is better, Ο. ίμιη is better, and 0.2//ra or more is even better. The average particle size of the inorganic ruthenium can be determined by a laser diffraction/scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic cerium material can be produced on a volume basis by a laser diffraction type particle size distribution measuring apparatus, and the median diameter can be measured as an average particle diameter. It is preferable to use a sample in which the inorganic cerium is dispersed in water by ultrasonic waves. For the laser diffraction type particle size distribution measuring apparatus, it is possible to use LA-5 00 manufactured by the company. The upper limit of the amount of the inorganic cerium filling material is 100, in order to prevent the hardened material from becoming brittle, and the non-volatile content in the resin composition is 100% by mass, from the viewpoint of avoiding a decrease in the adhesion strength of the resin composition. It is preferably 70 mass-14 to 201202334% or less, more preferably 65 mass% or less, more preferably 60 mass% or less, more preferably 55 mass% or less, still more preferably 50 mass% or less. On the other hand, the lower limit of the amount of the inorganic cerium filling material is 5% by mass or more when the non-volatile content in the resin composition is 100% by mass, from the viewpoint that the thermal expansion ratio of the insulating layer is low. Preferably, it is more preferably 1% by mass or more, more preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 35% by mass or more. The inorganic cerium filling material is a decane-based coupling agent, an acrylate-based decane coupling agent, a sulfide-based decane coupling agent, a vinyl decane coupling agent, a mercapto decane coupling agent, a styryl decane coupling agent, and an isocyanate system. A surface treatment agent such as a decane coupling agent, an organic argon nitrogen compound, an epoxy decane coupling agent, an amino decane coupling agent, a urea-based decane coupling agent, or a titanate coupling agent is surface-treated to have moisture resistance, It is better to increase the dispersion. These may be used alone or in combination of two or more. Examples of the surface treatment agent include 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 3-aminopropyldiethoxymethyldecane, and N-phenyl- 3-aminopropyltrimethoxydecane, N-methylaminopropyltrimethoxydecane, N-2 (-aminoethyl)-3-aminopropyltrimethoxydecane, N-(2 -Amino decane-based coupling agent such as -aminoethyl)-3-aminopropyldimethoxymethyl decane; urea-based decane coupling agent such as 3-ureidopropyltriethoxydecane: 3 - glycidoxypropyltrimethoxydecane, 3-epoxypropyloxypropyltriethoxydecane, 3-epoxypropyloxypropylmethyldiethoxydecane, 3- Epoxypropyloxypropyl (dimethoxy)methyl decane, propylene propyl trimethoxy decane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxy fluorene-15 - 201202334 Epoxy decane coupling agent such as alkane; 3-mercaptopropyltrimethoxy sand, 3-mercaptopropyltriethoxydecane, 3-mercaptopropylmethyldimethoxyindole a decyl decane coupling agent such as 11-mercaptopurine-based trimethoxy decane; methyl trimethyl Pyridin, octadecyltrimethoxydecane, phenyltrimethoxy sand, methyl propyl decyloxypropyl trimethoxy sand, milazonese, triazine decane, t-butyltrimethoxy a decane-based coupling agent such as a decane or the like; a vinyl decane coupling agent such as vinyltrimethoxydecane, vinyltriethoxydecane or vinylmethyldiethoxydecane; P-styryltrimethoxy Styryl decane coupling agent such as decane, 3-propenyloxypropyltrimethoxydecane, 3-methylpropenyloxypropyltrimethoxydecane, 3-methylpropenyloxypropyl Acrylic decyl olefin coupling agent such as methoxy decane, 3-methacryloxypropyl triethoxy decane, 3-methyl propylene oxypropyl diethoxy decane; 3-isocyanate propyl group An isomeric acid ester decane coupling agent such as trimethoxy decane; a sulfide decane such as bis(triethoxymethyl propyl) disulfide or bis(triethoxymethyl propyl) tetrasulfide; Coupling agent: hexamethyldiazepine nitrogen, 1,3-divinyl-1,1,3,3-tetramethyldiazoxide, hexaphenyldifluorene, Niobium nitrogen, cyclotriazole nitrogen, 2,2,4,4,6,6·hexamethylcyclotriazide nitrogen, octamethylcyclotetrazolium nitrogen, hexabutyldiazoxide, hexaoctyldiazoxide, 1,3-Diethyltetramethyldiazide nitrogen, 1,3-di-η-octyltetramethyldiazide nitrogen, 1,3-diphenyltetramethyldiamine nitrogen, 1,3_two Methyl tetraphenyl diazide nitrogen, 1,3-diethyltetramethyl diazide nitrogen, hydrazine, 1,3,3·tetraphenyl-1,3-dimethyl diazide nitrogen, 1,3- Organic germanium nitrogen compound such as dipropyltetramethyldiazide nitrogen, hexamethylcyclotriazide nitrogen, dimethylaminotrimethylsulfonium nitrogen, tetramethyldiazoxide or the like; tetra-n-butyltitanate Ester Dimer, Titanium Small Propoxyoctyl Glycolate-16- 201202334 Ethyl Titanium, Titanate Tribasin] C } Acid Diammonium Phosphate Catalyzed C-propyl {Isobi-bis-diyl C , hydroxy double salt II, acid, vinegar, titanium acid dilute diethyl ether &gt; hydroxy acid diphosphate 'pyro titanium base · octyl-T acid one-n-amine C tetraol bis, ethyl ethoxyacetate Titanate, titanium tris-butoxybutyric monostearate, tetra-n-butyl titanate, tetrakis(2-ethylhexyl) titanate, tetraisopropylbis(dioctylphosphite) ester Titanate, tetraoctyldi(ditridecylphosphite) titanate, tetrakis(2,2-diallyloxymethyl-1-butyl)di(bistridecyl) Phosphate titanate, isopropyl trioctyl decyl titanate, isopropyl triisopropyl phenyl titanate, isopropyl triisostearate titanate, isopropyl isostearyl sulfonate Dipropylene sulphate, isopropyl dimethyl propylene isostearyl phthalate, isopropyl tris(dioctylphosphonate) titanate, isopropyl succinyl sulfonate A titanate coupling agent such as a titanate, an isopropyl hydrazide (dioctylpyrophosphate) titanate or an isopropyl tris(fluorene-nonylaminoethylaminoethyl titanate). [(C) Epoxy Resin] In the resin composition of the present invention, in order to improve the heat resistance of the insulating layer of the resin composition, the toughness of the insulating property, and the adhesion of the metal film, It contains an epoxy resin. There is no particular limitation on the epoxy resin, but bisphenolphthalein type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, bisphenol F type epoxy resin are mentioned. , phosphorus-containing epoxy resin, bisphenol S-type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A Novolak type epoxy resin, -17- 201202334 Epoxy resin with butadiene structure, cyclohexane dimethanol type epoxy resin, epoxy propyl amine type epoxy resin, bisphenol diglycidyl ether a diepoxypropyl etherate of naphthalenediol, a epoxidized propyl ether of a phenol, a diepoxypropyl etherate of an alcohol, and an alkyl substituent or halide of the epoxy resin. And hydrides and the like. These may be used alone or in combination of two or more. In terms of epoxy resin, bisphenol A type epoxy resin and naphthol type epoxy resin are used in view of heat resistance, insulation reliability, tortuosity, and adhesion to a metal film. A naphthalene type epoxy resin, a biphenyl type epoxy resin, or an epoxy resin having a butadiene structure is preferred. Specifically, a liquid bisphenol A type epoxy resin ("Epicoat 828EL" manufactured by Nippon Epoxy Co., Ltd.) or a naphthalene type bifunctional epoxy resin (manufactured by Otsuka Ink Chemical Industry Co., Ltd.) "HP4032", "HP4032D]), naphthalene type 4-functional epoxy resin ("Higatsu Chemical Co., Ltd." "HP4700"), and naphthol type epoxy resin (Edo-Chemical Co., Ltd. "ESN-47 5V" ), epoxy resin having a butadiene structure ("PB-3600" manufactured by DAICEL Chemical Industry Co., Ltd.), epoxy resin having a biphenyl structure ("NC3000H" and "NC3000L" manufactured by Nippon Kayaku Co., Ltd. , Japan's epoxy resin (shares) "yx4000"). In the resin composition of the present invention, the content of the component (C) in the resin composition is not particularly limited, but the upper limit 含量 of the content of the component (C) in the resin composition is from the viewpoint of preventing film flexibility from being reduced. It is preferable that 60% by mass of the nonvolatile matter in the resin composition is 60% by mass, more preferably 50% by mass, and still more preferably 40% by mass. On the other hand, the lower limit ( of the content of the component (C) in the resin group -18-201202334 is from the viewpoint of increasing the glass transition temperature of the insulating layer and lowering the thermal expansion rate of the wire. The nonvolatile content in the product is preferably 5% by mass, more preferably 10% by mass, even more preferably 15% by mass. [(D) Hardener (excluding component (A))] The resin composition of the present invention is such that the heat resistance of the insulating layer from the resin composition is increased upward, the insulation reliability is improved, and the dissipation factor is lowered. Etc., it can be made to contain the component (D). In the case of the component (D), the function of the epoxy resin is not particularly limited, and specific examples thereof include a phenol-based curing agent, a naphthol-based curing agent, an active ester-based curing agent, and a benzoxazine. A curing agent, a cyanate-based curing agent, and the like. These may be used alone or in combination of two or more. In the resin composition of the present invention, the content of the component (D) in the resin composition is not particularly limited, but the upper limit 含量 of the content of the component (D) in the resin composition is from the viewpoint of preventing film flexibility from being reduced. It is preferable that the non-volatile content of the resin composition is 50% by mass, more preferably 45% by mass, and even more preferably 40% by mass. On the other hand, the lower limit 含量 of the content of the component (D) in the resin composition is 5 in terms of 100% by mass of the nonvolatile component in the resin composition from the viewpoint of increasing the glass transition temperature of the insulating layer upward. The mass % is better, 1 〇 mass% is better, and 15 mass% is better. The ratio of the number of epoxy groups of the epoxy resin (C) to the total number of active hydrogen groups of the component (A) and the component (D) in the resin composition of the present invention is (1 -19 - 201202334 : 0.2) to (1: 2) It is better, (1: 0.3) ~ (1: 1_5) is better, (1: 0.4) ~ (1: 1) is better. If the equivalent ratio is outside the above range, the mechanical strength or water resistance of the cured product tends to decrease. The resin composition of the present invention can improve the heat resistance and the insulation reliability by including a phenol-based curing agent 'naphthol-based curing agent. In the case of the phenol-based curing agent and the naphthol-based curing agent, a phenol-based curing agent having a novolac structure or a naphthol-based curing agent having a novolac structure is preferred from the viewpoint of heat resistance and water resistance. For the commercial products, MEH-7700, MEH-78 1 Ο, MEH-785 1 (made by Minghe Chemical Co., Ltd.) 'NHN ' CBN, GPH (Nippon Chemical Co., Ltd.), SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 (manufactured by Tohto Kasei Co., Ltd.), LA7052, LA7054 (manufactured by Dainippon Ink Chemical Industry Co., Ltd.). The resin composition of the present invention can reduce the dissipation factor by containing an active ester-based curing agent. The active ester-based curing agent used in the present invention refers to an ester group having a high reactivity such as a phenol ester compound, a thiophenolate compound, an N-hydroxyamine ester compound, or an esterified compound of a heterocyclic hydroxy compound, and has a ring. The hardening effect of oxygen resin. The active ester-based curing agent is not particularly limited, but a compound having two or more active ester groups in one molecule is preferable, and one molecule obtained from a compound having a polyvalent carboxylic acid and an aromatic compound having a phenolic hydroxyl group is preferable. An aromatic compound having two or more active ester groups, more preferably an aromatic compound obtained from a compound having at least two or more carboxylic acids in one molecule and an aromatic compound having a phenolic hydroxyl group, and in the aromatic compound The aromatic-20-201202334 family of compounds having more than two active ester groups in the molecule is more preferred. Further, it may be linear or multi-branched. In addition, when a compound having at least two or more carboxylic acids in one molecule is a compound containing an aliphatic chain, compatibility with an epoxy resin can be increased, and if a compound having an aromatic ring is used, heat resistance can be obtained. Becomes high. Particularly, from the viewpoint of heat resistance and the like, an active ester-based curing agent obtained from a carboxylic acid compound and a phenol naphthol compound is preferred. Specific examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, horse, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and stearic acid. Among them, from the viewpoint of heat resistance, succinic acid, acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, isophthalic acid, and terephthalic acid are more preferable. Specific examples of the phenol compound or naphthol can be hydroquinone, resorcin, bis, bisphenol F, bisphenol S, phenolphthalein, methylated bisphenol A, and methylphenol F. , methylated bisphenol S, phenol, hydrazine-cresol, m-cresol, p-catechol, naphthol, anthracene naphthol, 1,5-dihydroxynaphthalene, 1,6-binaphthalene, 2,6-Dihydroxynaphthalene, dihydroxydiphenyl ketone, trihydroxydiphenyltetrahydroxydiphenyl ketone, gambogic acid, benzenetriol, dicyclopentadienyl di, phenol novolac, and the like. Among them, from the viewpoints of heat resistance and solubility, bisphenol hydrazine, bisphenol F, bisphenol S, methylated bisphenol quinone, methyl bisphenol F, methylated bisphenol S, catechol, 1, 5-dihydroxynaphthalene' 1,6-ylnaphthalene, 2,6-dihydroxynaphthalene, dihydroxydiphenyl ketone, trihydroxydiphenyl, tetrahydroxydiphenyl ketone, gambogic acid, benzenetriol, bicyclo Pentadienyl phenol, phenol novolak is preferred, with catechol, 1,5-dihydroxynaphthalene, dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxydiphenyl ketone, trihydroxy as aliphatic For the purpose of the acid or the coke, the honey is the bisphenol, hydroxy ketone, phenol, hydroxyphenol, phenol, phenol, dihydroxy ketone, 1,6-diphenyl Hydroxydiphenyl ketone, gambogic acid, benzenetriol, dicyclopentadienyl diphenol, phenol novolac, and 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6 - Dihydroxynaphthalene, dihydroxydiphenyl ketone, trihydroxydiphenyl ketone, tetrahydroxydiphenyl ketone, dicyclopentadienyl diphenol, phenol novolac, and more preferably, dihydroxydiphenyl ketone, three Hydroxydiphenyl ketone , tetrahydroxydiphenyl ketone, dicyclopentadienyl diphenol, phenol novolak is even better, and dicyclopentadienyl diphenol, phenol novolac lacquer is further better, dicyclopentadienyl Phenol is particularly preferable, and these may be used alone or in combination of two or more. The method for producing the active ester-based curing agent is not particularly limited, and it can be produced by a known method, but specifically, it can be obtained by a condensation reaction of a carboxylic acid compound and a hydroxy compound. As the active ester-based curing agent, an active ester-based curing agent described in JP-A-2004-277460 can be used, and a commercially available product can also be used. The commercially available active ester-based curing agent is preferably a structure containing a dicyclopentadienyl diphenol structure, an acetal of a phenol novolak, a benzamidine phenol phenol varnish, or the like, and a bicyclic ring thereof. The pentadienyl diphenol constructor is preferred. Specifically, EXB9460S-65T (made by DIC (product), active base equivalent: about 223), DC8 08 (made by Japanese epoxy resin (share), active basis equivalent of about 149), YLH 1 026 (Japanese ring) Oxygen resin (stock), active base equivalent of about 200), YLH 1 03 0 (made by Japan Epoxy Resin Co., Ltd., active base equivalent of about 201), YLH 1048 (Japanese epoxy resin (stock) system, active base equivalent About M5), etc., among which EXB9460S is preferable from the viewpoint of the preservation stability of the varnish and the thermal expansion rate of the cured product. -22-201202334 The resin composition of the present invention contains a benzoxazine-based curing agent to increase the glass transition temperature of the insulating layer. The benzoxazine-based curing agent is not particularly limited, and specific examples thereof include HFB2006M (Showa Polymer Co., Ltd.), Pd, Fa (manufactured by Shikoku Chemical Industries Co., Ltd.), and the like. The resin composition is reduced in the dissipation factor by containing a cyanate-based curing agent. The cyanate-based curing agent is not particularly limited, and examples thereof include a novolac type (phenol novolak type, an alkylphenol novolak type, etc.) cyanate resin, a dicyclopentadiene type cyanate resin, and a double Phenolic type (bisphenol A type, bisphenol F type, bisphenol S type, etc.) cyanate resin and some of these prepolymers which are formed by three exposures can be used alone or The weight average molecular weight of the cyanate-based curing agent used in combination of two or more kinds is not particularly limited, but is preferably 500 to 4,500, more preferably 600 to 3,000. Specific examples of the cyanate-based curing agent include, for example, Bisphenol A dicyanate, polyphenol cyanate (oligo(3-methyl-1,5-phenylene), 4,4'-methyl(2,6-di) Methylphenyl cyanate), 4,4'-ethylene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanate) phenylpropane 1,1-bis(4-cyanate phenylmethane), bis(4-cyanate-3,5-dimethylphenyl)methane, 1,3-bis(4-cyanate phenyl) -1-(methylethylidene))benzene, bis(4-cyanate phenyl) sulfide, double (4- a bifunctional cyanate resin such as a cyanate phenyl) ether; a polyfunctional cyanate resin derived from a phenol novolak, a cresol novolak, a phenol resin containing a dicyclopentadiene structure, or the like; One part of the acid ester resin -23- 201202334 A prepolymer obtained by triazineization, etc. These may be used in one type or more. Commercially available cyanate resins include the following formula ( 8) Triphenylation of a part or all of the phenol novolac type polyfunctional cyanate resin (Lonza Japan (, PT30, cyanate equivalent 124), and the double solid cyanate represented by the following formula (9) Prepolymerized by a terpolymer, manufactured by Lonza Japan Co., Ltd., ΒΑ230, cyanate equivalent 23 2 ) (c) is a cyanate resin containing a dicyclopentadiene structure (Japan), DT- 4000, DT-7000) and so on. 2 苯 } } } } Α 、 、 、 、 、 、 、 、 、 、 、

〔式(8)中,η表示平均値之任意數目(較佳爲〇 〜20 ) [化9][In the formula (8), η represents an arbitrary number of average enthalpies (preferably 〇 〜 20 ) [Chemical 9]

• 24- 201202334 [化 10]• 24- 201202334 [Chem. 10]

