TW201142516A - Resist underlayer film forming composition containing fullerene derivative - Google Patents

Resist underlayer film forming composition containing fullerene derivative Download PDF

Info

Publication number
TW201142516A
TW201142516A TW100106406A TW100106406A TW201142516A TW 201142516 A TW201142516 A TW 201142516A TW 100106406 A TW100106406 A TW 100106406A TW 100106406 A TW100106406 A TW 100106406A TW 201142516 A TW201142516 A TW 201142516A
Authority
TW
Taiwan
Prior art keywords
underlayer film
resist underlayer
resist
forming composition
film forming
Prior art date
Application number
TW100106406A
Other languages
Chinese (zh)
Inventor
Tetsuya Shinjo
Keisuke Hashimoto
Hiroaki Okuyama
Yasushi Sakaida
Masakazu Kato
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201142516A publication Critical patent/TW201142516A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Disclosed is a composition which enables the formation of a resist underlayer film having high etching resistance (a low dry etching rate) and excellent solvent resistance. Specifically disclosed is a composition for forming a resist underlayer film, which comprises a fullerene derivative in which one to six molecules of a malonic acid diester represented by formula (1) (wherein R's independently represent an alkyl group having 1 to 10 carbon atoms) are added per fullerene molecule, a compound having at least two epoxy groups or oxirane rings, and a solvent.

Description

201142516 六、發明說明: 【發明所屬之技術領域】 本發明係關於製造半導體裝置時之微影術製程中使用 之形成抗蝕下層膜用之組成物。 【先前技術】 近年來,已合成出相較於c6G富勒烯對有機溶劑之溶 解度較高之富勒烯衍生物。藉由使用將此等富勒烯衍生物 溶解於有機溶劑中而成之溶液,可容易地於基板上形成薄 膜。據此,已硏究將富勒烯衍生物使用於η型有機薄膜電 晶體、太陽能電池等。 另一方面,製造半導體裝置時之微影術製程中,在形 成光阻膜之前,藉由先設置抗蝕下層膜,而形成所需形狀 之光阻圖型的技術爲已知。下述專利文獻1中記載使用例 如Frontier Carbon股份有限公司製造之富勒烯衍生物作爲 富勒烯衍生物而調製之抗蝕下層膜形成組成物。下述專利 文獻2中記載使用丙二酸二乙酯多加成物或丙二酸二第三 丁酯多加成物作爲富勒烯衍生物之光阻組成物。如專利文 獻2中記載之富勒烯衍生物及其製造方法亦記載於下述專 利文獻3中。 [先前技術文獻] 專利文獻 專利文獻1 :國際公開200 8/ 1 26804號 專利文獻2:特開2005-266798號公報 201142516 專利文獻3 :特開2005-263 795號公報 【發明內容】 [發明欲解決之課題] 利用抗蝕下層膜控制乾蝕刻速度相當重要。例如,爲 了提高對含氧氣體之蝕刻速度,相反地對含有CF4等氟化 合物之氣體具有蝕刻耐性,而有必要採用含碳率高之抗蝕 下層膜。富勒烯本身由於爲僅由碳原子組成之材料,故含 碳率爲1 00質量%,但會有不易溶解於溶劑中之問題。該問 題可藉由使用對溶劑具備溶解性之富勒烯衍生物獲得解決 。然而該等富勒烯衍生物通常相較於沒有修飾基之富勒烯 其含碳率較低。 不過,專利文獻2中使用之富勒烯衍生物之丙二酸二 第三丁酯多加成物近來已了解會因加熱使加成物(修飾基 )分解,生成羧基。亦即,塗佈含有前述具有加成物(修 飾基)之富勒烯衍生物之溶液,且藉由在使前述加成物( 修飾基)分解之溫度下烘烤,可使形成之膜之含碳率高於 分解之前。 而且抗蝕下層膜藉由塗佈法於其上形成中間層或抗蝕 膜時,要求不會溶解於所塗佈溶液中所含之溶劑中,且可 均勻塗佈而無不均。 因此,本發明之課題係提供一種具有高蝕刻耐性(乾 蝕刻速度小),同時可形成耐溶劑性優異,於其上所塗佈 之溶液之塗佈性優異之抗蝕下層膜之組成物。 -6- 201142516 [用以解決課題之手段] 本發明之第一樣態爲: 一種抗蝕下層膜形成組成物,其含有對於一分子之富 勒烯,加成1至6分子之以下述式(1)表示之丙二酸二酯 而成之富勒烯衍生物、環氧化合物、及溶劑: 【化1】BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition for forming a resist underlayer film used in a lithography process for manufacturing a semiconductor device. [Prior Art] In recent years, a fullerene derivative having a higher solubility to an organic solvent than c6G fullerene has been synthesized. By using a solution in which these fullerene derivatives are dissolved in an organic solvent, a film can be easily formed on the substrate. Accordingly, fullerene derivatives have been studied for use in n-type organic thin film transistors, solar cells, and the like. On the other hand, in the lithography process for manufacturing a semiconductor device, a technique of forming a photoresist pattern of a desired shape by first providing a resist underlayer film before forming a photoresist film is known. In the following Patent Document 1, a resist underlayer film forming composition prepared by using a fullerene derivative manufactured by Frontier Carbon Co., Ltd. as a fullerene derivative is described. Patent Document 2 listed below discloses a photo-resist composition of a fullerene derivative using a diethyl adipate polyadduct or a di-tert-butyl malonate adduct. The fullerene derivative described in Patent Document 2 and a method for producing the same are also described in Patent Document 3 below. [PRIOR ART DOCUMENT] Patent Document 1: Patent Document 1: International Publication No. Hei. No. Hei. No. Hei. No. 2005-266798 No. 200542516 Patent Document 3: JP-A-2005-263 Problem to solve] It is important to control the dry etching speed by using a resist underlayer film. For example, in order to increase the etching rate of the oxygen-containing gas, the etching resistance to a gas containing a fluorine compound such as CF4 is reversed, and it is necessary to use a resist underlayer film having a high carbon content. Since the fullerene itself is a material composed only of carbon atoms, the carbon content is 100% by mass, but there is a problem that it is hard to be dissolved in a solvent. This problem can be solved by using a fullerene derivative which is soluble in a solvent. However, such fullerene derivatives generally have a lower carbon content than fullerene without a modifying group. However, the fullerene malonate ditributin polyaddition product of the fullerene derivative used in Patent Document 2 has recently been known to decompose an adduct (modification group) by heating to form a carboxyl group. That is, a solution containing the above-described fullerene derivative having an adduct (modified group) is applied, and the formed film can be formed by baking at a temperature at which the adduct (modification group) is decomposed. The carbon content is higher than before decomposition. Further, when the underlayer film is formed on the intermediate layer or the resist film by the coating method, it is required not to be dissolved in the solvent contained in the coating solution, and it can be uniformly coated without unevenness. In view of the above, it is an object of the present invention to provide a composition of a resist underlayer film which has high etching resistance (small dry etching rate) and which is excellent in solvent resistance and excellent in coatability of a solution applied thereon. -6- 201142516 [Means for Solving the Problem] The first aspect of the present invention is: a resist underlayer film forming composition containing one to six molecules for one molecule of fullerene, which has the following formula (1) a fullerene derivative, an epoxy compound, and a solvent represented by a malonic acid diester:

(式中,R各獨立表示碳原子數之烷基)。 本發明之第二樣態爲: 一種抗蝕圖型之形成方法,其具有下述步驟: 將前述抗蝕下層膜形成組成物塗佈於基板上,在 180°C至400°C之溫度烘烤至少一次,形成抗蝕下層膜之步 驟, 於前述抗蝕下層膜上塗佈中間層形成組成物’藉由烘 烤形成含矽中間層之步驟, 於前述中間層上形成抗蝕膜之步驟’ 對於前述抗蝕膜至少進行曝光及顯像之步驟° [發明效果] 201142516 本發明之抗蝕下層膜形成組成物由於含有藉由加熱使 加成物(修飾基)分解之富勒烯衍生物以及環氧化合物, 故在特定溫度下藉由烘烤會進行交聯反應。其結果,所形 成之抗蝕下層膜具有高的乾蝕刻耐性,同時具有耐溶劑性 ,且具有溶液塗佈性優異之表面。 【實施方式】 本發明之抗蝕下層膜形成組成物中所含之富勒烯衍生 物爲例如前述式(1)之R爲分支烷基(碳原子數3以上) ,且以下述式(2)表示: [化2](wherein R each independently represents an alkyl group having a carbon number). A second aspect of the present invention is: a method for forming a resist pattern having the following steps: applying the foregoing underlayer film forming composition onto a substrate and baking at a temperature of 180 ° C to 400 ° C Bake at least once to form a resist underlayer film, apply an intermediate layer on the resist underlayer film to form a composition, and form a resist film on the intermediate layer by baking to form a tantalum containing intermediate layer The step of performing at least exposure and development on the resist film. [Effect of the invention] 201142516 The underlayer film forming composition of the present invention contains a fullerene derivative which decomposes an adduct (modified group) by heating. As well as the epoxy compound, the crosslinking reaction is carried out by baking at a specific temperature. As a result, the formed underlayer film has high dry etching resistance, has solvent resistance, and has a surface excellent in solution coating property. [Embodiment] The fullerene derivative contained in the composition for forming a resist underlayer film of the present invention is, for example, R of the above formula (1) is a branched alkyl group (having a carbon number of 3 or more), and is represented by the following formula (2) ) means: [Chemical 2]

