TW201144753A - Micro-lens array surface profile detection system and detection method thereof - Google Patents

Micro-lens array surface profile detection system and detection method thereof Download PDF

Info

Publication number
TW201144753A
TW201144753A TW99118588A TW99118588A TW201144753A TW 201144753 A TW201144753 A TW 201144753A TW 99118588 A TW99118588 A TW 99118588A TW 99118588 A TW99118588 A TW 99118588A TW 201144753 A TW201144753 A TW 201144753A
Authority
TW
Taiwan
Prior art keywords
ring
image
interference
microlens array
module
Prior art date
Application number
TW99118588A
Other languages
Chinese (zh)
Other versions
TWI407078B (en
Inventor
Chern-Sheng Lin
Mau-Shiun Yeh
Guo-Hao Loh
Hsun-Kai Chang
Shu-Hsien Fu
Original Assignee
Chung Shan Inst Of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Shan Inst Of Science filed Critical Chung Shan Inst Of Science
Priority to TW099118588A priority Critical patent/TWI407078B/en
Publication of TW201144753A publication Critical patent/TW201144753A/en
Application granted granted Critical
Publication of TWI407078B publication Critical patent/TWI407078B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

The present invention provides a micro-lens array surface profile detection system and detection method, the system includes fine-tuning type placement positioning unit, optical image grabbing module, optical interference module, central control unit and image processing operating module; wherein the image processing module applies plural image processing operations to image data; characterized in that the image processing operating module, through image segmentation and area recognition, identifies the center position of each ring, and the micro-lens array image substrate is determined according to graphical segmentation and area recognition methods to automatically identify the background of the micro-lens array interference image. Based on the ratio of the actual center ring area and the ideal center ring area, the phase angle variation of the center ring of said interference fringes is determined. Based on the ratio of actual brightness variation of the first segment ring stripe and the ideal brightness variation of the first segment ring stripe, phase angle variation in the ring interference fringe at the outermost substrate is determined. Area ratio method and brightness ratio method are freely interchangeable for choosing the method with higher precision. Maximum and minimum of every segment brightness curve are picked to correspond respectively to the brightness change in the segment phase angle from 0 to 180 degrees, and then the corresponding micro-lens surface height differences between pixels on the segment are found. The present invention can accurately find the micro-lens interference fringe, and accurately determine the phase angle of innermost and outermost rings of the interference fringe, thereby improving significantly accuracy and quality of micro-lens array surface profile detection.

Description

201144753 六、發明說明: 【發明所屬之技術領域】 本發明係涉及一種檢測系統及檢測方法,特別是指一種微透鏡陣列 表面輪廓之檢測系統及方法之創新設計》 【先前技術】 按,傳統利用非接觸式量測微透鏡陣列的表面輪廓檢測方式,概分為干涉 與非干涉兩種。若以干涉的方式量測,可使用光學式輪廓儀法、電腦全像干涉 鲁法、剪切式干涉法等;而非干涉量測方式,則包括傳科刀口法、線量測法、及 I?〇nchi 法。 承上,與本案較為相關之習知技術’係為所述光學式輪廓儀法,該檢測方 法是利用白光干涉理論為基礎,以直接干涉記錄其輪廓表面,組成機構包含顯 微取像系統、相移系統、干涉儀系統所組成,而其量測原理係以干涉儀量測待 測件波前與參考波前間的相位差,而待測件波前由待測表面輪廓高低起伏的反 射所構成,參考波前則由參考板之參考面反射產生;因其之間的相位差會產生 干涉條紋,其條紋能夠反映出表面高低的落差值,再由CCD取像後分析其表面 輪廊。其輪廟儀的光路採用相移技術(phase_shifting technique )來求得相 鲁位差’並用相位重建技術,重建出三維的表面輪扉結構。此儀器多應用在麵$ 結構、非球面微陣列結構、薄膜厚度量測…等。 然而,上述光學式輪廓儀法縱使能夠搜尋到全部透鏡的干涉條紋,但干涉 條紋最内及最外_環,該f知方法仍無法觸其相位角,蓋因,這兩部分相 位角不-定是〇度變化到18〇度的狀態,除此之外,剩下的圓環相位角都是從〇 度變化到180度的狀H,因此其由關暗的變化是—個完整⑽度的變化所 γ ’導致習知微透辦列表面輪躲啦統仍有較大觸誤差現象存在之缺撼 與不足,實有待再加以改善進化。 、 疋以,針對上述習知微透鏡陣列表面輪廓檢測系統與方法所存在之問題 點,如何研發出-概鍵具理想實祕之鑛設計,實有待蝴業界及有心 201144753 人士再加以思索突破之目標及方向。 =於此’發明人本於多年從事侧產品之製造開發與設計經驗,針對上 述之仏,坪加設計與審慎評估後,終得一確具實用性之本發明。 【發明内容】 要目的係在提供—種微透鏡陣列表面輪廓檢測系統及其檢測 力法,,、所欲解決之問題點,係針對如何研發出一亘 陣列檢測系統及其檢測方法為目標加以思索突破;^、里〜實錢之微透鏡 4♦凤胡題之技術特點,就系統面而言,係包含可微調式置放定位部、 ΪΪ、Α、絲干麵組、巾央控卿以及影像處理運算模_構成;其 ~,财複_'外圓環之干涉條紋及輪廟分析、 作業;本發明之核心設計主要在於該影像處理運算模組是透過 圓形刀讀面積識別的方法找ά每個圓環的中心位置,而微透鏡陣列影像其底 分割與面積識別的方法而自動找出整個微透鏡陣列干^像 枚,復根據實際中心圓環面積與理想中心圓環面積之比例來判斷所述干涉 ==圓環相位角變化量,並根據實際第1區段之圓環條紋的亮度值變化量 /、理J第1區段之圓環條紋的亮度值變化量之比例,來判斷所述 祕紋她艘化量,面積赚及亮度_法均可自由切ΐ, 選擇精確度較向之方法使用’接著找出每一區段亮度曲線之極大與極小值,分 別對應顺段相位角從0度至18G度時之亮度變化,再求出區射點素 2的微舰表面高度差;藉此觸騎設計,使本發明雜先前技術而言, 發:所揭祕與方法將關精顧尋观鏡的干涉敝,並且鱗判斷干涉 相㈣,制涵提紐透辦縣面輪雜顺準度 【實施方式】 請參閱第1、2圖所示’係本發明之較佳實施例,惟此等實施例僅供說明之 201144753 用’在專射請上並不受此結構之限制;所述檢測系統係藉以檢測微透鏡陣列 (Micro-lensArray)表面輪廓之用,該檢測系統A係包含下述構成: -可微調式置放定位部1G,具—置放台面u以供微透鏡陣列Q5置放定位 之用’且該可微調式置放定位部1G,能夠進行至少χ、γ轴二水平軸向之微幅位 移調整,該可微調式置放定位部10可為—χγ軸數健制平台(XY_TaMe)所 構成,利用該XY軸數值控制平台以進行該微透鏡陣列〇5之精密位移,而能完 整掃描整體微透鏡陣列05,並且能對微透鏡_ Q5進行定位之動作;201144753 VI. Description of the Invention: [Technical Field] The present invention relates to a detection system and a detection method, and more particularly to an innovative design of a system and method for detecting the surface profile of a microlens array. [Prior Art] The surface profile detection method of the non-contact measurement microlens array is divided into interference and non-interference. If it is measured by interference, optical profiler method, computer holographic interference Lufa, shearing interference method, etc.; instead of interference measurement method, it includes transmission knife method, line measurement method, and I?〇nchi method. The conventional technique related to the present case is the optical profiler method, which is based on the white light interference theory, and records the contour surface by direct interference, and the composition mechanism includes a microscopic image capturing system. The phase shifting system and the interferometer system are composed, and the measuring principle is to measure the phase difference between the wavefront of the device to be tested and the reference wavefront by the interferometer, and the wavefront of the device to be tested is reflected by the contour of the surface to be tested. The reference wavefront is generated by the reference surface reflection of the reference plate; the interference fringes are generated due to the phase difference between the reference wave fronts, and the stripe can reflect the difference between the surface height and the surface, and then the surface porch is analyzed by the CCD image. . The optical path of the wheel temple instrument uses the phase shifting technique to obtain the phase difference and uses the phase reconstruction technique to reconstruct the three-dimensional surface rim structure. This instrument is used in many applications such as surface structure, aspherical microarray structure, film thickness measurement, etc. However, the optical profilometry method can search for the interference fringes of all the lenses, but the innermost and outermost ring of the interference fringes, the f-method still cannot touch the phase angle, and the cover phase, the phase angles of the two parts are not - It is the state in which the twist changes to 18 degrees. In addition, the remaining ring phase angle changes from the twist to 180 degrees, so the change from the dark is - a complete (10) degree. The change of γ' leads to the lack of deficiencies and shortcomings in the conventional micro-transparent list, and it is still necessary to improve the evolution. In view of the problems in the above-mentioned conventional microlens array surface contour detection systems and methods, how to develop a mine design with an ideal and secret key, it is awaiting the industry and the people who are interested in 201144753 to think about breakthroughs. Goal and direction. In this case, the inventor has been engaged in the manufacturing development and design experience of side products for many years. After the above, after the design and prudent evaluation of Pingjia, the invention has finally become practical. SUMMARY OF THE INVENTION The object of the present invention is to provide a microlens array surface profile detection system and its detection force method, and the problem to be solved is to aim at how to develop an array detection system and its detection method. Thinking about breakthrough; ^, Li ~ real money micro lens 4 ♦ Feng Hu title technical features, in terms of system, the system includes a fine-tunable positioning position, ΪΪ, Α, silk dry noodle group, towel central control And the image processing operation module _ composition; its ~, the complex _' outer ring interference fringe and wheel temple analysis, operation; the core design of the present invention is mainly that the image processing operation module is identified by the circular knife reading area The method finds the center position of each ring, and the method of bottom segmentation and area recognition of the microlens array image automatically finds the entire microlens array image, according to the actual central ring area and the ideal central ring area. The ratio of the interference == ring phase angle change amount, and the amount of change in the brightness value of the ring stripe of the first section and the change amount of the brightness value of the ring stripe of the first section of the first section proportion, To judge the amount of the mysterious pattern, the area earned and the brightness _ method can be freely cut, the method of selecting the accuracy is better to use the method, then find the maximum and minimum values of the brightness curve of each section, respectively The brightness of the segment phase angle changes from 0 degrees to 18 degrees, and then the surface height difference of the micro-ships of the area 2 is obtained; thereby, the design of the touch is used to make the prior art of the present invention: It will check the interference of the looking mirror, and the scale will judge the interference phase (4), and the system will carry out the county-level wheel alignment. [Implementation] Please refer to the figures in Figures 1 and 2 for the comparison of the invention. A preferred embodiment, but these embodiments are for illustrative purposes only. 201144753 is not limited by this structure; the detection system is used to detect the surface profile of a micro-lens array. The detection system A includes the following components: - a finely tunable positioning portion 1G having a placement surface u for positioning the microlens array Q5 and a finely tunable positioning portion 1G capable of At least χ, γ axis, two horizontal axial displacement adjustment, the fine-tunable The placement positioning portion 10 can be configured by a χ γ-axis number-making platform (XY_TaMe), and the XY-axis numerical control platform is used to perform precise displacement of the microlens array 〇5, so that the entire microlens array 05 can be completely scanned. And can perform the action of positioning the microlens _ Q5;