C=NC=N

(10) (式(10)中,η表示平均値之0〜5的數 [(Ε )硬化促進劑] 本發明之樹脂組成物中,若由使該樹脂 率地硬化之觀點來看,係可使其含有(Ε) (Ε )硬化促進劑方面,並無特別限定,可 化促進劑、咪唑系硬化促進劑、胺系硬化促 化合物、有機鐵鹽化合物等。 金屬系硬化促進劑方面,可舉出鈷、銅 、錳、錫等之金屬的有機金屬錯合物或有ί 金屬錯合物之具體例方面,可舉出乙烯丙i 乙烯丙酮酸鈷(III)等之有機鈷錯合物、 (II)等之有機銅錯合物' 乙烯丙酮酸鋅( 鋅錯合物、乙烯丙酮酸鐵(III)等之有機 烯丙酮酸鎳(II)等之有機鎳錯合物、乙翔 )等之有機猛錯合物等β有機金屬鹽方面, 、辛酸錫、環烷酸鋅、環烷酸鈷、硬脂酸錫 。金屬系硬化促進劑方面,由硬化性、溶齊[ 來看’係以乙烯丙酮酸鈷(II)、乙烯丙酮 組成物更具效 硬化促進劑。 舉出金屬系硬 進劑、有機膦 、粹、鐵、鎳 金屬鹽。有機 I酸鈷(II)、 乙烯丙酮酸銅 II)等之有機 鐵錯合物、乙 丙酮酸錳(II 可舉出辛酸鋅 、硬脂酸鋅等 溶解性之觀點 酸鈷(III)、 -25- 201202334 乙烯丙酮酸鋅(II)、環烷酸鋅、乙烯丙酮酸鐵(III)爲 佳,特別是以乙烯丙酮酸鈷(II)、環烷酸鋅爲佳。此等 可使用1種或組合2種以上使用之。 爲了使環氧樹脂與氰酸酯系硬化劑更具效率地硬化, 係以使用金屬系硬化促進劑爲佳。金屬系硬化促進劑的添 加量,當令樹脂組成物中之不揮發成分爲1〇〇質量%時, 基於金屬系硬化促進劑之金屬含量係以25〜500ppm之範 圍爲佳、40〜200ppm之範圍更佳。若小於25ppm的話, 難以形成在對低粗度之絕緣層表面的密著性上表現優異之 導體層,若超過500ppm的話,則樹脂組成物的保存安定 性、絕緣性則有降低的傾向。 咪唑系硬化促進劑方面,可舉出2-甲基咪唑、2-十一 基咪唑、2-十七基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基 咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑 、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯 基咪唑、1-氰基乙基-2-甲基咪唑、1-氰基乙基-2-十一基 咪唑、1-氰基乙基-2-乙基-4 -甲基咪唑、1-氰基乙基-2-苯基咪唑、1-氰基乙基-2-十一基咪唑鑰偏苯三酸鹽、1-氰 基乙基-2-苯基咪唑鑰偏苯三酸鹽、2,4-二胺基-6-〔2’-甲 基咪唑基-(Γ)〕-乙基-s-三嗪、2,4-二胺基-6-〔 2’·十一 基咪唑基-(1’)〕-乙基-3-三嗪、2,4-二胺基-6-〔2’-乙 基-4’-甲基咪唑基-(1,)〕-乙基-s-三嗪、2,4-二胺基- 6-〔2’-甲基咪唑基-(1,)]-乙基-s-三嗪異三聚氰酸加成物 、2-苯基咪唑異三聚氰酸加成物、2-苯基-4,5-二羥基甲 -26- 201202334 基咪唑、2-苯基-4-甲基-5羥基甲基咪唑、2,3-二氫-1H-吡 咯〔l,2-a〕苯并咪唑、1-十二基-2-甲基-3-苄基咪唑鑰氯 化物、2-甲基咪唑啉、2-苯基咪唑啉等之咪唑化合物及咪 唑化合物與環氧樹脂之加成物。 胺系硬化促進劑方面’可舉出三乙基胺、三丁基胺等 之三烷基胺、4-二甲基胺基吡啶、苄基二甲基胺、2,4,6-參(二甲基胺基甲基)苯酚、1,8-二吖雙環(5,4,0)-十 一烯(以下,簡寫爲DBU)等之胺化合物等。 有機膦化合物、有機鳞鹽化合物方面,可舉出TPP、 TPP-K、TPP-S、TPTP-S、TBP-DA、TPP-SCN、TPTP-SCN (北興化學工業(股)商品名)等。 咪唑系硬化促進劑、胺系硬化促進劑、有機膦化合物 、有機鐵鹽化合物等之金屬系硬化促進劑以外之硬化促進 劑的含量,使樹脂組成物中之不揮發成分爲100質量%時 ,係以0.05〜3質量%之範圍爲佳、0.07〜2質量%之範 圍更佳。若小於0.05質量%,與基底導體層的密著強度 會有降低的傾向,而若超過3質量%,則硬化物的耗散因 子會有變大的傾向。組合金屬系硬化促進劑與其他硬化促 進劑(咪唑系硬化促進劑、胺系硬化促進劑、有機膦化合 物、有機鱗鹽化合物等)使用時的含量,係以金屬系硬化 促進劑與其他硬化促進劑(咪唑系硬化促進劑、胺系硬化 促進劑、有機膦化合物、有機鳞鹽化合物等)分別爲上述 範圍內者爲佳。 -27- 201202334 [(F )熱可塑性樹脂] 本發明之樹脂組成物中,若從使硬化物的機械強度或 以接著薄膜之形態使用時的薄膜成型能向上提昇之觀點來 看,係可含有(F)熱可塑性樹脂。如此之(F)熱可塑性 樹脂方面,可舉出苯氧基樹脂、聚乙烯縮醛樹脂、聚醯亞 胺樹脂、聚醯胺醯亞胺樹脂、聚醚醯亞胺樹脂、聚楓樹脂 、聚醚碾樹脂、聚苯醚樹脂、聚碳酸酯樹脂、聚醚醚酮樹 脂、聚酯樹脂等。其中,更以聚乙烯縮醛樹脂、苯氧基樹 脂爲佳。此等可使用1種或組合2種以上使用。 (F )熱可塑性樹脂係以玻璃轉移溫度爲8(TC以上者 爲佳。在此所謂「玻璃轉移溫度」係遵照JIS K 7197中 記載之方法所決定。此外,玻璃轉移溫度較分解溫度高, 實際上,無法觀測到玻璃轉移溫度時,係可視分解溫度爲 本發明中之玻璃轉移溫度。此外,所謂分解溫度乃被被定 義爲遵照JIS K 7120中記載之方法來測定時的質量減少 率爲5 %之溫度。 (F )熱可塑性樹脂的重量平均分子量係以5000〜 200000之範圍者爲佳、10000〜150000之範圍者更佳、 15000〜100000之範圍者又更佳、20000〜80000之範圍者 又再更佳。若較此範圍小,則薄膜成型能或機械強度向上 的效果無法充分發揮,若較此範圍大,則與氰酸酯樹脂及 環氧樹脂的相溶性會降低,絕緣層表面經粗化處理後的粗 度爲增大。此外,本發明中之重量平均分子量乃以膠體滲 透層析(GPC )法(以聚苯乙烯換算)所測定。GPC法所 -28- 201202334 測之重量平均分子量具體而言,係使用(股)島津製作所 製LC-9A/RID-6A爲測定裝置、管柱方面使用昭和電工( 股)公司製 Shodex K-800P/K-804L/K-804L,移動相係使 用氯仿等,在管柱溫度4(TC下進行測定,並可使用標準聚 苯乙烯之檢量線算出。 苯氧基樹脂方面,可舉出具有由雙酚A骨架、雙酚F 骨架、雙酚S骨架、雙酚苯乙酮骨架、酚醛清漆骨架、聯 苯基骨架、莽骨架、二環戊二烯骨架、降莰烯骨架、萘骨 架、蒽骨架、金剛烷骨架、萜烯骨架、三甲基環己烷骨架 所選出之1種以上骨架者。苯氧基樹脂係可混合2種以上 使用。苯氧基樹脂之末端可爲苯酚性羥基、環氧基等之任 一官能基。市售品方面,可舉例如日本環氧樹脂(股)製 1256、42 50(含雙酚A骨架之苯氧基樹脂)、日本環氧 樹脂製Y X 8100(含雙酚S骨架之苯氧基樹脂)、曰本 環氧樹脂製YX6954 (含雙酹苯乙酮骨架之苯氧基樹脂) 或其他如東都化成(股)製FX2 8 0、FX293、日本環氧樹 脂(股)製 YL7553、YL6954、YL6794、YL7213、 YL7290、YL7482等。聚乙烯縮醛樹脂之具體例方面,可 舉出電氣化學工業(股)製、Denka Butyral 4000-2、 5000-A、6000-C、6000-EP、積水化學工業(股)製 S-LEC BH系列、BX系列、KS系列、BL系列、BM系列等 。聚醯亞胺樹脂之具體例方面,可舉出新日本理化(股) 製的聚醯亞胺「RIKACOAT SN20」及「RIKACOAT PN20 」。又可舉出,使2官能性羥基末端聚丁二烯、二異氰酸 -29 - 201202334 酯化合物及四元酸酐反應所得之線狀聚醯亞胺(特開 2 006-3 708 3號公報記載者)、含聚矽氧烷骨架之聚醯亞 胺(特開2002- 12667號公報、特開2000-3 1 9386號公報 等中記載者)等之改性聚醯亞胺。聚醯胺醯亞胺樹脂之具 體例方面,可舉出東洋紡績(股)製的聚醯胺醯亞胺「 VYLOMAX HR1 1NN」及「VYLOMAX HR1 6NN」。又可舉 出,日立化成工業(股)製的含聚矽氧烷骨架之聚醯胺醯 亞胺「KS9100」、「KS9300」等之改性聚醯胺醯亞胺。 聚醚颯樹脂之具體例方面,可舉出住友化學(股)公司製 的聚醚楓「PES5003P」等。聚碾樹脂之具體例方面,可 舉出 SOLVAY Advanced Polymers (股)公司製的聚颯「 P 1 700 j 、Γ P3500」等》 樹脂組成物中之(F)熱可塑性樹脂的含量並無特別 限定,相對於樹脂組成物中之不揮發成分100質量%,較 佳爲0.5〜20質量%、更佳爲1〜10質量%。(F)熱可 塑性樹脂之摻合比例小於0.5質量%時,因樹脂組成物黏 度低,故難以形成均一的樹脂組成物層,若超過20質量 %時,因樹脂組成物的黏度過高,而難以埋入基板上的配 線圖型。 [(G )橡膠粒子] 本發明之樹脂組成物中,若從提高硬化物的機械強度 、使應力緩和效果向上提昇之觀點來看,係可含有(G) 橡膠粒子。(G)橡膠粒子不溶於調製樹脂組成物時的有 -30- 201202334 機溶劑,亦與環氧樹脂等之樹脂組成物中的成分不相 在樹脂組成物的清漆中係以分散狀態存在者爲佳。如 橡膠粒子,一般係可使橡膠成分的分子量大到不溶於 溶劑或樹脂之程度爲止,且以粒子狀予以調製。橡膠 方面,可舉例如核殼型橡膠粒子、交聯丙烯腈丁二烯 粒子、交聯苯乙烯丁二烯橡膠粒子、丙烯酸橡膠粒子 核殼型橡膠粒子係粒子爲具有核層與殼層之橡膠粒子 舉例如以外層之殼層爲玻璃狀聚合物、內層之核層爲 狀聚合物所構成之2層構造、或以外層之殻層爲玻璃 合物、中間層爲橡膠狀聚合物、核層爲玻璃狀聚合物 成之3層構造者等。玻璃狀聚合物層例如以甲基丙烯 酯之聚合物等所構成,橡膠狀聚合物層例如以丙烯酸 聚合物(丁基橡膠)等所構成。核殼型橡膠粒子之具 方面,可舉出 STAPHYLOID AC3 832、AC3816N GANZ 化成(股)商品名)、METABLEN KW-4426 ( RAYON (股)商品名)。丙烯腈丁二烯橡膠(NBR) 之具體例方面,可舉出XER-91C平均粒徑0.5&quot;m、 (股)製)等。苯乙烯丁二烯橡膠(SBR)粒子之具 方面,可舉出XSK-500C平均粒徑0_5/zm、JSR (股 )等。丙烯酸橡膠粒子之具體例方面,可彳 METABLEN W300A (平均粒徑 0.1 以 m) 、W450A( 粒徑0.5/zm)(三菱RAYON (股)製)。此等可使 種或組合2種以上使用。 摻合之(G)橡膠粒子的平均粒徑係以0.005〜 溶, 此之 有機 粒子 橡膠 等。 ,可 橡膠 狀聚 所構 酸甲 丁酯 體例 ' ( 三菱 粒子 JSR 體例 )製 奪出 平均 用1 1 β m -31 - 201202334 之範圍爲佳、0.2〜0.6/zm之範圍更佳。本發明中之橡膠 粒子的平均粒徑係可使用動態光散射法進行測定。例如, 可於適.當的有機溶劑中使橡膠粒子藉由超音波等均一地分 散,使用FPRA-1000 (大塚電子(股)公司製),以質量 基準製作橡膠粒子之粒度分佈,以其中位數徑作爲平均粒 徑來測定。 摻合(G)橡膠粒子時的含量,對樹脂組成物中之不 揮發成分1〇〇質量%而言係以1〜1〇質量%之範圍者爲佳 、2〜5質量%之範圍者更佳。 〔(Η)難燃劑〕 本發明之樹脂組成物若從提高難燃性之觀點來看,可 進一步含有(Η )難燃劑。(Η )難燃劑方面,可舉例如 有機磷系難燃劑、有機系含氮之磷化合物、氮化合物、聚 矽氧系難燃劑、金屬氫氧化物等。有機磷系難燃劑方面’ 可舉出三光(股)製的HCA、HCA-HQ、HCA-NQ等之菲 型磷化合物、昭和高分子(股)製的HFB-2006M等之含 磷之苯并螺曉化合物、味之素 Fine_Techno(股)製的 REOFOS 30、50、65、90、1 1 0、TPP、RPD、BAPP、CPD 、TCP、TXP、TBP、TOP、KP140、TIBP、北興化學工業 (股)製的PPQ、ciariant (股)製的OP93 0、大八化學 (股)製的PX200等之磷酸酯化合物、東都化成(股) 製的FX289、FX3 0 5等之含磷環氧樹脂、東都化成(股) 製的ERF001等之含憐之苯氧基樹脂、日本環氧樹脂(股 -32- 201202334 )製的YL7613等之含磷環氧樹脂等。有機系含氮之磷化 合物方面,可舉出四國化成工業(股)製的 SP670、 SP703等之磷酸酯醯胺化合物、大塚化學(股)公司製的 SPB100、SPE100、(股)伏見製作所製FP-系列等之磷氮 基化合物等。金屬氫氧化物方面,可舉出宇部材料(股) 製的UD65、UD650、UD653等之氫氧化鎂、巴工業(股 )公司製的 B-30 、 B-325 、 B-315 、 B-308、 B-303、 UFH-20等之氫氧化鋁等。此等可使用1種或組合2種以上使 〇 用。 本發明之樹脂組成物在可發揮本發明之效果的範圍下 ,係可摻合馬來醯亞胺化合物、雙烯丙基納德醯亞胺( bisallylnadic-imide)化合物、乙嫌基节基樹脂、乙稀基 苄基醚樹脂等之環氧樹脂以外的熱硬化性樹脂。此等可使 用1種或組合2種以上使用。馬來醯亞胺樹脂方面,可舉 出 BMI1000 ' BMI2000、BMI3000、BMI4000、BMI5100 ( 大和化成工業(股)製)、BMI、BMI-70、BMI-80 ( KI 化成(股)製) 、ANILIX-MI ( MITSUI FINE CHEMICALS (股)製),雙烯丙基納德醯亞胺化合物方 面,可舉出BANI-M、BANI-X (九善石油化學工業(股) 製),乙烯基苄基樹脂方面,可舉出V5000 (昭和高分子 (股)製),乙烯基苄基醚樹脂方面,可舉出V1000X、 V1100X (昭和高分子(股)製)。 本發明之樹脂組成物在可發揮本發明之效果的範圍下 ,係可任意地含有上述以外的其他各種樹脂添加劑。樹脂 -33- 201202334 添加劑方面,可舉出例如矽粉、尼龍粉末、氟樹脂粉末等 之有機塡充劑;ALB EN、BENTON等之增黏劑;聚矽氧系 、氟系、高分子系之消泡劑或調平劑、矽烷耦合劑、三唑 化合物、噻唑化合物、三嗪化合物、卟啉化合物等之密著 性賦予劑、酞青素•藍、酞青素•綠、碘·綠、雙偶氮黃 、碳黑等之著色劑等。 本發明之樹脂組成物的用途,並無特別限定,但以使 用本發明之樹脂組成物來達成積層性、曲折性、低線熱膨 〇 張率爲特徵,係可廣泛地使用於接著薄膜、預浸體等之薄 片狀積層材料、電路基板、阻焊劑、底部塡充材、固晶材 、半導體封止材、塡洞樹脂、零件埋入樹脂等必須要樹脂 組成物之用途上。其中,因形成絕緣層,故適用於多層印 刷配線板之製造。本發明之樹脂組成物雖可以清漆狀態塗 佈於電路基板而形成絕緣層,但工業上一般係以使用接著 薄膜、預浸體等之薄片狀積層材料之形態爲佳。樹脂組成 物的軟化點,從薄片狀積層材料之積層性的觀點來看,係 以4 0〜1 5 0 °C爲佳。 [接著薄膜] 本發明之接著薄膜,對熟知該技術者而言,係可藉由 公知的方法來製造,例如,於有機溶劑中調製溶解了樹脂 組成物之樹脂清漆,將此樹脂清漆以狹縫式塗佈裝置等塗 佈於支持體上,再藉由加熱或是熱風吹拂等使有機溶劑乾 燥,使樹脂組成物層形成來製造。 -34- 201202334 有機溶劑方面,可舉例如丙酮、甲基乙基酮、環己酮 等之酮類;醋酸乙酯、醋酸丁酯、賽珞蘇醋酸酯、丙二醇 單甲基醚醋酸酯、卡必醇醋酸酯等之醋酸酯類;賽珞蘇、 丁基卡必醇等之卡必醇類;甲苯、二甲苯等之芳香族烴類 :二甲基甲醯胺、二甲基乙醯胺、N-甲基吡咯啶酮等之醯 胺系溶劑等。此等可使用1種或組合2種以上使用。 乾燥條件並無特別限定,但對樹脂組成物層之有機溶 劑含有比例係以1 0質量%以下爲佳、5質量%以下更佳 。乾燥條件係藉由簡單的實驗來設定適當合適的乾燥條件 即可,雖因清漆中之有機溶劑量而異,但以使含30〜60 質量%之有機溶劑的清漆在50〜150 °C乾燥3〜10分鐘左 右爲佳。 接著薄膜中所形成之樹脂組成物層的厚度,若從使施 行樹脂組成物的硬化物的MIT耐折性試驗時的耐折次數 增加之觀點來看,係以10〜l〇〇ym爲佳、15〜90/zm更 佳、20〜80/zm又更佳、25〜70;zm又再更佳、30〜65 Mm又進而更佳、35〜60;am特別佳、40〜55#m極佳。 本發明中的支持體方面,可舉出聚乙烯、聚丙烯、聚 氯化乙烯基等之聚烯烴、聚對苯二甲酸乙二酯(以下簡稱 「PET」)、聚萘二甲酸乙二酯等之聚酯、聚碳酸酯、聚 醯亞胺等之塑膠薄膜。塑膠薄膜方面,特別以PET爲佳 。支持體方面可使用銅箔、鋁箔等之金屬箱,亦可作爲附 金屬箔之接著薄膜。又支持體除了施予毛面處理、電暈處 理之外’亦可施予離型處理。又,可以聚矽氧樹脂系離型 -35- 201202334 劑、醇酸樹脂系離型劑、氟樹脂系離型劑等之離型劑來施 予離型處理。支持體的厚度並無特別限定,但以10〜150 //m爲佳、25〜50//m之更佳。 本發明中的支持體,係可在積層於內層電路基板等後 ,或是在藉由加熱硬化而形成絕緣層後予以剝離。若在加 熱硬化接著薄膜後剝離支持體的話,可防止硬化步驟時髒 污等之附著,且可使硬化後的絕緣層之表面平滑性向上提 昇。於硬化後剝離時,係以對支持體預先施予離型處理者 爲佳。此外,形成於支持體上之樹脂組成物層,係以層之 面積小於支持體之面積的方式形成爲佳。 樹脂組成物層未密著支持體的面中,係可進一步積層 與支持體同樣的塑膠薄膜來作爲保護薄膜。保護薄膜除了 施予毛面處理、電暈處理外,亦可施予離型處理。又,可 以聚矽氧樹脂系離型劑、醇酸樹脂系離型劑、氟樹脂系離 型劑等之離型劑來施予離型處理。保護薄膜的厚度並無特 別限定,但以1〜40 a m爲佳。藉由積層保護薄膜,係可 防止對樹脂組成物層之表面的髒污等之附著或損傷》接著 薄膜係可捲成滾筒狀予以保存、貯藏。 [使用接著薄膜之多層印刷配線板] 可使用如上述所製造之接著薄膜來製造多層印刷配線 板。接著說明其方法之一例。樹脂組成物層若受保護薄膜 保護時,剝離此等後,係使樹脂組成物層直接接於內層電 路基板上而積層於內層電路基板的單一面或兩面》本發明 -36- 201202334 之接著薄膜中,係以藉由真空積層法而於減壓下積層於內 層電路基板上之方法爲宜。積層之方法可爲批次式或以滾 筒所行之連續式。且在進行積層之前,接著薄膜及內層電 路基板可視需要來預先加熱(平板加熱)。 本發明中所謂內層電路基板,主要是指在環氧玻璃、 金屬基板、聚酯基板、聚醯亞胺基板、BT樹脂基板、熱 硬化型聚苯醚基板等之基板的單一面或兩面施予圖型加工 而形成有導體層者。又在製造成爲以導體層與絕緣層爲交 互地形成層,且其單一面或兩面經圖型加工所成之導體層 的多層印刷配線板時,甚至應形成絕緣層及導體層的中間 製造物也含於本發明中之內層電路基板中。內層電路基板 中,導體電路層表面係以預先藉由黑化處理等來施予粗化 處理者,從絕緣層對內層電路基板之密#性的觀點來看爲 佳。 積層之條件係使壓著溫度(積層溫度)較佳爲70〜 140°C、使壓著壓力較佳爲 1〜llkgf/cm2 ( 9.8M04〜 107.9xl04N/m2),且以使空氣壓力爲 20mmHg(26.7hPa )以下之減壓下予以積層者爲佳。 真空積層係可使用市售的真空積層機來進行。市售的 真空積層機方面,可舉例如 Nichigo-Morton (股)製 VACUUM APPLICATOR、(股)名機製作所製真空加壓 式積層機、(股)日立Industrials製滾筒式乾式塗佈機 、日立AIC (股)製真空積層機等。 又,減壓下施予加熱及加壓的積層步驟,亦可使用一 -37- 201202334 般的真空熱壓機來進行。例如,可使經加熱的SUS板等 之金屬板藉由從支持體層側施壓來進行。 施壓條件係以使減壓度爲lxl 0_2 MPa以下爲佳、若 爲lxltr3 MPa以下更佳。加熱及加壓雖可以1階段來實 施,但從控制樹脂的滲出之觀點來看,以分2階段以上爲 條件來實施爲佳。使第1階段的施壓以溫度爲70〜150°C 、壓力爲1〜15kgf/cm2之範圍、第2階段的施壓以溫度 爲150〜200它、壓力爲1〜40kgf/cm2之範圍來實施爲佳 。各階段的時間係以30〜120分鐘進行爲佳。市售的真空 熱壓機方面,可舉例如MNPC-V-750-5-200 (股)名機製 作所製)、VH 1 - 1 603 (北川精機(股)製)等》 如此地將接著薄膜積層於內層電路基板之後,在剝離 支持體時進行剝離,並可藉由熱硬化而於內層電路基板上 形成絕緣層。加熱硬化之條件可選擇在150°C〜220°C下施 予20分〜180分之範圍、更佳爲160 °C〜200 °C下30〜120 分。 形成絕緣層之後,於硬化前未剝離支持體時則在此時 進行剝離。接著,對形成於內層電路基板上的絕緣層進行 開孔以形成通孔、貫穿孔。開孔係以鑽孔器、雷射、電漿 等之公知的方法進行,又必要時可組合此等之方法來進行 。其中,更以碳酸氣體雷射、YAG雷射等之雷射開孔爲 佳。 接著,於絕緣層表面進行粗化處理。本發明中的粗化 處理係以使用氧化劑之濕式粗化方法施行爲佳。氧化劑方 -38- 201202334 面,可舉出過錳酸鹽(過錳酸鉀、過錳酸鈉等)、重鉻酸 鹽、臭氧、過氧化氫/硫酸、硝酸等。較佳爲泛用於以堆 積工法而成之多層印刷配線板的製造中絕緣層之粗化的氧 化劑,其係以使用鹼性過錳酸溶液(過錳酸鉀、過錳酸鈉 之氫氧化鈉水溶液等)來進行粗化爲佳。 接著,在形成有因粗化處理而致凸凹之固定錨的樹脂 組成物層表面,係以組合無電解鍍敷與電解鍍敷之方法來 形成導體層。又可形成與導體層相反圖型的鍍敷阻劑,且 可僅以無電解鍍敷來形成導體層。此外,導體層形成後, 藉由以150〜200°C進行20〜90分鐘的退火(anneal)處 理,來使導體層之剝離強度更加提昇、並可使其安定化。 又,在圖型加工導體層且形成電路之方法方面,可使 用例如熟知該技術者所公知的減色法、半加成法等。 [預浸體] 本發明之預浸體,係使本發明之樹脂組成物藉由加熱 熔融法或溶劑法含浸於薄片狀纖維基材中,且以加熱使其 半硬化而製造。意即,本發明之樹脂組成物係可成爲含浸 於薄片狀纖維基材之狀態的預浸體。薄片狀纖維基材方面 ,係以使用由常用的纖維所成者作爲玻璃布料或醯胺纖維 等之預浸體用纖維爲佳。 加熱熔融法係不使樹脂溶解於有機溶劑中,而將樹脂 暫時塗佈於與樹脂之剝離性良好的塗佈紙上,並將其積層 於薄片狀纖維基材,或是藉由狹縫式塗佈裝置直接塗佈等 -39- 201202334 來製造預浸體之方法。又溶劑法乃與接著薄膜 將樹脂溶解於有機溶劑中所得的樹脂清漆中浸 維基材,且使樹脂清漆含浸於薄片狀纖維基材 其乾燥的方法。 [使用預浸體之多層印刷配線板] 使用如上所述而製造之預浸體係可製造多 板。其方法之一例謹於後述說明。於內層電路 本發明之預浸體1片或視需要而重疊數片,介 而以金屬平板夾住,在加壓·加熱條件下進行 加壓•加熱條件較佳爲在壓力5〜40kgf/cm2 3 92 xl04N/m2)、溫度 120〜200°C 下進行 20 〜 又與接著薄膜同樣地,可將預浸體藉由真空積 電路基板後予以加熱硬化。其後,與上述記載 地實施,將硬化之預浸體表面粗化後,藉由鍍 體層,而得以製造多層印刷配線板。 [半導體裝置] 再者,以使用本發明之多層印刷配線板來 裝置。藉由於多層印刷配線板上的接續用電極 導體元件,來製造半導體裝置。半導體元件的 並無特別限定,但可舉例如銲線實裝、倒裝晶 異方向性導電薄膜(ACF )之實裝、以非導 NCF)之實裝等。 同樣地,於 漬薄片狀纖 中,其後使 層印刷配線 基板上,將 由離型薄膜 施壓積層。 (49 X1〇4 〜 100分鐘》 層法積層於 之方法同樣 敷來形成導 製造半導體 部分接合半 搭載方法, 片實裝、以 性薄膜( -40- 201202334 另一方面,藉由在樹脂組成物中含有特定的無機塡充 材,而得以於絕緣層上形成微細配線溝。所謂微細配線溝 乃指線(配線)/空間(間隔)=1 5 // m/ 1 5 m以下者 ,其中以12/zm/12ym以下更佳、10/zm/10#m以下 又更佳、下又再更佳。 以往,在多層印刷配線板的製造技術方面,已知有在 核基板上使絕緣層與導體層交互堆疊之堆積方式的製造方 法。例如,在內層電路基板上藉由接著薄膜使硬化性樹脂 組成物積層,並使該硬化性樹脂組成物硬化而形成絕緣層 。其後,使用雷射來形成層間接續用之通孔,以鹼性過錳 酸鉀溶液等之氧化劑使通孔底除膠渣與粗化該絕緣層,並 於其粗面藉由半加成法,以無電解鍍敷形成鍍敷種子層, 接著以電解鍍敷形成導體層。然後,藉由蝕刻去除不要的 鍍敷種子層,而得以形成電路》 另一方面,如專利文獻(特開2010-21 301 )或非專 利文獻(Advancing MICROELECTRONICS 1 1/12 2007 P22 )所揭示的,使用雷射直接對絕緣層形成會爲配線的溝之 工法,因適用於微細配線而備受期待。該工法中,與上述 之堆積方式所致的製造方法同樣地,於內層電路基板上形 成絕緣層,且使用雷射對絕緣層形成成爲配線的溝及通孔 ,但有關二氧化矽的粒徑並無記載。再者,以鹼性過.錳酸 鉀溶液等之氧化劑使通孔底除膠渣與使該絕緣層進行粗化 ,並於其粗面進行無電解鍍敷、電氣鍍敷,最後去除表層 之不要的銅層而形成電路,其中關於除膠渣,亦可爲電漿 -41 - 201202334 等之乾式工法。但是,除膠渣步驟中,於絕緣層經粗化時 ,會有所形成的溝之角落部位樹脂被去除,無法維持較佳 的矩形’而其後所形成的配線無法成爲所設定的微細配線 之問題。 在此’乃用在支持體層上形成有金屬膜層之附有金屬 膜之薄膜,或是在支持體層上形成有金屬膜層,且在該金 屬膜層上進一步形成有硬化性樹脂組成物層之附金屬膜接 著薄膜’而於絕緣層上設置金屬膜層後,由金屬膜層上使 用雷射而在絕緣層形成配線溝,即使在除膠渣後,絕緣層 可維持矩形,而可獲得微細配線溝形狀。以下,就附金屬 膜之薄膜及附金屬膜之接著薄膜進行說明。 &lt;支持體層&gt; 支持體層係具有自體支持性之薄膜乃至薄片狀物,可 使用金屬箔、塑膠薄膜等,特別是塑膠薄膜較適於使用。 金屬箔方面,可舉出鋁箔、銅箔等。使用金屬箔作爲支持 體層時,當附金屬膜之薄膜不具有離型層的情況下,可採 用由與所形成之金屬膜層不同的金屬所成的金屬箔。塑膠 薄膜方面,可舉出聚對苯二甲酸乙二酯薄膜、聚萘二甲酸 乙二酯、聚醯亞胺、聚醯胺醯亞胺、聚醯胺、聚四氟乙烯 、聚碳酸酯等,其中以聚對苯二甲酸乙二酯薄膜、聚萘二 甲酸乙二酯薄膜爲佳,而又以便宜的聚對苯二甲酸乙二酯 特別佳。又支持體層表面可施予電暈處理等之表面處理。 又不存在金屬膜層或離型層之側的支持體層薄膜表面上, -42- 201202334 亦可施予毛面處理、電暈處理等之表面處理。形成有離型 層之側的支持體層表面,若從製造附金屬膜之薄膜時防止 裂隙的觀點來看,係以算術平均粗度(Ra値)爲50nm以 下(0以上50nm以下)、再以40nm以下、又再以35nm 以下、甚至是3 Onm以下者爲佳。又未形成有離型層之側 的支持體層表面之算術平均粗度也以與上述相同的範圍內 爲佳。算術平均粗度(Ra値)之測定係可使用公知的方 法,例如,可使用非接觸型表面粗度計(例如,Veeco Instruments公司製WYKO NT3 300等)等之裝置來測定 。支持體係可使用市售者,可舉例如,T60 ( TORAY (股 )製、聚對苯二甲酸乙二酯薄膜)、A4100 (東洋紡(股. )製、聚對苯二甲酸乙二酯薄膜)、Q83(帝人DUPON 薄膜(股)製、聚萘二甲酸乙二酯薄膜)、LINTEC (股 )製、醇酸型離型劑(AL-5 )付#聚對苯二甲酸乙二酯薄 膜、Diafoil (登錄商標)B100 (三菱化學聚酯薄膜(股 )製、聚對苯二甲酸乙二酯薄膜)等。 支持體層之層厚係以10〜7〇vm爲佳、更佳爲15〜 70 # m。層厚若過小,則操作性差、支持體層之剝離性會 降低或產生對形成平滑的金屬膜層不適的狀況β又,層厚 若過大,在成本上不實用。 &lt;離型層&gt; 本發明中的附金屬膜之薄膜及附金屬膜之接著薄膜, 爲了使金屬膜有效率地轉印於被附著體表面,係以於支持 -43- 201202334 體層與金屬膜層間具有離型層者爲佳。 離型層係可使用氟樹脂、醇酸樹脂、聚矽氧樹脂、聚 烯烴樹脂、聚乙烯基醇樹脂、丙烯酸樹脂、聚酯樹脂、三 聚氰胺樹脂、纖維素樹脂等之高分子來形成離型層。 離型層係可使用以蒸鍍法、濺鍍法、離子鍍法等所形 成之金屬膜或金屬箔。金屬方面,雖可舉出鋁、鋅、鉛、 鎳等,但以鋁爲佳》 離型層若由使金屬膜層均一地轉印之觀點、形成離型 層的成本之觀點來看,係以形成水溶性纖維素樹脂、水溶 性丙烯酸樹脂及水溶性聚酯樹脂所選出之1種以上的水溶 性高分子離型層爲佳。此等之水溶性高分子籬型層相較於 金屬離型層,因易於在支持體層上形成離型層之故,在成 本面上較爲有利。再者,於被附著體之硬化性樹脂組成物 硬化後在支持體層-離型層間因支持體層可剝離,金屬膜 層不易損傷,又殘留於金屬膜層上之離型層可輕易地以水 溶液去除,而可於被附著體上均一地形成金屬膜。此等之 中,以水溶性纖維素樹脂及水溶性聚酯樹P更佳,又以水 溶性纖維素樹脂又更佳。此等係可使用1種或混合2種以 上使用。又,水溶性高分子離型層亦可具有由不同之水溶 性高分子所成之1或2以上的層所形成之多層構造。 此外,離型層方面,當使用水溶性高分子離型層時, 在水溶性高分子離型層與支持體層之間,爲使此等之層間 的剝離性向上提昇,係可存在聚矽氧樹脂、醇酸樹脂、氟 樹脂等之外的離型層。意即,在離型層中適用水溶性高分 • 44- 201202334 子離型層時,離型層之至少與金屬膜接著的面係可以水溶 性高分子離型層所形成’例如’使離型層僅以水溶性高分 子離型層形成,或使其與金屬膜接著之面以水溶性高分子 離型層所形成之方式,成爲使水溶性高分子離型層與其他 的離型層所成之2層構造。至少於與金屬膜接著之面採用 水溶性高分子離型層時,乃於被附著體之硬化性樹脂組成 物硬化後,在支持體層-離型層間,支持體可剝離,其後 ,因殘留於金屬膜層上之離型層係可以水溶液簡單地去除 ,而可於被附著體上形成均一性表現優異的金屬膜。此外 ,支持體層-離型層間之支持體的剝離,若離型層僅以上 述水溶性高分子離型層所形成時,係可於支持體與水溶性 高分子離型層之界面來施行,若離型層由醇酸樹脂等之外 的離型層與上述水溶性高分子離型層之2層所構成時,係 可於該其他離型層與該水溶性高分子離型層之界面來施行 〇 離型層之層厚係以0.01/zm以上20/zm以下爲佳、 0.05//m以上10#m以下更佳、0.1#m以上5/zm以下又 更佳、0.1/zm以上3ym以下又再更佳、O.iym以上2 仁m以下特別佳、〇 · 1 μ m以上1 v m以下特別佳、〇. 2仁m 以上1 A m以下極佳。在此所謂「層厚」,係當離型層爲 單層時的厚度,當其爲多層時,乃指多層之總厚度。例如 ’離型層如上述般,由水溶性高分子離型層與除聚矽氧樹 脂、醇酸樹脂、氟樹脂等之外的離型層所構成時,此等之 離型層的合計層厚會設定於上述範圍。該水溶性高分子離 -45- 201202334 型層以外的其他離型層之層厚係以0.01〜〇.2#m之範圍 爲佳。離型層之層厚若過厚,當使硬化性樹脂組成物層熱 硬化時,藉由金屬膜層與離型層之熱膨張率不同,恐於金 屬膜層產生縫隙或損傷等之不適。又若層厚過薄,則支持 體層之剝離性恐會降低。 (水溶性纖維素樹脂) 本發明中所謂的「水溶性纖維素樹脂」,乃指於纖維 素中實施賦予水溶性用之處理所成的纖維素衍生物,較佳 可舉出.纖維素醚、纖維素醚酯等。 纖維素醚,係因在纖維素聚合物中賦予1以上的醚連 結基,藉由纖維素聚合物之1以上的無水葡萄糖重複單位 中存在之1以上羥基的轉換所形成的醚,且於醚連結基中 ,可舉出以由羥基、羧基、烷氧基(碳數1〜4)及羥基 烷氧基(碳數1〜4)所選出之1種以上之取代基所取代 之烷基(碳數1〜4)。具體而言,可舉出2-羥乙基、2-羥基丙基、3-羥基丙基等之羥基烷基(碳數1〜4) ; 2-甲 氧基乙基、3-甲氧基丙基、2-甲氧基丙基、2-乙氧基乙基 等之烷氧基(碳數1〜4)烷基(碳數1〜4) ; 2- ( 2-羥 基乙氧基)乙基或2- (2-羥基丙氧基)丙基等之羥基烷氧 基(碳數1〜4)烷基(碳數1〜4):羧甲基等之羧烷基 (碳數1〜4)等》聚合物分子中之醚連結基可爲單一種 或複數種。意即,可爲具有單一種醚連結基之纖維素醚, 亦可爲具有複數種醚連結基之纖維素醚。 -46- 201202334 纖維素醚之具體例方面,可舉例如甲基纖維素、羥乙 基纖維素、羥基丙基纖維素、羥基丙基甲基纖維素、羥基 丁基甲基纖維素、羥乙基乙基纖維素、羧甲基纖維素及此 等之水溶性鹽(例如,鈉鹽等之鹼金屬鹽)。 此外,纖維素醚中每單位葡萄糖環所取代之醚基的平 均莫耳數並無特別限定,但以1〜6爲佳。又,纖維素醚 之分子量係以重量平均分子量爲20000〜60000左右爲宜 〇 另一方面,纖維素醚酯係指於與纖維素中存在之1以 上的羥基及1以上適宜的有機酸或其反應性衍生物之間所 形成,且藉此,在纖維素醚中形成酯連結基之酯。此外, 在此所謂「纖維素醚」乃如上所述,「有機酸」係含有脂. 肪族或芳香族羧酸(碳數2〜8),且脂肪族羧酸可爲非 環狀(分枝狀或非分枝狀)或環狀,飽和或不飽和亦可。 具體而言,脂肪族羧酸方面,可舉例如醋酸、丙酸、酪酸 、吉草酸、丙二酸、琥珀酸、戊二酸、富馬酸、馬來酸等 之取代或非取代的非環狀脂肪族二羧酸;甘醇酸或乳酸等 之非環狀羥基取代羧酸;蘋果酸、酒石酸、檸檬酸等之非 環狀脂肪族羥基取代二-或三-羧酸等。又,芳香族羧酸 方面’係以碳數爲14以下之芳基羧酸爲佳,且以具有1 以上之羧基(例如,1、2或3之羧基)之含苯基或萘基 等芳基的芳基羧酸特別佳。此外,芳基係可藉由羥基、碳 數爲1- 4之烷氧基(例如,甲氧基)及磺醯基所選出之 同一或相異之1以上(例如,1、2或3)之基所取代。芳 -47- 201202334 基羧酸的較佳例中,可舉出鄰苯二甲酸、間苯二甲酸、對 苯二甲酸或偏苯三酸(1,2,4-苯三羧酸)等。 有機酸具有1以上之羧基時,乃以酸中僅有丨羧基對 纖維素醚形成酯連結爲佳。例如,羥基丙基甲基纖維素琥 珀酸酯時,各琥珀酸酯基的1羧基與纖維素形成酯連結, 其他的羧基則以遊離的酸存在。「酯連結基」係與纖維素 或纖維素醚以既述之較佳的有機酸或其反應性衍生物之反 應所形成。較佳的反應性衍生物中,可含有例如無水鄰苯 二甲酸等之酸酐。 聚合物分子中之酯連結基可爲單一種或複數種。意即 ,可爲具有單一種酯連結基之纖維素醚酯,亦可爲具有複 數種酯連結基之纖維素醚酯。例如,羥基丙基甲基纖維素 醋酸酯琥珀酸酯乃是具有琥珀酸酯基與醋酸酯基雙方之羥 基丙基甲基纖維素的混合酯。 較佳的纖維素醚酯係羥基丙基甲基纖維素或羥基丙基 纖維素之酯,具體而言,可舉出羥基丙基甲基纖維素醋酸 酯、羥基丙基甲基纖維素琥珀酸酯、羥基丙基甲基纖維素 醋酸酯琥珀酸酯、羥基丙基甲基纖維素苯二甲酸酯、羥基 丙基甲基纖維素偏苯三酸酯、羥基丙基甲基纖維素醋酸酯 苯二甲酸酯、羥基丙基甲基纖維素醋酸酯偏苯三酸酯、羥 基丙基纖維素醋酸酯苯二甲酸酯、羥基丙基纖維素丁酸酯 苯二甲酸酯、羥基丙基纖維素醋酸酯苯二甲酸酯琥珀酸酯 及羥基丙基纖維素醋酸酯偏苯三酸酯琥珀酸酯等,此等可 使用1種或2種以上。此等之中,係以羥基丙基甲基纖維 -48- 201202334 素苯二甲酸酯、羥基丙基甲基纖維素醋酸酯琥珀酸酯、羥 基丙基甲基纖維素醋酸酯苯二甲酸酯爲佳。 此外,纖維素醚酯中每單位葡萄糖環所取代之酯基的 平均莫耳數並無特別限定,但例如0.5%〜2%程度爲佳。 又,纖維素醚酯的分子量係以重量平均分子量爲20000〜 60000左右爲宜。 纖維素醚、纖維素醚酯之製法係爲公知,且可以來自 天然之纖維素(紙漿)爲原料,遵照固定方法使醚化劑、 酯化劑反應所得,本發明中亦可使用其市售品。例如,可 舉出信越化學工業(股)製「HP-55」、「HP-50」(均 爲羥基丙基甲基纖維素苯二甲酸酯)等。 (水溶性聚酯樹脂) 本發明中所謂「水溶性聚酯樹脂」,乃如藉由使多元 羧酸或其酯形成性衍生物與多元醇或其酯形成性衍生物爲 主要原料之一般的聚縮合反應所合成一樣,實質上由線狀 的聚合物所構成之聚酯樹脂,且在分子中或分子末端導入 有親水基者。在此,親水基方面,可舉出磺基、羧基、燐 酸基等之有機酸基或其鹽等,較佳爲磺酸基或其鹽、羧酸 基或其鹽。水溶性聚酯樹脂方面,特別是以具有磺基或其 鹽及/或羧基或其鹽者爲佳。 該聚酯樹脂之多元羧酸成分的代表例方面,可舉出對 苯二甲酸、間苯二甲酸 '鄰苯二甲酸、無水鄰苯二甲酸、 2,6-萘二羧酸、1,4-環己烷二羧酸 '已二酸等,此等可單 -49- 201202334 獨使用亦可倂用2種以上。又,與上述各種化合物一起, 係可少量地倂用如P-羥基安息香酸等之羥基羧酸、馬來 酸、富馬酸或伊康酸等不飽和羧酸。 該聚酯樹脂的多元醇成分的代表例方面,可舉出乙二 醇、1,4-丁烷二醇、新戊二醇、二乙二醇、二丙二醇、 1,6-己二醇、1,4-環己烷甲醇、伸苯二甲二醇、二羥甲基 丙酸、丙三醇、三羥甲基丙烷或聚(四伸甲基氧基)二醇 等,此等可單獨使用亦可倂用2種以上。 該聚酯樹脂之對分子中或分子末端導入親水基乃可以 慣用之方法實施,但使含有親水基之酯形成性化合物(例 如,芳香族羧酸化合物、羥基化合物等)進行共聚合之態 樣爲佳。 例如,導入磺酸鹽基時,係以使由5-磺酸鈉間苯二 甲酸、5·磺酸銨間苯二甲酸、4-磺酸鈉間苯二甲酸、4-甲 基磺酸銨間苯二甲酸、2-磺酸鈉對苯二甲酸、5-磺酸鉀間 苯二甲酸、4·磺酸鉀間苯二甲酸及2-磺酸鉀對苯二甲酸等 選出之1或2種以上予以共聚合者爲佳。 又,導入羧酸基時,係以將例如由無水偏苯三酸、偏 苯三酸、無水焦蜜石酸、焦蜜石酸、均苯三酸、環丁烷四 羧酸、二羥甲基丙酸等選出之1或2種以上予以共聚合者 爲佳,當該等共聚合反應之後,係藉由以胺基化合物、氨 或鹼金屬鹽等使其中和,而得以將羧酸鹽基導入分子中。 水溶性聚酯樹脂的分子量並無特別限制,重量平均分 子量爲10000〜40000程度爲佳。重量平均分子量若低於 -50- 201202334 10000,則層形成性會降低,若超過40000的話,則溶解 性會降低。 本發明中,水溶性聚酯樹脂係可使用市售品,可舉例 如互應化學工業(股)製的「PLASCOAT Z-561」(重量 平均分子量:約27000 ) 、「PLASCOAT Z-565」(重量 平均分子量:約25000)等。 (水溶性丙烯酸樹脂) 本發明中所謂「水溶性丙烯酸樹脂」,乃因含有含羧 基之單體爲必須成分而分散乃至溶解於水中之丙烯酸樹脂 〇 該丙烯酸樹脂更佳爲以含羧基之單體及(甲基)丙烯 酸酯爲必須之單體成分,且因應所需係可含有其他不飽和 單體作爲單體成分之丙烯酸系聚合體。 上述單體成分中,含羧基之單體方面,可舉例如(甲 基)丙烯酸、馬來酸、富馬酸、巴豆酸、伊康酸、焦檸檬 酸、無水馬來酸、馬來酸單甲基酯、馬來酸三丁基酯、伊 康酸單甲基酯、伊康酸三丁基酯等,且可使用此等之中的 1種或2種以上。此等之中,又以(甲基)丙烯酸爲宜。 又,(甲基)丙烯酸酯方面,可舉例如(甲基)丙烯 酸甲基酯、(甲基)丙烯酸乙基酯、(甲基)丙烯酸n-丙基酯、(甲基)丙烯酸η-丁基酯、(甲基)丙烯酸異 丁基酯、(甲基)丙烯酸η-戊基酯、(甲基)丙烯酸η-己基酯、(甲基)丙烯酸η-庚基酯、(甲基)丙烯酸η- -51 - 201202334 辛基酯、(甲基)丙烯酸2-乙基己基酯、(甲基)丙烯 酸壬基酯、(甲基)丙烯酸癸基酯、(甲基)丙烯酸十二 基酯、(甲基)丙烯酸十八基酯等之烷基之碳數爲1〜18 的甲基丙烯酸烷基酯,且可使用此等之中的1種或2種以 上。 又’其他不飽和單體方面,可舉例如芳香族烯基化合 物、氰化乙烯基化合物、共軛二烯系化合物、含鹵素之不 飽和化合物、含羥基之單體等。芳香族烯基化合物方面, 可舉例如苯乙烯' α-甲基苯乙烯、p-甲基苯乙烯、p-甲 氧基苯乙烯等。氰化乙烯基化合物方面,可舉例如丙烯腈 、甲基丙烯腈等》共軛二烯系化合物方面,可舉例如丁二 烯、異戊二烯等》含鹵素之不飽和化合物方面,可舉例如 氯化乙烯基、氯化亞乙烯基、全氟乙烯、全氟丙烯、氟化 亞乙烯基等。含羥基之單體方面,可舉例如2 -羥乙基( 甲基)丙烯酸酯、2-羥基丙基(甲基)丙烯酸酯、3-羥基 丙基(甲基)丙烯酸酯、2-羥基丁基(甲基)丙烯酸酯、 4-羥基丙烯酸丁酯、4-羥基丁基甲基丙烯酸酯、α -羥基 、 甲基乙基(甲基)丙烯酸酯等。此等可使用1種或2種以 上。 如後述,本發明中,離型層較佳係藉由將含有水溶性 纖維素、水溶性聚酯或水溶性丙烯酸樹脂之塗佈液於支持 體層上塗佈·乾燥之方法所形成。使用水溶性丙烯酸樹脂 時,其塗佈液可以乳劑形態或水溶液形態來使用。 以乳劑形態使用水溶性丙烯酸樹脂時,乃以核殼型乳 -52- 201202334 劑爲佳,核殻型乳劑中,重要的是於核殻粒子之殼中存在 羧基,因此,殼係以含有含羧基之單體及(甲基)丙烯酸 酯之丙烯酸樹脂所構成。 如此之核殼粒子的分散品(乳劑)係可使用市售品, 可舉例如 JONCRYL 7600 (Tg:約 35°C) 、7630A(Tg: 約 53°C ) 、53 8J ( Tg :約 66°C ) 、3 52D ( Tg :約 56°C ) (均爲BASF日本公司(股)製)等。 以水溶液形態使用水溶性丙烯酸樹脂時,該丙烯酸樹 脂係含有含羧基之單體及(甲基)丙烯酸酯之丙烯酸樹脂 ,重要的是爲較低分子量者。因此,重量平均分子量以 1000〜50000者爲佳,重量平均分子量若低於1000,則層 形成性會降低,重量平均分子量若超過50000的話,則與 支持體層的密著性會變高,且硬化後支持體層之剝離性會 降低。 如此之水溶性丙烯酸樹脂的水溶液,係可使用市售品 ,可舉例如 JONCRYL 354J ( BASF日本公司(股)製) 等。 此外,水溶性丙烯酸樹脂的乳劑與水溶液,因乳劑之 分子量高而易於薄膜化。因此,以水溶性丙烯酸樹脂的乳 劑較佳。 &lt;金屬膜層&gt; 金屬膜層中使用的金屬方面,雖可使用金、白金、銀 、銅、鋁、鈷、鉻、鎳、鈦、鎢、鐵、錫、銦等之金屬單 -53- 201202334 體或使用鎳·鉻合金等2種類以上之金屬的固 ),但從金屬膜形成的泛用性、成本、蝕刻之 等之觀點來看^係以銘、錬、欽、錬·絡合金 銅·鎳合金、銅·欽合金、金、銀及銅爲佳, 、鎳·鉻合金、鋁、鋅、金、銀及銅更佳,其 別佳。又,金屬膜層可爲單層或由相異的金屬 上所成的複層構造。 金屬膜層之層厚並無特別限制,以1 Onm-佳、20nm 〜2000nm 更佳、30nm 〜lOOOnm 又 〜500nm又再更佳、50nm〜400nm又進而更 300nm特別佳。層厚若過小,附金屬膜之薄膜 金屬膜中容易有裂隙,又在除膠渣步驟等中, 溶解,絕緣層表面會粗化。另一方面,層厚若 膜的形成需要長時間,成本花費高,在雷射力口 時間。 &lt;硬化性樹脂組成物層&gt; 本發明中的附金屬膜之接著薄膜乃在上述 薄膜的金屬膜層上再進一步具有形成有硬化性 層之構造者。意即,本發明中的附金屬膜之接 了支持體層、金屬膜層之外,進一步具有硬化 物層。又與附金屬膜之薄膜同樣地,以於支持 膜層間具有離型層者爲佳。附金屬膜之接著薄 化性樹脂組成物層中使用之硬化性樹脂組成物 丨溶體(合金 .去除難易性 :、鋁、鈴、 鉻、鎳、鈦 中又以銅特 積層2層以 、5 OOOnm 爲 更佳、5 0 n m 佳、5 0 n m〜 在製造後, 金屬膜層會 過大,金屬 工上也需要 附金屬膜之 樹脂組成物 著薄膜乃除 性樹脂組成 體層與金屬 膜中,於硬 ,若爲其硬 -54- 201202334 化物具有充分的硬度及絕緣性者,在使用上並無特別限定 ,其中以含有(a)環氧樹脂、(b)熱可塑性樹脂及(c )硬化劑者爲佳。其他,尙可使用上述所記載之橡膠粒子 、難燃劑、各種樹脂添加劑、馬來醯亞胺化合物、雙烯丙 基納德醯亞胺化合物、乙烯基苄基樹脂、乙烯基苄基醚樹 脂、雙馬來醯亞胺-三嗪樹脂、丙烯酸樹脂等。 (a )環氧樹脂方面,並無特別限制,可舉出雙酚A 型環氧樹脂、聯苯基型環氧樹脂、萘酚型環氧樹脂、萘型 環氧樹脂、雙酚F型環氧樹脂、含磷環氧樹脂、雙酚S型 環氧樹脂、脂環式環氧樹脂、脂肪族鏈狀環氧樹脂、苯酚 酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、雙酚A 酚醛清漆型環氧樹脂、具有丁二烯構造之環氧樹脂、環己 烷二甲醇型環氧樹脂、環氧丙基胺型環氧樹脂、雙酚的二 環氧丙基醚化物、萘二醇的二環氧丙基醚化物、苯酚類的 環氧丙基醚化物、及醇類的二環氧丙基醚化物以及此等之 環氧樹脂的烷基取代物、鹵化物及氫化物等。此等可使用 1種或組合2種以上使用之。 (a)環氧樹脂在此等之中,若從耐熱性、絕緣信賴 性、曲折性、與金屬膜之密著性之觀點來看,係以雙酚A 型環氧樹脂、萘酚型環氧樹脂、萘型環氧樹脂、聯苯基型 環氧樹脂、具有丁二烯構造之環氧樹脂爲佳。具體而言, 可舉出液狀雙酚A型環氧樹脂(日本環氧樹脂(股)製 「Epicoat 828EL」)、萘型2官能環氧樹脂(大日本油 墨化學工業(股)製「HP4032」、「HP4032D」)、萘型 -55- 201202334 4官能環氧樹脂(大日本油墨化學工業(股)製「HP4700 」)、萘酚型瓌氧樹脂(東都化成(股)製「esnmhv 」)、具有丁二烯構造之環氧樹脂(DAICEL化學工業( 股)製「PB-36 00」)、具有聯苯基構造之環氧樹脂(日 本化藥(股)製「NC300 0H」、「NC3000L」、日本環氧 樹脂(股)製「YX4000」)等。 該硬化性樹脂組成物中,硬化性樹脂組成物中之(a )成分的含量並無特別限定,但硬化性樹脂組成物中之( a)成分含量的上限値,若從防止薄膜可撓性減少之觀點 來看,對硬化性對樹脂組成物中之不揮發成分1〇〇質量% 而言,係以60質量%爲佳、50質量%更佳、40質量%又 更佳》另一方面,硬化性樹脂組成物中之(a )成分含量 的下限値,若以使絕緣層之玻璃轉移溫度向上提昇、使線 熱膨張率降低之觀點來看,對硬化性對樹脂組成物中之不 揮發成分1〇〇質量%而言,係以5質量%爲佳、10質量 %更佳、15質量%又更佳。 (b )熱可塑性樹脂方面,並無特別限制,可舉出苯 氧基樹脂、聚乙烯縮醛樹脂、聚醯亞胺樹脂、聚醯胺醯亞 胺樹脂、聚醚醯亞胺樹脂、聚颯樹脂、聚醚颯樹脂、聚苯 醚樹脂、聚碳酸酯樹脂、聚醚醚酮樹脂、聚酯樹脂等。此 等可使用1種或組合2種以上使用之。此等之中,若從可 賦予硬化物適度之可撓性的觀點來看,乃以苯氧基樹脂、 聚乙烯縮醛樹脂爲佳。 (b )熱可塑性樹脂係以玻璃轉移溫度爲80°C以上者 -56- 201202334 爲佳。在此所謂「玻璃轉移溫度」乃是根據JIS κ 7197 中記載之方法所決定。此外,玻璃轉移溫度乃較分解溫度 高,當實際上觀察不到玻璃轉移溫度時,係可將分解溫度 視爲本發明中的玻璃轉移溫度。此外,所謂分解溫度乃是 以根據JIS Κ 7120中記載之方法所測定下其質量減少率 爲5%時的溫度來定義。 (b)熱可塑性樹脂的重量平均分子量係以5000〜 200000之範圍者爲佳、10000〜150000之範圍者更佳、 15000〜100000之範圍者又更佳、20000〜80000之範圍者 又再更佳。若較此範圍小,則薄膜成型能或機械強度向上 的效果無法充分發揮,若較此範圍大,則與氰酸酯樹脂及 環氧樹脂的相溶性會降低,絕緣層表面粗化處理後之粗度 會增大。 此外,本發明中的重量平均分子量乃以膠體滲透層析 (GPC )法(以聚苯乙烯換算)所測定。GPC法所測得之 重量平均分子量,具體而言,係以(股)島津製作所製 LC-9A/RID-6A作爲測定裝置、以昭和電工(股)公司製 Shodex K-8 00P/K-804L/K-804L爲管柱,移動相方面則 使用氯仿等’以管柱溫度40°C進行測定,且使用標準聚苯 乙烯之檢量線來算出。 苯氧基樹脂方面,可舉出具有由雙酚A骨架、雙酚F 骨架、雙酚S骨架、雙酚苯乙酮骨架、酚醛清漆骨架、聯 苯基骨架、苐骨架、二環戊二烯骨架、降莰烯骨架、萘骨 架、蒽骨架、金剛烷骨架、萜烯骨架、三甲基環己烷骨架 -57- 201202334 所選出之1種以上的骨架者。苯氧基樹脂係可混合2種以 上使用。苯氧基樹脂之末端可爲苯酚性羥基、環氧基等任 —官能基。市售品方面,可舉例如日本環氧樹脂(股)製 1256、4250(含雙酚A骨架之苯氧基樹脂)、日本環氧 樹脂製YX8100 (含雙酚S骨架之苯氧基樹脂)、日本環 氧樹脂製YX6954 (含雙酚苯乙酮骨架之苯氧基樹脂)或 其他東都化成(股)製FX280、FX293、曰本環氧樹脂( 股)製 YL75 53 ' YL6954、YL6794、YL7213、YL7290、 YL7482 等。 聚乙烯縮醛樹脂之具體例方面,可舉出電氣化學工業 (股)製、Denka Butyral 4000-2、5000-A、6000-C、 6000-EP、積水化學工業(股)製S-LEC BH系列、BX系 列、KS系列、BL系列、BM系列等。 聚醯亞胺樹脂之具體例方面,可舉出新日本理化(股 )製的聚醯亞胺「RIKACOAT SN20」及「RIKACOAT PN20」。又可舉出使2官能性羥基末端聚丁二烯、二異 氰酸酯化合物及四元酸酐反應所得之線狀聚醯亞胺(特開 2006-3 7083號公報記載者)、含聚矽氧烷骨架之聚醯亞 胺(特開2002- 12667號公報、特開2000-3 1 93 86號公報 等中記載者)等之改性聚醯亞胺。聚醯胺醯亞胺樹脂之具 體例方面,可舉出東洋紡績(股)製的聚醯胺醯亞胺「 VYLOMAX HR1 1NN」及「VYLOMAX HR1 6NN」。又可舉 出,日立化成工業(股)製的含聚矽氧烷骨架之聚醯胺醯 亞胺「KS9100」、「KS9300」等之改性聚醯胺醯亞胺。 -58- 201202334 聚醚楓樹脂之具體例方面,可舉出住友化學(股)公司製 的聚醚楓「PES5003P」等。聚楓樹脂之具體例方面,可 舉出 SOLVAY Advanced Polymers (股)公司製的聚颯「 P1700」、Γ P3500」等。 該硬化性樹脂組成物中,(b)熱可塑性樹脂的含量 並無特別限定,但對該硬化性樹脂組成物中之不揮發成分 100質量%而言,較佳爲0.5〜20質量%,更佳爲1〜1〇 質量%。( b)熱可塑性樹脂之摻合比例若小於0.5質量 %時,因樹脂組成物黏度低,而難以形成均一的硬化性樹 脂組成物層,若超過20質量%時,因樹脂組成物的黏度 變得過高,而難以埋入基板上之配線圖型。 (c )硬化劑方面,並無特別限制,但可舉出胺系硬 化劑、胍系硬化劑、咪唑系硬化劑、含三嗪骨架之苯酚系 硬化劑、苯酚系硬化劑、含三嗪骨架之萘酚系硬化劑、萘 酚系硬化劑、酸酐系硬化劑或此等之環氧基加成物或微膠 囊化者、氰酸酯系硬化劑、活性酯系硬化劑、苯并噁嗪系 硬化劑等。從使鍍敷的剝離強度向上提昇之觀點來看,硬 化劑方面,係以分子構造中具有氮原子者爲佳,其中以、 含醯亞胺骨架之2官能苯酚、含三嗪骨架之苯酚系硬化劑 、含三嗪骨架之萘酚系硬化劑爲佳,特別是以含醯亞胺骨 架之2官能苯酚、含三嗪骨架之苯酚酚醛清漆樹脂爲佳。 此等可使用1種或組合2種以上使用之。 苯酚系硬化劑、含三嗪骨架之苯酚系硬化劑、萘酚系 硬化劑之具體例方面,可舉例如MEH-7700、MEH-7810、 -59- 201202334 MEH-7851 (B月和化成(股)製)、NHN、CBN、GPH (日 本化藥(股)製)、SN170 、 SN180 、 SN190 、 SN475 、 SN485、SN495、SN3 75、SN395 (東都化成(股)製)、 TD2090 、 LA7052 、 LA7054 、 LA3018 、 LA1356 (大日本 油墨化學工業(股)製)等。氰酸酯系硬化劑、活性酯系 硬化劑、苯并噁嗪系硬化劑方面,係可使用上述記載者。 (a)環氧樹脂的環氧基當量與(c)硬化劑的活性氫 當量之比係以(1:0.2)〜(1:2)爲佳、(1:0_3)〜 (1 : 1.5 )更佳、(1 : 0.4 )〜(1 : 1 )又更佳。當量比 若在上述範圍之外,則硬化物的機械強度或耐水性會降低 〇 該硬化性樹脂組成物中,從使該硬化性樹脂組成物更 具效率地硬化之觀點來看,係可含有(d)硬化促進劑。 (d)硬化促進劑方面,並無特別限定,可舉出金屬系硬 化促進劑、咪唑系硬化促進劑、胺系硬化促進劑、有機膦 化合物、有機鱗鹽化合物等。具體例方面,可使用上述記 載者。(d)硬化促進劑的含量係以使用上述記載之含量 爲佳。 該硬化性樹脂組成物中,爲了使由該硬化性樹脂組成 物所得之絕緣層的熱膨張率進一步降低,係可含有(e) 無機塡充材。無機塡充材方面,並無特別限制,但可舉出 二氧化矽、氧化鋁、硫酸鋇、滑石、黏土、雲母粉、氫氧 化鋁、氫氧化鎂、碳酸鈣、碳酸鎂、氧化鎂、氮化硼、硼 酸鋁、鈦酸鋇、鈦酸緦、鈦酸鈣、鈦酸鎂、鈦酸鉍、氧化 -60- 201202334 鈦、锆酸鋇、锆酸鈣等,其中以二氧化矽爲佳。此等之中 ,更以無定形二氧化矽、溶融二氧化矽、結晶二氧化矽、 合成二氧化矽、粉碎二氧化矽、中空二氧化矽、球狀二氧 化矽爲佳、溶融二氧化矽、球狀二氧化矽更佳。此等可使 用1種或組合2種以上使用之。 (e)無機塡充材的平均粒徑並無特別限定,若從可 朝絕緣層形成微細配線溝,使以雷射所致之加工性向上提 昇的觀點來看,係以5/zm以下爲佳、2.5//m以下更佳、 lym以下又更佳、〇.7&quot;m以下又再更佳、〇.5//m以下又 進而更佳、0.45/zm以下特別佳。又,(e)無機塡充材 的平均粒徑若過小,則使硬化性樹脂組成物作爲樹脂清漆 時,清漆的黏度會上昇,從防止操作性降低、使分散性向 上提昇的觀點來看,平均粒子徑係以0.02 a m以上者爲佳 、0.05/zm以上者更佳、0.1/zm以上者又更佳、0.2/zm 以上者又再更佳。 (e)無機塡充材的平均粒徑係得以基於米氏(Mie) 散射理論之雷射繞射·散射法來進行測定。具體而言,乃 藉由雷射繞射式粒度分佈測定裝置,以體積基準製成無機 塡充材的粒度分佈,取其中位數徑作爲平均粒徑來進行測 定。測定樣本較佳係使用以超音波使無機塡充材分散於水 中者。雷射繞射式粒度分佈測定裝置方面,可使用(股) 堀場製作所製 LA-500等。 (e)無機塡充材的添加量之上限値,從防止硬化物 變脆、避免硬化性樹脂組成物的密著強度降低之觀點來看 -61 - 201202334 ,當硬化性樹脂組成物中之不揮發成分爲100質量%時, 係以70質量%以下爲佳、65質量%以下更佳、60質量% 以下又更佳、55質量%以下又再更佳、50質量%以下特 別佳。另一方面,無機塡充材的添加量之下限値,從降低 絕緣層之熱膨張率的觀點來看,當硬化性樹脂組成物中之 不揮發成分爲100質量%時,係以5質量%爲佳、10質 量%更佳、20質量%又更佳、30質量%又再更佳、40質 量%又進而更佳、5 0質量%特別佳。 (e)無機塡充材係以矽烷系耦合劑、丙烯酸酯系矽 烷耦合劑、硫化物系矽烷耦合劑、乙烯基系矽烷耦合劑、 毓基矽烷系耦合劑、苯乙烯基系矽烷耦合劑、異氰酸酯系 矽烷耦合劑、有機矽氮化合物、環氧基矽烷耦合劑、胺基 矽烷耦合劑、脲基系矽烷耦合劑、鈦酸酯系耦合劑等之表 面處理劑予以表面處理而使其耐濕性、分散性向上提昇者 爲佳。此等可使用1種或組合2種以上使用之。表面處理 劑方面,可舉出3-胺基丙基三甲氧基矽烷、3-胺基丙基三 乙氧基矽烷、3·胺基丙基二乙氧基甲基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、N-甲基胺基丙基三甲氧基矽烷、 N-2 (-胺基乙基)-3-胺基丙基三甲氧基矽烷、N-( 2-胺基 乙基)-3-胺基丙基二甲氧基甲基矽烷等之胺基矽烷系耦 合劑;3-脲基丙基三乙氧基矽烷等之脲基系矽烷耦合劑; 3-環氧丙基氧基丙基三甲氧基矽烷、3-環氧丙基氧基丙基 三乙氧基矽烷、3-環氧丙基氧基丙基甲基二乙氧基矽烷、 3-環氧丙基氧基丙基(二甲氧基)甲基矽烷、環氧丙基丁 -62- 201202334 基三甲氧基矽烷' 2- (3,4-環氧基環己基)乙基 矽烷等之環氧基矽烷系耦合劑;3-毓基丙基三甲 、3-锍基丙基三乙氧基矽烷、3-锍基丙基甲基二 烷、11-锍基十一基三甲氧基矽烷等之锍基矽烷 :甲基三甲氧基矽烷、十八烷基三甲氧基矽烷、 氧基矽烷、甲基丙烯醯氧基丙基三甲氧基矽烷、 、三嗪矽烷、t-丁基三甲氧基矽烷等之矽烷系耦 烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、乙烯 乙氧基矽烷等之乙烯基系矽烷耦合劑;p-苯乙烯 基矽烷等之苯乙烯基系矽烷耦合劑;3-丙烯醯氧 甲氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽 基丙烯醯氧基丙基二甲氧基矽烷、3-甲基丙烯醯 三乙氧基矽烷、3 -甲基丙烯醯氧基丙基二乙氧基 丙烯酸酯系矽烷耦合劑:3-異氰酸酯丙基三甲氧 之異氰酸酯系矽烷耦合劑;雙(三乙氧基矽基丙 化物、雙(三乙氧基矽基丙基)四硫化物等之硫 烷耦合劑;六甲基二矽氮、1,3-二乙烯基-1,1,3, 二矽氮、六苯基二矽氮' 三矽氮、環三矽氮、2, 六甲基環三矽氮、八甲基環四矽氮、六丁基二矽 基二矽氮、1,3-二乙基四甲基二矽氮、1,3-二-n-基二矽氮、1,3-二苯基四甲基二矽氮、1,3-二甲 二矽氮、1,3-二乙基四甲基二矽氮、1,1,3,3-四 二甲基二矽氮、1,3-二丙基四甲基二矽氮、六甲 氮、二甲基胺基三甲基矽氮、四甲基二矽氮等之 三甲氧基 氧基矽烷 甲氧基矽 系耦合劑 苯基三甲 咪唑矽烷 合劑;乙 基甲基二 基三甲氧 基丙基三 烷、3-甲 氧基丙基 矽烷等之 基矽烷等 基)二硫 化物系矽 ,3-四甲基 2,4,4,6,6- 氮、六辛 辛基四甲 基四苯基 苯基-1,3-基環三矽 有機矽氮 -63- 201202334 化合物;四-η-丁基鈦酸酯二聚物、鈦-i-丙氧基辛乙醇酸 鹽、四-η-丁基鈦酸酯、鈦辛乙醇酸鹽、二異丙氧基雙( 三乙醇胺酸)鈦、二羥基雙乳酸鈦、二羥基雙(乳酸銨) 鈦、雙(二辛基焦磷酸)乙烯鈦酸酯、雙(二辛基焦磷酸 )氧基醋酸酯鈦酸酯、三-η-丁氧基單硬脂酸鈦、四-η-丁 基鈦酸酯、四(2-乙基己基)鈦酸酯、四異丙基雙(二辛 基亞磷酸酯)鈦酸酯、四辛基二(雙十三基亞磷酸酯)鈦 酸酯、四(2,2-二烯丙基氧基甲基-1-丁基)二(雙十三基 )亞磷酸酯鈦酸酯、異丙基三辛醯基鈦酸酯、異丙基三異 苯丙基苯基鈦酸酯、異丙基三異硬脂醯基鈦酸酯、異丙基 異硬脂醯基二丙烯基鈦酸酯、異丙基二甲基丙烯基異硬脂 醯基鈦酸酯、異丙基三(二辛基磷酸)鈦酸酯、異丙基 參-十二基苯磺醯基鈦酸酯、異丙基參(二辛基焦磷酸) 鈦酸酯、異丙基三(Ν-醯胺乙基•胺基乙基)鈦酸酯等之 鈦酸酯系耦合劑等。 該硬化性樹脂組成物雖無特別的限制,但以含有(a )成分爲佳、又以含有(a)成分及(b)成分更佳、含有 (a)成分及(b)成分及(c)成分又更佳、含有(a)成 分及(b)成分及(c)成分及(d)成分又再更佳。 本發明之樹脂組成物的調製方法並無特別限定,可舉 例如將摻合成分,必要時添加溶劑等,使用旋轉混合機等 進行混合之方法等。其中,從有效地分散無機塡充材之觀 點來看,係以藉由高壓均質機來進行分散處理爲佳》 樹脂組成物雖可全部以高壓均質機來進行分散處理, -64- 201202334 但從使處理時間縮短的觀點來看,乃以將一部份的樹脂組 成物調製成懸濁液,再將其以高壓均質機分散處理’之後 將剩餘的樹脂組成物另外予以混合、攪拌而調製成樹脂組 成物清漆爲佳。又,以高壓均質機所行之分散處理中,因 組成物的溫度會上昇,殘餘的樹脂組成物方面,乃以環氧 硬化劑等亦受溫度影響之成分經高壓均質機進行分散處理 後予以添加則更佳。 本發明中,調製懸濁液時,係可使用公知的攪拌加熱 溶解裝置,但爲了更快使其均一地溶解,係可使用備有均 質器或分散翼等之高速旋轉翼的攪拌加熱溶解裝置爲佳。 攪拌加熱溶解裝置之具體例方面,可舉出 T.K.HOMOMIXER、T.K.HOMODISPER、T.K.Combi Mix、 T.K.HIVIS DISPER MIX、(以上爲 PRIMIX (股)製 商品名)、CLEARMIX ( M TECHNIQUE (股)製商品 名)、真空乳化攪拌裝置(MIZUHO工業(股)製 商 品名)、真空混合裝置「NERIMAZE DX」(MIZUHO工 業(股)製-商品名)、:BDM2軸MIXER、CDM同芯2 軸MIXER、PD MIXER (以上爲(股)井上製作所製 商 品名)。攪拌溫度會因使用的溶劑而異,但以3 0 °C〜8 0 °C 之範圍施行爲佳。懸濁液的黏度係以10〜lOOOmP a. s爲佳 ' 100〜500mPa‘s更佳。黏度高的話,由於該液的黏度會 抑制衝突部位之粒子的擴散,整體而言會有分散不均一的 傾向。此外,黏度可以E型黏度計等之旋轉黏度計進行測 定。懸濁液中之無機塡充材的含量對懸濁液i 〇〇質量%而 -65- 201202334 言,係以30〜60質量%者爲佳、40〜60質量%者更佳。 若低於30質量%,則無機塡充材的粒子彼此衝突的機會 會減少,無法獲得充分的剪切力,導致以高壓均質機所進 行之分散處理不足》若超過60質量%,則衝突部位之單 位面積下衝突之無機塡充材的量變多,在以高壓均質機所 進行之分散處理不足的同時,高壓均質機之衝突部位的磨 損會變得更爲激烈。 如上述所調製的懸濁液,乃可藉由高壓均質機行分散 處理。所謂高壓均質機乃是指將原料加壓至高壓,利用抽 除細縫(間隙)時的剪切力來進行粉碎•分散·乳化之裝 置。高壓均質機方面,可舉出無機塡充材因高壓而衝突之 部分的材質爲鎢碳化物製、或鑽石製,乃因可避免衝突磨 損所致的異物混入而較佳。此外,因以高壓均質機之處理 非以批次式分散方式,而是以連續分散方式進行之故,而 使生產性向上提昇,同時可減低有機溶劑蒸氣散發的風險 ,亦可減低對成本面、環境面的負擔。高壓均質機之具體 例方面,可舉出工程(股)製高壓均質機、(股)IZUMI FOOD MACHINERY製高壓均質機、Niro Soavi 公司(義 大利)製高壓均質機等。高壓均質機的分散壓力以10〜 300MPa爲佳、15〜lOOMPa更佳、20〜60MPa又更佳°分 散壓力若過低,則分散處理會不充分,但若過高,則懸濁 液的液溫會上昇,懸濁液中的成分會反應,無機塡充材的 形狀會變化。爲了抑制懸濁液中的成分反應,乃以使分散 處理後的液溫在60°C以下者爲佳。又,分散處理後係以使 -66 - 201202334 用冷卻裝置,快速地將液溫降至40°C以下爲佳。 將以高壓均質機所分散處理的懸濁液與作爲殘留之樹 脂組成物的環氧硬化劑等易受溫度影響之成分混合的裝置 方面,可使用例如具備有分散翼、渦輪翼、明輪翼、螺槳 翼、固定錨翼等公知的攪拌混合裝置。攪拌混合裝置之具 體例方面,可舉出 PLANETARY MIXER、TRI-MIX、 BUTTERFLY MIXER (以上爲(股)井上製作所製 商品 名)、VMIX 攪拌槽、MAXBLEND、SWIXE RMIXING SYSTEM (以上爲(股)IZUMI FOOD MACHINERY 製 商品名)、Hi-FMIXER (綜硏TECNIX (股)製 商品名 )、JET AJITER ((股)島崎製作所製 商品名)等。 又可使用上述說明之攪拌加熱溶解裝置,且能以一般的攪 拌操作進行。 爲了去除樹脂組成物清漆中之異物及無機塡充材的2 次凝聚物等,係可於以高壓均質機分散處理後,將樹脂組 成物清漆進行過濾處理爲佳。過濾方法係可使用公知的方 法。例如,將樹脂組成物清漆以定量泵浦輸送液體,單獨 或連續使其通過卡式濾心過濾器、膠囊式濾心過濾器等來 進行過濾。此時的過濾壓力(差壓)爲避免撐開過濾器網 目而較佳以使其爲〇.4MPa以下。又,定量泵浦係可使用 公知的,但爲了保持一定的過濾壓力,係以脈動少者爲佳 。過爐的網目大小係以〜30/zm爲佳。 此外,硬化性樹脂組成物層可爲在薄片狀纖維基材中 含浸上述硬化性樹脂組成物之預浸體。薄片狀纖維基材方 -67- 201202334 面,可使用例如玻璃布料或醯胺纖維等常用爲預浸體用纖 維者。預浸體係使硬化性樹脂組成物藉由加熱熔融法或溶 劑法含浸於薄片狀纖維基材中,且藉由加熱使其半硬化而 得以形成。此外,加熱熔融法並不使樹脂組成物溶解於有 機溶劑中,而是使樹脂組成物暫時塗佈於與樹脂組成物剝 離性佳的塗佈紙,並將其積層於薄片狀纖維基材上,或是 藉由狹縫式塗佈機直接塗佈等,來製造預浸體之方法。又 ,溶劑法乃於將樹脂組成物溶解於有機溶劑所得之清漆中 浸漬薄片狀纖維基材,使清漆含浸於薄片狀纖維基材中, 之後使其乾燥的方法。 本發明中使用的附金屬膜之接著薄膜中,硬化性樹脂 組成物層之厚度雖因內層電路導體層之厚度等而異,但從 在層間之絕緣信賴性向上提昇等之觀點來看,係以1 0〜 150ym爲佳、15〜80/im更佳。 &lt;附金屬膜之薄膜及附金屬膜之接著薄膜的製造方法&gt; 本發明中使用的附金屬膜之薄膜及附金屬膜之接著薄 膜的製造方法並無特別限制,但以下述之方法爲佳。 附金屬膜之薄膜,例如於支持體層上形成金屬膜層。 設有離型層時,先形成此等金屬層,再於支持體層表面形 成離型層,並於離型層表面形成金屬膜層。 離型層之形成方法並無特別限定,可採用熱施壓、熱 輥積層、押出積層、塗佈液之塗佈·乾燥等之公知的積層 方法,但從簡便、容易形成性狀均一性高的層等之點來看 -68- 201202334 ,係以塗佈含離型層中使用之材料的塗佈液,並予以乾燥 之方法爲佳。 金屬膜層之形成係以由蒸鍍法、濺鍍法及離子鍍法選 出之1種以上的方法所形成者爲佳,特別是以藉由蒸鍍法 及/或濺鍍法所形成者爲佳。此等之方法可組合使用,亦 可以單獨使用任一方法。 蒸鍍法(真空蒸鍍法)係可使用公知的方法,例如, 可將支持體置入真空容器內,藉由使金屬加熱蒸發而於支 持體上(具有離型層時則於離型層上)進行膜之形成。 濺鍍法也可使用公知的方法,例如,可將支持體置入 真空容器內,導入氬等之惰性氣體,施加直流電壓後,使 離子化之惰性氣體對靶材金屬衝突,藉由被敲出的金屬而 於支持體上(具有離型層時則於離型層上)進行膜之形成 〇 離子鏟法也可使用公知的方法,例如,可將支持體置 入真空容器內,於輝光放電氛圍下,使金屬加熱蒸發,藉 由已離子化之蒸發金屬而於支持體上(具有離型層時則於 離型層上)進行膜之形成。 附金屬膜之接著薄膜,係可於附金屬膜之薄膜的金屬 膜層之形成步驟後,在金屬膜層表面形成硬化性樹脂組成 *物層而得以製造。硬化性樹脂組成物層之形成方法係可使 用公知的方法,例如,調製於有機溶劑中溶解樹脂組成物 所成之樹脂清漆,將此樹脂清漆利用狹縫式塗佈機等,塗 佈於附金屬膜之薄膜的金屬膜層上,再藉由加熱或是熱風 -69 - 201202334 吹拂等使有機溶劑乾燥而形成樹脂組成物層,來予 0 有機溶劑方面,可舉例如丙酮、甲基乙基酮、 等之酮類;醋酸乙基酯、醋酸丁基酯、賽珞蘇醋酸 二醇單甲基醚醋酸酯、卡必醇醋酸酯等之醋酸酯類 蘇、丁基卡必醇等之卡必醇類;甲苯、二甲苯等之 烴類;二甲基甲醯胺、二甲基乙醯胺、N-甲基吡咯 。有機溶劑可使用1種或組合2種以上使用之。 乾燥條件並無特別限定,但樹脂組成物層中之 劑的含量係以10質量%以下者爲佳、5質量%以 佳。清漆中之有機溶劑的量雖因有機溶劑的沸點而 以使含有30〜60質量%之有機溶劑的清漆於50〜 下乾燥3〜10分鐘來形成樹脂組成物層爲佳。 又附金屬膜之接著薄膜,係除附金屬膜之薄膜 製作於支持體上形成硬化性樹脂組成物層之接著薄 使該附金屬膜之薄膜及該接著薄膜,以與金屬膜層 性樹脂組成物層接觸之方式在加熱條件下貼合的方 作。又,硬化性樹脂組成物層爲預浸體時,乃可將 藉由例如真空積層法來積層於支持體層上。接著薄 藉由公知的方法來製造。接著薄膜之支持體層及硬 脂組成物層方面,係與前述相同。 貼合係以熱施壓、熱輥等進行加熱壓著。加熱: 以60〜140°C爲佳、更佳爲80〜120°C。壓著壓力係 111{20。1112(9.8\104〜107.9父1041^/1112)之範圍爲佳 以製造 環己酮 酯、丙 :賽珞 芳香族 啶酮等 有機溶 下者更 異,但 ^ 1 5 0 °C 外,乃 膜,且 及硬化 法來製 預浸體 膜係可 化性樹 溫度係 以1〜 -70- ,2〜 201202334 7kgf/cm2 ( 19.6xl04 〜68.6xl04N/m2 )之範圍更佳。 &lt;使用附金屬膜之薄膜或附金屬膜之接著薄膜的多層印刷 配線板的製造方法&gt; 可使用如上述施行而製造的附金屬膜之薄膜或附金屬 膜之接著薄膜,來製造多層印刷配線板。其方法之一例係 說明於下。 此外,所謂「內層電路基板」,乃具有可於玻璃環氧 基板、金屬基板、聚酯基板、聚醯亞胺基板、BT樹脂基 板、熱硬化型聚苯醚基板的單一面或兩面經圖型加工之導 體層者,甚至是指應形成有絕緣層及導體層之中間製造物 〇 使用附金屬膜之接著薄膜時,係可將硬化性樹脂組成 物層作爲接著面,而積層於內層電路基板上。另一方面, 使用附金屬膜之薄膜時,金屬膜層係以與附金屬膜之薄膜 接於存在內層電路基板間之硬化性樹脂組成物層的表面來 重疊積層。對內層電路基板上之硬化性樹脂組成物層的形 成係可使用公知的方法,例如,將於如上述之支持體層上 形成有硬化性樹脂組成物層之接著薄膜積層於內層電路基 板上,並藉由去除支持體層,而可使硬化性樹脂組成物層 形成於內層電路基板上。接著薄膜之積層條件係與後述之 附金屬膜之接著薄膜等的積層條件相同。又使用預浸體作 爲硬化性樹脂組成物層時,係可在將重疊單一預浸體或複 數片的預浸體而多層化之多層預浸體積層於基板上所得之 -71 - 201202334 積層體其單一面或兩面之表面層的預浸體上,以使附金屬 膜之薄膜的金屬膜層接於預浸體表面之方式重疊而予以積 層。 附金屬膜之接著薄膜及附金屬膜之薄膜的積層,若由 作業性及容易獲得一樣的接觸狀態之點來看,乃以輥或施 壓壓著等將薄膜積層於被附著體表面。其中,藉由真空積 層法於減壓下進行積層爲佳。又,積層之方法係可以批次 式或以滾筒所行之連續式來爲之。 加熱溫度係以 60〜140°C爲佳、更佳爲 80〜120°C。 壓著壓力係以 1〜llkgf/cm2 ( 9·8χ104 〜107.9xl04N/m2) 之範圍爲佳、2〜718〇。1112(19.6\104〜68.6&lt;104&gt;^/1112)之 範圍特別佳。以空氣壓20mmHg ( 26.7hPa )以下之減壓下 予以積層者爲佳。 真空積層係可使用市售的真空積層機予以進行。市售 的真空積層機方面,可舉例如(股)名機製作所製批次 式真空加壓積層機 MVLP-500、Nichigo-Morton (股)製 VACUUM APPLICATOR、(股)曰立 Industrials 製滾筒 式乾式塗佈機、日立AIC (股)製真空積層機等。 又,於減壓下進行加熱及加壓之積層步驟,乃可使用 一般的真空熱壓機來進行。例如,可藉由將經加熱之SUS 板等之金屬板由支持體層側予以施壓來進行。 施壓條件係以使減壓度爲lxl(T2MPa以下者佳、爲1 xlO'3MPa以下者更佳。加熱及加壓以1階段進行即可, 但從控制樹脂滲出之觀點來看,以2階段以上分條件來進 -72- 201202334 行爲佳。例如,使第1階段的施壓以溫度爲70〜150。(:、 壓力爲1〜1 5kgf/cm2之範圍,而使第2階段的施壓以溫 度爲150〜200°C、壓力爲1〜40kgf/cm2之範圍來進行爲 佳。各階段的時間係以30〜120分鐘來實施爲佳。市售的 真空熱壓機方面,可舉例如MNP C-V-7 5 0-5-200 (股)名 機製作所製)、VH 1 - 1 603 (北川精機(股)製)等。 將附金屬膜之接著薄膜或附金屬膜之薄膜積層於內層 電路基板後,使硬化性樹脂組成物層硬化並形成絕緣層。 硬化條件雖因硬化性樹脂的種類等而異,但以硬化溫度爲 120〜200t、硬化時間爲15〜90分鐘者爲佳。此外,從 防止所形成的絕緣層表面皺折之觀點來看,乃以使其從比 較低的硬化溫度往高硬化溫度之階段性的硬化,或邊使其 溫度上昇邊使其硬化爲佳。 支持體層之去除,一般可以手動或自動剝離裝置藉由 機械性地剝離來予以實施。將金屬箔使用於支持體層時, 係可藉由蝕刻來去除支持體層。支持體層係以於硬化性樹 脂組成物層之硬化處理而形成絕緣層後去除爲佳。使支持 體層於硬化處理前去除時,金屬膜層無法充分地密著,甚 或於硬化性樹脂組成物層之硬化後在金屬膜層上會產生龜 裂。 支持體層與金屬膜層間存在有離型層,去除支持體層 後’離型層殘存於金屬膜層上時,乃去除離型層。支持體 層及/或離型層的去除,係可於以雷射形成配線溝之步驟 前或後進行均可,但以在雷射形成配線溝之步驟前進行爲 -73- 201202334 佳。離型層之去除,若爲金屬離型層,係以藉由溶解金屬 之蝕刻液來去除爲佳,若爲水溶性高分子離型層,則以水 溶液去除爲佳。 此外,離型層方面,當採用由水溶性纖維素樹脂、水 溶性丙烯酸樹脂及水溶性聚酯樹脂所選出之1種以上所構 成之水溶性高分子樹脂來作爲離型層時,用爲溶解去除該 離型層的水溶液方面,’較佳可舉出使碳酸鈉、碳酸氫鈉、 氫氧化鈉、氫氧化鉀等以0.5〜10質量%之濃度溶解於水 中所成之鹼性水溶液等。在電路基板等之製造上不會有問 題的範圍下,係可於水溶液中含有甲醇、乙醇、異丙基醇 等之醇。溶解去除之方法並無特別限定,可舉例如剝離支 持體層後,於水溶液中使基板浸水而溶解去除之方法、呈 噴霧狀或霧狀吹拂水溶液來溶解去除之方法等。水溶液的 溫度以室溫〜80°C爲佳,藉由浸水、吹拂等之水溶液進行 時,處理時間係以1 0秒〜1 0分鐘爲佳。鹼性水溶液方面 ,可使用多層印刷配線板製造中所使用之鹼顯影機的鹼型 顯影液(例如,0.5〜2質量%之碳酸鈉水溶液、25 °C〜40 °C )、乾式薄膜剝離機之剝離液(例如,1〜5質量%之 氫氧化鈉水溶液、40〜60 °C )、除膠渣步驟中使用的膨潤 液(例如,含碳酸鈉、氫氧化鈉等之鹼水溶液、60〜80t )等。 在絕緣層上形成金屬膜層,且從金屬膜層上部進行雷 射照射,係可形成微細配線溝。而且,也可使用雷射來形 成通孔。再者,藉由在絕緣層中含有平均粒徑0.02〜5 -74- 201202334 之無機塡充材,可更容易地形成微細配線溝。本發明 之方法中,當支持體層爲塑膠薄膜時,可在去除支持體層 之前從支持體層上,或是在去除支持體層之後從金屬膜層 上使用雷射而於絕緣層上形成微細配線溝,但從防止加工 速度變慢之觀點來看,係以在去除支持體層之後從金屬膜 層上使用雷射而於絕緣層上形成微細配線溝者爲佳。又, 可於支持體層去除後殘存離型層時,係可從離型層上使用 雷射而於絕緣層上形成微細配線溝。離型層因厚度薄,對 加工速度的影響較小。雷射加工機方面,.一般可使用碳酸 氣體雷射、UV-YAG雷射、準分子雷射等。 爲了使雷射加工性向上提昇,係可於離型層中含有雷 射吸收性成分,可提昇加工速度。雷射吸收性成分方面, 可舉出金屬化合物粉、碳粉、金屬粉、黑色染料等。雷射 能吸收性成分的摻合量,在構成離型層之全成分中,係以 0.05〜40質量%爲佳、0.1〜20質量%更佳、1〜1〇質量 %又更佳。例如,於由水溶性高分子樹脂所形成之離型層 中含有該成分時,使水溶性高分子樹脂及含該成分之全體 的含量爲100質量%時,乃以上述含量進行摻合爲佳。碳 粉方面’可舉出爐黑、槽製碳黑、乙炔黑、熱裂解碳黑、 蒽黑等之碳黑之粉末、石墨粉末或此等之混合物的粉末等 。金屬化合物粉方面’可舉出氧化鈦等之氧化鈦類、氧化 鎂等之氧化鎂類、氧化鐵等之鐵氧化物、氧化鎳等之鎳氧 化物、二氧化錳、氧化鋅等之鋅氧化物、二氧化矽、氧化 鋁、稀土類氧化物、氧化鈷等之鈷氧化物、氧化錫等之錫 -75- 201202334 氧化物、氧化鎢等之鎢氧化物、碳化矽、碳化鎢、氮化硼 、氮化砂、氮化鈦、氮化鋁、硫酸鋇、稀土類酸硫化物或 此等之混合物的粉末等。金屬粉方面,可舉出銀、鋁、鉍 、銘、銅、鐵、鎂、錳、鉬、鎳、鈀、銻、矽、錫、鈦、 帆、鎢、鋅、或此等之合金或是混合物的粉末等。黑色染 料方面’可舉出偶氮(單偶氮、雙偶氮等)染料、偶氮一 次甲基染料、蒽醌系染料、唾啉染料、酮亞胺染料、螢光 酮染料、硝基染料、二苯并哌喃染料、乙烷合萘染料、喹 啉黃染料、胺基酮染料、次甲基染料、茈染料、香豆素染 料、紫環酮染料'三笨基染料、三烯丙基甲烷染料、酞青 素染料、油墨苯酸染料、叱曝染料或此等之混合物等。黒 色染料方面’乃爲了使對水溶性高分子樹脂中的分散性向 上提昇’而以溶劑可溶性之黑色染料爲佳。此等雷射能吸 收性成分係可各自單獨使用,亦可混合不同種類而使用。 雷射能吸收性成分若從雷射能往熱之轉換效率或其泛用性 等之觀點來看,係以碳粉爲佳,特別是以碳黑爲佳。 本發明之方法中,係可進一步進行除膠渣步驟。在使 用雷射而形成配線溝後,係以進行除膠渣步驟爲佳。除膠 渣步驟乃可藉由電漿等之乾式法、鹼性過錳酸溶液等之氧 化劑處理的濕式法等公知的方法來實施。除膠渣步驟主要 是去除因盲孔之形成或配線溝之形成所產生的樹脂殘渣之 步驟,乃可進行通孔或配線溝之壁面的粗化。特別是以氧 化劑所行之除膠渣,因是在去除通孔底或配線溝的污跡之 同時,使通孔壁面以氧化劑粗化,且可使鍍敷密著強度向 -76- 201202334 上提昇之點來看而較佳。以氧化劑所行之除膠渣步驟,係 依序施以膨潤液進行膨潤處理、以氧化劑進行粗化處理及 以中和液進行中和處理爲佳。膨潤液方面可舉出鹼溶液、 界面活性劑溶液等,較佳爲鹼溶液,該鹼溶液方面,可舉 例如氫氧化鈉溶液、氫氧化鉀溶液等。市售的膨潤液方面 ,可舉例如 ATOTECH JAPAN (股)製的 Swelling Dip Securiganth P、Swelling Dip Securiganth SBU 等。氧化劑 方面,可舉例如在氫氧化鈉的水溶液中溶解有過錳酸鉀或 過錳酸鈉之鹼性過錳酸溶液。鹼性過錳酸溶液等之氧化劑 所行的粗化處理,係以於加熱至60°C〜80°C之氧化劑溶 液中花10分鐘〜30分鐘來進行爲佳。又,鹼性過錳酸溶 液中過錳酸鹽之濃度一般爲5〜10重量%左右。市售的氧 化劑方面,可舉例如 ATOTECH JAPAN (股)製的 Concentrate Compact CP、Dosing solution Securighanth P 等之鹼性過錳酸溶液。又,中和液方面,係以酸性的水溶 液爲佳,市售品方面,可舉出ATOTECH JAPAN (股)製 的 Reduction solution Securighanth P (中和液)。 本發明之方法中,更可進一步進行無電解鍍敷步驟。 係以在除膠渣步驟後進行無電解鍍敷步驟爲佳。藉由無電 解鍍敷步驟,係可於絕緣層表面形成無電解鍍敷層。無電 解鍍敷步驟係可藉由公知的方法來進行,例如,可藉由界 面活性劑等來處理絕緣層表面,在賦予鈀等之鑛敷觸媒後 ,以含浸於無電解鍍敷液中來形成無電解鍍敷層。 本發明之方法中,係可進一步進行電解鍍敷步驟。係 -77- 201202334 以無電解鍍敷步驟後進行電解鍍敷步驟爲佳。藉由電解鍍 敷步驟係可形成導體層。電解鍍敷步驟可以公知的方法來 進行,例如,於絕緣層上形成無電解鍍敷層(鍍敷種子層 )0.1〜2/zm後,藉由電解鍍敷而形成導體層。導體層以 銅爲佳,其厚度雖會因雷射加工之溝的深度以及所形成之 配線溝的高度而異,但以3〜35/ίΐη爲佳、5〜25/^m更 佳。 本發明之方法中,可更進一步進行去除導體層之步驟 。以電解鍍敷步驟後進行去除導體層之步驟爲佳。藉由無 電解鍍敷步驟及電解鍍敷步驟,乃因絕緣層表面全體會形 成銅層,故以使絕緣層露出至表面爲止來進行去除表面之 導體層的步驟,而可形成溝型的配線》將溝型電路基板的 模式圖顯示於圖1。去除表面之導體層的步驟可藉由公知 的方法來進行,例如,可以機械硏磨及/或藉由使銅溶解 之溶液予以蝕刻去除來進行。 [實施例] 以下乃是使用實施例以更加詳細地說明本發明,但本 發明非受限於此等之實施例者。此外,以下之記載中,「 份j意指「質量份」。 &lt;測定方法.評價方法&gt; 首先,乃就各種測定方法·評價方法進行說明。 -78- 201202334 &lt; MIT耐折性的測定及評價&gt; 使實施例及比較例中所製成的接著薄膜以190 °C、90 分鐘之條件予以硬化,使用裁切器作成5根110mm&gt;&lt;15mm 之評價用樣本。使用(股)東洋精機製作所製、MIT耐折 疲勞試驗機「ΜΙΤ-DA」,以JIS C-5016爲依據,設定荷 重2.5N、曲折角度135度、曲折速度175次/分鐘、曲 率半徑0.38mm來進行MIT耐折性試驗,並測定耐折次數 。求取5根評價用樣本之耐折次數的平均値。MIT耐折性 ,若耐折次數低於50次時評價爲「X」、50次以上且低 於100次時評價爲「△」、100次以上且低於200次時評 價爲「〇」、2 00次以上且低於300次時評價爲「◎」、 3 0 0次以上時則評價爲「◎〇j 。 &lt;積層性之評價&gt; 將實施例及比較例中所製作的接著薄膜,使用批次式 真空加壓積層機MVLP-5 00 (名機(股)製商品名),以 導體厚3 5 // m積層於L (線:配線寬幅)/ S (空間:間 隔寬幅)=160#m/160/zm之柵齒狀的導體圖型上。積 層係以30秒鐘減壓而使氣壓爲13hPa以下,之後藉由以 30秒鐘、1 00°C、壓力0.74MPa進行施壓來進行。檢査積 層後樹脂組成物層之外觀。又,從經積層的接著薄膜剝離 PET薄膜,且以180°C、30分鐘的硬化條件來硬化樹脂組 成物,形成絕緣層,而絕緣層上的凹凸差(Rt :最大 peak-to-valley)之値係使用非接觸型表面粗度計(Veeco -79- 201202334(10) (In the formula (10), η represents a number of 0 to 5 of the average enthalpy [(Ε) hardening accelerator] In the resin composition of the present invention, from the viewpoint of hardening the resin ratio, The present invention is not particularly limited, and may be a chemical accelerator, an imidazole-based hardening accelerator, an amine-based hardening accelerator compound, an organic iron salt compound, etc. In terms of a metal-based hardening accelerator, Specific examples of the organometallic complex of a metal such as cobalt, copper, manganese or tin, or a metal complex of the metal complex, may be exemplified by an organic cobalt complex such as cobalt (III) ethylene-co-pyruvate (III). Organic copper complex of (II), etc. 'Organic nickel complex of zinc, such as zinc complex, iron (II) ethylene pyruvate, etc. In terms of β-organic metal salts such as organic ramicides, tin octylate, zinc naphthenate, cobalt naphthenate, and tin stearate. In terms of metal-based hardening accelerators, it is hardened and melted. 