TW201142929A - Dual gate oxide trench MOSFET with channel stop trench and three or four masks process - Google Patents

Dual gate oxide trench MOSFET with channel stop trench and three or four masks process Download PDF

Info

Publication number
TW201142929A
TW201142929A TW100117201A TW100117201A TW201142929A TW 201142929 A TW201142929 A TW 201142929A TW 100117201 A TW100117201 A TW 100117201A TW 100117201 A TW100117201 A TW 100117201A TW 201142929 A TW201142929 A TW 201142929A
Authority
TW
Taiwan
Prior art keywords
trench
gate
layer
region
mask
Prior art date
Application number
TW100117201A
Other languages
Chinese (zh)
Other versions
TWI528423B (en
Inventor
Sung-Shan Tai
Sik Lui
xiao-bin Wang
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/782,573 external-priority patent/US8394702B2/en
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201142929A publication Critical patent/TW201142929A/en
Application granted granted Critical
Publication of TWI528423B publication Critical patent/TWI528423B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A semiconductor device and fabrication methods are disclosed. The device includes a plurality of gate electrodes formed in trenches located in an active region of a semiconductor substrate. A first gate runner is formed in the substrate and electrically connected to the gate electrodes, wherein the first gate runner surrounds the active region. A second gate runner is connected to the first gate runner and located between the active region and a termination region. A termination structure surrounds the first and second gate runners and the active region. The termination structure includes a conductive material in an insulator-lined trench in the substrate, wherein the termination structure is electrically shorted to a source or body layer of the substrate thereby forming a channel stop for the device.

