TW200924965A - Film for metal film transfer and adhesive film with metal film - Google Patents

Film for metal film transfer and adhesive film with metal film Download PDF

Info

Publication number
TW200924965A
TW200924965A TW97133342A TW97133342A TW200924965A TW 200924965 A TW200924965 A TW 200924965A TW 97133342 A TW97133342 A TW 97133342A TW 97133342 A TW97133342 A TW 97133342A TW 200924965 A TW200924965 A TW 200924965A
Authority
TW
Taiwan
Prior art keywords
layer
film
metal
copper
metal film
Prior art date
Application number
TW97133342A
Other languages
Chinese (zh)
Inventor
Hirohisa Narahashi
Shigeo Nakamura
Tadahiko Yokota
Original Assignee
Ajinomoto Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Kk filed Critical Ajinomoto Kk
Publication of TW200924965A publication Critical patent/TW200924965A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/421Blind plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer, layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0392Pretreatment of metal, e.g. before finish plating, etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0038Etching of the substrate by chemical or physical means by laser ablation of organic insulating material combined with laser drilling through a metal layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0055After-treatment, e.g. cleaning or desmearing of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/062Etching masks consisting of metals or alloys or metallic inorganic compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This invention provides a film for metal film transfer and a process for producing a circuit board using a film for metal film transfer, which can realize satisfactory removal of a residue (desmear) present on a via bottom. The film for metal film transfer is a film (10) for metal film transfer comprising a first metal layer (2) resistant to a copper etching liquid and a second metal layer (3) of copper or a copper alloy provided in that order on a support layer (1). The process for producing a circuit board comprises the step of providing a board comprising a copper layer or a copper alloy layer (a wiring) and a curable resin composition layer provided as a surface layer on the copper or copper alloy layer, superimposing and stacking a film (10) for metal film transfer on the board so that a second metal layer (3) is brought into contact with the curable resin composition layer, and curing the curable resin composition layer, the step of separating the support layer (1), the step of forming vias by a laser beam, the step of removing a via bottom residue, and the step of etching the surface of the via bottom substrate copper layer or copper alloy layer.

