TW201144427A - Lubricating oil composition for internal combustion engines - Google Patents

Lubricating oil composition for internal combustion engines Download PDF

Info

Publication number
TW201144427A
TW201144427A TW100109488A TW100109488A TW201144427A TW 201144427 A TW201144427 A TW 201144427A TW 100109488 A TW100109488 A TW 100109488A TW 100109488 A TW100109488 A TW 100109488A TW 201144427 A TW201144427 A TW 201144427A
Authority
TW
Taiwan
Prior art keywords
mass
lubricating oil
internal combustion
viscosity
less
Prior art date
Application number
TW100109488A
Other languages
Chinese (zh)
Inventor
Ryou Yamada
Original Assignee
Idemitsu Kosan Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co filed Critical Idemitsu Kosan Co
Publication of TW201144427A publication Critical patent/TW201144427A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/76Reduction of noise, shudder, or vibrations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is a lubricating oil composition for internal combustion engines, which has a low viscosity and can nevertheless reduce noise in running, prevent fatigue damage such as gear pitting, and reduce the consumption of lubricating oil, and which can ensure high fuel efficiency. A lubricating oil composition for internal combustion engines, which is characterized by: comprising a base oil that exhibits a viscosity index of 125 or more and a Noack evaporation loss (250 DEG C 1h) of 15mass% or less, and 0.1 to 10mass% (relative to the whole composition) of a C2-20 olefin polymer (A) that has a mass-average molecular weight of 500 to 10,000 and/or a high-molecular compound (B) that has a mass-average molecular weight of 10,000 to less than 100,000; and having a high-molecular compound (C) content of less than 1.0mass%, the compound (C) having a mass-average molecular weight of 100,000 or more.