Description

201142929 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明主要關於溝槽金屬氧化物半導體場效應管(M0S- FET),更確切地説’是關於氧化物戴止溝槽M0SFET, 以及用三個或四個掩膜製備該元件的方法。 【先前技術·】 卿2] DM0S (雙擴散MOS)電晶體是一種利用兩個連續擴散技術 ,校準到同一邊緣上’以製備電晶體的通道區的電晶體 。DMOS電晶體通常是用於低壓和高壓的高電流元件,用 作獨立的電晶體或功率積體電路的組件。DMOS電晶體在 很低的正向電壓降下’就能提供單位面積上很高的電流 〇 陶3]典型的DMOS電晶體是一種稱為溝槽DM0S電晶體的電晶體 ’其中通道位於溝槽的侧壁上’栅極形成在溝槽中,從 源極開始,朝著漏極延伸。溝槽栅極佈滿薄氧化層,並 用多晶石夕填充,限制電流的能力次於平面栅極電晶 體結構,因此其比導通電阻值較低。 [〇〇〇4]然而,製備這種溝槽DM0S場效應管的傳統方法需要五至 六個掩膜技術,不僅昂貴,而且費時。第一個掩膜為深 勢阱掩膜,也用於高壓截止。根據所製備的元件是否是 尚壓元件,來選擇是否使用該掩膜。第二個掩膜為溝槽 掩膜,用於製備栅極和其他元件結構的溝槽。第三個掩 膜為本體掩膜,也用於製備截止區,保護柵極滑道中的 栅極氧化物不會因為裸露在柵極電勢中而被破壞,並且 遮罩柵極墊/柵極滑道遠離漏極電壓。第四個掩胲為源極 100117201 表單編號A0101 第4頁/共55頁 1003238382-0 201142929 掩膜,將源極區移出栅極滑道和截止區,從而將擊穿電 流移出這些區域,提高非嵌位元感應開關(UIS)性能。 第四個掩膜也用於製備通道終止。第五個掩膜為接觸掩 膜,用於製備源極/本體和栅極接頭,第六個掩膜為金屬 掩膜,用於將金屬層分成栅極和源極金屬區。 [0005] Ο [0006] G [0007] [0008] [0009] [0010] 第1圖表示溝槽MOSFET 100的剖面圖,該元件是利用上 述傳統的六掩膜技術製成的。如第j圖所示,溝槽m〇sfet 100包含位於有源區中的有源晶胞1 〇 2以及栅極滑道1 〇4 。栅極滑道連接到有源晶胞1〇2中的柵極上。p-反轉通道 可能會沿N-外延層ill的頂面,朝著晶片末端形成。如果 P-反轉通道從結截止108開始,觸及晶片邊緣112,那麼 就會在源極/本體和漏極之間,引起漏電流β重摻雜的N+ 通道終點106可以阻止這種ρ-反轉通道觸及晶片邊緣112 ’在晶片邊緣112處,它可以短接至漏極。 【發明内容】 本發明的目的是提供一種帶有通道截止溝槽的雙柵極氧 化物溝槽MOSFET及其三或四掩膜技術,以降低成本、簡 化製作技術。 本發明的技術方案是提供一種用於製備半導體元件的方 法,包含: a) 製備半導體襯底; b) 在半導體襯底上方使用第一掩膜; 並分別形成寬度為Wl ' W2的溝槽TR1、TR2,其中W1比W2 窄,其中溝槽TR2包含連接到溝槽TR1上的第一柵極滑道 100117201 表單編號A0101 第5頁/共55頁 1003238382-0 201142929 溝槽和第二柵極滑道溝槽,其中第一柵極滑道溝槽和第 二栅極滑道溝槽中的至少一個緊靠並包圍著溝槽TR1 ; [0011] c)在厚度為ΤΙ、T2的溝槽TR1、TR2的底部和侧壁上製 備柵極絕緣物,其中T2大於T1 ; [0012] d)在溝槽TR1中製備導電材料,以形成柵極電極,在溝 槽TR2中製備導電材料,以形成第一栅極滑道和第二柵極 滑道以及截止結構,其中第一和第二柵極滑道與栅極電 極電性連接; [0013] e)在半導體襯底的頂部製備一個本體層; [0014] f)在本體層的頂部製備一個源極層; [0015] g)在半導體襯底上方使用絕緣層; [0016] h)在絕緣層上方使用第二掩膜; [0017] i)利用第二掩膜,藉由絕緣層中的接觸開口形成電接頭 ,其中接觸開口包含在每個柵極電極附近的向著源極層 的源極開口、向著柵極滑道的栅極滑道開口、向著截止 結構的截止接觸開口以及晶片邊緣附近的向著源極層或 本體層的短路接觸開口;以及 [0018] j)在絕緣層上製備第一金屬區和第二金屬區,並且相互 電性絕緣,其中第一金屬區與柵極滑道電連接,其中第 二金屬區與源極接頭電連接, [0019] 其中厚度T2足夠厚,能夠承載閉鎖電壓。 [0020] 以上所述的方法中: 100117201 表單編號A0101 第6頁/共55頁 1003238382-0 201142929 _1] b)還包含製備寬度為W3的溝槽T3 ’其中wutw3窄其 中溝槽TR3包含包圍著溝槽TR1和柵極滑道之溝槽TR2的 截止溝槽; [0022] c)還包含在厚度為口的溝槽TR3的底部和侧壁上製備柵 極絕緣物,其,中T3大於T1 ; [0〇23] d)還包含在溝槽TR3中製備導電材料,以形成截止結構 ,其中截止結構與栅極滑道和柵極電極電絕緣; _] i) S包含利用第二掩膜,藉由絕緣層中的接觸開口,製 備電接頭’其中接觸開口包含向著截止結構的截止接觸 開口’以及晶片邊緣附近的向著源極層或本體層的短路 接觸開口;以及 [0025] [0026] ❹ [0027] [0028] [0029] [0030] [0031] [0032] [0033] 100117201 J)還包含在絕緣層上製備第三金屬區,其中第三金屬區 〔、截止接頭和短路接頭電連接,從而使截止結構在晶片 邊緣處短接至本體區上, 其中厚度T3足夠厚,能夠承栽閉鎖電壓。 以上所述的方法中,步驟e)包含: 在整個半導_底_部製備-個本體層。 以上所述的方法中,步驟j)包含: 在絕緣層上方沉積-個金屬層; 在金屬層上方使用一個金屬掩膜;以及 t屬區和 以上所述的方法中,步驟〇包含 表單編號A0101 ^ 1003238382-0 第7頁/共55頁 201142929 [0034] [0035] [0036] [0037] [0038] [0039] [0040] [0041] [0042] [0043] [0044] [0045] 在厚度為ΤΙ、T2的溝槽TR1、TR2的底部和側壁上,利用 掩膜製備柵極絕緣層,其中T2大於T1。 以上所述的方法中,步驟c)包含: 在溝槽TRl、TR2的底部和侧壁,製婦一個第一拇極絕緣 物; 在薄絕緣層上方使用柵極絕緣物掩膜,其中柵極絕緣物 掩膜覆蓋溝槽TR2,但不覆蓋溝槽TRi ; 從半導體襯底上沒有被含有溝槽TR1的第二掩膜覆蓋的部 分,除去第一栅極絕緣物;以及 在溝槽TR1中製備第二柵極絕緣物,其中第二柵極絕緣物 比第一柵極絕緣物薄。 以上所述的方法中,藉由在相當高的能量下植入離子, 進行步驟e),在此能量下,離子可以穿過第二柵極絕緣 物和第一柵極絕緣物,植入到半導體襯底中。 以上所述的方法中,藉由植入一定能量的離子,進行步 驟〇 ,該能量能使離子穿過第二柵極絕緣物,但不穿過 第一柵極絕緣物,植入到半導體襯底中。 以上所述的方法中,源極層僅僅形成在溝槽TRi附近的本 體層的頂部中。 以上所述的方法中,步驟c)包含: 在溝槽TRI、TR2的底部和侧壁,製備第—柵極絕緣物; 製備犧牲材料’完全填充溝槽TR1,但僅僅内襯在溝槽 100117201 表單編號A0101 第8頁/共55頁 1003238382- 201142929 TR2 中; [0046] 回刻犧牲材料,除去TR2上的犧牲材料,但保留TR1中的 犧牲材料; [0047] 在溝槽TR2中製備一個柵極絕緣層;以及 [0048] 除去溝槽TR1中的犧牲材料,在溝槽TR1中製備柵極絕緣 物, [0049] 其中溝槽TR2中的栅極絕緣層厚度T2大於溝槽TR1中的柵 極絕緣層厚度T1。 [0050] 以上所述的方法中,源極層形成在整個半導體的頂部中 [0051] 以上所述的方法中,完成步驟a)到步驟j )所用的掩膜 不超過四個。 [0052] 以上所述的方法中,完成步驟a)到步驟j )所用的掩膜 不超過三個。 [0053] 以上所述的方法中: [0054] b)還包含製備寬度為W3的溝槽T3,其中W3大於W2,其 中溝槽TR3含有包圍著溝槽TR1和柵極滑道溝槽TR2的截 止溝槽; [0055] 其中本方法還包含: [0056] 用電介質填充溝槽TR3, [0057] 其中寬度W3足以承載閉鎖電壓。 100117201 表單編號A0101 第9頁/共55頁 1003238382-0 201142929 [0058] 以上所述的方法中步驟a )到步驟j )僅需要三個掩膜。 [0059] 以上所述方法中,步驟b)還包含在溝槽TR2下方製備重 摻雜的通道終止區。 [0060] 本發明還提供了一種半導體元件,其包含: [0061] 在柵極絕緣層上方的多個栅極電極,形成在有源溝槽中 ,位於半導體概底的有源區中, [0062] 形成在半導體襯底中的第一柵極滑道,並且電連接到柵 極電極上,其中第一栅極滑道緊靠並包圍著有源區; [0063] 連接到第一柵極滑道上的第二柵極滑道,用於連接柵極 金屬;以及 [0064] 其中柵極滑道溝槽中的絕緣層各自的厚度T2大於有源溝 槽中的柵極絕緣層的厚度T1,其中厚度T2足以承載閉鎖 電壓。 [0065] 以上所述元件中,還包含:包圍著第一柵極滑道和第二 柵極滑道以及有源區的截止結構,其中截止結構包含半 導體襯底中佈滿絕緣物的溝槽中的導電材料,其中載止 結構短接至晶片邊緣附近的半導體襯底的源極或本體層 ,從而構成元件的通道終點。 [0066] 以上所述元件中還包含:一個電介質填充的溝槽,它包 圍著第一栅極滑道和第二柵極滑道以及有源區。 [0067] 以上所述元件中還包含一個位於電介質填充溝槽下方的 重摻雜通道終止區。 100117201 表單編號A0101 第10頁/共55頁 1003238382-0 201142929 [0068] 以上所述的元件中半導體襯底包含有源區和截止區中的 本體層。 [0069] 以上所述元件中半導體襯底含有一個源極區。 [0070] 以上所述元件中源極區僅位於有源區中。 [0071] 以上所述元件中第一柵極滑道含有一個形成在溝槽下方 的通道終止區。 [0072] 以上所述元件中半導體襯底還包含具有重摻雜底層和次 0 重掺雜頂層的半導體襯底,其中第一柵極滑道溝槽足夠 深,能夠觸及重摻雜底層。 [0073] 以上所述元件中在截止結構所述的佈滿絕緣物的溝槽中 的絕緣物足夠厚,能夠承載閉鎖電壓。 【實施方式】 [0074] 儘管為了解釋說明,以下詳細說明包含了許多具體細節 ,但是本領域的任何技術人員都應理解基於以下細節的 多種變化和修正都屬本發明的範圍。因此,本發明的典 ^ 型實施例的提出,對於請求保護的發明沒有任何一般性 的損失,而且不附加任何限制。 [0075] 〈實施例〉 [0076] 在本發明的實施例中,傳統溝槽MOSFET中已有的結截止 ,可以用柵極滑道區中的厚柵極氧化物代替,以便終止 有源晶胞區,從而消除結戴止擊穿,提高UIS (非嵌位元 感應開關)性能,又由於氧化物所需的空間比傳統的結 截止所需的空間小得多,還節省結截止所占的空間。此 100117201 表單編號A0101 第11頁/共55頁 1003238382-0 201142929 外’藉由將嵌入式體二極體局限在有源區,可以提高反 向恢復特性。 [0077] [0078] 第2A圖表示本發明的第一實施例所述的雙柵極氧化物溝 槽MSOFET 200佈局的俯視圖。第2B-2圖表示雙柵極裁止 的溝槽MOSFET 200沿線A-A和B-B的剖面圖。如第4A-4R 圖所要詳述地那樣,用於製備氧化物截止溝槽M〇SFET 200的方法僅需要四個掩膜:—個溝槽掩膜、一個柵極氧 化物掩膜、一個接觸掩膜以及—個金屬掩膜。 如第2A圖和第2B-2圖所示,溝槽M〇SFET 2〇〇包含形成 在佈滿氧化物的溝槽202中的柵極電極,溝槽202位於有 源晶胞區210中。栅極滑道形成在一套較寬的佈滿氧化物 的溝槽中。栅極滑道包含第—部分2〇4接觸並包圍有源晶 胞區21(^柵極滑道含有第二部分2〇6,藉由接頭2〇7, 連接到柵極金屬層248 (其輪廓如第2人圖中的虛線所示) 上。截止結構208形成在另一個佈滿氧化物的溝槽中,該 溝槽包圍著栅極滑道204、206以及有源區210。截止結 構208可以藉由截止金屬254,以及在特定位置處適當的 接頭’短接至元件200的本體或源極區上。柵極金屬— 和源極金屬252藉由縫隙250,相互電絕緣,缝隙25〇可 以用絕緣材料填充。短接的截止結構2嶋為通道終點。 作為示例,在第2B-2圖所示的實施例中,n_型(以n一通 道_FT元件為例)源極層214可以僅形成在有源晶胞區 中的P-本體層212的頂部上。有源區柵極溝槽2〇2的柵極 氧化物比柵極滑道2G4的柵極氧化物薄得多。柵極滑道 2〇4以及截止溝槽2G8的厚栅極氧化物的厚度(例如約為 100117201 表單編號A0101 第丨2頁/共55頁 1003238382-0 201142929 1 000埃⑷至麵埃(A)),足以承受擊穿電壓;所需的 厚度取決於元件的額定。柵極滑道204、206之溝槽 以及載止溝獅8中的柵極氧化物,比有源柵極溝槽^ 中的栅極氧化物厚,因此可以說元件200具有雙拇極氧化 物厚度。栅極滑道206和204,以及有源區栅極溝槽2〇2 中的栅極電極’ 一起連接到元件柵極電勢上。截止溝槽 2〇8中的柵極電極可以藉由晶片邊緣213,連接到本體區 上’晶片邊緣213位於元件漏極電勢。201142929 VI. Description of the Invention: [Technical Field] [0001] The present invention relates generally to trench metal oxide semiconductor field effect transistors (MOSS-FETs), and more particularly to oxide via trenches MOSFETs, And a method of preparing the element using three or four masks. [Prior Art] Qing 2] DM0S (Double Diffusion MOS) transistor is a transistor that uses two continuous diffusion techniques to calibrate to the same edge to prepare the channel region of the transistor. DMOS transistors are typically high current components for low voltage and high voltage and are used as components of separate transistors or power integrated circuits. DMOS transistors can provide very high current per unit area at very low forward voltage drops.] A typical DMOS transistor is a transistor called a trench DM0S transistor, in which the channel is located in the trench. A gate is formed in the trench on the sidewall, starting from the source and extending toward the drain. The trench gate is covered with a thin oxide layer and filled with polysilicon, the ability to limit current is inferior to the planar gate transistor structure, so its specific on-resistance is lower. [〇〇〇4] However, the conventional method of preparing such a trench DM0S field effect transistor requires five to six masking techniques, which are not only expensive but also time consuming. The first mask is a deep well mask and is also used for high voltage cutoff. Whether or not to use the mask is selected depending on whether the prepared component is a pressure component. The second mask is a trench mask used to fabricate trenches for gate and other component structures. The third mask is a bulk mask and is also used to prepare the cut-off region. The gate oxide in the protection gate runner is not destroyed by being exposed in the gate potential, and the gate pad/gate is masked. The track is far from the drain voltage. The fourth mask is the source 100117201 Form No. A0101 Page 4 / Total 55 Page 1003238382-0 201142929 Mask, the source region is removed from the gate runner and the cut-off region, thereby shifting the breakdown current out of these regions, improving non- Clamp-inductive switch (UIS) performance. The fourth mask is also used to prepare the channel termination. The fifth mask is a contact mask for the source/body and gate contacts, and the sixth mask is a metal mask for separating the metal layer into gate and source metal regions. [0005] FIG. 1 shows a cross-sectional view of a trench MOSFET 100 which is fabricated using the conventional six mask technique described above. As shown in FIG. j, the trench m〇sfet 100 includes an active cell 1 〇 2 and a gate runner 1 〇 4 in the active region. The gate runner is connected to the gate in the active cell 1〇2. The p-reverse channel may be formed along the top surface of the N- epitaxial layer ill toward the end of the wafer. If the P-inverting channel begins at junction stop 108 and touches wafer edge 112, then the N+ channel end point 106 that causes the leakage current β heavily doped between the source/body and the drain can prevent this ρ-reverse. The transfer channel contacts the wafer edge 112' at the wafer edge 112, which can be shorted to the drain. SUMMARY OF THE INVENTION It is an object of the present invention to provide a dual gate oxide trench MOSFET with a channel stop trench and its three or four masking techniques to reduce cost and simplify fabrication techniques. A technical solution of the present invention is to provide a method for fabricating a semiconductor device, comprising: a) preparing a semiconductor substrate; b) using a first mask over the semiconductor substrate; and forming trenches TR1 having a width W1 'W2, respectively , TR2, wherein W1 is narrower than W2, wherein the trench TR2 includes a first gate runner 100117201 connected to the trench TR1. Form No. A0101 Page 5 / Total 55 Page 1003238382-0 201142929 Trench and second gate slip a trench, wherein at least one of the first gate runner trench and the second gate runner trench abuts and surrounds the trench TR1; [0011] c) trench TR1 having a thickness of ΤΙ, T2 Preparing a gate insulator on the bottom and sidewalls of TR2, wherein T2 is greater than T1; d) preparing a conductive material in trench TR1 to form a gate electrode, and preparing a conductive material in trench TR2 to form a first gate runner and a second gate runner and a cutoff structure, wherein the first and second gate runners are electrically connected to the gate electrode; [0013] e) preparing a body layer on top of the semiconductor substrate [0014] f) preparing a source layer on top of the bulk layer; [0015] g) in semiconducting An insulating layer is used over the bulk substrate; [0016] h) using a second mask over the insulating layer; [0017] i) using a second mask, forming an electrical contact by a contact opening in the insulating layer, wherein the contact opening comprises a source opening toward the source layer near each gate electrode, a gate runner opening toward the gate runner, a cut-off contact opening toward the cutoff structure, and a short circuit toward the source layer or the body layer near the edge of the wafer a contact opening; and [0018] j) preparing a first metal region and a second metal region on the insulating layer and electrically insulated from each other, wherein the first metal region is electrically connected to the gate runner, wherein the second metal region and the source The pole connector is electrically connected, wherein the thickness T2 is sufficiently thick to carry the blocking voltage. [0020] In the above described method: 100117201 Form No. A0101 Page 6 / Total 55 Page 1003238382-0 201142929 _1] b) Also includes a trench T3 having a width W3 prepared therein, wherein wutw3 is narrow, wherein trench TR3 is surrounded by The trench TR1 and the off-channel of the trench TR2 of the gate runner; [0022] c) further comprising preparing a gate insulator on the bottom and sidewalls of the trench TR3 having a thickness, wherein the T3 is greater than T1 [0〇23] d) further comprising preparing a conductive material in the trench TR3 to form a cut-off structure, wherein the cut-off structure is electrically insulated from the gate runner and the gate electrode; _] i) S comprising using the second mask An electrical contact 'where the contact opening includes an off-contact opening toward the cut-off structure' and a short-circuit contact opening toward the source or body layer near the edge of the wafer is prepared by a contact opening in the insulating layer; and [0025] [0028] [0033] [0033] [0033] 10017201 J) further comprising preparing a third metal region on the insulating layer, wherein the third metal region [, the cutoff joint and the shorting joint are electrically Connecting so that the cutoff structure is shorted to the body region at the edge of the wafer Above, wherein the thickness T3 is thick enough to be able to bear the blocking voltage. In the method described above, step e) comprises: preparing a body layer throughout the semiconductor portion. In the above method, step j) comprises: depositing a metal layer over the insulating layer; using a metal mask over the metal layer; and t-domain and the method described above, the step 〇 includes the form number A0101 ^ 1003238382-0 page 7 / total 55 pages 201142929 [0034] [0036] [0040] [0040] [0044] [0044] [0045] [0045] For the bottom and sidewalls of the trenches TR1, TR2 of ΤΙ, T2, a gate insulating layer is prepared using a mask, where T2 is greater than T1. In the above method, step c) comprises: forming a first thumb insulator on the bottom and sidewalls of the trenches TR1, TR2; using a gate insulator mask over the thin insulating layer, wherein the gate The insulator mask covers the trench TR2 but does not cover the trench TRi; the first gate insulator is removed from the portion of the semiconductor substrate not covered by the second mask containing the trench TR1; and in the trench TR1 A second gate insulator is prepared wherein the second gate insulator is thinner than the first gate insulator. In the above method, by implanting ions at a relatively high energy, step e) is performed, at which the ions can pass through the second gate insulator and the first gate insulator, implanted into In a semiconductor substrate. In the above method, by implanting ions of a certain energy, a step 〇 is performed, which enables the ions to pass through the second gate insulator, but does not pass through the first gate insulator, and is implanted into the semiconductor lining In the bottom. In the above method, the source layer is formed only in the top of the body layer in the vicinity of the trench TRi. In the above method, step c) comprises: preparing a first gate insulator at the bottom and sidewalls of the trenches TRI, TR2; preparing a sacrificial material 'completely filling the trench TR1, but merely lining the trench 100117201 Form No. A0101, page 8 of 55, 1003238382-201142929 TR2; [0046] etch back the sacrificial material, remove the sacrificial material on TR2, but retain the sacrificial material in TR1; [0047] Prepare a gate in trench TR2 a very insulating layer; and [0048] removing the sacrificial material in the trench TR1, preparing a gate insulator in the trench TR1, wherein the gate insulating layer thickness T2 in the trench TR2 is larger than the gate in the trench TR1 The thickness of the pole insulating layer is T1. [0050] In the above method, the source layer is formed in the top of the entire semiconductor. [0051] In the above method, no more than four masks are used to complete steps a) through j). [0052] In the above method, no more than three masks are used to complete steps a) through j). [0053] In the above method: [0054] b) further comprising preparing a trench T3 having a width W3, wherein W3 is greater than W2, wherein the trench TR3 comprises a trench TR1 and a gate runner trench TR2 The cut-off trench; [0055] wherein the method further comprises: [0056] filling the trench TR3 with a dielectric, wherein the width W3 is sufficient to carry the latch-up voltage. 100117201 Form No. A0101 Page 9 of 55 1003238382-0 201142929 [0058] Only a mask is required for steps a) through j) in the above described method. [0059] In the above method, step b) further comprises preparing a heavily doped channel termination region under trench TR2. [0060] The present invention also provides a semiconductor device comprising: [0061] a plurality of gate electrodes over a gate insulating layer formed in an active trench in an active region of a semiconductor substrate, [ Forming a first gate runner in the semiconductor substrate and electrically connecting to the gate electrode, wherein the first gate runner abuts and surrounds the active region; [0063] connecting to the first gate a second gate runner on the slide for connecting the gate metal; and [0064] wherein the thickness T2 of each of the insulating layers in the gate runner trench is greater than the thickness T1 of the gate insulating layer in the active trench Where the thickness T2 is sufficient to carry the blocking voltage. [0065] The above-mentioned device further includes: a cut-off structure surrounding the first gate runner and the second gate runner and the active region, wherein the cut-off structure includes a trench filled with an insulator in the semiconductor substrate A conductive material in which the carrier structure is shorted to the source or body layer of the semiconductor substrate near the edge of the wafer to form the channel end of the element. [0066] The above described components further include: a dielectric filled trench surrounding the first gate runner and the second gate runner and the active region. [0067] The above described components further include a heavily doped channel termination region under the dielectric filled trench. 100117201 Form No. A0101 Page 10 of 55 1003238382-0 201142929 [0068] The semiconductor substrate of the above-described elements includes an active region and a body layer in the cut-off region. [0069] The semiconductor substrate in the above described device contains a source region. [0070] The source regions in the above described components are only located in the active region. [0071] The first gate runner of the above described component has a channel termination region formed below the trench. [0072] The semiconductor substrate of the above described device further comprises a semiconductor substrate having a heavily doped underlayer and a second heavily doped top layer, wherein the first gate runner trench is sufficiently deep to reach the heavily doped underlayer. [0073] The insulator in the trench filled with the insulator described in the cut-off structure is sufficiently thick to carry the latching voltage. The present invention is to be understood as being limited to the details of the invention. Accordingly, the exemplary embodiment of the present invention does not impose any general loss on the claimed invention without any limitation. <Embodiment> In an embodiment of the present invention, a conventional junction cutoff in a conventional trench MOSFET can be replaced with a thick gate oxide in a gate runner region to terminate the active crystal. Cell area, thus eliminating the wear and tear of the junction, improving the performance of the UIS (non-embedded sensor switch), and the space required for the oxide is much smaller than the space required for the conventional junction cutoff, and also saves the junction cutoff Space. This 100117201 Form No. A0101 Page 11 of 55 1003238382-0 201142929 External 'Reverse recovery characteristics can be improved by confining the embedded body diode to the active area. 2A is a plan view showing the layout of the double gate oxide trench MSOFET 200 according to the first embodiment of the present invention. [0078] FIG. Figure 2B-2 shows a cross-sectional view of trench gate MOSFET 200 along the lines A-A and B-B. As described in detail in Figures 4A-4R, the method for fabricating the oxide cut-off trench M〇SFET 200 requires only four masks: a trench mask, a gate oxide mask, and a contact. Mask and a metal mask. As shown in Figs. 2A and 2B-2, the trench M 〇 SFET 2 〇〇 includes a gate electrode formed in the trench 202 filled with oxide, and the trench 202 is located in the active cell region 210. The gate runners are formed in a wide set of trenches filled with oxide. The gate runner includes a first portion 2〇4 contact and surrounds the active cell region 21 (the gate trace includes a second portion 2〇6, connected to the gate metal layer 248 by a junction 2〇7 The outline is as shown by the dashed line in the second figure. The cutoff structure 208 is formed in another trench filled with oxide, which surrounds the gate runners 204, 206 and the active region 210. 208 may be shorted to the body or source region of component 200 by a turn-off metal 254 and a suitable joint at a particular location. Gate metal - and source metal 252 are electrically insulated from each other by slot 250, slot 25 〇 can be filled with an insulating material. The short-circuited cutoff structure 2嶋 is the end point of the channel. As an example, in the embodiment shown in Fig. 2B-2, the n_ type (using the n-channel _FT element as an example) source Layer 214 may be formed only on top of P-body layer 212 in the active cell region. The gate oxide of active region gate trench 2〇2 is thinner than the gate oxide of gate runner 2G4 The thickness of the gate runner 2〇4 and the thick gate oxide of the off trench 2G8 (eg, approximately 100117201 Form No. A0101) Page 2 of pp. 1003238382-0 201142929 1 000 angstroms (4) to face (A), sufficient to withstand the breakdown voltage; the required thickness depends on the rating of the component. The trenches of the gate runners 204, 206 And the gate oxide in the trench lion 8 is thicker than the gate oxide in the active gate trench, so it can be said that the component 200 has a double thumb oxide thickness. The gate runners 206 and 204, And the gate electrode 'in the active region gate trench 2〇2 is connected together to the element gate potential. The gate electrode in the off trench 2〇8 can be connected to the body region by the wafer edge 213' Wafer edge 213 is at the element drain potential.