Description

200924965 九、發明說明 【發明所屬之技術領域】 本發明係有關一種適合電路基板所使用的金屬膜轉印 用薄膜及附金屬膜之黏著薄膜。 【先前技術】 各種電子機器中被廣泛使用的多層印刷配線板、可撓 _ 性印刷配線板等之電路基板,爲使電子機器予以小型化、 Ο 高功能化時,企求層之薄型化或電路之微細配線化。其次 ,該製造方法例如在基板上藉由黏著薄膜層合硬化性樹脂 組成物,且使該硬化性樹脂組成物硬化、形成絕緣層後, 使該絕緣層以鹼性過錳酸鉀溶液等之氧化劑予以粗化,在 其粗面上藉由無電解鍍敷形成鍍敷種子層,然後,藉由電 解鍍敷形成導體層之半活性法,係爲已知。因此,該方法 爲製得密接強度高的導體層時,如上所述使絕緣層表面以 0 氧化劑予以粗化’且在表面上形成凹凸,在與導體層之間 _ 可得固定效果時,係爲必須,惟於電路形成時以蝕刻處理 . 除去不必要的鍍敷種子層時’不易除去固定部分之種子層 ’以可充分除去固定部分之種子層的條件進行蝕刻時,配 線圖型之溶解情形顯著化,且會產生妨礙微細配線化的問 題。 爲解決該問題的方法’試行藉由轉印用薄膜轉印於以 銅膜作爲鍍敷種子層所得的被黏著體上的方法。例如,於 專利文獻1,2中揭示,經由脫模層 '藉由蒸鍍等製作在 -5- 200924965 支持體上形成銅膜的轉印用薄膜,且使該轉印用薄膜之銅 膜轉印於基板上的樹脂組成物層表面或預浸物表面上,在 經轉印的銅膜上、藉由鍍敷處理等形成導體層的方法。而 且,於專利文獻3中揭示’在支持體上直接藉由蒸鍍等形 成銅膜’且於其上形成樹脂組成物層之黏著薄膜。 〔專利文獻1〕日本特開2004-230729號公報 〔專利文獻2〕日本特開2002-324969號公報 〔專利文獻3〕日本特開平9-296156號公報 【發明內容】 此處’於製造電路基板時,爲使層間之電氣連接時, 藉由雷射進行形成通路,此時必須除去通路底部之導體上 所析出的殘渣(膠渣)。除去殘渣(除膠渣)係藉由鹼性 過錳酸鉀溶液等之氧化劑處理的濕式法或藉由電漿等之乾 式法進行,惟爲高導體間之連接信賴性時,除此等除膠渣 Q 處理外,以藉由銅蝕刻液處理進行通路底部銅層或銅合金 .層表面之蝕刻處理,充分除去通路底部之殘渣(膠渣)較 . 佳。 然而,如專利文獻1〜3之方法,藉由轉印用薄膜使 銅膜轉印於被黏著體上的方法,於除膠渣步驟時已經存在 絕緣層上所轉印的銅膜。因此,藉由銅触刻液進行通路底 部銅表面之鈾刻處理時,經轉印的最表面的銅膜亦被蝕刻 處理,特別是銅膜薄時,由於藉由蝕刻處理使銅膜層消失 ,不適合採用上述蝕刻步驟,在製造高連接信賴性之電路 -6 - 200924965 基板上會有問題。 本發明有鑑於上述情形者,解決之課題係提供一種於 使用金屬膜轉印用薄膜或附金屬膜之黏著薄膜,製造電路 基板的方法中,可充分除去通路底部之殘渣(除膠渣)的 電路基板的製造方法及適合於該方法之金屬膜轉印用薄膜 或附金屬膜之黏著薄膜。 本發明人等爲解決上述課題時,再三深入硏究的結果 ,發現藉由使金屬膜轉印用薄膜或附金屬膜之黏著薄膜的 金屬膜層,採用具有銅蝕刻液耐性之第1金屬層與由銅或 銅合金形成的第2金屬層所構成,且在支持體側配置第i 金屬層之層構成,於電路基板製造中,使通路底部銅層或 銅合金層之表面以銅飩刻液進行蝕刻時,經轉印的金屬膜 表面幾乎完全沒有被蝕刻,可充分除去通路底部之殘渣( 除膠渣),遂而完成本發明。 換言之,本發明包含下述之內容。 (1) 一種金屬膜轉印用薄膜’其特徵爲在支持體層 上順序形成具有銅蝕刻液耐性之第1金屬層、與由銅或銅 合金形成的第2金屬層所形成。 (2) 如上述(1)記載之金屬膜轉印用薄膜,其中第 1金屬層係由1種或2種以上選自鎳、鎳合金、鈦及鈦合 金所成群者而形成。 (3) 如上述(1)記載之金屬膜轉印用薄膜,其中第 1金屬層及第2金屬層係爲藉由1種或2種以上選自蒸鑛 法、濺射法及離子噴鍍法之方法所形成者。 200924965 (4) 如上述(1)記載之金屬膜轉印用薄膜,其中支 持體層爲塑膠薄膜。 (5) 如上述(1)記載之金屬膜轉印用薄膜,其中支 持體層爲聚對苯二甲酸乙二酯薄膜。 • (6)如上述(1)記載之金屬膜轉印用薄膜,其中在 - 第2金屬層上另外層合由1種或2種以上選自鎳、鎳·鉻 合金及鈦所成群者而形成的第3金屬層。 I (7)如上述(1)〜(6)中任一項記載之金屬膜轉 0 印用薄膜,其中在支持體層與第1金屬層之間設置脫模層 〇 (8) 如上述(7)記載之金屬膜轉印用薄膜,其中脫 模層上至少與金屬膜黏著的面,係由1種以上選自水溶性 纖維素樹脂、水溶性聚酯樹脂及水溶性丙烯酸樹脂之水溶 性高分子所形成。 (9) 如上述(8)記載之金屬膜轉印用薄膜,其中水 φ 溶性聚酯樹脂爲具有磺基或其鹽及/或羧基或其鹽之水溶 性聚酯,水溶性丙烯酸樹脂爲具有羧基或其鹽之水溶性丙 . 烯酸樹脂。 (10) 如上述(1)〜(9)中任一項記載之金屬膜轉 印用薄膜,其中第1金屬層之層厚爲10nm〜500nm。 (11) 如上述(1)〜(9)中任一項記載之金屬膜轉 印用薄膜,其中第2金屬層之層厚爲50nm〜3000nm。 (12) 如上述(6)〜(9)中任一項記載之金屬膜轉 印用薄膜,其中第3金屬層之層厚爲5nm〜lOOnm,第2 -8- 200924965 金屬層與第3金屬層之合計層厚爲50〜3000 nm。 (13) 如上述(7)〜(9)中任一項記載之金屬膜轉 印用薄膜,其中脫模層之層厚爲Ο.ΐμπι〜20μιη。 (14) 一種電路基板之製造方法,其特徵爲含有在表 ' 面上形成硬化性樹脂組成物層,該硬化性樹脂組成物層內 或硬化性樹脂組成物層下具有銅層或銅合金層之基板上, 使上述(1)〜(13)中任一項之金屬膜轉印用薄膜於第2 ^ 金屬層或第3金屬層連接硬化性樹脂組成物層表面下、予 〇 以重疊、層合,且使硬化性樹脂組成物層硬化的步驟,使 支持體層剝離的步驟、藉由雷射形成通路的步驟、除去通 路底部殘渣的步驟、以及使通路底部銅層或銅合金層表面 予以蝕刻的步驟。 (15) 如上述(14)記載之方法,其中另外含有在第 1金屬層上藉由鎪敷處理形成導體層的步驟,或另含有使 第1金屬層予以蝕刻的步驟、與於該蝕刻步驟後所露出的 φ 第2金屬層上藉由鍍敷處理形成導體層之步驟。 . (16)如上述(14)或(15)記載的方法,其中金屬 . 膜轉印用薄膜具有脫模層時’於藉由雷射處理形成通路的 步驟前或後,另含有除去脫模層之步驟。 (17) —種附金屬膜之黏著薄膜,其特徵爲在如上述 (1)〜(13)中任一項記載之薄膜的第2金屬層或第3 金屬層上形成硬化性樹脂組成物層所形成。 (18) —種電路基板之製造方法,其特徵爲含有在表 面上具有銅層或銅合金層之基板上,使上述(17)之附金 -9- 200924965 屬膜的黏著薄膜在硬化性樹脂組成物層連接基板表面下重 疊、層合的步驟,使硬化性樹脂組成物硬化的步驟,使支 持體層剝離的步驟,藉由雷射處理形成通路的步驟,除去 通路底部殘渣的步驟,以及使通路底部銅層或銅合金層表 ' 面予以蝕刻的步驟。 : (19)如上述(18)記載之方法,其中另含有在第1 金屬層上藉由鍍敷處理形成導體層之步驟,或另含有使第 A 1金屬層予以蝕刻的步驟、與於該蝕刻步驟後所露出的第 0 2金屬層上藉由鍍敷處理形成導體層之步驟。 (20)如上述(19)記載之方法,其中附金屬膜之黏 著薄膜具有脫模層時,於藉由雷射處理形成通路的步驟前 或後,另含有除去脫模層之步驟。 本發明所指的「基板」,係包含玻璃環氧基板、金屬 基板、聚酯基板、聚醯亞胺基板、BT樹脂基板、熱硬化 型聚亞苯醚基板等、或在此等基板之一面或兩面上具有經 φ 圖型加工的(經電路形成的)導體層,且於製造電路基版 . 時’再形成絕緣層及導體層之中間製造物的所謂「內層電 . 路基板」。 此外,本發明所指的「電路基板」,只要是具有絕緣 層與經電路形成的導體層即可,沒有特別的限制,包含多 層印刷配線板、可撓性印刷配線板等之各種電路基板。 〔發明效果〕 使用本發明之金屬膜轉印用薄膜及附金屬膜之黏著薄 -10- 200924965 膜時’爲使具有銅飩刻液耐性之第1金屬層與由銅或銅合 金形成的第2金屬層同時轉印於被黏著體上,爲使被黏著 體上之金屬膜成爲具有銅餓刻液耐性之第1金屬層時,即 使以其他目的之藉由銅蝕刻液實施蝕刻處理,仍可在被黏 著體上維持經轉印的金屬膜。而且,例如藉由使本發明之 ' 金屬膜轉印用薄膜及附金屬膜之黏著薄膜使用於電路基板 之製造’提供可得經轉印的鍍敷種子層,可在沒有除去金 @ 屬膜下、以銅蝕刻液除去通路底部銅層或銅合金層表面之 膠渣’微細配線化與導體間之連接信賴性雙方皆優異的電 路基板之製造方法。 〔爲實施發明之最佳形態〕 於下述中,以適當的實施形態詳細地說明本發明。 本發明之金屬膜轉印用薄膜,其特徵爲主要具有順序 層合支持體層、具銅蝕刻液耐性之第1金屬層、與由銅或 q 銅合金形成的第2金屬層之構成。 第1圖係表示本發明之金屬膜轉印用薄膜的典型例者 . ,係爲具有支持體1、第1金屬層2及第2金屬層3的第 1形態之薄膜1 〇。 第2圖係於本發明之金屬膜轉印用薄膜中,除支持體 層1、第1金屬層2及第2金屬層3外,具有由可抑制來 自第2金屬層之金屬擴散作用之金屬所成的第3金屬層4 之第2形態的薄膜20。 另外,第3圖係表示本發明之附金屬膜的黏著薄膜的 -11 - 200924965 典型例者,係爲在本發明之金屬膜轉印用薄膜的第2金屬 層上另外層合有硬化性樹脂組成物層(黏著層)者。具體 而言,係爲具有支持體層1、第1金屬層2、第2金屬層3 及硬化性樹脂組成物層5之第1形態的薄膜3 0 » 第4圖係於本發明之附金屬膜的黏著薄膜中,具有支 持體層1、第1金屬層2、第2金屬層3、第3金屬層4及 硬化性樹脂組成物層5之第2形態的薄膜4 0。 第1〜4圖中符號6係爲脫模層,金屬膜於轉印作業 後爲提高支持體層1之剝離性時,視其所需所設置者。 而且’於本說明書中’ 「金屬膜(層)」係指第1金 屬層與第2金屬層之層合(第1金屬層/第2金屬層)、 及第1金屬層與第2金屬層與第3金屬層的層合(第1金 屬層/第2金屬層/第3金屬層)。 〔支持體層〕 Q 支持體層1係爲具有自己支持性之薄膜或薄片狀物, • 適合使用塑膠薄膜。塑膠薄膜例如聚對苯二甲酸乙二酯、 聚萘二酸乙二酯、聚醯亞胺、聚醯胺醯亞胺、聚醯胺、聚 . 四氟乙稀、聚碳酸酯等,以聚對苯二甲酸乙二酯薄膜、聚 萘酸乙二酯薄膜較佳,其中以低價的聚對苯二甲酸乙二酯 更佳。 支持體層之層厚’通常爲10μιη〜70μιη,較佳者爲 15μιη〜70μπι。層厚過小時,會有處理性不佳、支持體層 之剝離性降低或產生不易形成平滑的金屬膜層等之問題。 -12- 200924965 此外,層厚過大時,不利於成本且不具實用性。而且,支 持體層表面亦可實施電暈放電處理等之表面處理。另外, 亦可在沒有存在金屬膜層或脫模層側之支持體層薄膜表面 上實施緩衝處理、電暈放電處理等之表面處理。 • 〔脫模層〕 脫模層6係可使用氟系樹脂、聚烯烴樹脂、聚乙烯醇 _ 樹脂、丙烯酸樹脂、聚酯樹脂、蜜胺樹脂、纖維素等形成 ,惟就使金屬膜均勻地轉印而言,以由1種以上選自水溶 性纖維素樹脂、水溶性丙烯酸樹脂及水溶性聚酯樹脂形成 較佳。採用此等水溶性高分子作爲脫模層時,由於被黏著 體之硬化性樹脂組成物於硬化後,支持體層-脫模層間之 支持體層變得可剝離,然後,在金屬膜層上所殘留的脫模 層可簡單地以水溶液除去,在被黏著體上形成均勻性優異 的金屬膜。於此等之中,以水溶性纖維素樹脂及水溶性聚 φ 酯樹脂較佳’以水溶性纖維素樹脂更佳。通常在水溶性高 .分子脫模層係單獨使用任何的水溶性高分子,惟亦可2種 . 以上之水溶性高分子混合使用。而且,通常水溶性高分子 脫模層可以單層形成,惟水溶性高分子亦可爲由2種以上 互爲不同的層形成的多層構造。而且,使用水溶性高分子 脫模層時,爲提高水溶性高分子脫模層與支持體層間之剝 離性時,可在支持體上存在有以任何1種或2種以上選自 醇酸樹脂、聚矽氧烷樹脂及氟系樹脂等所構成的其他脫模 層。換言之’於本發明中在脫模層6中使用水溶性高分子 -13- 200924965 時,至少使脫模層6與金屬膜黏著的面以水溶性高分子形 成係爲重要,在使脫模層6僅由水溶性高分子脫模層形成 ,或與該金屬膜黏著的面以水溶性高分子形成下,可形成 水溶性高分子脫膜層與其他脫模層之2層構造。而且,在 ' 支持體層1-脫模層6間之支持體層1的剝離,係於脫模層 二 6僅由水溶性高分子脫模層形成時,在支持體層1與脫模 層6之界面進行,於脫模層6爲水溶性高分子脫模層與醇 ©酸樹脂等其他脫模層之2層構造時,在該其他脫模層與該 水溶性高分子脫模層之界面進行。 脫模層之層厚,通常爲 0.1 μηι〜20 μηι,較佳者爲 0·2μιη〜ΙΟμπι。此處所指的「層厚」,爲單層時係爲其厚 度,爲多層時係爲多層的總厚。層厚過薄時,恐會有支持 體層之剝離性降低的情形,層厚過大時,使硬化性樹脂組 成物層予以熱硬化時,因金屬膜層與脫模層之熱膨脹率不 同,恐會在金屬層上產生割痕或傷痕等之缺點。而且,脫 q 模層爲水溶性高分子脫模層與其他脫模層之2層構造時, ^ 其他的脫模層之層厚以0.01〜0.2 μιη較佳。 〔水溶性纖維素樹脂〕 本發明所指的「水溶性纖維素樹脂」,係爲實施有在 纖維素中賦予水溶性時之處理的纖維素衍生物,較佳者例 如纖維素醚、纖維素醚酯等。 纖維素醚係爲使纖維素聚合物中具有1個以上之醚鍵 結基時,藉由存在於1個以上纖維素聚合物之無水乙二醇 -14- 200924965 重複單位中1個以上羥基之變換所形成的醚,酸鍵 如通常可藉由1種或2種以上選自羥基、竣基、院 碳數1〜4)及羥基烷氧基(碳數1〜4)之取代基 烷基(碳數1〜4)。具體而言,例如2-羥基乙基、 ' 丙基、3-羥基丙基等之羥基烷基(碳數丨〜4) ; 2_ * 乙基、3-甲氧基丙基、2-甲氧基丙基、2-乙氧基乙 烷氧基(碳數1〜4)烷基(碳數1〜4) ;2·(2-經 g 基)乙基或2-(2-羥基丙氧基)丙基等之羥基院氧 數1〜4)烷基(碳數1〜4)、羧基甲基等之羧基 碳數1〜4)等。聚合物分子中之醚鍵結基,可以爲 類,亦可爲複數種。換言之,可爲具有單一種類之 基的纖維素醚,亦可爲具有複數種之醚鍵結基的纖 〇 纖維素醚之具體例,如甲基纖維素、羥基乙基 '羥基丙基纖維素、羥基丙基甲基纖維素、羥基丁 0 纖維素、羥基乙基乙基纖維素、羧基甲基纖維素及 • 水溶性鹽(例如鈉鹽等之鹼金屬鹽)等。 - 而且,每纖維素醚之單位乙二醇環中經取代的 . 平均莫耳數,沒有特別的限制,以1〜6較佳。而 維素醚之分子量,以重量平均分子量約爲20000一 較佳。 另外,纖維素醚酯係爲在纖維素中存在的1個 羥基及1個以上之適當的有機酸或其反應性衍生物 成’藉此於纖維素醚中形成酯鍵結基之酯。而且’ 結基例 氧基( 取代的 2-羥基 甲氧基 基等之 基乙氧 基(碳 院基( 單一種 醚鍵結 維素醚 纖維素 基甲基 此等之 醚基之 且,纖 ^ 60000 以上之 之間形 此處所 -15- 200924965 指的「纖維素酯」如上所述,「有機酸」包含脂肪族或芳 香族羧酸(碳數2〜8),脂肪族羧酸可以爲非環狀(支鍵 狀或非支鏈狀)或環狀、亦可爲飽和或不飽和。具體而胃 ’脂肪族羧酸例如醋酸、丙酸、丁酸、乙二酸、丙二酸、 琥珀酸、戊二酸、富馬酸、馬來酸等之經取代或未經取代 的非環狀脂肪族二羧酸;乙二醇酸或乳酸等之非環狀羥基 取代羧酸;蘋果酸、酒石酸、檸檬酸等之非環狀脂肪族羥 基取代二-或三-羧酸等。此外,芳香族羧酸以碳數爲14以 下之芳基羧酸較佳,以含有具1個以上羧基(例如1,2 或3個羧基)之苯基或萘基等之芳基的芳基羧酸更佳。而 且,芳基亦可藉由相同或不同的1個以上(例如1,2或3 個)選自羥基、碳數爲1〜4之烷氧基(例如甲氧基)及 磺醯基之基取代。芳基羧酸之較佳例,如苯二甲酸、異苯 二甲酸、對苯二甲酸或偏苯三甲酸(1,2,4-苯三羧酸)等 〇 有機酸具有1個以上之羧基時,以僅酸中之一個殘基 對纖維素酯而言形成酯鍵。例如,爲羥基丙基甲基纖維素 琥珀酸酯時,各琥珀酸酯基之1個羧基與纖維素形成酯鍵 ,且其他羧基存在作爲游離的酸。「酯鍵結基」係藉由已 知適合的有機酸或其反應性衍生物反應所形成。適合的反 應性衍生物中,例如包含苯二甲酸酐等之酸酐。 聚合物分子中之酯鍵結基,可以爲單一種類或複數種 類。換言之,可以爲具有單一種類之酯鍵結基的纖維素醚 酯、亦可以爲具有複數種之酯鍵結基的纖維素醚酯。例如 -16- 200924965 ’經基丙基甲基纖維素乙酸酯琥珀酸酯爲具有琥珀酸酯基 與乙酸酯基等兩方之羥基丙基甲基纖維素的混合酯。 適合的纖維素醚酯爲羥基丙基甲基纖維素或羥基丙基 纖維素之酯,具體而言例如羥基丙基甲基纖維素乙酸酯、 羥基丙基甲基纖維素琥珀酸酯、羥基丙基甲基纖維素乙酸 酯琥珀酸酯、羥基丙基甲基纖維素苯二甲酸酯、羥基丙基 甲基纖維素偏苯三酸甲酸酯、羥基丙基甲基纖維素乙酸酯 苯二甲酸酯、羥基丙基甲基纖維素乙酸酯偏苯三酸酯、羥 基丙基纖維素乙酸酯苯二甲酸酯、羥基丙基纖維素丁酸酯 苯二甲酸酯、羥基丙基纖維素乙酸酯苯二甲酸酯琥珀酸酯 及羥基丙基纖維素乙酸酯偏苯三酸酯琥珀酸酯等,此等可 使用1種或2種以上。 於此等之中,以羥基丙基甲基纖維素苯二甲酸酯、羥 基丙基甲基纖維素乙酸酯琥珀酸酯 '羥基丙基甲基纖維素 乙酸酯苯二甲酸酯較佳。 而且,纖維素醚酯中每單位乙二醇環中被取代的酯基 之平均莫耳數,沒有特別的限制,例如以約〇 . 5 %〜2 %較 佳。而且’纖維素醚酯之分子量,以重量平均分子量約 20000〜60000 爲宜。 纖維素醚、纖維素酯之製法係爲已知,可以來自天然 之纖維素(紙漿)爲原料,以定法爲基準、藉由使醚化劑 、酯化劑反應製得,本發明亦可用市售品。例如信越化學 工業(股)製「HP-55」、「HP-50」(皆爲羥基丙基甲基 纖維素苯二甲酸酯)等。 -17- 200924965 (水溶性聚酯樹脂) 本發明所指的「水溶性聚酯樹脂」係爲藉由以多元羧 酸或其酯形成性衍生物與多元醇或其酯形成性衍生物爲主 " 要原料之一般聚縮合反應所合成的、實質上由線狀聚合物 * 所成的聚酯樹脂,在分子中或分子未端中導入親水基。此 處’親水基例如磺基、羧基、磷酸基等之有機酸機或其鹽 0 等’較佳者爲磺酸基或其鹽、羧酸基或其鹽。水溶性聚酯 樹脂,特別是以具有磺基或其鹽及/或羧基或其鹽者更佳 〇 該聚酯樹脂之多元羧酸成分的典型例,如對苯二甲酸 、異苯二甲酸、苯二甲酸、苯二甲酸酐、2,6-萘二羧酸、 1,4-環己烷二羧酸、己二酸等,此等可單獨使用或2種以 上倂用。此外’亦可與上述各種化合物同時倂用少量的如 對羥基苯甲酸等之羥基羧酸、如馬來酸、富馬酸或衣康酸 0 等之不飽和羧酸。 . 該聚酯樹脂之多元醇成分的典型例,如乙二醇、丨,4_ . 丁二醇、新戊醇、二乙二醇、二丙二醇、1,6-己二醇、 1,4-環己烷甲醇、次二甲苯乙二醇、二羥甲基丙酮酸、丙 三醇、三羥甲基丙烷或聚(氧化四亞甲基)乙二醇等,此 等可單獨使用’亦可2種以上倂用。 該聚酯樹脂在分子中或分子末端之親水基的導入方法 ,可以習知慣用的方法進行,惟以使含有親水基之酯形成 性化合物(例如芳香族羧酸化合物、羥基化合物等)予以 -18- 200924965 共聚合的形態較佳。 例如,導入磺酸鹽基時,以使1種或2種以上選自5-磺酸鈉異苯二甲酸、5-磺酸銨異苯二甲酸、4-磺酸鈉異苯 二甲酸、4 -甲基磺酸銨異苯二甲酸、2 -磺酸鈉對苯二甲酸 ,5-磺酸鉀異苯二甲酸、4-磺酸鉀異苯二甲酸及2-磺酸鉀 對苯二甲酸等予以共聚合爲宜。 另外’導入磺酸基時’例如使1種或2種以上選自偏 苯三酸酐、偏苯三酸、均苯四甲酸酐、均苯四甲酸、均苯 三甲酸、環丁烷四羧酸、二羥甲基丙二酸等予以共聚合爲 宜’於該共聚合反應後,藉由以胺基化合物、銨或鹼金屬 鹽等予以中和,可在分子中導入羧酸鹽基。 水溶性聚酯樹脂之分子量,沒有特別的限制,以重量 平均分子量約爲10000〜40000較佳。重量平均分子量未 達1 0000時,會有層形成性降低的傾向,大於40000時, 會有溶解性降低的傾向。 於本發明中,水溶性聚酯樹脂可使用市售品,例如互 應化學工業(股)製之「布拉斯克頓(譯音)z_561」( 重量平均分子量:約27000)、布拉斯克頓(譯音)z_565 」(重量平均分子量:約25000)等。 (水溶性丙烯酸樹脂) 本發明所指的「水溶性丙烯酸樹脂」’係爲以含有竣 基之單體爲必須成分,分散或溶解於水中之$ % ^ ® ^旨° 該丙烯酸樹脂以含有羧基之單體及(甲S) -19- 200924965 爲必須單體成分更佳,視其所需含有其他不飽和單體爲單 體成分之丙烯酸系聚合物。 於上述單體成分中,含有羧基之單體例如(甲基)丙 烯酸、馬來酸、富馬酸、檸檬酸、衣康酸、檸康酸、馬來 酸酐、馬來酸單甲酯、馬來酸單丁酯、衣康酸單甲酯、衣 康酸單丁酯等,此等之中可使用1種或2種以上。於此等 之中,以(甲基)丙烯酸爲宜。 而且,(甲基)丙烯酸酯例如(甲基)丙烯酸甲酯' (甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基) 丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸 正戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸正庚酯 、(甲基)丙烯酸正辛酯、(甲基)丙烯酸2_乙基己酯、 (甲基)丙烯酸壬酯、(甲基)丙烯酸癸酯、(甲基)丙 烯酸十二烷酯、(甲基)丙烯酸硬脂酯等之烷基的碳數爲 1〜18之甲基丙烯酸烷酯,於此等之中可使用1種或2種 以上。 另外,其他不飽和單體例如芳香族烯基化合物、氰化 乙烯基化合物、共軛二烯系化合物、含有鹵素之不飽和化 合物、含羥基之單體等。芳香族烯基化合物,例如苯乙烯 、α-甲基苯乙烯、對甲基苯乙烯、對甲氧基苯乙烯等。氰 化乙烯基化合物,例如乙烯腈、甲基丙烯腈等。共軛二烯 系化合物,例如丁二烯、異戊烯等。含有鹵素知不飽和化 合物,例如氯化乙烯基、氯化次乙烯基、全氟乙烯、全氟 丙烯、氟化次乙烯基等。含有羥基之單體,例如2-羥基乙 -20- 200924965 基(甲基)丙烯酸酯、2-羥基丙基(甲基)丙烯酸酯、3-羥基丙基(甲基)丙烯酸酯、2-羥基丁基(甲基)丙烯酸 酯、4-羥基丁基丙烯酸酯、4-羥基丁基甲基丙烯酸酯、α-羥基甲基乙基(甲基)丙烯酸酯等。此等可使用1種或2 種以上。 如下所述,於本發明中脫模層以藉由在支持體上塗佈 •乾燥含有水溶性纖維素、水溶性聚酯或水溶性丙烯酸樹 脂之塗佈液的方法所形成。使用水溶性丙烯酸樹脂時,該 塗佈液可使用乳液形態、亦可使用水溶液形態。 使水溶性丙烯酸樹脂以乳液形態使用時,以芯殻型乳 液爲宜,芯殼型乳液以在芯殼粒子之殼上存在有羧基極爲 重要,因此,殻係以含有含羧基之單體及(甲基)丙烯酸 酯的丙烯酸之樹脂構成。 該芯殼粒子之分散品(乳液)可使用市售品,例如吉 谷里魯(譯音)7600 ( Tg :約 35°C ) 、7630Α ( Tg :約 53 °C) 、538J(Tg:約 66°C) 、3520(丁§:約56。(:)(皆 爲BASF日本公司(股)製)等。 使水溶性丙烯酸樹脂以水溶液形態使用時,該丙烯酸 樹脂爲含有含羧基之單體及(甲基)丙烯酸酯之丙烯酸樹 脂,具有較低的分子量係爲重要。因此,重量平均分子量 以 1000〜50000較佳,重量平均分子量未達 1000時,會 有層形成性降低的傾向,重量平均分子量大於5 0000時, 會有與支持體之密接性變高,硬化後支持體之剝離性降低 的傾向。 -21 - 200924965 該水溶性丙烯酸樹脂之水溶液,可使用市售品,例如 吉谷里魯354J(BASF日本公司(股)製)等。 而且,水溶性丙烯酸樹脂之乳液與水溶液,由於乳液 之分子量高,容易予以薄膜化。因此,以水溶性丙烯酸樹 脂之乳液爲宜。 〔第1金屬層〕 第1金屬層係爲由具有銅蝕刻液耐性之金屬所形成的 金屬層。製造電路基板時進行的銅層或銅合金層之蝕刻處 理,通常使用具有銅溶解性之酸性藥液及/或鹼性藥液, 爲本發明所指的「具有銅蝕刻液耐性之金屬」,對該具有 銅溶解性之銅蝕刻液而言、實質上具有幾乎完全不被溶解 (沒有被蝕刻處理)性質之金屬。對銅蝕刻液之耐性程度 ,可在藉由特定的銅蝕刻液使銅層溶解2μηι之時間內,藉 由相同的銅蝕刻液、在同時間內溶解的金屬層設定爲 Ο.ΐμχη以下之範圍,採用具有該特性之金屬層作爲具有銅 鈾刻液耐性之第1金屬層。通常,該金屬對絕緣層表面之 粗化及通路形成後通路底部之除膠渣處理時所使用的鹼性 過錳酸鉀溶液等之氧化劑溶液而言爲難溶解性。 該「具有銅蝕刻液耐性之金屬」之具體例,如鎳、鎳 合金、鈦、鈦合金等。鎳合金例如鎳·鉻合金。鈦合金例 如鈦·鉻合金。於此等之中,就可容易以濺射或蒸鍍等形 成而言、就成本或汎用性而言,以鎳或鎳合金較佳。如此 由於第1金屬層以具有銅蝕刻液耐性之金屬所形成,故在 -22- 200924965 由本發明之金屬膜轉印用薄膜或附金屬膜之黏著薄膜形成 的電路基板上轉印金屬膜後,即使進行雷射通路形成、通 路底部殘渣之除去處理(除膠渣處理)、通路底部銅層或 銅合金層之蝕刻處理,由於金屬膜之表層的第1金屬層不 ' 被溶解,可防止由配線(導體層)用之銅或銅合金所成的 ; 第2金屬層被鈾刻處理、消失,且層厚顯著減少。 該第 1金屬層之層厚,以 l〇nm〜500nm較佳,以 A 10nm〜200nm更佳。層厚未達10nm時,無法得到充分的 0 銅蝕刻液耐性之效果的傾向,大於50〇nm時,藉由濺射或 蒸鍍處理形成層時所產生的熱,會有支持體層惡化、對成 本不利等之傾向。 〔第2金屬層〕 於第2金屬層中使用銅層或銅合金層。銅合金層就成 本、蒸鍍法或濺射法等之汎用性、電氣傳導性而言,以 Q 鎳-銅合金、鈦-銅合金較佳。第2金屬層係以銅層更佳。 .第2金屬層之層厚,以50nm〜5000nm較佳、以50nm〜 . 3000nm 尤佳、以 lOOnm 〜3000nm 更佳、以 lOOnm 〜 200Onm最佳。層厚過小時,恐會於電路基板製造中因電 解鍍敷操作中之傷痕等,在金屬層上產生斑點、於形成導 體層時產生不佳的情形。另外,層厚過大時,藉由蒸鍍法 或濺射法等、於形成金屬膜時需要長時間,且就成本而言 不佳。 -23- 200924965 〔第3金屬層〕 於硬化性樹脂組成物層進行熱硬化時,恐會藉由 至銅層之硬化性樹脂組成物層,導致樹脂熱劣化(分 情形等之系,爲控制該情形時,視其所需亦可設置第 ’ 屬層。第3金屬層中適當的金屬,例如鉻、鎳.鉻合 : 鈦。該第3金屬層之層厚,以5nm〜10〇nm較佳、以 〜50nm更佳。而且,第2金屬層與第3金屬層之合 厚,以50nm〜5000nm較佳,以50nm〜3000nm尤佳 0 lOOnm 〜3000nm 超佳’以 l〇〇nm 〜2000nm 更佳 1 OOnm 〜1 OOOnm 最佳 ° 於本發明中,金屬層層厚之測定可以習知的方法 ,例如使用螢光X光膜厚計(SII ·奈米科技(股) SFT9455系列等)進行測定。 而且’金屬層、脫模層等各層之層厚,可自層截 掃描型電子顯微鏡(SEM )照片進行測定。 ❹ .〔硬化性樹脂組成物層〕 . 於黏著薄膜之硬化性樹脂組成物層中,該硬化物 是具有充分硬度與絕緣性者即可,沒有特別的限制, 使用至少在環氧樹脂、氰酸酯樹脂、苯酚樹脂、雙馬 亞胺-三嗪樹脂、聚醯亞胺樹脂、丙烯酸樹脂、乙烯 甲基樹脂等之硬化性樹脂中配合該硬化劑之組成物。 ’硬化性樹脂以具有環氧樹脂之組成物較佳,以至少 (a )環氧樹脂、(b )熱塑性樹脂及(c )硬化劑之 擴散 解) 3金 金或 5 nm 計層 ,以 ,以 進行 製、 面之 只要 例如 來醯 基苯 其中 含有 組成 -24- 200924965 物更佳。 (a) 環氧樹脂例如雙酚A型環氧樹脂、雙酚型環氧 樹脂、萘酚型環氧樹脂、萘型環氧樹脂、雙酚F型環氧樹 月旨、含磷之環氧樹脂、雙酚S型環氧樹脂、脂環型環氧樹 : 脂、脂肪族鏈狀環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲 : 酚酚醛清漆型環氧樹脂、雙酚A酚醛清漆型環氧樹脂、具 有丁二烯構造之環氧樹脂、雙酚之二環氧丙醚化物、萘二 醇之二環氧丙醚化物、苯酚類之環氧丙醚化物、及烷醇類 ❹ 之二環氧丙醚化物、以及此等之環氧樹脂的烷基取代物、 鹵化物及加氫物等。此等之環氧樹脂中可使用任何一種, 亦可2種以上混合使用。 於環氧樹脂中,就耐熱性、絕緣信賴性、與金屬膜之 密接性而言,以雙酚A型環氧樹脂、萘酚型環氧樹脂、萘 型環氧樹脂、聯苯型環氧樹脂、具有丁二烯構造之環氧樹 脂較佳。具體而言,例如液狀雙酚A型環氧樹脂(日本環 φ 氧樹脂(股)製「Epicoat 828EL」)、萘型2官能環氧樹 ^ 脂(大日本油墨化學工業(股)製「HP4032」、「 . HP403 2D」)、萘型4官能環氧樹脂(大日本油墨化學工 業(股)製「HP4700」)、萘酚型環氧樹脂(東都化成( 股)製「ESN-475V」)、具有丁二烯構造之環氧樹脂( 賴西魯(譯音)化學工業(股)製「PB-3600」)、具有 聯苯構造之環氧樹脂(日本化藥(股)製「NC3000H」、 「NC3000L」、日本環氧樹脂(股)製「γχ4〇〇〇」)等。 (b) 熱塑性樹脂係爲以使硬化後之組成物具有適當 -25- 200924965 的可撓性等爲目的時所配合者,例如苯氧基樹脂、聚乙烯 基縮醛樹脂、聚醯亞胺、聚醯胺醯亞胺、聚醚楓、聚碾等 。此等之中可單獨使用任何一種,亦可倂用2種以上。該 熱塑性樹脂係以硬化性樹脂組成物之不揮發成分爲1 00質 '量%時,以0.5〜6 0質量%之比例配合者較佳,更佳者爲3 : 〜50質量%。熱塑性樹脂之配合比例未達0.5質量%時, 由於樹脂組成物黏度低時,會有不易形成均勻的硬化性樹 Ο 脂組成物層的傾向,大於60質量%時,會有樹脂組成物之 黏度過高,不易埋入基板上之配線圖型傾向。 苯氧基樹脂之具體例,如東都化成(股)製FX280、 FX293、日本環氧樹脂(股)製 YX8100、YL6954、 YL6974 等。 聚乙烯基縮醛樹脂以聚乙烯基丁縮醛樹脂較佳,聚乙 烯基縮醛樹脂之具體例,如電氣化學工業(股)製之電化 丁縮醛 4000-2、5000-A、6000-C ' 6000-EP、積水化學工 Q 業(股)製之耶斯雷谷(譯音)BH系列、BX系列、KS 系列、B L系列、B Μ系列等。 . 聚醯亞胺之具體例,如新日本理化(股)製之聚醯亞 胺 「里卡克頓(譯音)SN20」、「里卡克頓ΡΝ20」等 。而且,使2官能性羥基末端聚丁二烯、二異氰酸酯化合 物及四元酸酐)反應所得的線狀聚醯亞胺(日本特開 2006-37083號公報記載者)、或含聚矽氧烷架構之聚醯亞 胺(特開2002-12667號公報、特開2000-319386號公報等 所記載者)等之改性聚醯亞胺。 -26- 200924965 聚醯胺醯亞胺之具體例,如東洋紡績(股)製之聚醯 胺醯亞胺「拜龍馬古斯(譯音)HR 1 1 NN」、「拜龍馬古 斯(譯音)HR16NN」等。另外,日立化成工業(股)製 之具有聚矽氧烷架構之聚醯胺醯亞胺「KS9i〇〇」、r KS93 00」等之改性醯胺醯亞胺。 聚醚碾之具體例,如住友化學(股)公司製之聚醚颯 「PES5 003 P」等。 聚楓之具體例,如索魯本亞頓邦斯頓柏里馬路(譯音 )(股)公司製之聚礪「P1700」、「P3500」等。 (e )硬化劑’例如胺系硬化劑、胍系硬化劑、咪唑 硬化劑、苯酚系硬化劑、萘酚系硬化劑、酸酐系硬化劑或 此等之環氧基加成物或微膠囊化者、氰酸酯樹脂等。其中 ’以苯酚系硬化劑、萘酚系硬化劑、氰酸酯樹脂較佳。而 且,於本發明中硬化劑可以使用1種,亦可2種以上倂用 〇 苯酚系硬化劑、萘酚系硬化劑之具體例,Wmeh-7700、MEH-7810、MEH-785 1 (明和化成(股)製)、 NHN、CBN、GPH (曰本化藥(股)製)、SN170、SN180 、SN190、SN475、SN485、SN495、SN3 75 ' SN395 (東都 化成(股)製)、LA7052、LA7054、LA3018、LA1356 ( 大曰本油墨化學工業(股)製)等。 此外,氰酸酯樹脂之具體例,如雙酚A二氰酸酯,聚 苯酚氰酸酯(低(3-亞苯基-1,5-亞苯基氰酸酯))、4,4’-亞甲基雙(2,6-二甲基苯基氰酸酯)、4,4’-次乙基二苯基 -27- 200924965 二異氰酸酯、六氟雙酚A二氰酸酯、2,2-雙(4-氰酸酯) 苯基丙烷、1,1-雙(4-氰酸酯苯基甲烷)、雙(4-氰酸酯· 3,5-二甲基苯基)甲烷、1,3-雙(4-氰酸酯苯基-1-(甲基 次乙基))苯、雙(4-氰酸酯苯基)硫醚、雙(4-氰酸醋 苯基)醚等之2官能氰酸酯樹脂、苯酚酚醛清漆樹脂 '甲 酚酚醛清漆樹脂等衍生的多官能氰酸酯樹脂、此等氰酸醋 樹脂被部分三嗪化的預聚合物等。市售的氰酸酯樹脂’例 如苯酚酚醛清漆型多官能氰酸酯樹脂(山拉(譯音)曰本 (股)製「PT30」、形成部分或全部之氰酸酯當量124) 或雙酚A二氰酸酯被三嗪化的三聚物的預聚物(山拉曰本 (股)製「BA2 30」、氰酸酯當量232)等。 (a )環氧樹脂與(c )硬化劑之配合比例,係爲苯酚 系硬化劑或萘酚系硬化劑時,對環氧樹脂之環氧當量1而 言,此等硬化劑之苯酚性羥基當量以0.4〜2.0之範圍的比 例較佳,以0.5〜1.0之範圍的比例更佳。爲氰酸酯樹脂時 ,對環氧基當量1而言氰酸酯當量以0.3〜3.3之範圍的比 例較佳,以0.5〜2之範圍的比例更佳。反應基當量比在 該範圍外時,硬化物之機械強度或耐水性降低的傾向。 而且,於該硬化性樹脂組成物中,除(c )硬化劑外 、可另外配合(d )硬化促進劑。該硬化促進劑例如咪唑 系化合物、有機膦系化合物等,具體例如2-甲基咪唑、三 苯基膦等。使用(d )硬化促進劑時,對環氧樹脂而言以 使用0.1〜3.0質量%之範圍較佳。而且,於環氧樹脂硬化 劑中使用氰酸酯樹脂時,以縮短硬化時間爲目的時亦可添 -28- 200924965 加習知的倂用環氧樹脂組成物與氰酸酯化合物之系中 硬化觸媒所使用的有機金屬化合物。有機金屬化合物 如銅(II)乙醯基乙酸鹽等之有機銅化合物、鋅(II 醯基乙酸鹽等之有機鋅化合物、鈷(II)乙醯基乙酸 ' 鈷(III)乙醯基乙酸酯等之有機鈷化合物等。有機金 ; 合物之添加量,對氰酸酯樹脂而言以金屬換算通常爲 5 0 Oppm '較佳者爲25〜200ppm之範圍。 ^^而且,於該硬化性樹脂組成物中,爲使硬化後之 物低熱膨脹化時,可含有(e)無機塡充劑。無機塡 例如二氧化矽、氧化鋁、雲母、雲母、矽酸鹽、硫酸 氫氧化鎂、氧化鈦等,以二氧化矽、氧化鋁較佳,以 化矽更佳。此外,無機塡充劑就絕緣特性而言,以平 徑爲3μηι以下較佳,以平均粒徑爲1.5 μιη以下更佳。 性樹脂組成物中之無機塡充劑的含量,以硬化性樹脂 物之不揮發成分爲1〇〇質量%而言,較佳者爲20〜60 U %、更佳者爲20〜50質量%。無機塡充劑之含量未S 質量%時,會有無法充分發揮熱膨脹率之降低效果的 . ,無機塡充劑之含量大於60質量%時’會有硬化物之 強度降低等之傾向。 於硬化性樹脂組成物中,視其所需可配合其他成 其他成分例如有機磷系難燃劑、有機系含氮之磷化合 氮化合物、聚矽氧烷系難燃劑、金屬氫氧化物等之難 、矽粉末、耐龍粉末、氟粉末等之塡充劑、膠體含水 鋁之有機複合物、改性膨脹土等之增黏劑、聚矽氧烷 作爲 ,例 )乙 鹽、 屬化 10〜 組成 充劑 鋇、 二氧 均粒 硬化 組成 質量 | 20 傾向 機械 分。 物、 燃劑 矽酸 系、 -29- 200924965 氟系、高分子系之消泡劑或水平劑、咪唑系、噻唑系、三 唑系、矽烷系偶合劑等之密接性賦予劑、酞菁•藍、酞菁 •綠、碘•綠、二重氮黃、炭黑等之著色劑等。 而且,硬化性樹脂組成物層,亦可爲在由纖維形成的 薄片狀補強基材中含浸上述硬化性樹脂組成物的預浸物。 薄片狀補強基材之纖維,例如可使用玻璃布或芳族醯胺纖 維等、一般常用作爲預浸物用纖維者。預浸漬處理係使硬 化性樹脂組成物薄片狀補強基材藉由熱熔融法或溶劑法予 以含浸,藉由加熱予以半硬化所形成。此外,熱熔融法係 爲沒有使樹脂組成物溶解於有機溶劑中,而使樹脂組成物 一次塗佈於與樹脂組成物體之剝離性良好的塗佈紙上,使 其層合於薄片狀補強基材上;或藉由塑模塗佈法直接予以 塗佈等’以製造預浸物之方法。另外,溶劑法係在使樹脂 組成物溶解於有機溶劑的清漆中浸漬薄片狀補強基材,使 清漆含浸於薄片狀補強基材中,然後予以乾燥的方法。 硬化性樹脂組成物層之厚度,係視被黏著物(內層電 路基板)之導體層的厚度而不同,惟就層間之絕緣特性等 而言,以約10〜150μιη較佳,以15〜80μιη更佳。 本發明之金屬膜轉印用薄膜及附金屬膜之黏著薄膜的 製造方法,沒有特別的限制,以下述方法爲宜。 金屬膜轉印用薄膜’例如在支持體層上順序形成第! 金屬層與第2金屬層,或順序形成第1金屬層〜第3金屬 層。而且’設置脫模層時,預先形成此等金屬層,於支持 體層上形成脫模層。各金屬層之形成方法,沒有特別的限 -30- 200924965 制’就形成均勻薄膜而言,各層之形成可各選自1種或2 種以上之蒸鏟法、濺射法及離子噴鍍法之方法進行較佳, 以蒸鍍法及/或濺射法進行更佳。 濺射法可使用習知的方法,例如使支持體置於真空容 * ' 器中’導入氬氣等之惰性氣體,且施加直流電壓,使經離 ; 子化的惰性氣體在目的金屬上予以衝突,藉由衝出的金屬 、在支持體上(具有脫模層時爲脫模層上)形成膜。而且 & ’蒸鍍法(真空蒸鍍法)可使用習知的方法,例如使支持 體置於真空容器中,使金屬藉由加熱蒸發、在支持體上( 具有脫模層時爲脫模層上)形成膜。另外,離子噴鍍法亦 可使用習知的方法,例如使支持體置於真空容器中,在電 暈放電氣體環境下,使金屬加熱蒸發,藉由經離子化的蒸 發金屬在支持體上(具有脫模層時爲脫模層上)形成膜。 而且,亦可以使預先形成的金屬薄膜或薄片層合於支 持體上等、上述蒸鍍法、濺射法及離子噴鍍外之方法形成 Q 金屬層(膜)。 .脫模層之形成方法,沒有特別的限制,可採用熱壓製 . 、熱輥層合、押出層合、塗佈液之塗佈•乾燥等之習知層 _ 合方法,就簡單、容易形成性質形狀均勻性高的層而言, 以使含有脫模層所使用的材料之塗佈液予以塗佈•乾燥的 方法較佳。 附金屬膜之黏著薄膜,可藉由以在金屬膜轉印用薄膜 之製造步驟的最終步驟中第2金屬層或第3金屬層之形成 步驟後,在該第2金屬層或第3金屬層上形成硬化性樹脂 -31 - 200924965 組成物層予以製造。此處’硬性樹脂組成物層之形成方法 ,沒有特別限制,以調製含有組成物之清漆’且使清漆塗 佈•乾燥的方法爲宜。而且,金屬膜轉印用薄膜’可另外 製作在支持薄膜上形成有硬化性樹脂組成物層之黏著薄膜 ,且使此等轉印用薄膜與黏著薄膜在與硬化性樹脂組成物 層及金屬膜層接觸、加熱條件下貼合的方法,製作附金屬 膜之黏著薄膜。黏著薄膜之支持體,例如上述之塑膠薄膜 等。此外,在形成支持體之硬化性樹脂組成物層的面上, 以藉由聚矽氧烷系脫模劑實施剝離處理較佳。另外,硬化 性樹脂組成物層爲預浸物時,可使預浸物藉由例如真空層 合法層合於支持體上。 轉印用薄膜與黏著薄膜(預浸物)之貼合,係在使轉 印用薄膜之金屬膜層與黏著薄膜(預浸物)的硬化性樹脂 組成物層對向下,使轉印用薄膜與黏著薄膜(預浸物)重 疊,以熱壓製、熱輥等進行加熱壓熔處理。加熱溫度以60 〜140 °C較佳,更佳者爲80〜120 °C。加熱溫度未達60 °C時 ,會有無法充分黏著的傾向,加熱溫度大於140 °C時,由 於會引起樹脂滲出的傾向,故不爲企求。此外,壓熔壓力 以 1 〜1 1 kgf/cm2 ( 9.8x 1 04 〜1 07·9χ 1 04N/m2 )之範圍較佳 ,以 2〜7让§£/(;1112(19.6\104〜68.6乂10>/1112)之範圍更佳 。壓熔壓力未達lkgf/cm2(9.8xl04N/m2)時,會有樹脂 組成物的流動性變得不充分,無法得到與金屬膜層之充分 密接性’與轉印用薄膜上之金屬膜層的界面上容易殘留有 孔隙的傾向,壓溶壓力大於llkgf/cm2 ( 107.9xl04N/m2) -32- 200924965 時,會有樹脂之滲出情形變得激烈,無法維持所定的膜厚 之傾向,故不爲企求。 藉由使用本發明之金屬膜轉印用薄膜或附金屬膜之黏 著薄膜,可有效地製造具有信賴性高的精細圖型之導體層 的多層印刷配線板等之電路基板。於下述中,詳細說明使 用本發明之金屬膜轉印用薄膜之電路基板的製造方法及使 用本發明之金屬膜轉印用薄膜的電路基板之製造方法。 ❹ 〔使用金屬膜轉印用薄膜之電路基板的製造〕 使用本發明之金屬膜轉印用薄膜的電路基板之製造方 法,係爲經由下述之(A)〜(E)步驟的方法。 (A )在表面上形成硬化性樹脂組成物層,在該硬化 性樹脂組成物層內或硬化性樹脂組成物層下具有銅層或銅 合金層之基板上,使本發明之金屬膜轉印用薄膜在其金屬 膜之第2金屬層或第3金屬層與硬化性樹脂組成物層表面 Q 連接下,予以重疊、層合,且使硬化性樹脂組成物層硬化 . 。藉此可使金屬膜轉印用薄膜之金屬膜與硬化性樹脂組成 . 物層黏著。 _ (B)使金屬膜轉印用薄膜之支持體層剝離。 (C) 藉由雷射形成通路。 (D) 除去通路底部殘澄(除膠渣)。 (E) 使通路底部銅層或銅合金層表面予以蝕刻。 步驟(A )之層合,就作業性及可容易得到一般的接 觸狀態而言,以輥或壓製壓熔等使薄膜在被黏著體表面上 -33- 200924965 進行層合處理。其中’以藉由真空層合法、在減壓下層合 爲宜。而且’層合的方法可以爲分批式,亦可爲以輥之連 續式。 層合的條件’一般而言以壓熔壓力爲!lkgf/cm2 ( 9·8χ104〜107’9xl04N/m2 )之範圍,且空氣壓力爲 2 0mmHg (26.7hPa)以下之減壓下進行層合者較佳。 真空層合係可使用市售的真空層合器進行。市售的真 空層合器例如(股)名機製作所製之分批式真空加壓層合 器MVLP-500、尼吉谷•麻頓(譯音)(股)製巴吉姆( 譯音)塗佈器、(股)日立音拉斯頓里伊陸(譯音)製輥 式乾式塗佈器、日立耶亞伊西(譯音)(股)製真空層合 器等。 而且’硬化性樹脂組成物之硬化處理,通常爲熱硬化 處理,其條件係視硬化性樹脂種類等而不同,一般而言, 硬化溫度爲120〜200 °C,硬化時間爲15〜90分鐘。就防 止所形成的絕緣層表面產生皺摺而言,以由較低的硬化溫 度至較高的硬化溫度予以分段式硬化、或上昇且硬化較佳 者。 步驟(C)中藉由雷射形成通路,通常係藉由碳酸氣 體雷射、YAG雷射等予以進行。而且,金屬膜轉印用薄膜 具有脫模層時,藉由雷射形成通路,亦可於除去脫模層後 進行,亦可自脫模層之上方進行。 步驟(D )之通路底部殘渣的除去步驟(除膠渣步驟 ),可藉由電漿處理等之乾式法、鹼性過錳酸溶液等之氧 -34- 200924965 化劑處理的濕式法等習知的方法。特別是藉由氧化劑之除 膠渣法,就可除去通路底部之殘渣,且同時可使通路壁面 以氧化劑予以粗化,提高鍍敷密接強度而言較佳。藉由氧 化劑之除膠渣步驟,通常順序進行藉由膨脹液之膨脹處理 : 、藉由氧化劑之粗化處理及藉由中和液之中和處理予以進 : 行。膨脹液例如鹼性溶液、界面活性劑溶液等,較佳者爲 鹼性溶液,該鹼性溶液例如氫氧化鈉溶液、氫氧化鉀溶液 ©等。市售的膨脹液例如亞頓迪谷(譯音)日本(股)製之 膨脹•浸漬•希奇里肯思(譯音)P ( Swelling Dip Securiganth P )、膨脹•浸漬•希奇里肯思 SBU ( Swelling Dip Securiganth SBU)等。例如在氫氧化鈉之水 溶液中溶解有過錳酸鉀或過錳酸鈉之鹼性過錳酸溶液。藉 由鹼性過錳酸溶液等之氧化劑的粗化處理,通常係藉由在 約60°C〜80°C下加熱的氧化劑溶液中進行約〜30分鐘 。而且,一般而言鹼性過錳酸溶液中過錳酸鹽之濃度約爲 ^ 5〜1 0質量%。市售的氧化劑例如亞頓迪谷日本(股)製 . 之克西頓雷頓克巴谷頓(譯音)CP、頓金索里新希奇 . 里卡斯(譯音)P等之鹼性過錳酸溶液。此外,中和液以 酸性之水溶液較佳,市售品例如亞頓迪谷日本(股)製之 里拉谷新西里新•西奇里卡(譯音)P(中和液)。 步驟(E)之通路底部銅層或銅合金層表面的蝕刻處 理,係爲更爲完全地除去通路底部之殘渣(膠渣)時’使 通路底部銅層或銅合金層之表面藉由銅蝕刻溶液予以蝕刻 處理的表面清淨化處理。使銅溶解的銅蝕刻液’可使用酸 -35- 200924965 性或鹼性者。酸性蝕刻液之具體例如使過氧化二硫酸鈉( 100g)、硫酸(20ml)、離子交換水(938.4ml)混合者 ,鹼性蝕刻液之具體例如梅魯迪古斯(譯音)(股)製之 E-布羅希斯(譯音)-WL、梅谷(譯音)(股)製之CF-' 6000、VE-7100。而且,第1金屬層爲Ni時,對酸性蝕刻 : 液而言Ni會有無法維持充分的難溶解性的情形,此時以 使用鹼性蝕刻液作爲銅蝕刻液較佳。 i^第5圖係表示「在表面上形成硬化性樹脂組成物層、 該硬化性樹脂組成物層下具有銅層或銅合金層之基板」( 在基板51上經由銅層或銅合金層形成的配線52,形成有 硬化性樹脂組成物層53之內層電路基板50)上,層合金 屬膜爲由第1金屬層2/第2金屬層3之層合構成所形成的 第1圖之金屬膜轉印用薄膜10,經由上述(A)〜(E) 之步驟所得的在基板51上被覆由銅層或銅合金層所成的 配線52之絕緣層7 (硬化性樹脂組成物層5 3之硬化物) φ 上順序層合第2金屬層3與第1金屬層的構造之層合構造 物100之典型例。而且,使用金屬膜層爲由第1金屬層2/ . 第2金屬層3/第3金屬層4之層合構成所形成的第2圖之 金屬膜轉印用薄膜20時,如第6圖所示、在絕緣層7與 第2金屬層3之間存在第3金屬層4之層合構造物200。 經由上述(A )〜(E )之步驟後,直接以金屬膜層作 爲導體層,或在金屬膜層上藉由鍍敷處理(無電解鍍敷及 /或電解鎪敷),使金屬層更爲成長,形成導體層(此時 ,亦在通路內面上使金屬層成長),製得多層印刷配線板 -36- 200924965 等之電路基板° 在金屬膜層上進行鍍敷處理時,在第1金屬層2之表 面上直接進行鍍敷處理,或使第1金屬層2進行選擇性蝕 刻處理、予以除去後,在經露出的第2金屬層上進行鍍敷 ' 處理。鍍敷處理以藉由電解鎪敷處理較佳。第1金屬層2 : 之表面上直接進行鍍敷處理時,以於進行透過鍍敷處理後 ,進行電解鍍敷處理較佳。藉由電解鍍敷處理之金屬層, 0 通常係爲與金屬膜層同種的金屬種之金屬層,可形成不同 金屬種之金屬層。具體而言,在第1金屬層2之表面上進 行鍍敷處理時’以進行鍍銅處理爲宜。而且,在第2金屬 層(銅層或銅合金層)3之表面上進行鍍敷處理時,亦以 進行鍍銅處理爲宜。於本發明中鍍敷層之厚度,係視金屬 膜層之厚度、企求的電路基板之設計而定,一般而言爲3 〜35μιη,較佳者爲5〜30μιη。 此外,在第2金屬層上進行鍍敷處理時,第1金屬層 φ 之選擇性鈾刻處理時所使用的蝕刻液,係爲幾乎完全不使 銅或銅合金溶解的藥液,換言之,係爲對第1金屬層而言 . 蝕刻速度快、對銅或銅合金而言蝕刻速度慢的藥液,具體 而言,對銅或銅合金而言之蝕刻速度(VI)與對第1金屬 層而言之蝕刻速度(V2 )的比例(V2/V1 )必須爲5以上 ,較佳者爲20以上之藥液,視第1金屬層之金屬而定爲 宜。 例如,第1金屬層爲Ni時,例如以硝酸/硫酸/過氧化 氫/離子交換水爲主要成分的藥液,市售品例如梅谷(股 -37- 200924965 )製之NH-1865、梅魯迪古斯(股)梅魯斯頓理布(譯音 )N-9 50等。另外,第1金屬層爲鎳•鉻合金等之鎳合金 時,例如以硫酸/鹽酸/噻唑系化合物/離子交換水爲主要成 分之藥液,市售品例如梅谷(股)製之CH-1950等。此外 ’第1金屬層爲鈦或鈦·鉻合金等之鈦合金時,例如以過 氧化氫/磷酸/銨水爲主要成分之pH7〜8的水溶液(藥液 ),市售品例如梅魯迪古斯(股)製之梅斯頓里布(譯音 )TI-3991 等。 而且,使用具有脫模層之金屬轉印用薄膜,且於金屬 膜轉印後、在金屬膜上殘存有脫模層時,藉由雷射處理、 於形成通路之步驟(步驟C)前或後除去該脫模層。換言 之,藉由雷射形成通路,可在第1金屬層2上、或殘存有 脫模層時於脫模層上進行。而且,如上所述,採用1種以 上選自水溶性纖維素樹脂、水溶性丙烯酸樹脂及水溶性聚 酯樹脂所形成的水溶性高分子作爲脫模層時,可於被黏著 物之硬化性樹脂組成物硬化後、在支持體層-脫模層間剝 離支持體,然後,使在金屬膜層上殘存的脫模層簡單地以 水溶液除去。爲溶解除去該脫模層時之水溶液,較佳者爲 以0.5〜10重量%之濃度溶解有碳酸鈉、碳酸氫鈉、氫氧 化鈉、氫氧化鉀等鹼性水溶液等。溶解除去的方法,沒有 特別的限制,例如使支持體層剝離後,在水溶液中使基板 浸水後、予以溶解除去的方法’使水溶液以噴霧狀或霧狀 吹附 '予以溶解除去的方法等。水溶液之溫度’通常約爲 室溫〜8 0 °C,藉由浸水、吹附等之水溶液的處理時間,通 -38- 200924965 常進行10秒〜10分鐘。鹼性水溶液亦可使用製造電路基 板時所使用的鹼顯像機的鹼型顯像液(例如0.5〜2重量% 之碳酸鈉水溶液、25〜40°C )、乾式薄膜剝離機之剝離液 (例如1〜5重量%之氫氧化鈉水溶液、40〜60°C )、在除 膠渣步驟中使用的膨脹液(例如含有碳酸鈉、氫氧化鈉等 之鹼水溶液、60〜80°C)等。 〔使用附金屬膜之黏著薄膜的電路基板之製造〕 使用本發明之附金屬膜的黏著薄膜之電路基板的製造 方法,係爲經由下述(A )〜(E )之步驟的方法。 (A) 在表面上具有銅層或銅合金層之基板上,使本 發明之附金屬膜的黏著薄膜在其硬化性樹脂組成物層連接 基板表面下予以重疊、層合,使硬化性樹脂組成物硬化。 藉此,使附金屬膜之黏著薄膜的硬化性樹脂組成物層黏著 於具有銅層之被黏著物的表面上。 (B) 使附金屬膜之黏著薄膜的支持體層剝離。 (C) 在金屬膜層(第1金屬層)上、或在脫模層上 ,藉由雷射處理形成通路。 (D) 除去通路底部殘渣(除膠渣處理)。 (E) 使通路底部銅層或銅合金層表面予以蝕刻。 第7圖係在「在表面上具有銅層或銅合金層之基板」 (在基板51上形成有由銅層或銅合金層形成的配線52之 內層電路基板55)上,層合由金屬膜爲第1金屬層2/第2 金屬層3之層合構造形成的第3圖之附金屬膜的黏著薄膜 -39- 200924965 30,且經由上述(A)〜(E)之步驟所得、基板51上被 覆由銅層或銅合金層所成的配線52之絕緣層7 (附金屬膜 之黏著薄膜30的硬化性樹脂組成物層5之硬化物)上具 有第1金屬層2作爲表面層之層合構造物100’爲典型例。 而且,使用由金屬膜層爲第1金屬層2/第2金屬層3/第3 金屬層4之層合構造形成的第4圖之附金屬膜的黏著薄膜 40時,如第8圖所示、在絕緣層7與第2金屬層3之間存 在有第3金屬層4之層合構造物200’。 換言之,使用本發明之附金屬膜的黏著薄膜之電路基 板的製造方法,就於步驟(A)中使用「在表面上具有銅 層或銅合金層之基板」(在基板51上形成有由銅層或銅 合金層形成的配線52之內層電路基板55),且使具有附 金屬膜之黏著薄膜的硬化性樹脂組成物層5硬化而言,與 使用上述之金屬膜轉印用薄膜的電路基板之製造方法不同 〇 因此,經由(A)〜(E)之步驟所得的層合構造物( 第7,8圖)之構成,與使用上述之金屬膜轉印用薄膜所 得的層合構造物(第5圖,第6圖)之構成,實質上相同 。換言之,使用上述之金屬膜轉印用薄膜所得的層合構造 物(第5圖,第6圖),對絕緣層7以在基板51上被覆 配線5 2之硬化性樹脂組成物層5 3的硬化物所形成而言, 使用附金屬膜之黏著薄膜所得的本層合構造物(第7,8 圖)係絕緣層7以在附金屬膜之黏著薄膜的硬化性樹脂組 成物層5的硬化物所形成,作爲層合構造物係爲相同的構 -40- 200924965 成。因此’在(A)〜(E)之各步驟中使用的材料、處理 條件等皆與使用上述金屬膜轉印用薄膜之電路基板的製造 方法相同。 其次,與使用上述金屬膜轉印用薄膜之電路基板的製 造方法相同地,經由上述(A)〜(E)之步驟後,以金屬 膜層直接作爲導體層’或在金屬膜層上藉由鍍敷(無電解 鍍敷及/或電解鏟敷)處理,再使金屬層成長,形成導體 層(此時’在通路內面亦使金屬層成長),可製得多層印 刷配線板等之電路基板。而且,在金屬膜層上進行鍍敷處 理時,鍍敷的方法、材料、順序及藉由鑛敷處理之金屬層 厚度、以及以第1金屬層2的選擇性蝕刻處理時使用的蝕 刻液、處理條件等,基本上與使用上述之金屬膜轉印用薄 膜的電路基板之製造方法相同。 【實施方式】 於下述中,以實施例更具體地說明本發明,惟本發明 不受下述之實施例所限制。而且,於下述記載中,「份」 係指「質量份」。 〔實施例1〕 <金屬膜轉印用薄膜之製作> 在厚度38 μιη之聚對苯二甲酸乙二酯(以下簡稱爲「 PET」)薄膜上,藉由塑模塗佈器塗佈羥基丙基甲基纖維 素苯二甲酸酯(信越化學工業(股)製「HP-55」)之固 -41 - 200924965 成分10%的甲基乙酮(以下簡稱爲「ΜΕΚ」)與N,N-二 基甲醯胺(以下簡稱爲「DMF」)之1 : 1溶液,使用 風乾燥爐’以昇溫速度3。(:/秒自室溫昇溫至140。(:,除 溶劑’在PET薄膜上形成厚度約1μηι之羥基丙基甲基 維素苯二甲酸酯層。然後,在羥基丙基甲基纖維素苯二 酸酯層上’藉由濺射處理(E-400S、肯農亞尼魯巴(譯 )(股)製),順序形成約lOOnm之鎳層、約250nm 銅層,製作具有總厚度約350nm之金屬膜的金屬膜轉印 薄膜。 <具有硬化性樹脂組成物層之黏著薄膜的製作> 使28份液狀雙酚A型環氧樹脂(環氧當量180、 本環氧樹脂(股)製「耶皮克頓828 EL」)、與28份 型4官能環氧樹脂(環氧當量163、大日本油墨化學工 (股)製「HP4700」),在15份MEK與15份環己酮 混合液中進行攪拌且加熱溶解。然後,使1 1 〇份萘酚系 化劑(羥基當量215、東都化成(股)製「SN-48 5」) 固成分50%的MEK溶液、0.1份硬化觸媒(四國化成工 (股)製、「2E4MZ」)、70份球型二氧化矽(平均粒 0.5μιη、(股)亞頓馬迪古斯(譯音)製「S 0 C 2」)、 份聚乙烯基丁縮醛樹脂(積水化學工業(股)製「KS-1 )之固成分15%的乙醇與甲苯的1:1溶液混合’以高 回轉混合器予以均勻地分散,製作樹脂清漆。在厚 38 μιη之PET薄膜上藉由塑模塗佈器塗佈該清漆,使用 甲 熱 去 纖 甲 之 用 曰 萘 業 之 硬 之 業 徑 30 j 速 度 熱 -42- 200924965 風乾燥爐除去溶劑,製作硬化性樹脂組成物層之厚度爲 4 0 μιη之黏著薄膜。 <在基板上形成硬化性樹脂組成物層> 在以厚度18μπι之銅層形成電路的玻璃環氧基板之銅 層上,以CZ8100(含唾類之銅複合物、有機酸之表面處 理劑(梅谷(股)製))處理予以粗化。然後,在上述黏 著薄膜之硬化性樹脂組成物層連接銅電路表面下,使用分 批式真空加壓層合器MVLP-5 00 ((股)名機製作所製商 品名),使黏著薄膜層合於基板兩面上。層合處理係在減 壓3 0秒、氣壓爲13hPa以下進行。然後,在室溫下冷卻 後,使黏著薄膜之支持體層剝離,且在基板之兩面上形成 硬化性樹脂組成物層。 <藉由金屬膜轉印用薄膜之金屬膜轉印> 使上述金屬膜轉印用薄膜在金屬膜之銅層連接硬化性 樹脂組成物層下' 層合於基板上。層合處理係使用分批式 真空加壓層合器MVLP-500 ((股)名機製作所製、商品 名)’在基板之兩面上藉由層合予以進行。層合係藉由減 壓 30秒、使氣壓爲 13 hPa以下,再以 30秒、壓力 7_54kgf/cm2予以壓製、進行。然後,使硬化性樹脂組成 物層在150 °C下硬化30分鐘、另在1801:下硬化30分鐘, 形成絕緣層(硬化物層)。自該絕緣層剝離金屬膜轉印用 薄膜之支持體層的PET薄膜。剝離性佳、可以手容易予以 -43- 200924965 剝離。然後’使羥基丙基甲基纖維素苯二甲酸酯層以1重 量%碳酸鈉水溶液溶解除去。使金屬膜以SEM ((股)奇 恩斯(譯音)製「VK8510」)觀察時’金屬膜被均勻地 轉印、沒有樹脂與金屬膜間之膨脹、金屬膜之皴摺、金屬 膜之龜裂的異常情形。 <通路之形成> 對金屬膜被轉印的上述基板而言,藉由日立通路機構 (股)製之碳酸氣體雷射,以出力〇.6w、脈衝寬度3μ3、 射出次數2次之條件,形成頂點之開口徑爲65 μπι的通路 <殘渣的除去處理> 使形成有通路之基板在膨脹液之亞頓迪谷日本(股) 之斯耶里谷迪布•西奇里肯頓(譯音)Ρ中、80°C下浸漬 Q 10分鐘,然後,在作爲粗化液之亞頓迪谷日本(股)之克 .希頓雷頓•克巴谷頓P( KMn04 : 60g/L、NaOH: 40g/L之 , 水溶液)中、80°C下浸漬20分鐘,最後在作爲中和液之 亞頓迪谷日本(股)之里拉谷雄秀里新•希奇里肯頓(譯 9 音)P中、40°C下浸漬5分鐘。繼後,進行水洗、乾燥, 以SEM ((股)日立海迪谷羅吉露(譯音)製「S-4800」 )觀察通路底部時,確認沒有殘渣。 <底部銅層之蝕刻處理> -44- 200924965 使上述殘渣除去處理後之基板在混合有過氧化二硫酸 鈉(100g)、硫酸(20ml)、離子交換水( 938.4ml)者 、25 °C下浸漬1分鐘,進行底部銅層之蝕刻處理。使該層 合板予以水洗、乾燥後,以SEM ((股)日立海迪谷羅吉 露製「S-4800」)觀察金屬膜層時,確認有金屬膜層存在 <鏟銅層形成> 使上述基板上沒有形成雷射通路的金屬膜層之最上層 的鎳層藉由梅谷(股)製之鎳專用剝離液NH1865進行蝕 刻除去,且在經露出的銅層上進行電解鍍銅處理,形成厚 度約3 Ομηι之鏟銅層,製作多層印刷配線板。 〔實施例2〕 除於鍍銅層形成時,順序進行無電解鍍銅與電解鑛銅 0 處理,形成厚度約30 μηι之鍍敷層外,與實施例1相同地 ,製作多層印刷配線板,在該步驟中進行與實施例1相同 的觀察(評估)。 〔實施例3〕 除形成雷射通路,且進行底部銅層之蝕刻處理後,在 第1金屬層上進行透過鍍銅處理,再進行電解鏟銅處理, 形成厚度約30μπι之鑛敷層外,以與實施例1相同的方法 製作多層印刷配線板,在該步驟中進行與實施例1相同的 -45- 200924965 觀察(評估)。 〔實施例4〕 <附金屬膜之黏著薄膜的製作> 使以實施例1製作的具有硬化性樹脂組成物層之黏著 薄膜與金屬膜轉印用薄膜,在硬化性樹脂組成物層與金屬 膜轉印用薄膜接觸、90 °C下貼合、捲取,製得附金屬膜之 黏著薄膜。 <藉由附金屬膜之黏著薄膜、在基板上形成硬化性樹脂組 成物層> 在以厚度18 μιη之銅層形成電路的玻璃環氧基板之銅 層上,以CZ81 00 (含唑類之銅複合物、有機酸之表面處 理劑(梅谷(股)製))處理予以粗化。然後,使上述製 作的附金屬膜之黏著薄膜的黏著薄膜側之支持體剝離,使 用分批式真空加壓層合器MVLP-500 ((股)名機製作所 製商品名)’使附金屬膜之黏著薄膜層合於基板兩面上。 層合處理係在減壓30秒、氣壓爲i3hPa以下進行。然後 ’使硬化性樹脂組成物層在150 °C下硬化30分鐘、在 180 °C下硬化30分鐘,形成絕緣層(硬化物層)。自該絕 緣層剝離附金屬膜之黏著薄膜側之支持體層的PET薄膜。 剝離性佳、可以手容易剝離。然後,使羥基丙基甲基纖維 素苯二甲酸酯層以1重量%碳酸鈉水溶液、在室溫下浸漬 1分鐘(附攪拌)’予以溶解除去。使金屬膜以SEM (( -46- 200924965 股)奇恩斯(譯音)製「VK8510」)觀 均勻地轉印、沒有樹脂與金屬膜間之膨月f 、金屬膜之龜裂的異常情形。 : <通路之形成> ; 對金屬膜被轉印的上述基板而言,1 (股)製之碳酸氣體雷射,以出力600w 射出次數2次之條件,形成頂點之開口吞 ❹ <殘渣的除去處理> 使形成有通路之基板在膨脹液之亞_ 之斯耶里谷迪布•西奇里肯頓(譯音)p 10分鐘,然後,在作爲粗化液之亞頓迪名 希頓雷頓.克巴谷頓p( KMn〇4 : 6 0g/L、 水溶液)中、80 °C下浸漬20分鐘,最後 亞頓迪谷日本(股)之里拉谷雄秀里新· 音)P中、40 °C下浸漬5分鐘。繼後,達 以SEM ((股)日立海迪谷羅吉露(譯1 )觀察通路底部時,確認沒有殘渣。 <底部銅層之蝕刻處理> 使上述殘渣除去處理後之基板在混会 鈉(100g )、硫酸(20ml )、離子交換 察時,金屬膜被 '金屬膜之皺摺 姜由日立通路機構 、脈衝寬度3 μ s、 ί馬65μιη的通路 迪谷日本(股) 中、80°C下浸漬 曰本(股)之克 NaOH : 40g/L 之 在作爲中和液之 希奇里肯頓(譯 行水洗、乾燥, )製「 S-4800」 有過氧化二硫酸 7k ( 93 8.4ml )者 -47- 200924965 、25°C下浸漬1分鐘,進行底部銅層之蝕刻處理。使該層 合板水洗、乾燥後,以SEM ((股)日立海迪谷羅吉露製 「S-4 800」)觀察金屬膜層時,確認有金屬膜層存在。 <鍍銅層形成> 使上述基板上沒有形成雷射通路的金屬膜層之最上層 的鎳層藉由梅谷(股)製之鎳專用剝離液NH1 8 65予以蝕 刻除去,且在經露出的銅層上進行電解鑛銅處理,形成厚 度約3 Ομτη之鍍銅層,製作多層印刷配線板。 〔實施例5〕 除於鍍銅層形成時,順序進行無電解鍍銅、電解鍍銅 處理,形成厚度約30μιη之鍍敷層外,與實施例4相同地 ,製作多層印刷配線板,在該步驟中進行與實施例4相同 的觀察(評估)。 ❹ •〔實施例6〕 除形成雷射通路,且進行底部銅層之鈾刻處理後,在 . 第1金屬層上進行透過鍍銅處理,再進行電解鍍銅處理, 形成厚度約30μιη之鍍敷層外,以與實施例4相同的方法 製作多層印刷配線板,在該步驟中進行與實施例4相同的 觀察(評估)。 〔實施例7〕 -48- 200924965 除在金屬膜轉印用薄膜之銅層上’直 由塑模塗佈器塗佈,使用熱風乾燥爐除去 約40μιη之硬化性樹脂組成物層,製作附 膜外,以與實施例4相同的方法製作多層 該步驟中進行與實施例4相同的觀察(評> 〔實施例8〕BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film for metal film transfer and a film for attaching a metal film which are suitable for use in a circuit board. [Prior Art] When a circuit board such as a multilayer printed wiring board or a flexible printed wiring board, which is widely used in various electronic devices, is miniaturized and functionalized, the thickness of the layer or the circuit is required. Fine wiring. Next, in this manufacturing method, for example, a curable resin composition is laminated on a substrate, and the curable resin composition is cured to form an insulating layer, and then the insulating layer is made of an alkaline potassium permanganate solution or the like. It is known that the oxidizing agent is roughened, and a plating seed layer is formed on the rough surface by electroless plating, and then a semi-active method of forming a conductor layer by electrolytic plating is known. Therefore, in the case where the conductor layer having high adhesion strength is obtained, the surface of the insulating layer is roughened by the oxidizing agent as described above and the unevenness is formed on the surface, and when the fixing effect is obtained between the conductor layer and the conductor layer, It is necessary, but only when the circuit is formed, it is etched.  When an unnecessary plating seed layer is removed, when the seed layer which is difficult to remove the fixing portion is etched under the condition that the seed layer of the fixed portion can be sufficiently removed, the dissolution of the wiring pattern is remarkable, and the occurrence of fine wiring is hindered. problem. In order to solve this problem, a method of transferring a film for transfer onto an adherend obtained by using a copper film as a plating seed layer was attempted. For example, Patent Document No. 1, 2 discloses that a transfer film for forming a copper film on a support of -5 to 200924965 is formed by vapor deposition or the like, and the copper film of the transfer film is transferred. A method of forming a conductor layer on a surface of a resin composition layer or a surface of a prepreg printed on a substrate by a plating treatment or the like on a transferred copper film. Further, Patent Document 3 discloses an adhesive film in which a copper film is directly formed on a support by vapor deposition or the like and a resin composition layer is formed thereon. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. 2002-324969 (Patent Document 3) Japanese Laid-Open Patent Publication No. Hei 9-296156 (Patent Document) At this time, in order to electrically connect the layers, a path is formed by laser irradiation, and at this time, it is necessary to remove the residue (slag) deposited on the conductor at the bottom of the path. The residue (de-slag removal) is carried out by a wet method using an oxidizing agent such as an alkaline potassium permanganate solution or a dry method such as plasma, except when the connection reliability between the high conductors is exceeded. In addition to the slag Q treatment, the copper layer or copper alloy at the bottom of the via is treated by a copper etchant. The etching treatment of the surface of the layer completely removes the residue (slag) at the bottom of the passage.  good. However, as in the methods of Patent Documents 1 to 3, the copper film is transferred onto the adherend by the transfer film, and the copper film transferred on the insulating layer already exists in the desmear step. Therefore, when the uranium engraving of the copper surface at the bottom of the via is performed by the copper etchant, the transferred copper film on the outermost surface is also etched, especially when the copper film is thin, since the copper film disappears by etching treatment. It is not suitable to use the above etching step, and there is a problem in the substrate -6 - 200924965 for manufacturing a high connection reliability. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a circuit board by using a film for metal film transfer or an adhesive film with a metal film, in which a residue (de-slag) at the bottom of the via can be sufficiently removed. A method for producing a circuit board, and a film for metal film transfer or a film for attaching a metal film suitable for the method. In order to solve the above-mentioned problems, the inventors of the present invention have found that the first metal layer having copper etching liquid resistance is used by the metal film layer for the metal film transfer film or the metal film-attached film. It is composed of a second metal layer made of copper or a copper alloy, and has a layer structure of the i-th metal layer disposed on the side of the support. In the manufacture of the circuit board, the surface of the copper layer or the copper alloy layer at the bottom of the via is engraved with copper. When the liquid is etched, the surface of the transferred metal film is almost completely etched, and the residue (de- slag) at the bottom of the via is sufficiently removed, and the present invention is completed. In other words, the present invention encompasses the following. (1) A film for metal film transfer, which is characterized in that a first metal layer having copper etching liquid resistance and a second metal layer formed of copper or a copper alloy are sequentially formed on a support layer. (2) The film for metal film transfer according to the above (1), wherein the first metal layer is formed of one or more selected from the group consisting of nickel, a nickel alloy, titanium, and a titanium alloy. (3) The film for metal film transfer according to the above (1), wherein the first metal layer and the second metal layer are one or more selected from the group consisting of a distillation method, a sputtering method, and an ion plating method. The method of the method of law. (4) The film for metal film transfer according to (1) above, wherein the support layer is a plastic film. (5) The film for metal film transfer according to (1) above, wherein the support layer is a polyethylene terephthalate film. (6) The film for metal film transfer according to the above (1), wherein the second metal layer is laminated with one or more selected from the group consisting of nickel, nickel, chromium alloy and titanium. And the third metal layer is formed. The metal film-transprinting film according to any one of the above-mentioned (1), wherein a release layer (8) is provided between the support layer and the first metal layer as described above (7). The film for metal film transfer described in the above, wherein the surface of the release layer that adheres to at least the metal film is one or more selected from the group consisting of water-soluble cellulose resins, water-soluble polyester resins, and water-soluble acrylic resins. The formation of molecules. (9) The film for metal film transfer according to the above (8), wherein the water φ soluble polyester resin is a water-soluble polyester having a sulfo group or a salt thereof and/or a carboxyl group or a salt thereof, and the water-soluble acrylic resin has a water-soluble C of a carboxyl group or a salt thereof.  Acrylate resin. (10) The film for metal film transfer according to any one of (1) to (9), wherein the first metal layer has a layer thickness of 10 nm to 500 nm. (11) The film for metal film transfer according to any one of the above aspects, wherein the second metal layer has a layer thickness of 50 nm to 3000 nm. (12) The film for metal film transfer according to any one of (6) to (9), wherein the third metal layer has a layer thickness of 5 nm to 100 nm, and the second to eighth layers of the metal layer and the third metal The total layer thickness of the layers is 50 to 3000 nm. (13) The film for metal film transfer according to any one of the above (7), wherein the layer thickness of the release layer is Ο. Ϊ́μπι~20μιη. (14) A method of producing a circuit board, comprising: forming a curable resin composition layer on a surface of the surface, and having a copper layer or a copper alloy layer in the curable resin composition layer or under the curable resin composition layer On the substrate, the film for metal film transfer according to any one of the above (1) to (13) is placed under the surface of the second metal layer or the third metal layer to be bonded to the surface of the curable resin composition layer to be overlapped. a step of laminating and hardening the curable resin composition layer, a step of peeling off the support layer, a step of forming a via by laser, a step of removing the residue at the bottom of the via, and a surface of the copper layer or the copper alloy layer at the bottom of the via The step of etching. (15) The method according to the above (14), further comprising a step of forming a conductor layer by a ruthenium treatment on the first metal layer, or a step of etching the first metal layer, and the etching step The exposed φ second metal layer is formed by a plating process to form a conductor layer. .  (16) The method according to (14) or (15) above, wherein the metal.  When the film for film transfer has a release layer, the step of removing the release layer is carried out before or after the step of forming a via by laser treatment. (17) An adhesive film with a metal film, wherein the curable resin composition layer is formed on the second metal layer or the third metal layer of the film according to any one of the above (1) to (13) Formed. (18) A method of manufacturing a circuit board, comprising: a film having a copper layer or a copper alloy layer on a surface thereof, and an adhesive film of the film of the above-mentioned (17) attached to gold-9-200924965 in a curable resin a step of laminating and laminating the surface of the constituent layer connection substrate, a step of curing the curable resin composition, a step of peeling off the support layer, a step of forming a via by laser treatment, a step of removing the residue at the bottom of the via, and The step of etching the surface of the copper layer or the copper alloy layer at the bottom of the via. (19) The method according to the above (18), further comprising the step of forming a conductor layer by a plating treatment on the first metal layer, or the step of etching the first A1 metal layer, and The step of forming a conductor layer by plating treatment on the 0 2 metal layer exposed after the etching step. (20) The method according to (19) above, wherein, when the adhesive film with the metal film has a release layer, the step of removing the release layer is further included before or after the step of forming the via by the laser treatment. The "substrate" referred to in the present invention includes a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, or the like, or one of the substrates Or a conductor layer formed by a φ pattern on both sides and fabricated on a circuit substrate.  The so-called "inner layer electricity" in which the intermediate layer of the insulating layer and the conductor layer is formed.  Road substrate". In addition, the "circuit board" as used in the present invention is not particularly limited as long as it has an insulating layer and a conductor layer formed by a circuit, and includes various circuit boards such as a multi-layer printed wiring board and a flexible printed wiring board. [Effect of the Invention] When the film for metal film transfer of the present invention and the metal film are adhered to a thin film - 200924965 film, the first metal layer having copper etch resistance and the copper or copper alloy are formed. (2) When the metal layer is simultaneously transferred onto the adherend, in order to make the metal film on the adherend a first metal layer having copper tolerance, even if the etching treatment is performed by a copper etching solution for other purposes, The transferred metal film can be maintained on the adherend. Further, for example, by using the "metal film transfer film and the metal film-attached adhesive film of the present invention for the production of a circuit substrate" to provide a transferable plating seed layer, the gold film can be removed without removing Next, a method of manufacturing a circuit board which is excellent in both the wiring of the copper layer on the bottom of the via hole or the surface of the copper alloy layer by the copper etching liquid, and the wiring between the fine wiring and the conductor is excellent. [Best Mode for Carrying Out the Invention] Hereinafter, the present invention will be described in detail with reference to the preferred embodiments. The film for metal film transfer of the present invention is characterized by mainly comprising a layered support layer, a first metal layer having copper etching liquid resistance, and a second metal layer formed of copper or a q-copper alloy. Fig. 1 is a view showing a typical example of the film for metal film transfer of the present invention.  It is a film 1 of the first aspect having the support 1, the first metal layer 2, and the second metal layer 3. 2 is a film for metal film transfer of the present invention, except for the support layer 1, the first metal layer 2, and the second metal layer 3, and has a metal capable of suppressing diffusion of metal from the second metal layer. The film 20 of the second form of the third metal layer 4 is formed. In addition, Fig. 3 shows a typical example of the adhesive film of the metal film of the present invention, which is a laminate of the second metal layer of the film for metal film transfer of the present invention, which is additionally laminated with a curable resin. The layer of the composition layer (adhesive layer). Specifically, it is a film 3 of the first aspect having the support layer 1, the first metal layer 2, the second metal layer 3, and the curable resin composition layer 5. The fourth figure is attached to the metal film of the present invention. In the adhesive film, the film 40 of the second embodiment of the support layer 1, the first metal layer 2, the second metal layer 3, the third metal layer 4, and the curable resin composition layer 5 is provided. In the first to fourth figures, reference numeral 6 is a release layer, and when the metal film is used to improve the releasability of the support layer 1 after the transfer operation, it is required to be provided. In the present specification, the term "metal film (layer)" refers to lamination of a first metal layer and a second metal layer (a first metal layer / a second metal layer), and a first metal layer and a second metal layer. Lamination with the third metal layer (first metal layer / second metal layer / third metal layer). [Support layer] Q Support layer 1 is a self-supporting film or sheet, and is suitable for plastic film. Plastic films such as polyethylene terephthalate, polyethylene naphthalate, polyimine, polyamidimide, polyamine, poly.  For the tetrafluoroethylene, polycarbonate, etc., a polyethylene terephthalate film or a polyethylene naphthalate film is preferable, and a low-priced polyethylene terephthalate is more preferable. The layer thickness of the support layer is usually 10 μm to 70 μm, preferably 15 μm to 70 μm. When the layer thickness is too small, there is a problem that the handleability is poor, the peelability of the support layer is lowered, or a smooth metal film layer is not easily formed. -12- 200924965 In addition, when the layer thickness is too large, it is not conducive to cost and is not practical. Further, the surface of the support layer may be subjected to a surface treatment such as corona discharge treatment. Further, surface treatment such as a buffer treatment or a corona discharge treatment may be performed on the surface of the support layer film on the side where the metal film layer or the release layer is not present. • [Release layer] The release layer 6 can be formed using a fluorine resin, a polyolefin resin, a polyvinyl alcohol resin, an acrylic resin, a polyester resin, a melamine resin, cellulose, or the like, but the metal film is uniformly The transfer is preferably one or more selected from the group consisting of a water-soluble cellulose resin, a water-soluble acrylic resin, and a water-soluble polyester resin. When such a water-soluble polymer is used as the release layer, the support layer between the support layer and the release layer becomes peelable after the cured resin composition of the adherend is cured, and then remains on the metal film layer. The release layer can be easily removed by an aqueous solution to form a metal film excellent in uniformity on the adherend. Among these, it is preferred that the water-soluble cellulose resin and the water-soluble poly φ ester resin are more preferably a water-soluble cellulose resin. Usually high in water solubility. The molecular release layer is any water-soluble polymer alone, but only two.  The above water-soluble polymers are used in combination. Further, the water-soluble polymer release layer may be formed in a single layer, but the water-soluble polymer may have a multilayer structure in which two or more layers are different from each other. In addition, when the water-soluble polymer release layer is used, in order to improve the releasability between the water-soluble polymer release layer and the support layer, any one or two or more kinds of alkyd resins may be present on the support. Other release layers composed of a polyoxyalkylene resin and a fluorine-based resin. In other words, when the water-soluble polymer-13-200924965 is used in the release layer 6 in the present invention, it is important that at least the surface on which the release layer 6 adheres to the metal film is formed of a water-soluble polymer, and the release layer is formed. 6 The water-soluble polymer release layer is formed only by the water-soluble polymer release layer, or the surface adhered to the metal film is formed of a water-soluble polymer, thereby forming a two-layer structure of the water-soluble polymer release layer and the other release layer. Further, the peeling of the support layer 1 between the support layer 1 and the release layer 6 is at the interface between the support layer 1 and the release layer 6 when the release layer 2 is formed only of the water-soluble polymer release layer. When the release layer 6 has a two-layer structure of a water-soluble polymer release layer and another release layer such as an alcohol acid resin, the release layer 6 is formed at the interface between the other release layer and the water-soluble polymer release layer. The layer thickness of the release layer is usually 0. 