Description

201144427 六、發明說明: c發明戶斤屬之技術領域3 發明領域 本發明係有關於一種内燃機用潤滑油組成物,更詳言 之,係有關於一種能夠降低行駛時的噪音、提高疲勞壽命、 減少油消耗、而且具有良好的省燃料費性之作為二輪車用 四衝程引擎(four cycle engine)用潤滑油亦有用的内燃機用 潤滑油組成物。 L先前技術]1 發明背景 由於省能源、減少二氧化碳(C02)等之要求,在内燃機 用潤滑油(引擎油)亦被強烈地要求省燃料費性作為必要的 性能。 以往,關於在四輪車所使用的引擎油,係將提高省燃 料費性作為手段而進行將引擎油低黏度化。 但是,即便同樣是引擎油,為了提高在二輪車所使用 的引擎油之省燃料費性,將引擎油低黏度化時,由於四輪 車與二輪車的機械構造不同,會產生各式各樣的問題。 亦即,因為二輪車係有必要將引擎等的裝置小型化, 通常,具有將引擎及變速用的變速器均使用相同的引擎油 來進行潤滑之構造。 作為在具有此種構造的二輪車所使用的引擎油,為了 提高省燃料費性而使用低黏度化的引擎油時,在變速用的 變速器會產生齒輪麻點(gear pitting)等的疲勞損傷。又,在 201144427 二輪車,因為係引擎露出地設置,有弓丨擎噪音變大而成為 噪音問題。而且’因為相幸乂於四輪車’二輪車的引擎係小 型,由於油會變為高溫’起因於油的蒸發之油消耗變大。 因此,欲將二輪車所使用的引擎低黏度化而提升省燃 料費性時,有必要解決該等問題。 又,以往’係將貫際使用溫度區域的黏度降低設作手 段而進行在基油組合高分子化合物亦即黏度指數提升劑來 使黏度指數提升(例如參照專利文獻丨)。但是,含有黏度指 數提升劑之潤滑油係在引擎的軸承和齒輪的齒面等的高剪 切下,由於高分子的配向,會產生黏度低落。因此,以往 的多級型引擎油(含有高分子化合物之潤滑油),因為高溫高 剪切黏度不足,致使耐金屬疲勞性有低落的傾向,就將二 輪車所使用引擎油低黏度化而言,會成為障礙。 因此,欲將二輪車所使用的引擎油低黏度化而提升省 燃料費性時之此種問題,現狀尚無法解決。 先前技術文獻 專利文獻 [專利文獻1]曰本專利特開2000-087070號公報 【發明内容3 發明概要 發明欲解決之課題 在此種狀況下,本發明係將提供一種即便低黏度亦能 夠降低行駛時的嗓音、抑制齒輪麻點等的疲勞損傷、減少 油消耗、而且具有良好的省燃料費性之内燃機用潤滑油組 201144427 成物設作目的。 用以欲解決課題之手段 本發明者等重複專心研究的結果,發現藉由在特定基 油調配具有特定構造及分子量之聚合物及/或特定分子量 的高分子化合物,能夠達成該目的。本發明係基於如此的 知識而完成。亦即,本發明係 [1] 一種内燃機用潤滑油組成物,其特徵為在黏度指數 為125以上且Noack蒸發量(250°C X lh)為15質量%以下之基 油,以組成物總量作為基準,含有(A)0.1〜10質量%之質量 平均分子量為500以上、10,000以下之碳數2〜20的烯烴聚 合物、及/或(B)質量平均分子量為10,000以上、小於100,000 的高分子化合物而成,且(C)質量平均分子量為100,000以上 之高分子化合物的調配量為小於1.0質量%。 [2] 如[1]之内燃機用潤滑油組成物,其中前述高分子化 合物係選自聚曱基丙烯酸酯、烯烴共聚物、苯乙烯共聚物、 及聚異丁烯之中一種或二種以上的高分子化合物。 [3] 如[1]或[2]之内燃機用潤滑油組成物,其中更調配鉬 系摩擦調整劑或無灰系摩擦調整劑。 [4] 如[1]至[3]項中任一項之内燃機用潤滑油組成物,其 中Noack蒸發量(250°C xlh)為10.0質量%以下且黏度指數為 140以上。 [5] 如[1]至[4]項中任一項之内燃機用潤滑油組成物’其 係二輪車用四衝程引擎用潤滑油。 發明效果 201144427 依照本發明’能夠提供_種即便低黏度亦能夠降低^ 駛時的噪音、抑制齒輪麻點等的疲勞損傷、減少油消耗丁 而且具有良好的省燃料費性之内燃機㈣滑油組成物。 I:實施方式j 用以實施發明之形態 本發明之内燃機用潤滑油組成物(以下亦稱為「本植成 物」)’其係具有下列特徵之内燃機用潤滑油組成物:在黏 度指數為125以上且NGaek蒸發量(25{rcxih)^5質量%以 下之基油,以组成物總量作為基準,係調配(A)G卜1〇質量 %之質量平均分子量為獅以上、1Mmm下之碳#u〜2q 的稀烴聚合物、及/或(B)質量平均分子量為⑽⑽以上、小 於100,000的高分子化合物而成,且(c)質量平均分子量為 100,000以上之高分子化合物的調配量為小於丨〇質量%。以 下詳細地明本組成物。 1.基油 在本發明所使用的基油,必須是由礦物油、合成油或 該等的混合物所構成之潤滑油基油’且其黏度指數為125以 上。基油的黏度指數越高,越能夠抑制内燃機用潤滑油組 成物在尚溫之黏度低落,且越能夠抑制耐磨耗性和疲勞壽 命低落。黏度指数係以130以上為更佳。 而且’黏度指數係依據JIS K 2283而測得的值。 又,在本發明所使用的基油,其Noack蒸發量(250°Cx 1 h)為15質量。/。以下係必要的。Noack蒸發量(25〇〇C X1 h)係超 過15質量%時,本組成物的蒸發損失引起的油消耗會增 6 201144427 大。Noack蒸發量係以10質量。/()以下為佳。 而且’ Noack蒸發量係使用在CEC-L-40-A-93、ASTM D5800規定的方法所測得的值。 又’作為基油,可適合使用環分析之%Ca為3.〇以下且 硫分的含量為100質量ppm以下者。 在此’所謂環分析之%(^,係表示使用環分析n_d_M& 所算出之芳香族分的比率(百分率)。又,硫分係依據JIS κ 2 5 41所測得的值。% c A為3. 〇以下且硫分為1 〇 〇質量p p m以下 之基油’係能夠提供一種具有良好的氧化安定性且能夠抑 制酸值的上升和生成淤泥之潤滑油組成物。%Ca係以1〇以 下為較佳,以0.5以下為更佳。 在本組成物所使用的基油,係以在100 〇c具有2〜 20mm2/s的動黏度為佳’較佳是動黏度為3〜15nim2/s的範 圍’更佳是動黏度為3·5〜10mm2/s的範圍。基油的動黏度 太咼時,作為組成物時,攪拌阻力變爪爪%,又,因為在流 體潤滑區域之摩擦係數變高,致使省燃料費性變差。又, 動黏度太低時,在内燃機的動閥系統、活塞、環、軸承等 的滑動部,磨耗會增加。 作為前述礦物油,可舉出例如藉由將原油常壓蒸餾而 得到的潤滑油餾分和將常壓殘油進行減壓蒸餾而得到潤滑 油餾分,且將該等潤滑油餾分進行溶劑脫瀝青、溶劑萃取、 溶劑脫躐、接觸脫躐、氫化純化、氫化分解等之一種以上 的處理而純化而成者;或是藉由將使用礦物油系蠟、費托 程序(Fischer-Tropsch process)等所製得的蠟(GTL wax)異性 201144427 化而製得之礦物油等。 特別是本發明之黏度指數為125以上的基油,係能夠適 合藉由將潤滑油餾分的氫化分解、或是蠟的氫異性化而得 到的生成油,進行溶劑脫蠟或氫化脫蠟來製造。 虱化分解係通常在氫分壓7〜i4MPa的氫存在下、350 〜450°C的溫度、〇.1〜2111*-|的1^^乂(液體空間速度),使上 述潤滑油餾分與氫化分解觸媒、例如在氧化矽鋁 (silica-alumina)載體上負載鎳、鈷等的8族金屬之丨種以上、 及鉬、鎢等的6A族金屬之1種上而成之觸媒接觸來進行。 又,蠟的氫異性化係能夠在氫分壓5〜i4MPa的氫存在 下、300〜450 C的溫度、〇.1〜2 hr·1的LHSV(液體空間速 度)’使例如、在礦油系潤滑油的溶劑脫蠟步驟所得到的疏 卷石蠍(slack wax)和在費托合成(Fischer-Tropsch synthesis) 所得到的蠟等與氫異性化觸媒、例如在氧化鋁、或氧化矽 鋁載體上負載鎳、鈷等的8族金屬、及鉬、鎢等的6八族金屬 之1種上而成之觸媒接觸來進行。 藉由上述方法而得到的氫化分解生成油和氫異性化生 成油’係通常餾去輕質餾分而得到潤滑油餾分,亦能夠更 進行脫蠟處理來除去蠟分而得到低流動點(例如_丨〇。〇以下) 的潤滑油基油。 使用以上的方法而得到的潤滑油餾分,係亦可依照需 要而更進行溶劑純化或氫化純化。 另一方面’作為合成油,能夠使用各種先前眾所周知 者,例如能夠使用聚-α_烯烴、聚丁烯、聚醇酯、二元酸酯、 201144427 芳香族s旨、礎酸自旨、聚苯醚、烧基苯、烧基萘、聚氧烧二 醇、新戊二醇、石夕酮油、三經曱基丙烧、新戊四醇、以及 受阻醋等,就黏度指數比較高而、組成接近礦物油之緣故、 以及就在先前的礦物油所使用的添加劑能夠直接使用而 言,以聚-α-稀烴為特佳。 在本發明所使用的基油係只要滿足上述性狀,2種類以 上的礦物油、2種類以上的合成油、或礦物油與合成油之混 合物均無妨,而且在上述混合物之2種類以上的基油之混合 比係能夠任意地選擇。 2.烯烴聚合物及高分子化合物 本發明的内燃機用潤滑油組成物係能夠藉由對上述的 基油調配(Α)0·1〜10質量%、較佳是0.3〜7質量%、更佳是 0.5〜5質量%之質量平均分子量為500以上、10,000以下之 碳數2〜20的烯烴聚合物、及/或(Β)質量平均分子量為 10,000以上、小於100,000的高分子化合物而成,且((:)質量 平均分子量為1 〇〇,〇〇〇以上之高分子化合物的調配量為小 於1.0質量%來得到。 藉由調配質量平均分子量為500以上' 10,000以下之碳 數2〜20的烯烴聚合物和質量平均分子量為10,000以上、小 於100,000的高分子化合物,不僅是能夠提高組成物的黏度 指數,而且能夠抑制產生噪音。 對基油所調配之上述(Β)高分子化合物的質量平均分 子量為小於100,000,係因為對基油所調配之高分子化合物 的分子量,雖然越大時提升黏度指數的效果越大,但是由 201144427 於剪切引起高分子化合物的分子鏈產生配向,會引起暫時 性黏度低落而有無法維持必要的高溫高剪切黏度之可能 !·生又依照使用而有高分子化合物的分子键被切斷致使 分子量降低且黏度低落之可能性。 因此,以不調配質量平均分子量為1〇〇,〇〇〇以上(較佳是 70’000以上、更佳是5〇,_以上)的上述⑹高分子化合物為 佳,但是亦有為了提升黏度指數而得已添加之情況。但是 即便此情況,藉由小於丨謂量%、較佳是小於01質量%、 更佳是小於G.G1質量%,能夠得到本發明的内燃機用潤滑油 組成物。 又,上述(B)高分子化合物的質量平均分子量係以 70,000以下為佳,以5〇,〇〇〇以下為更佳。 作為前述(A)的烯烴聚合物,係選自碳數為2〜2〇、較 佳疋2〜16、更佳疋2〜14之烯烴的同元聚合物及共聚物之 一種以上。作為碳數2〜20的烯烴聚合物,代表性者可舉出 乙稀·α-烯烴共聚物和〇: _稀煙的同元聚合物及共聚物。該等 之中,作為乙烯-α-烯烴共聚物,可舉出15〜8〇莫耳%的乙 烯與丙烯、丁烯、丨·癸烯等之碳數3〜2〇的烯烴之共聚 物’可以是無規物亦可以是彼段物。該共聚物對潤滑油係 非分散型’亦可使用利用順丁烯二酸、Ν_吡咯咬酮、队乙 稀基口米。坐、丙稀酸環氧丙醋等將乙稀冬稀烴共聚物接枝化 而成之分散型者。又,α-烯烴的同元聚合物及共聚物係以 碳數4〜20為佳、較佳是碳數6〜12、更佳是碳數6〜14ia -稀烴的同元聚合物及共聚物,而且共聚物係可以是無規物 201144427 亦可以是嵌段物。 该等稀煙聚合物係能夠使用任意方法來製造。例如除 了月b夠採用無觸媒之熱反應來製造以外,亦能夠使用過氧 化笨甲醯等的有機過氧化物觸媒;氯化鋁、氣化鋁_多元醇 系、氣化鋁-四氣化鈦系、氣化鋁烷錫鹵化物(alkyhinhaUde) 系、氟化硼等的弗里德爾-克拉夫茨(Friedel_Crafts)型觸 媒,有機氯化鋁-四氣化鈦系、有機鋁_四氣化鈦系等的齊格 勒^_觸媒,|呂氡烧_ —戊錯(aluminoxane-zirconocene)系、離 子〖生化合物-二茂锆系等的金屬茂型觸媒;氯化鋁-鹼系、氟 化硼-鹼系路易斯酸複合物型觸媒等眾所周知的觸媒系,使 上述的烯烴同元聚合或共聚合來製造。又,雖然能夠使用 上述的烯烴聚合物,但是因為該烯烴聚合物係通常具有雙 鍵,考慮其熱、氧化安定性時,以使用將烯烴聚合物中的 雙鍵氫化而成之烯烴聚合物的氫化物為佳。 又,烯烴聚合物的質量平均分子量係以2 θθθ〜9 〇〇〇 為佳,以3,〇〇〇〜8,000為更佳。 作為前述高分子化合物,可適合舉出選自聚曱基丙烯 酸酿(PMA)、稀烴系共聚物(稀烴共聚物)' 苯乙稀系共聚物 (例如苯乙烯-二烯氫化共聚物等)及聚異丁烯之至少任— 種。聚曱基丙烯酸酯係能夠使用分散型、非分散型之任— 者作為烯烴共聚物之代表者,係乙烯-α _烯烴共聚物。 »亥等之中,能夠單獨使用一種,亦可組合二種以上而 使用。較佳者可舉出聚甲基丙烯酸酯(ρΜΑ)、烯烴系共聚 物(烯烴共聚物)。 201144427 3·摩擦調整劑 又,在本發明的内燃機用潤滑油組成物’為了提升省 燃料費性,以調配鉬系摩擦調整劑和無灰系摩擦調整劑為 佳。以併用鉬系摩擦調整劑及無灰系摩擦調整劑為更佳。 作為鉬系摩擦調整劑,可適合使用選自二硫胺甲酸鉬 (MoDTC)、二硫磷酸鉬(以下亦稱為MoDTP)及鉬酸的胺鹽 (以下亦稱為Mo胺鹽)之至少一種。鉬系摩擦調整劑之中, 就效果而言,以MoDTC為佳。該等能夠使用一種或組合二 種以上而使用,其較佳調配量係基於組成物總量,鉬量以 10〜1000質量ppm為佳,以100〜800質量ppm的範圍為更 佳。翻量小於10質量ppm時’無法得到充分的低摩擦性,超 過1000質量ppm時,該量係無法觀察到格外地提升摩擦特性 之效果。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lubricating oil composition for an internal combustion engine, and more particularly to a method for reducing noise during driving and improving fatigue life. A lubricating oil composition for an internal combustion engine which is useful as a lubricating oil for a four-cycle engine for a two-wheeled vehicle, which has a fuel economy and a fuel economy. L. Prior Art] Background of the Invention As a result of energy saving, reduction of carbon dioxide (C02), etc., lubricating oil (engine oil) for internal combustion engines is also strongly required to save fuel economy as a necessary performance. In the past, the engine oil used in the four-wheeled vehicle has been improved in fuel economy as a means to reduce the viscosity of the engine oil. However, even if it is the same engine oil, in order to improve the fuel economy of the engine oil used in the two-wheeled vehicle, when the engine oil is low-viscosity, the mechanical structure of the four-wheeled vehicle and the two-wheeled vehicle are different, which causes various problems. . In other words, since it is necessary to reduce the size of an engine or the like in a two-wheeled vehicle, it is common to have a structure in which the engine and the transmission for transmission are all lubricated using the same engine oil. In the engine oil used in the two-wheeled vehicle having such a structure, in order to improve fuel economy and use low-viscosity engine oil, fatigue damage such as gear pitting occurs in the transmission for shifting. Also, in the 201144427 two-wheeled vehicle, because the engine is exposed, the noise of the bow engine becomes louder and becomes a noise problem. Moreover, because the engine of the four-wheeler's two-wheeled vehicle is small, the oil will become high temperature, and the oil consumption due to evaporation of the oil becomes large. Therefore, it is necessary to solve these problems when it is desired to reduce the viscosity of the engine used in the two-wheeled vehicle and to increase the fuel economy. In addition, in the past, the viscosity index of the base oil combination polymer compound, that is, the viscosity index-increasing agent, was used to increase the viscosity index (see, for example, Patent Document). However, the lubricating oil containing the viscosity index improving agent is highly sheared under the tooth surface of the bearing and the gear of the engine, and the viscosity is lowered due to the alignment of the polymer. Therefore, in the conventional multi-stage engine oil (lubricating oil containing a polymer compound), since the high-temperature high-shear viscosity is insufficient, the metal fatigue resistance tends to be low, and the engine oil used in the two-wheeled vehicle has a low viscosity. Will become an obstacle. Therefore, the current situation is not solved when the engine oil used in the two-wheeled vehicle is low-viscosity and the fuel economy is increased. CITATION LIST Patent Literature [Patent Document 1] JP-A-2000-087070 SUMMARY OF INVENTION Technical Problem In the present invention, the present invention provides a reduction in driving even at a low viscosity. The sound of the time, the fatigue damage of the gear pocks and the like, the reduction of the oil consumption, and the fuel economy of the internal combustion engine group 201144427 are designed for the purpose. Means for Solving the Problem As a result of intensive studies, the inventors have found that this object can be achieved by blending a polymer having a specific structure and molecular weight and/or a polymer compound having a specific molecular weight in a specific base oil. The present invention has been completed based on such knowledge. That is, the present invention is a lubricating oil composition for an internal combustion engine characterized by a base oil having a viscosity index of 125 or more and a Noack evaporation amount (250 ° C X lh) of 15% by mass or less, based on the total amount of the composition. (A) 0.1 to 10% by mass of an olefin polymer having a mass average molecular weight of 500 or more and 10,000 or less and having a carbon number of 2 to 20, and/or (B) a mass average molecular weight of 10,000 or more and less than 100,000 The compounding amount of the polymer compound (C) having a mass average molecular weight of 100,000 or more is less than 1.0% by mass. [2] The lubricating oil composition for an internal combustion engine according to [1], wherein the polymer compound is one or more selected from the group consisting of polydecyl acrylate, olefin copolymer, styrene copolymer, and polyisobutylene. Molecular compound. [3] The lubricating oil composition for an internal combustion engine of [1] or [2], wherein a molybdenum-based friction modifier or an ashless friction modifier is further formulated. [4] The lubricating oil composition for an internal combustion engine according to any one of [1] to [3] wherein the Noack evaporation amount (250 ° C x lh) is 10.0% by mass or less and the viscosity index is 140 or more. [5] The lubricating oil composition for an internal combustion engine according to any one of [1] to [4], which is a lubricating oil for a four-stroke engine for a two-wheeled vehicle. Advantageous Effects of Invention 201144427 According to the present invention, it is possible to provide an internal combustion engine (four) lubricating oil composition capable of reducing noise during driving, suppressing fatigue damage such as gear bumps, reducing oil consumption, and having good fuel economy. Things. I: Embodiment of the Invention The lubricating oil composition for an internal combustion engine of the present invention (hereinafter also referred to as "the present plant") is a lubricating oil composition for an internal combustion engine having the following characteristics: the viscosity index is The base oil of 125 or more and the NGaek evaporation amount (25{rcxih)^5 mass% or less is based on the total amount of the composition, and the mass average molecular weight of (A) G Bu 1〇% by mass is lion or more and 1 Mmm. a rare hydrocarbon polymer of carbon #u to 2q, and/or (B) a polymer compound having a mass average molecular weight of (10) (10) or more and less than 100,000, and (c) a compounding amount of a polymer compound having a mass average molecular weight of 100,000 or more It is less than 丨〇 mass%. The composition is described in detail below. 