TW201141924A - Heat-conductive moisture-curable resin composition - Google Patents

Heat-conductive moisture-curable resin composition Download PDF

Info

Publication number
TW201141924A
TW201141924A TW100111472A TW100111472A TW201141924A TW 201141924 A TW201141924 A TW 201141924A TW 100111472 A TW100111472 A TW 100111472A TW 100111472 A TW100111472 A TW 100111472A TW 201141924 A TW201141924 A TW 201141924A
Authority
TW
Taiwan
Prior art keywords
component
composition
heat
thermally conductive
mass
Prior art date
Application number
TW100111472A
Other languages
Chinese (zh)
Other versions
TWI568777B (en
Inventor
Hayato Miyazaki
Kenji Fukao
Yoshitsugu Goto
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44762583&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201141924(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW201141924A publication Critical patent/TW201141924A/en
Application granted granted Critical
Publication of TWI568777B publication Critical patent/TWI568777B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a composition having high operability, rapid curability, softness and high heat-conductivity. The composition of the present invention comprises (A) a filler component comprising (A-1) a filler component having an average particle size of 0.1 to 2 μ m, (A-2) a filler component having an average particle size of 2 to 20 μ m and (A-3) a filler component having an average particle size of 20 to 100 μ m, (B) polyalkylene glycol having hydrolysis silyl group, (C) curing catalyst and (D) silane coupling agent. The (A) component is heat-conductive filler having insulating property, preferably, the hardened object shows a soft property. The present invention relates to a heat-conductive moisture-curable resin composition comprising the said composition, a heat-sink material comprising the said composition and a method for heat-sinking which heat-sinks the heat from electronic component to outside by coating the said composition on to the electronic component.

Description

201141924 六、發明說明: 【發明所屬之技術領域】 本發明係關於例如具有熱傳導性的濕氣硬化型樹脂組 成物、將發熱的熱散熱至外部之散熱方法。 【先前技術】 近年來伴隨電子零件之積體化、高密度化、高性能化, 電子零件本身之發熱量漸漸變大。由於熱會使電子零件之 性能顯著降低,或者易於故障,故電子零件之有效率的散 熱漸爲重要技術。 電子零件之散熱方法,一般是在發熱的電子零件與散 熱器之間、或發熱的電子零件與金屬製傳熱板之間導入散 熱材料’將發自電子零件之熱傳導至其他構件,且不積蓄 於電子零件。此種散熱材料,係使用散熱油脂(grease)、熱 傳導性薄片、熱傳導性接著劑等。 在使用散熱油脂之情形,因發熱量極多量,故會使油 脂成分蒸發掉、或使油脂油與熱傳導性塡料分離。蒸發成 分’因可能對電子零件有不良影響故不佳。塡料與已分離 的油脂油會有流動而有污染電子零件之虞(參照專利文獻 1)。 在使用熱傳導性薄片時,雖可解決成分流出之問題, 不過電子零件與散熱器等,因被按壓於固體之薄片狀物, 故兩者間之密著性仍令人不安(參照專利文獻2)。 在使用熱傳導性接著劑時,不致因其硬化性,而有蒸 201141924 發、或使液狀成分流動’或污染電子零件之情事。但是, 在硬化時使應力施加於電子零件,而有造成電子零件偏離 之虞。將已接著之物卸 下作業有困難’再者,恐有破壞電子零件之虞(參照專 利文獻3 ).。 相對於該等,有提案一種熱傳導性接著劑,其僅電子 零件與散熱材料間之表面部分爲硬化,在內部殘留未硬化 部分。該熱傳導性接著劑,電子零件與散熱材料之密著性 優異’在內部有未硬化部分,故可除去電子零件與散熱材 料間之應力’可使卸下作業更簡便(專利文獻4、5)。 在最近,除了進一步高熱傳導性,而且要求絕緣性, 可使用之熱傳導性塡料受限制,漸有必要進行塡料之高塡 充化。 專利文獻 專利文獻1日本特開平3-1 62W3號公報 專利文獻2日本特開2005-60594號公報 專利文獻3日本特開2000_273426號公報 專利文獻4日本特開2002-363429號公報 專利文獻5日本特開2002-363412號公報 【發明內容】 發明欲解決課題 但是’因存在未硬化成分,故會有對接著性心存不安,因 內部未硬化而使硬化時間慢等的課題。再者,在提供絕緣 201141924 性的散熱材料,所得熱傳導率有限制。 本發明係爲解決上述課題,故提供一種具有高作業 性、速硬化性與熱傳導性的組成物。 解決課題之手段 本發明係含有下述(A)至(D)成分而成之組成物。 (A) 含有(A-1)平均粒徑0.1至2μτη之塡料成分、(A-2) 平均粒徑2至20μιη之塡料成分、(Α-3)平均粒徑20至1〇〇μιη 之塡料成分而成之塡料成分; (Β )具有水解性矽烷基之聚烯烴二醇; (C) 硬化觸媒; (D) 矽烷偶合劑。 (Α)成分較佳爲具有絕緣性的熱傳導性塡料之該組成 物。 (Β)成分較佳爲具有黏度300至3,000mPa’s、重量平均 分子量3,000至25,〇〇〇之水解性矽烷基的聚烯烴二醇之該 組成物。 (B )成分較佳爲在(B -1)分子鏈兩末端具有水解性矽烷 基之聚稀烴一醇之該組成物, (B) 成分較佳爲(B-2)在分子鏈單末端具有水解性矽烷 基之聚烯烴二醇之該.組成物, (B)成分較佳爲含有:(B-1)在分子鏈兩末端具有水解性 矽烷基之聚烯烴二醇及(B_2)在分子鏈單末端具有水解性 矽烷基之聚烯烴二醇。 201141924 較佳爲相對於組成物整體,(A)成分含有60至95質量 %之量’相對於(B)成分,(C)成分含有〇.〇1至1〇質量%之 量’相對於(B)成分,(D)成分含有〇.〇1至10質量%之量。 該組成物之硬化物顯示柔軟的物性之該組成物較適 當。 含有該組成物而成熱傳導性組成物, 含有該組成物而成熱傳導性濕氣硬化型樹脂組成物, 及 含有該組成物而成散熱材料,亦包含於本發明。 藉由使該組成物塗布於電子零件,而使發自電子零件 的熱散熱於外部之散熱方法亦包含於本發明。 發明效果 本發明之組成物具有高度作業性、速硬化性、高熱傳 導性。 【實施方式】 本發明使用的(A)塡料方面,較佳是氧化鋁(aluminum oxide)等之礬土(alumina)、氧化鋅、氮化鋁、氮化硼等, 熱傳導性高、具有絕緣性之塡料。熱傳導性塡料可爲球狀、 粉碎狀等形狀之物。 本發明使用之(A)塡料’亦可倂用(A _丨)平均粒徑〇 .】 至2μιη之塡料成分、(A-2)平均粒徑2至20μπι之塡料成分、 (Α-3)平均粒徑20至ΙΟΟμπι之塡料成分等的三種塡料。 201141924 (A-l)成分之平均粒徑爲〇.1μιη以上小於2μιη,較佳爲 〇·2μιη以上Ιμιη以下,更佳爲〇 3μιη以上〇·8μιη以下yA_2) 成分之平均粒徑爲2μιη以上小於20μιη,較佳爲2以上ΙΟμπι 以下’更佳爲3.5μιη以上8μιη以下。(α-3)成分之平均粒徑 爲20μηι以上1 ΟΟμιη以下,較佳爲3〇μΓη以上8〇um以下, 更佳爲35μηι以上60μηι以下。 三種之(Α)成分之混合比率方面,較佳爲(△_〗)、(Α_2) 及(Α-3)之合計100質量%中,(A-丨)平均粒徑〇1至2μιη爲 5 至 25 質量 %、(Α-2)2 至 20μπι 爲 20 至 40質量%、(八-3)20 至ΙΟΟμιη爲45至65%,由考慮最密塡充之觀點觀之,更佳 爲(Α-1)平均粒徑0.1至2μηι爲10至20質量%、(Α-2)2至 20μιη 爲 25 至 35質量%、(Α-3)20 至 ΙΟΟμιη 爲 50 至 60 質 量%。 塡料方面’較佳爲熱傳導性塡料。 (Α)成分方面’由塗布於電子零件附近之觀點觀之,較 佳爲具有絕緣性的熱傳導性塡料。熱傳導性塡料之絕緣性 方面’較佳爲電阻値1〇8Ωπι以上、更佳爲電阻値l〇1QQm 以上。電阻値係依照Π S R 2 1 4 1測定,稱爲2 0 °C體積電阻 率(volume resistivity) ° 本發明使用之具有(B)水解性矽烷基之聚烯烴二醇,係 指在矽原子鍵結水解性基的聚烯烴二醇。可例舉例如在矽 原子之分子鏈兩末端或單末端鍵結有水解性基之聚烯烴二 醇等。在聚烯烴二醇方面,可例舉聚乙二醇、聚丙二醇、 201141924 聚丁二醇等。該等中以聚丙二醇爲適當。水解性基方面, 可例舉鍵結有羧基、酮肟基、烷氧基、鏈烯氧基(alkenoxy)、 胺基' 胺氧基、醯胺基等之物等(例如旭硝子公司製「 S-1000N」、Kaneka 公司製「SAT-010」、「SAT-115」)。院氧 基方面,可例舉甲氧基、乙氧基、丙氧基、丁氧基等。(B) 成分之黏度較佳爲300至3,000mPa· s、更佳爲500至 l,500mPa· s。(B)成分之重量平均分子量較佳爲3,000至 25,000、更佳爲4,000至15,000。重量平均分子量係指以 GPC(換算聚苯乙烯)而測定之値。 (B)成分中’較佳爲(B-1)分子鏈兩末端具有水解性矽烷 基之聚烯烴二醇或(B-2)分子鏈單末端具有水解性矽烷基 之聚烯烴二醇。以調整硬度之觀點觀之,較佳爲倂用(B- 1 ) 分子鏈兩末端具有水解性矽烷基之聚烯烴二醇與(B-2)分 子鏈單末端具有水解性矽烷基之聚烯烴二醇。在倂用(B-1) 分子鏈兩末端具有水解性矽烷基之聚烯烴二醇與(B-2)分 子鏈單末端具有水解性矽烷基之聚烯烴二醇之情形,(B-1) 成分與(B - 2 )成分之混合比以質量比計,較佳爲(b - 1 ): (B-2) = 2至50: 50至98,更佳爲5至40: 60至95,最佳 爲 10 至 30: 70 至 90。 本發明使用之(C)成分之硬化觸媒,並無特別限定,較 佳爲促進具有該水解性矽烷基之聚烯烴二醇之縮合反應的 化合物。(C)成分之硬化觸媒方面,較佳爲矽烷醇化合物之 縮合觸媒。(C)成分方面,可例舉鈦酸四丁酯、鈦酸四丙酯 201141924 等之鈦酸酯類;二月桂酸二丁基錫、馬來酸二丁基錫、二 乙酸二丁錫、辛酸錫、環烷酸錫、二丁基錫與正矽酸乙酯 之反應物等之有機錫化合物:丁胺、辛胺、月桂胺、二丁 胺、單乙醇胺、二乙醇胺、三乙醇胺、二伸乙三胺、三伸 乙四胺、油基胺、環己胺、苄胺、二乙基胺基丙胺、苯二 甲基二胺、三伸乙二胺、胍、二苯基胍、2,4,6-參(二甲基 胺基甲基)酚、嗎福啉、N-甲基嗎福啉、1,8-二氮雜二環 (5.4.0)十一烯- 7(DBU)等之胺系化合物或該等與羧酸等之 鹽;由過剩之聚胺與多元酸所得的低分子量聚醯胺樹脂; 過剩聚胺與環氧化合物之反應產物;羧酸鉍、松脂酸鉍、 新松脂酸鉍、d-海松脂酸鉍、異-d-海松脂酸鉍、羅漢松酸 (podocarpicacid)祕、苯甲酸秘、桂皮酸鉍、對經基桂皮酸 鉍、辛基酸鉍、新癸烷酸鉍、新十二烷酸鉍等之鉍系硬化 觸媒;辛酸鉛、二-異-丙氧基·雙(乙醯基丙酮(acetonate)) 鈦、丙烷二羥基鈦雙(乙基乙醯乙酸酯)、二辛氧基雙(辛烯 羥乙酸酯)鈦、二異丙氧基雙(三乙醇胺化物(triethanol aminate))鈦、四異丙氧鈦、四-2-乙基六氧化鈦等之鈦系硬 化觸媒;三乙氧基釩等周知之矽烷醇縮合觸媒。該等中, 由樹脂之柔軟性觀點觀之,較佳爲鉍系硬化觸媒,由反應 促進性之觀點觀之,較佳爲鈦系硬化觸媒》 (C)成分之硬化觸媒之含量,相對於(B)成分,較佳爲 0.01至10質量%,更佳爲0.1至5質量%。只要是0.1質量 -10- 201141924 %以上,則可確實地獲得硬化促進之效果,而只要是1 0質 量%以下,則可獲得充分的硬化速度。 相對於組成物整體,(Α)成分之塡料含量’較佳爲60 至98質量%,更佳爲70至97質量%。