光學取像模組20,設於該可微調式置放定位部1〇❾置放台面u上方間 隔處,該光學取像模組20包括-影像榻取裝置21 (可採用CCD攝影機)以及一 臟鏡組22所構成,該顯微鏡組22與該影像操取裝置21呈相對位狀態; -光學干涉模組30,係應用菲索(Fi麵)干涉儀架構,包括一雷射發射器 3卜-光纖32、-震動器與偏光片33、一半反射板34以及一參考板35所構成, 其中’該震動器與偏光片33置於該雷射發射器31之發射端前方,該光纖㈣ 置於震動贿偏光>i 33外_將雷縣w導出,辭反射板%設於該光學取 賴組2D之雜擷取裝置21鋪纖組22之間,細將該光纖32所導出之 雷射光W加以反射導向顯微鏡組22,該參考板35則置_微鏡組22與可微調 式置放定位部1G所設置放台面U之間,以利用雷射光$至參考板奶第二面之 部份反射光’作為微透鏡陣列表面輪廓檢測用之參考波面; -中央控制部40,可為―電腦,係與該可微調式置放定位部1G 像 模組20、鮮干涉歡3G三者紐連結’藉⑽職合控制作動之功能; -影像處理運算· 50,設_巾央控卿4G,藉_郷像 所榻取之影像資料進行包括去除雜訊雜點、尋找影像特徵點、產生: 環及複數内、外B1環之干涉條紋(類似牛親)、以及輪廓 * 理與邏輯運算作f ; ^其中’該影像處理運算模組5〇,係選擇根據實際中心圓環面雄中 心圓環面積之比例來判斷所述干涉條紋中心圓環相位角變化量,並、〜 區段之圓環條紋的亮度值變化量與理想第i區段之圓環條紋的 比例’來满所述干涉條紋最外側基底處之圓環條紋相位角變化b量又。 里 201144753 承上’請配合第1、2圖所揭’所述檢測系統A之檢測方法係包含下述步驟. (A) 、開啟該可微調式置放定位部1〇、光學取像模組2〇之影像糊取裝置21以 及光學干涉模組30之雷射發射器31 ; (B) 、透過-連線程式進行該影像擷取裝置射微調式置放雜部之連線設定 y (〇、設定該可微調式置放定位部1G之移動距離,例如待職之微透鏡陣列大 小若是86眶86刪&陣列形式時,可設定每次平移量為〇. imm ; ⑻、利用步驟⑹所設定之移動距離,進行χ轴方向位移; (Ε)、^驟(D)每往Χ軸方向移動—設定距離,即令該·擷取裝置執行取 像動作; ⑺、ί 置!0取得微透鏡_ °5之干涉條_,係經由該 =案;、顧讀處理方式去除雜訊、雜而麟易分析之影像 ⑹、ί触50轉像紐方式尋鄉雜舰,再依據所 ===:;=縣_猶,《賴表面輪廓 :像==係搜尋全部的干涉條紋以計算出整顆透鏡半徑與 判斷談二條紋最内及最外的0環條紋相位艘化量,其中 角變化量,舰而騎最外織底處之®環條紋相位 段之圓環條祕哀之圓環條紋的亮度值變化量與理想第1區 後文再詳冗又值變化量之比例來判斷相位角變化量(此部份容於 } 1G進行χ財⑽練定魏(如薦次)後 行X軸方向之位移(如100工次,後再令該可微調式置放定位部10繼續進 ⑴重覆則述步驟(E)至步驟⑻,直到檢測完整體微透鏡陣列阳。 201144753 其中,所述檢測方法係顧菲奸涉儀原理,_該光學干涉歡所產生 之反射光線互相干涉原理形成環狀干涉條紋(即牛頓環),利用該環狀干涉條紋 =圈數,以獲得各該透鏡f曲輪狀高度;並_環狀干涉條紋各圈數亮度不 進行運算處理,以獲得各該透鏡之表面輪又依據該微透鏡陣 j之光予祕上難生之複數環狀干涉雜,該影像處理運算模组之運算 處理,能夠同時得到該等環狀干涉條紋之中心點座標位置。 以下茲再就本發明之各檢測細節進一步說明: 影像處理:(請配合參閱第2圖所揭) 從影侧取裝置取雜的影齡魏職姐_ 3圖_),此影 象處理是爲了分個微透鏡_,讀可以針對某單顆微透鏡做個別處理。 影像之前處理: 中的^像Ϊί理/可採用傾毅及開啓運算’通過這兩項處理來消除影像 色,此^Ϊ讀肺像物二值化運算,在—_下把影像轉換成黑與白二 此時就可以明顯的看出每顆微透鏡的圓環干涉條紋。 尋找影像特徵點: 1. 行影像分割,將像素最多者判定騎景,影像分割處理以利後續步驟 找出早顆微透鏡與其中心圓之圓心; 2. =分割出來的每個影像是否為_,由每個影像之中心位置開始,於〇。、 型;、9G、,。延伸出去’分析其四邊半徑是否相同,如相同則判定為圓 ^將判定賴型之影像,分析其面積大小,面積為最小者欺其為中心圓; .找出中心圓後,並尋找出中心圓之圓心位置。 物件分割: ,先^有封閉的像素分割成數個物件,並於每個 個物件’共可分割成η個物件。在η個物件當中,可得=二= Pixels數)’其中’面積最大的物件將定義為背景,也就是微透鏡陣列基 201144753 底的部分。 中心搜尋: 中心搜尋是爲了尋找分割後物件的中 軸)與垂直方向(y軸)的座標個別相加, 下: 心,把該物件内白色像素水平方向(χ 並叶舁該物件的總像素,參考公式如 中心(X抽)卬抒--戶斤有χ座標相力〒 總像素 中心(y軸)啐样-_所有y座標相9ta. 總像素 圓形判斷:The optical image capturing module 20 is disposed at a space above the fine-adjustable positioning portion 1 and disposed above the mounting surface u. The optical image capturing module 20 includes an image capturing device 21 (a CCD camera can be used) and a The microscope group 22 is configured to be in a relative position with the image manipulation device 21; the optical interference module 30 is a Fischer interferometer architecture, including a laser emitter 3 - an optical fiber 32, a vibrator and a polarizer 33, a half reflector 34, and a reference plate 35, wherein 'the vibrator and the polarizer 33 are placed in front of the transmitting end of the laser emitter 31, and the optical fiber (four) is placed In the case of shocking the polarized light >i 33, the Leixian w is exported, and the reflection plate % is set between the fiber-splitting group 22 of the optical pick-up device 2D of the optical access group 2, and the light derived from the optical fiber 32 is finely extracted. The light beam W is reflected and guided to the microscope group 22, and the reference plate 35 is disposed between the micromirror group 22 and the placement surface U provided by the fine-tunable positioning portion 1G to utilize the laser light $ to the second side of the reference plate milk. Partially reflected light 'as a reference wavefront for detecting the surface profile of the microlens array; - central control unit 40, For the "computer," and the fine-tunable positioning positioning unit 1G image module 20, fresh interference Hua 3G three links "borrow (10) job control function; - image processing operations · 50, set _ towel central control Qing 4G, using the image data taken by 郷 包括 包括 包括 包括 包括 包括 去除 去除 去除 去除 、 、 、 、 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找 寻找The logical operation is f; ^ where the image processing operation module 5 选择 selects the phase angle of the center of the interference fringe according to the ratio of the area of the central circle of the actual central torus, and The ratio of the change in the luminance value of the ring stripe of the segment to the ring stripe of the ideal i-th segment is greater than the amount of change in the phase angle of the ring stripe at the outermost base of the interference fringe.里 201144753 The detection method of the detection system A described in 'Please cooperate with the first and second diagrams' includes the following steps. (A), the micro-adjustable positioning part 1 开启, the optical imaging module is turned on. 2) image stripping device 21 and laser emitter 31 of optical interference module 30; (B), through-threading, the image capturing device is finely adjusted to set the wiring of the miscellaneous portion y (〇) And setting the moving distance of the fine-adjustable positioning portion 1G. For example, if the size of the microlens array to be used is 86眶86 and the array form, the amount of each shift can be set to 〇. imm; (8), using step (6) The set moving distance is shifted in the χ axis direction; (Ε), ^ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Lens _ °5 interference bar _, through the = case;, read processing to remove noise, miscellaneous and easy to analyze the image (6), ί touch 50 turn image to find the township, then according to == =:;=County_June, "Looking on the surface contour: like == searching for all the interference fringes to calculate the entire lens radius Judging the amount of the inner and outer 0 ring fringe phase of the two stripes, the angular variation, the brightness of the ring strip of the ring of the ring of the outer ring weave at the outermost weave bottom The amount of change is compared with the ratio of the amount of change in the ideal area of the first area to determine the phase angle change (this part is accommodated in the 1G) (1) for the fortune (10), after the Wei (such as recommended), the X-axis direction Displacement (for example, 100 work times, and then let the fine-tunable placement positioning portion 10 continue to enter (1) repeat steps (E) to (8) until the full-body microlens array is detected. 201144753 wherein the detection method The principle of interfering with the reflected light generated by the optical interference is to form a ring-shaped interference fringe (ie, Newton's ring), and the ring-shaped interference fringe=turn number is used to obtain each of the lens f-curls The height of the shape; and the brightness of each ring of the annular interference fringes is not processed, so that the surface wheel of each lens is obtained according to the light of the microlens array j, and the complex circular interference is difficult. The arithmetic processing of the arithmetic module can simultaneously obtain the Coordinate position of the center point of the annular interference fringe. The following details of the detection of the present invention are further explained: Image processing: (please refer to the picture shown in Fig. 2) The image-aged Wei sister from the side of the film side _ 3 Figure _), this image processing is to separate a microlens _, read can be individually processed for a single microlens. Image pre-processing: in the ^ ^ 理 理 / can use the tilt and open operation 'through these two The item is processed to eliminate the image color, and the lung image binarization operation is performed, and the image is converted into black and white under the —_, and the circular interference fringe of each microlens can be clearly seen at this time. Image feature points: 1. Line image segmentation, the most pixels are judged to ride the scene, and the image segmentation process is used to facilitate the subsequent steps to find the center of the early microlens and its center circle; 2. = whether each image segmented is _, Starting from the center of each image, Yu Yu. , type;, 9G,,. Extend to 'analyze whether the four sides of the radius are the same, if the same, then determine the circle ^ will determine the image of the Lai type, analyze its size, the area is the smallest to deceive it as the center circle; Find the center circle, and find the center The center of the circle. Object segmentation: First, a closed pixel is divided into several objects, and each object can be divided into n objects. Among the n objects, = 2 = Pixels number can be obtained. The object with the largest area will be defined as the background, that is, the portion of the bottom of the microlens array base 201144753. Center search: The center search is to find the central axis of the divided object) and the coordinates of the vertical direction (y-axis) are added separately. The bottom: the heart, the horizontal direction of the white pixel in the object (χ and the total pixels of the object, Reference formula such as the center (X pumping) 卬抒--there is a 斤 coordinate phase force 〒 total pixel center (y-axis) ---all y coordinates phase 9ta. Total pixel circle judgment:

要確認分割出來的物件是否都細形,若在此影㈣ (干涉圓環呈弧形或半圓形丨如篦Μ 凡荃的微透 ❾第5圖所揭,經過中心搜尋得到該物件中心(认)後,於『、—。。 f延伸出去,遇到第—個黑色像素就停止,四個伸得^ 、左細W極“、雇^物__ =右=限: 得該物件_辨徑輯。巾,讀右極限 巾二距離 半徑距離L巾·概闕伟 1距^、巾心與左極細 』干錢離〜;中心與下極限點的半徑距離 ,其中:To confirm whether the divided objects are all fine, if in this shadow (4) (the interference ring is curved or semi-circular, such as 微 荃 荃 荃 ❾ ❾ ❾ , , , , , , , , , , , , , , , (Recognition), after ", -.. f extends out, encounters the first black pixel to stop, four stretched ^, left thin W pole", hired object __ = right = limit: get the object _Dimension of the diameter. Towel, read the right limit towel two distance radius distance L towel · Jane Wei 1 distance ^, towel heart and left pole fine" dry money away ~; the radius distance between the center and the lower limit point, where:

DCR = Pr - XcDCR = Pr - Xc

Dcl= Xc- PL ^cr ~YC— PT Dcb = Pb - Yc 正圓形的半徑相同,因此利用产 用四個半徑距離中的最大值與最小值相減, 右相距大於某設定容忍值τ (若 值相减 相距小於,定〜佶τ Ρ ),則該封閉區域判斷為非正圓形,若 】於某Μ令忍值Τ (斜個像素),則該封閉區域判斷為正圓形。 8 201144753 微透鏡中心圓搜尋: Λ 當已經排除背景和非圓形,接著就可以搜尋微透鏡中心圓。在前述分割方 法中’一顆微透鏡可分割成數個物件且每個物件均為同心圓,若找出物件的圓 心再向背景延伸,便可以知道該微透鏡所對應的物件,再把所對應的物件面積 相比較’面積最小且距離圓心最近的物件即為該顆微透鏡的中心圓。 微透鏡定位: 得到微透鏡的中心圓後,也就得到了微透鏡的圓心。通過圓心向外延伸至 干涉影像背景,便可以得到每顆微透鏡的位置及整顆透鏡半徑與輪廓。方法為 ❿從圓心對0、-180、90。、-90。延伸出去,四個方向的延伸分別為右邊極限〜、 左邊極限A、上極限外、下極限h。通過這四個極限座標,就可以用㈨,外)、 (h,h)、(\,Α)、(〜,外)框出單顆微透鏡(如第1〇圖所示),予以定位,而單一 微透鏡結構示意圖係如第9圖所揭。 菲索干涉儀及透鏡陣列之分析: 菲索干涉儀原理可用光干縣·,菲索干涉儀的部份反射鏡與物體反射 面的空氣楔距離為d,因為物體反射面所反射的光會比部份反射鏡的作用面所反 籲射光線多跑了2d的光程差,所以形成兩道光干涉所需的相位差,而形成干涉條 紋,:涉條紋可以直接由肉眼看到,亦可以CCD取得,由黑色的干涉條紋數目 可以算出空氣楔間隔的距離大小,黑色干涉條紋之公式如下: 2d=(n+l/2) λ η =為條紋數 d:空氣楔間隔 λ·空氣間光波的波長 201144753 形成所7F ’赫干賴是由__解面所反射光線互相干涉 =成城條_些干涉_貞辦鱗咖卿,s ~)。用(^)、(^)、 (二二、广”框出單顆微透鏡之後’還原影像的灰階值,連同在“)、 4、(〜力)框之_另"'贿透鏡雜_素,沿著通過單顆微透 :=:=到其灰階值變化的曲線,請參閱第8圖,將其由左而右,依 值Γ與極Μ 士第2區段,…之亮度曲線。找出第7,區段亮度曲線之極大 2極小值Α,说撕趣亮度_素⑼之亮度值…區段亮 7曲表線之極大值與第7·_】區段亮度極大值為同一點厂㈣:第7區段亮度曲 線之極小值與第川區段亮度極小值為同一點;在每—個區段裡, ^條紋綠值/跟第-姐射光織1第二姐射度叙_成正比.丨 I ① ε,·ε2 其中,/與厶、芯的關係式如下: / OC尽•尽=五/ + β 土味乓C(W0 /為第一道光與第二道光之干涉條紋亮度 必為第一次反射光強度Dcl= Xc- PL ^cr ~YC— PT Dcb = Pb - Yc The radius of the positive circle is the same, so the maximum and minimum values of the four radial distances are subtracted, and the right distance is greater than a set tolerance τ ( If the value is less than the distance, and ~ τ Ρ ), the closed area is judged to be non-peripheral. If the 忍 忍 Τ 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜 斜8 201144753 Microlens Center Circle Search: Λ When the background and non-circular have been excluded, then the center circle of the microlens can be searched. In the foregoing segmentation method, 'a microlens can be divided into several objects and each object is concentric. If the center of the object is found to extend to the background, the object corresponding to the microlens can be known, and then the corresponding object is The object area is the center circle of the microlens compared to the object with the smallest area and closest to the center of the circle. Microlens Positioning: After obtaining the center circle of the microlens, the center of the microlens is obtained. By extending the center of the circle to the background of the interference image, the position of each microlens and the radius and contour of the entire lens can be obtained. The method is ❿ from the center of the circle to 0, -180, 90. -90. Extending out, the extension in the four directions is the right limit ~, the left limit A, the upper limit, and the lower limit h. Through these four extreme coordinates, you can use (9), outside), (h, h), (\, Α), (~, outside) to frame a single microlens (as shown in Figure 1) to locate And a single microlens structure diagram is as shown in Figure 9. Analysis of Fizeau interferometer and lens array: The principle of Fizeau interferometer can be used in Guanggan County. The distance between the partial mirror of the Fizeau interferometer and the air wedge of the object reflection surface is d, because the light reflected by the object reflection surface will Compared with the action surface of the partial mirror, the optical path difference is 2d, so the phase difference required for the interference of the two lights is formed, and the interference fringe is formed. Obtained by CCD, the distance of the air wedge spacing can be calculated from the number of black interference fringes. The formula of black interference fringe is as follows: 2d=(n+l/2) λ η = is the number of stripes d: air wedge interval λ · inter-air light wave The wavelength of 201144753 formed the 7F 'Hegan Lai is the reflection of the light reflected by the __ solution surface = Chengcheng strip _ some interference _ 贞 鳞 咖 咖 咖, s ~). Use (^), (^), (two two, wide) to frame a single microlens after 'reducing the grayscale value of the image, together with the _ another "' bribe lens in the "), 4, (~ force) box Miscellaneous, along the curve through a single micro-transparent: =:= to its grayscale value, please refer to Figure 8, from left to right, according to the value of the Μ and the second section,... The brightness curve. Find the maximum 2 minimum value of the 7th, section brightness curve Α, say the brightness value of the brightness _ prime (9)... The maximum value of the section bright 7 curve line and the maximum brightness of the 7·_] section One point factory (4): The minimum value of the brightness curve of the 7th section is the same as the minimum brightness value of the Chuan section; in each section, the ^ stripe green value / with the first - sister light woven 1 second sister degree _ 成 成 丨 1 I 1 ε, · ε2 where / / 厶, core relationship is as follows: / OC exhaust • do = five / + β earthy table tennis C (W0 / for the first light and the second light The interference fringe brightness must be the first reflected light intensity

芯為第二次反射光強度 故知區段内干涉條紋之亮度呈現餘弦曲線之分佈情形。 干涉條紋相位角由〇度變化到360度,呈現亮到暗又到亮的變化,代表微透 鏡表面輪廓起伏量為λ/2,干涉條紋最内及最外的圓環,這兩部分習知的方法 是沒辦法去判斷其相位角,也就是說,這兩部分相位角不一定是〇度變化到以〇 度,除此之外,無論是亮或是暗,是-個圓環,剩下的圓環相^都是從〇 度變化到180度,明到暗的變化是一個完整180度的變化,相位角由〇度變化到^刖 度,代表微透鏡表面輪廓起伏量為λ/4 ’所以我們開發一個創新的方、去來判斷 201144753 ,,圓環_轉_,而_臟處之_條紋的她㈣ 成不是個完整的變化,可以利用我們所開發創新的方法來判斷其變化量。 判斷中心圓環之圓環條紋相位角變化量(α),請配合參閱第_所里揭 據實際中,環面積與理想中心圓環面積之_來靖巾心圓環相位角變 («)。假設中心圓環為第Λ區段,理想中心圓環面積可由中心外圍第二圈圓環㈤ 區段)的面積乘上係數推算而得: 其中,The core is the second reflected light intensity. It is known that the brightness of the interference fringes in the segment exhibits a distribution of the cosine curve. The phase angle of the interference fringe changes from twist to 360 degrees, showing a change from light to dark to bright, representing the undulation of the microlens surface contour λ/2, the innermost and outermost ring of the interference fringe. The method is that there is no way to judge the phase angle. That is to say, the phase angles of the two parts do not necessarily change to the degree of twist. In addition, whether it is bright or dark, it is a ring. The lower ring phase ^ changes from twist to 180 degrees, and the change from bright to dark is a complete 180 degree change. The phase angle changes from twist to ^刖, which means that the surface roughness of the microlens is λ/ 4 'So we develop an innovative party, to judge 201144753, the ring _ turn _, and _ dirty _ stripes of her (four) into a complete change, we can use the innovative methods we developed to judge The amount of change. Judging the change of the phase angle of the ring stripe of the center ring (α), please refer to the actual situation, the ring area and the ideal center ring area are the same as the actual center ring area. . Assuming that the center ring is the third segment, the ideal central ring area can be calculated by multiplying the area of the second ring (5) of the outer periphery by the coefficient:

a為中心圓環面積 /為區段之圓環的面積 τι為面積比例係數 判斷最外側基底處(第1區段)之圓環條紋相位角變化量(…,請配合參閱第 12 .可根據實際第1區段之圓環條紋的亮度值變化量與理想第1區段之圓環條紋 的壳度值變化量之比例來判斷相位角變化量(0)。理想第1區段圓環亮度值變化 鲁量可由2區段之圓環條紋的的亮度值變化量乘上係數推算而得,或由第2、3區段 的亮度值變化量外差而得: β 其中,a is the center ring area / the area of the ring of the section τι is the area ratio coefficient to determine the amount of change in the angle of the ring stripe at the outermost base (the first section) (..., please refer to the 12th. The phase angle change amount (0) is determined by the ratio of the change amount of the luminance value of the ring stripe of the first segment to the change amount of the shell value of the ring stripe of the ideal first segment. The value change amount can be obtained by multiplying the change in the luminance value of the ring stripe of the two segments by the coefficient, or by the heterodyne of the change in the luminance value of the second and third segments: β where

Ag 為第1區段之圓環條紋的亮度值變化量 為第2區段之圓環條紋的的亮度值變化量 τ2為亮度值變化量比例係數 201144753 令△,為第!區段她肖從Q制⑽度時的亮度變化,Ag is the change amount of the luminance value of the ring stripe of the first section. The amount of change in the luminance value of the ring stripe of the second section is τ2, which is the ratio of the change value of the luminance value. 201144753 Let △ be the first! In the section, she changes the brightness from the Q system (10) degrees.

當 / = 1 時,△, JlizE^L β 當 j* = /7 時,△, = a 嚷i< λ時’ 為亮度曲線的極大值與極小值之差值,Δ=|υ,| 令儿為第2區段相位角為9〇度時的亮度值When / = 1, △, JlizE^L β When j* = /7, △, = a 嚷i < λ is the difference between the maximum value and the minimum value of the brightness curve, Δ=|υ,| The brightness value when the phase angle of the second segment is 9 degrees

當/ = 1時,儿=7; - A 2When / = 1, child = 7; - A 2

當 1< J· = 77 時,兄A 2 免度曲線點素〇,/_;與㈣,伙間的她肖之差值咖,妙下 cos'1 g(x,y)-At 1 Δ,./2」 cos [Δ,+ /2 w · J L —I » ^ 令中心圓(A)所在的區段為第n區段,則第2區段至第㈣區段點素以少 δά(χ): λ' cos-1 g{x,y)-A~ -cos*1 g(x + l,3;)-X.)1 _4π_ L V2」 L V2」 由第1區段累計至微透鏡的中心圓(从)所在的區段之每—個相鄰點素 的微透鏡表面高度差,可崎算出Lens SagUcO 〜 △d =艺 ά/(χ) 1 請配合參邮14_揭,係為干涉餘曲料彳餅算綠_,假設取U為透 12 201144753 _ 鏡之最商點’則另取其前後兩點JOo /小to,w “、体可為曲面的兩個端點)則線段皿線段疑斜率仙、册分 別為 m2 X2 ~Xt hzh. 分別對線段M及線段π做中垂線L、心,其斜率分別為 m, = *-- wi m2% 則l、厶的方程式分別為 A : y~ mx' x + cx 厶2:少= W2'JC + C2 利用L h的聯立方程式,可求出兩直線方程式的交點紙^為When 1<J· = 77, the brother A 2 exempts the curve, _; / _; and (4), the difference between her brother, the cos'1 g(x, y)-At 1 Δ ,./2" cos [Δ, + /2 w · JL —I » ^ Let the segment where the center circle (A) is the nth segment, then the segment from the second segment to the fourth segment is less δά (χ): λ' cos-1 g{x,y)-A~ -cos*1 g(x + l,3;)-X.)1 _4π_ L V2" L V2" is accumulated from the first segment to The height difference of the surface of the microlens for each adjacent pixel of the segment where the center circle of the microlens is located is calculated by Lens SagUcO ~ △d = geisha / (χ) 1 Please cooperate with the mail For the interference of the residual gongs, the cake counts green _, assuming that U is the translucent 12 201144753 _ the most quotient of the mirror', then take the two points JOo / small to, w ", the body can be the two ends of the surface Point), the suspected slope of the segment of the line segment is m2 X2 ~Xt hzh. For the line segment M and the line segment π, the vertical line L and the heart are respectively m, = *-- wi m2% then l, 厶The equations are A: y~ mx' x + cx 厶2: less = W2'JC + C2 Using the simultaneous equation of L h, the intersection of the two linear equations can be obtained.

X =-a=£L. Wj '—m' 計算万、/^闕的縣即可求得干涉敝之醇半徑厂為 r=菸 平板紋之轉分㈣’並不翻意去财接娜或基準點,若光弯 其上所產生__表爾-α、六阿度。我們可以任意令工件表面某點為基準點,仿 ° ^ *工4表面整體的空氣楔高度(請配合參閱第15圖所揭),最招 13 201144753 將光學平板之傾斜高度扣掉,即得工件被測面之表面起伏情形。 此時泰# —仏1給, 亦即:〇 = r1-2/?c/ +, d很小’可忽略其二次方項,可得人2_ 即rf = —X =-a=£L. Wj '-m' Calculate the county of Wan, /^阙 to obtain the interference of the alcohol radius of the factory. The rectification of the r=smoke flat pattern (4) 'Do not mean to go to Caina or The reference point, if the light bends on it, produces __表尔-α, 六阿度. We can arbitrarily make a certain point on the surface of the workpiece as the reference point, and the air wedge height of the whole surface of the surface of the workpiece (please refer to the figure shown in Figure 15), the most trick 13 201144753 to buckle off the tilt height of the optical plate, that is, The surface of the workpiece is undulating. At this time, Thai #—仏1 is given, that is: 〇 = r1-2/?c/ +, d is small', the quadratic term can be ignored, and the person 2_ is rf = —

2R 假設第m圈暗紋作用面之間隙為& dn—m A /2 代入得2R assumes that the gap of the m-th order of the m-th circle is & dn-m A /2