1. Base oil The base oil used in the present invention must be a lubricating base oil composed of mineral oil, synthetic oil or a mixture thereof and has a viscosity index of 125 or more. The higher the viscosity index of the base oil, the more the viscosity of the lubricating oil composition for an internal combustion engine is suppressed at a low temperature, and the more the wear resistance and the fatigue life are suppressed. The viscosity index is preferably 130 or more. Further, the 'viscosity index is a value measured in accordance with JIS K 2283. Further, in the base oil used in the present invention, the Noack evaporation amount (250 ° C x 1 h) was 15 mass. /. The following are necessary. When the Noack evaporation amount (25 〇〇 C X1 h) exceeds 15% by mass, the oil consumption due to the evaporation loss of the composition increases by 6 201144427. Noack evaporation is 10 mass. /() is better below. Further, the Noack evaporation amount was measured using the method specified in CEC-L-40-A-93 and ASTM D5800. Further, as the base oil, the % Ca of the ring analysis is preferably 3. Å or less and the content of the sulfur is 100 ppm by mass or less. Here, the % of the so-called ring analysis (^ indicates the ratio (percentage) of the aromatic fraction calculated using the ring analysis n_d_M& Further, the sulfur fraction is a value measured in accordance with JIS κ 2 5 41. % c A A base oil having a sulfur content of less than 1 〇〇 mass ppm or less can provide a lubricating oil composition having good oxidation stability and capable of suppressing an increase in acid value and generating sludge. Preferably, the following is preferably 0.5 or less. The base oil used in the composition preferably has a dynamic viscosity of 2 to 20 mm 2 /s at 100 〇c, preferably a dynamic viscosity of 3 to 15 nim 2 . The range of /s is better. The dynamic viscosity is in the range of 3·5 to 10 mm 2 /s. When the dynamic viscosity of the base oil is too high, the stirring resistance changes to the claws as a composition, and, because, in the fluid lubrication region When the friction coefficient is high, the fuel economy is deteriorated. When the dynamic viscosity is too low, the wear is increased in the sliding portion of the moving valve system, piston, ring, bearing, etc. of the internal combustion engine. For example, a lubricating oil fraction obtained by atmospheric distillation of crude oil and will often The residual oil is distilled under reduced pressure to obtain a lubricating oil fraction, and the lubricating oil fraction is purified by solvent deasphalting, solvent extraction, solvent desorption, contact desorption, hydrogenation purification, hydrogenation decomposition, or the like. Or a mineral oil obtained by chemically using a wax (GTL wax) 201144427 obtained by using a mineral oil wax, a Fischer-Tropsch process, etc. In particular, the viscosity index of the present invention. The base oil of 125 or more can be suitably produced by decomposing a hydrogenated oil fraction or anisotropically obtained hydrogen of a wax, and performing solvent dewaxing or hydrodewaxing to produce a deuterated decomposition system. In the presence of hydrogen having a partial pressure of hydrogen of 7 to i4 MPa, a temperature of 350 to 450 ° C, and 1 ^ 2 乂 (liquid space velocity) of 〇.1 to 2111*-|, the lubricating oil fraction and the hydrogenation decomposition catalyst, for example, It is carried out by contacting a catalyst of a Group 8 or more of a Group 8 metal such as nickel or cobalt and a Group 6A metal such as molybdenum or tungsten on a silica-alumina carrier. The hydrogen heterogeneity system can be in the hydrogen partial pressure of 5~i4MPa In the presence of a temperature of 300 to 450 C, LHSV (liquid space velocity) of 〇.1 to 2 hr·1 makes, for example, a slack wax obtained in a solvent dewaxing step of a mineral oil-based lubricating oil. And a hydrogen heterogeneous catalyst such as a wax obtained by Fischer-Tropsch synthesis, for example, a Group 8 metal such as nickel or cobalt supported on alumina or a yttrium aluminum oxide support, and molybdenum, tungsten, or the like. The catalyst is formed by contacting a catalyst made of one of the six or eight metals. The hydrogenation decomposition oil and the hydrogen heterogeneity oil obtained by the above method are generally used to distill off the light fraction to obtain a lubricating oil fraction. The dewaxing process can be further performed to remove the wax and obtain a low flow point (for example, _ 丨〇. 〇 The following) Lubricating base oil. The lubricating oil fraction obtained by the above method may be further subjected to solvent purification or hydrogenation purification as needed. On the other hand, as the synthetic oil, various previously known ones can be used, and for example, poly-α-olefin, polybutene, polyalcohol ester, dibasic acid ester, 201144427 aromatic s, base acid, polyphenylene can be used. Ether, alkylbenzene, alkylene naphthalene, polyoxyalkylene glycol, neopentyl glycol, linalool oil, triterpenoid propyl alcohol, neopentyl alcohol, and hindered vinegar, etc., the viscosity index is relatively high, The composition is close to mineral oil, and the additive used in the previous mineral oil can be used directly, particularly preferably poly-?-dilute hydrocarbon. In the base oil system to be used in the present invention, two or more types of mineral oil, two or more types of synthetic oils, or a mixture of mineral oil and synthetic oil may be used as long as the above-mentioned properties are satisfied, and two or more types of base oils of the above mixture are used. The mixing ratio can be arbitrarily selected. 2. Olefin polymer and polymer compound The lubricating oil composition for an internal combustion engine of the present invention can be formulated by mixing the above-mentioned base oil by 0.1 to 10% by mass, preferably 0.3 to 7% by mass, more preferably 5% to 5% by mass of an olefin polymer having a mass average molecular weight of 500 or more and 10,000 or less and a carbon number of 2 to 20, and/or a polymer compound having a mass average molecular weight of 10,000 or more and less than 100,000, and ((:) The mass average molecular weight is 1 〇〇, and the compounding amount of the polymer compound or more is less than 1.0% by mass. The mass average molecular weight is 500 or more and the carbon number is 20,000 or less. The olefin polymer and the polymer compound having a mass average molecular weight of 10,000 or more and less than 100,000 can not only improve the viscosity index of the composition but also suppress the generation of noise. The mass average of the above (Β) polymer compound formulated for the base oil The molecular weight is less than 100,000, because the molecular weight of the polymer compound formulated for the base oil, although the larger the effect of increasing the viscosity index, the greater the effect, but by 201144427 When the molecular chain of the polymer compound is caused to align, the temporary viscosity is lowered and the necessary high temperature and high shear viscosity cannot be maintained! The molecular bond of the polymer compound is cut off according to the use, and the molecular weight is lowered. Therefore, it is preferable that the above-mentioned (6) polymer compound having a mass average molecular weight of 1 Å or more (preferably 70'000 or more, more preferably 5 Å or more) is used. However, there is also a case where it has been added in order to increase the viscosity index. However, in this case, the present invention can be obtained by being less than 丨, %, preferably less than 01% by mass, more preferably less than G.G1% by mass. Further, the mass average molecular weight of the polymer compound (B) is preferably 70,000 or less, more preferably 5 Å or less, and more preferably olefin polymer (A). It is one or more kinds of homopolymers and copolymers selected from the group consisting of olefins having a carbon number of 2 to 2, preferably 2 to 16, more preferably 2 to 14. As an olefin polymer having 2 to 20 carbon atoms, Sex can be cited Ethylene-α-olefin copolymer and 〇: _ smoked homopolymer and copolymer. Among these, as the ethylene-α-olefin copolymer, 15 to 8 〇 mol% of ethylene and A copolymer of olefins having a carbon number of 3 to 2 Å such as propylene, butene or decene may be a random or a component. The copolymer may be used in a non-dispersed type of lubricating oil. Maleic acid, Ν_pyrrole ketone, team Ethyl base rice, sitting, acrylic acid propylene vinegar, etc., which are obtained by grafting ethylene thin hydrocarbon copolymer into a dispersion type. The homopolymer and copolymer of the olefin are preferably a homopolymer and a copolymer having a carbon number of 4 to 20, preferably a carbon number of 6 to 12, more preferably a carbon number of 6 to 14 ia - a dilute hydrocarbon, and The copolymer system may be random 201144427 or may be a block. These thin smoke polymers can be produced by any method. For example, in addition to the month b, it is possible to use a non-catalytic thermal reaction to manufacture, and an organic peroxide catalyst such as peroxyformamide can also be used; aluminum chloride, vaporized aluminum _ polyol, gasified aluminum-four Gasified titanium-based, vaporized aluminide tin halide (alkyhinhaUde) system, Friedel-Crafts type catalyst such as boron fluoride, organic aluminum chloride-tetra-titanized titanium system, organic aluminum_ Ziegler ^_catalyst such as titanium tetrazolium, | aluminoxane-zirconocene, metal-based catalyst such as ionic compound-zirconocene; aluminum chloride A well-known catalyst system such as a base-based or boron fluoride-base Lewis acid complex-type catalyst is produced by homopolymerizing or copolymerizing the above-mentioned olefin. Further, although the above olefin polymer can be used, since the olefin polymer usually has a double bond, in consideration of heat and oxidation stability, an olefin polymer obtained by hydrogenating a double bond in an olefin polymer is used. A hydride is preferred. Further, the mass average molecular weight of the olefin polymer is preferably 2 θ θ 〜 9 〇〇〇, more preferably 3 〇〇〇 〜 8,000. The polymer compound is preferably selected from the group consisting of polyacrylic acid styrene (PMA) and dilute hydrocarbon copolymer (dilute hydrocarbon copolymer) styrene copolymer (for example, styrene-diene hydrogenated copolymer, etc.) And at least any of polyisobutylene. The polydecyl acrylate type can be either a dispersion type or a non-dispersion type, and is a representative of an olefin copolymer, and is an ethylene-α-olefin copolymer. In the case of Hai, etc., one type can be used alone or two or more types can be used in combination. Preferred are polymethacrylate (ρΜΑ) and olefin copolymer (olefin copolymer). In the lubricating oil composition for an internal combustion engine of the present invention, it is preferable to blend a molybdenum-based friction modifier and an ashless friction modifier in order to improve fuel economy. It is more preferable to use a molybdenum-based friction modifier and an ashless friction modifier. As the molybdenum-based friction modifier, at least one selected from the group consisting of molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate (hereinafter also referred to as MoDTP), and an amine salt of molybdic acid (hereinafter also referred to as Mo amine salt) can be suitably used. . Among the molybdenum-based friction modifiers, MoDTC is preferred in terms of effect. These may be used singly or in combination of two or more. The preferred blending amount is based on the total amount of the composition, and the amount of molybdenum is preferably from 10 to 1,000 ppm by mass, more preferably from 100 to 800 ppm by mass. When the amount of reversal is less than 10 ppm by mass, sufficient low friction property cannot be obtained, and when it exceeds 1000 ppm by mass, the effect of particularly improving the friction characteristics cannot be observed.