只要是60質量%以 上,則熱傳導性能充分,只要是9 8質量%以下,則電子零 件與散熱材料之接著性變大。 本發明使用之(D)成分之矽烷偶合劑係爲了提高硬化 性、穩定性而調配之物,可使用周知之矽烷偶合劑。矽烷 偶合劑方面,可例舉乙烯三甲氧基矽烷、乙烯三乙氧基矽 烷、乙烯三氯矽烷、3-環氧丙氧基丙基甲基二甲氧基矽烷、 3-環氧丙氧基丙基三甲氧基矽烷、3-環氧丙氧基矽氧基三 乙氧基矽烷、Ν-2-(胺基乙基)-3-胺基丙基三甲氧基矽烷、 N-2-(胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、N-2-(胺基 乙基)-3-胺基丙基甲基三甲氧基矽烷、N-2-(胺基乙基)-3-胺基丙基甲基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、 3 -胺基丙基三乙氧基矽烷、N -苯基-3-胺基丙基三甲氧基矽 烷、3-氯丙基三甲氧基矽烷、四甲氧基矽烷、二甲基二甲 氧基矽烷、甲基三甲氧基矽烷、苯基三甲氧基矽烷、二苯 基二甲氧基矽烷、四乙氧基矽烷、甲基三乙氧基矽烷、二 甲基二乙氧基矽烷、苯基三乙氧基矽烷等。矽烷偶合劑可 使用一種或組合2種以上使用。在該等中,由穩定性之觀 點觀之,較佳爲乙烯三甲氧基矽烷。該等中,由硬化性之 觀點觀之’較佳爲3-環氧丙氧基丙基甲基三甲氧基矽烷及/ 201141924 或N-2-(胺基乙基)-3-胺基丙基三甲氧基矽烷、更佳爲3-環 氧丙氧基丙基甲基三甲氧基矽烷。該等中,較佳爲倂用乙 烯三甲氧基矽烷與3-環氧丙氧基丙基甲基三甲氧基矽烷。 在倂用乙烯三甲氧基矽烷與3-環氧丙氧基丙基甲基三甲氧 基矽烷之情形,混合比方面,較佳爲乙烯三甲氧基矽烷與 3-環氧丙氧基丙基甲基三甲氧基矽烷之合計100質量% 中,乙烯三甲氧基矽烷:3-環氧丙氧基丙基甲基三甲氧基 矽烷=3 0至90質量% : 10至70質量%,更佳爲50至70質 量% : 3 0至5 0質量%。 (D)成分之矽烷偶合劑之含量,相對於(B)成分,較佳 爲0.1至1 0質量%,更佳爲1至5質量%。只要是0.1質量 %以上,則保存穩定性充分,只要是1 0質量%以下,則硬 化性與接著性變大。 在本發明中,進一步添加劑亦可依需要使用有機溶 劑、抗氧化劑、難燃劑、塑化劑、增觸變性劑等。本發明 可倂用分子鏈兩末端具有水解性矽烷基之聚烯烴二醇、及 分子鏈單末端具有水解性矽烷基之聚烯烴二醇。 本發明之組成物例如爲一種熱傳導性濕氣硬化型樹脂 組成物。本發明之熱傳導性濕氣硬化型樹脂組成物可因空 氣中濕度而硬化。 本發明之組成物可塗布於高精度地固定的構件,且, 由可固定使已接著的黏附體(例如電子零件等)以使其不偏 移之觀點觀之’較佳是其硬化體顯示柔軟的物性。在硬化 -12- 201141924 體之柔軟性方面’較佳是Asker硬度計(dur〇meter)「CSC2 型」所致硬度爲90以下、更佳爲50以下。使硬度爲90以 下,由硬化物所致變形完全不發生之觀點觀之,較適當。 也有使組成物不從黏附體突出’而有防止黏附體之污染爲 佳之情形。因此,藉由加大硬化速度,而加大硬度爲佳。 要加大硬度方面’較佳爲使用鈦系硬化觸媒、或(B-1)與(B-2) 倂用。 本發明之組成物適用於CPU或MPU等演算電路、光 拾波模組等之精密機器所使用的雷射二極體。本發明之組 成物係使用作爲金屬製傳熱板等之散熱材料。 [實施例] 茲例舉實施例及比較例進一步詳細說明本發明如下, 但本發明並非限定於該等實施例。結果如表1至5所示。 (實施例1) 將兩末端具有甲氧基矽烷基之聚丙二醇(基質聚合物 A,黏度8 00mPa· s,重量平均分子量5,000,Kaneka公司 「SAT 115」)30g、單末端具有甲氧基矽烷基之聚丙二醇(基質 聚合物B,黏度l,300mPa· s,重量平均分子量18,000,旭 硝子公司「S-1000N」)70g、鈦系硬化觸媒A(二異丙氧基·雙 (乙醯基丙酮)鈦,日本曹達公司「螯合劑T-50」)3g、熱傳導 性塡料A-1(平均粒徑〇.5μιη之氧化鋁,電阻値爲loHQm 以上,住友化學公司製「AA-05」)24〇g、熱傳導性塡料A-2(平 均粒徑5 μηι之氧化鋁,電阻値爲1 0 1 1 Ωηι以上,電化學工 -13- 201141924 業公司製「DAW-〇5」)480g、熱傳導性塡料 A_3(平均粒徑 45μιη之氧化鋁,電阻値爲ΙΟ^Ωπι以上,電化學工業公司 製「DAW-45S」)8 8 0g、乙烯三甲氧基矽烷3g予以混合,調 整熱傳導性樹脂組成物。 (實施例2) 將兩末端具有甲氧基矽烷基之聚丙二醇20g、單末端 具有甲氧基矽烷基之聚丙二醇8 Og、鈦系硬化觸媒A3g、熱 傳導性塡料A-1 240g、熱傳導性塡料A-2 480g、熱傳導性 塡料A-3880g、乙烯三甲氧基矽烷3g予以混合,來調整熱 傳導性樹脂組成物。 (實施例3) 將兩末端具有甲氧基矽烷基之聚丙二醇l〇g、單末端 具有甲氧基矽烷基之聚丙二醇90g、鈦系硬化觸媒A 3g、 熱傳導性塡料A-1 24〇g、熱傳導性塡料A-2 480g、熱傳導 性塡料A-3 8 8 0 g、乙烯三甲氧基矽烷3g予以混合,並調整 熱傳導性樹脂組成物。 (實施例4) 將單末端具有甲氧基矽烷基之聚丙二醇100g、鈦系硬 化觸媒A 3g、熱傳導性塡料A- 1 240g、熱傳導.性塡料A-2 48 0g、熱傳導性塡料A-3 880g、乙烯三甲氧基矽烷3g予以 混合,並調整熱傳導性樹脂組成物。 (實施例5) -14- 基之聚丙二醇20g、單末端 8〇g、鈦系硬化觸媒A 3g、 導性塡料A-2 480g、熱傳導 基矽烷3g予以混合,並調整 基之聚丙二醇20g、單末端 8〇g、鈦系硬化觸媒A 3g、 導性塡料A-2 480g、熱傳導 基矽烷3 g、予以混合,並調 基之聚丙二醇20g、單末端 8〇g、鈦系硬化觸媒A 3g、 導性塡料A-2 480g,熱傳導 基矽烷.3g予以混合,並調整 基之聚丙二醇20g、單末端 8〇g '鈦系硬化觸媒A 3g、 導性塡料A-2 560g、熱傳導 基矽烷3 g予以混合,並調整 201141924 將兩末端具有甲氧基矽烷 具有甲氧基矽烷基之聚丙二醇 熱傳導性塡料A-l 160g、熱傳 性塡料A- 3 9 60 g、乙烯三甲氧 熱傳導性樹脂組成物》 (實施例6) 將兩末端:S:有甲氧基砂院 具有甲氧基矽烷基之聚丙二醇 熱傳導性瑱料A-l 3 20g、熱傳 性塡料A-3 800g、乙烯三甲氧 整熱傳導性樹脂組成物。 (實施例7) 將兩末端具有甲氧基矽烷 具有甲氧基矽烷基之聚丙二醇 熱傳導性塡料A - 1 4 0 0 g、熱傳 性塡料A-3 720g、乙烯三甲氧 熱傳導性樹脂組成物。 (實施例8) 將兩末端具有甲氧基砂院 具有甲氧基矽烷基之聚丙二醇 熱傳導性塡料A-l 160g、熱傳 性塡料A-3 880g、乙烯三甲氧 熱傳導性樹脂組成物。 -15- 201141924 (實施例9) 將兩末端具有甲氧基矽烷基之聚丙二醇2 0g、 具有甲氧基矽烷基之聚丙二醇8 0g、鈦系硬化觸媒 熱傳導性塡料A- 1 3 20g、熱傳導性塡料2 400g、熱 塡料A-3 8 8 0g、乙烯三甲氧基矽烷3g予以混合,並 傳導性樹脂組成物。 (實施例10) 將兩末端具有甲氧基矽烷基之聚丙二醇20g、 具有甲氧基矽烷基之聚丙二醇8 0g、鈦系硬化觸媒 熱傳導性塡料A-1 240g、熱傳導性塡料A-2 320g、 性塡料A-3 1,040g、乙烯三甲氧基矽烷3g予以混合 整熱傳導性樹脂組成物。 (實施例1 1 ) 將兩末端具有甲氧基矽烷基之聚丙二醇2 0g、 具有甲氧基矽烷基之聚丙二醇8 0g、鈦系硬化觸媒 熱傳導性塡料A-1 240g、熱傳導性塡料A-2 400g、 性塡料A-3 960g、乙烯三甲氧基矽烷3g予以混合, 熱傳導性樹脂組成物。. (實施例12) 將兩末端具有甲氧基矽烷基之聚丙二醇20g、 具有甲氧基矽烷基之聚丙二醇8 0g、鈦系硬化觸媒 熱傳導性塡料A_i 240g、熱傳導性塡料A_2 560g、 單末端 A- 3g ' 傳導性 調整熱 單末端 久3g、 熱傳導 ,並調 單末端 A 3g、 熱傳導 並調整 單末端 A 3g、 熱傳導 -16 - 201141924 性塡料A-3 800g、乙烯三甲氧基矽烷3g予以混合,並調整 熱傳導性樹脂組成物。 (實施例13) 將兩末端具有甲氧基矽烷基之聚丙二醇20g、單末端 具有甲氧基矽院基之聚丙二醇80g、鈦系硬化觸媒a 3g、 熱傳導性塡料A-l 24〇g、熱傳導性塡料A-2 640g、熱傳導 性塡料A-3 720g、乙烯三甲氧基矽烷3g予以混合,並調整 熱傳導性樹脂組成物。 (實施例14) 將兩末端具有甲氧基矽烷基之聚丙二醇20g、單末端 具有甲氧基砂燒基之聚丙—醇80g、欽系硬化觸媒A 3g、 熱傳導性塡料A-l 264g、熱傳導性塡料A-2 530g、熱傳導 性塡料A-3968g、乙烯三甲氧基矽烷3g予以混合,並調整 熱傳導性樹脂組成物。 (實施例15) 將兩末端具有甲氧基矽烷基之聚丙二醇20 g、單末端 具有甲氧基矽烷基之聚丙二醇80g、鈦系硬化觸媒B(四- 2-乙基六氧化欽,Matsumoto精細化學公司製「Orgatix. TA-30 」)0.5g、熱傳導性塡料A-l 264g、熱傳導性塡料A-2 530g、 熱傳導性塡料A-3 968g、甲基丙烯醯氧基丙基三甲氧基矽 烷1 3 g予以混合,並調整熱傳導性樹脂組成物。 (實施例16) -17- 201141924 將兩末端具有甲氧基矽烷基之聚丙二醇I00g、鉍系硬 化觸媒(羧酸鉍,日本化學產業公司製「PUCATB7_t)3g、熱 傳導性塡料 A-1(平均粒徑0.5μιη之氧化鋁,電阻値爲 ΙΟ^Ωπι以上)400g、熱傳導性塡料Α-2(平均粒徑5μιη之氧 化鋁,電阻値爲ΙΟ^Ωπι以上)480g、熱傳導性塡料Α-3(平 均粒徑45μιη之氧化鋁,電阻値爲ΙΟ^Ωιη以上)720g、乙 烯三甲氧基矽烷3g、3-環氧丙氧基丙基三甲氧基矽烷2g 予以混合,並調製熱傳導性樹脂組成物。 (實施例I7) 將兩末端具有甲氧基矽烷基之聚丙二醇l〇〇g、鉍系硬 化觸媒3g、熱傳導性塡料A- 1 240g、熱傳導性塡料A-2 480g、熱傳導性塡料A-3 880g、乙烯三甲氧基矽烷3g、3- 環氧丙氧基丙基三甲氧基矽烷2g予以混合,並調製熱傳導 性樹脂組成物。 (實施例18) 將兩末端具有甲氧基矽烷基之聚丙二醇10 0g、鉍系硬 化觸媒3g、熱傳導性塡料A-1 80g、熱傳導性塡料A-2 4 8 0g、熱傳導性塡料A-3 l〇4〇g、乙烯三甲氧基矽烷3g、 3-環氧丙氧基丙基三甲氧基矽烷2g予以混合,並調製熱傳 導性樹脂組成物。 (實施例19) 將兩末端具有甲氧基矽烷基之聚丙二醇100g、鉍系硬 化觸媒3g、熱傳導性塡料A- 1 240g、熱傳導性塡料A-2 18 - 201141924 64〇g、熱傳導性塡料A-3 720g、乙烯三甲氧基矽烷3g、3_ 環氧丙氧基丙基三甲氧基矽烷2g予以混合,並調製熱傳導 性樹脂組成物。 (實施例20) 將兩末端具有甲氧基矽烷基之聚丙二醇l〇〇g、鉍系硬 化觸媒3g、熱傳導性塡料 A-1 80g、熱傳導性塡料 A-2 640g、熱傳導性塡料A-3 880g、乙烯三甲氧基矽烷3g、3_ 環氧丙氧基丙基三甲氧基矽烷2g予以混合,並調製熱傳導 性樹脂組成物。 (實施例21) 將兩末端具有甲氧基矽烷基之聚丙二醇l〇〇g、鉍系硬 化觸媒3g、熱傳導性塡料A-1 4〇Og、熱傳導性塡料A-2 320g、熱傳導性塡料A-3 88 0g、乙烯三甲氧基矽烷3g、3-環氧丙氧基丙基三甲氧基矽烷2g予以混合,並調製熱傳導 性樹脂組成物。 (實施例22) 將兩末端具有甲氧基矽烷基之聚丙二醇100g、鉍系硬 化觸媒3g、熱傳導性塡料A- 1 240g、熱傳導性塡料A-2 3 20 g、熱傳導性塡料A-3 1 040g'乙烯三甲氧基矽烷3g、 3-環氧丙氧基丙基三甲氧基矽烷2g予以混合,並諷製熱傳 導性樹脂組成物。 (比較例1) 19- 201141924 將兩末端具有甲氧基矽烷基之聚丙二醇100g、鉍系硬 化觸媒3g、熱傳導性塡料 A-1 80g、熱傳導性塡料 A-2 152 0g、乙烯三甲氧基矽烷3g、3-環氧丙氧基丙基三甲氧基 矽烷2g予以混合,並調製熱傳導性樹脂組成物。 (比較例2) 將兩末端具有甲氧基矽烷基之聚丙二醇l〇〇g、鉍系硬 化觸媒3g、熱傳導性塡料 A-1 10g、熱傳導性塡料 A-2 1590g、乙烯三甲氧基矽烷3g、3-環氧丙氧基丙基三甲氧基 矽烷2g予以混合,並調製熱傳導性樹脂組成物。 (比較例3 ) 將兩末端具有甲氧基矽烷基之聚丙二醇10〇g、鉍系硬 化觸媒3g、熱傳導性塡料A- 1 480g、熱傳導性塡料A-3 ll2〇g、乙烯三甲氧基矽烷3g、3-環氧丙氧基丙基三甲氧基 矽烷2g予以混合,並調製熱傳導性樹脂組成物。 (比較例4) 將兩末端具有甲氧基矽烷基之聚丙二醇l〇〇g、鉍系硬 化觸媒3g、熱傳導性塡料A-2 480g、熱傳導性塡料A-3 1120g、乙烯三甲氧基矽烷3g、3-環氧丙氧基丙基三甲氧基 矽烷2g予以混合,並調製熱傳導性樹脂組成物。 (比較例5 ) 評價作爲比較之市售濕氣硬化型散熱樹脂「製品名: ThreeBond 2955(Three bond 公司製)J。 •20- 201141924 (平均粒徑評價) 平均粒徑評價係使用「島津製作所製S A L D - 2 2 0 0」,利 用雷射繞射·散射法測定。 (熱傳導率評價) 熱傳導率係表示物質中熱傳導的容易性之値,熱傳導 率越大越理想。使用上述所得之各組成物,進行熱傳導率 之評價。熱傳導率之評價係使用「NETZSCH公司製LFA447 」’以雷射閃光(laser flash)法,在25 °C測定。 (不黏著(tack free)評價) 不黏著時間係作業性或硬化性之一指針,不黏著時間 過長則生產性降低,不黏著時間過短,則在作業中途開始 硬化’成爲不良發生原因。由作業狀況所求得不黏著時間 之範圍一直改變,不過從作業性良好的觀點觀之,較佳爲 10至70分鐘,更佳爲40至60分鐘。在23 °C.50 % RH環 境下,將上述所得之組成物傾注於寬度20mmx長度20mmx 厚度5mm之鑄模(mold)予以暴露,並用手指觸摸。傾注之 後不再附著於手指之時間定義爲不黏著時間,進行評價。 (硬度評價) 關於將寬60mmx長度40mmx厚度5mm之各組成物在 23°C · 50%RH氛圍下,熟化(CUring)l〇天的試驗片,以 Asker高分子計器公司製,DuorometerAsker硬度計「CSC2 型」進行硬度之測定。測定値小的情形,具有柔軟性。 (黏度測定) -21 - 201141924 黏度測定係操作性之一指針’黏度過筒時塗布性不 良,無法再作業。在欲提高熱傳導性之情形,雖然塡料塡 充量增多爲良好,不過因操作性不良’故黏度以小爲佳。 組成物無法自黏附體突出,而爲了防止黏附體之污染,則 黏度大的較佳。黏度較佳是顯示適切的値。黏度之評價係 使用「Anton Paar公司製流變計(Rheometer)(型號:MCR301) J來測定。 [表1] 實 施 例 1 實 施 例 2 實 施 例 3 實 施 例 4 實 施 例 5 實 施 例 6 實 施 例 7 B 成 分 基質聚合物A 30 20 10 - 20 20 20 基質聚合物B 70 80 90 100 80 80 80 A 成 分 熱傳導性塡料A-1 240 240 240 240 1 60 3 20 400 熱傳導性塡料A-2 480 480 480 480 480 4 80 480 熱傳導性塡料A-3 880 880 880 8 8 0 960 3 00 720 D 成 分 甲基丙烯醯氧基丙基 三甲氣基矽烷 - - - - - - - 乙烯三甲氧基矽烷 3 3 3 3 3 3 3 3-環氧丙.氧基丙基三甲 氧基矽烷 C 成 分 鉍系硬化觸媒 PUCAT B7 鈦系硬化觸媒T-50 3 3 3 3 3 3 3 鈦系硬化觸媒TA-30 - - - - - - - A成分/組成物(質量%) 94 C成分/B成分(質量%) 3 D成分/B成分(質量%) 3 A-1/A成分(質量%) 15 15 15 15 10 20 25 A-2/A成分(質量%) 30 30 3 0 30 30 30 30 A-3/A成分(質量%) 55 55 55 5 5 60 50 45 熱傳導率 W/m . K 3.7 3.7 3.6 3.6 3.6 3.5 3.5 不黏性分鐘 50 50 50 60 40 40 30 硬度(CSC2) 85 60 50 40 65 65 70 黏度(Pa · s) 497 500 530 576 454 5 17 904 -22- 201141924 [表2] 實 施 例 8 實 施 例 9 實 施 例 10 實 施 例 11 實 施 例 12 實 施 例 13 B 成 分 基質聚合物A 20 20 2 0 20 20 20 基質聚合物B 80 80 80 80 80 80 A 成 分 熱《導性塡料A - 1 1 60 320 240 240 240 240 熱傳導性塡料A - 2 5 60 400 320 400 560 640 熱傳導性塡料A-3 880 880 1,040 960 800 720 D 成 分 甲基丙烯醯氧基丙基 三甲氧基矽烷 - - - - - - 乙烯三甲氧基矽烷 3 3 3 3 3 3 3-環氧丙氧基丙基三甲 氧基矽烷 C 成 分 鉍系硬化觸媒 PUCAT B7 鈦系硬化觸媒T-50 3 3 3 3 3 3 鈦系硬化觸媒TA-30 - - - - - - A成分/組成物(質量%) 94 C成分/B成分(質量%) 3 D成分/B成分(質量%) 3 A - 1 / A成分(質量% ) 10 20 15 15 15 15 A-2/A成分(質量%) 3 5 25 20 25 3 5 40 A-3/A成分(質量%) 5 5 5 5 65 60 5 0 45 熱傳導率 W/m . K 3.6 3.7 3.6 3.6 3.6 3 . 5 不黏性分鐘 40 40 40 40 4 0 3 5 硬度(CSC2) 60 65 60 65 65 70 黏度(P4 · s) 4 3 3 5 64 635 460 4 74 609 -23- 201141924 [表3] 實 施 例 14 實 施 例 15 實 施 例 16 實 施 例 17 實 施 例 18 實 施 例 19 B 成 分 基質聚合物A 20 20 100 100 100 100 基質聚合物B 80 80 - - - - A 成 分 熱傳導性塡料A-1 264 264 400 240 8 0 240 熱傳導性塡料A-2 530 5 3 0 48 0 480 480 640 熱傳導性塡料A-3 968 968 720 880 104 0 720 D 成 分 甲基丙烯醯氧基丙基 三甲氧基矽烷 - 10 乙烯三甲氧基矽烷 3 - 3 3 3 3 3_環氧丙氧基丙基三 甲氧基矽烷 2 2 2 2 C 成 分 鉍系硬化觸媒B 7 3 3 3 3 鈦系硬化觸媒T-50 3 - 鈦系硬化觸媒TA-30 •- 0.5 A成分/組成物(質量%) 94 C成分/B成分(質量%) 3 0.5 3 D成分/B成分(質量%) 3 10 5 A - 1 / A成分(質量%) 15 15 2 5 15 5 15 A-2/A成分(質量%) 3 0 3 0 3 0 3 0 3 0 40 A - 3 / A成分(質量% ) 5 5 5 5 45 5 5 65 45 熱傳導率 W/m · K 4.0 4.1 3.9 4.1 4.3 3 . 8 不黏性分鐘 50 30 5 0 50 5 0 50 硬度(CSC2) 75 70 45 5 0 60 45 黏度(Pa · s) 586 3 70 269 1 50 28 7 3 3 9 -24- 201141924 [表4] 實施 例20 實施 例21 實施 例22 比較例1 B 成 分 基質聚合物A 100 100 100 100 基質聚合物B - - - - A 成 分 熱傳導性塡料A-1 8 0 400 240 80 熱傳導性塡料A-2 640 320 3 20 1520 熱傳導性塡料A-3 880 880 1040 - D 成 分 甲基丙烯醯氧基丙基 三甲氧基矽烷 乙烯三甲氧基矽烷 3 3 3 3 3-環氧丙氧基丙基三 甲氧基矽烷 2 2 2 2 C 成 分 鉍系硬化觸媒 PUCAT B7 3 3 3 3 鈦系硬化觸媒T-50 鈦系硬化觸媒TA-30 A成分/組成物(質量%) 94 C成分/ B成分(質量%) 3 D成分/B成分(質量%) 5 A-1/A成分(質量%) 5 25 1 5 5 A-2/A成分(質量%) 40 20 20 95 A-3/A成分(質量%) 5 5 5 5 65 0 熱傳導率 W/m · K 4.2 3.8 4.1 塡料無法與聚 合物均勻混 練,無法測定 不黏性分鐘 5 0 50 5 0 硬度(CSC2) 50 50 50 黏度(Pa · s) 3 49 3 5 1 337 -25- 201141924 [表5] 比較例2 比較 例3 比較 例4 比較 例5 B 成 分 基質聚合物A 100 1 00 100 基質聚合物B - - - A 成 分 熱傳導性塡料A-1 10 480 熱傳導性塡料A-2 1590 - 480 熱傳導性塡料A-3 - 1120 1120 D 成 分 甲基丙烯醯氧基丙基 三甲氧基矽烷 / 乙烯三甲氧基矽烷 3 3 3 3-環氧丙氧基丙基三 甲氧基矽烷 2 2 2 / C 成 分 鉍系硬化觸媒 PUCAT B7 3 3 3 / 鈦系硬化觸媒T-50 鈦系硬化觸媒TA-30 A成分/組成物(質量%) 94 C成分/B成分(質量%) 3 D成分/B成分(質量%) 5 A-1/A成分(質量%) 0.63 3 0 0 A-2/A成分(質量%) 99.37 0 30 A-3/A成分(質量%) 0 70 70 熱傳導率 W/m · K 塡料無法與聚 合物均勻混 練,無法測定 4.3 4.3 1.9 不黏性分鐘 5 0 50 3 60 硬度(CSC2) 5 0 50 3 0 黏度(Pa . s) 600 800 1 80 根據本實施例,可知曉本發明顯示的優異效果。實施 例1至4、8至9、11至12、14' 17,三種之(A)成分之混 合比率,因在更適當的範圍內,故顯示更優異效果。在倂 用(B-1)分子鏈兩末端具有水解性矽烷基之聚烯烴二醇及 (B-2)分子鏈單末端具有水解性矽烷基之聚烯烴二醇之情 形’實施例1至4、6、8至9、11至12、14’三種(A)成分 -26- 201141924 及其他成分之混合比率因在更適當範圍內,故顯示更優異 效果。 在單獨使用(B-1)分子鏈兩末端具有水解性砂垸基之 聚烯烴二醇之情形,可知本發明顯示優異效果。實施例1 7 係三種之(A)成分之混合比率在更適當範圍內,故顯示更優 異效果。 產業上可利用性 本熱傳導性濕氣硬化型樹脂組成物係高度作業性與高-度熱傳導性、硬化後之柔軟性、速硬化性均非常良好,作 爲被高精度固定化的電子零件之散熱介質最適合。本熱傳 導性濕氣硬化型樹脂組成物,因提高硬化速度,故因而具 有高度生產性。本發明之柔軟性係在硬化時越無施加應力 於電子零件越顯示柔軟性。 本熱傳導性濕氣硬化型樹脂組成物可作爲1劑常溫濕 氣硬化型散熱材料使用。藉由塗布於使本熱傳導性濕氣硬 化型樹脂組成物發熱之電子零件,而可將發自電子零件的 熱朝向外部散熱。 【圖式簡單說明】 無。 【主要元件符號說明】 4nr 挑。 -27-[Technical Field] The present invention relates to, for example, a moisture-curable resin composition having thermal conductivity, and a heat-dissipating method for dissipating heat generated by heat to the outside. [Prior Art] In recent years, with the integration of electronic components, high density, and high performance, the heat generation of electronic components has gradually increased. Since heat can significantly degrade the performance of electronic components or is prone to failure, efficient heat dissipation of electronic components is becoming an important technology. The heat dissipation method of the electronic component generally involves introducing a heat dissipating material between the heat generating electronic component and the heat sink, or between the heat generating electronic component and the metal heat transfer plate, and transmitting heat from the electronic component to other components without saving. For electronic parts. As such a heat dissipating material, a grease, a heat conductive sheet, a heat conductive adhesive or the like is used. In the case of using a heat-dissipating grease, since the amount of heat is extremely large, the oil component is evaporated or the grease oil is separated from the heat conductive material. The evaporation component is not good because it may have an adverse effect on electronic components. The dip and the separated grease oil may flow and contaminate the electronic parts (refer to Patent Document 1). When the heat conductive sheet is used, the problem of the outflow of the component can be solved, but the electronic component and the heat sink are pressed against the solid sheet, and the adhesion between the two is still uncomfortable (refer to Patent Document 2). ). When a thermally conductive adhesive is used, it is not caused by the hardenability, but steaming 201141924, or flowing the liquid component' or contaminating electronic parts. However, stress is applied to the electronic component at the time of hardening, and the electronic component is deviated. It is difficult to unload the attached work. Further, there is a fear of destroying electronic