'It is a more effective hardening accelerator for the composition of cobalt (II) ethylene vinylacetonate and ethylene acetone. Agent, organic phosphine, ferrous, iron, nickel metal salts, organic iron complexes such as cobalt (II) organic acid (II), copper ethylene acetonate II), manganese acetylacetonate (II may be exemplified by zinc octoate, stearic acid) From the viewpoint of solubility of zinc, etc., cobalt (III), -25- 201202334, zinc (II) ethylene pyruvate, zinc naphthenate, iron (III) ethylene pyruvate, especially cobalt (II) ethylene pyruvate, Zinc naphthenate is preferred. These may be used alone or in combination of two or more. In order to harden the epoxy resin and the cyanate-based curing agent more efficiently, it is preferred to use a metal-based curing accelerator. When the amount of the metal-based hardening accelerator added is 1% by mass, the metal content of the metal-based hardening accelerator is preferably in the range of 25 to 500 ppm, and preferably in the range of 40 to 200 ppm. More preferably, when it is less than 25 ppm, it is difficult to form a conductor layer which is excellent in adhesion to the surface of the low-thickness insulating layer, and if it exceeds 500 ppm, the storage stability and insulation of the resin composition are lowered. The tendency to be an imidazole-based hardening accelerator 2-Methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole , 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole , 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyano Ethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole pyromellitate, 1-cyanoethyl-2-phenylimidazolium pyromellitate, 2, 4-Diamino-6-[2'-methylimidazolyl-(indenyl)]-ethyl-s-triazine, 2,4-diamino-6-[ 2'-undecyl imidazolyl- (1')]-Ethyl-3-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1,)]-ethyl-s- Triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1,)]-ethyl-s-triazine isocylate cyanide, 2-phenylimidazole Cyanuric acid adduct, 2-phenyl-4,5-dihydroxymethyl-26- 201202334 imidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro- 1H-pyrrole [l,2-a]benzene Imidazole compound of imidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline, 2-phenylimidazoline, etc. and adduct of imidazole compound and epoxy resin . Examples of the amine-based hardening accelerator include a trialkylamine such as triethylamine or tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, and 2,4,6-gin ( An amine compound such as dimethylaminomethyl)phenol or 1,8-difluorenebicyclo(5,4,0)-undecene (hereinafter abbreviated as DBU). Examples of the organic phosphine compound and the organic squara salt compound include TPP, TPP-K, TPP-S, TPTP-S, TBP-DA, TPP-SCN, and TPTP-SCN (Beixing Chemical Industry Co., Ltd.). When the content of the hardening accelerator other than the metal-based hardening accelerator such as an imidazole-based hardening accelerator, an amine-based hardening accelerator, an organic phosphine compound, or an organic iron salt compound is 100% by mass in the resin composition, It is preferably in the range of 0.05 to 3% by mass, more preferably in the range of 0.07 to 2% by mass. When the amount is less than 0.05% by mass, the adhesion strength to the underlying conductor layer tends to decrease, and if it exceeds 3% by mass, the dissipation factor of the cured product tends to become large. When the combined metal-based hardening accelerator and other hardening accelerators (imidazole-based hardening accelerator, amine-based hardening accelerator, organic phosphine compound, organic scale salt compound, etc.) are used, the metal-based hardening accelerator and other hardening accelerators are used. The agent (imidazole-based hardening accelerator, amine-based hardening accelerator, organic phosphine compound, organic scale salt compound, etc.) is preferably within the above range. -27-201202334 [(F) Thermoplastic Resin] The resin composition of the present invention may contain an improvement in the film forming ability when the mechanical strength of the cured product or the film is used in the form of a film. (F) Thermoplastic resin. Examples of the (F) thermoplastic resin include a phenoxy resin, a polyvinyl acetal resin, a polyimine resin, a polyamidoximine resin, a polyether phthalimide resin, a poly maple resin, and a poly Ether-rolled resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, polyester resin, and the like. Among them, a polyvinyl acetal resin or a phenoxy resin is preferred. These may be used alone or in combination of two or more. (F) The thermoplastic resin is preferably a glass transition temperature of 8 (TC or more. The "glass transition temperature" is determined according to the method described in JIS K 7197. Further, the glass transition temperature is higher than the decomposition temperature. In fact, when the glass transition temperature cannot be observed, the visible decomposition temperature is the glass transition temperature in the present invention. Further, the decomposition temperature is defined as the mass reduction rate when measured in accordance with the method described in JIS K 7120. The temperature average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000, more preferably in the range of 10,000 to 150,000, more preferably in the range of 15,000 to 100,000, and in the range of 20,000 to 80,000. If it is smaller than this range, the film forming ability or the mechanical strength upward effect cannot be sufficiently exerted, and if it is larger than this range, the compatibility with the cyanate resin and the epoxy resin is lowered, and the insulating layer is lowered. The thickness of the surface after the roughening treatment is increased. Further, the weight average molecular weight in the present invention is measured by a colloidal permeation chromatography (GPC) method (in terms of polystyrene). PC method -28-201202334 The weight average molecular weight of the product is determined by using Shodex K-800P manufactured by Showa Denko Co., Ltd. for LC-9A/RID-6A manufactured by Shimadzu Corporation. /K-804L/K-804L, the mobile phase is chloroform, etc., and is measured at a column temperature of 4 (TC), and can be calculated using a standard polystyrene calibration line. For the phenoxy resin, From bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenol acetophenone skeleton, novolak skeleton, biphenyl skeleton, anthracene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, One or more kinds of skeletons selected from the group consisting of an anthracene skeleton, an adamantane skeleton, a terpene skeleton, and a trimethylcyclohexane skeleton. The phenoxy resin may be used in combination of two or more kinds. The terminal of the phenoxy resin may be a phenolic hydroxyl group. In the case of a commercially available product, for example, 1256, 42 50 (phenoxy resin containing a bisphenol A skeleton) made of Japanese epoxy resin, and YX made of Japanese epoxy resin 8100 (phenoxy resin containing bisphenol S skeleton), YX69 made of bismuth epoxy resin 54 (phenoxy resin containing bisacetophenone ketone skeleton) or other FX2 8 0, FX293, Japanese epoxy resin (shares) YL7553, YL6954, YL6794, YL7213, YL7290, YL7482, etc. Specific examples of the polyvinyl acetal resin include the electric chemical industry (stock) system, Denka Butyral 4000-2, 5000-A, 6000-C, 6000-EP, and S-LEC manufactured by Sekisui Chemical Industry Co., Ltd. BH series, BX series, KS series, BL series, BM series, etc. Specific examples of the polyimide resin include "RIKACOAT SN20" and "RIKACOAT PN20" manufactured by Nippon Chemical and Chemical Co., Ltd. Further, a linear polyimine obtained by reacting a bifunctional hydroxyl-terminated polybutadiene, a diisocyanate -29 - 201202334 ester compound, and a tetrabasic acid anhydride (Japanese Patent Publication No. 2 006-3 708 3) A modified polyimine such as a polyfluorene-containing polyalkyleneimine (described in JP-A-2002- 12667, JP-A-2000-3149, etc.). Examples of the polyamidimide resin include a polyamidoquinone imine "VYLOMAX HR1 1NN" and "VYLOMAX HR1 6NN" manufactured by Toyobo Co., Ltd. Further, modified polyamidoquinone imines such as polyacrylamide skeletons "KS9100" and "KS9300", which are made of a polyoxyalkylene skeleton, manufactured by Hitachi Chemical Co., Ltd., may be mentioned. Specific examples of the polyether oxime resin include polyether maple "PES5003P" manufactured by Sumitomo Chemical Co., Ltd., and the like. The content of the (F) thermoplastic resin in the resin composition of the resin composition of SOLVAY Advanced Polymers Co., Ltd. is not particularly limited, and the content of the thermoplastic resin (P 1 700 j , Γ P3500, etc.) is not particularly limited. With respect to 100% by mass of the nonvolatile component in the resin composition, it is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass. (F) When the blending ratio of the thermoplastic resin is less than 0.5% by mass, since the viscosity of the resin composition is low, it is difficult to form a uniform resin composition layer, and when it exceeds 20% by mass, the viscosity of the resin composition is too high. It is difficult to embed the wiring pattern on the substrate. [(G) rubber particles] The resin composition of the present invention may contain (G) rubber particles from the viewpoint of improving the mechanical strength of the cured product and improving the stress relaxation effect. (G) When the rubber particles are insoluble in the preparation of the resin composition, there is a solvent of -30-201202334, and the composition of the resin composition such as an epoxy resin is not dispersed in the varnish of the resin composition. good. For example, rubber particles are generally prepared such that the molecular weight of the rubber component is so large that it is insoluble in a solvent or a resin, and is prepared in the form of particles. Examples of the rubber include core-shell type rubber particles, crosslinked acrylonitrile butadiene particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles. The core-shell type rubber particle type particles are rubber having a core layer and a shell layer. The particles are, for example, a two-layer structure in which a shell layer of an outer layer is a glassy polymer, a core layer of an inner layer is a polymer, or a shell layer of an outer layer is a glassy compound, and an intermediate layer is a rubbery polymer or a core. The layer is a three-layer structure in which a glassy polymer is formed. The glassy polymer layer is composed of, for example, a polymer of methacrylic acid, and the rubbery polymer layer is made of, for example, an acrylic polymer (butyl rubber). Examples of the core-shell type rubber particles include STAPHYLOID AC3 832, AC3816N GANZ Chemical Co., Ltd., and METABLEN KW-4426 (RAYON). Specific examples of the acrylonitrile butadiene rubber (NBR) include XER-91C average particle diameters of 0.5 &quot;m, (manufactured by)). Examples of the styrene butadiene rubber (SBR) particles include XSK-500C average particle diameters of 0_5/zm, JSR (strand), and the like. Specific examples of the acrylic rubber particles include METABLEN W300A (average particle diameter of 0.1 m) and W450A (particle size of 0.5/zm) (manufactured by Mitsubishi Rayon Co., Ltd.). These may be used in combination of two or more kinds. The blended (G) rubber particles have an average particle diameter of 0.005 Å, such as organic rubber or the like. The rubbery poly(butyl ketone) system ' (Mitsubishi particles JSR system) can be used to obtain an average range of 1 1 β m -31 - 201202334, preferably 0.2~0.6/zm. The average particle diameter of the rubber particles in the present invention can be measured by a dynamic light scattering method. For example, the rubber particles can be uniformly dispersed by ultrasonic waves or the like in an appropriate organic solvent, and the particle size distribution of the rubber particles can be produced on a mass basis using FPRA-1000 (manufactured by Otsuka Electronics Co., Ltd.). The number diameter is measured as an average particle diameter. The content of the (G) rubber particles is preferably in the range of 1 to 1% by mass, and preferably in the range of 2 to 5% by mass, based on 1% by mass of the nonvolatile matter in the resin composition. good. [(Η) Flame Retardant] The resin composition of the present invention may further contain (Η) a flame retardant from the viewpoint of improving flame retardancy. (Η) The flame retardant may, for example, be an organic phosphorus-based flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a polyoxygen-based flame retardant, or a metal hydroxide. In the case of the organophosphorus-based flame retardant, phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., and phosphorus-containing benzenes such as HFB-2006M manufactured by Showa Polymer Co., Ltd. And the compound, Ajinomoto Fine_Techno (share) REOFOS 30, 50, 65, 90, 1 1 0, TPP, RPD, BAPP, CPD, TCP, TXP, TBP, TOP, KP140, TIBP, Beixing Chemical Industry PPQ of the (share) system, OP93 0 made by ciariant (share), phosphate ester compound of PX200 by Daeba Chemical Co., Ltd., and phosphorus-containing epoxy resin of FX289 and FX3 0 5 made by Toho Chemical Co., Ltd. , Phosphorus-containing epoxy resin such as ERF001 manufactured by Dongdu Chemical Co., Ltd., and phosphorus-containing epoxy resin such as YL7613 manufactured by Japan Epoxy Resin Co., Ltd. (32-201202334). In the case of the organic nitrogen-containing phosphorus compound, a phosphate phthalamide compound such as SP670 or SP703 manufactured by Shikoku Chemicals Co., Ltd., SPB100, SPE100, manufactured by Otsuka Chemical Co., Ltd., and Phosphorus-nitrogen compounds such as FP-series. Examples of the metal hydroxides include magnesium hydroxide such as UD65, UD650, and UD653 manufactured by Ube Materials Co., Ltd., and B-30, B-325, B-315, and B-308 manufactured by Batec Industries Co., Ltd. , B-303, UFH-20 and other aluminum hydroxide. These may be used alone or in combination of two or more. The resin composition of the present invention may be blended with a maleic imine compound, a bisallyl nadide-imide compound, a biphenyl base-based resin, or a range in which the effects of the present invention are exerted. A thermosetting resin other than an epoxy resin such as an ethylene benzyl ether resin. These may be used alone or in combination of two or more. Examples of the maleic imine resin include BMI1000 'BMI2000, BMI3000, BMI4000, BMI5100 (made by Daiwa Kasei Co., Ltd.), BMI, BMI-70, BMI-80 (made by KI Chemical Co., Ltd.), ANILIX- MI (MITSUI FINE CHEMICALS (manufactured by the company)), bisallyl naleximine compound, BANI-M, BANI-X (made by Jiushan Petrochemical Industry Co., Ltd.), vinyl benzyl resin For example, V5000 (made by Showa Polymer Co., Ltd.), and vinyl benzyl ether resin, V1000X and V1100X (made by Showa Polymer Co., Ltd.) are mentioned. The resin composition of the present invention may optionally contain various other resin additives other than the above in the range in which the effects of the present invention can be exhibited. Resin-33-201202334 Examples of the additives include organic hydrazines such as strontium powder, nylon powder, and fluororesin powder; tackifiers such as ALB EN and BENTON; and polyfluorene, fluorine, and polymer. Antifoaming agent or leveling agent, decane coupling agent, triazole compound, thiazole compound, triazine compound, porphyrin compound and the like adhesion promoter, anthraquinone blue, anthraquinone green, iodine green, A coloring agent such as disazo yellow or carbon black. The use of the resin composition of the present invention is not particularly limited, but it can be widely used for the adhesive film by using the resin composition of the present invention to achieve a laminate property, a tortuosity, and a low-line thermal expansion ratio. A sheet-like laminate material such as a prepreg, a circuit board, a solder resist, a bottom slab, a solid crystal material, a semiconductor sealing material, a boring resin, a part-embedded resin, and the like must be used for the resin composition. Among them, since the insulating layer is formed, it is suitable for the manufacture of a multilayer printed wiring board. The resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer. However, in general, it is preferred to use a sheet-like laminated material such as a film or a prepreg. The softening point of the resin composition is preferably from 40 to 150 ° C from the viewpoint of the lamination property of the sheet-like laminate material. [Continuous film] The adhesive film of the present invention can be produced by a known method, for example, a resin varnish in which a resin composition is dissolved in an organic solvent, and the resin varnish is narrowed. A slit coating apparatus or the like is applied onto a support, and the organic solvent is dried by heating or hot air blowing to form a resin composition layer. -34- 201202334 The organic solvent may, for example, be a ketone such as acetone, methyl ethyl ketone or cyclohexanone; ethyl acetate, butyl acetate, celecoxicol acetate, propylene glycol monomethyl ether acetate, or card Acetate such as alcoholic acetate; carbitol of celecoxime, butyl carbitol, etc.; aromatic hydrocarbons such as toluene and xylene: dimethylformamide, dimethylacetamide And a guanamine-based solvent such as N-methylpyrrolidone. These may be used alone or in combination of two or more. The drying conditions are not particularly limited, and the organic solvent content ratio of the resin composition layer is preferably 10% by mass or less and more preferably 5% by mass or less. The drying conditions are set by appropriate experiments to set suitable drying conditions. Although the amount of the organic solvent in the varnish varies, the varnish containing 30 to 60% by mass of the organic solvent is dried at 50 to 150 ° C. 3 to 10 minutes or so is better. The thickness of the resin composition layer formed in the film is preferably 10 to 10 μm from the viewpoint of increasing the number of folding resistances when the MIT folding resistance test of the cured product of the resin composition is performed. 15~90/zm is better, 20~80/zm is better, 25~70; zm is better, 30~65 Mm and then better, 35~60; am especially good, 40~55#m Excellent. Examples of the support in the present invention include polyolefins such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter referred to as "PET"), and polyethylene naphthalate. Plastic films such as polyester, polycarbonate, and polyimide. In terms of plastic film, PET is especially preferred. A metal case such as a copper foil or an aluminum foil may be used as the support body, or as a film attached to the metal foil. Further, the support can be subjected to release treatment in addition to the application of rough surface treatment and corona treatment. Further, the release treatment may be carried out by using a release agent such as a polyoxyphthalocyanine-based release type -35 - 201202334 agent, an alkyd resin release agent, or a fluororesin release agent. The thickness of the support is not particularly limited, but is preferably 10 to 150 //m, more preferably 25 to 50//m. The support in the present invention may be peeled off after being laminated on an inner layer circuit board or the like, or after forming an insulating layer by heat curing. When the support is peeled off after the film is cured by heat curing, adhesion of dirt or the like during the hardening step can be prevented, and the surface smoothness of the insulating layer after hardening can be raised upward. When peeling after hardening, it is preferred to apply a release treatment to the support in advance. Further, the resin composition layer formed on the support is preferably formed so that the area of the layer is smaller than the area of the support. When the resin composition layer is not adhered to the surface of the support, a plastic film similar to the support can be further laminated as a protective film. The protective film may be subjected to a release treatment in addition to the matte treatment and the corona treatment. Further, the release treatment can be carried out by using a release agent such as a polyoxyxylene resin release agent, an alkyd resin release agent or a fluororesin release agent. The thickness of the protective film is not particularly limited, but is preferably 1 to 40 m. By laminating the protective film, adhesion or damage to the surface of the resin composition layer can be prevented. Then, the film can be stored in a roll and stored. [Multilayer Printed Wiring Board Using a Film Next] A multilayer printed wiring board can be manufactured using the adhesive film manufactured as described above. Next, an example of the method will be described. When the resin composition layer is protected by the protective film, after peeling off, the resin composition layer is directly connected to the inner layer circuit substrate and laminated on the single side or both sides of the inner layer circuit substrate. The present invention-36-201202334 Next, in the film, a method of laminating on the inner layer circuit substrate under reduced pressure by a vacuum lamination method is preferred. The method of lamination can be batch or continuous in a roller. Further, before the lamination, the film and the inner layer circuit substrate may be preheated (plate heating) as needed. The inner layer circuit board in the present invention mainly refers to a single side or both sides of a substrate such as an epoxy glass, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, or a thermosetting polyphenylene ether substrate. A pattern is formed to form a conductor layer. Further, in the case of manufacturing a multilayer printed wiring board in which a conductor layer and an insulating layer are formed alternately and a conductor layer formed by patterning on one side or both sides is formed, an intermediate layer of the insulating layer and the conductor layer should be formed. Also included in the inner layer circuit substrate in the present invention. In the inner layer circuit board, the surface of the conductor circuit layer is subjected to roughening treatment by blackening treatment or the like in advance, and it is preferable from the viewpoint of the insulating layer to the inner layer circuit board. The conditions for the lamination are such that the pressing temperature (lamination temperature) is preferably 70 to 140 ° C, the pressing pressure is preferably 1 to 11 kgf/cm 2 (9.8 M 04 to 107.9 x 10 4 N/m 2 ), and the air pressure is 20 mmHg. (26.7hPa) It is better to laminate the layers under the reduced pressure below. The vacuum lamination can be carried out using a commercially available vacuum laminator. For the vacuum laminating machine, for example, a VACUUM APPLICATOR manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Nihon Seiki Co., Ltd., a drum-type dry coating machine manufactured by Hitachi Industrials, and a Hitachi AIC. (Share) vacuum laminator, etc. Further, the step of laminating heating and pressurizing under reduced pressure may be carried out using a vacuum hot press such as -37 to 201202334. For example, a metal plate such as a heated SUS plate can be pressed by pressing from the side of the support layer. The pressing conditions are preferably such that the degree of pressure reduction is lxl 0_2 MPa or less, and more preferably lxltr3 MPa or less. Although the heating and the pressurization can be carried out in one step, it is preferably carried out in two or more stages from the viewpoint of controlling the bleeding of the resin. The pressure applied in the first stage is in the range of 70 to 150 ° C, the pressure is in the range of 1 to 15 kgf/cm 2 , and the pressure in the second stage is in the range of 150 to 200, and the pressure is in the range of 1 to 40 kgf/cm 2 . Implementation is better. The time of each stage is preferably 30 to 120 minutes. For the vacuum hot press, for example, MNPC-V-750-5-200 (manufactured by Nippon Seiki Co., Ltd.), VH 1 - 1 603 (made by Kitagawa Seiki Co., Ltd.), etc. After laminating the inner layer circuit board, peeling is performed when the support is peeled off, and an insulating layer can be formed on the inner layer circuit board by thermal hardening. The heat hardening condition may be selected from the range of 20 minutes to 180 minutes at 150 ° C to 220 ° C, more preferably 30 to 120 minutes at 160 ° C to 200 ° C. After the formation of the insulating layer, peeling is performed at this time when the support is not peeled off before the hardening. Next, the insulating layer formed on the inner layer circuit substrate is opened to form a through hole and a through hole. The opening is performed by a known method such as a drill, a laser, a plasma, or the like, and may be carried out by combining these methods as necessary. Among them, it is preferable to use a laser opening such as a carbon dioxide gas laser or a YAG laser. Next, the surface of the insulating layer is subjected to a roughening treatment. The roughening treatment in the present invention is preferably carried out by a wet roughening method using an oxidizing agent. The oxidant side -38-201202334 may, for example, be permanganate (potassium permanganate or sodium permanganate), dichromate, ozone, hydrogen peroxide/sulfuric acid, nitric acid or the like. It is preferably an oxidizing agent which is widely used for the roughening of an insulating layer in the production of a multilayer printed wiring board formed by a stacking method, and is an oxidizing agent using an alkaline permanganic acid solution (potassium permanganate or sodium permanganate). It is preferred to carry out roughening in an aqueous sodium solution or the like. Next, on the surface of the resin composition layer on which the anchor anchors which are convex and concave due to the roughening treatment are formed, a conductor layer is formed by a combination of electroless plating and electrolytic plating. Further, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. Further, after the formation of the conductor layer, the annealing strength of the conductor layer is further improved by annealing at 150 to 200 ° C for 20 to 90 minutes, and the stability can be stabilized. Further, in the method of patterning the conductor layer and forming the circuit, for example, a subtractive color method, a semi-additive method, or the like which is well known to those skilled in the art can be used. [Prepreg] The prepreg of the present invention is produced by impregnating the resin composition of the present invention with a sheet-like fibrous base material by a heat fusion method or a solvent method, and semi-hardening by heating. That is, the resin composition of the present invention can be a prepreg impregnated with a sheet-like fibrous base material. In the case of the sheet-like fibrous base material, it is preferred to use a fiber made of a conventional fiber as a prepreg fiber such as a glass cloth or a amide fiber. The heating and melting method does not dissolve the resin in an organic solvent, but temporarily coats the resin on a coated paper having good peelability from the resin, and laminates it on the sheet-like fibrous substrate or by slit coating. The cloth device is directly coated, etc. -39-201202334 to manufacture a prepreg. Further, the solvent method is a method in which a substrate is impregnated with a resin varnish obtained by dissolving a resin in an organic solvent, and a resin varnish is impregnated into a sheet-like fibrous substrate to be dried. [Multilayer printed wiring board using prepreg] A multi-plate can be manufactured using the prepreg system manufactured as described above. An example of the method will be described later. In the inner layer circuit, one sheet of the prepreg of the present invention or a plurality of sheets are overlapped as needed, and sandwiched by a metal plate, and pressurized under heating and heating conditions, and heating conditions are preferably at a pressure of 5 to 40 kgf/ Cm2 3 92 xl04N/m2), 20° at a temperature of 120 to 200° C. Similarly to the subsequent film, the prepreg can be heat-hardened by vacuum-sampling the circuit board. Then, as described above, the surface of the cured prepreg is roughened, and then the multilayer printed wiring board is produced by the plating layer. [Semiconductor device] Further, the device is used by using the multilayer printed wiring board of the present invention. The semiconductor device is manufactured by the connection electrode conductor element on the multilayer printed wiring board. The semiconductor element is not particularly limited, and examples thereof include wire bonding mounting, flip chip orientation conductive film (ACF) mounting, and non-conductive NCF mounting. Similarly, in the flaky fiber, the layer is printed on the wiring substrate, and the release film is laminated by pressure. (49 X1〇4 ~ 100 minutes) The method of laminating the layer is also applied to form a semi-mounting method for forming a semiconductor portion to be bonded, and the film is mounted on a film (-40-201202334, on the other hand, by the resin composition) A specific wiring layer is formed in the insulating layer to form a fine wiring trench. The term "fine wiring trench" means a line (wiring) / space (interval) = 1 / 5 / m / 15 m or less, wherein 12/zm/12ym or less is more preferable, and 10/zm/10#m or less is better and lower is better. In the past, in the manufacturing technology of a multilayer printed wiring board, it is known to make an insulating layer on a core substrate. In the method of manufacturing a stacking method in which the conductor layers are alternately stacked, for example, a layer of a curable resin is laminated on the inner layer circuit board by a film, and the curable resin composition is cured to form an insulating layer. The through hole is formed by indirect continuation of the formation layer, and the oxidant such as an alkaline potassium permanganate solution is used to remove the slag from the bottom of the through hole and roughen the insulating layer, and the semi-additive method is used for the non-electrolysis on the rough surface thereof. Plating forms a plated seed layer, followed by Electrolytic plating forms a conductor layer. Then, an unnecessary plating seed layer is removed by etching to form a circuit. On the other hand, as in the patent document (Japanese Patent Laid-Open Publication No. 2010-21 301) or non-patent document (Advancing MICROELECTRONICS 1 1/ 12 2007 P22), a method of directly forming a trench which is a wiring for an insulating layer using a laser is expected to be applied to fine wiring. This method is similar to the manufacturing method by the above-described deposition method. An insulating layer is formed on the inner circuit board, and a trench and a via hole which are wirings are formed on the insulating layer by using a laser. However, the particle size of the cerium oxide is not described. Further, the potassium permanganate is used. An oxidizing agent such as a solution removes the slag from the bottom of the through hole and roughens the insulating layer, and performs electroless plating and electrical plating on the rough surface thereof, and finally removes the unnecessary copper layer of the surface layer to form an electric circuit. The slag may also be a dry method such as plasma-41 - 201202334. However, in the step of removing the slag, when the insulating layer is roughened, the resin at the corner portion of the groove formed may be removed, and the resin may not be maintained.The rectangular shape and the wiring formed thereafter cannot be a problem of the set fine wiring. Here, the film having the metal film layer formed on the support layer is formed with a metal film or formed on the support layer. a metal film layer on which a metal film of a curable resin composition layer is further formed, followed by a film, and after a metal film layer is provided on the insulating layer, a laser is used on the metal film layer to form an insulating layer. When the wiring groove is formed, the insulating layer can be maintained in a rectangular shape even after the desmear is removed, and a fine wiring groove shape can be obtained. Hereinafter, a film with a metal film and a film with a metal film attached will be described. &lt;Support body layer&gt; The support layer has a self-supporting film or a sheet, and a metal foil, a plastic film or the like can be used, and in particular, a plastic film is suitable for use. Examples of the metal foil include aluminum foil, copper foil, and the like. When a metal foil is used as the support layer, when the film with the metal film does not have a release layer, a metal foil made of a metal different from the formed metal film layer can be used. Examples of the plastic film include polyethylene terephthalate film, polyethylene naphthalate, polyimide, polyamidimide, polyamine, polytetrafluoroethylene, polycarbonate, etc. Among them, a polyethylene terephthalate film or a polyethylene naphthalate film is preferred, and a cheap polyethylene terephthalate is particularly preferred. Further, the surface of the body layer can be subjected to surface treatment such as corona treatment. On the surface of the support film layer on the side of the metal film layer or the release layer, -42-201202334 may also be subjected to surface treatment such as matte treatment or corona treatment. The surface of the support layer on the side where the release layer is formed is an arithmetic mean roughness (Ra 値) of 50 nm or less (0 or more and 50 nm or less) from the viewpoint of preventing cracks in the production of the film with the metal film. It is preferably 40 nm or less, and further 35 nm or less, or even 3 Onm or less. The arithmetic mean roughness of the surface of the support layer on the side where the release layer is not formed is also preferably in the same range as described above. The measurement of the arithmetic mean roughness (Ra 値) can be carried out by a known method, for example, using a device such as a non-contact surface roughness meter (for example, WYKO NT3 300 manufactured by Veeco Instruments Co., Ltd.). The support system can be used by a commercially available one, and for example, T60 (manufactured by TORAY Co., Ltd., polyethylene terephthalate film), A4100 (made by Toyobo Co., Ltd., polyethylene terephthalate film) , Q83 (Dynasty DUPON film (stock), polyethylene naphthalate film), LINTEC (stock), alkyd type release agent (AL-5) pay # polyethylene terephthalate film, Diafoil (registered trademark) B100 (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., polyethylene terephthalate film). The layer thickness of the support layer is preferably 10 to 7 〇 vm, more preferably 15 to 70 # m. If the layer thickness is too small, the handleability is poor, the peelability of the support layer is lowered, or the condition β which is uncomfortable to form a smooth metal film layer is generated. If the layer thickness is too large, it is not practical in terms of cost. &lt;release layer&gt; The film with a metal film and the film with a metal film in the present invention are used to support the metal layer to be efficiently transferred to the surface of the object to be attached, and to support the body layer and the metal of -43-201202334 It is preferred to have a release layer between the layers. The release layer may be formed of a fluororesin, an alkyd resin, a polyoxymethylene resin, a polyolefin resin, a polyvinyl alcohol resin, an acrylic resin, a polyester resin, a melamine resin, a cellulose resin or the like to form a release layer. . As the release layer, a metal film or a metal foil formed by a vapor deposition method, a sputtering method, an ion plating method, or the like can be used. In terms of metal, aluminum, zinc, lead, nickel, etc. may