MoDTC係以下述通式(I)表示。 [化1] S X X s R*. u η .χ. ιι _ « χ·〆^3 在通式(I),R1〜R4係碳數5〜16的烴基’全部可以相同 亦可以不同。X係S(硫原子)或〇(氧原子)。作為R1〜R4所表 示烴基,可舉出例如碳數5〜16的烷基、碳數5〜16的烯基、 碳數5〜16的環烷基、碳數5〜16的環芳基、碳數5〜16的芳 烷基等。作為碳數5〜16的烴基之具體例,可舉出各種戊 基、各種己基、各種庚基、各種辛基、各種壬基、各種癸 基、各種Η —基、各種十二基、各種十三基、各種十四基、 12 201144427 各種十五基、各種十六基、各種辛稀基、各種壬稀基、各 種癸烯基、各種十一烯基、各種十二烯基、各種十三烯基、 各種十四烯基、各種十五烯基、各種環己基、二甲基環己 基、乙基環己基、曱基環己基甲基、環己基乙基、丙基環 己基、丁基環己基、庚基環己基、苯基、甲苯基、二曱基 苯基、丁基苯基、壬基苯基、曱苄基、苯乙基、萘基、二 甲基萘基等。 又,MoDTP係以下述通式(II)表示。 [化2]MoDTC is represented by the following general formula (I). S X X s R*. u η .χ. ιι _ « χ·〆^3 In the general formula (I), R1 to R4 are all hydrocarbon groups having a carbon number of 5 to 16 and may be the same or different. X system S (sulfur atom) or hydrazine (oxygen atom). Examples of the hydrocarbon group represented by R1 to R4 include an alkyl group having 5 to 16 carbon atoms, an alkenyl group having 5 to 16 carbon atoms, a cycloalkyl group having 5 to 16 carbon atoms, and a cycloaryl group having 5 to 16 carbon atoms. An aralkyl group having a carbon number of 5 to 16 or the like. Specific examples of the hydrocarbon group having 5 to 16 carbon atoms include various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various fluorenyl groups, various fluorenyl groups, various fluorenyl groups, various twelve groups, and various ten groups. Tribasic, various tetradecyl, 12 201144427 various fifteen groups, various hexadecyl groups, various octyl groups, various fluorene groups, various decyl groups, various undecenyl groups, various dodecenyl groups, various thirteen Alkenyl, various tetradecenyl, various pentadecenyl, various cyclohexyl, dimethylcyclohexyl, ethylcyclohexyl, nonylcyclohexylmethyl, cyclohexylethyl, propylcyclohexyl, butyl ring Hexyl, heptylcyclohexyl, phenyl, tolyl, dinonylphenyl, butylphenyl, nonylphenyl, hydrazinobenzyl, phenethyl, naphthyl, dimethylnaphthyl and the like. Further, MoDTP is represented by the following formula (II). [Chemical 2]