1 μηι to 20 μηι, preferably 0·2μιη~ΙΟμπι. The "layer thickness" referred to herein is the thickness of a single layer, and the total thickness of a plurality of layers when it is a plurality of layers. When the layer thickness is too thin, there is a fear that the peeling property of the support layer is lowered. When the layer thickness is too large, when the curable resin composition layer is thermally cured, the thermal expansion coefficient of the metal film layer and the release layer may be different. There are disadvantages such as cuts or scratches on the metal layer. Further, when the de-mold layer is a two-layer structure of a water-soluble polymer release layer and another release layer, ^ the thickness of the other release layer is 0. 01~0. 2 μιη is preferred. [Water-Soluble Cellulose Resin] The "water-soluble cellulose resin" referred to in the present invention is a cellulose derivative which is subjected to a treatment for imparting water solubility to cellulose, and is preferably, for example, cellulose ether or cellulose. Ether esters and the like. When the cellulose ether has one or more ether linkage groups in the cellulose polymer, one or more hydroxyl groups are present in the repeating unit of anhydrous ethylene glycol-14-200924965 which is present in one or more cellulose polymers. The ether formed by the conversion, the acid bond may be, for example, one or more substituent alkyl groups selected from the group consisting of a hydroxyl group, a decyl group, a carbon number of 1 to 4, and a hydroxyalkoxy group (carbon number 1 to 4). (Carbon number 1 to 4). Specifically, for example, a hydroxyalkyl group such as 2-hydroxyethyl, 'propyl, 3-hydroxypropyl or the like (carbon number 丨~4); 2_* ethyl, 3-methoxypropyl, 2-methoxy Alkyl, 2-ethoxyethoxyoxy (carbon number 1 to 4) alkyl (carbon number 1 to 4); 2 (2-g-g) ethyl or 2-(2-hydroxypropoxyl) The hydroxy group having a propyl group or the like has an oxygen number of 1 to 4) an alkyl group (having a carbon number of 1 to 4), a carboxyl group having a carboxymethyl group or the like (1 to 4), and the like. The ether bond group in the polymer molecule may be of a kind or a plurality of kinds. In other words, it may be a cellulose ether having a single type of group, and may also be a specific example of a cellulose fiber ether having a plurality of ether bond groups, such as methyl cellulose, hydroxyethyl 'hydroxypropyl cellulose. And hydroxypropylmethylcellulose, hydroxybutanose, hydroxyethylethylcellulose, carboxymethylcellulose, and a water-soluble salt (for example, an alkali metal salt such as a sodium salt). - Moreover, each unit of cellulose ether is substituted in the ethylene glycol ring.  The average number of moles is not particularly limited, and is preferably 1 to 6. The molecular weight of the retsin ether is preferably about 20,000 by weight average molecular weight. Further, the cellulose ether ester is an ester in which one hydroxyl group and one or more appropriate organic acids or reactive derivatives thereof are present in the cellulose to form an ester bond group in the cellulose ether. Further, 'the base ethoxy group (substituted 2-hydroxymethoxy group or the like ethoxy group (carbon-based group (single ether bond stellate ether cellulose methyl group, etc.) ^60000 or more between the above-mentioned -15-200924965 refers to the "cellulose ester" as described above, "organic acid" contains aliphatic or aromatic carboxylic acids (carbon number 2 ~ 8), aliphatic carboxylic acid can be Acyclic (branched or unbranched) or cyclic, may also be saturated or unsaturated. Specifically, gastric 'aliphatic carboxylic acids such as acetic acid, propionic acid, butyric acid, oxalic acid, malonic acid, a substituted or unsubstituted acyclic aliphatic dicarboxylic acid such as succinic acid, glutaric acid, fumaric acid or maleic acid; a non-cyclic hydroxy-substituted carboxylic acid such as glycolic acid or lactic acid; malic acid An acyclic aliphatic hydroxy group such as tartaric acid or citric acid is substituted for a di- or tri-carboxylic acid, etc. Further, the aromatic carboxylic acid preferably has an arylcarboxylic acid having 14 or less carbon atoms and contains one or more carboxyl groups. More preferably, the aryl carboxylic acid of the aryl group such as 1, 2 or 3 carboxyl groups is a phenyl group or a naphthyl group. Substituted by the same or different one or more (for example, 1, 2 or 3) groups selected from the group consisting of a hydroxyl group and an alkoxy group having a carbon number of 1 to 4 (for example, a methoxy group) and a sulfonyl group. In a preferred embodiment, when the phthalic organic acid such as phthalic acid, isophthalic acid, terephthalic acid or trimellitic acid (1,2,4-benzenetricarboxylic acid) has one or more carboxyl groups, only the acid is used. One of the residues forms an ester bond to the cellulose ester. For example, when it is hydroxypropylmethylcellulose succinate, one carboxyl group of each succinate group forms an ester bond with cellulose, and other carboxyl groups are present. As the free acid, the "ester bond group" is formed by a reaction of a known organic acid or a reactive derivative thereof. Among the suitable reactive derivatives, for example, an acid anhydride such as phthalic anhydride is used. The ester bond group in the molecule may be a single species or a plural species. In other words, it may be a cellulose ether ester having a single type of ester bond group, or may be a cellulose ether ester having a plurality of ester bond groups. For example,-16-200924965 'P-propylmethylcellulose acetate succinate a mixed ester of hydroxypropylmethylcellulose having two succinate groups and an acetate group. Suitable cellulose ether esters are esters of hydroxypropylmethylcellulose or hydroxypropylcellulose, specifically For example, hydroxypropylmethylcellulose acetate, hydroxypropylmethylcellulose succinate, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose phthalate , hydroxypropyl methylcellulose trimellitic acid formate, hydroxypropyl methylcellulose acetate phthalate, hydroxypropyl methylcellulose acetate trimellitate, hydroxypropyl Cellulose acetate phthalate, hydroxypropyl cellulose butyrate phthalate, hydroxypropyl cellulose acetate phthalate succinate and hydroxypropyl cellulose acetate Ethyl trimellitate succinate or the like may be used alone or in combination of two or more. Among these, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose acetate succinate hydroxypropylmethylcellulose acetate phthalate good. Further, the average number of moles of the substituted ester group per unit ethylene glycol ring in the cellulose ether ester is not particularly limited, for example, about 〇.  5% to 2% is preferred. Further, the molecular weight of the cellulose ether ester is preferably from 20,000 to 60000 by weight average molecular weight. The production method of cellulose ether and cellulose ester is known, and can be obtained by using natural cellulose (pulp) as a raw material, and by reacting an etherifying agent and an esterifying agent on the basis of a predetermined method, the present invention can also be used in the market. Sale. For example, Shin-Etsu Chemical Co., Ltd. "HP-55" and "HP-50" (all of which are hydroxypropylmethylcellulose phthalate). -17- 200924965 (Water-soluble polyester resin) The "water-soluble polyester resin" referred to in the present invention is mainly composed of a polyvalent carboxylic acid or an ester-forming derivative thereof and a polyhydric alcohol or an ester-forming derivative thereof. " A polyester resin which is formed by a general polycondensation reaction of a raw material and which is substantially composed of a linear polymer*, introduces a hydrophilic group in a molecule or a molecular end. The organic acid machine such as a sulfo group, a carboxyl group or a phosphoric acid group or a salt thereof or the like is preferably a sulfonic acid group or a salt thereof, a carboxylic acid group or a salt thereof. A water-soluble polyester resin, particularly a typical example of a polyvalent carboxylic acid component having a sulfo group or a salt thereof and/or a carboxyl group or a salt thereof, such as terephthalic acid or isophthalic acid, The phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, etc. may be used alone or in combination of two or more. Further, a small amount of a hydroxycarboxylic acid such as p-hydroxybenzoic acid or an unsaturated carboxylic acid such as maleic acid, fumaric acid or itaconic acid 0 may be used together with the above various compounds. .  Typical examples of the polyol component of the polyester resin, such as ethylene glycol, hydrazine, 4_.  Butylene glycol, neopentyl alcohol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexane methanol, hypoxylene glycol, dimethylolpyruvate, glycerol And trimethylolpropane or poly(tetramethylene oxide) glycol, etc., which can be used alone or in combination of two or more. The method of introducing the hydrophilic group of the polyester resin in the molecule or at the end of the molecule can be carried out by a conventional method, except that an ester-forming compound (for example, an aromatic carboxylic acid compound, a hydroxy compound, etc.) containing a hydrophilic group is given - 18-200924965 The morphology of the copolymerization is preferred. For example, when a sulfonate group is introduced, one or more selected from the group consisting of sodium 5-sulfonate isophthalic acid, ammonium 5-sulfonate isophthalic acid, sodium 4-sulfonate isophthalic acid, 4 - ammonium methanesulfonate isophthalic acid, sodium 2-sulfonate terephthalic acid, potassium 5-sulfonate isophthalic acid, potassium 4-sulfonate isophthalic acid and potassium 2-sulfonate terephthalic acid It is advisable to co-polymerize. Further, when the sulfonic acid group is introduced, for example, one type or two or more types are selected from the group consisting of trimellitic anhydride, trimellitic acid, pyromellitic anhydride, pyromellitic acid, trimesic acid, cyclobutane tetracarboxylic acid, and dihydroxyl. It is preferable to carry out copolymerization of methylmalonic acid or the like after the copolymerization reaction, and to introduce a carboxylate group into the molecule by neutralizing with an amine compound, ammonium or an alkali metal salt or the like. The molecular weight of the water-soluble polyester resin is not particularly limited, and is preferably from 10,000 to 40,000 by weight average molecular weight. When the weight average molecular weight is less than 1,000,000, the layer formability tends to be lowered, and when it is more than 40,000, the solubility tends to be lowered. In the present invention, a commercially available product can be used as the water-soluble polyester resin, for example, "Braskton (trans) z_561" (weight average molecular weight: about 27,000), Brasketon (produced by Mutual Chemical Industry Co., Ltd.). Transliteration) z_565" (weight average molecular weight: about 25,000) and the like. (Water-Soluble Acrylic Resin) The "water-soluble acrylic resin" referred to in the present invention is a monomer which contains a mercapto group as an essential component, and is dispersed or dissolved in water. The acrylic resin contains a carboxyl group. Monomer and (A) -19- 200924965 An acrylic polymer which is preferably a monomer component and which contains other unsaturated monomers as a monomer component. Among the above monomer components, a monomer having a carboxyl group such as (meth)acrylic acid, maleic acid, fumaric acid, citric acid, itaconic acid, citraconic acid, maleic anhydride, monomethyl maleate, horse One or two or more kinds of these may be used, such as monobutyl phthalate, monomethyl itaconate, and monobutyl itaconate. Among them, (meth)acrylic acid is preferred. Further, (meth) acrylate such as methyl (meth) acrylate 'ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate Ester, n-amyl (meth)acrylate, n-hexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, ( An alkyl methacrylate having 1 to 18 carbon atoms in an alkyl group such as methyl methacrylate, decyl (meth) acrylate, dodecyl (meth) acrylate or stearyl (meth) acrylate. Among these, one type or two or more types can be used. Further, other unsaturated monomers such as an aromatic alkenyl compound, a vinyl cyanide compound, a conjugated diene compound, a halogen-containing unsaturated compound, a hydroxyl group-containing monomer, and the like. The aromatic alkenyl compound is, for example, styrene, α-methylstyrene, p-methylstyrene or p-methoxystyrene. A vinyl cyanide compound such as vinyl nitrile, methacrylonitrile or the like. A conjugated diene compound such as butadiene or isopentene. It contains a halogen-containing unsaturated compound such as a vinyl chloride group, a vinylidene chloride group, a perfluoroethylene group, a perfluoropropylene group, a fluorinated vinylidene group or the like. a monomer having a hydroxyl group such as 2-hydroxyethyl-20-200924965-based (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxyl Butyl (meth) acrylate, 4-hydroxybutyl acrylate, 4-hydroxybutyl methacrylate, α-hydroxymethyl ethyl (meth) acrylate, and the like. These may be used alone or in combination of two or more. As described below, in the present invention, the release layer is formed by a method of applying a coating liquid containing a water-soluble cellulose, a water-soluble polyester or a water-soluble acrylic resin on a support. When a water-soluble acrylic resin is used, the coating liquid may be in the form of an emulsion or an aqueous solution. When the water-soluble acrylic resin is used in the form of an emulsion, a core-shell type emulsion is preferred, and the core-shell type emulsion is extremely important in the presence of a carboxyl group on the shell of the core-shell particles. Therefore, the shell contains a monomer having a carboxyl group and A methyl acrylate resin composed of acrylic resin. As the dispersion of the core-shell particles (emulsion), commercially available products such as Ji Gu Li Lu 7600 (Tg: about 35 ° C), 7630 Α (Tg: about 53 ° C), 538 J (Tg: about 66 °) can be used. C), 3520 (Ding §: about 56. (:) (all manufactured by BASF Japan Co., Ltd.), etc. When the water-soluble acrylic resin is used in the form of an aqueous solution, the acrylic resin is a monomer containing a carboxyl group and The acrylic resin of methyl acrylate is important because it has a relatively low molecular weight. Therefore, the weight average molecular weight is preferably from 1,000 to 50,000, and when the weight average molecular weight is less than 1,000, the layer formability tends to decrease, and the weight average molecular weight tends to decrease. When the amount is more than 50,000, the adhesion to the support is increased, and the peelability of the support tends to be lowered after hardening. -21 - 200924965 A commercially available product can be used as an aqueous solution of the water-soluble acrylic resin, for example, 吉谷里鲁354J (BASF Japan Co., Ltd.), etc. Further, the emulsion of the water-soluble acrylic resin and the aqueous solution are easy to be thinned because of the high molecular weight of the emulsion. Therefore, it is preferred to use a water-soluble acrylic resin emulsion. [First Metal Layer] The first metal layer is a metal layer formed of a metal having copper etching liquid resistance. The etching treatment of the copper layer or the copper alloy layer which is performed when the circuit board is manufactured is usually made of acid having copper solubility. The chemical liquid and/or the alkaline chemical liquid are the "metal having copper etching liquid resistance" as referred to in the present invention, and the copper etching liquid having copper solubility is substantially completely undissolved (not being Etching treatment) metal. The degree of resistance to the copper etching solution can be set by dissolving the copper layer in the same copper etching solution for 2 μηι by the same copper etching solution and dissolving the metal layer in the same time. Why? In the range below ΐμχη, a metal layer having this property is used as the first metal layer having copper uranium engraving resistance. Usually, the metal is insoluble in the oxidizing agent solution such as the alkaline potassium permanganate solution used for the roughening of the surface of the insulating layer and the alkaline desiccate solution used for the desmear treatment at the bottom of the passage. Specific examples of the "metal having copper etching liquid resistance" include nickel, nickel alloy, titanium, titanium alloy and the like. Nickel alloys such as nickel and chromium alloys. Titanium alloys such as titanium and chromium alloys. Among these, it is easy to form by sputtering or vapor deposition, and nickel or a nickel alloy is preferable in terms of cost or versatility. Since the first metal layer is formed of a metal having copper etching liquid resistance, the metal film is transferred from the circuit film formed of the metal film transfer film or the metal film-attached film of the present invention in -22 to 200924965. Even if the laser path is formed, the residue at the bottom of the via is removed (excluding the slag treatment), the copper layer at the bottom of the via, or the copper alloy layer is etched, since the first metal layer of the surface layer of the metal film is not dissolved, it can be prevented. The wiring (conductor layer) is made of copper or a copper alloy; the second metal layer is processed and disappeared by uranium, and the layer thickness is remarkably reduced. The layer thickness of the first metal layer is preferably from 1 nm to 500 nm, more preferably from 10 nm to 200 nm. When the layer thickness is less than 10 nm, the effect of sufficient 0 copper etching solution resistance is not obtained. When the thickness is more than 50 Å, the heat generated when the layer is formed by sputtering or vapor deposition may deteriorate the support layer. The tendency of cost disadvantages. [Second Metal Layer] A copper layer or a copper alloy layer is used for the second metal layer. The copper alloy layer is preferably a Q nickel-copper alloy or a titanium-copper alloy in terms of general properties, electrical conductivity, and the like. The second metal layer is preferably a copper layer. . The thickness of the second metal layer is preferably 50 nm to 5000 nm and 50 nm.  3,000 nm is preferable, and lOOnm to 3000 nm is more preferable, and lOOnm to 200 nm is optimal. When the layer thickness is too small, spots may be generated on the metal layer due to scratches or the like in the electrolytic plating operation in the production of the circuit board, which may cause a problem in forming the conductor layer. Further, when the layer thickness is too large, it takes a long time to form a metal film by a vapor deposition method or a sputtering method, and it is not preferable in terms of cost. -23- 200924965 [Third metal layer] When the curable resin composition layer is thermally cured, it may cause thermal deterioration of the resin by the curable resin composition layer to the copper layer (in some cases, etc.) In this case, the first genus layer may be provided as needed. Suitable metals in the third metal layer, such as chromium and nickel. Chromium: Titanium. The layer thickness of the third metal layer is preferably 5 nm to 10 Å, more preferably 〜50 nm. Further, the thickness of the second metal layer and the third metal layer is preferably 50 nm to 5000 nm, preferably 50 nm to 3000 nm, more preferably 0 lOOnm to 3000 nm, and more preferably 100 nm to 2000 nm, more preferably 1 00 nm to 1 OOO nm. In the present invention, the measurement of the thickness of the metal layer can be carried out by a known method, for example, using a fluorescent X-ray film thickness meter (SII, Nanotechnology Co., Ltd. SFT9455 series, etc.). Further, the thickness of each layer such as the metal layer and the release layer can be measured from a layer scanning electron microscope (SEM) photograph. Oh. [Curable resin composition layer].  In the curable resin composition layer of the adhesive film, the cured product may have sufficient hardness and insulation, and is not particularly limited, and is used at least in an epoxy resin, a cyanate resin, a phenol resin, or a bismaleimide. A composition of the curing agent is blended in a curable resin such as a triazine resin, a polyimide resin, an acrylic resin or a vinyl methyl resin. 'The curable resin is preferably a composition having an epoxy resin, and at least (a) an epoxy resin, (b) a thermoplastic resin, and (c) a diffusion solution of a hardener) 3 gold or 5 nm, For the purpose of making the system, for example, it is preferable to use hydrazine-based benzene which contains the composition -24-200924965. (a) Epoxy resin such as bisphenol A epoxy resin, bisphenol epoxy resin, naphthol epoxy resin, naphthalene epoxy resin, bisphenol F epoxy resin, phosphorus-containing epoxy Resin, bisphenol S type epoxy resin, alicyclic epoxy tree: fat, aliphatic chain epoxy resin, phenol novolak type epoxy resin, nail: phenol novolak type epoxy resin, bisphenol A novolac Epoxy resin, epoxy resin with butadiene structure, diglycidyl ether of bisphenol, diglycidyl ether of naphthalenediol, epoxidized ether of phenol, and alkanol The bis-epoxypropyl etherate, and the alkyl substituents, halides, and hydrogenated products of the epoxy resins. Any of these epoxy resins may be used alone or in combination of two or more. In epoxy resin, bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin in terms of heat resistance, insulation reliability, and adhesion to a metal film A resin or an epoxy resin having a butadiene structure is preferred. Specifically, for example, a liquid bisphenol A type epoxy resin ("Epicoat 828EL" manufactured by Nippon Cyclooxygen Co., Ltd.) or a naphthalene type 2-functional epoxy resin (manufactured by Dainippon Ink Chemical Industry Co., Ltd.) HP4032", " .  