be mentioned, but aluminum is preferred. The release layer is obtained from the viewpoint of uniformly transferring the metal film layer and the cost of forming the release layer. It is preferred to form one or more kinds of water-soluble polymer release layers selected from water-soluble cellulose resins, water-soluble acrylic resins, and water-soluble polyester resins. These water-soluble polymer barrier layers are more advantageous on the cost side than the metal release layer because they are easy to form a release layer on the support layer. Further, after the hardenable resin composition of the adherend is cured, the support layer can be peeled off between the support layer and the release layer, the metal film layer is not easily damaged, and the release layer remaining on the metal film layer can be easily used as an aqueous solution. The metal film is uniformly formed on the adherend. Among these, a water-soluble cellulose resin and a water-soluble polyester tree P are more preferable, and a water-soluble cellulose resin is more preferable. These may be used alone or in combination of two or more. Further, the water-soluble polymer release layer may have a multilayer structure formed of one or two or more layers of different water-soluble polymers. Further, in the case of the release layer, when a water-soluble polymer release layer is used, between the water-soluble polymer release layer and the support layer, in order to enhance the peeling property between the layers, the polyoxin may exist. A release layer other than a resin, an alkyd resin, a fluororesin or the like. That is, when a water-soluble high score is applied to the release layer, the surface layer of at least the metal film may be formed by a water-soluble polymer release layer. The type layer is formed only by a water-soluble polymer release layer, or is formed by a water-soluble polymer release layer on the surface of the metal film, so that the water-soluble polymer release layer and other release layers are formed. The two-layer structure is formed. When the water-soluble polymer release layer is used at least in the surface of the metal film, the cured resin composition of the adherend is cured, and the support layer is peeled off between the support layer and the release layer, and thereafter, the residue remains. The release layer on the metal film layer can be easily removed by an aqueous solution, and a metal film excellent in uniformity can be formed on the adherend. Further, when the support layer between the support layer and the release layer is peeled off, if the release layer is formed only by the water-soluble polymer release layer, it can be applied to the interface between the support and the water-soluble polymer release layer. When the release layer is composed of a release layer other than an alkyd resin or the like, and two layers of the water-soluble polymer release layer, the release layer may be at the interface between the other release layer and the water-soluble polymer release layer. The thickness of the layer of the release layer is preferably 0.01/zm or more and 20/zm or less, more preferably 0.05/m or more and 10#m or less, more preferably 0.1#m or more and 5/zm or less, and more preferably 0.1/zm or more. 3ym or less is better, O.iym or more 2 is less than m, 〇·1 μm or more and 1 vm is particularly good, 〇. 2 仁m is more than 1 A m. Here, the "layer thickness" is the thickness when the release layer is a single layer, and when it is a plurality of layers, it means the total thickness of the plurality of layers. For example, when the release layer is composed of a water-soluble polymer release layer and a release layer other than a polyoxymethylene resin, an alkyd resin, a fluororesin or the like, the total layer of the release layer is as described above. Thickness is set in the above range. The layer thickness of the water-soluble polymer other than the -45-201202334 type layer is preferably in the range of 0.01 to 〇.2 #m. If the layer thickness of the release layer is too thick, when the curable resin composition layer is thermally cured, the thermal expansion rate of the metal film layer and the release layer is different, which may cause discomfort such as cracks or damage to the metal film layer. Further, if the layer thickness is too thin, the peeling property of the support layer may be lowered. (Water-soluble cellulose resin) The term "water-soluble cellulose resin" as used in the present invention means a cellulose derivative obtained by subjecting cellulose to a treatment for imparting water solubility, preferably a cellulose ether. , cellulose ether ester, and the like. A cellulose ether is an ether formed by converting one or more hydroxyl groups present in an anhydrous glucose repeating unit of one or more cellulose polymers by giving one or more ether linking groups to the cellulose polymer, and is an ether. The linking group may be an alkyl group substituted with one or more substituents selected from a hydroxyl group, a carboxyl group, an alkoxy group (having a carbon number of 1 to 4), and a hydroxyalkoxy group (having a carbon number of 1 to 4). Carbon number 1 to 4). Specific examples thereof include a hydroxyalkyl group such as 2-hydroxyethyl group, 2-hydroxypropyl group or 3-hydroxypropyl group (carbon number 1 to 4); 2-methoxyethyl group, 3-methoxy group Alkoxy group (carbon number 1 to 4) alkyl group (carbon number 1 to 4); 2-(2-hydroxyethoxy group) of propyl group, 2-methoxypropyl group, 2-ethoxyethyl group or the like a hydroxyalkoxy group (carbon number: 1 to 4) alkyl group (carbon number: 1 to 4) such as ethyl or 2-(2-hydroxypropoxy)propyl group: a carboxyalkyl group such as a carboxymethyl group (carbon number 1) The ether linkage group in the polymer molecule of ~4) et al. may be a single species or a plurality of species. That is, it may be a cellulose ether having a single ether linkage, or a cellulose ether having a plurality of ether linkages. -46- 201202334 Specific examples of the cellulose ether include methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, and hydroxyethyl Cellulose, carboxymethylcellulose, and such water-soluble salts (e.g., alkali metal salts of sodium salts, etc.). Further, the average number of moles of the ether group substituted per unit of the glucose ring in the cellulose ether is not particularly limited, but is preferably 1 to 6. Further, the molecular weight of the cellulose ether is preferably about 20,000 to 60000 by weight average molecular weight, and the cellulose ether ester means a hydroxyl group having 1 or more and 1 or more suitable organic acids present in the cellulose or An intermediate formed between the reactive derivatives and thereby forming an ester linkage in the cellulose ether. Further, the term "cellulose ether" as used hereinabove means that the "organic acid" contains a fat. An aliphatic or aromatic carboxylic acid (carbon number 2 to 8), and the aliphatic carboxylic acid may be acyclic (minutes). Dendritic or non-branched) or cyclic, saturated or unsaturated. Specific examples of the aliphatic carboxylic acid include substituted or unsubstituted acyclic rings such as acetic acid, propionic acid, butyric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, fumaric acid, and maleic acid. An aliphatic dicarboxylic acid; a non-cyclic hydroxy-substituted carboxylic acid such as glycolic acid or lactic acid; a non-cyclic aliphatic hydroxy group such as malic acid, tartaric acid or citric acid, or a di- or tri-carboxylic acid. Further, the aromatic carboxylic acid is preferably an aryl carboxylic acid having 14 or less carbon atoms, and a phenyl group or a naphthyl group having 1 or more carboxyl groups (for example, a carboxyl group of 1, 2 or 3). The aryl carboxylic acid is particularly preferred. Further, the aryl group may be the same or different one or more (for example, 1, 2 or 3) selected from a hydroxyl group, an alkoxy group having a carbon number of 1 to 4 (for example, a methoxy group) and a sulfonyl group. Replaced by the base. Preferred examples of the aryl-47-201202334-based carboxylic acid include phthalic acid, isophthalic acid, terephthalic acid or trimellitic acid (1,2,4-benzenetricarboxylic acid). When the organic acid has a carboxyl group of 1 or more, it is preferred to form an ester linkage to the cellulose ether by only the oxime carboxyl group in the acid. For example, in the case of hydroxypropylmethylcellulose succinate, the 1 carboxy group of each succinate group is ester-linked to cellulose, and the other carboxyl groups are present as free acids. The "ester linkage" is formed by reacting cellulose or a cellulose ether with a preferred organic acid or a reactive derivative thereof. The preferred reactive derivative may contain an acid anhydride such as anhydrous phthalic acid. The ester linking group in the polymer molecule may be a single species or a plurality of species. That is, it may be a cellulose ether ester having a single ester linking group, or a cellulose ether ester having a plurality of ester linking groups. For example, hydroxypropylmethylcellulose acetate succinate is a mixed ester of hydroxypropylmethylcellulose having both succinate groups and acetate groups. Preferred cellulose ether esters are esters of hydroxypropylmethylcellulose or hydroxypropylcellulose, and specific examples thereof include hydroxypropylmethylcellulose acetate and hydroxypropylmethylcellulose succinic acid. Ester, hydroxypropyl methylcellulose acetate succinate, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose trimellitate, hydroxypropyl methylcellulose acetate Phthalate, hydroxypropylmethylcellulose acetate trimellitate, hydroxypropylcellulose acetate phthalate, hydroxypropylcellulose butyrate phthalate, hydroxypropyl The cellulose acetate phthalate succinate and the hydroxypropyl cellulose acetate trimellitate succinate may be used alone or in combination of two or more. Among these, hydroxypropylmethylcellulose-48-201202334 phthalate, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose acetate phthalate Esters are preferred. Further, the average number of moles of the ester group substituted per unit of the glucose ring in the cellulose ether ester is not particularly limited, but is preferably, for example, about 0.5% to 2%. Further, the molecular weight of the cellulose ether ester is preferably about 20,000 to 60000 by weight average molecular weight. The method for preparing cellulose ether and cellulose ether ester is known, and can be obtained by reacting an etherifying agent or an esterifying agent according to a fixing method, which can be obtained by using natural cellulose (pulp) as a raw material, and can also be used in the present invention. Product. For example, "HP-55" and "HP-50" (both hydroxypropylmethylcellulose phthalate) manufactured by Shin-Etsu Chemical Co., Ltd. can be cited. (Water-Soluble Polyester Resin) The "water-soluble polyester resin" in the present invention is generally used as a main raw material by using a polyvalent carboxylic acid or an ester-forming derivative thereof and a polyhydric alcohol or an ester-forming derivative thereof. In the same manner as the polycondensation reaction, a polyester resin composed of a linear polymer is used, and a hydrophilic group is introduced in a molecule or at a molecular end. Here, the hydrophilic group may, for example, be an organic acid group such as a sulfo group, a carboxyl group or a decanoic acid group or a salt thereof, and a sulfonic acid group or a salt thereof, a carboxylic acid group or a salt thereof is preferred. The water-soluble polyester resin is particularly preferably a sulfo group or a salt thereof and/or a carboxyl group or a salt thereof. Representative examples of the polyvalent carboxylic acid component of the polyester resin include terephthalic acid, isophthalic acid 'phthalic acid, anhydrous phthalic acid, 2,6-naphthalene dicarboxylic acid, and 1,4. - cyclohexanedicarboxylic acid 'adipic acid, etc., and these may be used alone or in combination of two or more. Further, together with the above various compounds, an unsaturated carboxylic acid such as a hydroxycarboxylic acid such as P-hydroxybenzoic acid, maleic acid, fumaric acid or itaconic acid may be used in a small amount. Representative examples of the polyol component of the polyester resin include ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, and 1,6-hexanediol. 1,4-cyclohexane methanol, xylylene glycol, dimethylolpropionic acid, glycerol, trimethylolpropane or poly(tetramethyloxy) diol, etc. Two or more types can also be used. The polyester resin may be subjected to a method of introducing a hydrophilic group into a molecule or a molecular terminal, but a method of copolymerizing an ester-forming compound (for example, an aromatic carboxylic acid compound, a hydroxy compound, or the like) containing a hydrophilic group. It is better. For example, when a sulfonate group is introduced, sodium 5-sulfonate isophthalic acid, ammonium sulfonate isophthalic acid, sodium 4-sulfonate isophthalic acid, ammonium 4-methylsulfonate 1 or 2 selected from the group consisting of isophthalic acid, sodium 2-sulfonate terephthalic acid, potassium 5-sulfonate isophthalic acid, potassium sulfonate isophthalic acid and potassium 2-sulfonate terephthalic acid. It is preferred that the above is copolymerized. Further, when a carboxylic acid group is introduced, for example, anhydrous trimellitic acid, trimellitic acid, anhydrous pyroghuric acid, pyrophoric acid, trimesic acid, cyclobutanetetracarboxylic acid, and dihydroxyl It is preferred that one or more selected from the group consisting of propionic acid and the like are copolymerized, and after the copolymerization, the carboxylate is obtained by neutralizing with an amine compound, ammonia or an alkali metal salt or the like. The base is introduced into the molecule. The molecular weight of the water-soluble polyester resin is not particularly limited, and the weight average molecular weight is preferably from 10,000 to 40,000. When the weight average molecular weight is less than -50 to 201202334 10000, the layer formability is lowered, and if it exceeds 40,000, the solubility is lowered. In the present invention, a commercially available product can be used as the water-soluble polyester resin, and for example, "PLASCOAT Z-561" (weight average molecular weight: about 27,000) and "PLASCOAT Z-565" manufactured by Mutual Chemical Industry Co., Ltd. Weight average molecular weight: about 25,000) and the like. (Water-soluble acrylic resin) The "water-soluble acrylic resin" in the present invention is an acrylic resin which is dispersed or even dissolved in water by containing a monomer having a carboxyl group as an essential component. The acrylic resin is more preferably a monomer having a carboxyl group. And (meth) acrylate is an essential monomer component, and an acrylic polymer which may contain other unsaturated monomers as a monomer component as needed. Among the above monomer components, examples of the carboxyl group-containing monomer include (meth)acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, pyroic acid, anhydrous maleic acid, and maleic acid. Methyl ester, tributyl maleate, monomethyl ortho-methicone, and tributyl orthoate, and one or more of these may be used. Among these, (meth)acrylic acid is preferred. Further, examples of the (meth) acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and η-butyl (meth)acrylate. Base ester, isobutyl (meth)acrylate, η-pentyl (meth)acrylate, η-hexyl (meth)acrylate, η-heptyl (meth)acrylate, (meth)acrylic acid Η- -51 - 201202334 octyl ester, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, The alkyl methacrylate having an alkyl group having an alkyl group of octadecyl (meth) acrylate or the like is 1 to 18, and one or more of these may be used. Further, examples of the other unsaturated monomer include an aromatic alkenyl compound, a vinyl cyanide compound, a conjugated diene compound, a halogen-containing unsaturated compound, and a hydroxyl group-containing monomer. The aromatic alkenyl compound may, for example, be styrene 'α-methylstyrene, p-methylstyrene or p-methoxystyrene. Examples of the vinyl cyanide compound include a conjugated diene compound such as acrylonitrile or methacrylonitrile, and examples thereof include halogen-containing unsaturated compounds such as butadiene and isoprene. Such as vinyl chloride, vinylidene chloride, perfluoroethylene, perfluoropropylene, vinylidene fluoride and the like. Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy butyl. A (meth) acrylate, a 4-hydroxybutyl acrylate, a 4-hydroxybutyl methacrylate, an α-hydroxy group, a methyl ethyl (meth) acrylate, or the like. These may be used in one type or two or more types. As described later, in the present invention, the release layer is preferably formed by a method in which a coating liquid containing water-soluble cellulose, a water-soluble polyester or a water-soluble acrylic resin is applied and dried on a support layer. When a water-soluble acrylic resin is used, the coating liquid can be used in the form of an emulsion or an aqueous solution. When a water-soluble acrylic resin is used in the form of an emulsion, a core-shell type milk-52-201202334 agent is preferred, and in a core-shell type emulsion, it is important that a carboxyl group is present in the shell of the core-shell particle, and therefore, the shell contains It is composed of a monomer of a carboxyl group and an acrylic resin of (meth)acrylate. A commercial product may be used as the dispersion (emulsion) of such core-shell particles, and may be, for example, JONCRYL 7600 (Tg: about 35 ° C), 7630 A (Tg: about 53 ° C), and 53 8 J (Tg: about 66 °). C), 3 52D (Tg: about 56 ° C) (both are made by BASF Japan Co., Ltd.). When a water-soluble acrylic resin is used in the form of an aqueous solution, the acrylic resin contains a carboxyl group-containing monomer and a (meth) acrylate acrylic resin, and it is important that it is a lower molecular weight. Therefore, the weight average molecular weight is preferably from 1,000 to 50,000, and if the weight average molecular weight is less than 1,000, the layer formability is lowered, and if the weight average molecular weight exceeds 50,000, the adhesion to the support layer becomes high and hardens. The peelability of the back support layer is reduced. A commercially available product can be used as the aqueous solution of the water-soluble acrylic resin. For example, JONCRYL 354J (manufactured by BASF Japan Co., Ltd.) or the like can be used. Further, the emulsion of the water-soluble acrylic resin and the aqueous solution are easily thinned due to the high molecular weight of the emulsion. Therefore, an emulsion of a water-soluble acrylic resin is preferred. &lt;Metal film layer&gt; Metals used in the metal film layer may be metal mono-53 such as gold, platinum, silver, copper, aluminum, cobalt, chromium, nickel, titanium, tungsten, iron, tin, indium or the like. - 201202334 The body or the use of two or more kinds of metals such as nickel and chromium alloys. However, from the viewpoints of versatility, cost, and etching of metal film formation, it is based on Ming, 錬, 钦, 錬· Alloy copper, nickel alloy, copper alloy, gold, silver and copper are preferred, nickel, chromium alloy, aluminum, zinc, gold, silver and copper are better. Further, the metal film layer may be a single layer or a composite layer formed of a different metal. The layer thickness of the metal film layer is not particularly limited, and is preferably 1 Onm-good, 20 nm to 2000 nm, 30 nm to 100 nm, and more preferably 500 nm, more preferably 50 nm to 400 nm, and further 300 nm. If the layer thickness is too small, the film with the metal film is prone to cracks in the metal film, and in the desmear step or the like, the surface of the insulating layer is roughened. On the other hand, if the layer thickness requires a long time for film formation, the cost is high, and the time is at the laser force. &lt;Curable Resin Composition Layer&gt; The adhesive film with a metal film according to the present invention further has a structure in which a curable layer is formed on the metal film layer of the above film. That is, the metal film in the present invention further has a hardened layer in addition to the support layer and the metal film layer. Further, similarly to the film with a metal film, it is preferred to have a release layer between the support layers. A hardenable resin composition used in a thin film-attached resin composition layer with a metal film (alloy. Removal difficulty: aluminum, bell, chromium, nickel, titanium, and copper layer 2 layers, 5 OOOnm is better, 50 nm is better, 50 nm~ After the manufacture, the metal film layer is too large, and the metal composition also requires a resin film with a metal film to form a film and a resin layer and a metal film. Hard, if it is hard-54- 201202334 compound has sufficient hardness and insulation, there is no particular limitation in use, including (a) epoxy resin, (b) thermoplastic resin and (c) hardening The agent is preferably used. Others, the rubber particles, flame retardant, various resin additives, maleimide compound, bisallyl nadeimide compound, vinylbenzyl resin, ethylene may be used as described above. The benzyl ether ether resin, the bismaleimide-triazine resin, the acrylic resin, etc. (a) The epoxy resin is not particularly limited, and examples thereof include a bisphenol A type epoxy resin and a biphenyl type ring. Oxygen resin, naphthol type epoxy resin, naphthalene ring Oxygen resin, bisphenol F type epoxy resin, phosphorus-containing epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac epoxy resin, cresol Novolac type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin having butadiene structure, cyclohexane dimethanol type epoxy resin, epoxypropyl amine type epoxy resin, bisphenol Diepoxypropyl etherate, diepoxypropyl etherate of naphthalenediol, epoxy propyl etherate of phenol, and diepoxypropyl etherate of alcohol and alkylene of such epoxy resin (1) Epoxy resin, such as heat resistance, insulation reliability, tortuosity, and the like, may be used as the base, the halide, the hydride, and the like. From the viewpoint of the adhesion of the metal film, it is a bisphenol A type epoxy resin, a naphthol type epoxy resin, a naphthalene type epoxy resin, a biphenyl type epoxy resin, and an epoxy having a butadiene structure. The resin is preferably a liquid bisphenol A type epoxy resin (Japanese Epoxy Resin Co., Ltd.) "picoat 828EL"), naphthalene type 2-functional epoxy resin ("HP4032", "HP4032D" manufactured by Dainippon Ink Chemical Industry Co., Ltd.), naphthalene type -55- 201202334 4-functional epoxy resin (Daily Ink Chemical Industry Co., Ltd. "HP4700"), naphthol type oxime resin ("Esnmhv" manufactured by Tohto Kasei Co., Ltd.), epoxy resin having a butadiene structure ("PB-36 00" manufactured by DAICEL Chemical Industry Co., Ltd.), Epoxy resin having a biphenyl structure ("NC300 0H", "NC3000L" manufactured by Nippon Kayaku Co., Ltd., "YX4000" manufactured by Nippon Epoxy Co., Ltd.), etc. Curability in the curable resin composition The content of the component (a) in the resin composition is not particularly limited, but the upper limit of the content of the component (a) in the curable resin composition is from the viewpoint of preventing the flexibility of the film from being reduced. The non-volatile content of the resin composition is preferably 60% by mass, more preferably 50% by mass, and even more preferably 40% by mass. On the other hand, in the curable resin composition (a) The lower limit of the content of the component, if the insulating layer is used From the viewpoint that the glass transition temperature is increased upward and the thermal expansion rate of the wire is lowered, the curability is preferably 5% by mass, more preferably 10% by mass, based on the non-volatile content of the resin composition. 15% by mass is better. (b) The thermoplastic resin is not particularly limited, and examples thereof include a phenoxy resin, a polyvinyl acetal resin, a polyimine resin, a polyamidimide resin, a polyether quinone resin, and a polyfluorene. Resin, polyether oxime resin, polyphenylene ether resin, polycarbonate resin, polyether ether ketone resin, polyester resin, and the like. These may be used alone or in combination of two or more. Among these, a phenoxy resin or a polyvinyl acetal resin is preferred from the viewpoint of imparting moderate flexibility to the cured product. (b) The thermoplastic resin is preferably -56-201202334 in which the glass transition temperature is 80 °C or higher. Here, the "glass transition temperature" is determined according to the method described in JIS κ 7197. Further, the glass transition temperature is higher than the decomposition temperature, and when the glass transition temperature is not actually observed, the decomposition temperature can be regarded as the glass transition temperature in the present invention. In addition, the decomposition temperature is defined by the temperature at which the mass reduction rate is 5% as measured according to the method described in JIS Κ 7120. (b) The weight average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000, more preferably in the range of 10,000 to 150,000, more preferably in the range of 15,000 to 100,000, and even better in the range of 20,000 to 80,000. . If it is smaller than this range, the film forming ability or the mechanical strength upward effect may not be sufficiently exhibited. If it is larger than this range, the compatibility with the cyanate resin and the epoxy resin may be lowered, and the surface of the insulating layer may be roughened. The thickness will increase. Further, the weight average molecular weight in the present invention is measured by a colloidal permeation chromatography (GPC) method (in terms of polystyrene). The weight average molecular weight measured by the GPC method is, in particular, LC-9A/RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-8 00P/K-804L manufactured by Showa Denko Co., Ltd. /K-804L is a column, and the mobile phase is measured using a chloroform or the like at a column temperature of 40 ° C, and is calculated using a standard polystyrene calibration line. Examples of the phenoxy resin include a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a bisphenol acetophenone skeleton, a novolak skeleton, a biphenyl skeleton, an anthracene skeleton, and a dicyclopentadiene. Skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene skeleton, trimethylcyclohexane skeleton -57-201202334 One or more kinds of skeletons selected. The phenoxy resin may be used in combination of two or more. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. For the commercially available product, for example, 1256, 4250 (phenoxy resin containing a bisphenol A skeleton) made of Japanese epoxy resin, and YX8100 (a phenoxy resin containing a bisphenol S skeleton) made of Japanese epoxy resin. , YX6954 made of Japanese epoxy resin (phenoxy resin containing bisphenol acetophenone skeleton) or other FX280, FX293, 曰 环氧树脂 环氧树脂 环氧树脂 YL YL75 53 ' YL6954, YL6794, YL7213 made by Dongdu Chemical Co., Ltd. , YL7290, YL7482, etc. Specific examples of the polyvinyl acetal resin include S-LEC BH manufactured by Denki Butyral 4000-2, 5000-A, 6000-C, 6000-EP, and Sekisui Chemical Industry Co., Ltd. Series, BX series, KS series, BL series, BM series, etc. Specific examples of the polyimide resin include RIKACOAT SN20 and RIKACOAT PN20 manufactured by Nippon Chemical and Chemical Co., Ltd. Further, a linear polyimine obtained by reacting a bifunctional hydroxyl-terminated polybutadiene, a diisocyanate compound, and a tetrabasic acid anhydride (described in JP-A-2006-3 7083) and a polyoxyalkylene skeleton are mentioned. A modified polyimine such as a polyimine (described in JP-A-2002- 12667, JP-A-2000-3, 193, etc.). Examples of the polyamidimide resin include a polyamidoquinone imine "VYLOMAX HR1 1NN" and "VYLOMAX HR1 6NN" manufactured by Toyobo Co., Ltd. Further, modified polyamidoquinone imines such as polyacrylamide skeletons "KS9100" and "KS9300", which are made of a polyoxyalkylene skeleton, manufactured by Hitachi Chemical Co., Ltd., may be mentioned. -58- 201202334 Specific examples of the polyether maple resin include polyether maple "PES5003P" manufactured by Sumitomo Chemical Co., Ltd. Specific examples of the poly-Maple resin include a polypethane "P1700" and a ΓP3500 manufactured by SOLVAY Advanced Polymers Co., Ltd. In the curable resin composition, the content of the (b) thermoplastic resin is not particularly limited, but the amount of the nonvolatile component in the curable resin composition is preferably from 0.5 to 20% by mass, more preferably Good for 1~1〇% by mass. (b) When the blending ratio of the thermoplastic resin is less than 0.5% by mass, the resin composition has a low viscosity, and it is difficult to form a uniform curable resin composition layer. When it exceeds 20% by mass, the viscosity of the resin composition changes. It is too high to be buried in the wiring pattern on the substrate. (c) The curing agent is not particularly limited, and examples thereof include an amine curing agent, an oxime curing agent, an imidazole curing agent, a benzene curing agent containing a triazine skeleton, a phenol curing agent, and a triazine skeleton. Naphthol-based curing agent, naphthol-based curing agent, acid anhydride-based curing agent, or such epoxy group addition or microencapsulation, cyanate-based curing agent, active ester-based curing agent, benzoxazine It is a hardener or the like. From the viewpoint of increasing the peeling strength of the plating, it is preferable that the hardener has a nitrogen atom in the molecular structure, and a bifunctional phenol containing a quinone imine skeleton or a phenol system containing a triazine skeleton. A hardener or a naphthol-based hardener containing a triazine skeleton is preferred, and a bisphenol having a quinone imine skeleton or a phenol novolak resin containing a triazine skeleton is preferred. These may be used alone or in combination of two or more. Specific examples of the phenolic curing agent, the phenolic curing agent containing a triazine skeleton, and the naphthol-based curing agent include, for example, MEH-7700, MEH-7810, -59-201202334 MEH-7851 (B-month and Huacheng) )), NHN, CBN, GPH (Nippon Chemical Co., Ltd.), SN170, SN180, SN190, SN475, SN485, SN495, SN3 75, SN395 (Dongdu Chemical Co., Ltd.), TD2090, LA7052, LA7054, LA3018, LA1356 (Daily Ink Chemical Industry Co., Ltd.), etc. The cyanate-based curing agent, the active ester-based curing agent, and the benzoxazine-based curing agent can be used as described above. (a) The ratio of the epoxy equivalent of the epoxy resin to the active hydrogen equivalent of the hardener is preferably (1:0.2) to (1:2), (1:0_3) to (1:1.5). Better, (1 : 0.4 ) ~ (1 : 1 ) is even better. When the equivalent ratio is outside the above range, the mechanical strength or water resistance of the cured product is lowered. The curable resin composition may contain the curable resin composition more efficiently from the viewpoint of more effectively curing the curable resin composition. (d) a hardening accelerator. (d) The curing accelerator is not particularly limited, and examples thereof include a metal-based hardening accelerator, an imidazole-based curing accelerator, an amine-based curing accelerator, an organic phosphine compound, and an organic squara salt compound. In a specific example, the above-mentioned recorder can be used. (d) The content of the hardening accelerator is preferably the content described above. In the curable resin composition, in order to further reduce the thermal expansion ratio of the insulating layer obtained from the curable resin composition, (e) an inorganic cerium filler may be contained. The inorganic cerium filling material is not particularly limited, but examples thereof include cerium oxide, aluminum oxide, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, and nitrogen. Boron, aluminum borate, barium titanate, barium titanate, calcium titanate, magnesium titanate, barium titanate, oxidized -60-201202334 titanium, barium zirconate, calcium zirconate, etc., of which cerium oxide is preferred. Among these, amorphous cerium oxide, molten cerium oxide, crystalline cerium oxide, synthetic cerium oxide, pulverized cerium oxide, hollow cerium oxide, spherical cerium oxide, and molten cerium oxide are preferred. Spherical cerium oxide is preferred. These may be used alone or in combination of two or more. (e) The average particle size of the inorganic ruthenium material is not particularly limited. From the viewpoint of forming a fine wiring groove toward the insulating layer and improving the workability by laser, it is 5/zm or less. Good, 2.5//m or less is better, lym is better and below, 〇.7&quot;m is better and below, 〇5//m is better and below, and 0.45/zm is especially good. In addition, when the average particle diameter of the inorganic cerium material is too small, when the curable resin composition is used as a resin varnish, the viscosity of the varnish increases, and the operability is lowered and the dispersibility is improved. The average particle diameter is preferably 0.02 am or more, more preferably 0.05/zm or more, more preferably 0.1/zm or more, and even more preferably 0.2/zm or more. (e) The average particle size of the inorganic cerium material is measured by a laser diffraction/scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic cerium material was determined on a volume basis by a laser diffraction type particle size distribution measuring apparatus, and the median diameter was measured as an average particle diameter. It is preferable to use a sample in which the inorganic cerium is dispersed in water by ultrasonic waves. For the laser diffraction type particle size distribution measuring apparatus, a LA-500 manufactured by a market can be used. (e) The upper limit of the amount of the inorganic cerium filler added, from the viewpoint of preventing the cured product from becoming brittle and avoiding the decrease in the adhesion strength of the curable resin composition -61 - 201202334, when the curable resin composition is not When the volatile component is 100% by mass, it is preferably 70% by mass or less, more preferably 65% by mass or less, more preferably 60% by mass or less, still more preferably 55% by mass or less, still more preferably 50% by mass or less. On the other hand, the lower limit of the amount of the inorganic cerium filler added is 5% by mass when the nonvolatile content in the curable resin composition is 100% by mass from the viewpoint of lowering the thermal expansion ratio of the insulating layer. Preferably, it is more preferably 10% by mass, more preferably 20% by mass, more preferably 30% by mass, still more preferably 40% by mass, and even more preferably 50% by mass. (e) the inorganic ruthenium is a decane-based coupling agent, an acrylate-based decane coupling agent, a sulfide-based decane coupling agent, a vinyl-based decane coupling agent, a mercapto decane-based coupling agent, a styryl-based decane coupling agent, A surface treatment agent such as an isocyanate-based decane coupling agent, an organic ruthenium-nitrogen compound, an epoxy decane coupling agent, an amino decane coupling agent, a urea-based decane coupling agent, or a titanate coupling agent is surface-treated to make it moisture-resistant Sexuality and dispersibility are