〇 [0079]第2B-1圖表示第2A圖所示的雙柵極氧化物溝槽M〇SFET 200的另一個俯視圖,但為了便於說明,第託—丨圖僅表示 出了金屬層。源極金屬252覆蓋了有源區21〇,以及包圍 的栅極滑道204 »柵極金屬248覆蓋了栅極滑道的栅極拾 取部分206 ’戴止金屬254連接截止溝槽208包圍元件的 那部分。在第2A圖和第2B-1圖所示的佈局中,截止金屬 254在晶片的拐角處,連接截止溝槽208。 [0080]第2C圖表示第2B-2圖所不的雙棚極氧化物截止溝槽 MOSFET的等效電路圖。這些結構形成在半導體襯底中, 半導體概底含有一個在底部n+襯底層214上方的η-外延層 211。如圖中電路圖所示,寄生ρ-通道(以η_通道元件為 例)電晶體204a可以形成在柵極滑道204下方,從有源區 210 (位於元件源極電勢)中的ρ-本體層212開始,作為 寄生電晶體204a的寄生漏極,在柵極滑道204另一側的 P-本體區,作為寄生電晶體204a的寄生源極,包圍著柵 極滑道204的那部分η-外延層211,作為寄生電晶體204 的寄生通道區。要注意的是,如果元件200是η -通道 100117201 表單編號Α0101 第13頁/共55頁 1003238382-0 201142929 MOSFET,寄生電晶體是p-通道電晶體,那麼元件漏極電 勢就是寄生電晶體的源極電勢,反之亦然。寄生電晶體 204a的寄生漏極位於元件源極電勢,因此寄生柵極(柵 極滑道204中的柵極電極)短接至元件漏極電極,可以打 開寄生電晶體204a。當MOSFET元件200斷開時,所有的 柵極滑道204都通向元件源極電勢,可以打開寄生電晶體 204a。這使得元件源極電勢,從有源區21{),短接至晶片 邊緣213處的漏極電勢,從而產生漏電流。 [0081] [0082] 為了克服該問題,可以在元件週邊,晶片邊緣213和柵極 滑道204之間,形成一個截止溝槽2〇8。並且在載止溝槽 208下方,形成一個p-通道寄生電晶體2〇8a。然而,戴 止溝槽208中的柵極電極,藉由載止金屬254,短接至寄 生電晶體208a的寄生源極端(晶片邊緣213端),因此寄 生電晶體208a從未接通,以便作為一個通道終點,避免 從元件源極短接至晶片邊緣213。要注意的是,由於接觸 溝槽206不在有源區210周圍,因此所示的寄生電晶體並 不用於柵極滑道接觸溝槽2〇6。如果有必要,可以藉由在 第一截止結構208和柵極滑道2〇4之間,添加一個額外的 通道終點,這其實是在第—常閉的寄生電晶體2〇8a和寄 生電晶體204a之間,添加了另一個常閉的寄生電晶體; 從而提高了通道終點的電壓性能。 也可以利用其他方法製備通道終點,例如共同轉讓的美 國專利申請案12/731,112中所述的那些方法,特此5丨用 該内容,以作參考。例如,可以藉由製備足夠深的柵極 滑道溝槽204,觸及重摻雜的底部襯底214,以形成通道 100117201 表單編號A0101 第14頁/共55頁 1003238382-0 201142929 終點。還可選擇,II由在栅極滑道溝槽2〇4的底部,製備 一個重摻雜的η區,以形成通道終點。如果形成了可選的 通道終點,那麼就可以省去截止結構2〇8。柵極滑道溝槽 204包圍著有源區,並且具有足夠厚的柵極氧化物,以承 載閉鎖電壓。 [0083] Ο 閉鎖電壓是it件的兩個主電流承載端(例如源極到漏極 的電壓)之間的電壓。當元件處於斷開狀態時,較厚的 柵極氧化物(例如栅極滑道溝槽或截止溝槽的氧化物) 應該足以承載閉鎖電壓《換言之,氧化物足夠厚,閉鎖 電壓不大,不能在氧化物上產生超過氧化物擊穿場的電 %。理想情況是,截止區的擊穿電壓高於有源區的擊穿 電壓,從而提高元件的耐用性。 [0084] Ο 第3A圖表示本發明的第二實施例所述的雙栅極氧化物溝 槽MOSFET 300佈局的俯視圖,第3B圖表示雙柵極截止溝 槽MOSFET 300沿線A-A和B-B的剖面圖。雙栅極氧化物 溝槽MOSFET 300與第2A-2B圖所示的雙柵極氧化物溝槽 MOSFET 200類似。如第3A-3B圖所示,溝槽MOSFET 300含有形成在有源柵極溝槽3〇2中的有源栅極電極,有 源柵極溝槽302位於有源晶胞區310中。有源柵極電極電 連接到柵極滑道304和306上,柵極滑道304和306形成在 佈滿較厚氧化物的較寬的溝槽中。柵極滑道包含到達並 包圍著有源晶胞區310的部分304,以及藉由接頭307, 連接到栅極金屬348的部分306。截止結構308包圍著柵 極304、306和有源區310。藉由截止金屬354以及合適的 接頭’截止結構308在晶片邊緣313附近,電性連接到源 100117201 表單編號A0101 第15頁/共55頁 1003238382-0 201142929 極層314和本體層312上。柵極金屬348和源極金屬352相 互電絕緣’例如藉由縫隙350,可以用絕緣材料填充縫隙 350 °源極金屬覆蓋有源區310以及周圍的栅極滑道304 。如上所述,短接的截止結構308作為通道終點。在本實 施例中’ η-型源極層314可以形成在有源晶胞區31〇以及 截止區中的P-本體層312的頂部,源極和本體都形成在n-型漂流/外延層311上方。如第5A-5Q圖所示,可以利用 二掩膜技術’製備雙柵極氧化物溝槽MS〇FET 3〇〇。 [0085] [0086] 第3C圖表示第3B圖所示的雙栅極氧化物截止溝槽m〇sfet h 的等效電路圖。如同電路圖中所示’寄生p-通道電晶體 304a形成在柵極滑道溝槽304下方,但於截止溝槽308減 寬後’作為通道終點。寄生電晶體308a位於截止溝槽3〇8 下方’藉由截止金屬354,其寄生源極短接至寄生栅極, 從而避免如上所述地接通。 第4A 4R圖表示上述第2A圖、第2B-1圖和第2B-2圖所示 類型的雙柵極氧化物溝槽MOSFET的四掩膜製備方法的剖 面圖。如第4A圖所示,製備半導體襯底的初始材料包含 1」 ’例如相對輕摻雜的(例如η-)外延層4〇4位於重推雜的 (例如η+)襯底4〇2上方。還可選擇,外延層摻雜ρ_,襯 底摻雜Ρ+。初始絕緣層406可以形成在外延層4〇4的頂面 上。作為示例’但不作為局限,絕緣層406可以用氧化物 製備,例如利用熱氧化作用和沉積低溫氧化物或高密度 等離子(HDP)相結合。如第4Β圖所示,在絕緣層Mg的 上方,使用第一掩膜408 (此處稱為溝槽掩膜),並形成 帶開口的圖案,開口對應將要製備的溝槽。經過餘刻, 100117201 表單編號Α0101 第16頁/共55頁 1003238382-0 201142929 形成溝槽41G、412、414和416,穿過絕緣層_、声 4〇4以及外延層綱的頂部。可以利用溝槽仙和412曰,在 後續技術中製備第-和第二柵極滑道。為了簡便,溝槽 410、412在此稱為第-和第二栅極滑道溝槽。利一 Ο2B-1 shows another top view of the double gate oxide trench M〇SFET 200 shown in FIG. 2A, but for convenience of explanation, the first to top view shows only the metal layer. The source metal 252 covers the active region 21A, and the enclosed gate runner 204 » the gate metal 248 covers the gate trace portion of the gate trace 206. The wear stop metal 254 connects the cutoff trench 208 to surround the component. That part. In the layout shown in Figs. 2A and 2B-1, the cut-off metal 254 is connected to the cut-off trench 208 at the corner of the wafer. 2C is an equivalent circuit diagram of a double-storage gate oxide trench MOSFET of the second B-2 diagram. These structures are formed in a semiconductor substrate having an n- epitaxial layer 211 over the bottom n+ substrate layer 214. As shown in the circuit diagram of the figure, the parasitic ρ-channel (taking the η_channel element as an example) transistor 204a can be formed under the gate runner 204 from the active region 210 (located at the source potential of the component). Layer 212 begins as the parasitic drain of parasitic transistor 204a, in the P-body region on the other side of gate runner 204, as the parasitic source of parasitic transistor 204a, the portion of gate gate 204 that surrounds gate runner 204. The epitaxial layer 211 serves as a parasitic channel region of the parasitic transistor 204. It should be noted that if the component 200 is an η-channel 100117201 Form No. Α0101 Page 13/55 page 1003238382-0 201142929 MOSFET, the parasitic transistor is a p-channel transistor, then the element drain potential is the source of the parasitic transistor. Extreme potential and vice versa. The parasitic drain of the parasitic transistor 204a is at the source potential of the element, so that the parasitic gate (the gate electrode in the gate runner 204) is shorted to the drain electrode of the element, and the parasitic transistor 204a can be opened. When the MOSFET element 200 is turned off, all of the gate runners 204 lead to the source potential of the component, and the parasitic transistor 204a can be turned on. This causes the source potential of the element to be shorted from the active region 21{) to the drain potential at the wafer edge 213, thereby generating a leakage current. [0082] To overcome this problem, a cut-off trench 2〇8 may be formed between the periphery of the component, between the wafer edge 213 and the gate runner 204. And below the carrier trench 208, a p-channel parasitic transistor 2〇8a is formed. However, the gate electrode in the via trench 208 is shorted to the parasitic source terminal (the wafer edge 213 end) of the parasitic transistor 208a by the carrier metal 254, so the parasitic transistor 208a is never turned on, so as to One channel end point, avoiding shorting from the source of the component to the edge 213 of the wafer. It is to be noted that since the contact trench 206 is not around the active region 210, the parasitic transistor shown is not used for the gate runner contact trench 2〇6. If necessary, an additional channel end point can be added between the first cutoff structure 208 and the gate runner 2〇4, which is actually the first-normally closed parasitic transistor 2〇8a and the parasitic transistor. Between 204a, another normally closed parasitic transistor is added; thereby increasing the voltage performance at the end of the channel. Channel end points can also be prepared by other methods, such as those described in commonly assigned U.S. Patent Application Serial No. 12/731,112, the disclosure of which is incorporated herein by reference. For example, the heavily doped bottom substrate 214 can be accessed by preparing a sufficiently deep gate runner trench 204 to form the channel 100117201 Form No. A0101 Page 14 of 55 page 1003238382-0 201142929 End point. Alternatively, II is prepared by forming a heavily doped n-region at the bottom of the gate runner trench 2〇4 to form the end of the channel. If an optional channel end point is formed, then the cutoff structure 2〇8 can be omitted. The gate runner trench 204 surrounds the active region and has a sufficiently thick gate oxide to carry the latch voltage. [0083] 闭 The blocking voltage is the voltage between the two main current carrying terminals of the element (eg, the source-to-drain voltage). When the component is in the off state, the thicker gate oxide (such as the gate runner trench or the oxide of the turn-off trench) should be sufficient to carry the latch-up voltage. In other words, the oxide is thick enough and the latch-up voltage is not large. An electrical % over oxide breakdown field is produced on the oxide. Ideally, the breakdown voltage of the cut-off region is higher than the breakdown voltage of the active region, thereby improving the durability of the component. 3A is a plan view showing a layout of a double gate oxide trench MOSFET 300 according to a second embodiment of the present invention, and FIG. 3B is a cross-sectional view showing a double gate turn-off trench MOSFET 300 along lines AA and BB. . The dual gate oxide trench MOSFET 300 is similar to the dual gate oxide trench MOSFET 200 shown in Figures 2A-2B. As shown in Figures 3A-3B, trench MOSFET 300 includes an active gate electrode formed in active gate trench 3〇2, with active gate trench 302 being located in active cell region 310. The active gate electrode is electrically coupled to gate runners 304 and 306, which are formed in a wider trench that is filled with thicker oxide. The gate runner includes a portion 304 that reaches and surrounds the active cell region 310, and a portion 306 that is coupled to the gate metal 348 by a junction 307. A cutoff structure 308 surrounds the gates 304, 306 and the active region 310. The cut-off metal 354 and the appropriate joint &apos; cut-off structure 308 are electrically connected to the source 100117201 Form No. A0101, page 15 / page 55, 1003238382-0, 201142929, pole layer 314 and body layer 312. The gate metal 348 and the source metal 352 are electrically insulated from each other. For example, by the gap 350, the gap 350 ° source metal can be filled with the insulating region 310 and the surrounding gate runner 304. As noted above, the shorted cutoff structure 308 serves as the end of the channel. In the present embodiment, the 'n-type source layer 314 may be formed on the top of the active cell region 31 and the P-body layer 312 in the cut-off region, and the source and the body are both formed in the n-type drift/epitaxial layer. Above 311. As shown in Figures 5A-5Q, a dual gate oxide trench MS 〇 FET 3 可以 can be fabricated using a two mask technique. [0086] FIG. 3C is an equivalent circuit diagram showing the double gate oxide cutoff trench m〇sfet h shown in FIG. 3B. As shown in the circuit diagram, the parasitic p-channel transistor 304a is formed under the gate runner trench 304, but after the cutoff trench 308 is reduced, as the end of the channel. The parasitic transistor 308a is located below the cut-off trench 3'. By means of the turn-off metal 354, its parasitic source is shorted to the parasitic gate, thereby avoiding switching on as described above. 4A 4R is a cross-sectional view showing a four mask preparation method of the double gate oxide trench MOSFET of the type shown in Figs. 2A, 2B-1 and 2B-2. As shown in FIG. 4A, the initial material for preparing the semiconductor substrate comprises 1"', for example, a relatively lightly doped (eg, η-) epitaxial layer 4〇4 is over the heavily doped (eg, η+) substrate 4〇2 . Alternatively, the epitaxial layer is doped with ρ_ and the substrate is doped with Ρ+. An initial insulating layer 406 may be formed on the top surface of the epitaxial layer 4A4. By way of example, but not by way of limitation, insulating layer 406 may be prepared with an oxide, such as by thermal oxidation combined with deposition of a low temperature oxide or high density plasma (HDP). As shown in Fig. 4, above the insulating layer Mg, a first mask 408 (herein referred to as a trench mask) is used, and a pattern having an opening corresponding to the trench to be prepared is formed. After the moment, 100117201 Form No. Α0101 Page 16 of 55 1003238382-0 201142929 Grooves 41G, 412, 414 and 416 are formed through the insulating layer _, the sound 4 〇 4 and the top of the epitaxial layer. The first and second gate runners can be prepared in a subsequent technique using trenches and 412 turns. For simplicity, the trenches 410, 412 are referred to herein as first and second gate runner trenches. Lee Yi