(2) (式中,η表示1至6之整數)。然而,並不限定於以 該式(2)表示之富勒烯衍生物。 本發明之抗蝕下層膜形成組成物中所含之富勒烯衍生 物相對於一分子之富勒烯可含有加成4分子之以前述式(1 )表示之丙二酸二酯而成之4加成物作爲主成分。 加成有前述丙二酸二酯之富勒烯並不限於C6G,可使 -8- 201142516 用C7G、或c6G與c7()之混合物,亦可使用含有除c6G及c70以 外之高次富勒烯之混合物。所謂高次富勒烯於本說明書中 係定義爲碳原子數超過70之富勒烯(例如C76、C82、C84、 c90及c96)之總稱。藉由使用前述混合物,相較於使用c60 或C7Q之情況可降低成本。 本發明之抗飩下層膜形成組成物中所含之環氧化合物 以至少具有兩個環氧基或環氧丙烷環之化合物較佳。該環 氧化合物相對於富勒烯衍生物係含有例如0.1至5〇〇質量% ,較好以1至100質量%之範圍。 本發明之抗蝕下層膜形成組成物可進而含有酸觸媒或 鹼觸媒。酸觸媒可列舉爲例如鑰鹽、重氮甲烷衍生物、乙 二肟(glyoxime)衍生物、雙颯衍生物、酮颯衍生物、 二颯衍生物、硝基苯磺酸酯衍生物、磺酸酯衍生物及N-羥 基醯亞胺化合物之磺酸酯衍生物。鹼性觸媒可列舉爲例如 咪唑化合物、四級銨鹽、鱗鹽、胺化合物、鋁螯合物化合 物、有機膦化合物等。具體而言列舉爲2-甲基咪唑、2-乙 基-4-甲基咪唑、1,8-二氮雜雙環(5,4,0)十一碳烯-7、三 甲基胺、苄基二甲基胺、三乙基胺、二甲基苄基胺、 2,4,6-參-二甲胺基甲基酚等胺化合物及其鹽,氯化四甲基 銨、溴化苄基三甲基銨、氯化苄基三乙基銨、溴化四丁基 銨等之四級銨鹽,鋁螯合物、四正丁基鳞苯并三唑酸鹽、 四正丁基鱗二乙基二硫代磷酸酯等有機膦化合物等。 可添加由該等酸觸媒或鹼觸媒選出之一種,亦可添加兩種 以上之組合。該酸觸媒或鹼觸媒相對於富勒烯衍生物係含 -9- 201142516 有例如0.1至50質量%,較好0.5至40質量%之範圍,係促進 富勒希衍生物之加成物(修飾基)之分解反應及交聯反應 者。 鑷鹽例示於下。三氟甲烷磺酸四甲基銨、九氟丁烷磺 酸四甲基銨、九氟丁烷磺酸三乙基銨、九氟丁烷磺酸吡啶 鑰、樟腦磺酸三乙基銨、樟腦磺酸二苯基鎮、樟腦磺酸( 對-第三丁氧基苯基)苯基錤、樟腦磺酸雙(對-第三丁氧 基苯基)碘、三氟甲烷磺酸雙(對-第三丁氧基苯基)碘 、九氟丁烷磺酸(對-第三丁氧基苯基)苯基鎭、九氟丁 烷磺酸雙(對-第三丁氧基苯基)錤、樟腦磺酸吡啶鑰、 九氟丁烷磺酸四正丁基銨、九氟丁烷磺酸四苯基銨、對-甲苯磺酸四甲基銨、對-甲苯磺酸吡啶鑰、三氟甲烷磺酸 二苯基鎭、三氟甲烷磺酸(對-第三丁氧基苯基)苯基錤 、對·甲苯磺酸二苯基鎮、對-甲苯磺酸(對·第三丁氧基苯 基)苯基鐫、三氟甲烷磺酸三苯基鏑、三氟甲院礎酸( 對-第三丁氧基苯基)二苯基鏑、三氟甲烷磺酸雙(對-第 三丁氧基苯基)苯基锍、三氟甲烷磺酸參(對-第三丁氧 基苯基)鏑、對-甲苯磺酸三苯基鏑、對-甲苯磺酸(對-第 三丁氧基苯基)二苯基锍、對-甲苯磺酸雙(對-第三丁氧 基苯基)苯基鏑、對-甲苯磺酸三(對-第三丁氧基苯基) 銃、九氟丁烷磺酸三苯基锍、丁烷磺酸三苯基蔬、三氟甲 烷磺酸三甲基鏑、對·甲苯磺酸三甲基銃、三氟甲垸磺酸 環己基甲基(2-氧代環己基)毓、對-甲苯磺酸環己基甲基 (2-氧代環己基)鏑、三氟甲烷磺酸二甲基苯基鏑、對-甲 -10- 201142516 苯磺酸二甲基苯基銃、三氟甲烷磺酸二環己基苯基錡、 對-甲苯磺酸二環己基苯基锍、三氟甲烷磺酸三萘基銃、 三氟甲烷磺酸(2 -原冰片基)甲基(2 -氧代環己基)銃、 伸乙基雙[甲基(2-氧代環戊基)鏑三氟甲烷磺酸鹽]、 1,2’-萘基羰基甲基四氫噻吩鍮三氟甲烷磺酸鹽、三乙基銨 九氟丁烷磺酸鹽、三丁基銨九氟丁烷磺酸鹽、四乙基銨九 氟丁烷磺酸鹽、四丁基銨九氟丁烷磺酸鹽、三乙基銨雙( 三氟甲基磺醯基)醯亞銨、及三乙基銨三(全氟乙基磺醯 基)甲基化物。 重氮甲烷衍生物例示於下。雙(苯磺醯基)重氮甲烷 、雙(對-甲苯磺醯基)重氮甲烷、雙(二甲苯磺醯基) 重氮甲烷、雙(環己基磺醯基)重氮甲烷、雙(環戊基擴 醯基)重氮甲院、雙(正丁基磺醯基)重氮甲垸、雙(異 丁基擴醯基)重氮甲院、雙(第二丁基擴醯基)重氮甲院 、雙(正丙基磺醯基)重氮甲烷、雙(異丙基擴酿基)重 氮甲烷、雙(第三丁基磺醯基)重氮甲烷、雙(正戊基擴 醯基)重氮甲烷、雙(異戊基磺醯基)重氮甲院、^ (胃 二戊基磺醯基)重氮甲烷、雙(第三戊基磺醯基)重氮(甲 烷、1-環己基磺醯基-1-(第三丁基磺醯基)重氮甲院、卜 環己基磺醯基-1·(第三戊基磺醯基)重氮甲院、及丨_第三 戊基磺醯基-1-(第三丁基磺醯基)重氮甲烷。 乙二肟衍生物例示於下。雙-〇-(對·甲苯磺醯基)_α. 二甲基乙二肟、雙-0-(對-甲苯磺醯基)-α-二苯基乙二月弓 、雙-〇-(對-甲苯磺醯基)-α-二環己基乙二聘、雙·〇_( -11 - 201142516 對-甲苯磺醯基)-2,3 -戊二酮乙二肟、雙-〇-(對-甲苯磺 醯基)-2 -甲基-3,4 -戊二酮乙二肟、雙-〇-(正丁烷磺醯基 )-α-二甲基乙二肟、雙- 0-(正丁烷磺醯基)·α-二苯基乙 二肟、雙- 〇-(正丁烷磺醯基)-α -二環己基乙二肟、雙·0-(正丁烷磺醯基)-2,3·戊二酮乙二肟、雙- 〇-(正丁烷磺 醯基)-2-甲基-3,4-戊二酮乙二肟、雙-〇·(甲烷磺醯基)-α -二甲基乙二肟、雙-0-(三氟甲烷磺醯基)-α -二甲基乙 二肟、雙-0-(1,1,1-三氟乙烷磺醯基)-α-二甲基乙二肟、 雙-0·(第三丁烷磺醯基)-α-二甲基乙二肟、雙-〇_(全氟 辛烷磺醯基)-α-二甲基乙二肟、雙- 〇·(環己烷磺醯基)-α·二甲基乙二肟、雙- 0-(苯磺醯基)-α -二甲基乙二肟、 雙-〇-(對-氟苯磺醯基)-α-二甲基乙二肟、雙-〇(對·第 三丁基苯磺醯基)-α-二甲基乙二肟、雙-0-(二甲苯磺醯 基)-α-二甲基乙二肟、及雙-0-(樟腦磺醯基)-α-二甲基 乙二肟。 雙颯衍生物例示於下。雙萘磺醯基甲烷、雙三氟甲基 磺醯基甲烷、雙甲基磺醯基甲烷、雙乙基磺醯基甲烷、雙 丙基磺醯基甲烷、雙異丙基磺醯基甲烷、雙·對-甲苯磺醯 基甲烷、及雙苯磺醯基甲烷。 β-酮颯衍生物例示於下。2-環己基羰基-2-(對-甲苯 磺醯基)丙烷、及2-異丙基羰基-2-(對-甲苯磺醯基)丙 烷。 楓衍生物例示於下。二苯基二砸衍生物及二環己基二 颯衍生物 -12- 201142516 硝基苄基磺酸酯衍生物例示於下。對-甲苯磺酸2,6-二 硝基苄酯及對-甲苯磺酸2,4-二硝基苄酯。 磺酸酯衍生物例示於下。1,2,3-參(甲烷磺醯基氧基 )苯、1,2,3-參(三氟甲烷磺醯基氧基)苯、及1,2,3-參( 對-甲苯磺醯基氧基)苯。 N-羥基醯亞胺化合物之磺酸酯衍生物例示於下。N-經 基琥珀醯亞胺甲烷磺酸酯、N-羥基琥珀醯亞胺三氟甲烷擴 酸酯、N-羥基琥珀醯亞胺乙烷磺酸酯、N-羥基琥珀醯亞胺 1-丙烷磺酸酯、N-羥基琥珀醢亞胺2·丙烷磺酸酯、N-羥基 琥珀醯亞胺1-戊烷磺酸酯、N-羥基琥珀醯亞胺1-辛烷磺酸 酯、N-羥基琥珀醯亞胺對-甲苯磺酸酯、N-羥基琥珀醯亞 胺對-甲氧基苯磺酸酯、N-羥基琥珀醯亞胺2-氯乙烷磺酸 酯、N-羥基琥珀醯亞胺苯磺酸酯、N-羥基琥珀醯亞胺-2,4,6-三甲基苯磺酸酯、N-羥基琥珀醯亞胺1-萘磺酸酯、 N-羥基琥珀醯亞胺2-萘磺酸酯、N-羥基-2-苯基琥珀醯亞胺 甲烷磺酸酯、N-羥基馬來醯亞胺甲烷磺酸酯、N-羥基馬來 醯亞胺乙烷磺酸酯、N-羥基_2_苯基馬來醯亞胺甲烷磺酸 酯、N-羥基戊二醯亞胺甲烷磺酸酯、N-羥基戊二醯亞胺苯 磺酸酯、N-羥基苯二醯亞胺甲烷磺酸酯、N_羥基苯二醯亞 胺苯磺酸酯、N-羥基苯二醯亞胺三氟甲烷磺酸酯、N_羥基 苯二醯亞胺對-甲苯磺酸酯' N-羥基萘二醯亞胺甲烷磺酸 酯、N-羥基萘二醯亞胺苯磺酸酯、N_羥基_5_原冰片嬉. 2,3-二羧醯亞胺甲烷磺酸酯、N-羥基-5_原冰片烯-2,3_二羧 醯亞胺三氟甲烷磺酸酯、及N-羥基-5-原冰片烯-2,3_二羧 -13- 201142516 醯亞胺對-甲苯磺酸酯。 本發明之抗蝕下層膜形成組成物可進一步含有界面活 性劑。至於界面活性劑可列舉爲例如EF TOP[註冊商標] EF301、EF TOP EF303、EF TOP EF352 (三菱材料電子化 成股份有限公司製造)、MEGAFAC[註冊商標]F171、 MEGAFAC F173、MEGAFAC R-30 ( DIC股份有限公司製造 )、FLUORAD FC43 0、FLUORAD F C 4 3 1 (住友 3 Μ 股份有 限公司製造)、ASAHI GUARD (註冊商標)AG710、 SURFLON[註冊商標]S-3 82、SURFLON SC101 ' SURFLON SC102、SURFLON SC 103、SURFLON SC104、SURFLON SCI 05、SURFLON SC106(旭硝子股份有限公司製造)等 氟系界面活性劑,及有機矽氧烷聚合物KP341 (信越化學 工業股份有限公司製造)等。可添加自該等界面活性劑選 出之一種,亦可組合兩種以上添加。該界面活性劑相對於 富勒烯衍生物含有例如0.01至10質量%,較好0.1至5質量% 之範圍。 本發明之抗蝕下層膜形成組成物係以將上述各成分溶 解於溶劑中而成之均勻溶液狀態使用。該溶劑可使用例如 丙二醇單甲基醚乙酸酯、環己酮、2-庚酮、乳酸乙酯、鄰-二甲苯、甲苯、鄰-二氯苯、丙二醇單甲基醚、丙二醇單 丙基醚、1-甲基-2-吡咯烷酮及7-丁內酯。可使用由該等 溶劑選出之一種,亦可組合兩種以上使用。 所調製之抗蝕下層膜形成組成物較好使用例如0.1 μιη 或小於0.1 μιη孔徑之過濾器過濾後使用。過濾後之抗蝕下 -14- 201142516 層膜形成組成物在室溫下具有優異之長期間儲存安定性。 以下針對本發明之抗蝕下層膜形成組成物之使用方法 加以說明。於基板[例如形成有氧化矽膜、氮化矽膜或氧 化氮化矽膜之矽等半導體基板、氮化矽基板、石英基板、 玻璃基板(包含無鹼玻璃、低鹼玻璃、結晶化玻璃)、形 成有ITO膜之玻璃基板等]之上,以旋轉塗佈器、塗佈器等 適當之塗佈方法塗佈本發明之抗餽下層膜形成組成物,隨 後,藉由使用加熱板等之加熱手段之烘烤而形成抗蝕下層 膜。烘烤條件係由溫度:180°C至400°c,時間:0.3分鐘至 10分鐘之範圍選擇最適當之値。在180 °C至250 °C之溫度下 烘烤後,亦可於比該溫度高之溫度,例如3 00 °C至400 °C下 再度烘烤。藉由於180°C至25 0 °C之溫度下烘烤,使塗佈組 成物中所含富勒烯衍生物之加成物(修飾基)分解,生成 羧基。隨後藉由在3 00 °C至400 °C下之烘烤,使前述加成物 (修飾基)之分解進一步進展,推測成爲進行交聯反應之 富勒烯衍生物。所形成之抗蝕下層膜之膜厚爲Ο.ΟΙμιη至 3.0μιη,例如 0.03μιη至 Ι.Ομιη,或 0.05μιη至 0.5μιη。 藉由旋轉塗佈器、塗佈器等適當之塗佈方法,將中間 層形成組成物塗佈於前述抗蝕下層膜上。至於前述中間層 形成組成物列舉爲例如含有一種或兩種以上之烷氧基矽烷 之水解物及/或水解縮合物與必要之添加劑之溶液,或含 有市售之聚矽烷及必要之添加劑之溶液。隨後,藉由使用 加熱板等加熱手段進行烘烤,形成含矽之中間層。烘烤條 件係由溫度:1 80°c至3 00 °c,時間:0.3分鐘至10分鐘之範 -15- 201142516 圍選擇最適當之値。 接著於含矽之中間層上形成抗蝕膜。抗蝕膜之形成可 藉一般方法,亦即藉由將抗蝕溶液塗佈於中間層上及烘烤 而進行。使用之抗蝕溶液並無特別限制,列舉爲例如羅門 哈斯電子材料公司製造之商品名:APEX-E,住友化學股 份有限公司製造之商品名:PAR710,及信越化學工業股 份有限公司製造之商品名:SEPR430等。 接著,通過光罩(網板,reticule )進行曝光以自抗 蝕膜形成光阻圖型。曝光可使用例如KrF準分子雷射、ArF 準分子雷射及EUV (極紫外線)。曝光後,視需要進行 PEB (曝光後烘烤)後,進行顯像。 使用正型抗蝕溶液時,顯像係使用鹼性顯像液。鹼性 顯像液列舉爲氫氧化鉀、氫氧化鈉等鹼金屬氫氧化物之水 溶液,氫氧化四甲基銨、氫氧化四乙基銨、膽鹼等氫氧化 四級銨之水溶液,乙醇胺、丙基胺、乙二胺等之胺水溶液 。另外,該等顯像液中亦可添加界面活性劑。 顯像之條件係自顯像溫度至50°C,顯像時間10秒至 3 00秒適當的選擇。本發明之情況可使用光阻之顯像中廣 泛使用之2.38質量%之氫氧化四甲基銨水溶液,在室溫下 容易地進行顯像。 以下,以下述合成例及下述實施例說明本發明,但本 發明並不受該等之限制。 實施例 -16- 201142516 (合成例1 ) 於氮氣流下將丙二酸二第三丁酯(Aldrich公司製造) 9.80g饋入反應容器中,接著添加1,2,4-三甲基苯150cm3及 二氮雜雙環[5.4.0]-7-~ί--•碳烦(1,8-diazabicyclo [5.4.0] undec-7-ene,東京化成工業股份有限公司製造)6.50g, 邊攪拌邊將溫度調整成4°C。 於所得之經溫度調整後之反應液中緩慢滴加將碘(和 光純藥工業股份有限公司製造)10.9g溶解於130cm3之 1,2,4-三甲基苯中而成之黑紫色溶液。滴加中使用冰浴將 燒瓶內溫控制在1 1 °C。滴加結束後,使反應液之溫度恢復 至室溫。燒瓶內之反應液爲茶色之懸浮液狀態。 隨後,邊攪拌邊將使富勒烯混合物(含有C6Q、C70及 其他高次富勒烯類,Frontier Carbon股份有限公司製造) 5.0 0g溶解於l,2,4-三甲基苯350cm3中而成之溶液添加於上 述反應容器內之反應液中。此處,所謂高次富勒烯於本說 明書中係定義爲碳原子數超過70之富勒烯之總稱。隨後, 邊攪拌邊將以5cm3之1,2,4_三甲基苯稀釋二氮雜雙環 [5.4.0 ] - 7 ---碳稀(1,8-diazabicyclo [5.4.0] undec-7-ene ’東京化成工業股份有限公司製造)6.90g而成之溶液滴 加於燒瓶內之反應液中。在室溫下攪拌6.5小時進行反應 〇 針對所得反應液,以飽和亞硫酸鈉水溶液洗淨反應層 (有機相)四次。使用1N硫酸水溶液100cm3洗淨所得有機 相2次後,使用純水2〇〇cm3洗淨三次。減壓餾除溶劑( -17- 201142516 1,2,4-三甲基苯),獲得紅茶色固體9.50g 所得固體以矽膠滲透層析法,利用正 之混合溶劑分離,獲得富勒烯衍生物(丙 加成物)。 (實施例1 ) 於合成例1中獲得之富勒烯衍生物1 . (3-a )表示之環氧化合物(東都化成股 ,商品名YH434L) 0.15g、作爲界面活性 註冊商標]R-30 ( DIC股份有限公司製造) 於丙二醇單甲基醚乙酸酯7.0g成爲溶液。 0.10 μηι之聚乙烯製微過濾器過濾,再使用 乙烯製微過濾器過濾,調製抗蝕下層膜形 [化3] 己烷與乙酸乙酯 二酸二第三丁酯 〇g中,混合以式 份有限公司製造 劑之 MECAFAC [ O.OOlg,並溶解 隨後,使用孔徑 孔徑0.05μιη之聚 成組成物溶液。(2) (where η represents an integer from 1 to 6). However, it is not limited to the fullerene derivative represented by the formula (2). The fullerene derivative contained in the composition for forming a resist underlayer film of the present invention may contain a malonate diester represented by the above formula (1) with respect to one molecule of fullerene. 4 adduct as a main component. The fullerene to which the above malonic acid diester is added is not limited to C6G, and it is possible to use C7G, or a mixture of c6G and c7(), or a high-order fuller, other than c6G and c70, from -8 to 201142516. a mixture of olefins. The term "high-order fullerene" is defined herein as a general term for fullerenes having a carbon number of more than 70 (e.g., C76, C82, C84, c90, and c96). By using the aforementioned mixture, the cost can be reduced as compared with the case of using c60 or C7Q. The epoxy compound contained in the anti-mite film forming composition of the present invention is preferably a compound having at least two epoxy groups or propylene oxide rings. The epoxy compound is contained, for example, in an amount of from 0.1 to 5% by mass, preferably from 1 to 100% by mass based on the fullerene derivative. The underlayer film forming composition of the present invention may further contain an acid catalyst or an alkali catalyst. The acid catalyst can be exemplified by, for example, a key salt, a diazomethane derivative, a glyoxime derivative, a biguanide derivative, a ketoxime derivative, a dioxane derivative, a nitrobenzenesulfonate derivative, and a sulfonate. A sulfonate derivative of an acid ester derivative and an N-hydroxy quinone imine compound. The basic catalyst may, for example, be an imidazole compound, a quaternary ammonium salt, a scale salt, an amine compound, an aluminum chelate compound, an organic phosphine compound or the like. Specifically, it is exemplified as 2-methylimidazole, 2-ethyl-4-methylimidazole, 1,8-diazabicyclo(5,4,0)undecene-7, trimethylamine, benzyl Amine compounds such as dimethylamine, triethylamine, dimethylbenzylamine, 2,4,6-x-dimethylaminomethylphenol and salts thereof, tetramethylammonium chloride, benzyl bromide a quaternary ammonium salt such as trimethylammonium chloride, benzyltriethylammonium chloride or tetrabutylammonium bromide, aluminum chelate, tetra-n-butyl benzotriazole, tetra-n-butyl scale An organic phosphine compound such as diethyldithiophosphate. One selected from the acid catalyst or the alkali catalyst may be added, or a combination of two or more types may be added. The acid catalyst or base catalyst is contained in the range of, for example, 0.1 to 50% by mass, preferably 0.5 to 40% by mass based on the fullerene derivative-containing -9 to 201142516, and is an adduct of the Fulsch derivative. (deformation group) decomposition reaction and crosslinking reaction. The strontium salt is exemplified below. Tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, triethylammonium nonafluorobutanesulfonate, pyridinium nonafluorobutanesulfonate, triethylammonium camphorsulfonate, camphor Diphenyl sulfonate, camphorsulfonic acid (p-butoxyphenyl)phenylhydrazine, camphorsulfonic acid bis(p-butoxyphenyl)iodine, trifluoromethanesulfonic acid double (pair) -Tertibutoxyphenyl)iodine, nonafluorobutanesulfonic acid (p-t-butoxyphenyl)phenylhydrazine, nonafluorobutanesulfonic acid bis(p-t-butoxyphenyl)錤, camphor sulfonate pyridinium, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethylammonium p-toluenesulfonate, pyridinium p-toluenesulfonate, three Diphenyl fluoromethanesulfonate, trifluoromethanesulfonic acid (p-t-butoxyphenyl)phenyl fluorene, p-toluenesulfonic acid diphenyl hydride, p-toluene sulfonic acid (p. Oxyphenyl) phenyl hydrazine, triphenyl sulfonium trifluoromethanesulfonate, trifluoromethyl carboxylic acid (p-t-butoxyphenyl) diphenyl fluorene, trifluoromethane sulfonic acid bis (p- Third butoxyphenyl)phenylhydrazine, trifluoromethanesulfonic acid p-Tertibutoxyphenyl) fluorene, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid (p-t-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid bis ( p-T-butoxyphenyl)phenyl fluorene, p-toluenesulfonic acid tris(p-t-butoxyphenyl) fluorene, nonafluorobutane sulfonate triphenyl sulfonium, butane sulfonic acid triphenyl Vegetable, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl (2-oxocyclohexyl)phosphonium trifluoromethanesulfonate, cyclohexylsulfonic acid cyclohexyl Methyl (2-oxocyclohexyl) fluorene, dimethylphenyl sulfonium trifluoromethanesulfonate, p-methyl-10-201142516 dimethylphenyl sulfonate benzene, dicyclohexyl benzene trifluoromethane sulfonate Base, p-toluenesulfonic acid dicyclohexylphenyl fluorene, trinaphthyltrifluoromethanesulfonate, trifluoromethanesulfonic acid (2-anbornyl)methyl (2-oxocyclohexyl) fluorene, Ethyl bis[methyl(2-oxocyclopentyl)phosphonium trifluoromethanesulfonate], 1,2'-naphthylcarbonylmethyltetrahydrothiophene trifluoromethanesulfonate, triethylammonium nine Fluorane sulfonate, tributylammonium nonafluorobutane sulfonate, tetraethyl Alkyl ammonium nonafluorobutane sulfonate, tetrabutylammonium nonafluorobutane sulfonate, triethylammonium bis(trifluoromethylsulfonyl) phthalimide, and triethylammonium tris (perfluoroethylene) Methylsulfonyl) methide. The diazomethane derivative is exemplified below. Bis(phenylsulfonyl)diazomethane, bis(p-toluenesulfonyl)diazomethane, bis(xylsulfonyl)diazomethane, bis(cyclohexylsulfonyl)diazomethane, bis( Cyclopentyl dilatyl) diazocarbazide, bis(n-butylsulfonyl)diazide, bis(isobutyl) diazonium, bis(secondyl butyl) Diazotrim, bis(n-propylsulfonyl)diazomethane, bis(isopropyl aryl)diazomethane, bis(t-butylsulfonyl)diazomethane, bis(n-pentyl) Dimethylmethane, bis(isopentylsulfonyl)diazide, ^(dipentylsulfonyl)diazomethane, bis(third amylsulfonyl)diazo , 1-cyclohexylsulfonyl-1-(tert-butylsulfonyl) diazocarbazide, b-cyclohexylsulfonyl-1·(tripentylsulfonyl) diazocarbazide, and _ third amylsulfonyl-1-(tert-butylsulfonyl)diazomethane. The ethylenediazine derivative is exemplified below. Bis-fluorene-(p-toluenesulfonyl)_α. dimethyl Ethylene bismuth, double-0-(p-toluenesulfonyl)-α-diphenylethylene bimonthly bow, double- -(p-toluenesulfonyl)-α-dicyclohexylethylene bis, bis(〇-11( 2011-0 - 201142516 p-toluenesulfonyl)-2,3-pentanedione oxime, bis-indole -(p-toluenesulfonyl)-2-methyl-3,4-pentanedione oxime, bis-indole-(n-butanesulfonyl)-α-dimethylglyoxime, double- 0-(n-butanesulfonyl)-α-diphenylglyoxime, bis-indole-(n-butanesulfonyl)-α-dicyclohexylethylenedifluoride, bis-0-(n-butane Sulfosyl)-2,3·pentanedione ethanedioxime, bis-indolyl-(n-butanesulfonyl)-2-methyl-3,4-pentanedione ethanedioxime, bis-indole ( Methanesulfonyl)-α-dimethylglyoxime, bis-0-(trifluoromethanesulfonyl)-α-dimethylglyoxime, bis--0-(1,1,1-trifluoro Ethylsulfonyl)-α-dimethylglyoxime, bis-(·t-butanesulfonyl)-α-dimethylglyoxime, bis-indole _ (perfluorooctane sulfonate) ))-α-dimethylglyoxime, bis- 〇·(cyclohexanesulfonyl)-α·dimethylglyoxime, bis- 0-(phenylsulfonyl)-α-dimethyl Ethylene bismuth, bis-indole-(p-fluorophenylsulfonyl)-α-dimethylglyoxime, bis-indole (p-t-butylphenylsulfonyl)-α-dimethyl Bismuth dioxime, bis--0-(xylsulfonyl)-α-dimethylglyoxime, and bis--0-(camphorsulfonyl)-α-dimethylglyoxime. Examples are shown below. bisnaphthalenesulfonyl methane, bistrifluoromethylsulfonyl methane, bismethylsulfonyl methane, bisethylsulfonyl methane, bispropylsulfonyl methane, diisopropyl Sulfhydryl methane, bis-p-toluenesulfonyl methane, and bisbenzenesulfonyl methane. The β-ketooxime derivative is exemplified below. 