better. These may be used alone or in combination of two or more. Examples of the surface treatment agent include 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 3-aminopropyldiethoxymethyldecane, and N-phenyl- 3-aminopropyltrimethoxydecane, N-methylaminopropyltrimethoxydecane, N-2 (-aminoethyl)-3-aminopropyltrimethoxydecane, N-( 2 - an amine decane-based coupling agent such as -aminoethyl)-3-aminopropyldimethoxymethyl decane; a urea-based decane coupling agent such as 3-ureidopropyltriethoxy decane; - glycidoxypropyltrimethoxydecane, 3-epoxypropyloxypropyltriethoxydecane, 3-epoxypropyloxypropylmethyldiethoxydecane, 3- Epoxypropyloxypropyl (dimethoxy)methyl decane, epoxy propyl butyl-62- 201202334-trimethoxy decane '2-(3,4-epoxycyclohexyl)ethyl decane, etc. Epoxy decane-based coupling agent; 3-mercaptopropyltrimethyl, 3-mercaptopropyltriethoxydecane, 3-mercaptopropylmethyldialkyl, 11-decylundecyltrimethoxy a mercapto group such as decane: methyltrimethoxydecane, octadecyltrimethoxydecane, a decane-based alkenyl trimethoxy decane, vinyl triethoxy decane, ethylene such as decane, methacryloxypropyltrimethoxy decane, triazine decane, t-butyltrimethoxy decane or the like a vinyl decane coupling agent such as ethoxy decane; a styrene based decane coupling agent such as p-styryl decane; 3-propenyl methoxy methoxy decane, 3-methyl propylene methoxy propyl trimethyl Oxyalkyl propylene methoxy propyl dimethoxy decane, 3-methyl propylene hydride triethoxy decane, 3-methyl propylene methoxy propyl di ethoxy acrylate decane coupling agent: 3 - isocyanate propyl trimethoxy isocyanate decane coupling agent; sulfane coupling agent such as bis(triethoxymethyl propyl propionate, bis (triethoxy decyl propyl) tetrasulfide; hexamethyldiazine Nitrogen, 1,3-divinyl-1,1,3, diazoxide, hexaphenyldiazane nitrogen triterpenoid nitrogen, cyclotriazole nitrogen, 2, hexamethylcyclotriazide nitrogen, octamethyl ring Tetrazolium, hexabutyldiindenyl diazide, 1,3-diethyltetramethyldiazide, 1,3-di-n-diazonium, 1,3-diphenyltetra Base two nitrogen, 1 , 3-dimethyl diazide nitrogen, 1,3-diethyltetramethyl diazide nitrogen, 1,1,3,3-tetradimethyl diazide nitrogen, 1,3-dipropyltetramethyl a trimethoxyoxydecane methoxy oxime coupling agent phenyl trimethazine decane mixture such as argon nitrogen, hexamethyl nitrogen, dimethylaminotrimethyl hydrazine nitrogen, tetramethyl diazide nitrogen or the like; ethyl methyl two a base of a decane such as a trimethoxypropyltrioxane or a 3-methoxypropyl decane. The disulfide system is ruthenium, 3-tetramethyl 2,4,4,6,6-nitrogen, hexacytene. Tetramethyltetraphenylphenyl-1,3-ylcyclotriphenylorganoindole nitrogen-63- 201202334 compound; tetra-n-butyl titanate dimer, titanium-i-propoxyoctyl glycolate Salt, tetra-n-butyl titanate, titanium octate glycolate, titanium diisopropoxy bis(triethanolamine), titanium dihydroxydilactic acid, dihydroxybis(ammonium lactate) titanium, bis(dioctyl) Ethyl pyrophosphate) ethylene titanate, bis(dioctylpyrophosphate)oxyacetate titanate, tris-n-butoxystea monostearate, tetra-n-butyl titanate, tetra 2-ethylhexyl) titanate, tetraisopropylbis(dioctylphosphite) titanic acid Tetraoctyldi(ditridecylphosphite) titanate, tetrakis(2,2-diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanic acid Ester, isopropyl trioctyl decyl titanate, isopropyl triisopropyl phenyl titanate, isopropyl triisostearate titanate, isopropyl isostearyl decyl propylene Acid ester, isopropyl dimethyl propylene isostearyl decyl titanate, isopropyl tris(dioctylphosphoric acid) titanate, isopropyl stilbene-dodecyl benzene sulfonate titanate, A methacrylate-based coupling agent such as isopropyl ginate (dioctylpyrophosphate) titanate or isopropyl tris(indole-nonylaminoethylaminoethyl titanate). The curable resin composition is not particularly limited, but preferably contains the component (a), preferably contains the component (a) and the component (b), and contains the component (a) and the component (b) and (c). The composition is better, and the components (a) and (b) and (c) and (d) are further preferably. The method of preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method of mixing a compound, a solvent, and the like, and mixing using a rotary mixer or the like. Among them, from the viewpoint of effectively dispersing the inorganic cerium material, it is preferred to carry out the dispersion treatment by a high-pressure homogenizer. The resin composition can be dispersed by a high-pressure homogenizer, -64-201202334 From the viewpoint of shortening the treatment time, a part of the resin composition is prepared into a suspension, which is then subjected to dispersion treatment by a high-pressure homogenizer, and then the remaining resin composition is additionally mixed and stirred to prepare The resin composition varnish is preferred. Further, in the dispersion treatment by the high-pressure homogenizer, the temperature of the composition rises, and the residual resin composition is subjected to dispersion treatment by a high-pressure homogenizer, such as an epoxy hardener. Adding is better. In the present invention, when a suspension is prepared, a known stirring and heating dissolution apparatus can be used. However, in order to dissolve it uniformly, a stirring and heating dissolution apparatus equipped with a high-speed rotary wing such as a homogenizer or a dispersion wing can be used. It is better. Specific examples of the stirring and heating dissolving device include TKHOMOMIXER, TKHOMODISPER, TKCombi Mix, TKHIVIS DISPER MIX, (the above are PRIMIX (trade name), and CLEARMIX (M TECHNIQUE). Vacuum emulsification stirring device (product name of MIZUHO Industrial Co., Ltd.), vacuum mixing device "NERIMAZE DX" (MIZUHO Industrial Co., Ltd. - trade name), BDM2 axis MIXER, CDM core 2 axis MIXER, PD MIXER ( The above is the name of the product produced by Inoue Co., Ltd.). The stirring temperature varies depending on the solvent used, but it is preferable to apply it in the range of 30 °C to 80 °C. The viscosity of the suspension is preferably from 10 to 100 mP a.s, preferably from 100 to 500 mPa's. When the viscosity is high, the viscosity of the liquid suppresses the diffusion of particles in the conflicting portion, and the dispersion tends to be uneven as a whole. Further, the viscosity can be measured by a rotary viscometer such as an E-type viscometer. The content of the inorganic cerium filling material in the suspension is preferably the mass % of the suspension i 而 -65-201202334, preferably 30 to 60% by mass, more preferably 40 to 60% by mass. If it is less than 30% by mass, the chance of particles of the inorganic cerium filling material colliding with each other is reduced, and sufficient shearing force cannot be obtained, resulting in insufficient dispersion treatment by a high-pressure homogenizer. If it exceeds 60% by mass, the conflicting portion The amount of inorganic ruthenium filling in the unit area is increased, and the dispersion treatment by the high-pressure homogenizer is insufficient, and the wear of the conflicting parts of the high-pressure homogenizer becomes more intense. The suspension prepared as described above can be dispersed by a high pressure homogenizer. The high-pressure homogenizer is a device that pulverizes, disperses, and emulsifies by pressurizing the raw material to a high pressure and using a shear force when the slit (gap) is removed. In the case of the high-pressure homogenizer, it is preferable that the material of the inorganic ruthenium material which is in conflict with the high pressure is made of tungsten carbide or diamond, and it is preferable because the foreign matter due to collision wear can be prevented from entering. In addition, because the treatment of the high-pressure homogenizer is not carried out in a batch dispersion manner, but in a continuous dispersion manner, the productivity is improved upwards, the risk of organic solvent vapor emission can be reduced, and the cost side can be reduced. The burden of the environment. Specific examples of the high-pressure homogenizer include a high-pressure homogenizer made of engineering (unit), a high-pressure homogenizer made by IZUMI FOOD MACHINERY, and a high-pressure homogenizer made by Niro Soavi (Italy). The dispersion pressure of the high-pressure homogenizer is preferably 10 to 300 MPa, more preferably 15 to 100 MPa, more preferably 20 to 60 MPa, and if the dispersion pressure is too low, the dispersion treatment may be insufficient, but if it is too high, the suspension liquid is too high. The temperature will rise and the components in the suspension will react and the shape of the inorganic cerium will change. In order to suppress the reaction of the components in the suspension, it is preferred that the liquid temperature after the dispersion treatment is 60 ° C or lower. Further, after the dispersion treatment, it is preferable to rapidly lower the liquid temperature to 40 ° C or less by using a cooling device of -66 - 201202334. For the apparatus which mixes the suspension which disperse|distributed by the high-pressure homogenizer, and the components which are the temperature-affecting components, such as the epoxy hardening agent which is a residual resin composition, it is used, for example, the Known agitation mixing devices such as propeller blades and fixed anchor blades. Specific examples of the stirring and mixing device include PLANETARY MIXER, TRI-MIX, and BUTTERFLY MIXER (the above is a product name manufactured by Inoue Co., Ltd.), VMIX stirring tank, MAXBLEND, and SWIXE RMIXING SYSTEM (above: IZUMI FOOD) Product name: MACHINERY, Hi-FMIXER (commodity name of TECNIX), JET AJITER (product name of Shimazaki Manufacturing Co., Ltd.). Further, the stirring and heating dissolving device described above can be used, and it can be carried out in a general stirring operation. In order to remove foreign matter in the resin composition varnish and secondary agglomerates of the inorganic ceramium, it is preferred to subject the resin composition varnish to filtration treatment after being dispersed by a high-pressure homogenizer. A well-known method can be used for the filtration method. For example, the resin composition varnish is used to quantitatively pump the liquid, and it is filtered separately or continuously through a card filter, a capsule filter or the like. The filtration pressure (differential pressure) at this time is preferably 〇4 MPa or less in order to avoid opening the filter mesh. Further, a known pumping system can be used, but in order to maintain a constant filtration pressure, it is preferred that the pulsation is small. The mesh size of the furnace is preferably ~30/zm. Further, the curable resin composition layer may be a prepreg in which the above-mentioned curable resin composition is impregnated into the sheet-like fibrous base material. For the flaky fiber substrate, for example, glass cloth or amide fiber, which is commonly used as a fiber for prepreg, can be used. In the prepreg system, the curable resin composition is impregnated into the sheet-like fibrous base material by a heat fusion method or a solvent method, and is formed by semi-hardening by heating. Further, the heat-melting method does not dissolve the resin composition in the organic solvent, but temporarily applies the resin composition to the coated paper which is excellent in peelability from the resin composition, and laminates it on the sheet-like fibrous substrate. Or a method of manufacturing a prepreg by directly coating a slit coater or the like. Further, the solvent method is a method in which a flaky fiber substrate is impregnated with a varnish obtained by dissolving a resin composition in an organic solvent, and the varnish is impregnated into a sheet-like fibrous base material, followed by drying. In the adhesive film with a metal film used in the present invention, the thickness of the curable resin composition layer varies depending on the thickness of the inner layer circuit conductor layer, etc., but from the viewpoint of improving the insulation reliability between the layers, etc., It is preferably from 1 0 to 150 μm and more preferably from 15 to 80/im. &lt;Method for Producing Film with Metal Film and Film Attached to Metal Film&gt; The method for producing the film with a metal film and the film for attaching a metal film used in the present invention is not particularly limited, but the following method is good. A film with a metal film, for example, a metal film layer formed on the support layer. When the release layer is provided, the metal layers are formed first, and then the release layer is formed on the surface of the support layer, and a metal film layer is formed on the surface of the release layer. The method for forming the release layer is not particularly limited, and a known lamination method such as hot pressing, hot roll lamination, extrusion lamination, application/drying of a coating liquid, or the like can be employed, but it is simple and easy to form a property having high uniformity. From the point of view of the layer, etc. -68-201202334, it is preferred to apply a coating liquid containing a material used in the release layer and dry it. The formation of the metal film layer is preferably carried out by one or more methods selected by a vapor deposition method, a sputtering method, or an ion plating method, and is particularly formed by a vapor deposition method and/or a sputtering method. good. These methods can be used in combination, or any method can be used alone. A vapor deposition method (vacuum vapor deposition method) may be a known method. For example, the support may be placed in a vacuum vessel, and the metal may be heated and evaporated onto the support (when the release layer is provided, the release layer) Upper) The formation of a film. A known method can be used for the sputtering method. For example, the support can be placed in a vacuum vessel, an inert gas such as argon or the like can be introduced, and after the application of a direct current voltage, the ionized inert gas collides with the target metal by being knocked. The metal is formed on the support (on the release layer when the release layer is formed). The formation of the film can also be carried out by a known method. For example, the support can be placed in a vacuum container for glow. In a discharge atmosphere, the metal is heated and evaporated, and the film is formed on the support by the ionized evaporated metal (on the release layer when the release layer is provided). The adhesive film with a metal film can be produced by forming a curable resin composition on the surface of the metal film layer after the step of forming the metal film layer of the film with the metal film. The method of forming the curable resin composition layer can be carried out by a known method, for example, by dissolving a resin varnish in which a resin composition is dissolved in an organic solvent, and applying the resin varnish to a resin by a slit coater or the like. On the metal film layer of the film of the metal film, the organic solvent is dried by heating or hot air-69 - 201202334 to form a resin composition layer, and the organic solvent may, for example, be acetone or methyl ethyl. Ketones, ketones, etc.; acetates such as ethyl acetate, butyl acetate, ceramide acetate monomethyl ether acetate, carbitol acetate, etc. Alcohols; hydrocarbons such as toluene and xylene; dimethylformamide, dimethylacetamide, N-methylpyrrole. The organic solvent may be used alone or in combination of two or more. The drying conditions are not particularly limited, but the content of the agent in the resin composition layer is preferably 10% by mass or less and preferably 5% by mass. The amount of the organic solvent in the varnish is preferably such that the varnish containing 30 to 60% by mass of the organic solvent is dried at 50 to 30 for 10 to 10 minutes due to the boiling point of the organic solvent to form a resin composition layer. Further, a film of a metal film is formed by disposing a film of a metal film on a support to form a layer of a curable resin composition, and then thinning the film of the metal film and the adhesive film to form a film of a metal film. The method in which the layer contact is applied under heating conditions. Further, when the curable resin composition layer is a prepreg, it may be laminated on the support layer by, for example, a vacuum lamination method. Then thin is manufactured by a known method. Next, the support layer and the resin composition layer of the film are the same as described above. The bonding is performed by hot pressing, hot rolling, or the like. Heating: preferably 60 to 140 ° C, more preferably 80 to 120 ° C. The pressure system 111{20.1112 (9.8\104~107.9 parent 1041^/1112) is better in the production of cyclohexanone ester, C: anthraquinone, etc., but the organic solvent is more different, but ^ 1 5 0 °C, the film, and the hardening method to prepare the prepreg film system can be used to adjust the temperature of the tree to 1~-70-, 2~201202334 7kgf/cm2 (19.06xl04~68.6xl04N/m2) The range is better. &lt;Manufacturing Method of Multilayer Printed Wiring Board Using Film Attached with Metal Film or Adhesive Film Attached to Metal Film&gt; Multilayer printing can be manufactured using a film of a metal film or a film attached with a metal film manufactured as described above Wiring board. An example of the method is described below. In addition, the "inner layer circuit board" has a single surface or both sides of a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. The conductor layer of the type of processing, even if it is an intermediate product in which an insulating layer and a conductor layer are to be formed, and when a film with a metal film is used, the layer of the curable resin composition may be used as a bonding surface, and laminated on the inner layer. On the circuit board. On the other hand, when a film with a metal film is used, the metal film layer is laminated on the surface of the curable resin composition layer which is interposed between the film of the metal film and the inner layer circuit substrate. For the formation of the curable resin composition layer on the inner layer circuit board, a known method can be used, for example, a thin film formed of a layer of a curable resin composition layer on the support layer as described above is laminated on the inner layer circuit substrate. And, by removing the support layer, the curable resin composition layer can be formed on the inner layer circuit substrate. The layering conditions of the film are the same as those of the film of the metal film to be described later. When a prepreg is used as the curable resin composition layer, the multilayer prepreg layer formed by laminating a single prepreg or a plurality of prepregs is laminated on the substrate - 71 - 201202334 laminated body The prepreg of the single-sided or double-sided surface layer is laminated so that the metal film of the film with the metal film is laminated on the surface of the prepreg. The laminate of the film of the metal film and the film of the metal film is laminated on the surface of the object to be attached by a roll or a pressing force, in view of workability and ease of obtaining the same contact state. Among them, it is preferred to carry out lamination under reduced pressure by a vacuum lamination method. Further, the method of laminating can be carried out in batch or in a continuous manner by a roller. The heating temperature is preferably 60 to 140 ° C, more preferably 80 to 120 ° C. The pressing pressure is preferably in the range of 1 to 11 kgf/cm 2 (9·8 χ 104 to 107.9 x 10 4 N/m 2 ), and 2 to 718 Å. 1112 (19.6\104~68.6 The range of &lt;104&gt;^/1112) is particularly good. It is preferable to laminate the layer under a reduced pressure of 20 mmHg (26.7 hPa) or less under an air pressure. The vacuum lamination can be carried out using a commercially available vacuum laminator. For example, a vacuum laminating machine MVLP-500 manufactured by Nippon Seiki Co., Ltd., a VACUUM APPLICATOR manufactured by Nichigo-Morton Co., Ltd., and a drum type dry type manufactured by Indicas Industrial Co., Ltd. Coating machine, Hitachi AIC (stock) vacuum laminator, etc. Further, the step of laminating heating and pressurizing under reduced pressure can be carried out using a general vacuum hot press. For example, it can be carried out by pressing a metal plate such as a heated SUS plate from the side of the support layer. The pressure-receiving condition is preferably such that the degree of pressure reduction is lxl (T2 MPa or less is preferably 1 x 10 '3 MPa or less. Heating and pressurization are performed in one stage, but from the viewpoint of controlling resin bleeding, 2 It is better to enter the conditions above -72-201202334. For example, the pressure applied in the first stage is 70~150. (:, the pressure is in the range of 1~1 5kgf/cm2, and the second stage is applied. The pressure is preferably in the range of 150 to 200 ° C and a pressure of 1 to 40 kgf / cm 2 . The time in each stage is preferably 30 to 120 minutes. Commercially available vacuum hot presses can be exemplified. For example, MNP CV-7 5 0-5-200 (manufactured by Nihon Seiki Co., Ltd.), VH 1 - 1 603 (made by Kitagawa Seiki Co., Ltd.), etc. The film with the metal film attached to the film or the metal film is laminated. After the inner layer circuit board, the curable resin composition layer is cured to form an insulating layer. The curing conditions vary depending on the type of the curable resin, etc., but the curing temperature is 120 to 200 t and the curing time is 15 to 90 minutes. In addition, from the viewpoint of preventing wrinkles on the surface of the formed insulating layer, it is The hardening temperature is hardened stepwise to a high hardening temperature, or it is hardened by raising its temperature. The removal of the support layer can generally be carried out by mechanical peeling by a manual or automatic peeling device. When the foil is used for the support layer, the support layer can be removed by etching. The support layer is preferably removed after the hardening treatment of the curable resin composition layer to form the insulating layer. When the support layer is removed before the hardening treatment, The metal film layer is not sufficiently adhered, and even after the hardening resin composition layer is hardened, cracks may occur on the metal film layer. There is a release layer between the support layer and the metal film layer, and the release layer is removed after the support layer is removed. When the metal film layer remains on the metal film layer, the release layer is removed. The support layer and/or the release layer may be removed before or after the step of forming the wiring trench by laser, but the wiring may be formed in the laser. Step forward behavior of the groove -73- 201202334 Good. Removal of the release layer, if it is a metal release layer, it is preferably removed by dissolving the metal etching solution. The molecular release layer is preferably removed by aqueous solution. Further, in terms of the release layer, the water solubility of one or more selected from the group consisting of water-soluble cellulose resin, water-soluble acrylic resin, and water-soluble polyester resin is high. When the molecular resin is used as the release layer, the aqueous solution for dissolving and removing the release layer is preferably made of 0.5 to 10% by mass of sodium carbonate, sodium hydrogencarbonate, sodium hydroxide or potassium hydroxide. An alkaline aqueous solution or the like which is dissolved in water, and which contains an alcohol such as methanol, ethanol or isopropyl alcohol in an aqueous solution in a range where there is no problem in the production of a circuit board or the like. The method of dissolving and removing the substrate in the aqueous solution after the support layer is removed, and the method of dissolving and removing the substrate in a spray or mist-like aqueous solution, and the like are exemplified. The temperature of the aqueous solution is preferably from room temperature to 80 ° C, and when it is carried out by an aqueous solution such as water immersion or boiling, the treatment time is preferably from 10 seconds to 10 minutes. For the alkaline aqueous solution, an alkali type developing solution (for example, 0.5 to 2% by mass aqueous sodium carbonate solution, 25 ° C to 40 ° C) used in the production of a multilayer printed wiring board can be used, and a dry film peeling machine can be used. The peeling liquid (for example, 1 to 5 mass% of sodium hydroxide aqueous solution, 40 to 60 ° C), and the swelling liquid used in the desmear step (for example, an alkali aqueous solution containing sodium carbonate, sodium hydroxide or the like, 60~) 80t) and so on. A metal wiring layer is formed on the insulating layer, and laser irradiation is performed from the upper portion of the metal film layer to form a fine wiring trench. Also, a laser can be used to form a through hole. Further, by including an inorganic ruthenium filler having an average particle diameter of 0.02 to 5 -74 to 201202334 in the insulating layer, the fine wiring trench can be formed more easily. In the method of the present invention, when the support layer is a plastic film, a fine wiring trench may be formed on the insulating layer from the support layer before removing the support layer or after removing the support layer from the metal film layer. However, from the viewpoint of preventing the processing speed from being slow, it is preferable to use a laser from the metal film layer after removing the support layer to form a fine wiring groove on the insulating layer. Further, when the release layer remains after the support layer is removed, a fine wiring trench can be formed on the insulating layer by using a laser from the release layer. The release layer has a small effect on the processing speed due to its thin thickness. For laser processing machines, carbon dioxide gas lasers, UV-YAG lasers, and excimer lasers can be used. In order to improve the laser processability, it is possible to contain a laser absorbing component in the release layer to increase the processing speed. Examples of the laser absorbing component include metal compound powder, carbon powder, metal powder, and black dye. The blending amount of the laser-absorbing component is preferably from 0.05 to 40% by mass, more preferably from 0.1 to 20% by mass, still more preferably from 1 to 1% by mass, based on the total of the components constituting the release layer. For example, when the content of the water-soluble polymer resin and the entire content of the water-soluble polymer resin is 100% by mass in the release layer formed of the water-soluble polymer resin, it is preferred to blend the above content. . Examples of the carbon powder include powders of carbon black such as furnace black, grooved carbon black, acetylene black, thermally cracked carbon black, and black, graphite powder, or a mixture of such powders. Examples of the metal compound powder include titanium oxides such as titanium oxide, magnesium oxides such as magnesium oxide, iron oxides such as iron oxide, nickel oxides such as nickel oxide, zinc oxides such as manganese dioxide, and zinc oxide. a cobalt oxide such as a cerium oxide, a cerium oxide, an aluminum oxide, a rare earth oxide or a cobalt oxide, or a tin oxide such as a tin oxide, or a tungsten oxide such as a tungsten oxide, a tungsten carbide or the like, a tungsten carbide, or a tungsten nitride. Boron, nitriding sand, titanium nitride, aluminum nitride, barium sulfate, rare earth acid sulfide or a mixture of such a powder. Examples of the metal powder include silver, aluminum, lanthanum, lanthanum, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, iridium, ruthenium, tin, titanium, sail, tungsten, zinc, or the like, or Powder of the mixture, etc. Examples of black dyes include azo (monoazo, disazo, etc.) dyes, azo primary methyl dyes, anthraquinone dyes, sormine dyes, ketimine dyes, fluorone dyes, nitro dyes. , dibenzopyran dye, ethane naphthalene dye, quinoline yellow dye, aminoketone dye, methine dye, anthraquinone dye, coumarin dye, purple ketone dye 'tripty base dye, triene Methane dyes, anthraquinone dyes, ink benzoic acid dyes, anthraquinone dyes or mixtures thereof. The phthalocyanine dye is preferably a solvent-soluble black dye in order to enhance the dispersibility in the water-soluble polymer resin. These laser energy absorbing components may be used singly or in combination of different types. The laser energy absorbing component is preferably carbon powder, particularly carbon black, from the viewpoint of conversion efficiency of laser energy to heat or its versatility. In the method of the present invention, the desmear step can be further carried out. After the wiring is formed using a laser, it is preferable to carry out the desmear step. The step of removing the slag can be carried out by a known method such as a dry method such as plasma or a wet method such as an oxidizing agent such as an alkaline permanganic acid solution. The desmear step mainly removes the resin residue generated by the formation of the blind vias or the formation of the wiring trenches, and the wall surface of the via holes or the wiring trenches can be roughened. In particular, the slag removal by the oxidant is because the smear of the through hole bottom or the wiring trench is removed, the wall surface of the through hole is roughened by the oxidant, and the plating adhesion strength can be made to -76-201202334. It is better to look at the point of improvement. The step of removing the slag by the oxidizing agent is preferably carried out by swelling the swelling liquid, roughening with an oxidizing agent, and neutralizing with a neutralizing liquid. The swelling solution may, for example, be an alkali solution or a surfactant solution, and is preferably an alkali solution. Examples of the alkali solution include a sodium hydroxide solution and a potassium hydroxide solution. As a commercially available swelling liquid, for example, Swelling Dip Securiganth P, Swelling Dip Securiganth SBU, etc., manufactured by ATOTECH JAPAN Co., Ltd., may be mentioned. The oxidizing agent may, for example, be an alkaline permanganic acid solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide. The roughening treatment by the oxidizing agent such as an alkaline permanganic acid solution is preferably carried out in an oxidizing agent solution heated to 60 ° C to 80 ° C for 10 minutes to 30 minutes. Further, the concentration of permanganate in the alkaline permanganic acid solution is usually about 5 to 10% by weight. The commercially available oxidizing agent may, for example, be an alkaline permanganic acid solution such as Concentrate Compact CP or Dosing solution Securighanth P manufactured by ATOTECH JAPAN Co., Ltd. In addition, as for the neutralization liquid, an acidic aqueous solution is preferred, and a commercially available product is a reduction solution Securighanth P (neutralization solution) manufactured by ATOTECH JAPAN Co., Ltd. In the method of the present invention, the electroless plating step can be further performed. It is preferred to carry out the electroless plating step after the desmear step. By the electroless plating step, an electroless plating layer can be formed on the surface of the insulating layer. The electroless plating step can be carried out by a known method. For example, the surface of the insulating layer can be treated by a surfactant or the like, and after being impregnated with an ore-plating catalyst such as palladium, it is impregnated into the electroless plating solution. To form an electroless plating layer. In the method of the present invention, the electrolytic plating step can be further performed. -77- 201202334 It is preferred to carry out the electrolytic plating step after the electroless plating step. The conductor layer can be formed by an electrolytic plating step. The electrolytic plating step can be carried out by a known method. For example, after forming an electroless plating layer (plating seed layer) on the insulating layer by 0.1 to 2/zm, a conductor layer is formed by electrolytic plating. The conductor layer is preferably copper, and the thickness thereof varies depending on the depth of the laser processing groove and the height of the wiring groove formed, but is preferably 3 to 35 / ί η, more preferably 5 to 25 / ^ m. In the method of the present invention, the step of removing the conductor layer can be further carried out. It is preferred to carry out the step of removing the conductor layer after the electrolytic plating step. Since the electroless plating step and the electrolytic plating step form a copper layer on the entire surface of the insulating layer, the step of removing the surface of the conductor layer by exposing the insulating layer to the surface can form a trench type wiring. A schematic diagram of the trench type circuit substrate is shown in FIG. The step of removing the conductor layer on the surface can be carried out by a known method, for example, by mechanical honing and/or by etching and removing a solution in which copper is dissolved. [Examples] Hereinafter, the present invention will be described in more detail by using the examples, but the invention is not limited thereto. In addition, in the following description, "part j means "parts by mass". &lt;Measurement method. Evaluation method&gt; First, various measurement methods and evaluation methods will be described. -78- 201202334 &lt;Measurement and evaluation of MIT folding resistance&gt; The adhesive film produced in the examples and the comparative examples was cured at 190 ° C for 90 minutes, and 5 pieces of 110 mm were formed using a cutter. &lt;15 mm sample for evaluation. The MIT Folding Fatigue Tester "ΜΙΤ-DA" manufactured by Toyo Seiki Co., Ltd., based on JIS C-5016, has a load of 2.5N, a meandering angle of 135 degrees, a meandering speed of 175 times per minute, and a radius of curvature of 0.38 mm. The MIT folding endurance test was carried out, and the number of folding resistances was measured. The average enthalpy of the number of folding resistances of the five evaluation samples was obtained. When the number of times of folding is less than 50, the evaluation is "X", 50 times or more, and when it is less than 100 times, it is evaluated as "△", and when it is 100 times or more and less than 200 times, it is evaluated as "〇". When it was evaluated as "◎" at 200 or more and less than 300 times, and when it was 300 or more times, it was evaluated as "◎〇j. &lt;Evaluation of the buildup&gt; The laminate film produced in the examples and the comparative examples was a batch type vacuum pressure laminator MVLP-5 00 (trade name, manufactured by a famous machine), and the conductor thickness was 3 5 . // m is layered on the conductor pattern of L (line: wiring width) / S (space: spacing width) = 160 #m/160/zm. The laminate was depressurized for 30 seconds to have a gas pressure of 13 hPa or less, and then pressed at 30 seconds, 100 ° C, and a pressure of 0.74 MPa. The appearance of the resin composition layer after lamination was examined. Further, the PET film was peeled off from the laminated adhesive film, and the resin composition was cured at 180 ° C for 30 minutes to form an insulating layer, and the unevenness on the insulating layer (Rt : maximum peak-to-valley) The non-contact surface roughness meter is used (Veeco -79- 201202334