[0087] G[0087] G

[0088] 個溝槽414,製備有源區的部分截止。為了簡便,溝槽 414在此稱為戴止溝槽。利用溝槽416製備有源元件晶胞 。為了簡便,這些溝槽416在此稱為有源溝槽。如果這】 溝槽的寬度不同’那麼可以在共同的刻步驟中. 些溝韻刻成不_度。例如,柵極滑道溝槽41〇、^ 和截止溝槽4U可以比有源溝槽416更寬,以便利用同一 餘刻技術,將栅極滑道溝槽4iq、412以及截止溝槽414 蝕刻得比有源溝槽416更深,可 有的溝槽。 了以利用单-掩膜,餘刻所 如第4C圖所示,除去第-掩膜彻。沉積厚栅極絕緣層 118(㈣—魏化物),麵料财絲成在溝槽 412、414和416的底部和側壁上,以及外延層404 的上方。厚栅極氧化層418的厚度約在800人至1 500 A之 間。如第侧所示,在溝槽41()、412、414和416中以及 外延層404的頂部,沉積犧牲材料420。作為示例,但不 作為局限,犧牲材料可以是導m㈣材料,例如多 晶^如第侧所示’在柵極絕緣層418的頂面下方,以 及外延層404的頂面上方,可以利祕刻終點回刻犧牲 材料420。仍然可用犧牲材料420填充溝槽410、412、 414和416 〇 如第4F圖所示’薄氧氣擴散勢壘層422 (例如氮化物)沉 100117201 表單編號A0101 第17頁/共55頁 1003238382-0 201142929 [0089] [0090] [0091] 100117201 積在溝槽41G 412 ' 414和416中的犧牲材料420上方, 以及柵極、、邑緣層418上方。作為示例,薄氮化層似的厚 度約為200A至5〇〇1 在薄氮化層422上方’使用第二掩膜424 (即柵極氧化物 掩膜)。如第4G圖所示,栅極氧化物掩膜似僅覆蓋了位 於糖極滑道區域和截止區中的溝槽410、412、414,但 沒有覆蓋有源溝槽416。犧牲材料420確保光致抗钮劑材 料不會沉積在溝槽内,—旦沉積將難以除去。姓刻掉沒 有被第二掩膜424覆蓋的那部分薄氮化層422,然後侧 溝槽416中的犧牲材料42Q。溝槽416中以及外延層4〇4上 方,沒有被第二掩膜424覆蓋的厚柵極絕緣層418也被姑 刻掉。 除去第一掩膜424 ’然後在有源溝槽416的側壁和底部以 及η-外延層404的上方,如第4H圖所示,製備(例如生長 )4犧牲絕緣物426。有種材料並沒有形成(例如生長) 在薄氮化層422的材料上,犧牲絕緣物最好是由這種材料 製成。作為示例,薄氮化層422可以由氮化物材料(例如 氮化石夕)1成’薄犧牲絕緣層426可以由生長氧化物村料 (例如氧化矽)製成。犧牲絕緣物426的厚度约為2〇〇 A 至500 A。 如第41圖所示,剝去薄氮化層422的剩餘部分。然後,蝕 刻掉溝槽410、412、414中的犧牲材料42〇。薄氧氣擴散 勢壘層422可以由能抵抗姓刻犧牲絕緣層426的材料製成 。此外’薄氧氣擴散勢壘層422也可以由—種利用犧牲絕 緣層4 2 6可抵抗的技術’可以蚀刻的材料製成。 表單編號A0101 第18頁/共55頁 1003238382-0 201142929 [0092] [0093] Ο [0094] ❹ [0095] 100117201 犧牲絕緣層426比厚柵極絕緣層418薄,如第4J圖所示’ 可以從有源溝槽416上除去犧牲絕緣層426,同時完整地 保留厚栅極絕緣層418。然後,在有源溝槽416的底部和 側壁中形成薄柵極絕緣物428。薄栅極絕緣物428的厚度 約為150 A至500 A。 如第4K圖所示,在所有的溝槽41〇、412、414和416中, 沉積導電材料430 (例如多晶矽),還可以在厚柵極絕緣 物418的上方以及位於外延層404上方的薄柵極絕緣物 428的上方溢出。然後’如第4L圖所示,可以藉由外延層 404頂面下方的終點,回刻導電材料43〇。 如第4M圖所示,在外延層404的頂部形成本體層432。例 如,可以藉由垂直或帶角度的全面植入,並擴散具有與 外延層404和襯底402相反導電類型的摻雜物,來製備本 體層432。例如,如果襯底402和外延層404為η-型摻雜 ’那麼就可以藉由植入ρ-型摻雜物,製備本體層432,並 且反之亦然。本體植入也可以在極高的能量下(例如 80-1 20KeV)進行,厚柵極絕緣物418不會妨礙本體植入 如第4N圖所示’利用低能植入技術,在本體層432的頂部 形成源極層434。如果源極植入是在極其低的能量下(例 如2OKeV左右)進行的,而且厚柵極絕緣物相當厚(例如 氧化物的厚度約為1200 A),那麼由於厚柵極絕緣物 418妨礙了植入,並且薄栅極氧化物428相當薄,使離子 玎以滲入’因此摻雜物僅植入到有源晶胞區。例如,藉 由垂直或帶角度的植入和退火,製備源極層434。通常是 表單煸號A0101 第19頁/共55頁 1003238382-0 201142929 藉由植入與本體摻雜物的導電類型相反的摻雜物,來製 備源極層434。進行源極和本體植人時,無需使用額外的 掩獏。 [0096] [0097] [0098] 100117201 如第侧所示,在該結構上方形成絕緣層伽,錢麼實 並平整。可以藉由化學機械平整化(CMP)來完成平整化 以上僅為不例’但不以此為限,絕緣層榻可以是一種 低溫氧化物和含有__玻璃(BpsG)。 如第㈣所示,在絕緣層樓上製傷接觸掩膜楊,並形 成帶狀義接觸孔的開σ圖案。接觸掩膜似是該技術中 所用的第三掩膜。絕緣層復、源極層434以及有源晶胞 區中的部分本體層432,都可以藉由掩膜438中的開口來 钱刻’以形成源極/本體接觸孔442。絕緣層榻以及溝槽 412、414中的部分導電材料都向下餘刻,以形成栅 極接觸孔444以及截止接觸孔445 於截止區邊緣以及 溝槽410附近的絕緣層436以及本體層432的頂部都可以 向下蝕刻,以形成截止短路接觸孔446。 如第_所示’可以在接觸孔442、444、445和446中沉 積勢壘材料(例如Ti/TiN)層448。然後利用導電(例 如鎢(W))插頭450,填滿接觸孔442、444、445和 446。接觸孔442中的勢壘金屬448和鎢插頭45〇,在有源 區中作為源極/本體接頭。接觸孔444中的勢壘金屬448和 鎢插頭450,在柵極接觸溝槽412上方作為栅極接頭。接 觸孔445、446中的勢壘金屬448和鎢插頭45(),在截止區 中形成接頭,將戴止溝槽電極短接至晶片邊緣附近的本 體區。然後,可以在該結構的上方沉積一個金屬層452 ( 表單編號A0101 第20頁/共55頁 1003238382-0 201142929 最好選用A卜Si)。 [00&quot;] 在金屬層452上沉積一個帶圖案的金屬掩膜(圖中未示) ,然後藉由金屬钱刻’將金屬層452分成電絕緣的部分, 構成柵極 '截止和源極金屬’例如栅極金屬4 5 6、截止連 接金屬458以及源極金屬454,從而製成元件4〇〇,元件 400與弟2A圖、第2B-1圖和第2B-2圖所示的半導體元件 300類似。金屬掩膜是該技術中的第四掩膜,接觸孔442 中的勢壘金屬448和鎢插頭450,在源極區上方作為源極/ 》 本體接頭,從源極層434和本體層432開始,一直到源極 金屬454。接觸孔444中的勢壘金屬448和鎢插頭450,在 栅極滑道區上方作為垂直柵極滑道接頭,從柵極滑道開 始,一直到柵極金屬456。接觸孔445、446中的勢憂金 屬448和鎢插頭450,以及截止金屬458 ’將截止溝槽414 的柵極短接至晶片邊緣413和截止溝槽414之間的本體區 432 上。 _]帛5A-5Q圖表示用於製備上述wA_3B圖所示類型的雙拇 ^ 極氧化物溝槽MOSFET的三掩膜方法的剖面圖。用於製備 雙栅極氧化物溝槽M〇SFET 3〇〇的方法僅需要三個掩膜: 一個溝槽掩膜、一個接觸掩膜以及—個金屬掩膜。在該 方法中,可以省去第4HR圖所示的栅極氧化物掩膜。乂 [0101]如第5Α圖所示,半導體襯底包含,例如位於重摻雜⑶ 如…的襯底502上方的一個相對輕摻雜(例如η_)的外 延層504。氧化層5G6形成在η_外延層⑽的頂面上。作 為不例,可以藉由熱氧化和沉積低溫氧化物或高密产等 離子相結合,製備氧化物。如第5Β圖所示广 100117201 表單編珑Α0101 第21頁/共55頁 ' 1003238382-0 201142929 化層506上方,使用帶有定義溝槽的開口圖案的第一掩膜 508 (即溝槽掩膜)。穿過氧化層5〇6、外延層⑽以及 n +襯底502的頂部,藉由蝕刻製備溝槽510、512、514和 516。可以使用溝槽51〇和512,在後續技術中製備第一 和第二柵極滑道。為了簡便,溝槽510和512在此稱為第 一和第二柵極滑道溝槽。可以使用另一個溝槽514,製備 截止溝槽。為了簡便,溝槽514在此稱為截止溝槽。可以 使用溝槽516製備有源元件晶胞。為了簡便,溝槽516在 此稱為有源溝槽。栅極滑道溝槽51〇、512以及戴止溝槽 514可以比有源溝槽516寬,因此即使它們都是在同一個 蝕刻技術中蝕刻的,柵極滑道溝槽510、51 2以及截止溝 槽514也可以蝕刻得比有源溝槽516寬。 [0102] 如第5C圖所示,除去第一掩膜5〇8。在溝槽51〇、512、 514和516的底部和側壁上,以及外延層5〇4的上方,製 備栅極絕緣層518 (例如-種氧化物)。柵極絕緣層518 的厚度約為500A至1 000A。如第5D圖所示,沉積犧牲材 料520 (例如多晶矽)填滿有源溝槽516,並且沉積在外 延層504的上方。與有源溝槽516相比,柵極滑道溝槽 510、512以及截止溝槽5丨4相當的寬,犧牲材料52〇僅僅 佈滿了溝槽510、512、514的底部和侧壁,並沒有填滿 這些溝槽。然後,藉由蝕刻有源溝槽516中,厚柵極絕緣 層518的頂面下方,以及外延層5〇4的頂面上方的終點, 各向異性地回刻犧牲材料52〇。如第5E圖所示,可以從柵 極滑道溝槽510、51 2以及截止溝槽514上完全除去犧牲 材料520。在這種情況下,可以在栅極滑道溝槽51〇、 100117201 表單編號A0101 第22頁/共55頁 1003238382-0 201142929 512的底部,形成一個通道終點,γ 如藉由各向異性植入 。以上僅為示例,但不以此為限,m 对於η-通道肋卯玎元 件而言,通道終點可以是η +摻雜的。 [0103] Ο ο [0104] 如第5F圖所示,在溝槽510、512、u 14的底部和側壁上 ’以及柵極絕緣物518的上方,沉蘇&amp; 積繞緣材料,以形成一 個較厚的絕緣層522。一般來說,紹〜 绝緣材料的類型可以與 栅極絕緣物518的材料類型相同。作兔_ 、 緣物518是-種氧化物,那麼絕緣持粗 *果拇極絕 材枓就可以利用氧化物 沉積(例如高溫氧化物(ΗΤΟ)沉籍、+ )來形成。因此,較 厚的栅極絕緣層522形成在溝槽51〇、 _ 512、514中,而較 薄的栅極絕緣層518形成在有源溝槽516中。然後,在表 面上進行平整化(例如CMP),使絕緣物522=面與= 槽516中的犧牲材料52〇的表面相互平整從而如第^圖 所示,裸露出犧牲材料520 '然後,如第5Η圖所示,從溝 槽516上_掉犧牲材料·。這時,溝槽516的側壁和 底部中的氧化層厚度(例如約為500 Α至1〇00 Α)小於 溝槽510、512、514的側壁和底部中的氧化層厚度(例 如約為1500 Α至2〇〇〇 Α)。 然後,藉由各向同性蝕刻,減薄絕緣物518和522,以便 在有源溝槽516中形成有源栅極絕緣物524 ,以及在柵極 滑道溝槽510、512和戴止溝槽514中形成較厚的柵極絕 緣物523 °最好選用簡短的蝕刻,從有源溝槽516上完全 除去絕緣層518,同時最完整地保留溝槽510 ' 512、514 * 中較厚的絕緣層522 ;然後,在有源溝槽516中,形成( 例如生長)薄有源柵極絕緣層524,同時在溝槽51〇、 100117201 表單編號A0101 第23頁/共55頁 1003238382-0 201142929 512、514中保留較厚的柵極絕緣物523。因此,該元件 可以說是具有雙柵極絕緣物的厚度。有源柵極絕緣物5 2 4 的厚度約在150 A至800 A之間,而較厚的柵極絕緣物 523的厚度約在5〇〇 a至1200 A之間。 [0105] [0106] [0107] 可以沉積或藉由其他方式形成導電的或半導電的材料526 (例如多晶矽),如第5J圖所示,於頂面上填滿溝槽510 、512、514和51 6。如果有必要的話,可以摻雜導電材 料526,使它的導電性更強。然後,藉由外延層504的頂 面下方的蝕刻終點,回刻導電材料526,如第5K圖所示, 以形成有源栅極電極525、栅極滑道527以及戴止結構 529 〇 如第5L圖所示’可以在外延層5〇4的頂部,形成一個本體 層528。例如藉由垂直或帶角度的全面植入,並擴散合適 的摻雜物’例如參照上述第4M圖所示,可以形成本體層 528。如第5M圖所示,在本體層528的頂部,形成一個源 極層530。例如藉由垂直或帶角度的方式植入合適的掺雜 物並退火,例如參照上述第4N圖所示,可以形成源極層 530。 如第5N圖所示’可以在該結構上方,形成一個絕緣層532 (例如低溫氡化物或含有硼酸的矽玻璃(BPSG)),然 後壓實並CMP平整化。 如第50圖所示’在絕緣層532上形成一個接觸掩膜534, 並形成帶有定義接觸孔開口的圖案。要注意的是,此時 ,接觸掩膜534僅僅是該技術中所用的第二個掩膜。藉由 100117201 表單編號A0101 第24頁/共55頁 1003238382-0 [0108] 201142929 掩膜中的開σ ’可以_絕緣層532、源極層530以及有 源晶胞區中的那部分本體層528,以形成源極接觸孔536 。可以向下蝕刻絕緣層532以及溝槽512、川中的那部 分材料526 ’卿成栅㈣道接觸孔54()以城止接觸孔 541。向下蝕刻絕緣層532 '源極層53〇,以及位於截止 區邊緣和溝槽514附近的那部分本體層528,以形成截止 短路接觸孔5 4 2。 [0109] θ Ο [0110] 如第5P圖所示,可以在接觸孔536、54〇、541和542中以 及氧化物532上方,沉積勢壘材料(例如Ti/TiN)層543 。然後’利用導電(例如鎢⑴)插頭544,填滿接觸 孔536、540、541和542。接觸孔536中的勢壘材料543 和鎢插頭544,在源極區530上方作為有源晶胞區中的源 極/本體接頭。接觸孔540中的勢壘材料543和鎢插頭544 ,在栅極區或截止區上方作為柵極接頭。接觸孔541、 542中的勢壘材料543和鎢插頭544,作為截止/通道終點 短路的接頭。如第5P圖所示,在所製成的結構上方,沉 積金屬層546,最好選用Al-Si。 在金屬層546上沉積一個帶圖案的金屬掩膜(圖中未示) ,然後利用金屬蝕刻,將金屬層546分成電絕緣部分,構 成電絕緣金屬區,包含柵極金屬區55〇、源極金屬區552 以及第3A-3B圖所示的半導體元件300的截止金屬區548 ,這就完成了元件的製備。該技術中所用的金屬掩膜是 第三掩膜。接觸孔536、538中的勢壘材料543和鎢插頭 544,在源極區上方作為源極/本體接頭,從源極層534和 本體層532開始,一直到源極金屬552。接觸孔540中的 100117201 表單編號A0101 第25頁/共55頁 1003238382-0 201142929 勢壘材料543和鎢插頭544,在柵極滑道區上方作為垂直 滑道接頭,從第一和第二柵極接頭開始,一直到柵極金 屬550。接觸孔541、542中的勢壘材料543和鎢插頭544 ,在截止/通道區上方作為到截止金屬548的接頭。在本 方法中,省去了柵極氧化物掩膜。 [0111] [0112] 在本方法的一個可選版本中,第5F圖所示的技術之後, 可以在柵極滑道溝槽51〇、512的底部下方以及截止溝槽 514下方’形成—個通道終止區。如第6圖所示,進行全 面通道植入’以便在溝槽510、512、514下方形成一個 重推雜的通道終止區595 (其導電類型與最終的源極區的 導電類型相同)。作為示例,通道終止植入的能量足夠 穿過溝槽510、512、514中的溝槽氧化物522,但卻不足 以穿過第5A-5B圖中含有初始溝槽硬掩膜5〇6的較厚的頂 部氧化層531 °頂部氧化層531以及有源溝槽516中的多 晶石夕520可以作為硬掩膜,使通道終止區595僅形成在柵 極滑道溝槽510、512的底部下方以及截止溝槽514下方 °還可選擇將溝槽510、512、514做得足夠深,以便觸 及概底’作為通道終點。如果通道終點形成在溝槽510、 512處’那麼只要柵極滑道溝槽510、512中的氧化物522 厚度足以承載閉鎖電壓,截止溝槽514就不是必須的。 第7A-7B圖表示將本文所述的雙柵極氧化物與美國專利申 請號12/731,112所述的氧化物截止溝槽相結合的一種可 選結構’特此弓丨用美國專利申請號12/731,112所述的氧 化物裁止溝槽以作參考。第7A圖表示本發明一個實施例 的雙概極氧化物溝槽MOSFET元件700佈局的俯視圊,第 100117201 表單編號A0101 第26頁/共55頁 1003238382-0 201142929 7Β圖表示雙柵極氧化物MOSFET 700的氧化物截止溝槽沿 線A-A和B-B的剖面圖。用於製備氧化物截止溝槽M〇SFET 7〇〇的方法僅需要三個掩膜:—個溝槽掩膜、一個接觸掩 膜以及一個金屬掩膜,這將在第8A-8R圖中詳細介紹。 [0113] 如第7A-7B圖所示,溝槽M〇SFET 7〇〇包含形成在位於有 源晶胞區711中的佈滿氧化物的溝槽716中的栅極電極。 柵極滑道形成在一套較寬的佈滿氧化物的溝槽中 。拇極 Ο 滑道包含鄰近並包圍著有源晶胞區711的第一部分71〇。 栅極滑道包含藉由接頭7〇7連接到柵極金屬層754 (其外 形如第7A圖中的虛線所示)上的第二部分712。氧化物截 止溝槽714是-個用氧化物填充的溝槽,氡化物包圍著拇 極滑道710、712以及有源區m。氧化物截止溝槽714具 有-個位於氧化物截止溝槽714下方的重摻雜(n+)通道 終止區730。作為示例’在第”圖所示的實施例中,口_型 (以η-通道M0SFET元件為例)源極層?36可能僅形成在[0088] A trench 414 is formed to partially cut off the active region. For simplicity, the trenches 414 are referred to herein as damascene trenches. The active element cells are fabricated using trenches 416. For simplicity, these trenches 416 are referred to herein as active trenches. If the width of the groove is different, then it can be in the common engraving step. For example, the gate runner trenches 41, ^ and the off trench 4U may be wider than the active trenches 416 to etch the gate runner trenches 4iq, 412 and the turn-off trenches 414 using the same reticle technique. It is deeper than the active trench 416 and has a trench. In order to utilize the single-mask, the remainder is removed as shown in Fig. 4C. A thick gate insulating layer 118 ((iv)-properate) is deposited, the fabric filaments being formed on the bottom and sidewalls of the trenches 412, 414 and 416, and over the epitaxial layer 404. Thick gate oxide layer 418 has a thickness between about 800 and 1,500 Å. As shown on the first side, sacrificial material 420 is deposited in trenches 41(), 412, 414, and 416 and on top of epitaxial layer 404. As an example, but not by way of limitation, the sacrificial material may be a conductive m (four) material, such as polycrystalline as shown on the front side 'below the top surface of the gate insulating layer 418, and above the top surface of the epitaxial layer 404, which may be used to sharpen the end point. The sacrifice material 420 is etched back. The trenches 410, 412, 414, and 416 can still be filled with the sacrificial material 420. As shown in FIG. 4F, the thin oxygen diffusion barrier layer 422 (eg, nitride) sinks 100117201 Form No. A0101 Page 17 of 55 Page 1003238382-0 [0091] 100117201 is deposited over the sacrificial material 420 in the trenches 41G 412' 414 and 416, and over the gate, germanium edge layer 418. As an example, a thin nitride layer-like thickness of about 200A to 5〇〇1 is used above the thin nitride layer 422' using a second mask 424 (i.e., a gate oxide mask). As shown in Fig. 4G, the gate oxide mask appears to cover only the trenches 410, 412, 414 located in the sugar pole runner region and the cutoff region, but does not cover the active trench 416. The sacrificial material 420 ensures that the photo-resistance material does not deposit in the trenches - deposition will be difficult to remove. The last name is the portion of the thin nitride layer 422 that is not covered by the second mask 424, and then the sacrificial material 42Q in the side trenches 416. In the trench 416 and above the epitaxial layer 4A4, the thick gate insulating layer 418 which is not covered by the second mask 424 is also etched away. The first mask 424' is removed and then over the sidewalls and bottom of the active trench 416 and over the η- epitaxial layer 404, as shown in FIG. 4H, a sacrificial insulator 426 is prepared (e.g., grown). A material is not formed (e.g., grown) on the material of the thin nitride layer 422, and the sacrificial insulator is preferably made of such a material. As an example, the thin nitride layer 422 may be made of a nitride material (e.g., nitride nitride). The thin sacrificial insulating layer 426 may be made of a grown oxide material such as hafnium oxide. The sacrificial insulator 426 has a thickness of about 2 〇〇A to 500 Å. As shown in Fig. 41, the remaining portion of the thin nitride layer 422 is stripped. The sacrificial material 42 in the trenches 410, 412, 414 is then etched away. The thin oxygen diffusion barrier layer 422 can be made of a material that resists the sacrificial insulating layer 426. Further, the 'thin oxygen diffusion barrier layer 422 can also be made of a material that can be etched using a technique that the sacrificial insulating layer 4 26 can resist. Form No. A0101 Page 18 of 55 1003238382-0 201142929 [0092] 009 [0095] 100117201 The sacrificial insulating layer 426 is thinner than the thick gate insulating layer 418, as shown in FIG. 4J. The sacrificial insulating layer 426 is removed from the active trenches 416 while leaving the thick gate insulating layer 418 intact. A thin gate insulator 428 is then formed in the bottom and sidewalls of the active trench 416. The thin gate insulator 428 has a thickness of about 150 A to 500 Å. As shown in FIG. 4K, in all of the trenches 41A, 412, 414, and 416, a conductive material 430 (eg, polysilicon) is deposited, which may also be above the thick gate insulator 418 and thin above the epitaxial layer 404. The top of the gate insulator 428 overflows. Then, as shown in Fig. 4L, the conductive material 43〇 can be etched back by the end point below the top surface of the epitaxial layer 404. As shown in FIG. 4M, a body layer 432 is formed on top of the epitaxial layer 404. For example, the body layer 432 can be prepared by a full vertical or angled implant and diffusion of dopants having a conductivity type opposite to the epitaxial layer 404 and the substrate 402. For example, if substrate 402 and epitaxial layer 404 are n-type doped, then body layer 432 can be fabricated by implanting a p-type dopant, and vice versa. The bulk implant can also be performed at very high energies (eg, 80-1 20 keV), and the thick gate insulator 418 does not interfere with bulk implantation as shown in FIG. 4N, using low energy implant technology, at body layer 432. A source layer 434 is formed on the top. If the source implant is performed at extremely low energy (e.g., around 2 OKeV) and the thick gate insulator is relatively thick (e.g., the thickness of the oxide is about 1200 A), then the thick gate insulator 418 hinders Implanted, and the thin gate oxide 428 is relatively thin, allowing the ions to penetrate into the 'so that the dopant is implanted only into the active cell region. Source layer 434 is prepared, for example, by vertical or angled implantation and annealing. Typically, the form nickname A0101, page 19, page 55, 1003238382-0, 201142929 The source layer 434 is fabricated by implanting dopants of opposite conductivity types to the bulk dopant. No additional masking is required when source and ontology are implanted. [0098] 100117201 As shown on the side, an insulating layer is formed over the structure, which is compact and flat. The planarization can be accomplished by chemical mechanical planarization (CMP). The above is merely an example, but not limited thereto, the insulating layer can be a low temperature oxide and contain __glass (BpsG). As shown in the fourth (fourth), the contact mask poplar is wounded on the upper floor of the insulating layer, and an open σ pattern of the strip-shaped contact hole is formed. The contact mask appears to be the third mask used in the art. The insulating layer, the source layer 434, and a portion of the body layer 432 in the active cell region may be etched by openings in the mask 438 to form the source/body contact holes 442. The insulating layer and a portion of the conductive material in the trenches 412, 414 are all left downward to form a gate contact