22

2R =m λ/2 化簡後可得第損干涉條紋巾暗紋之位置 涉光波長;I之關係如下: a與圓球狀的microlens之半徑疋干 1 rm=4mRX R~ τηλ 實施例: 本實施例之難鏡陣舰縣半徑··】 陣列大小:io_0ramxl.2mine 本發明是崎索干涉縣硬體_來餘影像,其紐可為錢雷射 長為632簡,而所4到的影像如第4圓所示’進而分析出透鏡的弯曲輪廟之 為〇. 9 h _ ’而利用數學式驗證得知,此透鏡的響曲輪靡之高度為】 本發明係為-套以非接觸方式量職透鏡_之檢測系統,由影像擷取裝^ 201144753 取出微透僻狀難,再㈣f彡倾理 再以菲索干賴的干涉顧彳㈣ 魏之伟及巾雜位置, 微陣列之形«訊,透鏡餘賴’經職學摘分減計算得到 ^差低於1%,料高度之誤差低於1%。 本發明之優點: 气置職面輪義财'缺錢财法」轉料舰可微調 ㈣、絲轉额、絲干频組、巾央㈣做雜處理運算模 •,=、m其光學干涉额顧菲奸涉齡構且配合·處理運算模组 二㈣,擇根據實際中心圓環面積與理想中心_面積之_判斷干涉條 '圓衣相位角變化量,而最外側區域選擇根據實際圓環條紋亮度值變化量 與里心圓環條紋冗度值變化量之比例判斷干涉條紋最外側基底處圓環條紋相位 角變化®之獨特輯,此二種方式均可自由選擇,以提高满精度;使本發明 能夠精確搜尋職鏡辭涉躲,並且精準觸干雜紋最内及最外的圓環相 位角,達到大巾S提昇微透鏡陣列表面輪廓檢測鮮度與品質之優點與進步性。 上述實施例所揭示者係藉以具體說明本發明,且文中雖透過特定的術語進 •行說明,當不能以此限定本發明之專利範圍;熟悉此項技術領域之人士當可在 瞭解本發明之精神與原則後對其進行變更與修改而達到等效之目的,而此等變 更與修改,皆應涵蓋於如后所述之申請專利範圍所界定範疇中。 201144753 【圓式簡單說明】 第1圖:本發明之檢測系統架構簡示圖。 第2圖:本發明檢測系統之局部檢測方法流程方塊圖。 第3圖:本發明微透鏡陣列之示意圖。 第4圖.本發明分割物件判斷示意圖(弧形或半圓形被判斷為非圓形)。 第5圖:本發明物件的四個半徑距離示意圖。 第6圖:本發明菲索干涉儀示意圖。 第7圖:本發明環狀干涉條紋示意圖。 第8圖:本發明之灰階值變化曲線之示意圖 第9圖:本發明單一微透鏡結構示意圖。 第10圖:本發明單顆微透鏡影像示意圖。 第11圖 第12圖 第13圖 第14圖 第15圖 本發明判射環之®環條紋她賴化量示意圖。 本發明判斷最外側基底處之圓環條紋相位角變化量曲線示意圖。 本發明干涉條紋相位角變化示意圖。 本發明曲率半徑計算示意圖。 本發明菲奸涉紅作表面整體__高度示意圖。 201144753 【主要元件符號說明】 微透鏡陣列 0 52R =m λ/2 After simplification, the wavelength of the dark line of the first loss interference fringe towel can be obtained; the relationship of I is as follows: a and the radius of the spherical microlens 疋 1 rm = 4 mRX R τ λ λ The radius of the ship mirror county of this embodiment··] Array size: io_0ramxl.2mine The invention is the image of the stagnation interference county hardware _ _ yu image, the new can be Qian Lei shot length 632 Jane, and the 4 to The image is as shown in the 4th circle, and then the curved wheel temple of the lens is analyzed as 9. 9 h _ ' and the mathematical formula is used to verify that the height of the rim of the lens is 】 The contact system of the measuring lens _ the detection system, by the image capture device ^ 201144753 to remove the micro-transparent difficulty, and then (four) f 彡 再 再 菲 菲 菲 菲 菲 菲 菲 菲 菲 菲 菲 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四«News, Lens Yu Lai' is calculated to reduce the difference by less than 1%, and the error of material height is less than 1%. The advantages of the invention: the gas placement of the wheel of the wheel of the righteousness of the 'lack of money and wealth law' can be fine-tuned (four), wire transfer amount, silk dry frequency group, towel center (four) do miscellaneous processing operation mode •, =, m its optical interference According to the actual central ring area and the ideal center_area, the interference zone's roundness phase angle change is determined according to the actual center ring area and the ideal center_area, and the outermost area is selected according to the actual circle. The ratio of the change in the brightness value of the ring stripe to the change in the redundancy value of the inner ring stripe determines the unique series of the ring stripe phase angle change at the outermost base of the interference fringe. Both methods can be freely selected to improve the full precision. The invention can accurately search for the revelation of the job mirror, and accurately touch the innermost and outermost ring phase angles of the moiré, so as to achieve the advantages and progress of the large surface S to enhance the freshness and quality of the surface contour of the microlens array. The invention disclosed in the above embodiments is intended to be illustrative of the invention, and is not intended to limit the scope of the invention. The spirit and principles are subject to change and modification to achieve equivalent purposes, and such changes and modifications shall be covered by the scope of the patent application as described later. 201144753 [Circular Simple Description] Fig. 1: A schematic diagram of the detection system architecture of the present invention. Figure 2 is a block diagram showing the flow of the local detection method of the detection system of the present invention. Figure 3: Schematic representation of the microlens array of the present invention. Fig. 4 is a diagram showing the judgment of the divided object of the present invention (arc or semicircle is judged to be non-circular). Figure 5: Schematic diagram of the four radius distances of the articles of the invention. Figure 6: Schematic diagram of the Fizeau interferometer of the present invention. Figure 7 is a schematic view of the annular interference fringes of the present invention. Fig. 8 is a schematic view showing a gray scale value change curve of the present invention. Fig. 9 is a view showing the structure of a single microlens of the present invention. Figure 10 is a schematic view of a single microlens image of the present invention. Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Schematic diagram of the amount of the product of the ring of the invention. The present invention determines a curve of the change in the phase angle of the annular stripe at the outermost base. FIG. Schematic diagram of calculation of radius of curvature of the present invention The present invention is related to the overall appearance of the Philippine traitor. 201144753 [Explanation of main component symbols] Microlens array 0 5

檢測系統 A 10 11 2 0 2 1 2 2 3 0 3 1 3 2 3 3 3 4 3 5 40 5 0 可微調式置放定位部 置放台面 光學取像模組 影像擷取裝置 顯微鏡組 光學干涉模組 雷射發射器 光纖 震動器與偏光片 半反射板 參考板 中央控制部 影像處理運算模組 17Detection system A 10 11 2 0 2 1 2 2 3 0 3 1 3 2 3 3 3 4 3 5 40 5 0 Fine-tunable placement positioning part placement tabletop optical imaging module image capture device microscope group optical interference mode Group laser emitter vibrator and polarizer semi-reflector reference plate central control unit image processing operation module 17

Claims (1)