2-cyclohexylcarbonyl-2-(p-toluenesulfonyl)propane And 2-isopropylcarbonyl-2-(p-toluenesulfonyl)propane. The maple derivative is exemplified below. Diphenyldifluorene derivative and dicyclohexyldifluoride derivative -12- 201142516 The nitrobenzyl sulfonate derivative is exemplified below. 2,6-Dinitrobenzyl p-toluenesulfonate and 2,4-dinitrobenzyl p-toluenesulfonate. The sulfonate derivatives are exemplified below. 1,2,3-paraxyl (methanesulfonyloxy)benzene, 1,2,3-cis (trifluoromethanesulfonyloxy)benzene, and 1,2,3-paran (p-toluenesulfonate) Baseoxy)benzene. A sulfonate derivative of an N-hydroxyquinone imine compound is exemplified below. N-based amber succinimide methane sulfonate, N-hydroxysuccinimide trifluoromethane, acid ester, N-hydroxysuccinimide ethane sulfonate, N-hydroxysuccinimide 1-propane Sulfonate, N-hydroxysuccinimide 2·propane sulfonate, N-hydroxysuccinimide 1-pentane sulfonate, N-hydroxysuccinimide 1-octane sulfonate, N- Hydroxyammonium imine p-toluenesulfonate, N-hydroxysuccinimide p-methoxybenzenesulfonate, N-hydroxysuccinimide 2-chloroethanesulfonate, N-hydroxyarene Iminobenzenesulfonate, N-hydroxysuccinimide-2,4,6-trimethylbenzenesulfonate, N-hydroxysuccinimide 1-naphthalenesulfonate, N-hydroxysuccinimide 2-naphthyl sulfonate, N-hydroxy-2-phenyl succinimide methane sulfonate, N-hydroxymaleimide methane sulfonate, N-hydroxymaleimide ethane sulfonate , N-hydroxy-2-phenyl-maleimide methane sulfonate, N-hydroxypentamethylene imide methane sulfonate, N-hydroxypentamethylene benzene sulfonate, N-hydroxy benzene Yttrium imide methane sulfonate, N-hydroxybenzoquinone benzene sulfonate, N-hydroxy benzodiazepine trifluoride Methanesulfonate, N-hydroxybenzodiazepine p-toluenesulfonate 'N-hydroxynaphthalene diimide methanesulfonate, N-hydroxynaphthalene diimide benzenesulfonate, N_hydroxyl group 5_原冰片嬉. 2,3-Dicarboxy quinone imide methane sulfonate, N-hydroxy-5-formylbornene-2,3-dicarboxy quinone imine trifluoromethane sulfonate, and N-hydroxyl -5-原bornerene-2,3_dicarboxy-13- 201142516 quinone imine p-toluenesulfonate. The underlayer film forming composition of the present invention may further contain an interface active agent. As the surfactant, for example, EF TOP [registered trademark] EF301, EF TOP EF303, EF TOP EF352 (manufactured by Mitsubishi Materials Electronics Co., Ltd.), MEGAFAC [registered trademark] F171, MEGAFAC F173, MEGAFAC R-30 (DIC) Manufactured by a company limited by shares, FLUORAD FC43 0, FLUORAD FC 4 3 1 (manufactured by Sumitomo 3 Μ Co., Ltd.), ASAHI GUARD (registered trademark) AG710, SURFLON [registered trademark] S-3 82, SURFLON SC101 'SURFLON SC102, SURFLON A fluorine-based surfactant such as SC 103, SURFLON SC104, SURFLON SCI 05, and SURFLON SC106 (manufactured by Asahi Glass Co., Ltd.), and an organic siloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.). One of these surfactants may be added, or two or more types may be added in combination. The surfactant contains, for example, from 0.01 to 10% by mass, preferably from 0.1 to 5% by mass, based on the fullerene derivative. The underlayer film forming composition of the present invention is used in a state of a homogeneous solution obtained by dissolving the above components in a solvent. As the solvent, for example, propylene glycol monomethyl ether acetate, cyclohexanone, 2-heptanone, ethyl lactate, o-xylene, toluene, o-dichlorobenzene, propylene glycol monomethyl ether, propylene glycol monopropyl group can be used. Ether, 1-methyl-2-pyrrolidone and 7-butyrolactone. One type selected from the solvents may be used, or two or more types may be used in combination. The prepared underlayer film forming composition is preferably filtered using a filter having a pore diameter of, for example, 0.1 μm or less. After the filtration of the resist -14- 201142516 The film-forming composition has excellent long-term storage stability at room temperature. Hereinafter, a method of using the underlayer film forming composition of the present invention will be described. On a substrate [for example, a semiconductor substrate such as a tantalum oxide film, a tantalum nitride film, or a tantalum oxide film, a tantalum nitride substrate, a quartz substrate, or a glass substrate (including alkali-free glass, low-alkali glass, or crystallized glass) On the glass substrate or the like on which the ITO film is formed, the anti-feeding underlayer film forming composition of the present invention is applied by a suitable coating method such as a spin coater or an applicator, and then, by using a heating plate or the like. The heating means is baked to form a resist underlayer film. The baking conditions are selected from the range of temperature: 180 ° C to 400 ° C, time: 0.3 minutes to 10 minutes. After baking at a temperature of 180 ° C to 250 ° C, it may be baked again at a temperature higher than this temperature, for example, 300 ° C to 400 ° C. The adduct (modification group) of the fullerene derivative contained in the coating composition is decomposed by baking at a temperature of from 180 ° C to 25 ° C to form a carboxyl group. Subsequently, the decomposition of the adduct (modification group) is further progressed by baking at 300 ° C to 400 ° C, and it is presumed to be a fullerene derivative which undergoes a crosslinking reaction. The film thickness of the formed underlayer film is from Ομμηη to 3.0μηη, for example, 0.03μηη to Ι.Ομιη, or 0.05μιη to 0.5μιη. The intermediate layer forming composition is applied onto the resist underlayer film by a suitable coating method such as a spin coater or an applicator. The intermediate layer forming composition is exemplified by, for example, a solution containing a hydrolyzate and/or a hydrolysis condensate of one or two or more alkoxydecanes and a necessary additive, or a solution containing a commercially available polydecane and an essential additive. . Subsequently, baking is performed by a heating means such as a hot plate to form an intermediate layer containing ruthenium. Baking conditions are based on temperature: 180 °c to 300 °c, time: 0.3 minutes to 10 minutes. -15- 201142516 The most appropriate choice. A resist film is then formed on the intermediate layer containing germanium. The formation of the resist film can be carried out by a usual method, that is, by applying a resist solution on the intermediate layer and baking. The resist solution to be used is not particularly limited, and is, for example, a product name: APEX-E manufactured by Rohm and Haas Electronic Materials Co., Ltd., trade name: PAR710 manufactured by Sumitomo Chemical Co., Ltd., and a product manufactured by Shin-Etsu Chemical Co., Ltd. Name: SEPR430 and so on. Next, exposure is performed through a photomask (reticule) to form a photoresist pattern from the resist film. For exposure, for example, KrF excimer laser, ArF excimer laser, and EUV (extreme ultraviolet) can be used. After exposure, perform PEB (post-exposure baking) as needed and develop. When a positive resist solution is used, the imaging system uses an alkaline developing solution. The alkaline developing solution is exemplified by an aqueous solution of an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide, an aqueous solution of tetramethylammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide or choline, or ethanolamine. An aqueous solution of an amine such as propylamine or ethylenediamine. Further, a surfactant may be added to the developing solutions. The conditions for development are from the development temperature to 50 ° C, and the development time is 10 seconds to 300 seconds. In the case of the present invention, development can be easily carried out at room temperature by using a 2.38 mass% aqueous solution of tetramethylammonium hydroxide widely used in the development of photoresist. Hereinafter, the present invention will be described by way of the following synthesis examples and the following examples, but the invention is not limited thereto. Example-16-201142516 (Synthesis Example 1) 9.80 g of dibutyl succinate (manufactured by Aldrich Co., Ltd.) was fed into a reaction vessel under a nitrogen stream, followed by addition of 1,2,4-trimethylbenzene 150 cm 3 and Diazabicyclo[5.4.0]-7-~ί--•Carbon (1,8-diazabicyclo [5.4.0] undec-7-ene, manufactured by Tokyo Chemical Industry Co., Ltd.) 6.50g, while stirring The temperature was adjusted to 4 °C. A dark purple solution obtained by dissolving 10.9 g of iodine (manufactured by Wako Pure Chemical Industries, Ltd.) in 130 cm3 of 1,2,4-trimethylbenzene was slowly added dropwise to the obtained temperature-adjusted reaction liquid. The temperature inside the flask was controlled at 11 ° C using an ice bath during the dropwise addition. After the completion of the dropwise addition, the temperature of the reaction liquid was returned to room temperature. The reaction liquid in the flask was in the form of a brown suspension. Subsequently, 5.00 g of a fullerene mixture (containing C6Q, C70 and other higher-order fullerenes, manufactured by Frontier Carbon Co., Ltd.) was dissolved in 1,2,4-trimethylbenzene 350 cm3 while stirring. The solution is added to the reaction liquid in the above reaction vessel. Here, the term "high-order fullerene" is defined as a general term for fullerenes having a carbon number of more than 70 in the present specification. Subsequently, the diazabicyclo[5.4.0]-7--carbon is diluted with 5 cm3 of 1,2,4-trimethylbenzene with stirring (1,8-diazabicyclo [5.4.0] undec-7 - ene 'manufactured by Tokyo Chemical Industry Co., Ltd.) 6.90 g of the solution was added dropwise to the reaction liquid in the flask. The reaction was carried out by stirring at room temperature for 6.5 hours. 〇 The reaction mixture was washed with a saturated aqueous solution of sodium sulfite (the organic phase) four times. The obtained organic phase was washed twice with a 1 N aqueous sulfuric acid solution (100 cm 3 ), and then washed three times with 2 〇〇 cm 3 of pure water. The solvent ( -17- 201142516 1,2,4-trimethylbenzene) was distilled off under reduced pressure to obtain 9.00 g of a brown solid, which was obtained by silica gel permeation chromatography using a mixture solvent to obtain a fullerene derivative ( C plus product). (Example 1) Fullerene derivative obtained in Synthesis Example 1. Epoxy compound represented by (3-a) (Dongdu Chemical Co., Ltd., trade name: YH434L) 0.15 g, registered trademark as an interface activity] R-30 (Manufactured by DIC Corporation) 7.0 g of propylene glycol monomethyl ether acetate was used as a solution. 0.10 μηι polyethylene microfiltration filter, and then filtered with an ethylene microfilter to prepare a resist underlayer film [Chemical 3] hexane and ethyl acetate di-tert-butyl ester 〇g, mixed MECAFAC [O.OOlg, a manufacturing agent of Co., Ltd., and dissolved, followed by polymerization of a composition having a pore diameter of 0.05 μm.