hole 444 and an insulating layer 436 that cuts off the contact hole 445 at the edge of the cutoff region and near the trench 410, and the body layer 432. The top portion can be etched down to form a cut-off shorting contact hole 446. A barrier material (e.g., Ti/TiN) layer 448 may be deposited in contact holes 442, 444, 445, and 446 as shown in the . Contact holes 442, 444, 445, and 446 are then filled with a conductive (e.g., tungsten (W)) plug 450. The barrier metal 448 and the tungsten plug 45A in the contact hole 442 serve as a source/body joint in the active region. Barrier metal 448 and tungsten plug 450 in contact hole 444 act as a gate contact over gate contact trench 412. The barrier metal 448 and the tungsten plug 45() in the contact holes 445, 446 form a joint in the cut-off region, shorting the via-groove electrode to the body region near the edge of the wafer. A metal layer 452 can then be deposited over the structure (form number A0101 page 20/55 pages 1003238382-0 201142929 preferably Ab Si). [00&quot;] depositing a patterned metal mask (not shown) on the metal layer 452, and then dividing the metal layer 452 into electrically insulating portions by metal stamping to form a gate 'cutoff and source metal For example, the gate metal 456, the cut-off connection metal 458, and the source metal 454, thereby forming the device 4, the device 400 and the semiconductor device shown in FIG. 2A, 2B-1, and 2B-2 300 is similar. The metal mask is the fourth mask in the technique. The barrier metal 448 and the tungsten plug 450 in the contact hole 442 serve as source/" body contacts above the source region, starting from the source layer 434 and the body layer 432. Until the source metal 454. Barrier metal 448 and tungsten plug 450 in contact hole 444 act as a vertical gate runner joint above the gate runner region, starting from the gate runner, up to gate metal 456. The potential metal 448 and the tungsten plug 450 in the contact holes 445, 446, and the cut-off metal 458' short the gate of the cut-off trench 414 to the body region 432 between the wafer edge 413 and the turn-off trench 414. The _] 帛 5A-5Q diagram shows a cross-sectional view of a three mask method for preparing a dual thumb oxide trench MOSFET of the type shown in the above wA_3B. The method used to fabricate the dual gate oxide trench M〇SFET 3 turns requires only three masks: a trench mask, a contact mask, and a metal mask. In this method, the gate oxide mask shown in the 4th HR diagram can be omitted. [0101] As shown in FIG. 5, the semiconductor substrate includes, for example, a relatively lightly doped (e.g., η) epitaxial layer 504 over a substrate 502 heavily doped (3). An oxide layer 5G6 is formed on the top surface of the n- epitaxial layer (10). As an example, the oxide can be prepared by thermal oxidation and deposition of a low temperature oxide or a high density plasma. As shown in Figure 5, wide 100117201 Form Compilation 0101 Page 21 of 55 '1003238382-0 201142929 Above layer 506, using a first mask 508 with an opening pattern defining the trench (ie trench mask) ). The trenches 510, 512, 514, and 516 are formed by etching through the oxide layer 5〇6, the epitaxial layer (10), and the top of the n+ substrate 502. The first and second gate runners can be prepared in subsequent techniques using trenches 51A and 512. For simplicity, trenches 510 and 512 are referred to herein as first and second gate runner trenches. A further trench 514 can be used to prepare the cut-off trench. For simplicity, trench 514 is referred to herein as a cut-off trench. The active element cells can be fabricated using trenches 516. For simplicity, trench 516 is referred to herein as an active trench. The gate runner trenches 51A, 512 and the via trenches 514 can be wider than the active trenches 516, so even if they are all etched in the same etch technique, the gate runner trenches 510, 51 2 and The cutoff trench 514 can also be etched wider than the active trench 516. [0102] As shown in FIG. 5C, the first mask 5〇8 is removed. A gate insulating layer 518 (e.g., an oxide) is formed on the bottom and sidewalls of the trenches 51, 512, 514, and 516, and over the epitaxial layer 5?. The gate insulating layer 518 has a thickness of about 500A to 1 000A. As shown in Figure 5D, a deposition sacrificial material 520 (e.g., polysilicon) fills the active trenches 516 and is deposited over the epitaxial layer 504. The gate runner trenches 510, 512 and the cutoff trenches 5丨4 are substantially wider than the active trenches 516, and the sacrificial material 52〇 only fills the bottom and sidewalls of the trenches 510, 512, 514. They did not fill these grooves. Then, the sacrificial material 52A is anisotropically etched back by etching the active trench 516, under the top surface of the thick gate insulating layer 518, and at the end point above the top surface of the epitaxial layer 5?4. As shown in Fig. 5E, the sacrificial material 520 can be completely removed from the gate runner trenches 510, 51 2 and the off trench 514. In this case, an end point of the channel can be formed at the bottom of the gate chute groove 51〇, 100117201 Form No. A0101, page 22/55 pages 1003238382-0 201142929 512, such as by anisotropic implantation . The above is only an example, but not limited thereto, m For the η-channel rib element, the channel end point may be η + doped. [0103] As shown in FIG. 5F, on the bottom and sidewalls of the trenches 510, 512, u 14 and above the gate insulator 518, the sinking material is formed around the edge material to form A thicker insulating layer 522. In general, the type of insulating material can be the same as the type of material of the gate insulator 518. Rabbit _, edge 518 is an oxide, then the insulation is thick * The fruit can be formed by oxide deposition (such as high temperature oxide (ΗΤΟ), +). Therefore, a thicker gate insulating layer 522 is formed in the trenches 51A, _512, 514, and a thinner gate insulating layer 518 is formed in the active trenches 516. Then, planarization (e.g., CMP) is performed on the surface such that the surfaces of the insulator 522 = face and the sacrificial material 52 in the groove 516 are level with each other to expose the sacrificial material 520 ' as shown in Fig. 2, and then As shown in Fig. 5, the sacrificial material is removed from the trench 516. At this time, the thickness of the oxide layer in the sidewalls and the bottom of the trench 516 (for example, about 500 Å to 1 〇 Α) is smaller than the thickness of the oxide layer in the sidewalls and the bottom of the trenches 510, 512, 514 (for example, about 1500 Å to 10,000 Å). 2〇〇〇Α). The insulators 518 and 522 are then thinned by isotropic etching to form active gate insulators 524 in the active trenches 516, as well as in the gate runner trenches 510, 512 and the via trenches. A thicker gate insulator 514 is formed in 514. A short etch is preferably used to completely remove the insulating layer 518 from the active trench 516 while leaving the thickest insulation of the trenches 510 ' 512, 514 * most completely intact. Layer 522; then, in the active trench 516, a thin active gate insulating layer 524 is formed (eg, grown) while being in the trenches 51〇, 100117201 Form No. A0101 Page 23/55 pages 1003238382-0 201142929 512 Thicker gate insulator 523 is retained in 514. Therefore, the component can be said to have a thickness of a double gate insulator. The thickness of the active gate insulator 5 2 4 is between about 150 A and 800 A, while the thickness of the thicker gate insulator 523 is between about 5 Å and 1200 Å. [0107] A conductive or semiconductive material 526 (eg, polysilicon) may be deposited or otherwise formed, as shown in FIG. 5J, filling the trenches 510, 512, 514 on the top surface. And 51 6. If necessary, the conductive material 526 can be doped to make it more conductive. Then, the conductive material 526 is etched back by the etching end point below the top surface of the epitaxial layer 504, as shown in FIG. 5K, to form the active gate electrode 525, the gate runner 527, and the wearing structure 529. As shown in the 5L diagram, a body layer 528 may be formed on top of the epitaxial layer 5〇4. The body layer 528 can be formed, for example, by full implantation in a vertical or angled manner and diffusion of a suitable dopant. For example, as shown in Figure 4M above. As shown in Fig. 5M, at the top of the body layer 528, a source layer 530 is formed. The source layer 530 can be formed, for example, by implanting a suitable dopant in a vertical or angled manner and annealing, for example, as shown in Figure 4N above. As shown in Fig. 5N, an insulating layer 532 (e.g., low temperature telluride or boric acid containing barium glass (BPSG)) may be formed over the structure, then compacted and CMP planarized. As shown in Fig. 50, a contact mask 534 is formed on the insulating layer 532, and a pattern having openings defining the contact holes is formed. It is to be noted that at this point, the contact mask 534 is only the second mask used in the art. By 100117201 Form No. A0101 Page 24 / Total 55 Page 1003238382-0 [0108] 201142929 The opening σ in the mask can be _ insulating layer 532, source layer 530 and the portion of the body layer 528 in the active cell region To form the source contact hole 536. The insulating layer 532 and the trench 512, the portion of the material 526 in the middle can be etched down to contact the hole 541. The insulating layer 532 'source layer 53 〇 and the portion of the body layer 528 located near the edge of the cut-off region and the trench 514 are etched down to form the cut-off short-circuit contact hole 542. [0109] θ Ο As shown in FIG. 5P, a barrier material (for example, Ti/TiN) layer 543 may be deposited in the contact holes 536, 54A, 541, and 542 and over the oxide 532. The contact holes 536, 540, 541 and 542 are then filled with an electrically conductive (e.g., tungsten (1)) plug 544. Barrier material 543 and tungsten plug 544 in contact hole 536 act as a source/body junction in the active cell region above source region 530. The barrier material 543 and the tungsten plug 544 in the contact hole 540 serve as gate contacts over the gate region or the turn-off region. The barrier material 543 and the tungsten plug 544 in the contact holes 541, 542 serve as a joint for short-circuiting at the end of the cut-off/channel. As shown in Fig. 5P, above the resulting structure, a metal layer 546 is deposited, preferably Al-Si. A patterned metal mask (not shown) is deposited on the metal layer 546, and then the metal layer 546 is divided into electrically insulating portions by metal etching to form an electrically insulating metal region including the gate metal region 55 〇 and the source. The metal region 552 and the cut-off metal region 548 of the semiconductor device 300 shown in FIGS. 3A-3B complete the fabrication of the device. The metal mask used in this technique is the third mask. The barrier material 543 and the tungsten plug 544 in the contact holes 536, 538 act as source/body contacts over the source region, starting from the source layer 534 and the body layer 532, up to the source metal 552. 100117201 in contact hole 540 Form No. A0101 Page 25 / Total 55 Page 1003238382-0 201142929 Barrier material 543 and tungsten plug 544, as vertical slide joints above the gate runner region, from the first and second gates The joint begins until the gate metal 550. The barrier material 543 and the tungsten plug 544 in the contact holes 541, 542 serve as a joint to the cut-off metal 548 over the cut-off/channel region. In this method, the gate oxide mask is omitted. [0112] In an alternative version of the method, after the technique shown in FIG. 5F, it may be formed below the bottom of the gate runner grooves 51A, 512 and below the cutoff trench 514. Channel termination area. As shown in Fig. 6, a full channel implant is performed to form a heavily doped channel termination region 595 (having the same conductivity type as the final source region) under the trenches 510, 512, 514. As an example, the energy of the channel termination implant is sufficient to pass through the trench oxide 522 in the trenches 510, 512, 514, but not enough to pass through the initial trench hard mask 5〇6 in the 5A-5B diagram. The thicker top oxide layer 531 ° top oxide layer 531 and the polycrystalline spine 520 in the active trench 516 can serve as a hard mask such that the channel termination region 595 is formed only at the bottom of the gate runner trenches 510, 512. Below and below the cut-off trench 514, the trenches 510, 512, 514 may also be chosen to be deep enough to touch the bottom of the channel as the end of the channel. If the end of the channel is formed at trenches 510, 512, then as long as the thickness of oxide 522 in gate runner trenches 510, 512 is sufficient to carry the latching voltage, turn-off trench 514 is not necessary. 7A-7B shows an alternative structure for combining the dual gate oxide described herein with the oxide cut-off trench described in U.S. Patent Application Serial No. 12/731,112, the entire disclosure of which is incorporated herein by reference. The oxide trimming trenches described in 12/731,112 are incorporated by reference. 7A is a plan view showing the layout of a double-stacked gate trench MOSFET device 700 according to an embodiment of the present invention, No. 100117201, Form No. A0101, Page 26 of 55, 1003238382-0, 201142929 7 Β Figure shows a double gate oxide MOSFET A cross-sectional view of the oxide cutoff trench of 700 along lines AA and BB. The method used to fabricate the oxide cut-off trench M〇SFET 7 turns requires only three masks: a trench mask, a contact mask, and a metal mask, which will be detailed in Figure 8A-8R. Introduction. [0113] As shown in FIGS. 7A-7B, the trench M〇SFET 7A includes a gate electrode formed in the oxide-filled trench 716 located in the active cell region 711. The gate runners are formed in a wide set of oxide-filled trenches. The thumbpole slide includes a first portion 71A adjacent to and surrounding the active cell region 711. The gate runner includes a second portion 712 that is connected to the gate metal layer 754 (shown as a dashed line in Figure 7A) by a joint 7?7. The oxide stop trench 714 is a trench filled with oxide that surrounds the thumb slides 710, 712 and the active region m. The oxide cutoff trench 714 has a heavily doped (n+) channel termination region 730 located below the oxide cutoff trench 714. As an example, in the embodiment shown in the "FIG." figure, the source-type (in the case of an η-channel MOSFET element) may be formed only in the source layer 36.