Rs —0、 S Y Jl II ^ Y Jl S It R6-0' S—M〇^ ^Mo— S- -P 0-R7 0- R8 在通式(II),R5〜R8係碳數5〜16的烴基,可以全部相 同亦可以不同。Y係S(硫原子)或0(氧原子)。作為R5〜R8所 表示烴基,可舉出例如碳數5〜16的烷基、碳數5〜16的烯 基、碳數5〜16的環烷基、碳數5〜16的環芳基、碳數5〜16 的芳烷基等。作為碳數5〜16的烴基之具體例,可舉出各種 戊基、各種己基、各種庚基、各種辛基、各種壬基、各種 癸基、各種Η —基、各種十二基、各種十三基、各種十四 基、各種十五基、各種十六基、各種辛稀基、壬稀基、各 種癸烯基、各種十一烯基、各種十二烯基、各種十三烯基、 各種十四烯基、各種十五烯基、各種環己基、二甲基環己 基、乙基環己基、曱基環己基甲基、環己基乙基、丙基環 己基、丁基環己基、庚基環己基、苯基、甲苯基、二甲基 苯基、丁基苯基、壬基苯基、甲苄基、苯乙基、萘基、二 13 201144427 甲基萘基等。 又’ Mo胺鹽係以下述通式(m)表示。 [化3] °Vw ^0Ν«2 R2 tVf Ο、 O QNHa Rz Λ Λ * (Β) 在通式(III),R係碳數5〜18的烴基,4個烯烴基可以全 部相同亦可以不同。作為碳數5〜丨8的烴基,可舉出例如碳 數5〜18的烷基、碳數5〜18的烯基、碳數5〜18的環烷基、 碳數5〜18的環芳基、碳數5〜18的芳烷基等。作為碳數5〜 18的烴基之具體例’可舉出各種戊基、各種己基、各種庚 基、各種辛基 '各種壬基、各種癸基、各種十一基、各種 十二基、各種十三基、各種十四基、各種十五基、各種十 ’、基、各種十七基、各種十人基、各種辛稀基、壬稀基、 各種癸稀基、各種十―稀基、各種十二烯基、各種十三稀 f、各種十四烯基、各種十五稀基、各種環己基、二甲基 衣己基、乙基垓己基、甲基環己基甲基環己基乙基丙 基環:基、丁基環己基、庚基環己基、苯基、甲苯基、二 甲基本基、T基苯基、壬基苯基、甲f基苯乙基、萃基、 二甲基萘基等。 、 t作為無灰系摩擦調整劑,可舉出例如脂肪酸、高級醇、 月曰肪H油脂類、胺、酿胺、硫化料。該等摩擦調整劑 ^夠單獨含有或任意驗合魏種斜有,通常,其調配 ’、、’且成物王量作為基準,為GG1〜1Q質量%的範圍。 4.内燃機用潤滑油組成物 14 201144427 本發明的内燃機用潤滑油組成物係能夠藉由將基油的 黏度指數、Noack蒸發量(250°Cxlh)、浠烴聚合物、高分子 化合物的質量平均分子量及高分子化合物的調配量設為上 述預定範圍而得到。如此的調配量時,能夠得到黏度指數 為135或140以上且噪音低、抑制齒輪麻點等疲勞損傷的效 果優良之内燃機用潤滑油組成物。 又,本組成物係相對於低剪切時的黏度,在150°C之高 剪切時的黏度降低率以3.0%以下為佳。這是因為高剪切時 的黏度降低超過3.0%之内燃機用潤滑油,係有必要預測黏 度降低而將低剪切黏度設定為較高,會使省燃料費性變差 之緣故。 而且,潤滑油組成物係以在100 °c的動黏度為小於 11.0mm2/s為佳。這是因為11.0mm2/s以上時,内燃機用潤滑 油的實際使用溫度區域(80°C〜l〇〇°C)的動黏度係太高,而 無法謀求省燃料費化之緣故。 特別是潤滑油組成物係在15 0 °C的高剪切黏度為相當 於SAE黏度等級30之2.9mPa.s以上的情況,在100°C的動黏 度係以小於9.0mm2/s為佳,在150°C的高剪切黏度為相當於 SAE黏度等級20之2.6mPa_s以上的情況,在100°C動黏度係 以小於7.5mm2/s為佳。這是因為超過該等的100°C動黏度 時,在實際使用溫度區域(80°C〜l〇〇°C)之内燃機用潤滑油 的黏性變為太高,相較於先前油,無法謀求省燃料費化之 緣故。 5.其他添加劑 15 201144427 而且’在本發明的内燃機用潤滑油組成物,在不損害 本發明的目的之範圍’亦可以將以無灰系分散劑、金屬系 清淨劑、極壓劑、金屬鈍化劑、防鏽劑、消泡劑、抗乳化 劑及著色劑為代表之各種添加劑單獨或組合數種而調配。 作為無灰系分散劑,可舉出具有質量平均分子量為900 〜3,500的聚丁烯基之聚丁烯基琥珀醯亞胺、聚丁烯基苄胺、 聚丁烯基胺、及該等的硼酸改性物等的衍生物等。該等無灰 系分散劑係能夠單獨含有或任意地組合複數種而含有,通常 其含量係以組成物總量基準為0.01〜10質量%的範圍。 作為金屬系清淨劑,可舉出例如鹼金屬(納(Na))、鉀(κ) 等)、或鹼土類金屬(鈣(Ca)、鎂(Mg)等)的磺酸鹽、酚鹽、 柳酸鹽及環烷酸鹽(naphthenate)等。該等能夠單獨使用,亦 可組合複數種而使用。該等的金屬系清淨劑之總鹼值及調 配量’係按照所要求之潤滑油的性能而適當地選擇即可。 總鹼值係通常為〇〜500mgK〇H/g,以10〜400mgKOH/g為 佳。又,其調配量係通常以組成物的總量基準為〜10質 量%的範圍。 作為極壓劑,可舉出例如硫化烯經、二烧基多硫化物、 一 ^基燒基多硫化物、二芳基多硫化物等的硫系化合物、 磷酸酯、硫磷酸酯、亞磷酸酯、烷基亞磷酸氫、磷酸酯胺 鹽、亞磷酸酯胺鹽等的磷酸系化合物等,通常’其調配量 係以組成物總量基準為0 01〜10質量%的範圍。 作為金屬鈍化劑,可舉出苯并三吨、三。坐衍生物、苯 并三唑衍生物、嗟二唑衍生物等,通常,其調配量係以組 201144427 成物總量基準為0·01〜3質量。/。的範圍。 作為防鏽劑,可舉出例如脂肪酸、稀基琥珀酸半酯、 脂肪酸肥皂、烷基磺酸鹽、鹼土類金屬(鈣(Ca)、鎂(Mg)、 銷(Ba)等)的磺酸鹽、酚鹽、柳酸鹽及環烷酸鹽、多元醇脂 肪酸酯、脂肪酸胺、氧化石蠟、烷基聚氧乙烯醚等,通常, 其調配量係以組成物的總量基準為0·01〜5質量%的範圍。 作為消泡劑,係以液狀矽酮為適合,可使用例如甲基 矽酮、氟矽酮、及聚丙烯酸酯等。該等消泡劑之較佳調配 量’係以組成物的總量基準為0.0005〜0.1質量%。 作為抗乳化劑,能夠使用乙稀丙稀嵌段聚合物、驗土 類金屬(約(Ca)、鎂(Mg) 4)的續酸鹽、齡鹽、柳酸鹽及環院 酸鹽等,通常,其調配量為0.0005〜0.1質量〇/0。 作為著色劑’能夠使用染料和顏料等,通常,其調配 量係以以組成物的總量基準為0.0 01〜1質量%。 如此進行而調製之本發明的内燃機用潤滑油組成物, 因為係如上述進行調配’具有低黏度但是蒸發減量少、黏 度指數南且南溫而剪切時之黏度降低率低之效果。特別是 在具有如此性質之同時,具有降低噪音之效果、抑制疲勞 損傷之效果及省燃料費性。因此,能夠適合使用作為内燃 機用潤滑油、特別疋作為一輪車用四衝程引擎用潤滑油有 用之内燃機用潤滑油組成物。 [實施例] 其次,藉由實施例來更詳細地說明本發明,但是本發 明不被以下的實施例限定。 17 201144427 又’在各例之潤滑油組成物(試料油)的性狀係使用以下 的方法來求得。 (1)動黏度(40°C、100°C)及黏度指數 依據JISK 2283的方法來測定。 (2)HTHS黏度(150°C) 依照ASTM D4683的方法,使用TBS高溫黏度計(錐形 承載模擬器;Tapered Bearing Simulator)來測定。將試驗條 件顯示在以下。 :106sec'' :3000rpm :2 〜3μπι :20〜50ml :校正4〜6小時 •剪切速度 •轉速(馬達) •間隔(轉子/定子) •試料量 •測定時間 :試驗15分鐘 (3)低溫黏度(CCS黏度) 依據JIS K2606,測定在-25°C、_30。(:之黏度。 (4)Noack蒸發量 使用在CEC-L-40-A-93、ASTMD5800/A所規定的方法 測定蒸發量。測定條件係於250。(: 1小時。 (5)噪音性評價 使用下述的引擎馬達裝置及運轉條件且依照下述的方 法進行測定噪音。 [引擎馬達裝置及運轉條件] 引擎:二輪車用水冷6〇〇。(:、4氣缸引擎 18 201144427 驅動馬達:7.5kw 動閥形式:DOHC(直打) 引擎轉速:3000rpm 承油盤油溫:100°C [噪音測定方法] 使用噪音計(小野測器公司製LA5560),並使用頻率分 析裝置(小野測器公司製Repolyzer XN-8100)來測定6300Hz 的頻率之功率譜(power spectrum)(dB)。 (6) 省燃料費性的評價 在如以下規格的引擎填充引擎油而進行馬達轉矩試 驗,來測定預定轉數之轉矩(dB)。將試驗條件顯示在以下。 •引擎馬達裝置及運轉條件 •引擎:二輪車用水冷600CC 4氣缸引擎 .動閥形式:DOHC(直打) •引擎轉速:5000rpm •承油盤油溫:100°C •驅動馬達:7.5kw (7) 疲勞壽命 使用4球轉動疲勞試驗機,並使用下述要領來測定疲勞 壽命。 (軸承) 材質:軸承鋼 試片:Φ60χ厚度5mm 試驗鋼球尺寸:Φ3/8英吋 19 201144427 (試驗條件) 荷重:147N 旋轉速度:2200rpm 油溫:120°C (評價方法) 將試片到達產生剝落的時間設作疲勞壽命,並將6次試 驗的結果進行韋伯統計(Weibull statistics)處理,來算出 L50(分)。 (8)黏度降低率 藉由對從在1〇〇。(:的動黏度及黏度指數所求得在^^^^ 的動黏度之值,乘以將從依據JIS κ 2249所測得在15t的密 度及在8(Γ(:的密度、外插而求得在150。(:的密度之值,作為 在150C之低剪切時的黏度。並從該值及上述HTHS黏度 (150°〇 ’算出黏度降低率。 [貫施例1〜5、比較例1〜7] 使用以下所表示的各種基油 '各種共聚物、高分子化 合物、添加劑’並依照表1的組成來調製内燃機用潤滑油組 成物(試料油)。 所調製的試料油係使用前述的方法來評價各性狀,將 結果顯示在表1。 (基油) •基油_1礦物油系氫化分解基油(API分類GIII)100N、 l〇〇C動點度4.175mm2/s、黏度指數丨3卜硫分〇 〇1質量%以 下、%CA 〇、Noack蒸發量14質量〇/〇 20 201144427 •基油-2礦物油系氫化分解基油(API分類Gill) 15 ON、 l〇〇°C動黏度6.274mm2/s、黏度指數129、硫分0.01質量%以 下、%CA 0、Noack蒸發量6質量% •基油-3礦物油系氫化分解基油(API分類GII)150N、 l〇〇°C動黏度5.284mm2/s、黏度指數104、硫分0.01質量%以 下、%CA 0、Noack蒸發量14質量% •基油-4礦物油系氫化分解基油(API分類GII)500N、 100°C動黏度10.89mm2/s、黏度指數107、硫分0·01質量°/〇以 下、°/〇Ca 0、Noack蒸發量4質量% •基油-5礦物油系氫化分解基油(API分類GII)、亮滑 油料(bright stock)、100°C 動黏度30.86mm2/s、黏度指數 107、硫分0.01質量。/〇以下、%CA 0、Noack蒸發量2質量% 以下 (烯烴聚合物) •共聚物-1乙烯-α-烯烴共聚物質量平均分子量 4,700(三井化學公司製LUCANTHC600) •共聚物-2乙烯-α-烯烴共聚物質量平均分子量 7,000(三井化學公司製LUCANTHC2000) (高分子化合物) •高分子化合物-1聚曱基丙烯酸酯(ΡΜΑ)、質量平均 分子量45,000(三洋化成工業公司製ACLUBE C-728) •高分子化合物_2烯烴共聚物(0CP)、質量平均分子 量 100,000(Chevron公司製 Paratone 8057) (流動點下降劑) 21 201144427 PMA、質量平均分子量690,000(DEGUSSA公司製 PLEXOL-162) (摩擦調整劑) 鉬系摩擦調整劑:使用二烷基二硫胺曱酸鉬作為摩擦 調整劑。又,鉬量為4.5wt%。 (DI劑)(清淨分散抗氧化複合劑;Detergent-Inhibitor) 複合添加劑((package additive)、ZnDTP(l.l)、金屬系 清淨劑(4)、硼改性琥珀醯亞胺A(l)、硼改性琥珀醯亞胺 B(l)、聚丁烯基琥珀醯亞胺(2.1)、胺系抗氧化劑(0.8)及稀 釋劑(剩餘部分)之混合物。()内係表示質量%。 22 201144427 ΗΤ¥Τ 實施例5 5W-20 00 m 〇 卜 〇 〇 m m 00 43.8 7.68 寸 VO (N Λ 1 6200 ON 75.5 19.8 § 實施例4 10W-30 88.2 <Ν Ο 〇 〇\ fN 63.52 | 10.55 oo tn ΓΛ 1 _ 5400 1 卜 74.5 21.7 (N 實施例3 10W-20 87.7 οι rn ο 〇 On (N 52.03 8.597 Os <N Λ 4400 1 cn 74.8 21.3 IT) 實施例2 5W-20 88.7 ο 〇 as (N 46.18 7.854 o v〇 (N — 1 6300 rn 74.9 21.1 00 實施例1 5W-20 | 00 ΓΛ 50.7 ψ 〇 ΓΛ ΓΛ 寸 〇6 43.5 7.64 寸 v〇 <N Λ 1 6100 ο 75.8 (Ν 組成物的SAE黏度分類 基油-1 基油-2 基油-3 基油-4 基油-5 共聚物-1 共聚物-2 高分子化合物-1 高分子化合物-2 流動點下降劑 摩擦調整劑 DI劑 1 質量% C/3 <N ε B < mPa.s mPa#s 質量% CO -ο Nm 分鐘 1 250〇Cxlh 40°C loot: 1 150°C 150°C -25 V -30°C 250〇Cxlh 1 1 1 基油 共聚物 高分子化合物 添加劑 黏度指數 Noack蒸發量 動黏度 黏度指數 HTHS黏度 黏度降低率 CCS黏度 Noack蒸發量 噪音 省燃料費性 疲勞壽命L50 組成 (質量%) 基油性狀 組成物的 性能、性狀 23 201144427 ε-【ι Ϋ】 比較例7 40 72.85 16.85 〇 S 124.7 13.57 ο 寸 1 1 1 m 74.8 22.4 00 V〇 比較例6 30 89.7 ΓΟ 〇 寸 97.34 11.49 〇 1—^ rn 1 1 1 m ro 75.5 21.9 Μ 比較例5 20 41.7 rn ο 〇 〇\ 56.53 7.993 00 〇 卜 (N 1 1 1 (N On 78.5 21.2 Os 比較例4 10W-40 85.6 as ΓΛ ο 〇 107 寸 87.46 13.17 ON ΓΊ 15.5 1 6300 13.5 75.8 22.2 04 1比較例3 1 10W-30 in 78.7 rn Ο 〇 1 1 « 寸 68.41 10.49 〇 1 5950 13.9 77.6 21.7 等 比較例2 5W-20 54.7 rn ο 〇 〇\ 44.35 7.647 1 1 fN 1 6300 1 78.3 ο 比較例1 15W-30 86.7 rn Ο 〇 104 寸 50.72 9.104 00 (Ν rn 1 7800 1 14.5 74.5 21.9 152 —---— 組成物的SAE黏度分類 基油-1 基油-2 基油-3 基油-4 基油-5 共聚物-1 共聚物-2 高分子化合物-1 高分子化合物-2 流動點下降劑 摩擦調整劑 DI劑 1 質量% Νε ε 1 mPa-s mPa*s 質量% QQ Ό Nm 分鐘 1 250°Cxlh 40°C loot: 1 150°C 150°C -25〇C -30°C 250〇Cxlh 1 1 1 1 i 基油 1 ! 共聚物 高分子化合物 添加劑 黏度指數 Noack蒸發量 動黏度 黏度指數 HTHS黏度 黏度降低率 CCS黏度 Noack蒸發量 噪音 省燃料費性 疲勞壽命L50 組成 (質量%) 基油性狀 組成物的 性能、性狀 24 201144427 從表1的結果得知以下情形。 (1) 本發明的内燃機用潤滑油組成物係任一者均具有良 好的低噪音性、耐疲勞壽命性、省燃料費性、耐蒸發性、 及低黏度降低性(實施例〜5)。相對地,未滿足本發明的任 一必要條件之組成物係無法滿足該等性能中之一個以上的 性能。 (2) 具體上,清楚明白以下情形。 ⑴相較於黏度等級為10W-30之比較高黏度(動 黏度)的比較例3之組成物,實施例1、實施例2及實 施例5的組成物的黏度等級為5W-20油係具有同等 或其以上之良好的低噪音性、耐疲勞壽命性、省燃 料費性、耐蒸發性。 (ii) 相較於黏度等級為40之比較高黏度(動黏度) 的比較例7之組成物’實施例3的組成物的黏度等級 為10W-20油係具有同等或其以上之良好的低嗓音 性、财疲勞壽命性。 (iii) 相較於黏度等級為1 〇W-40之比較高黏度 (動黏度)的比較例4之組成物’實施例4的組成物的 黏度等級為10W-30油係具有同等或其以上之良好 的低嗓音性、耐疲勞壽命性、耐蒸發性。 產業上之可利用性 本發明的内燃機用潤滑油組成物’係能夠提供一種即 便低黏度亦能夠降低行駛時的嗓音、抑制齒輪麻點等的疲 勞損傷、減少油消耗、而且具有良好的省燃料費性之内燃 25 201144427 機用潤滑油組成物。因此,能夠適合利用作為二輪車用四衝 程引擎用潤滑油亦可有效地使用之内燃機用潤滑油組成物。 c圖式簡單說明1 (無) 【主要元件符號說明】 (無) 26Rs —0, SY Jl II ^ Y Jl S It R6-0' S—M〇^ ^Mo— S- -P 0-R7 0- R8 In the formula (II), R5 to R8 are carbon numbers 5 to 16 The hydrocarbon groups may be all the same or different. Y is S (sulfur atom) or 0 (oxygen atom). Examples of the hydrocarbon group represented by R5 to R8 include an alkyl group having 5 to 16 carbon atoms, an alkenyl group having 5 to 16 carbon atoms, a cycloalkyl group having 5 to 16 carbon atoms, and a cycloaryl group having 5 to 16 carbon atoms. An aralkyl group having a carbon number of 5 to 16 or the like. Specific examples of the hydrocarbon group having 5 to 16 carbon atoms include various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various fluorenyl groups, various fluorenyl groups, various fluorenyl groups, various twelve groups, and various ten groups. Triyl, various fourteen groups, various fifteen groups, various hexadecyl groups, various octyl groups, hydrazine groups, various decyl groups, various undecenyl groups, various dodecenyl groups, various tridecenyl groups, Various tetradecenyl, various pentadecenyl, various cyclohexyl, dimethylcyclohexyl, ethylcyclohexyl, nonylcyclohexylmethyl, cyclohexylethyl, propylcyclohexyl, butylcyclohexyl, g. Cyclohexyl, phenyl, tolyl, dimethylphenyl, butylphenyl, nonylphenyl, methylbenzyl, phenethyl, naphthyl, bis 13 201144427 methylnaphthyl and the like. Further, the Mo amine salt is represented by the following formula (m). °Vw ^0Ν«2 R2 tVf Ο, O QNHa Rz Λ Λ * (Β) In the general formula (III), R is a hydrocarbon group having 5 to 18 carbon atoms, and the four olefin groups may be all the same or different. . Examples of the hydrocarbon group having a carbon number of 5 to 8 include an alkyl group having 5 to 18 carbon atoms, an alkenyl group having 5 to 18 carbon atoms, a cycloalkyl group having 5 to 18 carbon atoms, and a cycloaryl group having 5 to 18 carbon atoms. An aralkyl group having a carbon number of 5 to 18 or the like. Specific examples of the hydrocarbon group having 5 to 18 carbon atoms include various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, various sulfhydryl groups, various fluorenyl groups, various eleven groups, various twelve groups, and various ten. Three bases, various fourteen bases, various fifteen bases, various ten' bases, various seventeen bases, various ten bases, various nascent bases, bismuth bases, various bismuth bases, various ten-thin bases, various Dodecenyl, various thirteenth, various tetradecenyl, various pentadecyl, various cyclohexyl, dimethylhexyl, ethylhexyl, methylcyclohexylmethylcyclohexylethylpropyl Ring: benzyl, butylcyclohexyl, heptylcyclohexyl, phenyl, tolyl, dimethyl basic, T-phenyl, nonylphenyl, methylphenylethyl, benzyl, dimethylnaphthyl Wait. t, as the ashless friction modifier, for example, a fatty acid, a higher alcohol, a sulphur H oil, an amine, a brewing amine, and a sulfide. These friction modifiers are either singly or arbitrarily tested, and generally have a range of GG1 to 1Q% by mass based on the ratio of ',,' and the amount of the product. 4. Lubricating oil composition for internal combustion engine 14 201144427 The lubricating oil composition for internal combustion engine of the present invention can average the viscosity index of the base oil, the evaporation amount of Noack (250 ° C x lh), the mass of the terpene hydrocarbon polymer, and the polymer compound. The blending amount of the molecular weight and the polymer compound is obtained in the above predetermined range. When such a blending amount is obtained, it is possible to obtain a lubricating oil composition for an internal combustion engine which has an excellent viscosity index of 135 or more and a low noise and suppresses fatigue damage such as gear pitting. Further, the viscosity of the present composition is preferably 3.0% or less at a high shear at 150 °C with respect to the viscosity at the time of low shear. This is because the lubricating oil for internal combustion engines in which the viscosity at the time of high shear is reduced by more than 3.0% is necessary to predict a decrease in viscosity and to set a low shear viscosity to be high, which may result in deterioration of fuel economy. Further, the lubricating oil composition preferably has a dynamic viscosity at 100 ° C of less than 11.0 mm 2 /s. This is because, at 11.0 mm 2 /s or more, the dynamic viscosity of the actual use temperature region (80 ° C to l ° ° C) of the lubricating oil for an internal combustion engine is too high, and it is not possible to save fuel costs. In particular, the lubricating oil composition has a high shear viscosity at 150 ° C which is equivalent to 2.9 mPa·s or more of SAE viscosity grade 30, and the dynamic viscosity at 100 ° C is preferably less than 9.0 mm 2 /s. When the high shear viscosity at 150 ° C is equivalent to 2.6 mPa_s or more of SAE viscosity grade 20, the dynamic viscosity at 100 ° C is preferably less than 7.5 mm 2 /s. This is because when the dynamic viscosity of 100 ° C is exceeded, the viscosity of the lubricating oil for internal combustion engines in the actual use temperature range (80 ° C to 10 ° C) becomes too high, compared to the previous oil. Seeking to save fuel costs. 