(實施例2 ) 將實施例1中使用之環氧化合物(東 公司製造,商品名YH434L ) 〇.3g、作;! MECAFAC [註冊商標]R-30 ( DIC股份i 都化成股份有限 !界面活性劑之 『限公司製造) -18- 201142516 O.OOlg混合於合成例1中獲得之富勒烯衍生物l.〇g中,並溶 解於丙二醇單甲基醚乙酸酯7.0g中成爲溶液。隨後,使用 孔徑Ο.ΙΟμιη之聚乙烯製微過濾器過濾,再使用孔徑0.05μιη 之聚乙烯製微過濾器過濾,調製抗蝕下層膜形成組成物溶 液》本實施例所使用之環氧化合物之質量與前述之實施例 1不同。 (實施例3 ) 將以式(3-b)表示之環氧化合物(Daicel化學工業股 份有限公司製造,商品名:GT401 ) 〇.lg、作爲界面活性 劑之MECAFAC [註冊商標]R-30 ( DIC股份有限公司製造) O.OOlg混合於合成例1中獲得之富勒烯衍生物l.Og中,並溶 解於丙二醇單甲基醚乙酸酯7.0g中成爲溶液。隨後,使用 孔徑Ο.ΙΟμιη之聚乙烯製微過濾器過濾,接著,使用孔徑 0.0 5 μιη之聚乙烯製微過濾器過濾,調製抗蝕下層膜形成組 成物溶液。 [化4](Example 2) The epoxy compound used in Example 1 (manufactured by Tosoh Corporation, trade name: YH434L) 〇.3g, made; ! MECAFAC [registered trademark] R-30 (DIC shares i Duhuacheng shares limited! Interface activity Manufactured by the company -18-201142516 O.OOlg was mixed in the fullerene derivative l.〇g obtained in Synthesis Example 1, and dissolved in 7.0 g of propylene glycol monomethyl ether acetate to form a solution. Subsequently, it was filtered using a polyethylene microfilter having a pore size of Ο.ΙΟμηη, and then filtered using a polyethylene microfilter having a pore size of 0.05 μm to prepare a resist underlayer film forming composition solution. The epoxy compound used in the present example. The quality is different from Embodiment 1 described above. (Example 3) An epoxy compound represented by the formula (3-b) (manufactured by Daicel Chemical Industry Co., Ltd., trade name: GT401) 〇.lg, MECAFAC [registered trademark] R-30 (as a surfactant) O. OOlg was mixed with the fullerene derivative 1.0 g obtained in Synthesis Example 1, and dissolved in 7.0 g of propylene glycol monomethyl ether acetate to form a solution. Subsequently, it was filtered using a polyethylene microfilter having a pore size of Ο.ΙΟμηη, and then filtered using a polyethylene microfilter having a pore diameter of 0.05 μηη to prepare a resist underlayer film forming composition solution. [Chemical 4]