HP403 2D"), naphthalene type 4-functional epoxy resin ("HP4700" manufactured by Dainippon Ink Chemical Industry Co., Ltd.), naphthol type epoxy resin ("ESN-475V" manufactured by Tohto Kasei Co., Ltd.), and Ding Er Epoxy resin of olefin structure ("PB-3600" manufactured by Lai Xilu Chemical Industry Co., Ltd.), epoxy resin with biphenyl structure ("NC3000H", "NC3000L" manufactured by Nippon Kayaku Co., Ltd., Japanese epoxy resin (share) "gamma χ 4 〇〇〇"). (b) The thermoplastic resin is used for the purpose of making the cured composition have flexibility of the appropriate -25-200924965, such as phenoxy resin, polyvinyl acetal resin, polyimine, Polyamidamine, polyether maple, poly-grinding, etc. Any of these may be used alone or in combination of two or more. When the non-volatile content of the curable resin composition is 100% by mass, the thermoplastic resin is 0. The ratio of 5 to 60% by mass is preferably, and more preferably 3: to 50% by mass. The blending ratio of the thermoplastic resin is less than 0. When the viscosity of the resin composition is low, the uniformity of the curable resin composition layer tends to be less than 60% by mass. When the viscosity is more than 60% by mass, the viscosity of the resin composition is too high and it is difficult to embed the substrate. The wiring pattern tends to be on the top. Specific examples of the phenoxy resin include FX280, FX293 manufactured by Tohto Kasei Co., Ltd., YX8100, YL6954, and YL6974 manufactured by Nippon Epoxy Resin Co., Ltd., and the like. The polyvinyl acetal resin is preferably a polyvinyl butyral resin, and a specific example of a polyvinyl acetal resin, such as an electrochemical butyral 4000-2, 5000-A, 6000-made by the electric chemical industry. C' 6000-EP, Sekisui Chemicals Q Industry Co., Ltd., Yersley Valley BX series, BX series, KS series, BL series, B Μ series, etc. .  Specific examples of polyimine, such as the new Japanese physicochemical (shares) polyimine "Riccarton (transliteration) SN20", "Riccarton ΡΝ 20" and so on. Further, a linear polyimine obtained by reacting a bifunctional hydroxyl-terminated polybutadiene, a diisocyanate compound, and a tetrabasic acid anhydride (described in JP-A-2006-37083) or a polyoxyxane-containing structure The modified polyimine such as those described in JP-A-2002-12667, JP-A-2000-319386, and the like. -26- 200924965 Specific examples of polyamidimide, such as the polyamidoquinone imine produced by Toyobo Co., Ltd. "Bailong Marcus (transliteration) HR 1 1 NN", "Bailong Marcus (transliteration) HR16NN" and so on. In addition, a modified amidoxime imine such as polyacrylamide-based polyamine yttrium imide "KS9i" or r KS93 00" manufactured by Hitachi Chemical Co., Ltd. Specific examples of the polyether mill, such as polyether oxime "PES5 003 P" manufactured by Sumitomo Chemical Co., Ltd., etc. Specific examples of Poly Maple, such as the "P1700" and "P3500", which are produced by the company of Soruburn Arden, Bonston, Berri Road (transliteration). (e) a curing agent such as an amine curing agent, an lanthanum curing agent, an imidazole curing agent, a phenol curing agent, a naphthol curing agent, an acid anhydride curing agent, or an epoxy group addition product or microencapsulation thereof. , cyanate resin, and the like. Among them, a phenol-based curing agent, a naphthol-based curing agent, and a cyanate resin are preferred. Further, in the present invention, one type of the curing agent may be used, or two or more types of the phenol-based curing agent and the naphthol-based curing agent may be used, and Wmeh-7700, MEH-7810, and MEH-785 1 (Minghe Chemical Co., Ltd.) (share) system, NHN, CBN, GPH (Sakamoto Chemical Co., Ltd.), SN170, SN180, SN190, SN475, SN485, SN495, SN3 75 'SN395 (Dongdu Chemical Co., Ltd.), LA7052, LA7054 , LA3018, LA1356 (Otsuka Ink Chemical Industry Co., Ltd.), etc. Further, specific examples of the cyanate resin, such as bisphenol A dicyanate, polyphenol cyanate (low (3-phenylene-1,5-phenylene cyanate)), 4,4' -methylenebis(2,6-dimethylphenyl cyanate), 4,4'-ethylidene diphenyl-27- 200924965 diisocyanate, hexafluorobisphenol A dicyanate, 2, 2-bis(4-cyanate) phenylpropane, 1,1-bis(4-cyanate phenylmethane), bis(4-cyanate·3,5-dimethylphenyl)methane, 1,3-bis(4-cyanate phenyl-1-(methylethylidene))benzene, bis(4-cyanate phenyl) sulfide, bis(4-cyanate phenyl) ether A polyfunctional cyanate resin derived from a bifunctional cyanate resin, a phenol novolac resin 'cresol novolac resin, or the like, a prepolymer which is partially triazineated with such a cyanate resin. A commercially available cyanate resin such as a phenol novolak type polyfunctional cyanate resin ("3030" manufactured by Yamada Co., Ltd., forming part or all of the cyanate equivalent 124) or bisphenol A A prepolymer of a triazine-formed trimer of dicyanate ("BA2 30" manufactured by Seiko Co., Ltd., cyanate equivalent 232). (a) The ratio of the epoxy resin to the hardening agent of (c) is a phenolic curing agent or a naphthol-based curing agent, and the epoxy equivalent of the epoxy resin is 1 Equivalent to 0. 4~2. The ratio of the range of 0 is better, with 0. 5~1. The ratio of the range of 0 is better. When it is a cyanate resin, the cyanate equivalent is 0. 3~3. The ratio of the range of 3 is better, with 0. The ratio of the range of 5 to 2 is better. When the reaction group equivalent ratio is outside the range, the mechanical strength or water resistance of the cured product tends to decrease. Further, in the curable resin composition, in addition to the (c) curing agent, (d) a curing accelerator may be additionally blended. The hardening accelerator is, for example, an imidazole compound or an organic phosphine compound, and specific examples thereof include 2-methylimidazole and triphenylphosphine. When using (d) a hardening accelerator, use 0 for epoxy resin. 1~3. A range of 0% by mass is preferred. Further, when a cyanate resin is used for the epoxy resin hardener, the purpose of shortening the hardening time may be -28-200924965, and the conventional epoxy resin composition and the cyanate compound are hardened. The organometallic compound used in the catalyst. An organometallic compound such as an organic copper compound such as copper(II)acetate acetate, zinc (organic zinc compound such as II mercaptoacetate, cobalt(II)acetamidoacetate' cobalt(III)acetamidoacetic acid An organic cobalt compound such as an ester, etc. The amount of the organic gold compound added is usually in the range of 50 to 200 ppm in terms of metal for the cyanate resin, and is preferably in the range of 25 to 200 ppm. The resin composition may contain (e) an inorganic chelating agent in order to reduce the thermal expansion of the cured product. Inorganic cerium, such as cerium oxide, aluminum oxide, mica, mica, cerate, magnesium sulfate sulfate, Preferably, the titanium oxide or the like is preferably cerium oxide or aluminum oxide, and more preferably cerium oxide. Further, the inorganic cerium is preferably a flat diameter of 3 μm or less and an average particle diameter of 1. 5 μιη or less is better. The content of the inorganic chelating agent in the resin composition is preferably from 20 to 60% by weight, more preferably from 20 to 50% by mass, based on 1% by mass of the nonvolatile content of the curable resin. . When the content of the inorganic chelating agent is less than S% by mass, the effect of lowering the coefficient of thermal expansion may not be sufficiently exhibited.  When the content of the inorganic chelating agent is more than 60% by mass, the strength of the cured product tends to decrease. In the curable resin composition, other components such as an organic phosphorus-based flame retardant, an organic nitrogen-containing phosphorus-phosphorus compound, a polyoxyalkylene-based flame retardant, a metal hydroxide, etc. may be blended as needed. Difficulty, bismuth powder, nylon powder, fluoro powder, etc., organic composite of colloidal aluminum, modified viscous clay, etc., polyoxyalkylene as, for example, ethyl salt, genus 10 ~ Composition of sputum, dioxin, granule hardening composition quality | 20 tendency mechanical points. Material, fuel, phthalic acid, -29- 200924965 Fluorine-based, polymer-based antifoaming agent or leveling agent, imidazole-based, thiazole-based, triazole-based, decane-based coupling agent, etc. Blue, phthalocyanine, green, iodine, green, diazo yellow, carbon black and other coloring agents. Further, the curable resin composition layer may be a prepreg in which the curable resin composition is impregnated into a sheet-like reinforcing substrate made of fibers. As the fiber of the flaky reinforcing base material, for example, a glass cloth or an aromatic amide fiber or the like can be used, and it is generally used as a fiber for a prepreg. In the prepreg treatment, the flaky reinforcing substrate of the hard resin composition is impregnated by a hot melt method or a solvent method, and is semi-hardened by heating. Further, in the hot-melt method, the resin composition is applied to a coated paper having good peelability from a resin-constituting object without dissolving the resin composition in an organic solvent, and is laminated on a sheet-like reinforcing substrate. Or a method of directly coating or the like by a mold coating method to produce a prepreg. Further, the solvent method is a method in which a flaky reinforcing substrate is immersed in a varnish in which a resin composition is dissolved in an organic solvent, and the varnish is impregnated into a sheet-like reinforcing substrate, followed by drying. The thickness of the layer of the curable resin is different depending on the thickness of the conductor layer of the adherend (inner circuit board), but it is preferably about 10 to 150 μm, and 15 to 80 μm, depending on the insulating properties of the layers. Better. The method for producing the film for metal film transfer of the present invention and the film for attaching a metal film is not particularly limited, and the following method is preferred. The film for metal film transfer ' is sequentially formed on the support layer, for example! The metal layer and the second metal layer or the first metal layer to the third metal layer are sequentially formed. Further, when the release layer is provided, the metal layers are formed in advance, and a release layer is formed on the support layer. There is no particular limitation on the method of forming each metal layer. In order to form a uniform film, the formation of each layer may be selected from one or more types of steaming method, sputtering method, and ion plating method. The method is preferably carried out by a vapor deposition method and/or a sputtering method. The sputtering method can be carried out by a conventional method, for example, by introducing a support into a vacuum chamber to introduce an inert gas such as argon gas, and applying a direct current voltage so that the separated inert gas is applied to the target metal. In conflict, a film is formed by the punched metal on the support (on the release layer when the release layer is provided). Further, & 'vapor deposition method (vacuum evaporation method) can be carried out by a conventional method, for example, by placing a support in a vacuum vessel, and evaporating the metal by heating, on the support (with release layer) On the layer) a film is formed. In addition, the ion plating method can also use a conventional method, for example, placing the support in a vacuum vessel, and evaporating the metal under a corona discharge gas environment, by ionizing the evaporated metal on the support ( A film is formed on the release layer when the release layer is provided. Further, a Q metal layer (film) may be formed by laminating a preformed metal thin film or sheet on a support or the like by a vapor deposition method, a sputtering method, or an ion plating method. . The method of forming the release layer is not particularly limited, and hot pressing can be employed.  A conventional layer-method such as hot roll lamination, extrusion lamination, coating liquid application, drying, etc., is simple and easy to form a layer having a high degree of shape uniformity, so that a release layer is used. The coating liquid of the material is coated and dried preferably. The adhesive film with a metal film can be formed in the second metal layer or the third metal layer by a step of forming the second metal layer or the third metal layer in the final step of the manufacturing process of the film for metal film transfer. A curable resin is formed on -31 - 200924965 The composition layer is manufactured. Here, the method of forming the rigid resin composition layer is not particularly limited, and a method of preparing a varnish containing a composition and drying and drying the varnish is preferred. Further, the film for metal film transfer can be separately formed with an adhesive film having a layer of a curable resin formed on the support film, and the transfer film and the adhesive film are bonded to the curable resin composition layer and the metal film. A method of bonding under layer contact and heating to form an adhesive film with a metal film. A support for an adhesive film, such as the above-mentioned plastic film. Further, it is preferred to carry out the release treatment by a polyoxyalkylene-based release agent on the surface on which the curable resin composition layer of the support is formed. Further, when the curable resin composition layer is a prepreg, the prepreg may be laminated on the support by, for example, vacuum lamination. The film for transfer and the adhesive film (prepreg) are bonded to each other so that the metal film layer of the transfer film and the curable resin composition layer of the adhesive film (prepreg) are facing downward for transfer. The film is overlapped with the adhesive film (prepreg), and is subjected to heat pressing treatment by hot pressing, hot rolling, or the like. The heating temperature is preferably 60 to 140 ° C, more preferably 80 to 120 ° C. When the heating temperature is less than 60 °C, the resin may not adhere sufficiently. When the heating temperature is higher than 140 °C, the resin tends to bleed out, so it is not desirable. In addition, the pressure of the pressure is 1 to 1 1 kgf/cm2 ( 9. 8x 1 04 ~1 07·9χ 1 04N/m2 ) The range is better, with 2~7 let §£/(;1112(19. 6\104~68. The range of 6乂10>/1112) is better. The pressure of the melt is less than lkgf/cm2 (9. In the case of 8×10 4 N/m 2 ), the fluidity of the resin composition is insufficient, and sufficient adhesion to the metal film layer is not obtained, and the pores tend to remain on the interface between the metal film layer on the transfer film. The pressure of the solution is greater than llkgf/cm2 (107. When 9xl04N/m2) -32-200924965, the bleed out of the resin becomes fierce and the film thickness tends to be maintained, so it is not desirable. By using the film for metal film transfer of the present invention or the adhesive film with a metal film, it is possible to efficiently manufacture a circuit board such as a multilayer printed wiring board having a highly reliable conductive layer of a conductor pattern. In the following, a method of manufacturing a circuit board using the film for metal film transfer of the present invention and a method of manufacturing a circuit board using the film for metal film transfer of the present invention will be described in detail.制造 [Production of a circuit board using a film for transfer of a metal film] The method of manufacturing a circuit board using the film for metal film transfer of the present invention is a method via the following steps (A) to (E). (A) forming a curable resin composition layer on the surface, and transferring the metal film of the present invention onto the substrate having the copper layer or the copper alloy layer in the curable resin composition layer or the curable resin composition layer The second metal layer or the third metal layer of the metal film is bonded to the surface Q of the curable resin composition layer by a film, and is laminated and laminated to cure the curable resin composition layer.  . Thereby, the metal film of the film for metal film transfer can be composed of a curable resin.  The layer is glued. _ (B) The support layer of the film for metal film transfer is peeled off. (C) Forming a path by means of a laser. (D) Remove the bottom of the passage (de-slag). (E) Etching the surface of the copper layer or copper alloy layer at the bottom of the via. In the lamination of the step (A), the film is subjected to lamination treatment on the surface of the adherend by a roll or press pressure or the like in terms of workability and ease of obtaining a general contact state. Wherein ' is preferably laminated by vacuum lamination under reduced pressure. Further, the method of laminating may be a batch type or a continuous type of rolls. The condition of lamination is generally based on the pressure of the fusion! The range of lkgf/cm2 (9·8χ104~107'9xl04N/m2) and the air pressure is 20 mmHg (26. It is preferred to carry out the lamination under the reduced pressure of 7 hPa). The vacuum lamination system can be carried out using a commercially available vacuum laminator. Commercially available vacuum laminators such as the batch vacuum pressure laminate MVLP-500 manufactured by Nippon Seiko Co., Ltd., and the Nudge Valley & Maton (trans) (Baiji) (Baiji) applicator. (shares) Hitachi Yin Ruston Liyil (transliteration) roll dry coater, Hitachi Yaya Iso (transliteration) (share) vacuum laminator. Further, the curing treatment of the curable resin composition is usually a heat curing treatment, and the conditions vary depending on the type of the curable resin, etc., generally, the curing temperature is 120 to 200 ° C, and the curing time is 15 to 90 minutes. In order to prevent wrinkles from occurring on the surface of the insulating layer formed, it is preferable to perform stepwise hardening, or rise and harden from a lower hardening temperature to a higher hardening temperature. The passage of the laser in step (C) is usually carried out by a carbon dioxide gas laser, a YAG laser or the like. Further, when the film for metal film transfer has a release layer, the laser may be formed through the via, or after the release layer is removed, or may be carried out from above the release layer. The step of removing the residue at the bottom of the passage of the step (D) (excluding the dross step) may be a wet method such as a dry method such as plasma treatment or an oxygen-34-200924965 agent such as an alkaline permanganic acid solution. A conventional method. In particular, by the slag removal method of the oxidizing agent, the residue at the bottom of the passage can be removed, and at the same time, the wall surface of the passage can be roughened by the oxidizing agent, and the plating adhesion strength is preferably improved. The desmear step of the oxidizing agent is usually carried out by the expansion treatment of the expansion liquid: by the roughening treatment of the oxidizing agent and by the neutralization treatment of the neutralizing liquid. The swelling liquid such as an alkaline solution, a surfactant solution or the like is preferably an alkaline solution such as a sodium hydroxide solution, a potassium hydroxide solution, or the like. Commercially available expansion fluids such as the expansion of the Aden Valley (transliteration) Japan (shares) • Impregnation • Swelling Dip Securiganth P, expansion • impregnation • Swelling Dip Securiganth SBU) and so on. For example, an alkaline permanganic acid solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide. The roughening treatment by an oxidizing agent such as an alkaline permanganic acid solution is usually carried out by an oxidizing agent solution heated at about 60 ° C to 80 ° C for about 〜30 minutes. Further, in general, the concentration of permanganate in the alkaline permanganic acid solution is about 5,000 to 10% by mass. Commercially available oxidants such as Aden Di Valley Japan (shares).  Ke Xidun Leiden Keba Gudun (transliteration) CP, Dunkinsori New Hitch.  An alkaline permanganic acid solution such as Rikas. Further, the neutralizing liquid is preferably an acidic aqueous solution, and a commercial product such as Ryut Valley New Siri New • Sicily (trans) P (neutralizing liquid) manufactured by Ayton Dyna Japan Co., Ltd. The etching of the surface of the copper layer or the copper alloy layer at the bottom of the path of the step (E) is to completely remove the residue (slag) at the bottom of the via hole, and the surface of the copper layer or the copper alloy layer at the bottom of the via is etched by copper. The solution is subjected to an etching treatment to clean the surface. The copper etching solution for dissolving copper can be used in the presence of acid -35-200924965. Specific examples of the acidic etching solution include sodium peroxodisulfate (100 g), sulfuric acid (20 ml), and ion-exchanged water (938. 4ml) Mixer, the specificity of the alkaline etching solution, such as E-Brohes (transliteration)-WL, Meigu (transliteration) (shared) CF-' 6000 by Meru Digus (trans) VE-7100. Further, when the first metal layer is Ni, Ni may not be sufficiently poorly soluble in the acid etching liquid. In this case, it is preferable to use an alkaline etching liquid as the copper etching liquid. 5 is a "substrate having a curable resin composition layer on the surface and a copper layer or a copper alloy layer under the curable resin composition layer" (formed on the substrate 51 via a copper layer or a copper alloy layer) The wiring 52 is formed on the inner layer circuit board 50 on which the curable resin composition layer 53 is formed, and the laminated metal film is formed by laminating the first metal layer 2 / the second metal layer 3; The film 10 for metal film transfer is provided with the insulating layer 7 of the wiring 52 formed of the copper layer or the copper alloy layer on the substrate 51 obtained by the steps (A) to (E) (the curable resin composition layer 5) (A cured product of 3) A typical example of a laminated structure 100 in which the structure of the second metal layer 3 and the first metal layer is sequentially laminated on φ. Moreover, the use of the metal film layer is performed by the first metal layer 2/.  