5. Other additives 15 201144427 and 'in the lubricating oil composition for internal combustion engines of the present invention, can be passivated with ashless dispersants, metal based detergents, extreme pressure agents, metals without departing from the scope of the object of the present invention' The various additives represented by the agent, the rust preventive agent, the antifoaming agent, the anti-emulsifier, and the coloring agent are formulated individually or in combination. Examples of the ashless dispersant include polybutenyl succinimide, polybutenyl benzylamine, polybutenylamine, and the like having a mass average molecular weight of 900 to 3,500. A derivative such as a boric acid modified product. These ashless dispersing agents can be contained alone or in combination of plural kinds, and the content thereof is usually in the range of 0.01 to 10% by mass based on the total amount of the composition. Examples of the metal-based detergent include sulfonate and phenate of an alkali metal (Na (Na)), potassium (κ), or an alkaline earth metal (such as calcium (Ca) or magnesium (Mg)). Salicylate and naphthenate, etc. These can be used alone or in combination of plural kinds. The total base number and the amount of the metal-based detergents may be appropriately selected in accordance with the performance of the desired lubricating oil. The total base number is usually from 〇~500 mgK〇H/g, preferably from 10 to 400 mgKOH/g. Further, the blending amount is usually in the range of ~10% by mass based on the total amount of the composition. Examples of the extreme pressure agent include sulfur compounds such as sulfurized olefins, dialkyl polysulfides, monoalkyl polysulfides, and diaryl polysulfides, phosphoric acid esters, sulfur phosphates, and phosphorous acid. A phosphate-based compound such as an ester, an alkyl hydrogen phosphite, a phosphate amine salt or a phosphite amine salt is usually in a range of from 0 to 10% by mass based on the total amount of the composition. Examples of the metal deactivator include benzotriazine and tris. The derivative, the benzotriazole derivative, the oxadiazole derivative, and the like are usually used in an amount of from 0. 01 to 3 based on the total amount of the group 201144427. /. The scope. Examples of the rust inhibitor include sulfonic acid, fatty succinic acid half ester, fatty acid soap, alkyl sulfonate, alkaline earth metal (calcium (Ca), magnesium (Mg), pin (Ba), etc. Salts, phenates, salicylates and naphthenates, polyhydric alcohol fatty acid esters, fatty acid amines, oxidized paraffins, alkyl polyoxyethylene ethers, etc., usually, the amount of the formulation is 0 based on the total amount of the composition. 01 to 5 mass% range. As the antifoaming agent, liquid fluorenone is suitable, and for example, methyl fluorenone, fluorenone, or polyacrylate can be used. The preferred blending amount of the antifoaming agent is 0.0005 to 0.1% by mass based on the total amount of the composition. As the anti-emulsifier, an ethylene propylene block polymer, a soil-recovering metal (about (Ca), magnesium (Mg) 4) a causal acid salt, an aged salt, a salicylate, and a cyclic acid salt can be used. Usually, the blending amount is 0.0005 to 0.1 mass 〇/0. As the coloring agent, a dye, a pigment, or the like can be used, and usually, the amount thereof is 0.001 to 1% by mass based on the total amount of the composition. The lubricating oil composition for an internal combustion engine of the present invention prepared as described above has the effect of being formulated as described above, having a low viscosity but a small amount of evaporation loss, a low viscosity index and a south temperature, and a low viscosity reduction rate when shearing. In particular, it has such a property that it has the effect of reducing noise, suppressing fatigue damage, and saving fuel. Therefore, it is possible to suitably use a lubricating oil composition for an internal combustion engine which is useful as a lubricating oil for internal combustion engines and a lubricating oil for a four-stroke engine for a four-wheeled vehicle. [Examples] Next, the present invention will be described in more detail by way of examples, but the present invention is not limited by the following examples. 17 201144427 Further, the properties of the lubricating oil composition (sample oil) of each example were obtained by the following methods. (1) Dynamic viscosity (40 ° C, 100 ° C) and viscosity index were measured in accordance with the method of JIS K 2283. (2) HTHS viscosity (150 ° C) was measured according to the method of ASTM D4683 using a TBS high temperature viscometer (cone load bearing simulator; Tapered Bearing Simulator). The test conditions are shown below. :106sec'' :3000rpm :2 〜3μπι :20~50ml : Correction 4~6 hours • Shear speed • Speed (motor) • Interval (rotor/stator) • Sample volume • Measurement time: 15 minutes of test (3) Low temperature Viscosity (CCS viscosity) Measured at -25 ° C, _30 according to JIS K2606. (4) Viscosity. (4) Noack evaporation amount The evaporation amount was measured by the method specified in CEC-L-40-A-93 and ASTM D5800/A. The measurement conditions were 250. (: 1 hour. (5) Noise Evaluation The noise was measured according to the following method using the following engine motor device and operating conditions. [Engine motor device and operating conditions] Engine: Two-wheeled vehicle was water-cooled 6 〇〇. (:, 4-cylinder engine 18 201144427 Drive motor: 7.5 KW dynamic valve type: DOHC (straight hit) Engine speed: 3000 rpm Oil pan oil temperature: 100 ° C [Noise measurement method] Using a noise meter (LA5560, manufactured by Ono Test Co., Ltd.), and using a frequency analysis device (Ono Test Co., Ltd.) Repolyzer XN-8100) is used to measure the power spectrum (dB) of the frequency of 6300 Hz. (6) Evaluation of fuel economy The motor torque test is performed by filling the engine oil with an engine of the following specifications to determine the schedule. Torque of the number of revolutions (dB). The test conditions are shown below. • Engine motor unit and operating conditions • Engine: Two-wheel motor water cooled 600CC 4-cylinder engine. Dynamic valve form: DOHC (straight hit) • Engine speed: 5000 rpm • Bearing Oil pan Temperature: 100 °C • Drive motor: 7.5kw (7) Fatigue life Use a 4-ball rotary fatigue tester and use the following method to determine the fatigue life. (Bearing) Material: Bearing steel test piece: Φ60χ thickness 5mm Test steel ball Dimensions: Φ3/8 inches 19 201144427 (test conditions) Load: 147N Rotation speed: 2200 rpm Oil temperature: 120 ° C (evaluation method) Set the time at which the test piece reaches the peeling off as the fatigue life, and the result of 6 tests Weibull statistics were processed to calculate L50 (minutes). (8) Viscosity reduction rate was obtained by the dynamic viscosity of the ^^^^ obtained from the kinetic viscosity and viscosity index of 1:. The value is multiplied by the density measured at 15t according to JIS κ 2249 and at 8 (Γ density, extrapolated and found at 150. (: density of the density, as low shear at 150C) The viscosity at the time was calculated from the value and the HTHS viscosity (150 ° 〇 '. [Examples 1 to 5, Comparative Examples 1 to 7] The various base oils represented by the following were used. Molecular compounds, additives' and modulate the internal combustion engine with the composition of Table 1. Oil composition (sample oil) The sample oil was prepared by the above method to evaluate each property, and the results are shown in Table 1. (Base oil) • Base oil _1 Mineral oil hydrogenation decomposition base oil (API classification GIII 100N, l〇〇C moving point 4.175mm2/s, viscosity index 丨3 硫 sulfur 〇〇1% by mass, %CA 〇, Noack evaporation 14 mass 〇/〇20 201144427 • Base oil-2 mineral oil Hydrogenated base oil (API classification Gill) 15 ON, l〇〇°C dynamic viscosity 6.274mm2/s, viscosity index 129, sulfur content 0.01% by mass or less, %CA 0, Noack evaporation amount 6 mass% • Base oil- 3 mineral oil hydrogenation decomposition base oil (API classification GII) 150N, l〇〇 °C dynamic viscosity 5.284mm2 / s, viscosity index 104, sulfur content 0.01% by mass or less, %CA 0, Noack evaporation 14% by mass Oil-4 mineral oil hydrogenation decomposition base oil (API classification GII) 500N, 100 °C dynamic viscosity 10.89mm2 / s, viscosity index 107, sulfur content 0. 01 mass ° / 〇 below, ° / 〇 Ca 0, Noack evaporation 4% by mass • Base oil-5 mineral oil hydrogenation decomposition base oil (API classification GII), bright stock (bright stock), 100 °C dynamic viscosity 30.86mm2/s Viscosity index of 107, a sulfur content of 0.01 mass. /〇 below, %CA 0, Noack evaporation amount 2% by mass or less (olefin polymer) • Copolymer-1 ethylene-α-olefin copolymer mass average molecular weight 4,700 (LUCANTHC600 manufactured by Mitsui Chemicals Co., Ltd.) • Copolymer-2 ethylene- The mass average molecular weight of the α-olefin copolymer is 7,000 (LUCANTHC2000 manufactured by Mitsui Chemicals Co., Ltd.) (polymer compound) • Polymer compound-1 polydecyl acrylate (ΡΜΑ), mass average molecular weight 45,000 (ACLUE C-728 manufactured by Sanyo Chemical Industries Co., Ltd.) • Polymer compound _2 olefin copolymer (0CP), mass average molecular weight 100,000 (Paratone 8057, manufactured by Chevron) (flow point depressant) 21 201144427 PMA, mass average molecular weight 690,000 (PLEXOL-162 manufactured by DEGUSSA) (friction adjustment) Molybdenum-based friction modifier: Molybdenum dialkyldithiocarbamate is used as a friction modifier. Further, the amount of molybdenum was 4.5% by weight. (DI agent) (clean dispersion anti-oxidation compound; Detergent-Inhibitor) composite additive (package additive), ZnDTP (ll), metal-based detergent (4), boron-modified amber imine A (l), boron A mixture of modified amber imine B (l), polybutenyl amber imine (2.1), amine antioxidant (0.8) and diluent (remaining portion). () Internal indicates mass %. 22 201144427 ΗΤ¥Τ Example 5 5W-20 00 m 〇卜〇〇mm 00 43.8 7.68 inch VO (N Λ 1 6200 ON 75.5 19.8 § Example 4 10W-30 88.2 <Ν Ο 〇〇\ fN 63.52 | 10.55 oo tn ΓΛ 1 _ 5400 1 卜 74.5 21.7 (N Example 3 10W-20 87.7 οι rn ο 〇 On (N 52.03 8.597 Os <N Λ 4400 1 cn 74.8 21.3 IT) Example 2 5W-20 88.7 ο 〇as (N 46.18 7.854 ov〇(N — 1 6300 rn 74.9 21.1 00 Example 1 5W-20 | 00 ΓΛ 50.7 ψ 〇ΓΛ ΓΛ inch 〇 6 43.5 7.64 inch v〇<N Λ 1 6100 ο 75.8 (Ν SAE viscosity of the composition Classification base oil-1 base oil-2 base oil-3 base oil-4 base oil-5 copolymer-1 copolymer-2 polymerization Compound-1 Polymer Compound-2 Flow Point Decrease Friction Adjuster DI Agent 1% by mass C/3 <N ε B < mPa.s mPa#s Mass % CO -ο Nm Min 1 250〇Cxlh 40°C Loot: 1 150°C 150°C -25 V -30°C 250〇Cxlh 1 1 1 Base oil copolymer polymer compound additive viscosity index Noack evaporation dynamic viscosity viscosity index HTHS viscosity viscosity reduction rate CCS viscosity Noack evaporation noise Fuel-saving fatigue life L50 Composition (% by mass) Properties and properties of base oil properties composition 23 201144427 ε-[ι Ϋ] Comparative Example 7 40 72.85 16.85 〇S 124.7 13.57 ο 1 1 1 m 74.8 22.4 00 V〇 Comparative Example 6 30 89.7 ΓΟ 97 97.34 11.49 〇1—^ rn 1 1 1 m ro 75.5 21.9 Μ Comparative Example 5 20 41.7 rn ο 〇〇\ 56.53 7.993 00 〇 ( (N 1 1 1 (N On 78.5 21.2 Os Comparison Example 4 10W-40 85.6 as ΓΛ ο 〇 107 inch 87.46 13.17 ON ΓΊ 15.5 1 6300 13.5 75.8 22.2 04 1 Comparative Example 3 1 10W-30 in 78.7 rn Ο 〇1 1 « Inch 68.41 10.49 〇1 5950 13.9 77.6 21.7 etc. Comparative Example 2 5W-20 54.7 rn ο 〇〇\ 44.35 7.647 1 1 fN 1 6300 1 78.3 ο Comparative Example 1 15W-30 86.7 rn Ο 〇 104 inch 50.72 9.104 00 (Ν rn 1 7800 1 14.5 74.5 21.9 152 —-- - SAE viscosity classification of the composition base oil-1 base oil-2 base oil-3 base oil-4 base oil-5 copolymer-1 copolymer-2 polymer compound-1 polymer compound-2 pour point depressant Friction Modifier DI Agent 1% by mass Νε ε 1 mPa-s mPa*s Mass % QQ Ό Nm Minute 1 250°Cxlh 40°C loot: 1 150°C 150°C -25〇C -30°C 250〇Cxlh 1 1 1 1 i base oil 1 ! copolymer polymer compound additive viscosity index Noack evaporation amount dynamic viscosity viscosity index HTHS viscosity viscosity reduction rate CCS viscosity Noack evaporation amount noise saving fuel fatigue life L50 composition (mass%) base oil properties Performance and properties of the composition 24 201144427 From the results of Table 1, the following cases were known. (1) Any of the lubricating oil compositions for an internal combustion engine of the present invention has good low noise resistance, fatigue life resistance, fuel economy, evaporation resistance, and low viscosity reduction (Examples 5 to 5). In contrast, a composition that does not satisfy any of the requirements of the present invention cannot satisfy one or more of these properties. (2) Specifically, the following situations are clearly understood. (1) The composition of Comparative Example 3 having a higher viscosity (dynamic viscosity) than the viscosity grade of 10 W-30, the compositions of Example 1, Example 2, and Example 5 have a viscosity grade of 5W-20 oil system. Good or low noise, fatigue life, fuel economy, and evaporation resistance equivalent or higher. (ii) The composition of Comparative Example 7 having a higher viscosity (dynamic viscosity) than that of the viscosity level of 40. The composition of Example 3 has a viscosity level of 10 W-20, and the oil system has a good low or higher. Voice, financial fatigue life. (iii) The composition of Comparative Example 4 having a higher viscosity (dynamic viscosity) than the viscosity level of 1 〇W-40. The composition of Example 4 has a viscosity level of 10 W-30, and the oil system has the same or higher. Good low noise, fatigue life and evaporation resistance. INDUSTRIAL APPLICABILITY The lubricating oil composition for an internal combustion engine of the present invention can provide a low-viscosity, which can reduce noise during traveling, suppress fatigue damage such as gear bumps, reduce oil consumption, and have good fuel economy. Expendable internal combustion 25 201144427 machine lubricant composition. Therefore, it is possible to suitably use a lubricating oil composition for an internal combustion engine which can be effectively used as a lubricating oil for a four-stroke engine for a two-wheeled vehicle. c Schematic description 1 (none) [Main component symbol description] (none) 26