-19- 201142516 (實施例4 ) 將以式(3-c)表示之環氧化合物(三菱氣體化學股 份有限公司製造,商品名:TETRAD-C) 0.2g、作爲界面 活性劑之MECAFAC [註冊商標]R-30 (DIC股份有限公司製 造)O.OOlg混合於合成例1中獲得之富勒烯衍生物l.Og中, 並溶解於丙二醇單甲基醚乙酸酯7.〇g中成爲溶液。隨後, 使用孔徑〇·1〇μιη之聚乙烯製微過濾器過濾’再使用孔徑 0.05 μηι之聚乙烯製微過濾器過濾,調製抗蝕下層膜形成組 成物溶液。 [化5]-19-201142516 (Example 4) 0.2 g of an epoxy compound (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name: TETRAD-C) represented by formula (3-c), MECAFAC as a surfactant [Registered trademark R-30 (manufactured by DIC Co., Ltd.) O.OOlg was mixed in the fullerene derivative obtained in Synthesis Example 1. Og, and dissolved in propylene glycol monomethyl ether acetate 7. . Subsequently, it was filtered using a polyethylene microfilter having a pore size of 〇·1〇μηη, and then filtered using a polyethylene microfilter having a pore diameter of 0.05 μm to prepare a composition film for forming a resist underlayer film. [Chemical 5]