G 有源晶胞區中的Ρ-本體層734的頂部。源極金屬層爪連 接到有源區711中的源極/本體區。有源晶胞柵極溝槽716 的栅極氧化物比栅極滑道m、712的柵極氧化物薄得多 。柵極滑道710、 1000A至2000A) 止溝槽714很寬, 712的厚栅極氧化物很厚(例如約為 ’足以承載閉鎖電壓。另外,氧化物截 、、用電介質材料填充,足以承載相當於 閉鎖電壓的高擊穿場。 704的半導體襯底上, 襯底702上方。 凡件700形成在含有一個^外延層 卜外延層704形成在重摻雜的底部 [0114] 第8A-8R圖表示一 種僅需要三個掩膜製備圖7A-7B所示的 100117201 表單編號A0101 第27 胃/共55頁 1003238382-0 201142929 疋件700的方法。在第^圖中’初始半導體襯底(例如具 有一個位於底部襯底7〇2上方的n_外延層7〇4)具有一個 形成在它上面的氧化層7〇6。在第8β圖中溝槽掩膜7〇8 是該技術中的第-個掩膜’藉由溝槽掩膜708中的開口, 將溝槽姓刻到外延層7〇4中。溝槽包含有源溝槽716、鄰 近並包圍著有源溝槽716的栅極滑道溝槽71()、柵極滑道 溝槽712以及截止溝槽714〇栅極滑道溝槽71〇和712比有 源溝槽716寬,截止溝槽714比栅極滑道溝槽71〇、712寬 。在第8C圖中,除去溝槽掩膜708,在溝槽71〇、712、G The top of the Ρ-body layer 734 in the active cell region. A source metal layer pin is connected to the source/body region in the active region 711. The gate oxide of active cell gate trench 716 is much thinner than the gate oxide of gate runners m, 712. The gate runners 710, 1000A to 2000A) have a wide stop trench 714, and the thick gate oxide of 712 is very thick (eg, about 'sufficient to carry the latch-up voltage. In addition, the oxide is trapped, filled with dielectric material, sufficient to carry A high breakdown field equivalent to the blocking voltage. On the semiconductor substrate of 704, over the substrate 702. The spacer 700 is formed to include an epitaxial layer 704 formed on the heavily doped bottom [0114] 8A-8R The figure shows a method in which only three masks are required to prepare the 100117201 Form No. A0101 27th Stomach/55 pages 1003238382-0 201142929 element 700 shown in Figures 7A-7B. In the figure, 'Initial Semiconductor Substrate (e.g. There is an n- epitaxial layer 7〇4) located above the underlying substrate 7〇2) having an oxide layer 7〇6 formed thereon. In the 8th β-graph, the trench mask 7〇8 is the first in the technique- The masks are engraved into the epitaxial layer 7〇4 by openings in the trench mask 708. The trenches include active trenches 716, gates adjacent to and surrounding the active trenches 716. Channel trench 71(), gate runner trench 712, and turnoff trench 714〇 gate runner trench 71〇 The sum 712 is wider than the active trench 716, and the off trench 714 is wider than the gate runner trenches 71, 712. In Fig. 8C, the trench mask 708 is removed, in the trenches 71, 712,

714、716的底部和側壁上形成犧牲氧化物718。在第8D 圖中,一個臨時的多晶矽層72〇形成在該元件上方。多晶 矽層720的厚度足以完全填充較窄的有源716,但卻僅能 佈滿較寬溝槽710、712、714的侧壁和底部。藉由(各 向同性的)蝕刻,除去溝槽710、712、714的多晶矽72〇 ,但保留有源溝槽716中的多晶矽720,如第8E圖所示。 在第8F圖中,在該元件上形成一個氧化層722。這使得溝 槽710、712、714中的氧化層變厚,並覆蓋有源溝槽716 中的多晶矽720。平整化(例如藉由CMp)頂部氧化物 722,使多晶矽720的頂部裸露出來,但保留溝槽71〇、 712 714中的氧化物722,如第8G圖所示。在第8JJ圖中 ,除去臨時的多晶矽720。在第81圖申,蝕刻掉有源溝槽 716中的氧化物,並形成有源栅極氧化物。可以選擇在形 成有源柵極氧化物726之前,生長並除去犧牲氧化物。由 於溝槽710、712、714中的氧化物比有源溝槽716中的氧 化物厚,因此在氧化物的蝕刻過程中並不能完全蝕刻掉 ,最後形成在溝槽710、712、714中的厚柵極氡化物γ24 表單編號細01 第28頁/共55頁 1003238382-0 201142929Sacrificial oxides 718 are formed on the bottom and sidewalls of 714, 716. In Fig. 8D, a temporary polysilicon layer 72 is formed over the element. The polysilicon layer 720 is thick enough to completely fill the narrower active 716, but only fills the sidewalls and bottom of the wider trenches 710, 712, 714. The polysilicon 72 of the trenches 710, 712, 714 is removed by an (isotropic) etch, but the polysilicon 720 in the active trench 716 is retained, as shown in Figure 8E. In Fig. 8F, an oxide layer 722 is formed on the element. This causes the oxide layer in the trenches 710, 712, 714 to thicken and cover the polysilicon 720 in the active trench 716. The top oxide 722 is planarized (e.g., by CMp) to expose the top of the polysilicon 720, but retains the oxide 722 in the trenches 71, 712, 714, as shown in Figure 8G. In the 8JJ diagram, the temporary polysilicon 720 is removed. At 81, the oxide in active trench 716 is etched away and an active gate oxide is formed. The sacrificial oxide can be grown and removed prior to forming the active gate oxide 726. Since the oxides in the trenches 710, 712, 714 are thicker than the oxides in the active trenches 716, they are not completely etched away during the etching of the oxide, and finally formed in the trenches 710, 712, 714. Thick Gate Telluride γ24 Form Number Fine 01 Page 28 / Total 55 Page 1003238382-0 201142929