Claims (1)

201144427 七、申請專利範圍: 1. 一種内燃機用潤滑油組成物,其特徵在於: 在黏度指數為125以上且諾亞克(Noack)蒸發量(250 °Cxlh)為15質量%以下之基油(base oil)中,以組成物總 量作為基準,含有:(A)質量平均分子量為500以上且 10,000以下之碳數2〜20的烯烴聚合物0.1〜10質量% ; 及/或作)質量平均分子量為10,000以上且小於100,000的 高分子化合物0.1〜10質量% ; 且,(C)質量平均分子量為100,000以上之高分子化 合物的調配量小於1_0質量%。 2. 如申請專利範圍第1項之内燃機用潤滑油組成物,其中 前述高分子化合物係選自聚曱基丙烯酸酯、烯烴共聚 物、苯乙烯共聚物及聚異丁烯中之一種或二種以上的高 分子化合物。 3. 如申請專利範圍第1或2項之内燃機用潤滑油組成物,其 更調配有鉬系摩擦調整劑或無灰系摩擦調整劑。 4. 如申請專利範圍第1至3項中任一項之内燃機用潤滑油 組成物,其中Noack蒸發量(250°Cxlh)為10.0質量%以下 且黏度指數為140以上。 5. 如申請專利範圍第1至4項中任一項之内燃機用潤滑油 組成物,其係二輪機動車用四衝程引擎用潤滑油。 27 201144427 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201144427 VII. Patent application scope: 1. A lubricating oil composition for an internal combustion engine, characterized in that: a base oil having a viscosity index of 125 or more and a Noack evaporation amount (250 ° Cxlh) of 15% by mass or less ( The base oil) contains, based on the total amount of the composition, (A) an olefin polymer having a mass average molecular weight of 500 or more and 10,000 or less and a carbon number of 2 to 20, 0.1 to 10% by mass; and/or a mass average The polymer compound having a molecular weight of 10,000 or more and less than 100,000 is 0.1 to 10% by mass; and the compounding amount of the polymer compound having a mass average molecular weight of 100,000 or more is less than 1% by mass. 2. The lubricating oil composition for an internal combustion engine according to claim 1, wherein the polymer compound is one or more selected from the group consisting of polydecyl acrylate, olefin copolymer, styrene copolymer, and polyisobutylene. Polymer compound. 3. For the lubricating oil composition for an internal combustion engine of claim 1 or 2, a molybdenum-based friction modifier or an ash-free friction modifier is further blended. 4. The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 3, wherein the Noack evaporation amount (250 ° C x lh) is 10.0% by mass or less and the viscosity index is 140 or more. 5. The lubricating oil composition for an internal combustion engine according to any one of claims 1 to 4, which is a lubricating oil for a four-stroke engine for a two-wheeled motor vehicle. 27 201144427 IV. Designated representative map: (1) The representative representative of the case is: ( ). (None) (2) A brief description of the symbol of the representative figure: 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW100109488A 2010-03-19 2011-03-18 Lubricating oil composition for internal combustion engines TW201144427A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064942A JP5727713B2 (en) 2010-03-19 2010-03-19 Lubricating oil composition for internal combustion engines