Instruments 公司製 WYKO NT 3 3 0 0 ),以 V S I 接觸模式 、10倍透鏡,使測定範圍爲1.2mm χ 0.9 1mm所得之數値 來求取。其後,如下述進行判定。. 〇:積層後外觀無空隙產生,且絕緣層上的凹凸差小 於 5 μ m、 △:積層後外觀無空隙產生,且絕緣層上的凹凸差爲 5 μ m以上、 x:積層後產生空隙,且絕緣層上之凹凸差無法測定 &lt;玻璃轉移溫度(Tg)及線熱膨張率的測定及評價&gt; 使實施例及比較例中所得之接著薄膜以1 90°C經90分 熱硬化而得薄片狀之硬化物。將該硬化物剪切成寬幅約 5mm、長度約15mm之試驗片,使用(股)RIGAKU製熱 機械分析裝置(Thermo Plus TMA83 1 0 ),以拉伸加 重法進行熱機械分析。將試驗片裝置於前述裝置後,以荷 重1 g、昇溫速度5t/分鐘的測定條件連續測定2次。計 算出2次目標測定中由25°C至150°C爲止的平均線熱膨張 率。當線熱膨張率之値爲41ppm以上時記爲「χ」、 3 7ppm以上且小於41ppm時記爲「△」、低於37ppm時 則記爲「〇」。又,從2次目標測定中的尺寸變化信號的 斜率變化之點來計算玻璃轉移溫度(°C )。 (實施例1 ) -80- 201202334 將液狀雙酚A型環氧樹脂(環氧基當量180、日本環 氧樹脂(股)製「jER82 8EL」)14份與聯苯基芳烷基型 環氧樹脂(環氧基當量 269、日本化藥(股)製「 NC3 000L」)14份、聯苯基型環氧樹脂(環氧基當量、日 本環氧樹脂(股)製「YX4000H」)5份、苯氧基樹脂( 重量平均分子量 3 8000、日本環氧樹脂(股)製「 YL7553 BH30」、固形成分30質量%之MEK與環己酮的 1:1溶液)20份、含醯亞胺骨架之2官能苯酚樹脂(苯 酚性羥基當量2 52、日本環氧樹脂(股)製、上述一般式 (7 )中記載者)10份,置入DMAcl5份' 環己酮15份 中邊攪拌邊使其加熱溶解。於其中,混合聯苯基芳烷基型 苯酚樹脂(苯酚性羥基當量242、明和化成(股)製「 MEH78 5 1 -4H」、固形成分50質量%之環己酮溶液)40 份、二氰二醯胺(日本環氧樹脂(股)製「DICY7」)2 份、硬化觸媒(四國化成工業(股)製、「2E4MZ」) 0.1份、球形二氧化矽(平均粒徑 〇·5μιη ' (股) ADMATECHS製「SΟC2」之胺基矽烷處理品)5 0份,以 高速旋轉混合機均一地分散而製作樹脂清漆。接著,於聚 對苯二甲酸乙二酯(厚度38/zm、以下簡稱「PET」)上 ,藉由狹縫式塗佈裝置塗佈而使乾燥後的樹脂厚度爲40 &quot;m,以80〜120 °C (平均l〇〇t:)乾燥7分鐘(殘留溶劑 量約2質量%)。接著,在樹脂組成物的表面邊貼合厚度 15/zm之聚丙烯薄膜邊卷取呈滾筒狀。將滾筒狀的接著薄 膜切開成寬幅5 07mm,且由此獲得507 x 3 3 6mm大小的薄 -81 - 201202334 片狀接著薄膜。 (實施例2) 除了將實施例1之球形二氧化矽(平均粒徑〇.5/zm 、(股)ADMATECHS製「SOC2」之胺基矽烷處理品) 50份變更爲此種球狀二氧化矽(平均粒徑0.25Vm、(股 )ADMATECHS製「SOC1」之胺基矽烷處理品)之外’ 其餘皆與賣施例1完全同樣地實施而得接著薄膜。 (比較例1 ) 除了將實施例1的含醯亞胺骨架之2官能苯酚樹脂( 苯酚性羥基當量25 2、日本環氧樹脂(股)製、上述一般 式(7)中記載者)10份變更爲含醯亞胺骨架之多官能苯 酚樹脂(DIC (股)製「V-8003」、固形成分16質量% 之DM Ac溶液)60份之外,其餘皆與實施例1完全同樣 地實施而得接著薄膜。 (比較例2) 除了將實施例1的含醯亞胺骨架之2官能苯酚樹脂( 苯酚性羥基當量252、日本環氧樹脂(股)製、上述一般 式(7 )中記載者)1 〇份變更爲2官能苯酚樹脂(東京化 成工業(股)製「雙酚A」)10份之外,其餘皆與實施 例1完全同樣地實施而得接著薄膜。 -82- 201202334 (比較例3 ) 除了將實施例1的含醯亞胺骨架之2官能苯酚樹脂( 苯酚性羥基當量252、日本環氧樹脂(股)製、上述一般 式(7 )中記載者)10份變更爲2官能苯酚樹脂(東京化 成工業(股)製「雙酚S」)10份之外,其餘皆與實施例 1完全同樣地實施而得接著薄膜。 結果顯示於表1。 [表1] 配合成分(不揮發成分換so (質量份) 實施例1 實施例2 比較例1 比較例2 比較例3 (A)成分 含醢亞胺骨架之2官能 苯酚樹脂 10 10 ί 1 含酸亞胺骨架之 多官能苯酚樹脂 V-8 0 0 3 9.6 2官能苯酚 雙酚A 10 雙酚S 10 環氧樹脂 NC3000L 14 14 14 14 14 YX4000H 5 5 5 5 5 jER828EL 14 14 14 14 14 硬化劑 DICY7 2 2 2 2 2 MEH7851-4H 20 20 20 20 20 熱可塑性樹脂 YL7553BH30 6 6 6 6 6 無機塡充材 S0C2 50 50 50 50 S0C1 50 硬化促進劑 2E4MZ 0. 1 0.1 0.1 0. 1 0.1 固形成分量 121.1 121.1 120.7 121. 1 121.1 無機塡充材之含量(質量%) 41.3 41.3 41.4 41.3 41.3 (A)成分之含量(質量%) 8.3 8.3 1.3 0.0 0.0 ΜΠ»折性(次) ◎ (250) ◎〇 (320) 〇 (180) X (45) X (32) 槙層性 〇 〇 X 〇 〇 線熱膨張率(ppm) 〇 (36) 〇 (37) 〇 (33) X (56) X (41) 玻堪轉移溫度 rc) 154 152 157 134 162 -83- 201202334 實施例1、2中,可知本案發明既已達成。由比較例 1可知,即使是含醯亞胺骨架之樹脂,若含有多官能之苯 酚性羥基的話,則交聯密度會變高,積層性會惡化。此在 印刷配線板的製造中會成爲致命的缺點。又,由比較例2 ’ 3可知’使用不存在醯亞胺骨架之2官能苯酚樹脂時, 線熱膨張率會變大,且爲耐折次數低者。 (實施例3) &lt;附金屬膜之薄膜的製作&gt; 於厚度38/zm之聚對苯二甲酸乙二酯(以下簡稱「 PET」)薄膜上,將羥基丙基甲基纖維素苯二甲酸酯(信 越化學工業(股)製「HP-55」)之固形成分10重量%之 甲基乙基酮(以下簡稱「MEK」)與N,N-二甲基甲醯胺 (以下簡稱「DMF」)之1: 1溶液藉由狹縫式塗佈機予 以塗佈,使用熱風乾燥爐由室溫以昇溫速度.3 °C/秒昇溫 至140°C爲止來去除溶劑,於PET薄膜上形成約0.6 μ m 之羥基丙基甲基纖維素苯二甲酸酯層。接著,在羥基丙基 甲基纖維素苯二甲酸酯層上藉由濺鍍法形成銅膜層約 2 00nm,來製作附金屬膜之薄膜。 &lt;具有硬化性樹脂組成物層之接著薄膜的製作&gt; 使液狀雙酚F型環氧樹脂(環氧基當量170、日本環 氧樹脂(股)製「Epicoat 806H」)28份,與萘型4官能 環氧樹脂(環氧基當量163、大日本油墨化學工業(股) -84- 201202334 製「HP4700」)28份、苯氧基樹脂(日本環氧樹脂(股 )製「YX6954BH30」不揮發成分30質量%之MEK與環 己酮之1:1溶液)20份,於MEK15份、環己酮15份中 邊攪拌邊使其加熱溶解。於其中,混合含三嗪之苯酚酚醛 清漆樹脂(羥基當量125、DIC (股)製「LA7054」、不 揮發成分60質量%之MEK溶液)27份、萘酚系硬化劑 (羥基當量215、東都化成(股)製「SN-48 5」)之固形 成分50質量%之MEK溶液27份、硬化觸媒(四國化成 工業(股)製、「2E4MZ」)0.1份、球形二氧化矽(平 均粒徑0.25/zm、(股)ADMATECHS製「SOC1」的胺基 矽烷處理品)70份、聚乙烯醇縮丁醛樹脂(積水化學工 業(股)製「KS-1」)之固形成分15質量%之乙醇與甲 苯的1: 1溶液30份,以高速旋轉混合機均一地分散而製 作樹脂清漆。於厚度38/zm之附醇酸型離型劑(AL-5 ) 之PET薄膜(LINTEC (股)製)上,以狹縫式塗佈機塗 佈上述清漆,且使用熱風乾燥爐去除溶劑,製作硬化性樹 脂組成物層之厚度爲50/zm之接著薄膜》 &lt;附金屬膜之接著薄膜的製作&gt; 使上述接著薄膜之硬化性樹脂組成物層與附金屬膜之 薄膜的銅膜層接觸,以90°C貼合卷取,得到附金屬膜之接 著薄膜。 &lt;內層電路基板上之附金屬膜之接著薄膜的積層及硬化&gt; -85- 201202334 將兩面形成有18/zm厚銅電路之玻璃環氧基板的銅 電路上,以CZ81 00 (唑類的銅錯合物、含有機酸之表面 處理劑(MEC (股)製))處理予以粗化。接著,剝離上 述附金屬膜接著薄膜之附有醇酸型離型劑(AL-5)的PET 薄膜,使硬化性樹脂組成物層與銅電路表面接觸,使用批 次式真空加壓積層機MVLP-500 C (股)名機製作所製商 品名),積層於基板的兩面。積層係經30秒鐘減壓使氣 壓在13hPa以下進行。其後,於160°C進行30分鐘熱硬化 來形成絕緣層。 &lt;支持體層之去除、雷射加工、離型層之去除以及除膠渣 處理&gt;WYKO NT 3 3 0 0 ) manufactured by Instruments, which is obtained by using V S I contact mode and 10 times lens to obtain a measurement range of 1.2 mm χ 0.9 1 mm. Thereafter, the determination is made as follows. 〇: The appearance of the laminate has no voids, and the difference in unevenness on the insulating layer is less than 5 μm. △: The appearance of the laminate has no voids, and the difference in unevenness on the insulating layer is 5 μm or more. x: voids after lamination And the difference in unevenness on the insulating layer could not be measured. <Measurement and evaluation of glass transition temperature (Tg) and linear thermal expansion rate> The film obtained in the examples and the comparative examples was thermally cured at 90 ° C for 90 ° C. It has a flaky hardened material. The cured product was cut into a test piece having a width of about 5 mm and a length of about 15 mm, and subjected to thermomechanical analysis by a tensile weighting method using a thermal mechanical analysis device (Thermo Plus TMA83 1 0) manufactured by RIGAKU. After the test piece was placed in the above apparatus, the test piece was continuously measured twice under the measurement conditions of a load of 1 g and a temperature increase rate of 5 t/min. The average linear thermal expansion rate from 25 ° C to 150 ° C in the second target measurement was calculated. When the enthalpy of the linear thermal expansion rate is 41 ppm or more, it is referred to as "χ", and when it is 3 ppm or less and less than 41 ppm, it is referred to as "△", and when it is less than 37 ppm, it is referred to as "〇". Further, the glass transition temperature (°C) was calculated from the point where the slope of the dimensional change signal in the second target measurement was changed. (Example 1) -80-201202334 14 parts of a liquid bisphenol A type epoxy resin (epoxy equivalent weight 180, "JER82 8EL" made from Nippon Epoxy Resin Co., Ltd.) and a biphenyl aralkyl type ring 14 parts of oxygen resin (epoxy equivalent 269, "N33000L" manufactured by Nippon Kayaku Co., Ltd.), biphenyl type epoxy resin (epoxy equivalent, "YX4000H" manufactured by Nippon Epoxy Co., Ltd.) 5 Part, phenoxy resin (weight average molecular weight 3 8000, "YL7553 BH30" manufactured by Nippon Epoxy Resin Co., Ltd., 1:1 solution of MEK and cyclohexanone in 30% by mass), bismuth imine 10 parts of a bifunctional phenol resin (phenolic hydroxyl equivalent 2 52, manufactured by Nippon Epoxy Resin Co., Ltd., and the above general formula (7)), and placed in DMAcl 5 parts of 'cyclohexanone 15 parts while stirring Allow to dissolve by heating. In the above, a mixed biphenyl aralkyl type phenol resin (phenolic hydroxyl equivalent 242, "MEH78 5 1 -4H" manufactured by Minghe Chemical Co., Ltd., and a 50% by mass solid cyclohexanone solution) 40 parts of dicyano 2 parts of diammonium ("DICY7" made by Nippon Epoxy Co., Ltd.), hardening catalyst (4E4MZ by Shikoku Chemicals Co., Ltd.), 0.1 parts, spherical cerium oxide (average particle size 〇·5μιη) 50 parts of the "amino decane treated product of "SΟC2" manufactured by ADMATECHS) was uniformly dispersed by a high-speed rotary mixer to prepare a resin varnish. Next, on a polyethylene terephthalate (thickness 38/zm, hereinafter abbreviated as "PET"), the thickness of the resin after drying was 40 &quot;m, 80 by a slit coating apparatus. Dry at ~120 °C (average l〇〇t:) for 7 minutes (about 2% by mass of residual solvent). Next, a polypropylene film having a thickness of 15/zm was bonded to the surface of the resin composition and wound up in a roll shape. The roll-shaped adhesive film was cut into a width of 5 07 mm, and thereby a thin film of -507 - 201202334 of 507 x 3 3 6 mm was obtained. (Example 2) In addition, 50 parts of the spherical cerium oxide (average particle diameter 〇.5/zm, (A) of ADMATECHS "SOC2" oxime treated product) of Example 1 was changed to such spherical oxidization. The film was carried out in the same manner as in the first embodiment except that the ruthenium (average particle diameter: 0.25 Vm, (manufactured by ADMATECHS), "SOC1"). (Comparative Example 1) 10 parts of the bifunctional phenol resin containing the quinone imine skeleton of Example 1 (phenolic hydroxyl equivalent 25, manufactured by Nippon Epoxy Resin Co., Ltd., and the above general formula (7)) The same procedure as in Example 1 was carried out except that 60 parts of a polyfunctional phenol resin ("V-8003" manufactured by DIC Co., Ltd. and a DM Ac solution having a solid content of 16% by mass) containing quinone imine skeleton was changed. It is followed by a film. (Comparative Example 2) In addition to the quinone imine skeleton-containing bifunctional phenol resin of Example 1 (phenolic hydroxyl equivalent 252, manufactured by Nippon Epoxy Resin Co., Ltd., and described in the above general formula (7)) In the same manner as in Example 1, except that 10 parts of a bifunctional phenol resin ("bisphenol A" manufactured by Tokyo Chemical Industry Co., Ltd.) was changed, the film was obtained. -82-201202334 (Comparative Example 3) The bifunctional phenol resin containing the quinone imine skeleton of Example 1 (phenolic hydroxyl equivalent 252, Japanese epoxy resin), and the above general formula (7) are described. In the same manner as in Example 1, except that 10 parts of the bifunctional phenol resin ("bisphenol S" manufactured by Tokyo Chemical Industry Co., Ltd.) was changed to 10 parts, a film was obtained. The results are shown in Table 1. [Table 1] Component (non-volatile content for so (parts by mass) Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 (A) Component 2-functional phenol resin containing a quinone imine skeleton 10 10 ί 1 Polyfunctional phenolic resin of acid imine skeleton V-8 0 0 3 9.6 2-functional phenol bisphenol A 10 bisphenol S 10 epoxy resin NC3000L 14 14 14 14 14 YX4000H 5 5 5 5 5 jER828EL 14 14 14 14 14 Hardener DICY7 2 2 2 2 2 MEH7851-4H 20 20 20 20 20 Thermoplastic resin YL7553BH30 6 6 6 6 6 Inorganic strontium S0C2 50 50 50 50 S0C1 50 Hardening accelerator 2E4MZ 0. 1 0.1 0.1 0. 1 0.1 Solid component 121.1 121.1 120.7 121. 1 121.1 Content of inorganic cerium filling material (% by mass) 41.3 41.3 41.4 41.3 41.3 Content of (A) component (% by mass) 8.3 8.3 1.3 0.0 0.0 ΜΠ»Folding (times) ◎ (250) ◎〇 (320) 〇(180) X (45) X (32) 槙 layer 〇〇X 〇〇 line thermal expansion rate (ppm) 〇(36) 〇(37) 〇(33) X (56) X (41) Bokkan transfer temperature rc) 154 152 157 134 162 -83- 201202334 In Examples 1 and 2, it is understood that the invention of the present invention has been achieved. As is apparent from Comparative Example 1, even if the resin containing a quinone imine skeleton contains a polyfunctional phenolic hydroxyl group, the crosslinking density is increased and the buildup property is deteriorated. This can be a fatal disadvantage in the manufacture of printed wiring boards. Further, from Comparative Example 2'3, it is understood that when a bifunctional phenol resin having no quinone imine skeleton is used, the linear thermal expansion ratio is increased, and the number of times of folding resistance is low. (Example 3) &lt;Production of film with metal film&gt; Hydroxypropyl methylcellulose benzene was deposited on a polyethylene terephthalate (hereinafter referred to as "PET") film having a thickness of 38/zm. 10% by weight of methyl ethyl ketone (hereinafter referred to as "MEK") and N,N-dimethylformamide (hereinafter referred to as "HP-55" manufactured by Shin-Etsu Chemical Co., Ltd.) "DMF" 1:1 solution is applied by a slit coater, and the solvent is removed by heating at room temperature at a heating rate of 3 ° C / sec to 140 ° C using a hot air drying oven. A layer of hydroxypropylmethylcellulose phthalate of about 0.6 μm was formed thereon. Next, a copper film layer of about 200 nm was formed on the hydroxypropylmethylcellulose phthalate layer by a sputtering method to prepare a film with a metal film. &lt;Preparation of a film having a curable resin composition layer&gt; 28 parts of a liquid bisphenol F type epoxy resin (epoxy equivalent 170, "Epicoat 806H" manufactured by Nippon Epoxy Co., Ltd.), and Naphthalene type 4-functional epoxy resin (epoxy equivalent 163, Dainippon Ink Chemical Industry Co., Ltd. -84-201202334 "HP4700") 28 parts, phenoxy resin ("XX6954BH30" made by Japan Epoxy Resin Co., Ltd." 20 parts of a non-volatile component (30% by mass of a 1:1 solution of MEK and cyclohexanone) was dissolved in 15 parts of MEK and 15 parts of cyclohexanone while stirring. Among them, a mixture of a triazine-containing phenol novolak resin (hydroxyl equivalent of 125, DIC ("LA7054", and 60% by mass of a MEK solution) was used, and a naphthol-based hardener (hydroxyl equivalent 215, Dongdu) was mixed. 27 parts of MEK solution with a solid content of 50% by mass and 0.1 part of a hardening catalyst ("2E4MZ" manufactured by Shikoku Chemicals Co., Ltd.), spherical cerium oxide (average 70 parts of a solid content of 0.25/zm, (meth) oxime treated product of "SOC1" manufactured by ADMATECHS), and 15 parts of polyvinyl butyral resin ("KS-1" manufactured by Sekisui Chemical Co., Ltd.) A solution of 30% of a 1:1 solution of ethanol and toluene was uniformly dispersed in a high-speed rotary mixer to prepare a resin varnish. The varnish was applied to a PET film (manufactured by LINTEC Co., Ltd.) having a thickness of 38/zm and an alkyd type release agent (AL-5), and the solvent was removed by a hot air drying oven. A film in which a thickness of the curable resin composition layer is 50/zm is formed. &lt;Production of a film with a metal film.&gt; A copper film layer of the film of the cured film and the film of the metal film. The contact was rolled up at 90 ° C to obtain a film with a metal film attached thereto. &lt;Lamination and Hardening of Adhesive Film Attached to Metal Film on Inner Circuit Board&gt; -85- 201202334 On a copper circuit in which a glass epoxy substrate of 18/zm thick copper circuit is formed on both sides, CZ81 00 (azole) The copper complex and the surface treatment agent (manufactured by MEC) containing an organic acid are treated to be roughened. Next, the PET film with the alkyd type release agent (AL-5) attached to the metal film attached to the film was peeled off, and the curable resin composition layer was brought into contact with the surface of the copper circuit, and the batch vacuum pressure laminator MVLP was used. -500 C (share) manufactured by Nihon Seiki Co., Ltd.), laminated on both sides of the substrate. The build-up was carried out under reduced pressure for 30 seconds to bring the gas pressure below 13 hPa. Thereafter, heat hardening was performed at 160 ° C for 30 minutes to form an insulating layer. &lt;Removal of support layer, laser processing, removal of release layer, and desmear treatment&gt;