(實施例5 ) 將以式(3-d)表示之環氧化合物(DIC股份有限公司 製造,商品名:HP-4700 ) 0.3g、作爲界面活性劑之 MECAFAC[註冊商標]R-30 ( DIC股份有限公司製造) O.OOlg混合於合成例1中獲得之富勒烯衍生物l.Og中,並溶 解於丙二醇單甲基醚乙酸酯7· 〇g中成爲溶液。隨後,使用 孔徑Ο.ΙΟμιη之聚乙烯製微過濾器過濾,再使用孔徑〇.〇5μιη 之聚乙烯製微過濾器過濾,調製抗蝕下層膜形成組成物溶 液0 -20- 201142516 [化6](Example 5) 0.3 g of an epoxy compound (manufactured by DIC Co., Ltd., trade name: HP-4700) represented by the formula (3-d), and MECAFAC [registered trademark] R-30 (DIC) as a surfactant O. OOlg was mixed with the fullerene derivative 1.0 g obtained in Synthesis Example 1, and dissolved in propylene glycol monomethyl ether acetate 7·〇g to form a solution. Subsequently, it was filtered using a polyethylene microfilter having a pore size of Ο.ΙΟμιη, and then filtered using a polyethylene microfilter having a pore size of 〇. 5 μιη to prepare a composition for forming a resist underlayer film. 0 -20- 201142516 [Chem. 6]