’比有源溝槽716中的有源柵極氧化物726更厚。在第 圖中,在該元件上沉積一個多晶矽層728,吝曰t 曰日矽層728 雖然填充了溝槽710、712、716,但僅僅内概在後寬的 氧化物截止溝槽714中。在第8K圖中,各向同柯 丨王地回刻多 晶石夕材料728,使它保留在溝槽710、712、716中 再存在於很寬的氧化物戴止溝槽714中。此時,可以在, 寬的氧化物截止溝槽714的底部,例如藉由各向異吐的 入’形成一個重摻雜的(n+)通道終止區73〇。龙 溝槽710 、712、716中的多晶石夕層7 2 8阻擔了到這些溝措底部 植入。在該元件上沉積氧化物732,以便填充剩餘的氧化 物截止溝槽714 ’並覆蓋多晶矽層728 »然後,如笛 X弟8L圖 所示’平整氧化物732到外延層704的表面。 [0115]在第8M圖中,在整個晶片上製備一個(p_型)太口 ♦體區734 。在第8N圖中,在本體區734上方,製備一個(n〜型)源 極區736。無需掩膜,就可以形成本體和源極區,作為全 面植入。在第80圖中,可以在該元件的上方,例如藉由 O LTO和BPSG沉積,形成很厚的電介質層738,在第圖中 ,使用了 一個接觸掩膜740。接觸掩膜740僅是該技術中 的第二個掩膜。在BPSG 738、源極區736以及本體區734 中,蝕刻有源晶胞源極/本體接頭742。在裸露的本體區 734中,可以進行(p+)本體接觸植入(圖中未示)。在 BPSG 738中以及栅極滑道溝槽712中的多晶矽中,餘刻 柵極接頭744。在第8Q圖中,除去接觸掩膜74〇,在接頭 742、744中形成導電(例如鎢)插頭748。在形成鎢插 頭748之前,可以先製備一個勢壘金屬746。在該元件上 100117201 表單編號A0101 第29頁/共55頁 1003238382-0 201142929 方,製備一個金屬層750 (例如鋁)。在第8R圖中,利用 金屬掩膜(圖中未示),在源極金屬752和栅極金屬754 中,蝕刻金屬層750,從而僅利用三個掩膜就完成了雙柵 極氧化物MOSFET元件700。儘管沒有說明,但是無需使 用掩膜,就可以在該元件的背面形成漏極金屬。 [0116] 儘管本發明關於某些較佳的版本已經做了詳細的敍述, 但是仍可能存在其他版本。例如,一個適合可供替代絕 緣體可能被作為氧化物。同時,根據上述描述,η-通道 元件的例子被作為典型使用;然而,本發明的實施例也 可運用於ρ -通道元件,藉由反轉適當的導電型。因此, 本發明的範圍不應由上述說明決定,與之相反,本發明 的範圍應參照申請專利範圍及其全部等效内容。任何可 選件(無論首選與否),都可與其他任何可選件(無論 首選與否)組合。在申請專利範圍中,除非特別聲明, 否則不定冠詞“一個”或“ 一種”都指下文内容中的一 個或多個專案的數量。除非用“意思是”明確指出限定 功能,否則所附的申請專利範圍並不應認為是意義和功 能的局限。 [0117] 儘管本發明的内容已經藉由上述優選實施例作了詳細介 紹,但應當認識到上述的描述不應被認為是對本發明的 限制。在本領域技術人員閱讀了上述内容後,對於本發 明的多種修改和替代都將是顯而易見的。因此,本發明 的保護範圍應由所附的申請專利範圍來限定。 【圖式簡單說明】 [0118] 第1圖表示傳統的溝槽MOSFET元件的剖面圖。 100117201 表單編號A0101 第30頁/共55頁 1003238382-0 201142929 第2A圖表不本發明的第—實施例所述的雙柵極氧化物溝 槽MSOFET钸局的俯視圖。 第2B-1圖表不第2A圖所示的雙柵極氧化物溝槽M〇SFET 200佈局的另一個俯視圖。 第2B-2圖表不第2A圖所示的雙柵極氧化物溝槽M〇SFET沿 線A-A和B-B的剖面圖。 第2C圖表tf第2B-1圖和第2B_2圖所示的雙栅極氧化物溝 槽MOSFET的等效電路圖。'greater than the active gate oxide 726 in the active trench 716. In the figure, a polysilicon layer 728 is deposited over the device, and the 矽t 曰 矽 layer 728, although filled with trenches 710, 712, 716, is only partially inside the oxide-off trench 714. In Fig. 8K, the polycrystalline material 728 is etched back to the keel, so that it remains in the trenches 710, 712, 716 and is present in the wide oxide stop trench 714. At this time, a heavily doped (n+) channel termination region 73A may be formed at the bottom of the wide oxide cutoff trench 714, e.g., by the inversion of the opposite. The polycrystalline layer 728 in the dragon trenches 710, 712, 716 blocks the implantation of these trenches at the bottom. An oxide 732 is deposited over the element to fill the remaining oxide cut-off trench 714&apos; and to cover the polysilicon layer 728&lt;&apos;&gt;&gt; and then flatten the oxide 732 to the surface of the epitaxial layer 704 as shown by the flute. [0115] In Fig. 8M, a (p_type) yoke body region 734 is prepared over the entire wafer. In Fig. 8N, an (n~ type) source region 736 is formed over body region 734. The body and source regions can be formed without a mask as a full implant. In Fig. 80, a very thick dielectric layer 738 can be formed over the element, e.g., by O LTO and BPSG deposition. In the figure, a contact mask 740 is used. Contact mask 740 is only the second mask in the art. In the BPSG 738, the source region 736, and the body region 734, the active cell source/body connector 742 is etched. In the bare body region 734, a (p+) body contact implant (not shown) can be performed. In the BPSG 738 and in the polysilicon in the gate runner trench 712, the gate junction 744 is left. In Fig. 8Q, the contact mask 74 is removed, and a conductive (e.g., tungsten) plug 748 is formed in the contacts 742, 744. A barrier metal 746 can be prepared prior to forming the tungsten plug 748. On the component 100117201 Form No. A0101 Page 29 of 55 1003238382-0 201142929, prepare a metal layer 750 (eg aluminum). In the 8R picture, the metal layer 750 is etched in the source metal 752 and the gate metal 754 using a metal mask (not shown), thereby completing the double gate oxide MOSFET using only three masks. Element 700. Although not illustrated, a drain metal can be formed on the back side of the element without using a mask. [0116] Although the invention has been described in detail with respect to certain preferred versions, other versions are possible. For example, a suitable alternative insulator may be used as an oxide. Meanwhile, according to the above description, an example of an n-channel element is typically used; however, embodiments of the present invention can also be applied to a p-channel element by inverting an appropriate conductivity type. Therefore, the scope of the invention should be determined not by the description of the invention, and the scope of the invention should Any optional item (whether preferred or not) can be combined with any other option (whether preferred or not). In the scope of the patent application, the indefinite article "a" or "an" The scope of the appended patent application should not be construed as a limitation of the meaning and function unless the meaning of the function is clearly indicated by the meaning. While the present invention has been described in detail by the foregoing preferred embodiments, it should be understood that Various modifications and alterations of the present invention will be apparent to those skilled in the art. Therefore, the scope of the invention should be limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0118] Fig. 1 is a cross-sectional view showing a conventional trench MOSFET device. 100117201 Form No. A0101 Page 30 of 55 1003238382-0 201142929 The 2A chart is a top view of the dual gate oxide trench MSOFET layout of the first embodiment of the present invention. The second B-1 chart is not another top view of the dual gate oxide trench M〇SFET 200 layout shown in FIG. 2A. The 2B-2 chart is not a cross-sectional view of the double gate oxide trench M 〇 SFET shown in Fig. 2A along lines A-A and B-B. The equivalent circuit diagram of the double-gate oxide trench MOSFET shown in the 2C-1f and 2B_2 of the 2C chart tf.

第3A圖表7F本發明的第二實施例所述的雙柵極氧化物溝 槽MSOFET佈局的俯視圖。 第表π第3A圖所示的雙柵極氧化物溝槽嶋㈣沿線 A-A和B-B的剖面圖。 第3C圖表tf第3B圖所示的雙柵極氧化物溝槽mqsfet的 電路圖。 第4A 4R圖表7F製備本發明的第_實施例所述的第以⑼ 圖所示的雙栅極氧化物溝槽M0SFET步驟的剖面圖。 第5A-5Q圖表示製備本發明的第二實施例所述的第3Α_3β 圖所示的雙栅極氧化物溝槽MOSFET步驟的剖面圖。 第6圖表示製備本發明的一個可選實施例所述的雙柵極氧 化物溝槽MOSFET步驟的剖面圖。 第7A圖表示依據本發明的一個可選實施例,雙柵極氧化 物溝槽MOSFET佈局的俯視圖。 第7B圖表示第7A圖所示的雙柵極氧化物溝槽MOSFET沿線 A-A和B-B的剖面圖。 第8A-8R圖表示製備第7A-7B圖所示的雙栅極氧化物溝槽 MOSFET步驟的剖面圖。 100117201 表單編號A0101 第31頁/共55頁 1003238382-0 201142929 【主要元件符號說明】Figure 3A is a top plan view of a dual gate oxide trench MSOFET layout in accordance with a second embodiment of the present invention. A cross-sectional view of the double gate oxide trench (4) shown in Fig. 3A along line A-A and B-B. A circuit diagram of the double gate oxide trench mqsfet shown in Fig. 3C, tf, Fig. 3B. 4A 4R Chart 7F is a cross-sectional view showing the step of the double gate oxide trench MOSFET shown in the (9)th embodiment of the present invention. Fig. 5A-5Q is a cross-sectional view showing the steps of preparing the double gate oxide trench MOSFET shown in the third Α_3β diagram of the second embodiment of the present invention. Figure 6 is a cross-sectional view showing the steps of preparing a dual gate oxide trench MOSFET according to an alternative embodiment of the present invention. Figure 7A shows a top view of a dual gate oxide trench MOSFET layout in accordance with an alternate embodiment of the present invention. Fig. 7B is a cross-sectional view showing the double gate oxide trench MOSFET shown in Fig. 7A along lines A-A and B-B. Fig. 8A-8R is a cross-sectional view showing the steps of preparing the double gate oxide trench MOSFET shown in Figs. 7A-7B. 100117201 Form No. A0101 Page 31 of 55 1003238382-0 201142929 [Main component symbol description]

[0119] 100、200、300、700 :溝槽M0SFET 102 :有源晶胞 104、204、206、304、306、527 :栅極滑道 106 : N+通道終點 108 :結截止 111、 211、311、404、504、704:外延層 112、 213、313、413、713 :晶片邊緣 202、302、410、412、414、416、510、512、514、 516、710、712、714、716 :溝槽 204a、208a、308a :寄生電晶體 207、307、707 ' 742、744 :接頭 208 ' 308、529 :截止結構 210、310、711 :有源晶胞區 212、312、432、528 :本體層 214、314、434、530、736 :源極層 248、348、456、550、754 :柵極金屬層 250、350 :縫隙 252 ' 352、454、552、752 :源極金屬 254、354、458、548 :截止金屬 304a :寄生p-通道電晶體 402、502、702 :襯底 406、436、522、532 :絕緣層 4 0 8 ' 5 0 8 :第一掩膜 418、518 :栅極絕緣層 420、520 :犧牲材料 100117201 表單編號A0101 第32頁/共55頁 1003238382-0 201142929 422 :氮化層 424 :第二掩膜 426 :犧牲絕緣物 428 ' 523、524 :柵極絕緣物 430、526 :導電材料 438、534、740 :接觸掩膜 442、444、445、446、536、538、540、541、542 : 接觸孔 448 :勢壘金屬 5 4 3 :勢壘材料層 450、544、748 :插頭 452、546、750 :金屬層 506、706、722 :氧化層 5 2 5 :有源柵極電極 531 :頂部氧化層 595、730 :通道終止區 708 :溝槽掩膜 720、728 :多晶矽層 724 :柵極氧化物 726 :有源柵極氧化物 732 :氧化物 734 :本體區 738 :電介質層 746 :勢壘金屬 100117201 表單編號A0101 第33頁/共55頁 1003238382-0100, 200, 300, 700: Trench MOSFET 102: Active Cell 104, 204, 206, 304, 306, 527: Gate Slide 106: N+ Channel End 108: Junction Cutoff 111, 211, 311 , 404, 504, 704: epitaxial layers 112, 213, 313, 413, 713: wafer edges 202, 302, 410, 412, 414, 416, 510, 512, 514, 516, 710, 712, 714, 716: trench Slots 204a, 208a, 308a: parasitic transistors 207, 307, 707 '742, 744: joints 208' 308, 529: cut-off structures 210, 310, 711: active cell regions 212, 312, 432, 528: body layer 214, 314, 434, 530, 736: source layer 248, 348, 456, 550, 754: gate metal layer 250, 350: slit 252 ' 352, 454, 552, 752: source metal 254, 354, 458 548: cut-off metal 304a: parasitic p-channel transistor 402, 502, 702: substrate 406, 436, 522, 532: insulating layer 4 0 8 ' 5 0 8 : first mask 418, 518: gate insulation Layers 420, 520: sacrificial material 100117201 Form No. A0101 Page 32 / Total 55 pages 1003238382-0 201142929 422: Nitride layer 424: Second mask 426: Sacrificial insulator 428 ' 523, 524: Gate insulator 430, 526: conductive material 438, 534, 740: contact mask 442, 444, 445, 446, 536, 538, 540, 541, 542: contact hole 448: barrier metal 5 4 3 : barrier material layer 450, 544, 748: plugs 452, 546, 750: metal layers 506, 706, 722: oxide layer 5 2 5: active gate electrode 531: top oxide layer 595, 730: channel termination region 708: trench masks 720, 728: Polycrystalline germanium layer 724: gate oxide 726: active gate oxide 732: oxide 734: body region 738: dielectric layer 746: barrier metal 100117201 Form No. A0101 Page 33 of 55 page 1003238382-0

Claims (1)