When the second metal layer 3 / the third metal layer 4 are laminated to form the formed thin film 20 for metal film transfer of FIG. 2 , as shown in FIG. 6 , between the insulating layer 7 and the second metal layer 3 The laminated structure 200 of the third metal layer 4 exists. After the steps (A) to (E), the metal layer is directly used as a conductor layer, or the metal layer is subjected to a plating treatment (electroless plating and/or electrolytic coating) to make the metal layer more In order to grow, a conductor layer is formed (in this case, the metal layer is also grown on the inner surface of the via), and a circuit board of a multi-layer printed wiring board-36-200924965 is formed. When plating is performed on the metal film layer, The first metal layer 2 is directly subjected to a plating treatment on the surface of the metal layer 2, or the first metal layer 2 is selectively etched and removed, and then subjected to a plating treatment on the exposed second metal layer. The plating treatment is preferably performed by electrolytic enthalpy treatment. When the plating treatment is directly performed on the surface of the first metal layer 2: the electrolytic plating treatment is preferably performed after the transmission plating treatment. The metal layer treated by electrolytic plating, 0 is usually a metal layer of the same kind as the metal film layer, and a metal layer of different metal species can be formed. Specifically, when the plating treatment is performed on the surface of the first metal layer 2, it is preferable to perform copper plating. Further, when the plating treatment is performed on the surface of the second metal layer (copper layer or copper alloy layer) 3, it is preferable to perform copper plating. The thickness of the plating layer in the present invention depends on the thickness of the metal film layer and the design of the circuit substrate to be used, and is generally 3 to 35 μm, preferably 5 to 30 μm. Further, when the plating treatment is performed on the second metal layer, the etching liquid used in the selective uranium engraving treatment of the first metal layer φ is a chemical liquid which does not completely dissolve copper or a copper alloy, in other words, For the first metal layer.  A chemical solution having a fast etching rate and a slow etching rate for copper or a copper alloy, specifically, an etching rate (VI) for copper or a copper alloy and an etching rate (V2) for a first metal layer. The ratio (V2/V1) must be 5 or more, preferably 20 or more, depending on the metal of the first metal layer. For example, when the first metal layer is Ni, for example, a chemical liquid containing nitric acid/sulfuric acid/hydrogen peroxide/ion exchanged water as a main component, and a commercially available product such as NH-1865, Meru, manufactured by Meigu (Ji-37-200924965). Digus (share) Meruston Libu (transliteration) N-9 50 and so on. In the case where the first metal layer is a nickel alloy such as a nickel-chromium alloy, for example, a chemical solution containing sulfuric acid/hydrochloric acid/thiazole-based compound/ion-exchanged water as a main component, and a commercially available product such as CH-1950 manufactured by Meigu Co., Ltd. Wait. In addition, when the first metal layer is a titanium alloy such as titanium or titanium-chromium alloy, for example, an aqueous solution (chemical solution) having pH 7 to 8 containing hydrogen peroxide/phosphoric acid/ammonium water as a main component, and a commercially available product such as Merudy Mestre Rib (transliteration) TI-3991, etc. of Gusi (share). Further, when a metal transfer film having a release layer is used, and after the metal film is transferred and a release layer remains on the metal film, it is subjected to a laser treatment, a step of forming a via (step C), or The release layer is then removed. In other words, the laser formation path can be performed on the release layer on the first metal layer 2 or when the release layer remains. In addition, as described above, when one or more kinds of water-soluble polymers selected from the group consisting of water-soluble cellulose resins, water-soluble acrylic resins, and water-soluble polyester resins are used as the release layer, the curable resin can be adhered to the adherend. After the composition is cured, the support is peeled off between the support layer and the release layer, and then the release layer remaining on the metal film layer is simply removed as an aqueous solution. In order to dissolve the aqueous solution when the release layer is removed, it is preferably 0. An alkali aqueous solution such as sodium carbonate, sodium hydrogencarbonate, sodium hydroxide or potassium hydroxide is dissolved in a concentration of 5 to 10% by weight. The method of dissolving and removing is not particularly limited. For example, a method in which the substrate is immersed in an aqueous solution and then dissolved and removed in an aqueous solution, and a method in which the aqueous solution is sprayed in a spray or mist form is dissolved and removed. The temperature of the aqueous solution is usually about room temperature to 80 ° C, and the treatment time of the aqueous solution by water immersion, blowing, etc., is usually carried out for 10 seconds to 10 minutes. The alkaline aqueous solution can also be used as an alkali-type developing solution of an alkali-developing machine used for manufacturing a circuit board (for example, 0. 5 to 2% by weight aqueous solution of sodium carbonate, 25 to 40 ° C), a stripping solution of a dry film stripper (for example, 1 to 5 wt% of aqueous sodium hydroxide solution, 40 to 60 ° C), in the desmear step The swelling liquid to be used (for example, an aqueous alkali solution containing sodium carbonate, sodium hydroxide or the like, 60 to 80 ° C) or the like. [Manufacturing of a circuit board using an adhesive film with a metal film] The method for producing a circuit board using the adhesive film with a metal film of the present invention is a method via the following steps (A) to (E). (A) On the substrate having a copper layer or a copper alloy layer on the surface, the adhesive film of the metal film of the present invention is laminated and laminated under the surface of the substrate of the curable resin composition layer to form a curable resin. Hardening of matter. Thereby, the layer of the curable resin composition of the adhesive film with the metal film is adhered to the surface of the adherend having the copper layer. (B) The support layer of the adhesive film with the metal film is peeled off. (C) A via is formed on the metal film layer (first metal layer) or on the mold release layer by laser treatment. (D) Remove the residue at the bottom of the passage (except for the slag treatment). (E) Etching the surface of the copper layer or copper alloy layer at the bottom of the via. Fig. 7 is a view showing a "substrate having a copper layer or a copper alloy layer on the surface" (an inner layer circuit substrate 55 having a wiring layer 52 formed of a copper layer or a copper alloy layer formed on the substrate 51), laminated by a metal The film is an adhesive film of the metal film attached to the third metal layer 2/the second metal layer 3, and the substrate is obtained by the steps (A) to (E) above. The insulating layer 7 of the wiring 52 formed of the copper layer or the copper alloy layer is coated on the 51 (the cured product of the curable resin composition layer 5 of the adhesive film 30 with the metal film), and the first metal layer 2 is provided as the surface layer. The laminated structure 100' is a typical example. Further, when the adhesive film 40 of the metal film of FIG. 4 in which the metal film layer is formed by the lamination structure of the first metal layer 2 / the second metal layer 3 / the third metal layer 4 is used, as shown in FIG. A laminated structure 200' of the third metal layer 4 exists between the insulating layer 7 and the second metal layer 3. In other words, in the method of manufacturing a circuit board using the adhesive film with a metal film of the present invention, the substrate having a copper layer or a copper alloy layer on the surface is used in the step (A) (the copper is formed on the substrate 51). The inner circuit board 55) of the wiring 52 formed of the layer or the copper alloy layer, and the hardened resin composition layer 5 having the adhesive film with the metal film cured, and the circuit using the above-described film for metal film transfer Since the manufacturing method of the substrate is different, the laminated structure obtained by the steps (A) to (E) (Fig. 7 and Fig. 8) and the laminated structure obtained by using the above-mentioned film for metal film transfer are different. The structure of (Fig. 5, Fig. 6) is substantially the same. In other words, the laminate structure obtained by using the above-described film for metal film transfer (Fig. 5, Fig. 6) is used to coat the insulating layer 7 with the curable resin composition layer 5 of the wiring 5 2 on the substrate 51. In the case of forming a cured product, the present laminated structure (Fig. 7, 8) obtained by using an adhesive film with a metal film is an insulating layer 7 to harden the hardenable resin composition layer 5 of the adhesive film attached to the metal film. The material is formed as a laminated structure which is the same structure -40-200924965. Therefore, the materials used in the respective steps (A) to (E), the processing conditions, and the like are the same as those of the circuit board using the above-described film for metal film transfer. Next, in the same manner as the method of manufacturing the circuit board using the film for metal film transfer described above, after the steps (A) to (E), the metal film layer is directly used as the conductor layer or on the metal film layer. Plating (electroless plating and/or electrolytic shovel) treatment, and then growing the metal layer to form a conductor layer (in this case, the metal layer is also grown on the inner surface of the via), and a circuit such as a multi-layer printed wiring board can be fabricated. Substrate. Further, when the plating treatment is performed on the metal film layer, the plating method, the material, the order, the thickness of the metal layer by the mineralization treatment, and the etching liquid used in the selective etching treatment of the first metal layer 2, The processing conditions and the like are basically the same as those of the circuit board using the above-described film for metal film transfer. [Embodiment] The present invention will be more specifically described by the following examples, but the present invention is not limited by the following examples. In the following description, "parts" means "parts by mass". [Example 1] <Production of Film for Metal Film Transfer> On a polyethylene terephthalate (hereinafter abbreviated as "PET") film having a thickness of 38 μm, a hydroxypropylmethyl group was coated by a die coater. Cellulose phthalate ("HP-55" manufactured by Shin-Etsu Chemical Co., Ltd.) -41 - 200924965 10% methyl ethyl ketone (hereinafter referred to as "ΜΕΚ") and N, N-diyl A 1: 1 solution of formamide (hereinafter referred to as "DMF") was heated at a rate of 3 using a wind drying oven. (: / sec from room temperature to 140. (:, in addition to the solvent 'formed on the PET film to a thickness of about 1 μηη hydroxypropyl methyl sulphate layer. Then, in hydroxypropyl methylcellulose benzene On the diacid layer layer, a nickel layer of about 100 nm and a copper layer of about 250 nm were sequentially formed by sputtering treatment (E-400S, manufactured by Kennon Nyuruba) to have a total thickness of about 350 nm. A metal film transfer film of a metal film. <Preparation of Adhesive Film Having Curable Resin Composition Layer> 28 parts of liquid bisphenol A type epoxy resin (epoxy equivalent weight 180, "epipicon 828 EL" manufactured by the present epoxy resin company) And 28 parts of a tetrafunctional epoxy resin (epoxy equivalent 163, "HP4700" manufactured by Dainippon Ink Chem Chemical Co., Ltd.) was stirred and heated and dissolved in 15 parts of MEK and 15 parts of a cyclohexanone mixture. Then, 1 1 part of a naphthol-based compound (hydroxyl equivalent 215, "Tosho Chemical Co., Ltd." "SN-48 5"), a 50% solid solution of MEK, and 0.1 part of a hardening catalyst (Four countries) ), "2E4MZ"), 70 parts of spheroidal cerium oxide (average granules 0.5μιη, (share) "S0 C 2" made by Aden Madigus), part of polyvinyl butyral resin (The solid component of "KS-1" manufactured by Sekisui Chemical Co., Ltd.) is mixed with a 1:1 solution of ethanol and toluene in a solid mixture. It is uniformly dispersed in a high-rotation mixer to prepare a resin varnish. The PET film is 38 μm thick. The varnish is coated by a mold applicator, and the hardened resin composition layer is formed by removing the solvent from the air drying furnace by using a hot heat-removing material of the naphthalene industry, 30 j, heat-42-200924965. The adhesive film has a thickness of 40 μm. <Formation of a curable resin composition layer on a substrate> On a copper layer of a glass epoxy substrate in which a circuit is formed with a copper layer having a thickness of 18 μm, CZ8100 (a salin-containing copper composite, a surface treatment agent for an organic acid) (Meigu (stock) system)) Processing is roughened. Then, under the surface of the copper circuit on which the curable resin composition layer of the adhesive film is attached, a batch type vacuum pressure laminate MVLP-5 00 (trade name manufactured by Nihon Seiki Co., Ltd.) is used to laminate the adhesive film. On both sides of the substrate. The lamination treatment was carried out under a reduced pressure of 30 seconds and a gas pressure of 13 hPa or less. Then, after cooling at room temperature, the support layer of the adhesive film was peeled off, and a layer of a curable resin composition was formed on both surfaces of the substrate. <Transfer of metal film by film for metal film transfer> The film for transfer of the metal film is laminated on the substrate under the copper layer of the metal film to which the curable resin composition layer is bonded. The laminating treatment was carried out by laminating on both sides of the substrate using a batch type vacuum pressure laminator MVLP-500 (manufactured by Konica Minolta Manufacturing Co., Ltd.). The laminating system was pressed and pressed for 30 seconds, the gas pressure was 13 hPa or less, and then pressed for 30 seconds at a pressure of 7 to 54 kgf/cm2. Then, the curable resin composition layer was cured at 150 ° C for 30 minutes and further at 1801 : for 30 minutes to form an insulating layer (hardened layer). The PET film of the support layer of the film for metal film transfer was peeled off from the insulating layer. It has good peelability and can be easily handled by hand -43- 200924965. Then, the hydroxypropylmethylcellulose phthalate layer was dissolved and removed in 1 wt% aqueous sodium carbonate solution. When the metal film is observed by SEM ("VK8510" manufactured by Chris), the metal film is uniformly transferred, there is no expansion between the resin and the metal film, the metal film is folded, and the metal film is turtle. An abnormal situation of cracking. <Formation of Paths> For the substrate on which the metal film is transferred, the carbon dioxide gas laser produced by the Hitachi channel mechanism has a force of 66w, a pulse width of 3μ3, and the number of shots twice. , forming a apex with an opening diameter of 65 μπι <Removal of Residue> The substrate on which the via was formed was immersed in an air swell of Ayre Valley, Japan, in the Valley of Diyari, Sidley, and at 80 ° C. 10 minutes, then, in the crude oil of the Aden Di Valley Japan (stock) grams. Heaton Layton Kaba Valley P (KMn04: 60g / L, NaOH: 40g / L, aqueous solution), After immersing at 80 ° C for 20 minutes, it was immersed for 5 minutes at 40 ° C in the middle of the Yatton Valley, Japan, as the neutralizing liquid, in the valley, Xiu Xiu Xiu Li, Hickey Rikenton. After that, it was washed with water and dried, and when the bottom of the passage was observed by SEM ("S-4800" manufactured by Hitachi Heidi Valley Rodriguez), it was confirmed that there was no residue. <etching treatment of the bottom copper layer> -44- 200924965 The substrate after the residue removal treatment was mixed with sodium peroxodisulfate (100 g), sulfuric acid (20 ml), ion-exchanged water (938.4 ml), 25 ° The mixture was immersed for 1 minute at C, and an etching treatment of the bottom copper layer was performed. After the laminate was washed with water and dried, the metal film layer was observed by SEM ("S-4800" manufactured by Hitachi Heidi Valley Roger Co., Ltd.). <Shovel copper layer formation> The uppermost nickel layer of the metal film layer on which the laser path is not formed on the substrate is etched and removed by the nickel-specific stripping liquid NH1865 manufactured by Meike Co., Ltd., and the exposed copper is exposed. Electrolytic copper plating was performed on the layer to form a shovel copper layer having a thickness of about 3 Ομηι, and a multilayer printed wiring board was produced. [Example 2] A multilayer printed wiring board was produced in the same manner as in Example 1 except that the electroless copper plating and the electrolytic copper plating were sequentially performed to form a plating layer having a thickness of about 30 μm. The same observation (evaluation) as in Example 1 was carried out in this step. [Example 3] After forming a laser path and performing etching treatment on the bottom copper layer, the first metal layer was subjected to a copper plating treatment, and then subjected to electrolytic copper treatment to form a mineral deposit layer having a thickness of about 30 μm. A multilayer printed wiring board was produced in the same manner as in Example 1, and the same observation (evaluation) of -45-200924965 as in Example 1 was carried out in this step. [Example 4] <Production of Adhesive Film Attached to Metal Film> Adhesive film having a curable resin composition layer produced in Example 1 and film for metal film transfer, for transfer of curable resin composition layer and metal film The film is contacted, laminated at 90 ° C, and wound up to obtain an adhesive film with a metal film. <Formation of a curable resin composition layer on a substrate by an adhesive film with a metal film> CZ81 00 (azole-containing) on a copper layer of a glass epoxy substrate in which a circuit is formed with a copper layer having a thickness of 18 μm The copper composite and the surface treatment agent for organic acid (manufactured by Meigu Co., Ltd.) are treated to be roughened. Then, the support film on the side of the adhesive film of the metal film-attached adhesive film produced above was peeled off, and a batch type vacuum pressure laminate MVLP-500 (trade name, manufactured by Nihon Seiki Co., Ltd.) was used to make a metal film attached. The adhesive film is laminated on both sides of the substrate. The lamination treatment was carried out under reduced pressure for 30 seconds and at a gas pressure of i3 hPa or less. Then, the curable resin composition layer was cured at 150 ° C for 30 minutes and at 180 ° C for 30 minutes to form an insulating layer (hardened layer). A PET film having a support layer on the side of the adhesive film attached to the metal film was peeled off from the insulating layer. It has good peelability and can be easily peeled off by hand. Then, the hydroxypropylmethylcellulose phthalate layer was dissolved and removed by immersing in a 1% by weight aqueous sodium carbonate solution at room temperature for 1 minute (with stirring). The metal film was uniformly transferred by SEM ("V608510" manufactured by Chinson), and there was no abnormality of the crack between the resin and the metal film and the crack of the metal film. : <Formation of Paths>; For the above-mentioned substrate on which the metal film is transferred, a carbon dioxide gas laser made of 1 (strand) is formed by the opening of the apex at a condition of a force output of 600 w twice. <Removal of residue> The substrate on which the via is formed is formed in the submerged liquid of the yari valley, Dibu Sickey Kenton (transliteration) p, 10 minutes, and then, in the subtle In the name of Heaton Layton, Keba Gudun p (KMn〇4: 60g/L, aqueous solution), immersed at 80 °C for 20 minutes, and finally Aydin Digu Japan (shares) Rilagu Xiongxiu Lixin) Immerse in P at 40 ° C for 5 minutes. Afterwards, it was confirmed that there was no residue when the bottom of the passage was observed by SEM ((share) Hitachi Heidi Valley Luojilu (translation 1). <etching treatment of the bottom copper layer> When the substrate after the residue removal treatment is mixed with sodium (100 g), sulfuric acid (20 ml), and ion exchange, the metal film is creased by the metal film by the Hitachi channel mechanism. , pulse width 3 μ s, ί 马 65μιη的通道迪谷日本(股), immersed in 80 ( 80 80 80 80 80 80 80 80 80 80 80 80 80 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为 作为"S-4800" was washed and dried, and it was immersed in peroxidic disulfate 7k (93 8.4ml) -47- 200924965, and immersed at 25 ° C for 1 minute to etch the bottom copper layer. After the laminate was washed with water and dried, the metal film layer was observed by SEM ("S-4 800" manufactured by Hitachi Heidi Valley Roger). <Formation of Copper Plating Layer> The uppermost nickel layer of the metal film layer on which the laser path is not formed on the substrate is etched and removed by the special nickel stripping solution NH1 8 65 made of Meegu Co., Ltd., and exposed. The copper layer is subjected to electrolytic copper treatment to form a copper plating layer having a thickness of about 3 Ομτη to produce a multilayer printed wiring board. [Example 5] A multilayer printed wiring board was produced in the same manner as in Example 4 except that the electroless copper plating and the electrolytic copper plating were sequentially performed to form a plating layer having a thickness of about 30 μm. The same observation (evaluation) as in Example 4 was carried out in the procedure. ❹ • [Example 6] After the laser path was formed and the uranium engraving treatment of the bottom copper layer was performed, the first metal layer was subjected to a copper plating treatment, and then electrolytic copper plating was performed to form a plating layer having a thickness of about 30 μm. A multilayer printed wiring board was produced in the same manner as in Example 4 except for the coating, and the same observation (evaluation) as in Example 4 was carried out in this step. [Example 7] -48- 200924965 In addition to coating on a copper layer of a film for metal film transfer, a coating layer of a curable resin composition of about 40 μm was removed by a hot coat drying furnace to form a film. The same observations as in Example 4 were carried out in the same manner as in Example 4 (Evaluation > [Example 8]