(實施例6 ) 將以前述式(3_a)表示之環氧化合物(東都化成股 份有限公司製造’商品名YH434L) 0.15g、作爲界面活性 齊[(之MECAFAC [註冊商標]R-30 ( DIC股份有限公司製造 )O.OOlg、作爲觸媒之對-甲苯磺酸吡啶鑰0.05g混合於合 成例1中獲得之富勒烯衍生物l.Og中,並溶解於丙二醇單 甲基醚乙酸酯7.0g中成爲溶液。隨後,使用孔徑0.10 μιη之 聚乙烯製微過濾器過濾,再使用孔徑0.05 μιη之聚乙烯製微 過濾器過濾,調製抗蝕下層膜形成組成物溶液。 (比較例1 ) 將作爲界面活性劑之MECAFAC [註冊商標]R-30 ( DIC 股份有限公司製造)O.OOlg混合於合成例1中獲得之富勒 烯衍生物l.Og中,並溶解於丙二醇單甲基醚乙酸酯7. 〇g中 成爲溶液。隨後,使用孔徑Ο.ΙΟμιη之聚乙烯製微過濾器過 濾,再使用孔徑0.05 μπι之聚乙烯製微過濾器過濾,調製抗 蝕下層膜形成組成物溶液。本比較例爲前述實施例1至實 施例6不同,爲未含環氧化合物之例。 -21 - 201142516 [對光阻溶劑之溶出試驗] 以旋轉塗佈器將實施例1至實施例6中調製之各抗蝕下 層膜形成組成物溶液(含環氧化合物)塗佈於矽晶圓上。 在加熱板上以240°C之溫度加熱1分鐘,形成抗蝕下層膜( 膜厚0.2μπι )。接著,將該等抗蝕下層膜浸漬於光阻中使 用之溶劑的乳酸乙酯、丙二醇單甲基醚及丙二醇單甲基醚 乙酸酯中,確認不溶於該溶劑中。 接著,以旋轉塗佈器將比較例1中調製之抗蝕下層膜 形成組成物溶液塗佈於矽晶圓上。在加熱板上以240 °C之 溫度加熱1分鐘,形成抗蝕下層膜(膜厚0.2μπι)。將該等 抗蝕下層膜浸漬於光阻中使用之溶劑的乳酸乙酯、丙二醇 單甲基醚及丙二醇單甲基醚乙酸酯中之後,確認溶解於該 溶劑中。塗佈比較例1中調製之抗蝕下層膜形成組成物而 成之膜並未因上述加熱而展現耐溶劑性,故難以利用塗佈 法’將中間層形成材料(例如含有聚矽氧烷或聚矽烷之組 成物)成膜於所形成之抗蝕下層膜之上層^ [光學參數之試驗] 以旋轉塗佈器將實施例1至實施例6及比較例1中調製 之各抗蝕下層膜形成組成物塗佈於矽晶圓上。在加熱板上 以240 °C之溫度加熱1分鐘,形成抗蝕下層膜(膜厚ο.〗μιη )。接著,使用分光橢圓偏光儀(J.A. Woollam公司製造 ,VUV- VASE VU-3 02 ) ’測定該等抗蝕下層膜於波長 -22- 201142516 1 93 nm之折射率(η値)及光學吸光係數(1^直,亦稱爲衰 減係數)。結果示於表1。 [表1] 1 9 3 nm η値 k値 實施例1 1.44 0.46 實施例2 1.46 0.48 實施例3 1.49 0.40 實施例4 1.44 0.44 實施例5 1.45 0.38 實施例6 1.47 0.50 表1所示之結果顯示由本發明之抗蝕下層膜形成組成 物獲得之抗蝕下層膜與含矽中間層組合使用時,具有可減 低來自基板之波長193nm之光的反射之η値及k値。 [乾蝕刻速度之測定] 乾蝕刻速度之測定係使用下述之蝕刻裝置及蝕刻氣體 〇 蝕刻裝置:RIE-10NR ( SAMCO股份有限公司製造) 蝕刻氣體:CF4 以旋轉塗佈器,將實施例1至實施例6及比較例1中調 製之抗蝕下層膜形成組成物之溶液塗佈於矽晶圓上。在加 熱板上以240°C加熱1分鐘,形成抗蝕下層膜(膜厚〇.2μιη -23- 201142516 )。對該抗蝕下層膜,使用CF4作爲蝕刻氣體測定蝕刻速 度。接著,以旋轉塗佈器將使酚酚醛清漆樹脂〇.7g溶解於 丙二醇單甲基醚10g中而成之溶液塗佈於矽晶圓上,以 24(TC之溫度加熱1分鐘,形成酚酚醛清漆樹脂膜。對該樹 脂膜使用CF4氣體作爲蝕刻氣體測定乾蝕刻速度,且進行 由實施例1至實施例6及比較例1之抗鈾下層膜形成組成物 形成之各抗蝕下層膜之乾蝕刻速度之比較。結果示於下表 2。表2之乾蝕刻速度比爲相對於上述酚酚醛清漆樹脂膜之 乾蝕刻速度的各抗蝕下層膜之乾蝕刻速度(抗蝕下層膜) /(酚酚醛清漆樹脂膜)。 [表2] 乾蝕刻速度比 實施例1 0.72 實施例2 0.69 實施例3 0.74 實施例4 0.70 實施例5 0.74 實施例6 0.61 由上述表2之結果可知,由實施例6中調製之含有觸媒 之抗蝕下層膜形成組成物獲得之抗蝕下層膜,相較於由其 他實施例中調製之抗蝕下層膜形成組成物獲得之抗蝕下層 膜,獲得乾蝕刻速度比小之結果。其結果顯示,藉由在抗 -24- 201142516 蝕下層膜形成組成物中含有觸媒,可提高所形成之膜之乾 蝕刻耐性。 -25-(Example 6) 0.15 g of an epoxy compound (trade name YH434L, manufactured by Tohto Kasei Co., Ltd.) represented by the above formula (3-a) was used as an interface activity [(MECAFAC [registered trademark] R-30 (DIC shares) O. OOlg, 0.05 g of p-toluenesulfonic acid pyridine as a catalyst mixed in the fullerene derivative 1.0 g obtained in Synthesis Example 1, and dissolved in propylene glycol monomethyl ether acetate The solution was dissolved in 7.0 g, and then filtered using a polyethylene microfilter having a pore diameter of 0.10 μm, and then filtered using a polyethylene microfilter having a pore size of 0.05 μm to prepare a composition film for forming a resist underlayer film (Comparative Example 1). MECAFAC [registered trademark] R-30 (manufactured by DIC Co., Ltd.) O.OOlg as a surfactant was mixed in the fullerene derivative 1.0 g obtained in Synthesis Example 1, and dissolved in propylene glycol monomethyl ether. Acetate 7. 成为g becomes a solution. Subsequently, it is filtered using a polyethylene microfilter having a pore size of Ο.ΙΟμηη, and then filtered using a polyethylene microfilter having a pore size of 0.05 μm to prepare a resist underlayer film forming composition solution. This comparative example is The examples 1 to 6 are examples in which no epoxy compound is contained. -21 - 201142516 [Dissolution test for photoresist solvent] The respective anti-modulations prepared in Examples 1 to 6 were applied by a spin coater. The underlayer film forming composition solution (containing an epoxy compound) is coated on the germanium wafer, and heated on the hot plate at a temperature of 240 ° C for 1 minute to form a resist underlayer film (film thickness 0.2 μπι). These anti-corrosion underlayer films were immersed in ethyl lactate, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate in a solvent used for the photoresist, and it was confirmed that they were insoluble in the solvent. Next, a spin coater was used. The resist underlayer film forming composition solution prepared in Comparative Example 1 was applied onto a tantalum wafer, and heated on a hot plate at a temperature of 240 ° C for 1 minute to form a resist underlayer film (film thickness: 0.2 μm). After the anti-corrosion underlayer film was immersed in ethyl lactate, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate of the solvent used for the photoresist, it was confirmed to be dissolved in the solvent. The film formed by forming a composition under the resist film is not caused by The heating exhibits solvent resistance, so it is difficult to form an intermediate layer forming material (for example, a composition containing polysiloxane or polydecane) onto the upper layer of the formed underlayer film by a coating method. [Optical parameters Test] Each of the underlayer film forming compositions prepared in Examples 1 to 6 and Comparative Example 1 was applied onto a tantalum wafer by a spin coater, and heated at a temperature of 240 ° C on a hot plate. 1 minute, a resist underlayer film (film thickness ο. μmη) was formed. Then, the resist underlayer film was measured at a wavelength of 22 using a spectroscopic ellipsometer (manufactured by JA Woollam Co., Ltd., VUV-VASE VU-3 02) - 201142516 1 93 nm refractive index (η値) and optical absorption coefficient (1^ straight, also known as attenuation coefficient). The results are shown in Table 1. [Table 1] 1 9 3 nm η値k値 Example 1 1.44 0.46 Example 2 1.46 0.48 Example 3 1.49 0.40 Example 4 1.44 0.44 Example 5 1.45 0.38 Example 6 1.47 0.50 The results shown in Table 1 are shown by When the resist underlayer film obtained by the invention of the underlayer film forming composition of the invention is used in combination with the ytterbium-containing intermediate layer, η 値 and k 可 which can reduce the reflection of light having a wavelength of 193 nm from the substrate. [Measurement of Dry Etching Rate] The dry etching rate was measured by using the following etching apparatus and etching gas etching apparatus: RIE-10NR (manufactured by SAMCO Co., Ltd.) etching gas: CF4 using a spin coater, and Example 1 A solution of the resist underlayer film forming composition prepared in Example 6 and Comparative Example 1 was applied onto a germanium wafer. The film was heated at 240 ° C for 1 minute on a heating plate to form an underlayer film (film thickness 〇. 2 μιη -23 - 201142516). The etching rate was measured using CF4 as an etching gas for the underlayer film. Next, a solution obtained by dissolving phenol novolac resin 〇.7 g in 10 g of propylene glycol monomethyl ether was applied onto a ruthenium wafer by a spin coater, and heated at 24 TC for 1 minute to form a phenol phenolic aldehyde. A varnish resin film, the dry etching rate was measured using CF4 gas as an etching gas for the resin film, and each of the resist underlayer films formed of the uranium-underlying film forming compositions of Examples 1 to 6 and Comparative Example 1 was dried. The etching speed was compared. The results are shown in the following Table 2. The dry etching rate ratio of Table 2 is the dry etching rate (resist underlayer film) of each of the underlayer films with respect to the dry etching rate of the above phenol novolak resin film / ( Phenolic novolak resin film) [Table 2] Dry etching rate ratio Example 1 0.72 Example 2 0.69 Example 3 0.74 Example 4 0.70 Example 5 0.74 Example 6 0.61 From the results of Table 2 above, it is understood that the examples are A resist underlayer film obtained by forming a composition of a resist-containing underlayer film containing a catalyst in 6 is obtained, and a dry etching rate is obtained as compared with a resist underlayer film obtained by forming a composition of the underlayer film formed by the other embodiment. Than small As a result, it was revealed that the dry etching resistance of the formed film can be improved by containing a catalyst in the underlayer film forming composition of the anti-24-201142516.