components (see Patent Document 3). . With respect to these, there has been proposed a thermally conductive adhesive in which only the surface portion between the electronic component and the heat dissipating material is hardened, and the unhardened portion remains inside. The heat conductive adhesive has excellent adhesion to the electronic component and the heat dissipating material, and has an unhardened portion inside, so that the stress between the electronic component and the heat dissipating material can be removed, and the unloading operation can be simplified (Patent Documents 4 and 5). . Recently, in addition to further high thermal conductivity and insulation, the use of thermal conductivity materials is limited, and it is increasingly necessary to carry out high-temperature charging of the materials. Japanese Unexamined Patent Publication No. JP-A No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. JP-A-2002-363412 DISCLOSURE OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION However, there is a problem that the uncured component is uncomfortable, and there is a problem that the curing time is slow due to internal hardening. Furthermore, in the provision of insulation 201141924 heat-dissipating materials, the resulting thermal conductivity is limited. The present invention has been made in order to solve the above problems, and therefore provides a composition having high workability, rapid hardenability, and thermal conductivity. Means for Solving the Problems The present invention relates to a composition comprising the following components (A) to (D). (A) contains (A-1) average particle size of 0. a dip component of 1 to 2 μτη, (A-2) a distillate component having an average particle diameter of 2 to 20 μm, and a crucible component having an average particle diameter of 20 to 1 μm? Β) a polyolefin diol having a hydrolyzable decyl group; (C) a hardening catalyst; (D) a decane coupling agent. The (Α) component is preferably a composition of an insulating thermally conductive material. The (Β) component is preferably a composition of a polyolefin diol having a viscosity of 300 to 3,000 mPa's and a weight average molecular weight of 3,000 to 25, which is a hydrolyzable alkylene group. The component (B) is preferably a composition of a poly-hydrocarbon monool having a hydrolyzable alkylene group at both ends of the (B-1) molecular chain, and the component (B) is preferably (B-2) at the single end of the molecular chain. The polyolefin diol having a hydrolyzable alkylene group. The composition (B) preferably contains (B-1) a polyolefin diol having a hydrolyzable alkylene group at both ends of the molecular chain and (B_2) a polyolefin having a hydrolyzable decyl group at a single terminal of the molecular chain. alcohol. 201141924 Preferably, the component (A) contains 60 to 95% by mass relative to the total composition of the component (B), and the component (C) contains lanthanum. 〇1 to 1〇% by mass ' With respect to (B) component, (D) component contains 〇. 〇 1 to 10% by mass. The cured product of the composition exhibits a soft physical property which is suitable for the composition. A thermally conductive composition containing the composition, a thermally conductive moisture-curable resin composition containing the composition, and a heat dissipating material containing the composition are also included in the present invention. A method of dissipating heat which radiates heat from an electronic component to the outside by applying the composition to an electronic component is also included in the present invention. EFFECT OF THE INVENTION The composition of the present invention has high workability, rapid hardenability, and high heat conductivity. [Embodiment] The (A) material used in the present invention is preferably alumina, zinc oxide, aluminum nitride or boron nitride such as aluminum oxide, and has high thermal conductivity and insulation. Sexual information. The thermally conductive material may be in the form of a spherical shape or a pulverized shape. The (A) tanning material used in the present invention can also be used (A _ 丨) average particle size 〇 . 】 3 ingredients, (A-2) a distillate component having an average particle diameter of 2 to 20 μm, (Α-3) an average particle diameter of 20 to 塡μπι, and the like. 201141924 (A-l) The average particle size of the ingredients is 〇. 1 μm or more and less than 2 μm, preferably 〇·2 μm or more and Ιμιη or less, more preferably 〇3 μm or more 〇·8 μmη or less yA_2) The average particle diameter of the component is 2 μm or more and less than 20 μm, preferably 2 or more ΙΟμπι or less 'more preferably 3 . 5μιη or more and 8μιη or less. The average particle diameter of the (α-3) component is 20 μm or more and 1 ΟΟμηη or less, preferably 3 〇μΓη or more and 8 〇um or less, more preferably 35 μηι or more and 60 μηι or less. In terms of the mixing ratio of the three (Α) components, it is preferably 100% by mass of (Δ_), (Α_2), and (Α-3), and the average particle diameter of (A-丨) is 至1 to 2μηη. Up to 25 mass%, (Α-2) 2 to 20 μπι is 20 to 40 mass%, (eight-3) 20 to ΙΟΟμιη is 45 to 65%, and it is preferable to consider the most densely charged viewpoint. -1) Average particle size 0. 