201144753 七、申凊專利範圍: 卜-種微透鏡_表面輪雜啦統,藉以檢測微透鏡陣列表面輪廓之用,該 檢測系統係包含一可微調式置放定位部、一光學取像模組、一光學干涉模組 中央控制部、一影像處理運算模組所構成;其中該影像處理運算模組設 於該中央控制部’藉以對該景Μ象操取裝置所擷取之影像資料進行包括去除雜 麟點、哥找影像特徵點、產生具有中心圓環及複數内 '外圓環之干涉條紋 以及輪廓分析、製表等影像處理作業; 且其中,該影像處理運算模組,是透過圖形分割與面積識別的方法而能找出 圓衣的中u位置,而微透鏡陣列影像基底之判斷,則是根據圖形分割與鲁 面積識別的方法而能自動找出整個微透鏡陣列干涉影像的背景(即微透鏡陣 列之基底部份),復根據面積比例法及亮度比例法以判斷第1區段與中心區段 之相位角變化量,面積比例法係根據實際圓環面積與理想圓環面積之比例來 判斷所述干涉條紋圓環相位角變化量,亮度比例法則根據實際之圓環條紋的 儿度值變化量與理想之圓環條紋的亮度值變化量比例,面積比例法及亮度比 例法均可自由切換’選擇精確度較高之方法使用,進而判斷所述干涉條^最 外侧基底處之圓環條紋她賴化量,接著找出每—區段紐曲線之極大值 與極小值,分別對應到區段相位角從〇度至18〇度時之量度變化,再求出區段鲁 中點素之間所對應的微透鏡表面高度差。 2、如申請專利範圍第1項所述之微透鏡陣列表面輪廊檢測系统,其中該可微調 式置放定位部係具-置放台面以供該微透鏡陣列置放定位之用,且該可微調 式置放定位部能夠進行至少X、讲二水平軸向之微幅位移調整;該光學取像 模組設於該可微調式置放定位部上方間隔處,包括一影像擷取裝置以及一顯 微鏡組所構成’該顯微鏡組與該影像擷取裝置相對位;該光學干涉模組係應 用菲索干涉儀架構’包括-雷射發射器、一光纖、一震動器與偏光片、一半 反射板以及-參考板所構成,其中該震動器與偏光片置於該雷射發射器之發 201144753 .射端前方,該光纖係置於震動器與偏光片外側以將雷射光導出,該半反射板 設於該光學取像齡之影像齡裝置與紐鏡組之間,藉以_光纖所導出 之雷射光加以反射導向顯微鏡組,該參考板則置於顯微鏡組與可微調式置放 定位部所設置放台面之間,以將雷射光擴散成二道或多道光束,以作為微透 鏡陣列表面輪雜_統;該巾央鋪侧触可微赋置蚊位部、光 學取像模組、光學干涉模組電性連結,藉以達到整合控制作動之功能。 3、如申請專利範圍第i項所述之微透鏡陣列表面輪廊檢測系統其中該可微調 式置放定位部為-XY軸數值控制平台(XY_Table),侧紐軸數值控制平 •台以進行該微透鏡陣列之精密位移,而能完整掃描整體微透鏡陣列,並且 能對微透鏡陣列進行定位之動作。 (、如申請補細第1顧述之微親_表面輪_測紐,其巾該中央控 制部為一電腦。 5、 如申請專職圍第丨項所述之微透鏡陣列表面輪驗測祕,其中該影像操 取裝置為高倍率CCD攝影機。 6、 -種微透鏡陣列表面輪廓檢測方法,係依據申請專利範陳項所述檢測系 統之檢測方法’所述檢測方法包含: • ⑴、開啟該可微調式置放定位部、光學取像模組之影像齡裝置以及光學 干涉模組之雷射發射器; ⑻、透過-魏料騎郷賴崎置射微調式置歧娜之連線設 定; (C)、设定該可微調式置放定位部之移動距離; ⑼、利用步驟(c)所設定之移動距離,進行X軸方向位移; ⑻、=〇))每往x軸方設定·,即令該影像娜裝置執 行取像動作; ⑻、像掏取裝置取得微透鏡陣列之干涉條紋影像,係經由該影像 處理運算模組以影像處理方式去除雜訊、雜點而獲得易分析之影像圖 201144753 案; (G)、藉=該影像處理運算模組以影像處理方式尋找影像特徵點 ,分離所有 圓環圖案’確認分割出來之物件是否為圓形,並藉此找出中心圓,再 依據所找尋传出之影像特徵點,產生具有巾心騎及複㈣、外圓環 之干涉條紋贼進概絲面輪齡析,並將該透絲©輪靡分析之 結果繪製成圖表;且其中: 該’v像處理運算模組係搜尋全部的干涉條紋以計算出整顆透鏡半徑 與輪廓,並關斷軒涉躲最喊最外_環敝她角變化量, 其中判斷該中心圓環之圓環條紋相位角變化量,係根據實際中心圓環 面積與理想巾心圓環_之_來判斷:關斷最外側基底處之圓環 條紋相位角變化量,係根據實際第】區段之圓環條紋的亮度值變化量 與理心第1區^又之圓環條紋的亮度值變化量之比例來判斷相位角變化 量; (H) 田該·7¼調式置放疋位部進行X軸方向移動設定次數後,令該可微調 式置放定位部進行γ軸方向位移—設定距離,以變換成次―列之取像 路徑’紐再令該可微調式置放定位雜續進利财向之位移; (I) 、重覆步驟⑻至步驟⑻,直到檢測完整體微透鏡陣列; 如申晴專利細第6項所述之微透鏡陣列表面輪廓檢測方法,其中所述檢測 方法係應用菲索干涉儀原理,利用該光學干涉模組所產生之反射光線互相干 涉原理形成雜干涉敝,彻該雜干涉條狀酿,以麟各該透鏡彎 曲輪靡之③度;並糊環狀干涉肢各隨亮度*同之特徵點進行運算處 理’以獲得各該透鏡之表面輪細;又赠該微透鏡陣狀光學影像上所產 生之複^:環狀干涉條紋’利職影像處理運算模組之運算處理,能夠同時得 到該等環狀干涉條紋之中心點座標位置。 如申请專概圍第6賴述之微透鏡陣列表面輪雜測方法,其巾所述理想 中心圓環面積’係由中心外圍第二圈圓環的面積乘上係數推算而得,或由中 201144753 心外圍第二、三圈圓環的面積外差而得。 9、如申請專利範圍第6項所述之微透鏡陣列表面輪廓檢測方法,其中所述理想 第1區段圓環亮度值變化量,可由2區段之圓環條紋的亮度值變化量乘上係 數推算而得,或由第2、3區段的亮度值變化量外差而得。201144753 VII. Application scope of the patent: The micro-lens _ surface wheel is used to detect the surface contour of the microlens array. The detection system includes a fine-adjustable positioning part and an optical image capturing module. An optical interference module central control unit and an image processing operation module; wherein the image processing operation module is disposed in the central control unit to include the image data captured by the scene manipulation device The image processing operation module is removed from the image processing operation by removing the miscellaneous point, finding the image feature point, generating the interference fringe with the center ring and the complex outer ring, and contour analysis and tabulation; The method of segmentation and area recognition can find the position of the u in the circular, and the judgment of the image base of the microlens array can automatically find the background of the interference image of the whole microlens array according to the method of pattern segmentation and Lu area recognition. (ie, the base portion of the microlens array), according to the area ratio method and the brightness ratio method to determine the phase angle change of the first segment and the central segment, The product proportional method judges the change of the phase angle of the interference fringe ring according to the ratio of the actual ring area to the ideal ring area. The brightness ratio law is based on the actual value of the ring stripe and the ideal ring stripe. The brightness value change ratio, the area ratio method and the brightness ratio method can be freely switched. The method of selecting a higher precision is used to determine the amount of the ring stripe at the outermost base of the interference strip, and then find The maximum value and the minimum value of the curve of each segment are respectively corresponding to the measurement of the phase angle of the segment from 〇 to 18〇, and then the corresponding microlens surface between the elements in the segment is obtained. The height difference. 2. The microlens array surface wheel gallery detecting system according to claim 1, wherein the finely tunable positioning portion is provided with a mounting surface for positioning the microlens array, and the The fine-adjustable positioning positioning portion is capable of performing at least X and two horizontal axial displacement adjustments; the optical image capturing module is disposed at an interval above the fine-adjustable positioning positioning portion, and includes an image capturing device and A microscope group is formed 'the microscope group is opposite to the image capturing device; the optical interference module is applied with a Fizeau interferometer architecture' including a laser emitter, an optical fiber, a vibrator and a polarizer, and a half reflection a plate and a reference plate, wherein the vibrator and the polarizer are placed in front of the emitter of the laser emitter 201144753. The fiber is placed outside the vibrator and the polarizer to direct the laser light, the semi-reflection The plate is disposed between the image-aged device of the optical image-taking age and the button group, and is guided by the laser light derived from the fiber to the microscope group, and the reference plate is placed in the microscope group and the fine-tunable positioning position is set. Between the placement surfaces, the laser light is diffused into two or more light beams to serve as a surface of the microlens array; the towel is placed on the side of the micro-removable mosquito position, and the optical imaging module The optical interference module is electrically connected to achieve the function of integrated control actuation. 