將支持體層之PET薄膜剝離後,使用UV-YAG雷射 來形成配線溝(線(配線)/空間(間隔)= 8/ 8ym。 深度12#m)及頂徑70//m之層間接續用通孔。接著, 將羥基丙基甲基纖維素苯二甲酸酯層以1重量%碳酸鈉水 溶液予以溶解去除。接著,除膠渣步驟方面,乃於8 0°C下 10分鐘浸漬於作爲膨潤液之ATOTECH JAPAN (股)之 Swelling Dip Securiganth P,接著,係於 80°C 下 20 分鐘 浸漬於作爲粗化液之 ATOTECH JAPAN (股)之 Concentrate Compact P ( KMn04 : 60g/L、NaOH : 40g/L 的水溶液),最後於40°C下5分鐘浸漬於作爲中和液之 ATOTECH JAPAN (股)之 Reduction solution Securighanth P。其後,使其水洗、乾燥。 -86- 201202334 &lt;以鈾刻去除金屬膜層及通孔底基底金屬層表面的蝕刻&gt; 於25 °C下將上述基板浸漬於二氯化銅水溶液1分鐘, 將絕緣層上之銅膜層以蝕刻去除,且進行通孔底銅電路表 面之蝕刻,其後,經水洗,使用(股)日立 High-Technologies 製「S-4800」,以倍率2000倍、SEM觀察 配線溝。其照片顯示於圖2。 &lt;導體層形成、配線形成&gt; 於上述蝕刻了銅膜層之絕緣層上,進行無電解銅鍍敷 (使用以ATOTECH JAPAN (股)製藥液所爲之無電解銅 鍍敷製程),使無電解銅鎪敷之膜厚爲0.8 # m。其後, 以電解銅鍍敷約25μιη厚,將配線的溝以銅埋入,其後 ,藉由機械硏磨去除最表面不要的銅(導體層)直到使絕 緣層出現至表面爲止後,得到電路基板。觀察配線形狀之 橫斷面,乃爲線(配線)/空間(間隔)= 8/ 8#m之良 好的基板。 (比較例4) 去除支持體、離型層與銅膜層後,除了施予雷射加工 之外,其餘係與實施例3完全同樣地實施後,進行配線溝 之SEM觀察。將配線溝之SEM照片顯示於圖3。再者, 與實施例3同樣地施行得到電路基板,觀察配線形狀之橫 斷面得知,空間(間隔)之上部擴大至12 // m以上,未 -87- 201202334 能形成所希望的形狀。 由實施例3得知,藉由使用本發明之方法 緣層中形成微細配線溝。再者,於除膠渣步驟 層最上部乃受銅膜層之保護,而得以維持良好 狀。 [產業上之可利用性] 藉由本發明之含有具有含醯亞胺骨架之2 脂之樹脂的樹脂組成物,係可提供一在以接著 的積層性上表現優異、使該樹脂組成物硬化所 的線熱膨張率低、且在曲折性上表現優異之樹 進一步可提供使用其之接著薄膜、預浸體、多 板。甚至是搭載此等之電腦、行動電話、數位 、等之電氣製品,或自動二輪車、汽車、電車 空器等之搭乘物。 又,本發明係可提供一微細配線溝之形成 也可提供含有微細配線溝之電路基板、以及搭 腦、行動電話、數位相機、電視等之電氣製品 二輪車、汽車、電車、船舶、航空器等之搭乘 【圖式簡單說明】 [圖1]顯示溝型電路基板之模式圖。 [圖2]表示實施例3之配線形狀的圖。 [圖3]表示比較例4之配線形狀的圖。 ,而可於絕 後,因絕緣 的配線溝形 官能苯酚樹 薄膜使用時 得之絕緣層 脂組成物, 層印刷配線 相機、電視 、船舶、航 方法,甚至 載此等之電 ,或是自動 物。 -88- 201202334 【主要元件符號說明】 1 :銅配線 2 :絕緣層 3 :內層電路基板 89 -After peeling off the PET film of the support layer, a UV-YAG laser is used to form a wiring trench (line (wiring)/space (interval) = 8/8 μm. Depth 12#m) and a top 70//m layer indirect continuation Through hole. Next, the hydroxypropylmethylcellulose phthalate layer was dissolved and removed in a 1% by weight aqueous sodium carbonate solution. Next, in terms of the desmear step, it was immersed in Swelling Dip Securiganth P as a swelling liquid in ATOTECH JAPAN at a temperature of 80 ° C for 10 minutes, and then immersed in a coarsening solution at 80 ° C for 20 minutes. ATOTECH JAPAN's Concentrate Compact P (KMn04: 60g/L, NaOH: 40g/L aqueous solution), and finally immersed in ATOTECH JAPAN as a neutralizing solution for 5 minutes at 40 °C. Reduction solution Securighanth P. Thereafter, it is washed with water and dried. -86- 201202334 &lt;Etching to remove the metal film layer and the surface of the underlying base metal layer by uranium&gt; The substrate was immersed in a copper dichloride aqueous solution at 25 ° C for 1 minute to form a copper film on the insulating layer. The layer was etched and removed, and the surface of the through-hole copper circuit was etched. Thereafter, the layer was washed with water, and "S-4800" manufactured by Hitachi High-Technologies Co., Ltd. was used, and the wiring trench was observed by SEM at a magnification of 2,000. The photo is shown in Figure 2. &lt;Conductor layer formation, wiring formation&gt; Electroless copper plating (using an electroless copper plating process using ATOTECH JAPAN pharmaceutical liquid) was performed on the insulating layer on which the copper film layer was etched. The film thickness of the electroless copper ruthenium coating is 0.8 # m. Thereafter, the electrolytic copper is plated with a thickness of about 25 μm, and the trench of the wiring is buried with copper. Thereafter, the copper (conductor layer) of the outermost surface is removed by mechanical honing until the insulating layer is applied to the surface. Circuit board. Observing the cross section of the wiring shape is a good substrate with a good line (wiring)/space (interval) = 8/8#m. (Comparative Example 4) After the support, the release layer and the copper film layer were removed, the same procedure as in Example 3 was carried out except that the laser treatment was applied, and SEM observation of the wiring trench was performed. The SEM photograph of the wiring trench is shown in Fig. 3. Further, in the same manner as in the third embodiment, the circuit board was obtained, and the cross section of the wiring shape was observed. The upper portion of the space (interval) was expanded to 12 // m or more, and the -87 - 201202334 was not formed. It is known from the third embodiment that a fine wiring groove is formed in the edge layer by using the method of the present invention. Further, the uppermost layer of the desmear step is protected by the copper layer and maintained in a good shape. [Industrial Applicability] The resin composition containing the resin having a bismuth imine skeleton-containing resin of the present invention can provide an excellent performance in the subsequent buildup property and harden the resin composition. The tree having a low linear thermal expansion rate and excellent in tortuosity can further provide a film, a prepreg, and a multi-plate using the same. It is even equipped with such computers, mobile phones, digital devices, etc., or carriers such as motorcycles, cars, and trams. Moreover, the present invention can provide a fine wiring trench, a circuit board including a fine wiring trench, and an electric product such as a brain, a mobile phone, a digital camera, a television, a motorcycle, a car, a ship, an aircraft, and the like. [Simplified description of the drawing] [Fig. 1] shows a schematic diagram of the groove type circuit substrate. Fig. 2 is a view showing the shape of a wiring of the third embodiment. FIG. 3 is a view showing a wiring shape of Comparative Example 4. FIG. In addition, the insulating layer of the phenolic tree film can be used as an insulating layer, printed wiring camera, television, ship, navigation method, or even electricity, or an automatic object. -88- 201202334 [Explanation of main component symbols] 1 : Copper wiring 2 : Insulation layer 3 : Inner layer circuit board 89 -