1 to 2 μη is 10 to 20% by mass, (Α-2) 2 to 20 μηη is 25 to 35 mass%, and (Α-3) 20 to ΙΟΟμιη is 50 to 60% by mass. The material aspect is preferably a thermally conductive material. The (Α) component aspect is preferably an insulating heat conductive material from the viewpoint of application in the vicinity of an electronic component. The insulating property of the thermally conductive material is preferably 値1〇8Ωπι or more, more preferably 値l〇1QQm or more. The electric resistance enthalpy is determined according to Π SR 2 1 4 1 and is referred to as 20 ° C volume resistivity. The polyolefin diol having (B) hydrolyzable decyl group used in the present invention means a ruthenium atom bond. A hydrolyzable group of polyolefin diols. For example, a polyolefin diol having a hydrolyzable group bonded to both ends of a molecular chain of a ruthenium atom or a single terminal may be mentioned. The polyolefin diol may, for example, be polyethylene glycol, polypropylene glycol or 201141924 polytetramethylene glycol. Among these, polypropylene glycol is suitable. The hydrolyzable group may, for example, be a carboxyl group, a ketoximino group, an alkoxy group, an alkenoxy group, an amine group, an amine group or an amidino group (for example, Asahi Glass Co., Ltd. -1000N", "SAT-010" and "SAT-115" by Kaneka Corporation. The oxy group, ethoxy group, propoxy group, butoxy group and the like can be exemplified. The viscosity of the component (B) is preferably from 300 to 3,000 mPa·s, more preferably from 500 to 1,500 mPa·s. The weight average molecular weight of the component (B) is preferably from 3,000 to 25,000, more preferably from 4,000 to 15,000. The weight average molecular weight means a ruthenium measured by GPC (converted polystyrene). The component (B) is preferably a polyolefin diol having a hydrolyzable decyl group at both ends of the (B-1) molecular chain or a polyolefin diol having a hydrolyzable decyl group at one end of the molecular chain. From the viewpoint of adjusting the hardness, it is preferred to use a polyolefin diol having a hydrolyzable decyl group at both ends of the (B-1) molecular chain and a polyolefin having a hydrolyzable decyl group at a single terminal of the (B-2) molecular chain. Glycol. In the case of a polyolefin diol having a hydrolyzable alkylene group at both ends of the (B-1) molecular chain and a polyolefin diol having a hydrolyzable alkylene group at a single terminal of the molecular chain (B-2), (B-1) The mixing ratio of the component to the (B - 2 ) component is preferably (b - 1 ): (B-2) = 2 to 50: 50 to 98, more preferably 5 to 40: 60 to 95, in terms of mass ratio. The best is 10 to 30: 70 to 90. The curing catalyst of the component (C) used in the present invention is not particularly limited, and is preferably a compound which promotes a condensation reaction of the polyolefin diol having the hydrolyzable alkylene group. The curing catalyst of the component (C) is preferably a condensation catalyst of a stanol compound. Examples of the component (C) include titanates such as tetrabutyl titanate and tetrapropyl titanate 201141924; dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, tin octoate, and a ring. An organotin compound such as a reaction product of tin alkoxide, dibutyltin and ethyl ortho-nonanoate: butylamine, octylamine, laurylamine, dibutylamine, monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, three Ethylenetetramine, oleylamine, cyclohexylamine, benzylamine, diethylaminopropylamine, dimethylenediamine, triethylenediamine, anthracene, diphenylanthracene, 2,4,6-gin (Dimethylaminomethyl)phenol, morpholine, N-methylmorpholine, 1,8-diazabicyclo ring (5. 4. 0) an amine compound such as undecene-7 (DBU) or a salt thereof with a carboxylic acid or the like; a low molecular weight polyamine resin obtained from an excess of a polyamine and a polybasic acid; and an excess of a polyamine and an epoxy compound Reaction product; bismuth carboxylate, bismuth rosinate, bismuth neodecanoate, bismuth d-sea rosinate, bismuth-d-palmium citrate, secret of podocarpic acid, benzoic acid secret, cinnamic acid citrate, pair A lanthanide hardening catalyst such as cinnamic acid bismuth, octyl octanoate, neodymium neodecanoate or neodecanodecanoate; lead octoate, di-iso-propoxy bis (acetone) Titanium, propane dihydroxy titanium bis(ethylacetamidine acetate), dioctyloxybis(octene glycolate) titanium, diisopropoxy bis(triethanol aminate) titanium, A titanium-based curing catalyst such as titanium tetraisopropoxide or tetra-2-ethylhexaoxide; a known decyl alcohol condensation catalyst such as triethoxymethane. In the above, from the viewpoint of the flexibility of the resin, the lanthanum-based curing catalyst is preferred, and from the viewpoint of the reaction-promoting property, the content of the hardening catalyst of the titanium-based curing catalyst (C) is preferred. , relative to the component (B), preferably 0. 01 to 10% by mass, more preferably 0. 1 to 5 mass%. As long as it is 0. When the mass is -10-201141924% or more, the effect of hardening promotion can be surely obtained, and if it is 10% by mass or less, a sufficient curing rate can be obtained. The dip content ' of the (Α) component is preferably from 60 to 98% by mass, more preferably from 70 to 97% by mass, based on the entire composition. When the amount is 60% by mass or more, the heat conduction performance is sufficient, and if it is 98% by mass or less, the adhesion between the electronic component and the heat dissipating material becomes large. The decane coupling agent of the component (D) used in the present invention is a compound which is prepared for the purpose of improving the curability and stability, and a known decane coupling agent can be used. The decane coupling agent may, for example, be ethylene trimethoxy decane, ethylene triethoxy decane, ethylene trichloro decane, 3-glycidoxy propyl methyl dimethoxy decane or 3-epoxypropoxy group. Propyltrimethoxydecane, 3-epoxypropoxydecyloxytriethoxydecane, indole-2-(aminoethyl)-3-aminopropyltrimethoxydecane, N-2-( Aminoethyl)-3-aminopropylmethyldimethoxydecane, N-2-(aminoethyl)-3-aminopropylmethyltrimethoxydecane, N-2-(amine Benzyl)-3-aminopropylmethyltriethoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, N-phenyl-3-amine Propyltrimethoxydecane, 3-chloropropyltrimethoxydecane, tetramethoxydecane, dimethyldimethoxydecane, methyltrimethoxydecane, phenyltrimethoxydecane, diphenyl Dimethoxy decane, tetraethoxy decane, methyl triethoxy decane, dimethyl diethoxy decane, phenyl triethoxy decane, and the like. The decane coupling agent may be used alone or in combination of two or more. Among these, from the viewpoint of stability, ethylene trimethoxydecane is preferred. Among these, from the viewpoint of hardenability, it is preferably 3-glycidoxypropylmethyltrimethoxydecane and /201141924 or N-2-(aminoethyl)-3-aminopropyl More preferably, it is 3-trimethoxypropoxypropylmethyltrimethoxydecane. Among these, it is preferred to use ethylene trimethoxydecane and 3-glycidoxypropylmethyltrimethoxydecane. In the case of using ethylene trimethoxynonane and 3-glycidoxypropylmethyltrimethoxydecane, ethylene trimethoxydecane and 3-glycidoxypropyl group are preferred in terms of mixing ratio. In the total of 100% by mass of the trimethoxy decane, ethylene trimethoxy decane: 3-glycidoxy propyl methyl trimethoxy decane = 30 to 90% by mass: 10 to 70% by mass, more preferably 50 to 70% by mass: 30 to 50% by mass. The content of the decane coupling agent of the component (D) is preferably 0. 