除使用在以實施例1所製作的金屬膜 層上,再層合厚度約20nm之鎳•鉻(6 : 轉印用薄膜外,以與實施例1相同的方法 線板,在該步驟中進行與實施例1相同的I 〔實施例9〕 除使用以厚度約50nm之鎳•鉻(6 : 施例1所製作的金屬膜轉印用薄膜之鎳層 0 薄膜,且使用梅谷(股)製鎳•鉻合 CH 1 950取代梅谷(股)製鎳專用剝離液 . 與實施例1相同的方法製作多層印刷配線 進行與實施例1相同的觀察(評估)。 〔實施例1 〇〕 除使用厚度38 μιη之附林迪谷(譯音 酸型脫模劑(AL-5)之聚對苯二甲酸乙二 脫模層側上形成羥基丙基甲基纖維素苯二 接使黏著清漆藉 溶劑,設置厚度 金屬層之黏著薄 印刷配線板,在 占)° 轉印用薄膜之銅 4 )層之金屬膜 製作多層印刷配 見察(評估)。 4 )層取代以實 的金屬膜轉印用 金專用剝離液 Ν Η 1 8 6 5 外,以 板,在該步驟中 )(股)製、醇 酯薄膜,且在該 甲酸酯層(厚度 -49- 200924965 約1 μπι ) ’製作金屬膜轉印用薄膜外,以與實施例1相同 的方法製作多層印刷配線板’在該步驟中進行與實施例1 相同的觀察(評估)。 〔比較例1〕 ; <金屬膜轉印用薄膜之製作> 在厚度38μιη之PET薄膜上,藉由塑模塗佈器塗佈羥 ^ 基丙基甲基纖維素苯二甲酸酯(信越化學工業(股)製「 HP-55」)之固成分1〇%的MEK與DMF之1: 1溶液,使 用熱風乾燥爐’以昇溫速度3 °C/秒自室溫昇溫至140。(:, 除去溶劑,在PET薄膜上形成厚度約ΐμπϊ之羥基丙基甲 基纖維素苯二甲酸酯層。然後,在羥基丙基甲基纖維素苯 二甲酸酯層上,藉由濺射處理(E-400S、肯農亞尼魯巴( 股)製)’形成約25 0 nm之銅層,製作金屬膜轉印用薄膜 。然後’藉由與實施例1相同的方法,進行至通路底部之 Q 殘渣處理’進行底部銅層之蝕刻處理,惟於表層之銅完全 - 溶解後,無法進行繼後的處理。 上述之實施例1〜1 〇及比較例1之結果,如下述表1 所示。 « 而且’表中硬化後之金屬膜的狀態之評估結果 <〇>, 係表示金屬膜均勻地轉印,沒有金屬膜之皺摺、金屬膜之 龜裂異常情形,具有良好的狀態。 -50- 200924965 〔表1〕 實施例 1 實施例 2 實施例 3 實施例 4 實施例 5 實施例 6 實施例 7 硬化後金屬膜之狀態 〇 〇 〇 〇 〇 〇 〇 支持體層之剝離性 容易 容易 容易 容易 容易 容易 容易 蝕刻處理後之表層金屬 有 有 有 有 有 有 有 實施例 8 實施例 9 實施例 10 比較例 1 硬化後金屬膜之狀態 〇 〇 〇 〇 支持體層之剝離性 容易 容易 容易 容易 蝕刻處理後之表齡屬 有 有 有 無 本發明係以在日本申請的特願2007-23 600 1爲基礎, 其內容全部包含於本說明書中。 【圖式簡單說明】 〔第1圖〕係爲本發明之金屬膜轉印用薄膜的第1形 ©態之典型截面圖。 〔第2圖〕係爲本發明之金屬膜轉印用薄膜之第2形 態的典型截面圖。 * 〔第3圖〕係爲本發明之附金屬膜的黏著薄膜之第1 * 形態的典型截面圖。 〔第4圖〕係爲本發明之附金屬膜的黏著薄膜之第2 形態的典型截面圖。 〔第5圖〕係爲使用第1圖之金屬膜轉印用薄膜之本 發明多層印刷配線板的製造方法中通路形成後之狀態圖。 〔第6圖〕係爲使用第2圖之金屬膜轉印用薄膜之本 -51 - 200924965 發明多層印刷配線板的製造方法中通路形成後之狀態圖。 〔第7圖〕係爲使用第3圖之附金屬膜的黏著薄膜之 本發明多層印刷配線板的製造方法中通路形成後之狀態圖 〇 〔第8圖〕係爲使用第4圖之附金屬膜的黏著薄膜之 本發明多層印刷配線板的製造方法中通路形成後之狀態圖In the same manner as in Example 1, except that nickel/chromium (6: film for transfer) having a thickness of about 20 nm was laminated on the metal film layer produced in Example 1, the film was carried out in this step. The same I as in Example 1 [Example 9] A nickel layer chromium film of a film for metal film transfer produced in Example 1 was used, except that a nickel layer of chromium film having a thickness of about 50 nm was used, and a film made of Meigu Co., Ltd. was used. Nickel-chromium-containing CH 1 950 was used to replace the special stripping solution for nickel produced by Mei Gu (stock). The multilayer observation printed wiring was produced in the same manner as in Example 1 and subjected to the same observation (evaluation) as in Example 1. [Example 1 〇] Except for thickness 38 μιη的附林迪谷 (Transylating acid type release agent (AL-5) on the side of the polyethylene terephthalate release layer formed on the side of the hydroxypropyl methylcellulose benzene to make the adhesive varnish solvent, set The thickness of the metal layer is adhered to the thin printed wiring board, and the metal film of the copper film of the transfer film is made of a multilayer film (see evaluation). 4) The layer is replaced by a solid metal film for transfer gold. Stripping solution Η 8 1 8 6 5 outside, with the plate, in this step) In the same manner as in Example 1, a multilayer printed wiring board was produced in the same manner as in Example 1 except that the film of the metal film was formed in the form of the acid ester film (thickness -49 - 200924965, about 1 μm). The same observation (evaluation) as in Example 1 was carried out. [Comparative Example 1] <Production of Film for Metal Film Transfer> Hydroxypropylmethylcellulose phthalate was coated on a PET film having a thickness of 38 μm by a die coater ( The 1:1 solution of MEK and DMF of 1% by weight of solid content of "HP-55" manufactured by Shin-Etsu Chemical Co., Ltd. was heated from room temperature to 140 at a heating rate of 3 °C/sec using a hot air drying oven. (:, removing the solvent, forming a hydroxypropylmethylcellulose phthalate layer having a thickness of about ΐμπϊ on the PET film. Then, on the hydroxypropylmethylcellulose phthalate layer, by sputtering The filming process (E-400S, manufactured by Kennon Yaruba) was used to form a copper layer of about 25 nm to prepare a film for metal film transfer. Then, by the same method as in Example 1, The Q residue treatment at the bottom of the via is performed by etching the bottom copper layer, but after the copper of the surface layer is completely dissolved, the subsequent processing cannot be performed. The results of the above Examples 1 to 1 and Comparative Example 1 are as follows. (1) «And the evaluation result of the state of the metal film after hardening in the table <〇> indicates that the metal film is uniformly transferred, and there is no wrinkle of the metal film or an abnormal crack of the metal film. -50-200924965 [Table 1] Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 State of the metal film after hardening 剥离 Stripping of the support layer Sex is easy, easy and easy The surface layer metal which is easy to be easily and easily etched is exemplified. Example 8 Example 9 Example 10 Comparative Example 1 State of the metal film after hardening 剥离 The peeling property of the support layer is easy and easy to be easily etched The present invention is based on the Japanese Patent Application No. 2007-23 600 1 filed in Japan, the entire contents of which are incorporated herein by reference. A typical cross-sectional view of the first form of the film for metal film transfer. Fig. 2 is a typical cross-sectional view showing a second form of the film for metal film transfer of the present invention. * [Fig. 3] A typical cross-sectional view of the first embodiment of the adhesive film with a metal film of the present invention. Fig. 4 is a typical cross-sectional view showing a second embodiment of the adhesive film of the metal film of the present invention. [Fig. 5] In the method for producing a multilayer printed wiring board of the present invention using the film for metal film transfer of Fig. 1, the state after the formation of the vias is shown. [Fig. 6] is the use of the film for metal film transfer of Fig. 2 -51 - 20092 4965 A state diagram after the formation of a via in the method of manufacturing a multilayer printed wiring board. [Fig. 7] is a method of manufacturing a multilayer printed wiring board of the present invention using the adhesive film with a metal film of Fig. 3; The state diagram [Fig. 8] is a state diagram after the formation of the via in the method of manufacturing the multilayer printed wiring board of the present invention using the adhesive film with the metal film of Fig. 4.