Claims (1)

201202334 七、申請專利範固: 1. 一種樹脂組成物,其特徵係含有(A)含醯亞胺 骨架之2官能苯酚樹脂。 2. 如請求項1之樹脂組成物,其中,(A )含醯亞 胺骨架之2官能苯酚樹脂的含量係對樹脂組成物中之不揮 發成分100質量%而言爲〇」〜30質量% ^ 3. 如請求項1或2之樹脂組成物,其中,(A)含 醯亞胺骨架之2官能苯酚樹脂的重量平均分子量爲200〜 1 500。 4. 如請求項1〜3中任一項之樹脂組成物,其係進一 步含有(B)無機塡充材》 5. 如請求項4之樹脂組成物,其中,(B)無機塡充 材的平均粒徑爲0.02/zm〜5/zm。 6. 如請求項1〜5中任一項之樹脂組成物,其中,樹 脂組成物的硬化物之耐折次數爲50次以上且爲1 0000次 以下。 7. 如請求項1〜6中任一項之樹脂組成物,其中,樹 脂組成物的硬化物之線熱膨張率爲4〜40ppm。 8. —種接著薄膜,其特徵係於支持薄膜上有如請求 項1〜7中任一項之樹脂組成物予以層形成。 9 ·—種預浸體,其特徵係使如請求項1〜7中任一項 之樹脂組成物含浸於由纖維所成之薄片狀纖維基材中。 10. —種電路基板,其特徵係藉由如請求項1〜7中 任一項之樹脂組成物的硬化物而形成有絕緣層。 -90- 201202334 •—種半導體裝置,其特徵係使用如請求項1〇之 電路基扳。 12· ~種微細配線溝之形成方法,其特徵係於已硬化 如請求項5之樹脂組成物所成之絕緣層上形成金屬膜層, 且由金屬膜層上部進行雷射照射。 13·—種溝型電路基板之製造方法,其特徵係包含如 請求項12之微細配線溝之形成方法。 —種微細配線溝之形成方法,其特徵係於絕緣層 上形成金屬膜層’且由金屬膜層上部進行雷射照射。 15. 如請求項14之微細配線溝之形成方法,其特徵 係使絕緣層中含有平均粒徑〇.〇2〜SAm之無機塡充材。 16. 如請求項14或15之微細配線溝之形成方法,其 中’金屬膜層之厚度爲50〜500nm。 17. —種溝型電路基板之製造方法,其特徵係包含如 請求項14〜16中任一項之微細配線溝之形成方法。 18. 如請求項17之溝型電路基板之製造方法,其係 進'•步含有除膠渣步驟。 如請求項17或18之溝型電路基板之製造方法, 其係進一步含有鍍敷步驟。 2〇.如請求項17〜19中任一項之溝型電路基板之製 造方法’其係進一步含有去除導體層之步驟。 -91 -201202334 VII. Patent application: 1. A resin composition characterized in that it contains (A) a bifunctional phenol resin containing a quinone imine skeleton. 2. The resin composition of claim 1, wherein the content of the (A) quinone imine skeleton-containing bifunctional phenol resin is 〇" to 30% by mass based on 100% by mass of the nonvolatile component in the resin composition. 3. The resin composition of claim 1 or 2, wherein (A) the bifunctional phenol resin containing a quinone imine skeleton has a weight average molecular weight of 200 to 1 500. 4. The resin composition according to any one of claims 1 to 3, further comprising (B) an inorganic ruthenium material. 5. The resin composition of claim 4, wherein (B) the inorganic ruthenium filler material The average particle diameter is 0.02/zm to 5/zm. 6. The resin composition according to any one of claims 1 to 5, wherein the cured product of the resin composition has a folding resistance of 50 or more and 1,000,000 or less. 7. The resin composition according to any one of claims 1 to 6, wherein the cured product of the resin composition has a linear thermal expansion ratio of 4 to 40 ppm. 8. A film which is characterized in that a resin composition according to any one of claims 1 to 7 is layered on a support film. A prepreg characterized in that the resin composition according to any one of claims 1 to 7 is impregnated into a sheet-like fibrous base material made of fibers. 10. A circuit board which is characterized in that an insulating layer is formed by a cured product of the resin composition according to any one of claims 1 to 7. -90- 201202334 • A semiconductor device characterized by the use of a circuit board as claimed in claim 1 . A method of forming a fine wiring trench, characterized in that a metal film layer is formed on an insulating layer formed by curing a resin composition of claim 5, and laser irradiation is performed from an upper portion of the metal film layer. A method of manufacturing a groove type circuit board, comprising the method of forming a fine wiring groove according to claim 12. A method of forming a fine wiring trench, characterized in that a metal film layer is formed on an insulating layer and laser irradiation is performed from an upper portion of the metal film layer. 15. The method of forming a fine wiring trench according to claim 14, characterized in that the insulating layer contains an inorganic cerium filled with an average particle diameter of 〇2 to SAm. 16. The method of forming a fine wiring trench according to claim 14 or 15, wherein the thickness of the metal film layer is 50 to 500 nm. A method of manufacturing a trench type circuit substrate, comprising the method of forming a fine wiring trench according to any one of claims 14 to 16. 18. The method of manufacturing a trench type circuit substrate according to claim 17, wherein the step of removing the step comprises a desmear step. A method of manufacturing a trench type circuit substrate according to claim 17 or 18, further comprising a plating step. The method of manufacturing a trench type circuit substrate according to any one of claims 17 to 19, which further comprises the step of removing the conductor layer. -91 -
TW100107568A 2010-03-08 2011-03-07 Resin composition TWI564338B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050820 2010-03-08

Publications (2)

Publication Number Publication Date
TW201202334A true TW201202334A (en) 2012-01-16
TWI564338B TWI564338B (en) 2017-01-01

Family

ID=44563643

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103107887A TWI643895B (en) 2010-03-08 2011-03-07 Method for manufacturing trench type circuit substrate
TW100107568A TWI564338B (en) 2010-03-08 2011-03-07 Resin composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW103107887A TWI643895B (en) 2010-03-08 2011-03-07 Method for manufacturing trench type circuit substrate

Country Status (4)

Country Link
JP (2) JP5870917B2 (en)
KR (2) KR20130037661A (en)
TW (2) TWI643895B (en)
WO (1) WO2011111847A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106009508A (en) * 2015-03-31 2016-10-12 松下知识产权经营株式会社 Thermosetting resin composition, metal-clad laminated plate, insulating sheet, printed wiring board, method of manufacturing printed wiring board, and package substrate
TWI601756B (en) * 2012-06-12 2017-10-11 味之素股份有限公司 Resin composition

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672073B2 (en) * 2010-03-08 2015-02-18 三菱化学株式会社 Curing agent for epoxy resin, curable resin composition, and cured product thereof
JP2015004009A (en) * 2013-06-21 2015-01-08 味の素株式会社 Resin compositions
JP6234143B2 (en) * 2013-09-30 2017-11-22 新日鉄住金化学株式会社 Curable resin composition, cured product thereof, electrical / electronic component and circuit board
KR20160089463A (en) * 2014-01-20 2016-07-27 우시오덴키 가부시키가이샤 Desmearing processing device
JP6547220B2 (en) * 2014-12-16 2019-07-24 リンテック株式会社 Adhesive for die bonding
TWI794172B (en) * 2016-05-25 2023-03-01 日商三菱鉛筆股份有限公司 Non-aqueous dispersion of fluorine-based resin, thermosetting resin composition of fluorine-containing resin using the same and its cured product, polyimide precursor solution composition
JP7102682B2 (en) * 2016-07-20 2022-07-20 昭和電工マテリアルズ株式会社 Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar
WO2018193983A1 (en) * 2017-04-21 2018-10-25 積水化学工業株式会社 Imide oligomer, curing agent, adhesive and method for producing imide oligomer
TW201946777A (en) * 2018-05-11 2019-12-16 日商日立化成股份有限公司 Conductor substrate, wiring substrate, stretchable device, and method for manufacturing wiring substrate
JP6848944B2 (en) 2018-08-30 2021-03-24 日亜化学工業株式会社 Wiring board manufacturing method and wiring board
JP7174231B2 (en) 2018-09-25 2022-11-17 日亜化学工業株式会社 Light-emitting device manufacturing method and light-emitting device
TW202212316A (en) * 2020-06-01 2022-04-01 德商漢高智慧財產控股公司 Flux-compatible epoxy-phenolic adhesive compositions for low gap underfill applications
JP7128375B1 (en) 2021-09-24 2022-08-30 積水化学工業株式会社 Carbon fiber reinforced composite material and method for producing carbon fiber reinforced composite material
JP7401016B1 (en) * 2023-05-15 2023-12-19 東洋インキScホールディングス株式会社 Display with sealing sheet and resin composition layer

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309190A3 (en) * 1987-09-22 1990-10-17 National Starch And Chemical Investment Holding Corporation Polyimide coating compositions
JPH01319528A (en) * 1988-06-20 1989-12-25 Mitsubishi Electric Corp Epoxy resin composition for semiconductor sealing use
JPH03209858A (en) * 1990-01-12 1991-09-12 Nitto Denko Corp Semiconductor device
US5246751A (en) * 1992-05-18 1993-09-21 The Dow Chemical Company Poly(hydroxy ether imides) as barrier packaging materials
JP4940522B2 (en) * 2001-09-10 2012-05-30 住友化学株式会社 Totally aromatic polyimide ester and method for producing the same
JP2003213019A (en) * 2002-01-24 2003-07-30 Sumitomo Bakelite Co Ltd Prepreg and printed wiring board using the same
JP2004158740A (en) * 2002-11-08 2004-06-03 Mitsubishi Gas Chem Co Inc Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate
CN1989166B (en) * 2004-11-30 2010-04-28 松下电工株式会社 Epoxy resin composition for prepreg, and multilayer printed wiring board
JP2007224242A (en) 2006-02-27 2007-09-06 Tamura Kaken Co Ltd Thermosetting resin composition, resin film in b stage and multilayer build-up base plate
JP2009155354A (en) * 2006-03-30 2009-07-16 Ajinomoto Co Inc Resin composition for insulating layer
JP5039707B2 (en) * 2006-09-14 2012-10-03 パナソニック株式会社 Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal-clad laminate, printed wiring board, and multilayer printed wiring board
US20090017309A1 (en) * 2007-07-09 2009-01-15 E. I. Du Pont De Nemours And Company Compositions and methods for creating electronic circuitry
WO2009040921A1 (en) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. Epoxy resin composition and, produced therewith, prepreg and metal clad laminate
JP2009084360A (en) * 2007-09-28 2009-04-23 Sumitomo Bakelite Co Ltd Epoxy resin composition, epoxy resin composition for sealing semiconductor, and semiconductor device
JP5223481B2 (en) 2008-06-16 2013-06-26 住友金属鉱山株式会社 Metal-coated polyimide substrate and manufacturing method thereof
JP5195107B2 (en) 2008-07-14 2013-05-08 三菱化学株式会社 Imide skeleton resin, curable resin composition, and cured product thereof
JP5304105B2 (en) * 2008-08-28 2013-10-02 三菱化学株式会社 Bisimide phenol compound and method for producing the same
JP2009119879A (en) * 2009-03-05 2009-06-04 Mitsubishi Gas Chem Co Inc High elastic modulus copper-clad laminate of thermosetting resin-impregnated glass fabric base material and drilling method
JP5149917B2 (en) * 2009-03-27 2013-02-20 日立化成工業株式会社 Thermosetting resin composition, and prepreg, laminate and multilayer printed wiring board using the same
WO2011078339A1 (en) * 2009-12-25 2011-06-30 日立化成工業株式会社 Thermosetting resin composition, method for producing resin composition varnish, prepreg and laminate
JP5672073B2 (en) * 2010-03-08 2015-02-18 三菱化学株式会社 Curing agent for epoxy resin, curable resin composition, and cured product thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601756B (en) * 2012-06-12 2017-10-11 味之素股份有限公司 Resin composition
CN106009508A (en) * 2015-03-31 2016-10-12 松下知识产权经营株式会社 Thermosetting resin composition, metal-clad laminated plate, insulating sheet, printed wiring board, method of manufacturing printed wiring board, and package substrate
CN106009508B (en) * 2015-03-31 2020-05-19 松下知识产权经营株式会社 Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for producing printed wiring board, and package substrate
US12021015B2 (en) 2015-03-31 2024-06-25 Panasonic Intellectual Property Management Co., Ltd. Thermosetting resin composition, metal-clad laminated plate, insulating sheet, printed wiring board, method of manufacturing printed wiring board, and package substrate

Also Published As

Publication number Publication date
TWI643895B (en) 2018-12-11
JP5870917B2 (en) 2016-03-01
JP5773007B2 (en) 2015-09-02
KR20130037661A (en) 2013-04-16
WO2011111847A1 (en) 2011-09-15
KR20160027216A (en) 2016-03-09
JP2014131072A (en) 2014-07-10
KR101906687B1 (en) 2018-12-05
JPWO2011111847A1 (en) 2013-06-27
TWI564338B (en) 2017-01-01
TW201422706A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
TWI564338B (en) Resin composition
TWI434641B (en) Manufacturing method of multilayer printed circuit board
TWI499690B (en) Paste metal laminates
TWI475937B (en) A metal film transfer film, a metal film transfer method, and a circuit board manufacturing method
TWI511876B (en) Production method of copper laminated board and copper clad laminate
TW201229127A (en) Resin composition
TW200840839A (en) Process for production of multilayer printed wiring boards
TW201230912A (en) Process for the production of laminates
TW200923007A (en) Epoxy resin composition
TW200924965A (en) Film for metal film transfer and adhesive film with metal film
JP2010194807A (en) Sheet with metallic film and resin sheet with metallic film
TW201235404A (en) Roughed cured product and laminate
KR101682887B1 (en) Film with metal film
TWI445728B (en) Resin composition
JP5446473B2 (en) A method for manufacturing a multilayer wiring board.
JP5776409B2 (en) Method for manufacturing printed wiring board
TWI468285B (en) Film with metal film
KR101594321B1 (en) Method for manufacturing circuit board
JP5582324B2 (en) A method for manufacturing a multilayer wiring board.