Publications (1)

Publication Number Publication Date
TW201144427A true TW201144427A (en) 2011-12-16

Family

ID=44649345

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109488A TW201144427A (en) 2010-03-19 2011-03-18 Lubricating oil composition for internal combustion engines

Country Status (6)

Country Link
US (1) US20130029892A1 (en)
JP (1) JP5727713B2 (en)
CN (1) CN102782107A (en)
BR (1) BR112012023571A2 (en)
TW (1) TW201144427A (en)
WO (1) WO2011115265A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902005B2 (en) * 2012-03-08 2016-04-13 シェブロンジャパン株式会社 Lubricating oil composition for automobile engine lubrication
US9963656B2 (en) * 2012-04-12 2018-05-08 Infineum International Limited Lubricating oil compositions
WO2014057683A1 (en) * 2012-10-10 2014-04-17 Jx日鉱日石エネルギー株式会社 Cylinder lubricating oil composition for crosshead-type diesel engine
JP6293115B2 (en) * 2013-03-04 2018-03-14 出光興産株式会社 Lubricating oil composition
JP6339593B2 (en) * 2013-03-04 2018-06-06 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap Lubricating composition
US20140274849A1 (en) * 2013-03-14 2014-09-18 Exxonmobil Research And Engineering Company Lubricating composition providing high wear resistance
US20170175029A1 (en) * 2014-03-31 2017-06-22 Idemitsu Kosan Co., Ltd. Lubricating-oil composition
KR20160087051A (en) * 2015-01-12 2016-07-21 에스케이이노베이션 주식회사 Lubricant composition for internal combustion engine
WO2016114401A1 (en) * 2015-01-15 2016-07-21 出光興産株式会社 Lubricating oil composition
US20180051228A1 (en) * 2015-03-31 2018-02-22 Idemitsu Kosan Co., Ltd. Lubricating oil composition for four stroke engine
JP6572597B2 (en) * 2015-03-31 2019-09-11 出光興産株式会社 Lubricating oil composition for 4-cycle engine
JP6569146B2 (en) * 2015-03-31 2019-09-04 出光興産株式会社 Lubricating oil composition for 4-cycle engine
CN105733773B (en) * 2016-03-14 2019-04-26 张继德 Oil gas general purpose engine oil
JP6992958B2 (en) 2016-03-25 2022-02-04 出光興産株式会社 Lubricating oil composition, internal combustion engine, and method of lubricating internal combustion engine
JP7072518B2 (en) * 2016-11-16 2022-05-20 出光興産株式会社 Grease composition for equipment equipped with automatic lubrication system and its manufacturing method
JP6927488B2 (en) 2017-03-30 2021-09-01 出光興産株式会社 A lubricating oil composition for a two-wheeled vehicle, a method for improving the fuel efficiency of a two-wheeled vehicle using the lubricating oil composition, and a method for producing the lubricating oil composition.
US20190024007A1 (en) * 2017-07-24 2019-01-24 Infineum International Limited Motorcycle Lubricant
JP2020075948A (en) * 2018-11-05 2020-05-21 三井化学株式会社 Resin composition and manufacturing method, and molded body thereof
JP7348747B2 (en) * 2019-04-26 2023-09-21 出光興産株式会社 Lubricating oil composition for transmissions, method for producing the same, lubrication method using the lubricating oil composition for transmissions, and transmissions
WO2022209487A1 (en) * 2021-03-30 2022-10-06 出光興産株式会社 Lubricating oil composition
CN114276856B (en) * 2021-12-29 2022-12-30 金丰宏润科技(广东)有限公司 Fully synthetic ester motorcycle oil and preparation method thereof
WO2023234294A1 (en) * 2022-05-31 2023-12-07 出光興産株式会社 Lubricating oil composition
WO2023238045A1 (en) * 2022-06-09 2023-12-14 Chevron Oronite Company Llc Lubricating oil composition with viscosity modifier with low shear stability index

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693698B2 (en) * 1993-04-22 1997-12-24 株式会社ジャパンエナジー Fuel-efficient lubricating oil
US5371130A (en) * 1993-10-07 1994-12-06 The Lubrizol Corporation Polymer compositions of improved compatibility in oil
JP4723056B2 (en) * 2000-05-17 2011-07-13 出光興産株式会社 Lubricating base oil and method for producing the same
JP4931299B2 (en) * 2001-07-31 2012-05-16 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP2004137317A (en) * 2002-10-16 2004-05-13 Japan Energy Electronic Materials Inc Lubricating oil for fuel consumption saving type internal combustion engine
JP5108200B2 (en) * 2003-11-04 2012-12-26 出光興産株式会社 Lubricating oil base oil, method for producing the same, and lubricating oil composition containing the base oil
JP4515797B2 (en) * 2004-03-19 2010-08-04 新日本石油株式会社 Lubricating oil composition for diesel engines
JP5421514B2 (en) * 2006-03-15 2014-02-19 Jx日鉱日石エネルギー株式会社 Lubricating base oil
WO2007105769A1 (en) * 2006-03-15 2007-09-20 Nippon Oil Corporation Lube base oil, lubricating oil composition for internal combustion engine, and lubricating oil composition for drive transmission device
EP2009084B1 (en) * 2006-03-31 2013-08-28 Nippon Oil Corporation Lube base oil, process for production thereof, and lubricating oil composition
JP5565999B2 (en) * 2007-01-31 2014-08-06 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
JP5280013B2 (en) * 2007-03-27 2013-09-04 Jx日鉱日石エネルギー株式会社 Lubricating oil composition
US20090163391A1 (en) * 2007-12-20 2009-06-25 Chevron U.S.A. Inc. Power Transmission Fluid Compositions and Preparation Thereof
JP5319996B2 (en) * 2008-09-16 2013-10-16 三井化学株式会社 Low viscosity engine oil composition
EP2712911A3 (en) * 2009-06-04 2014-08-06 JX Nippon Oil & Energy Corporation Lubricant oil composition

Also Published As

Publication number Publication date
CN102782107A (en) 2012-11-14
JP5727713B2 (en) 2015-06-03
WO2011115265A1 (en) 2011-09-22
JP2011195734A (en) 2011-10-06
US20130029892A1 (en) 2013-01-31
BR112012023571A2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
TW201144427A (en) Lubricating oil composition for internal combustion engines
JP5649675B2 (en) Lubricating oil composition for internal combustion engines
US8445418B2 (en) Lubricating oil composition for internal combustion engine
US7399736B2 (en) Low viscosity, high abrasion resistance engine oil composition
WO2016159258A1 (en) Gasoline engine lubricant oil composition and manufacturing method therefor
JP6751641B2 (en) Lubricating oil composition
JP5330716B2 (en) Lubricating oil composition
JP6293115B2 (en) Lubricating oil composition
SG193720A1 (en) Lubricating oil composition for automobile engine lubrication
JP7093343B2 (en) Lubricating oil composition for internal combustion engine
JP2004010799A (en) Lubricating oil composition
JP2012211338A (en) Lubricant base oil and method of producing the same, and lubricant composition that contains the base oil
JP6847684B2 (en) Lubricating oil composition
JP5694028B2 (en) Lubricating oil composition
JP6444219B2 (en) Lubricating oil composition for gear oil
CN108291169A (en) Lubricant composition for internal combustion engine
US20200190422A1 (en) Lubricating oil composition for internal combustion engine
JP2007217596A (en) Continuously variable transmission oil composition
WO2014156325A1 (en) Lubricant oil composition
JP2020076036A (en) Lubricant composition for internal combustion engine and producing method of the same, and controlling method of preignition
WO2022250018A1 (en) Lubricant composition for internal combustion engine
WO2022250017A1 (en) Lubricant composition for internal combustion engine
JP2000144166A (en) Lubricating oil composition for internal-combustion engine
JP2023004310A (en) Lubricant composition for internal combustion engines
JP2023176318A (en) Lubricant composition