1 to 10% by mass, more preferably 1 to 5% by mass. As long as it is 0. When the amount is 1% by mass or more, the storage stability is sufficient, and if it is 10% by mass or less, the hardenability and the adhesion become large. In the present invention, an organic solvent, an antioxidant, a flame retardant, a plasticizer, a thixotropic agent, or the like may be used as a further additive. In the present invention, a polyolefin diol having a hydrolyzable alkylene group at both ends of the molecular chain and a polyolefin diol having a hydrolyzable alkylene group at one end of the molecular chain can be used. The composition of the present invention is, for example, a thermally conductive moisture-curable resin composition. The thermally conductive moisture-curable resin composition of the present invention can be hardened by the humidity in the air. The composition of the present invention can be applied to a member that is fixed with high precision, and is preferably a hardened body display from the viewpoint that it can be fixed so that the adhered body (for example, an electronic component or the like) is not displaced. Soft physical properties. In terms of the softness of the body -12-201141924, it is preferable that the hardness of the Asker durometer "CSC2 type" is 90 or less, more preferably 50 or less. It is appropriate to make the hardness below 90, and the deformation caused by the hardened material does not occur at all. There is also a case where the composition does not protrude from the adherend, and it is preferable to prevent contamination of the adherend. Therefore, it is preferable to increase the hardness by increasing the hardening speed. It is preferable to use a titanium-based hardening catalyst or (B-1) and (B-2) for increasing the hardness. The composition of the present invention is applied to a laser diode used in a precision machine such as a CPU or an MPU such as an arithmetic circuit or a light pickup module. The composition of the present invention uses a heat dissipating material such as a metal heat transfer plate. [Examples] The present invention will be described in further detail by way of examples and comparative examples, but the invention is not limited to the examples. The results are shown in Tables 1 to 5. (Example 1) Polypropylene glycol having a methoxyalkylene group at both ends (matrix polymer A, viscosity: 800 mPa·s, weight average molecular weight: 5,000, Kaneka "SAT 115") 30 g, methoxy decane at one end Polypropylene glycol (matrix polymer B, viscosity 1,300 mPa·s, weight average molecular weight 18,000, Asahi Glass "S-1000N") 70 g, titanium hardening catalyst A (diisopropoxy bis(ethylene) Acetone) Titanium, Japan Caoda Corporation "chelating agent T-50") 3g, thermal conductivity tanning material A-1 (average particle size 〇. 5μιη alumina, resistance 値 is loHQm or more, Sumitomo Chemical Co., Ltd. "AA-05") 24〇g, thermal conductive material A-2 (average particle size 5 μηι alumina, resistance 値 1 0 1 1 Ωηι In the above, 480 g of "DAW-〇5" manufactured by Electrochemical Industry, Inc., and the heat-transferable material A_3 (aluminum oxide having an average particle diameter of 45 μm, and a resistance 値 of ΙΟ^Ωπι or more, "DAW manufactured by Electrochemical Industry Co., Ltd." -45S") 8 80 g and 3 g of ethylene trimethoxydecane were mixed, and the thermally conductive resin composition was adjusted. (Example 2) 20 g of polypropylene glycol having a methoxydecyl group at both terminals, 80 g of polypropylene glycol having a methoxyalkyl group at one end, a titanium-based curing catalyst A3g, a thermally conductive crucible A-1 240 g, and heat conduction The conductive material A-2 480 g, the heat conductive material A-3880 g, and ethylene trimethoxy decane 3 g were mixed to adjust the thermally conductive resin composition. (Example 3) 100 g of polypropylene glycol having a methoxyalkylene group at both ends, 90 g of a polypropylene glycol having a methoxyalkyl group at one end, a titanium-based curing catalyst A 3 g, and a thermally conductive crucible A-1 24 〇g, thermal conductive material A-2 480g, heat conductive material A-3 8 80 g, and ethylene trimethoxy decane 3g were mixed, and the thermally conductive resin composition was adjusted. (Example 4) 100 g of polypropylene glycol having a methoxyalkylene group at one end, 3 g of a titanium hard catalyst A, and 240 g of a thermally conductive crucible A-1, heat conduction. The material A-2 48 0g, the heat conductive material A-3 880g, and the ethylene trimethoxy decane 3g were mixed, and the heat conductive resin composition was adjusted. (Example 5) 20 g of a 14-polypropylene glycol, 8 g of a single terminal, 3 g of a titanium-based hardening catalyst A, 480 g of a conductive material A-2, and 3 g of a thermally conductive decane were mixed, and the polypropylene glycol was adjusted. 20g, single-end 8〇g, titanium-based hardening catalyst A 3g, conductive material A-2 480g, thermal conductive decane 3 g, mixed, and adjusted polypropylene glycol 20g, single-end 8〇g, titanium Hardening catalyst A 3g, conductive material A-2 480g, heat conduction decane. 