3. The microlens array surface porch detection system according to item yi of the patent application, wherein the fine-adjustable positioning position is an -XY axis numerical control platform (XY_Table), and the side button axis numerical control platform is performed. The precise displacement of the microlens array enables complete scanning of the entire microlens array and positioning of the microlens array. (If you apply for the first part of the micro-parent _ surface wheel _ measuring button, the central control department of the towel is a computer. 5. If you apply for the full-length 丨 丨 之 微 微 微 微 微The image manipulation device is a high-magnification CCD camera. 6. A method for detecting a surface contour of a microlens array according to a detection method of the detection system described in the patent application section Chen's detection method includes: • (1), opening The micro-adjustable positioning portion, the image-age device of the optical image capturing module, and the laser emitter of the optical interference module; (8), through the -Weiqi ride, Lai Qiji, the fine-tuning type of the setting of the connection (C), set the movement distance of the fine-adjustable positioning position; (9), use the moving distance set in step (c) to perform the X-axis direction displacement; (8), =〇)) every x-axis setting · The image processing device performs the image capturing operation; (8) the image capturing processing device obtains the interference fringe image of the microlens array through the image processing computing module, and removes the noise and the noise by the image processing method to obtain the easy analysis. Image, image, illustration 201144753 (G), borrowing = the image processing computing module searches for image feature points by image processing, and separates all ring patterns to confirm whether the segmented objects are circular, and thereby find the center circle, and then according to the Looking for the image feature points of the outgoing image, the generation of the interference fringe thief with the towel riding and the complex (four) and the outer ring is analyzed, and the result of the traverse analysis is plotted as a graph; and wherein: The 'v image processing computing module searches for all the interference fringes to calculate the radius and contour of the entire lens, and turns off the singularity of the outermost _ ring 敝 her angle change, which determines the circle of the center ring The variation of the phase angle of the ring stripe is judged according to the actual central ring area and the ideal circle of the towel ring _ _: the amount of change in the phase angle of the ring stripe at the outermost base is turned off, according to the circle of the actual section] The amount of change in the brightness value of the ring stripe is determined by the ratio of the change in the brightness value of the ring stripe in the first region and the ring stripe; (H) The field is placed in the X-axis direction. After moving the set number of times, let the The γ-axis direction displacement can be set by the fine-tuning positioning unit to set the distance, so as to transform into the sub-column image taking path, and then the fine-tunable positioning is placed in the displacement of the profit direction; (I) Repeating steps (8) to (8) until detecting a full-body microlens array; such as the microlens array surface profile detecting method described in the above-mentioned Japanese Patent Application No. 6, wherein the detecting method is based on the principle of the Fizeau interferometer, The interference light generated by the optical interference module interferes with each other to form a hetero-interference enthalpy, and the interfering interference strip is brewed, and the lens is bent by 3 degrees of the rim; and the paste-shaped interfering limbs are characterized by the same brightness* The point is subjected to an arithmetic process 'to obtain a thin surface wheel of each lens; and the arithmetic processing of the complex image processing operation module generated by the complex interference fringe generated on the microlens array optical image can be simultaneously obtained. The coordinates of the center point of the annular interference fringes. For example, the method of applying the microlens array surface wheel miscellaneous method of the sixth aspect of the invention, the ideal central annular area of the towel is calculated by multiplying the area of the second ring of the center periphery by a coefficient, or by 201144753 The outer and outer rings of the heart are surrounded by the outer dimensions of the ring. 9. The microlens array surface profile detecting method according to claim 6, wherein the ideal first segment ring luminance value change amount is multiplied by a luminance variation of the ring segment of the two segments. The coefficient is derived or obtained by the difference in the amount of change in the luminance values of the second and third segments. 21twenty one
TW099118588A 2010-06-08 2010-06-08 Micro - lens array surface profile detection system and its detection method TWI407078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099118588A TWI407078B (en) 2010-06-08 2010-06-08 Micro - lens array surface profile detection system and its detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099118588A TWI407078B (en) 2010-06-08 2010-06-08 Micro - lens array surface profile detection system and its detection method