Claims (1)

201142516 七、申請專利範園: 1. 一種抗蝕下層膜形成組成物,其含有對於一分子之 富勒烯,加成1至6分子之以下述式(1)表示之丙二酸二 酯而成之富勒烯衍生物、具有至少兩個環氧基或環氧丙烷 環之化合物、及溶劑: [化1]201142516 VII. Patent application garden: 1. A resist underlayer film forming composition containing a malonate diester represented by the following formula (1) for one molecule of fullerene a fullerene derivative, a compound having at least two epoxy or propylene oxide rings, and a solvent: [Chemical Formula 1] ⑴ (式中,R各獨立表示碳原子數卜10之烷基)。 2. 如申請專利範圍第1項之抗蝕下層膜形成組成物, 其進而含有酸觸媒或鹼觸媒。 3. 如申請專利範圍第1或2項之抗蝕下層膜形成組成物 ,其進而含有界面活性劑。 4. 一種抗蝕圖型之形成方法,其具有下述步驟: 將如申請專利範圍第1至3項中任一項之抗蝕下層膜形 成組成物塗佈於基板上,在180°C至400°C之溫度烘烤至少 一次,形成抗蝕下層膜之步驟、 於前述抗蝕下層膜上塗佈中間層形成組成物,藉由烘 烤形成含矽中間層之步驟、 於前述中間層上形成抗蝕膜之步驟, 對於前述抗蝕膜至少進行曝光及顯像之步驟。 -26- 201142516 四 指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明:無 201142516 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無(1) (wherein R each independently represents an alkyl group having a carbon number of 10). 2. The underlayer film forming composition of claim 1, wherein the composition further comprises an acid catalyst or a base catalyst. 3. The underlayer film forming composition of claim 1 or 2, which further comprises a surfactant. A method for forming a resist pattern, comprising the steps of: applying a resist underlayer film forming composition according to any one of claims 1 to 3 on a substrate at 180 ° C to Baking at a temperature of 400 ° C at least once to form a resist underlayer film, coating an intermediate layer on the resist underlayer film to form a composition, and baking to form a ruthenium containing intermediate layer on the intermediate layer a step of forming a resist film, and performing at least exposure and development on the resist film. -26- 201142516 Four designated representative maps: (1) The designated representative figure of this case is: None (2) The symbol of the symbol of this representative figure is simple: No 201142516 If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: no
TW100106406A 2010-03-01 2011-02-25 Resist underlayer film forming composition containing fullerene derivative TW201142516A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044100 2010-03-01

Publications (1)

Publication Number Publication Date
TW201142516A true TW201142516A (en) 2011-12-01

Family

ID=44542027

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106406A TW201142516A (en) 2010-03-01 2011-02-25 Resist underlayer film forming composition containing fullerene derivative

Country Status (3)

Country Link
JP (1) JP5757286B2 (en)
TW (1) TW201142516A (en)
WO (1) WO2011108365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407883A (en) * 2015-03-11 2017-11-28 日产化学工业株式会社 The forming method of resist lower membrane

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207259A (en) * 2014-10-08 2017-09-26 亚历克斯·菲利普·格雷厄姆·罗宾逊 Spin coating hard mask material
KR102273332B1 (en) * 2015-03-31 2021-07-06 닛산 가가쿠 가부시키가이샤 Cationic Polymerizable Resist Underlayer Film Forming Composition
KR102675775B1 (en) 2016-12-27 2024-06-18 삼성전자주식회사 Hardmask composition, method of forming patterning using the hardmask composition, and hardmask formed from the hardmask composition
KR102602887B1 (en) * 2017-09-13 2023-11-16 닛산 가가쿠 가부시키가이샤 Stepped substrate coating composition containing a compound having a curable functional group
US20200379347A1 (en) * 2019-05-31 2020-12-03 Rohm And Haas Electronic Materials Llc Resist underlayer compositions and pattern formation methods using such compositions
JPWO2021054337A1 (en) 2019-09-17 2021-03-25
KR20230128000A (en) 2020-12-28 2023-09-01 제이에스알 가부시끼가이샤 Manufacturing method and composition of semiconductor substrate
KR20230156311A (en) 2021-03-11 2023-11-14 제이에스알 가부시끼가이샤 Method for producing semiconductor substrates, compositions, polymers, and methods for producing polymers
KR20230157942A (en) 2021-03-12 2023-11-17 제이에스알 가부시끼가이샤 Method for producing semiconductor substrates, compositions, polymers, and methods for producing polymers
JPWO2022196673A1 (en) * 2021-03-16 2022-09-22
JPWO2022270484A1 (en) 2021-06-24 2022-12-29

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134759B2 (en) * 2003-03-04 2008-08-20 Jsr株式会社 Antireflection film forming composition and antireflection film
JP2005266798A (en) * 2004-02-19 2005-09-29 Tokyo Ohka Kogyo Co Ltd Photoresist composition and method for forming resist pattern
GB0420702D0 (en) * 2004-09-17 2004-10-20 Univ Birmingham Use of methanofullerene derivatives as resist materials and method for forming a resist layer
JP4496432B2 (en) * 2005-02-18 2010-07-07 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
JP4434984B2 (en) * 2005-02-18 2010-03-17 信越化学工業株式会社 Pattern forming method and pattern forming material
US8361694B2 (en) * 2007-04-06 2013-01-29 Nissan Chemical Industries, Ltd. Resist underlayer film forming composition
JP5068828B2 (en) * 2010-01-19 2012-11-07 信越化学工業株式会社 Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
JP5068831B2 (en) * 2010-02-05 2012-11-07 信越化学工業株式会社 Resist underlayer film material, resist underlayer film forming method, pattern forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107407883A (en) * 2015-03-11 2017-11-28 日产化学工业株式会社 The forming method of resist lower membrane

Also Published As

Publication number Publication date
JP5757286B2 (en) 2015-07-29
WO2011108365A1 (en) 2011-09-09
JPWO2011108365A1 (en) 2013-06-24

Similar Documents

Publication Publication Date Title
TW201142516A (en) Resist underlayer film forming composition containing fullerene derivative
TWI657319B (en) Resist underlayer film composition, patterning process, and method for forming resist underlayer film
TWI286672B (en) Resist lower layer film and method for forming a pattern
TWI375869B (en) Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
TW201324057A (en) Resist-underlayer-film-forming composition used in multilayer resist process, resist underlayer film, method for forming same, and pattern-formation method
TW201030096A (en) Composition for forming silicon-containing film, silicon-containing film-formed substrate and patterning process
TW201213467A (en) A composition for coating over a photoresist pattern
TW200905401A (en) Resist underlayer coating forming composition
US10551737B2 (en) Method for forming resist underlayer film
TWI470360B (en) Hardmask composition with improved storage stability for forming resist underlayer film
TWI752122B (en) Thin film transistor substrate with protective film and method for producing the same
JPWO2019225615A1 (en) Resist underlayer film forming composition utilizing carbon-oxygen double bond
JP7435439B2 (en) Resist underlayer film forming composition using cyclic carbonyl compound
TW201537303A (en) Pattern-forming method, resin, and resist underlayer forming composition
TW201341425A (en) Resist underlayer film forming composition and method for forming resist pattern by using the composition
TW200920791A (en) Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
TWI772411B (en) Positive photosensitive siloxane composition and cured film formed using the same
CN111512230A (en) Photosensitive siloxane composition and pattern forming method using same
CN111433257A (en) Polysiloxane, composition containing same, and cured film using same
TWI840363B (en) Resistor underlayer film forming composition using cyclic carbonyl compound, resist underlayer film, method for producing semiconductor device, and method for producing reaction product for resist underlayer film forming composition
JP7375757B2 (en) Resist underlayer film forming composition containing heteroatoms in polymer main chain
TW202328817A (en) Composition for forming resist underlayer film
JP2022132962A (en) Resist underlayer-forming composition
TW202142526A (en) Coating compositions and methods of forming electronic devices
TW202235461A (en) Radiosensitive resin composition and pattern forming method capable of suppressing pattern defect or playing sensitivity and critical dimension uniformity performance at a sufficient level