3g is mixed, and the base polypropylene glycol 20g, the single-end 8〇g 'titanium hardening catalyst A 3g, the conductive material A-2 560g, the heat conductive decane 3g are mixed, and adjusted 201141924 A methoxy decane having a methoxy decyl group, a polypropylene glycol heat conductive sputum Al 160 g, a heat transfer sputum A- 3 9 60 g, and an ethylene trimethoxy thermal conductive resin composition (Example 6) S: a propylene oxide hospital having a methoxyalkylene group, a polypropylene glycol heat conductive tantalum Al 3 20 g, a heat transfer tantalum A-3 800 g, and an ethylene trimethoxy heat conductive resin composition. (Example 7) Polypropylene glycol heat conductive crucible having a methoxydecane having a methoxydecane group at both ends A - 1 400 g, heat transfer crucible A-3 720 g, ethylene trimethoxy thermal conductive resin Composition. (Example 8) Each of the two ends had a methoxy silicate, a propylene glycol having a methoxyalkylene group, 160 g of a thermally conductive crucible A-l, a heat transfer crucible A-3 880 g, and an ethylene trimethoxy thermal conductive resin composition. -15-201141924 (Example 9) 20 g of polypropylene glycol having a methoxyalkyl group at both ends, 80 g of a polypropylene glycol having a methoxydecyl group, and a titanium-based hardening catalyst thermally conductive material A- 1 3 20 g 2,400 g of thermally conductive crucible, 3-3 g of hot dip A-3 8 g, and 3 g of ethylene trimethoxydecane were mixed, and a conductive resin composition was used. (Example 10) 20 g of a polypropylene glycol having a methoxydecyl group at both ends, 80 g of a polypropylene glycol having a methoxydecyl group, a titanium-based curing catalyst thermal conductive material A-1 240 g, and a thermally conductive crucible A - 2 320 g, a fine material A-3 1,040 g, and ethylene trimethoxy decane 3 g were mixed with a heat-conductive resin composition. (Example 1 1) 20 g of polypropylene glycol having a methoxydecyl group at both ends, 80 g of a polypropylene glycol having a methoxydecyl group, a titanium-based hardening catalyst thermally conductive crucible A-1 240 g, and a heat conductivity 塡A material of A-2, 400 g, agglomerated material A-3, 960 g, and ethylene trimethoxydecane was mixed, and a thermally conductive resin composition was used. .  (Example 12) 20 g of a polypropylene glycol having a methoxyalkylene group at both ends, 80 g of a polypropylene glycol having a methoxydecyl group, 240 g of a titanium-based curing catalyst thermal conductive material A_i, and 560 g of a thermally conductive material A 2; Single-end A- 3g 'conductivity-adjusted hot single-end 3 g long, heat transfer, and single-end A 3g, heat transfer and adjustment of single-end A 3g, heat transfer-16 - 201141924 塡 A-3 800g, ethylene trimethoxy decane 3 g was mixed and the thermally conductive resin composition was adjusted. (Example 13) 20 g of a polypropylene glycol having a methoxyalkylene group at both ends, 80 g of a polypropylene glycol having a methoxy fluorene group at a single terminal, 3 g of a titanium-based curing catalyst a, and a heat conductive crucible Al 24 〇 g, The thermally conductive crucible A-2 640 g, the thermally conductive crucible A-3 720 g, and the ethylene trimethoxydecane 3 g were mixed, and the thermally conductive resin composition was adjusted. (Example 14) 20 g of a polypropylene glycol having a methoxyalkylene group at both ends, 80 g of a polyacrylic alcohol having a methoxy group at a single terminal, 3 g of a hardening catalyst A, a heat conductive crucible Al 264 g, and heat conduction The crucible A-2 530 g, the thermally conductive crucible A-3968 g, and the ethylene trimethoxydecane 3 g were mixed, and the thermally conductive resin composition was adjusted. (Example 15) 20 g of a polypropylene glycol having a methoxydecyl group at both ends, 80 g of a polypropylene glycol having a methoxydecyl group at one end, and a titanium-based hardening catalyst B (tetra- 2-ethylhexacycline, Matsumoto Fine Chemical Co., Ltd. "Orgatix.  TA-30 ”)0. 5 g, heat conductive tantalum Al 264 g, heat conductive tantalum A-2 530 g, heat conductive tantalum A-3 968 g, methacryloxypropyltrimethoxydecane 1 3 g were mixed, and the thermally conductive resin was adjusted. Composition. (Example 16) -17- 201141924 Polypropylene glycol I00g having a methoxyalkylene group at both ends, an oxime-based curing catalyst (barium carboxylate, "PUCATB7_t" manufactured by Nippon Chemical Industry Co., Ltd.), and heat-conductive conductive material A-1 (Average particle size 0. 5μιη alumina, resistance 値 is ΙΟ^Ωπι or more) 400g, thermal conductivity Α-2 (average particle size 5μιη alumina, resistance 値 is ΙΟ^Ωπι or more) 480g, thermal conductivity Α-3 (average The alumina having a particle diameter of 45 μm, the electric resistance of 45^Ωιη or more, 720 g, 3 g of ethylene trimethoxydecane, and 2 g of 3-glycidoxypropyltrimethoxydecane were mixed, and a thermally conductive resin composition was prepared. (Example I7) Polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, 240 g of a thermally conductive crucible A- 1 , a thermally conductive crucible A-2 480 g, and a thermally conductive crucible A 880 g of the material A-3, 3 g of ethylene trimethoxy decane, and 2 g of 3-glycidoxypropyltrimethoxy decane were mixed, and a thermally conductive resin composition was prepared. (Example 18) 100 g of polypropylene glycol having a methoxydecyl group at both ends, 3 g of a lanthanum-based curing catalyst, 80 g of a thermally conductive pigment A-1, a thermally conductive crucible A-2 4 80 g, and a heat conductivity 塡A material of A-3 l〇4〇g, ethylene trimethoxydecane 3g, and 3-glycidoxypropyltrimethoxydecane was mixed, and a thermally conductive resin composition was prepared. (Example 19) 100 g of a polypropylene glycol having a methoxyalkylene group at both ends, a lanthanum-based curing catalyst 3 g, a thermal conductive sputum A- 1 240 g, a thermally conductive sputum A-2 18 - 201141924 64 〇 g, heat conduction The raw material A-3 720 g, ethylene trimethoxy decane 3 g, and 3_ glycidoxypropyl trimethoxy decane 2 g were mixed, and a thermally conductive resin composition was prepared. (Example 20) Polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, 80 g of a thermally conductive crucible A-1, a thermally conductive crucible A-2 640 g, and a thermally conductive crucible A material of