Publications (2)

Publication Number Publication Date
TW201144753A true TW201144753A (en) 2011-12-16
TWI407078B TWI407078B (en) 2013-09-01

Family

ID=46765709

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099118588A TWI407078B (en) 2010-06-08 2010-06-08 Micro - lens array surface profile detection system and its detection method

Country Status (1)

Country Link
TW (1) TWI407078B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472731B (en) * 2012-05-23 2015-02-11 Univ Feng Chia Coupling efficiency detection device of optical fiber coupler and method thereof
CN107796596A (en) * 2016-08-30 2018-03-13 尼德克株式会社 Lens determining device and lens determining device marking plate
WO2020060501A1 (en) * 2018-09-17 2020-03-26 Koc Universitesi A method and apparatus for detecting nanoparticles and biological molecules
CN112964209A (en) * 2021-04-21 2021-06-15 哈尔滨理工大学 Off-axis detection method based on contact measurement
CN112986284A (en) * 2021-02-20 2021-06-18 苏州天准科技股份有限公司 Combined type light source structure and optical detection device
CN114252243A (en) * 2021-12-10 2022-03-29 中国科学院光电技术研究所 Detection device and method for micro cylindrical lens array
TWI835692B (en) * 2023-07-03 2024-03-11 大陸商業桓科技(成都)有限公司 Method and device for evaluating imaging quality of lens, computer device and storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5784163A (en) * 1996-09-23 1998-07-21 International Business Machines Corporation Optical differential profile measurement apparatus and process
ATE285081T1 (en) * 1999-08-02 2005-01-15 Zetetic Inst INTERFEROMETRIC CONFOCAL NEAR FIELD SCANNING MICROSCOPY
EP1853874B1 (en) * 2005-01-20 2009-09-02 Zygo Corporation Interferometer for determining characteristics of an object surface
TWI336765B (en) * 2007-09-20 2011-02-01 Nat Applied Res Laboratories Method and device for interface profile inspecting of optical components

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472731B (en) * 2012-05-23 2015-02-11 Univ Feng Chia Coupling efficiency detection device of optical fiber coupler and method thereof
CN107796596A (en) * 2016-08-30 2018-03-13 尼德克株式会社 Lens determining device and lens determining device marking plate
WO2020060501A1 (en) * 2018-09-17 2020-03-26 Koc Universitesi A method and apparatus for detecting nanoparticles and biological molecules
US12098991B2 (en) 2018-09-17 2024-09-24 Koc Universitesi Method and apparatus for detecting nanoparticles and biological molecules
CN112986284A (en) * 2021-02-20 2021-06-18 苏州天准科技股份有限公司 Combined type light source structure and optical detection device
CN112964209A (en) * 2021-04-21 2021-06-15 哈尔滨理工大学 Off-axis detection method based on contact measurement
CN114252243A (en) * 2021-12-10 2022-03-29 中国科学院光电技术研究所 Detection device and method for micro cylindrical lens array
CN114252243B (en) * 2021-12-10 2023-09-19 中国科学院光电技术研究所 Detection device and method for micro cylindrical lens array
TWI835692B (en) * 2023-07-03 2024-03-11 大陸商業桓科技(成都)有限公司 Method and device for evaluating imaging quality of lens, computer device and storage medium

Also Published As

Publication number Publication date
TWI407078B (en) 2013-09-01

Similar Documents

Publication Publication Date Title
TW201144753A (en) Micro-lens array surface profile detection system and detection method thereof
JP5624714B2 (en) Inspection method and inspection apparatus for substrate surface
CN112798617A (en) Defect detection device and method for mirror-like object
TWI644098B (en) Method and apparatus for defect inspection of transparent substrate
CN105466953A (en) Steel ball surface defect detecting method based on reorganization of steel ball surface reflection pattern integrity
US9824452B2 (en) Topographical measurement system of specular object and topographical measurement method thereof
Ren et al. Fast defect inspection based on data-driven photometric stereo
TWI394946B (en) Method and device for measuring object defect
TWI336767B (en) Method for calibration of image and apparatus for acquiring image
US20230029930A1 (en) System and method for optical imaging and measurement of objects
Tao et al. Smooth surface defect detection by deep learning based on wrapped phase map
TW201445133A (en) Online detection method for three dimensional imperfection of panel
Huang et al. A novel defect detection method with eliminating dust for specular surfaces based on structured-light modulation analysis technique
Xiong et al. Specular surface deformation measurement based on projected-speckle deflectometry with digital image correlation
US10598604B1 (en) Normal incidence phase-shifted deflectometry sensor, system, and method for inspecting a surface of a specimen
CN110402386A (en) Cylinder surface examining device and cylinder surface inspecting method
CN107543502A (en) Optical device for real-time detecting full-field thickness
Jian et al. Task-Specific Near-Field Photometric Stereo for Measuring Metal Surface Texture
RU2618746C2 (en) Method and device for measuring geometrical structure of optical component
TWI438399B (en) Calculating system for surface reconstruction, inner and outer surface displacement, and strain distribution
Meguenani et al. Deflectometry based inline inspection of linearly moving plastic parts
Otani et al. Three-dimensional profilometry based on focus method by projecting LC grating pattern
JP4716827B2 (en) Appearance inspection apparatus and appearance inspection method
Meguenani et al. Deflectometry based on light-field imaging
CN102192704B (en) Measurement method for interference system