【主要元件符號說明】 1 :支持體層 2 :第1金屬層 3 :第2金屬層 4 :第3金屬層 5 =硬化性樹脂組成物層 6 :脫模層 〇 7 :絕緣層 10,20:金屬膜轉印用薄膜 30,40 :附金屬膜之黏著薄膜 5 1 :基板 52 :配線(銅層或銅合金層) 5 3 :硬化性樹脂組成物層 -52-[Description of main component symbols] 1 : Support body layer 2 : First metal layer 3 : Second metal layer 4 : Third metal layer 5 = Curable resin composition layer 6 : Release layer 〇 7 : Insulation layer 10, 20: Metal film transfer film 30, 40: Adhesive film with metal film 5 1 : Substrate 52 : Wiring (copper layer or copper alloy layer) 5 3 : Curable resin composition layer - 52-

Claims (1)

200924965 十、申請專利範圍 1· 一種金屬膜轉印用薄膜,其特徵爲在支持體層上 順序形成具有銅蝕刻液耐性之第1金屬層、與由銅或銅合 金形成的第2金屬層所形成。 2 ·如申請專利範圍第1項之金屬膜轉印用薄膜,其 • 中第1金屬層係由1種或2種以上選自鎳、鎳合金、鈦及 I太合金所成群者而形成。 U 3.如申請專利範圍第1項之金屬膜轉印用薄膜,其 中第1金屬層及第2金屬層係藉由1種或2種以上選自蒸 鍍法、濺射法及離子噴鍍法之方法所形成者。 4·如申請專利範圍第1項之金屬膜轉印用薄膜,其 中支持體層爲塑膠薄膜。 5 ·如申請專利範圍第1項之金屬膜轉印用薄膜,其 中支持體層爲聚對苯二甲酸乙二酯薄膜。 6.如申請專利範圍第1項之金屬膜轉印用薄膜,其 0 中在第2金屬層上另外層合由1種或2種以上選自鎳、鎳 .·鉻合金及鈦所成群者而形成的第3金屬層。 f 7.如申請專利範圍第1〜6項中任一項之金屬膜轉印 , 用薄膜,其中在支持體層與第1金屬層之間設置脫模層。 8 ·如申請專利範圍第7項之金屬膜轉印用薄膜,其 中至少脫模層與金屬膜黏著的面,係由1種以上選自水溶 性纖維素樹脂、水溶性聚酯樹脂及水溶性丙烯酸樹脂之水 溶性高分子所形成。 9-如申請專利範圍第8項之金屬膜轉印用薄膜,其 -53- 200924965 中水溶性聚酯樹脂爲具有磺基或其鹽及/或羧基或其鹽之 水溶性聚酯’水溶性丙烯酸樹脂爲具有羧基或其鹽之水溶 性丙烯酸樹脂。 10. 如申請專利範圍第1〜9項中任一項之金屬膜轉 印用薄膜,其中第1金屬層之層厚爲10nm〜500nm。 11. 如申請專利範圍第1〜9項中任一項之金屬膜轉 印用薄膜,其中第2金屬層之層厚爲50nm〜3000nm。 12. 如申請專利範圍第6〜9項中任一項之金屬膜轉 印用薄膜,其中第3金屬層之層厚爲5nm〜lOOnm,第2 金屬層與第3金屬層之合計層厚爲50〜3000 nm。 1 3 .如申請專利範圍第7〜9項中任一項之金屬膜轉 印用薄膜,其中脫模層之層厚爲Ο.ίμιη〜20μιη。 14. 一種電路基板之製造方法,其特徵爲含有在表面 上形成硬化性樹脂組成物層,於該硬化性樹脂組成物層內 或硬化性樹脂組成物層下具有銅層或銅合金層之基板上, 使申請專利範圍第1〜13項中任一項之金屬膜轉印用薄膜 ,於第2金屬層或第3金屬層連接硬化性樹脂組成物層表 面下予以重疊、層合,且使硬化性樹脂組成物層硬化的步 驟,使支持體層剝離的步驟、藉由雷射形成通路的步驟、 除去通路底部殘渣的步驟、以及使通路底部基層之銅層或 銅合金層表面蝕刻的步驟。 15. 如申請專利範圍第14項之方法,其中另外含有 在第1金屬層上藉由鍍敷處理形成導體層的步驟,或另外 含有使第1金屬層蝕刻的步驟、與於該蝕刻步驟後所露出 -54 - 200924965 的第2金屬層上藉由鎪敷處理形成導體層之步驟。 I6.如申請專利範圍第14或15項記載的方法,其中 金屬膜轉印用薄膜具有脫模層時,於藉由雷射處理形成通 路的步驟前或後,另外含有除去脫模層之步驟。 * 17. —種附金屬膜之黏著薄膜,其特徵爲在申請專利 1 範圍第1〜13項中任一項之薄膜的第2金屬層或第3金屬 層上形成硬化性樹脂組成物層所形成。 Α 18. —種電路基板之製造方法,其特徵爲含有在表面 〇 上具有銅層或銅合金層之基板上,使申請專利範圍第17 項之附金屬膜的黏著薄膜在硬化性樹脂組成物層連接基板 表面下予以重疊、層合的步驟,使硬化性樹脂組成物硬化 的步驟,使支持體層剝離的步驟,藉由雷射處理形成通路 的步驟,除去通路底部殘渣的步驟,以及使通路底部基層 之銅層或銅合金層表面蝕刻的步驟。 19.如申請專利範圍第18項之方法,其中另外含有 φ 在第1金屬層上藉由鍍敷處理形成導體層之步驟,或另外 .含有使第1金屬層蝕刻的步驟、與於該蝕刻步驟後所露出 f 的第2金屬層上藉由鍍敷處理形成導體層之步驟。 20 .如申請專利範圍第1 9項之方法,其中附金屬膜 I 之黏著薄膜具有脫模層時,於藉由雷射處理形成通路的步 驟前或後,另外含有除去脫模層之步驟。 -55-200924965 X. Patent Application No. 1. A film for metal film transfer characterized in that a first metal layer having copper etching liquid resistance and a second metal layer formed of copper or a copper alloy are sequentially formed on a support layer. . (2) The film for metal film transfer according to the first aspect of the patent application, wherein the first metal layer is formed of one or more selected from the group consisting of nickel, nickel alloy, titanium, and I-alloy. . U. The film for metal film transfer according to the first aspect of the invention, wherein the first metal layer and the second metal layer are one or more selected from the group consisting of an evaporation method, a sputtering method, and an ion plating method. The method of the method of law. 4. The film for metal film transfer according to item 1 of the patent application, wherein the support layer is a plastic film. 5. The film for metal film transfer according to claim 1, wherein the support layer is a polyethylene terephthalate film. 6. The film for metal film transfer according to the first aspect of the invention, wherein the second metal layer is laminated on the second metal layer by one or more selected from the group consisting of nickel, nickel, chromium alloy and titanium. The third metal layer formed. The film for transfer of a metal film according to any one of claims 1 to 6, wherein a release layer is provided between the support layer and the first metal layer. 8. The film for metal film transfer according to item 7 of the patent application, wherein at least one surface of the release layer and the metal film is selected from the group consisting of water-soluble cellulose resins, water-soluble polyester resins, and water-soluble A water-soluble polymer of an acrylic resin is formed. 9- The film for metal film transfer according to item 8 of the patent application, wherein the water-soluble polyester resin in -53-200924965 is a water-soluble polyester having a sulfo group or a salt thereof and/or a carboxyl group or a salt thereof The acrylic resin is a water-soluble acrylic resin having a carboxyl group or a salt thereof. 10. The film for metal film transfer according to any one of claims 1 to 9, wherein the first metal layer has a layer thickness of 10 nm to 500 nm. The film for metal film transfer according to any one of claims 1 to 9, wherein the second metal layer has a layer thickness of 50 nm to 3000 nm. 12. The film for metal film transfer according to any one of claims 6 to 9, wherein the layer thickness of the third metal layer is 5 nm to 100 nm, and the total layer thickness of the second metal layer and the third metal layer is 50~3000 nm. The film for metal film transfer according to any one of claims 7 to 9, wherein the layer thickness of the release layer is Ο.ίμιη~20μιη. A method of producing a circuit board, comprising: a substrate having a curable resin composition layer formed on a surface thereof, and a substrate having a copper layer or a copper alloy layer in the curable resin composition layer or the curable resin composition layer; In the film for metal film transfer according to any one of the first to third metal layers, the second metal layer or the third metal layer is laminated and laminated on the surface of the curable resin composition layer, and is laminated. The step of hardening the curable resin composition layer, the step of peeling off the support layer, the step of forming a via by laser, the step of removing the residue at the bottom of the via, and the step of etching the surface of the copper layer or the copper alloy layer of the underlayer of the via. 15. The method of claim 14, further comprising the step of forming a conductor layer by a plating treatment on the first metal layer, or additionally comprising the step of etching the first metal layer, and after the etching step The step of forming a conductor layer by the enamel treatment on the second metal layer of -54 - 200924965 is exposed. The method according to claim 14 or 15, wherein the film for metal film transfer has a release layer, and the step of removing the release layer before or after the step of forming a via by laser treatment . * 17. An adhesive film with a metal film, characterized in that a curable resin composition layer is formed on the second metal layer or the third metal layer of the film of any one of the first to thirteenth aspects of the invention. form. Α 18. A method of manufacturing a circuit board, comprising: a coating film having a copper layer or a copper alloy layer on a surface crucible, and an adhesive film attached to a metal film of claim 17 in a curable resin composition a step of laminating and laminating the surface of the layer connection substrate, a step of curing the curable resin composition, a step of peeling off the support layer, a step of forming a via by laser treatment, a step of removing the residue at the bottom of the via, and a step of removing the via The step of etching the surface of the copper layer or the copper alloy layer of the bottom substrate. 19. The method of claim 18, further comprising the step of forming a conductor layer by plating on the first metal layer, or additionally comprising the step of etching the first metal layer, and etching The step of forming a conductor layer on the second metal layer exposed by f after the step by plating. The method of claim 19, wherein the adhesive film with the metal film I has a release layer, and the step of removing the release layer is additionally performed before or after the step of forming the via by the laser treatment. -55-
TW97133342A 2007-09-11 2008-08-29 Film for metal film transfer and adhesive film with metal film TW200924965A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007236001 2007-09-11

Publications (1)

Publication Number Publication Date
TW200924965A true TW200924965A (en) 2009-06-16

Family

ID=40451866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133342A TW200924965A (en) 2007-09-11 2008-08-29 Film for metal film transfer and adhesive film with metal film

Country Status (3)

Country Link
JP (1) JPWO2009034857A1 (en)
TW (1) TW200924965A (en)
WO (1) WO2009034857A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498408B (en) * 2009-07-14 2015-09-01 Ajinomoto Kk Attached film with copper foil
TWI763953B (en) * 2017-11-29 2022-05-11 南韓商印可得股份有限公司 Method for manufacturing printed circuit board
CN115261859A (en) * 2022-08-11 2022-11-01 李祥庆 Copper etching solution composition and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633124B2 (en) * 2009-07-24 2014-12-03 味の素株式会社 Film with metal film
US9630385B2 (en) 2012-11-08 2017-04-25 Toray Plastics (America), Inc. Releasable polyester metal transfer film
US10099462B2 (en) 2013-06-28 2018-10-16 Toray Plastics (America), Inc. Releasable polyester high gloss metal transfer film
KR101792381B1 (en) * 2016-01-04 2017-11-01 삼성전기주식회사 Electronic component and manufaturing method for the same
KR101948111B1 (en) * 2017-03-31 2019-02-15 (주)심텍 seed structure for plating, method of fabricating seed structure, and method of fabricating printed circuit board substrate using seed structure
CN113966099B (en) * 2021-06-30 2024-06-11 西安空间无线电技术研究所 Microwave integrated circuit film thickening process suitable for solid-state product
WO2023149007A1 (en) * 2022-02-07 2023-08-10 尾池工業株式会社 Electroconductive film for circuit substrate, and method for producing electroconductive film for circuit substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049459A (en) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd Manufacture of multilayer printed wiring board
JP3200052B2 (en) * 1999-08-12 2001-08-20 株式会社麗光 Transfer film for printed wiring board, printed wiring board obtained using the same, and method of manufacturing the same
JP2002301790A (en) * 2001-02-01 2002-10-15 Toray Ind Inc Release film
JP2006245213A (en) * 2005-03-02 2006-09-14 Shinko Electric Ind Co Ltd Manufacturing method of wiring circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498408B (en) * 2009-07-14 2015-09-01 Ajinomoto Kk Attached film with copper foil
TWI763953B (en) * 2017-11-29 2022-05-11 南韓商印可得股份有限公司 Method for manufacturing printed circuit board
CN115261859A (en) * 2022-08-11 2022-11-01 李祥庆 Copper etching solution composition and preparation method thereof
CN115261859B (en) * 2022-08-11 2023-06-20 李祥庆 Copper etching liquid composition and preparation method thereof

Also Published As

Publication number Publication date
JPWO2009034857A1 (en) 2010-12-24
WO2009034857A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
TWI437938B (en) A method of manufacturing a circuit board, a subsequent thin film to which a metal film is attached, and a circuit board
TW200924965A (en) Film for metal film transfer and adhesive film with metal film
TWI475937B (en) A metal film transfer film, a metal film transfer method, and a circuit board manufacturing method
TWI434641B (en) Manufacturing method of multilayer printed circuit board
TWI564338B (en) Resin composition
JP5751368B2 (en) Metal-clad laminate
JP2010194807A (en) Sheet with metallic film and resin sheet with metallic film
JP5633124B2 (en) Film with metal film
KR101682887B1 (en) Film with metal film
JP5446473B2 (en) A method for manufacturing a multilayer wiring board.
JP5369666B2 (en) Method for producing metal-clad laminate
JP5776409B2 (en) Method for manufacturing printed wiring board
TWI468285B (en) Film with metal film
KR101594321B1 (en) Method for manufacturing circuit board
JP5582324B2 (en) A method for manufacturing a multilayer wiring board.