201142929 七、申請專利範圍: 1 . 一種用於製備半導體元件的方法,其包含: a) 製備一半導體襯底; b) 在該半導體襯底上方使用一第一掩膜; 並分另形成寬度為Wl 、W2的溝槽TR1、TR2 ,其中比W2 窄,其中該溝槽TR2包含連接到該溝槽TR1上的一第一柵 極滑道溝槽和一第二柵極滑道溝槽,其中該第一柵極滑道 溝槽和該第二柵極滑道溝槽中的至少一個緊靠並包圍著該 溝槽TR1 ; c) 在厚度為ΤΙ、T2的該等溝槽TR1、TR2的底部和側壁 上製備一柵極絕緣物,其中T2大於T1 ; d) 在該溝槽TR1中製備導電材料,以形成一柵極電極, 在該溝槽TR2中製備導電材料,以形成一第一栅極滑道和 一第二柵極滑道以及一截止結構,其中該等第一和第二栅 極滑道與該栅極電極電性連接; e) 在該半導體襯底的頂部製備一個本體層; f) 在該本體層的頂部製備一個源極層; g) 在該半導體襯底上方使用一絕緣層; h) 在該絕緣層上方使用一第二掩膜; Ο利用該第二掩膜,藉由該絕緣層中的一接觸開口形成 一電接頭,其中該接觸開口包含在各該栅極電極附近的向 著該源極層的一源極開口、向著一拇極滑道的一拇極滑道 開口、向著該戴止結構的一截止接觸開口以及一晶片邊緣 附近的向著該源極層或該本體層的一短路接觸開口;以及 j)在該絕緣層上製備一第一金屬區和一第二金屬區,並 100117201 表單編號A0101 第34頁/共55頁 1003238382-0 201142929 且相互電絕緣,其中該第一金屬區與該栅極滑道電性連接 ,其中該第二金屬區與一源極接頭電性連接, 其中厚度T2足夠厚,能夠承載一閉鎖電壓。 2 .如申請專利範圍第1項所述的方法,其中: b) 還包含製備寬度為W3的溝槽TR3,其中W1比W3窄,該 溝槽TR3包含包圍著該溝槽TR1和該柵極滑道之該溝槽TR2 的一截止溝槽; c) 還包含在厚度為T3的該溝槽TR3的底部和側壁上製備 該柵極絕緣物,其中T3大於T1 ; d) 還包含在該溝槽TR3中製備導電材料,以形成該截止 結構,其中該截止結構與該柵極滑道和該柵極電極電性絕 緣; i) 還包含利用該第二掩膜,藉由該絕緣層中的該接觸開 口,製備該電接頭,其中該接觸開口包含向著該截止結構 的該截止接觸開口,以及該晶片邊緣附近的向著該源極層 或該本體層的該短路接觸開口;以及 j) 還包含在該絕緣層上製備一第三金屬區,其中該第三 金屬區與一截止接頭和一短路接頭電性連接,從而使該截 止結構在該晶片邊緣處短接至一本體區上, 其中厚度T3足夠厚,能夠承載該閉鎖電壓。 3 .如申請專利範圍第1項所述的方法,其中步驟e)更包含: 在整個該半導體襯底的頂部製備一個該本體層。 4.如申請專利範圍第1項所述的方法,其中步驟j)更包含: 在該絕緣層上方沉積一個金屬層; 在該金屬層上方使用一個金屬掩膜;以及 蝕刻該金屬層,以分離該第一金屬區和該第二金屬區。 100117201 表單編號A0101 第35頁/共55頁 1003238382-0 201142929 •如申凊專利範圍第1項所述的方法,其中步驟c)更包含: 在厚度為ΤΙ、T2的該等溝槽TR1、TR2的底部和側壁上, 利用一掩膜製備一柵極絕緣層,其中T2大於T1。 6 .如申請專利範圍第1項所述的方法,其中步驟更包含: 在該等溝槽TR1、TR2的底部和側壁,製備一個第一柵極 絕緣物; 在—薄絕緣層上方使用一柵極絕緣物掩膜,其中該柵極絕 緣物掩膜覆蓋該溝槽TR2,但不覆蓋該溝槽了以; 從該半導體襯底上沒有被含有該溝槽TR1的該第二掩膜t 蓋的部分,除去該第一柵極絕緣物;以及 在&quot;亥溝槽TR1中製傷-第二柵極絕緣物,其中該第二柵極 絕緣物比該第一柵極絕緣物薄。 7.如申請專利範圍第6項所述的方法,其中藉由在相當高的 月b量下植入_子,進行步驟e),在此能量下該離子 可以穿過該第二栅極絕緣物和該第-栅極絕緣物,植入到 該半導體襯底中。 8 .如申明專利範圍第7項所述的方法,其中藉由植入一定能 量的該離子,進行步驟f),此能量能使該離子穿過該第 二栅極絕緣物’但不穿過該第一辆極絕緣物,植入到該半 導體襯底中。 9 .如申請專利範圍第8項所述的方法,其中該源極層僅僅形 成在該溝槽TR1附近的該本體層的頂部中。 .如申請專利範圍第1項所述的方法,其中步驟c)更包含: 在該等溝槽TR1、TR2的底部和側壁,製備一第一柵極絕 緣物; 製備一犧牲材料,完全填充該溝槽TR1,但僅僅内襯在該 100117201 表單編號 A0101 第 36 頁/共玷頁 1003238382-0 201142929 溝槽TR2中; 回刻該犧牲材料,除去該溝槽TR2上的該犧牲材料,但保 留該溝槽TR1中的該犧牲材料; 在該溝槽TR2中製備一個柵極絕緣層;以及 除去該溝槽TR1中的該犧牲材料,在該溝槽TR1中製備該 柵極絕緣物,201142929 VII. Patent application scope: 1. A method for preparing a semiconductor device, comprising: a) preparing a semiconductor substrate; b) using a first mask over the semiconductor substrate; and forming a width separately The trenches TR1 and TR2 of W1 and W2 are narrower than W2, wherein the trench TR2 includes a first gate runner trench and a second gate runner trench connected to the trench TR1, wherein At least one of the first gate runner trench and the second gate runner trench abuts and surrounds the trench TR1; c) at the trenches TR1, TR2 having a thickness of ΤΙ, T2 A gate insulator is prepared on the bottom and sidewalls, wherein T2 is greater than T1; d) a conductive material is prepared in the trench TR1 to form a gate electrode, and a conductive material is prepared in the trench TR2 to form a first a gate runner and a second gate runner and a cutoff structure, wherein the first and second gate runners are electrically connected to the gate electrode; e) preparing a body on top of the semiconductor substrate a layer; f) preparing a source layer at the top of the body layer; g) at the semiconductor An insulating layer is used over the bulk substrate; h) a second mask is used over the insulating layer; and the second mask is used to form an electrical contact by a contact opening in the insulating layer, wherein the contact opening Included in a vicinity of each of the gate electrodes, a source opening toward the source layer, a thumb slide opening toward a thumb slide, a cut-off contact opening toward the wearing structure, and a vicinity of a wafer edge a short-circuit contact opening toward the source layer or the body layer; and j) preparing a first metal region and a second metal region on the insulating layer, and 100117201 Form No. A0101 Page 34 / Total 55 Page 1003238382- 0 201142929 and electrically insulated from each other, wherein the first metal region is electrically connected to the gate runner, wherein the second metal region is electrically connected to a source connector, wherein the thickness T2 is thick enough to carry a latching voltage. 2. The method of claim 1, wherein: b) further comprising preparing a trench TR3 having a width W3, wherein W1 is narrower than W3, the trench TR3 comprising surrounding the trench TR1 and the gate a cut-off trench of the trench TR2; c) further comprising preparing the gate insulator on a bottom and a sidewall of the trench TR3 having a thickness T3, wherein T3 is greater than T1; d) further included in the trench A conductive material is prepared in the trench TR3 to form the cutoff structure, wherein the cutoff structure is electrically insulated from the gate runner and the gate electrode; i) further comprising using the second mask by the insulating layer The contact opening, the electrical contact is prepared, wherein the contact opening includes the cut-off contact opening toward the cut-off structure, and the short-circuit contact opening toward the source layer or the body layer near the edge of the wafer; and j) further comprising Forming a third metal region on the insulating layer, wherein the third metal region is electrically connected to a cut-off joint and a short-circuit joint, so that the cut-off structure is short-circuited to a body region at the edge of the wafer, wherein the thickness T3 is thick enough to The carrier blocking voltage. 3. The method of claim 1, wherein the step e) further comprises: preparing the body layer over the top of the semiconductor substrate. 4. The method of claim 1, wherein the step j) further comprises: depositing a metal layer over the insulating layer; using a metal mask over the metal layer; and etching the metal layer to separate The first metal region and the second metal region. The method of claim 1, wherein the step c) further comprises: the trenches TR1, TR2 having a thickness of ΤΙ, T2, in the form of the method of claim 1, the method of claim 1 On the bottom and sidewalls, a gate insulating layer is prepared using a mask, wherein T2 is greater than T1. 6. The method of claim 1, wherein the step further comprises: preparing a first gate insulator at the bottom and sidewalls of the trenches TR1, TR2; using a gate over the thin insulating layer a pole insulator mask, wherein the gate insulator mask covers the trench TR2 but does not cover the trench; from the semiconductor substrate, the second mask t is not covered by the trench TR1 a portion of the first gate insulator; and a second gate insulator in the &quot;Hail trench TR1, wherein the second gate insulator is thinner than the first gate insulator. 7. The method of claim 6, wherein the step e) is performed by implanting a _ sub-amount at a relatively high monthly b, at which the ion can pass through the second gate insulation The material and the first gate insulator are implanted into the semiconductor substrate. 8. The method of claim 7, wherein the implanting of the ions of a certain energy proceeds to step f), the energy enabling the ions to pass through the second gate insulator 'but not through The first pole insulator is implanted into the semiconductor substrate. 9. The method of claim 8 wherein the source layer is formed only in the top of the body layer adjacent the trench TR1. The method of claim 1, wherein the step c) further comprises: preparing a first gate insulator at the bottom and sidewalls of the trenches TR1, TR2; preparing a sacrificial material, completely filling the Trench TR1, but only lining in the trenches TR2 of the 100117201 Form No. A0101, page 36 / pp. 1003238382-0 201142929; the sacrificial material is etched back, the sacrificial material on the trench TR2 is removed, but the The sacrificial material in the trench TR1; preparing a gate insulating layer in the trench TR2; and removing the sacrificial material in the trench TR1, the gate insulator being prepared in the trench TR1, 11 . 12 . 13 . 14 .11 . 12 . 13 . 14 . 15 16 . 17 . 其中該溝槽TR2中的該柵極絕緣層厚度T2大於該溝槽TR1 中的該柵極絕緣層厚度T1。 如申請專利範圍第10項所述的方法,其中該源極層形成在 整個半導體的頂部中。 如申請專利範圍第6項所述的方法,其中完成步驟a)到步 驟j)所用的掩膜不超過四個。 如申請專利範圍第10項所述的方法,其中完成步驟a)到 步驟j)所用的掩膜不超過三個。 如申請專利範圍第1項所述的方法,其中: b)還包含製備寬度為W3的該溝槽T3,其中W3大於W2, 其中該溝槽TR3含有包圍著該溝槽TR1和該柵極滑道之該 溝槽TR2的該截止溝槽; 其中方法更包含: 用電介質填充該溝槽TR3, 其中寬度W3足以承載該閉鎖電壓。 如申請專利範圍第14項所述的方法,其中步驟a)到步驟 j)僅需要三個掩膜。 如申請專利範圍第1項所述的方法,其中步驟b)還包含在 該溝槽TR2下方製備一重摻雜通道終止區。 一種半導體元件,其包含: 100117201 表單編號A0101 第37頁/共55頁 1003238382-0 201142929 在一柵極絕緣層上方的複數個柵極電極,形成在一有源溝 槽中,位於一半導體襯底的一有源區中; 形成在該半導體襯底中的一第一栅極滑道,並且電性連接 到該些栅極電極上,其中該第一柵極滑道緊靠並包圍著該 有源區, 連接到該第一柵極滑道上的一第二栅極滑道,用於連接一 柵極金屬;以及 其中該第一柵極滑道與該第二栅極滑道之溝槽中的絕緣層 各自的厚度T2大於該有源溝槽中的該柵極絕緣層的厚度 T1, 其中厚度T2足以承載一閉鎖電壓。 18. 如申請專利範圍第17項所述的半導體元件,更包含: 包圍著該第一栅極滑道和該第二栅極滑道以及該有源區的 一截止結構,其中該截止結構包含該半導體襯底中佈滿絕 緣物的溝槽中的導電材料,其中該截止結構短接至一晶片 邊緣附近的該半導體襯底的一源極或一本體層,從而構成 元件的一通道終點。 19. 如申請專利範圍第17項所述的半導體元件,更包含: 一個電介質填充溝槽,它包圍著該第一柵極滑道和該第二 柵極滑道以及該有源區。 20 .如申請專利範圍第19項所述的半導體元件,更包含一個位 於該電介質填充的溝槽下方的一重摻雜通道終止區。 21 .如申請專利範圍第17項所述的半導體元件,其中該半導體 概底包含該有源區和一截止區中的一本體層。 22 .如申請專利範圍第21項所述的半導體元件,其中該半導體 概底含有一個源極區。 100117201 表單編號A0101 第38頁/共55頁 1003238382-0 201142929 23 .如申請專利範圍第22項所述的半導體元件,其中該源極區 僅位於該有源區中。 24 .如申請專利範圍第17項所述的半導體元件,其中該第一栅 極滑道含有一個形成在該溝槽下方的一通道終止區。 25 .如申請專利範圍第17項所述的半導體元件,其中該半導體 襯底還包含具有一重摻雜底層和一次重摻雜頂層的該半導 體襯底,其中該第一柵極滑道溝槽足夠深,能夠觸及該重 摻雜底層。 26 .如申請專利範圍第18項所述的半導體元件,其中在該截止 〇 結構所述的佈滿絕緣物的溝槽中的絕緣物足夠厚,能夠承 載該閉鎖電壓。 ❹ 100117201 表單編號A0101 第39頁/共55頁 1003238382-015 16 . 17 . wherein the gate insulating layer thickness T2 in the trench TR2 is greater than the gate insulating layer thickness T1 in the trench TR1. The method of claim 10, wherein the source layer is formed in the top of the entire semiconductor. The method of claim 6, wherein no more than four masks are used to complete steps a) through j). The method of claim 10, wherein no more than three masks are used to complete steps a) through j). The method of claim 1, wherein: b) further comprising preparing the trench T3 having a width W3, wherein W3 is greater than W2, wherein the trench TR3 surrounds the trench TR1 and the gate is slippery The cutoff trench of the trench TR2; wherein the method further comprises: filling the trench TR3 with a dielectric, wherein the width W3 is sufficient to carry the latching voltage. The method of claim 14, wherein only one of the masks is required from step a) to step j). The method of claim 1, wherein the step b) further comprises preparing a heavily doped channel termination region under the trench TR2. A semiconductor device comprising: 100117201 Form No. A0101 Page 37/55 Page 1003238382-0 201142929 A plurality of gate electrodes over a gate insulating layer are formed in an active trench on a semiconductor substrate a first gate runner formed in the semiconductor substrate and electrically connected to the gate electrodes, wherein the first gate runner abuts and surrounds the a source region, connected to a second gate runner on the first gate runner for connecting a gate metal; and a trench in the first gate runner and the second gate runner The respective thickness T2 of the insulating layer is greater than the thickness T1 of the gate insulating layer in the active trench, wherein the thickness T2 is sufficient to carry a latching voltage. 18. The semiconductor device of claim 17, further comprising: a cutoff structure surrounding the first gate runner and the second gate runner and the active region, wherein the cutoff structure comprises The semiconductor substrate is filled with a conductive material in the trench of the insulator, wherein the cutoff structure is shorted to a source or a body layer of the semiconductor substrate near the edge of the wafer to form a channel end point of the component. 19. The semiconductor device of claim 17, further comprising: a dielectric filled trench surrounding the first gate runner and the second gate runner and the active region. 20. The semiconductor device of claim 19, further comprising a heavily doped channel termination region under the dielectric filled trench. The semiconductor device of claim 17, wherein the semiconductor substrate comprises a body layer of the active region and a cutoff region. 22. The semiconductor device of claim 21, wherein the semiconductor substrate comprises a source region. The semiconductor element of claim 22, wherein the source region is located only in the active region. The semiconductor device of claim 22, wherein the source region is located only in the active region. The semiconductor device of claim 17, wherein the first gate runner comprises a channel termination region formed under the trench. The semiconductor device of claim 17, wherein the semiconductor substrate further comprises the semiconductor substrate having a heavily doped underlayer and a heavily heavily doped top layer, wherein the first gate runner trench is sufficient Deep, able to reach the heavily doped underlayer. The semiconductor device according to claim 18, wherein the insulator in the trench filled with the insulator described in the cutoff structure is sufficiently thick to carry the latch voltage. ❹ 100117201 Form No. A0101 Page 39 of 55 1003238382-0
TW100117201A 2010-05-18 2011-05-17 Methods for fabricating semiconductor device and semiconductor device TWI528423B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/782,573 US8394702B2 (en) 2010-03-24 2010-05-18 Method for making dual gate oxide trench MOSFET with channel stop using three or four masks process

Publications (2)

Publication Number Publication Date
TW201142929A true TW201142929A (en) 2011-12-01
TWI528423B TWI528423B (en) 2016-04-01

Family

ID=44981998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117201A TWI528423B (en) 2010-05-18 2011-05-17 Methods for fabricating semiconductor device and semiconductor device

Country Status (2)

Country Link
CN (1) CN102254826B (en)
TW (1) TWI528423B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413765B (en) * 2013-08-27 2016-08-10 矽力杰半导体技术(杭州)有限公司 Groove MOSFET device and preparation method thereof
US10395970B2 (en) * 2013-12-05 2019-08-27 Vishay-Siliconix Dual trench structure
TWI560883B (en) * 2014-05-09 2016-12-01 Sinopower Semiconductor Inc Trench type power semiconductor device, wafer structure and fabrication method thereof
CN104638011B (en) * 2015-01-23 2018-05-11 无锡同方微电子有限公司 A kind of groove MOSFET device and preparation method thereof
CN113764527B (en) * 2021-09-06 2023-03-24 华羿微电子股份有限公司 MOSFET device groove terminal and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075360A1 (en) * 2005-09-30 2007-04-05 Alpha &Omega Semiconductor, Ltd. Cobalt silicon contact barrier metal process for high density semiconductor power devices
US7799642B2 (en) * 2007-10-02 2010-09-21 Inpower Semiconductor Co., Ltd. Trench MOSFET and method of manufacture utilizing two masks

Also Published As

Publication number Publication date
TWI528423B (en) 2016-04-01
CN102254826B (en) 2014-02-26
CN102254826A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
US9214545B2 (en) Dual gate oxide trench MOSFET with channel stop trench
TWI470676B (en) Direct contact in trench with three-mask shield gate process
TWI489559B (en) Oxide terminated trench mosfet with three or four masks
TWI311371B (en) Double gate semiconductor device having separate gates
US8021947B2 (en) Method of forming an insulated gate field effect transistor device having a shield electrode structure
TWI518803B (en) Device structure and methods of making high density mosfets for load switch and dc-dc applications
US8860131B2 (en) Method for manufacturing a power device being integrated on a semiconductor substrate, in particular having a field plate vertical structure and corresponding device
TWI329928B (en) Power mosfet device structure for high frequency applications and its manufacturing method and application of the same
KR101589765B1 (en) Soi transistors having an embedded extension region to improve extension resistance and channel strain characteristics
TWI500114B (en) Semiconductor component and method of manufacture
US8969953B2 (en) Method of forming a self-aligned charge balanced power DMOS
US20120292693A1 (en) Fabrication of trench dmos device having thick bottom shielding oxide
US7851312B2 (en) Semiconductor component and method of manufacture
TW201216468A (en) Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
US8207037B2 (en) Method for manufacturing a semiconductor component that includes a field plate
TW201427022A (en) High density trench-based power MOSFETs with self-aligned active contacts and method for making such devices
TW201125047A (en) Method of forming an insulated gate field effect transistor device having a shield electrode structure
TW200939356A (en) Structure and method for forming field effect transistor with low resistance channel region
JP2009520365A (en) Super junction power MOSFET
US6639276B2 (en) Power MOSFET with ultra-deep base and reduced on resistance
JP2002270840A (en) Power mosfet
TW201142929A (en) Dual gate oxide trench MOSFET with channel stop trench and three or four masks process
CN103545356A (en) Novel metal/polysilicon gate trench power MOSFET
TWI829085B (en) Sic mosfet with reduced channel length and high vth
JP2000260990A (en) High-voltage element and its manufacture