A-3 880 g, ethylene trimethoxy decane 3 g, and 3_ glycidoxypropyl trimethoxy decane was mixed, and a thermally conductive resin composition was prepared. (Example 21) Polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, a thermally conductive material A-1 4〇Og, a thermally conductive material A-2 320 g, and heat conduction The raw material A-3 88 0g, ethylene trimethoxy decane 3g, and 3-glycidoxypropyl trimethoxy decane 2g were mixed, and a heat conductive resin composition was prepared. (Example 22) 100 g of polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, 240 g of a thermally conductive crucible A-1, a thermally conductive crucible A-2 3 20 g, and a thermally conductive crucible A-3 1 040 g of ethylene trimethoxydecane 3 g and 3-glycidoxypropyltrimethoxydecane 2 g were mixed, and a thermally conductive resin composition was ridiculed. (Comparative Example 1) 19-201141924 100 g of polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, 80 g of a thermally conductive crucible A-1, a thermally conductive crucible A-2 152 0 g, and a vinyl trimethyl 2 g of oxydecane and 2 g of 3-glycidoxypropyltrimethoxydecane were mixed, and a thermally conductive resin composition was prepared. (Comparative Example 2) Polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, 10 g of a thermally conductive crucible A-1, a thermally conductive crucible A-2 1590 g, and ethylene trimethoxy 3 g of decane and 3 g of 3-glycidoxypropyltrimethoxy decane were mixed, and a thermally conductive resin composition was prepared. (Comparative Example 3) 10 〇g of a polypropylene glycol having a methoxy fluorenyl group at both ends, 3 g of a lanthanum-based curing catalyst, 480 g of a thermally conductive sputum A-1, a heat conductive sputum A-3 ll2 〇g, and ethylene trimethyl 2 g of oxydecane and 2 g of 3-glycidoxypropyltrimethoxydecane were mixed, and a thermally conductive resin composition was prepared. (Comparative Example 4) Polypropylene glycol having a methoxyalkylene group at both ends, 3 g of a lanthanum-based curing catalyst, 480 g of a thermally conductive crucible A-2, 1120 g of a thermally conductive crucible A-3, and ethylene trimethoxy 3 g of decane and 3 g of 3-glycidoxypropyltrimethoxy decane were mixed, and a thermally conductive resin composition was prepared. (Comparative Example 5) Evaluation of a commercially available moisture-curing heat-dissipating resin "product name: ThreeBond 2955 (manufactured by Three Bond Co., Ltd.) J. • 20-201141924 (average particle size evaluation) The average particle size evaluation system was "Shimadzu Corporation". SALD - 2 2 0 0" was measured by a laser diffraction/scattering method. (Evaluation of Thermal Conductivity) The thermal conductivity indicates the easiness of heat conduction in a substance, and the larger the thermal conductivity, the more preferable. The thermal conductivity was evaluated using each of the compositions obtained above. The evaluation of the thermal conductivity was measured at 25 ° C by a laser flash method using "LFA447 manufactured by NETZSCH Co., Ltd.". (Tack free evaluation) No sticking time is one of the workability or hardening properties. When the adhesive time is too long, the productivity is lowered. If the adhesive time is too short, the hardening is started in the middle of the work, which is a cause of failure. The range in which the non-sticking time is determined by the working condition is always changed, but from the viewpoint of good workability, it is preferably from 10 to 70 minutes, more preferably from 40 to 60 minutes. At 23 °C. The composition obtained above was poured into a mold having a width of 20 mm x a length of 20 mm x a thickness of 5 mm in a 50 % RH atmosphere, and exposed with a finger. The time when the finger was no longer attached to the finger after the pouring was defined as the non-adhesive time, and the evaluation was performed. (Evaluation of hardness) A test piece of a composition having a width of 60 mm x 40 mm x 5 mm and a thickness of 5 mm in a 23 ° C · 50% RH atmosphere, CUring, and a Duorometer Asker hardness tester, manufactured by Asker Polymer Co., Ltd. The CSC2 type was used to measure the hardness. The measurement is small and has flexibility. (Viscosity measurement) -21 - 201141924 Viscosity measurement is one of the operational characteristics. When the viscosity is too large, the coating property is poor and it is impossible to work. In the case of improving the thermal conductivity, although the charge increase is good, the viscosity is small because of poor handling. The composition cannot protrude from the adherend, and in order to prevent contamination of the adherend, the viscosity is preferably large. The viscosity is preferably a suitable flaw. The evaluation of the viscosity was measured using "Rheometer (Model: MCR301) J manufactured by Anton Paar Co., Ltd. [Table 1] Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 B Component Matrix Polymer A 30 20 10 - 20 20 20 Matrix Polymer B 70 80 90 100 80 80 80 A Component Thermal Conductive Tanning Material A-1 240 240 240 240 1 60 3 20 400 Thermal Conductive Tanning Material A-2 480 480 480 480 480 4 80 480 Thermally conductive material A-3 880 880 880 8 8 0 960 3 00 720 D Component methacryloxypropyltrimethyl decyl hydride - - - - - - - Ethylene trimethoxy decane 3 3 3 3 3 3 3 3-epoxypropyl. Oxypropyl propyl trimethoxy decane C component lanthanide hardening catalyst PUCAT B7 titanium hardening catalyst T-50 3 3 3 3 3 3 3 Titanium hardening catalyst TA-30 - - - - - - - A composition / Composition (% by mass) 94 C component/B component (% by mass) 3 D component/B component (% by mass) 3 A-1/A component (% by mass) 15 15 15 15 10 20 25 A-2/A component (% by mass) 30 30 3 0 30 30 30 30 A-3/A component (% by mass) 55 55 55 5 5 60 50 45 Thermal conductivity W/m.  K 3. 7 3. 7 3. 6 3. 6 3. 6 3. 5 3. 5 Non-sticky minutes 50 50 50 60 40 40 30 Hardness (CSC2) 85 60 50 40 65 65 70 Viscosity (Pa · s) 497 500 530 576 454 5 17 904 -22- 201141924 [Table 2] Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 B Ingredient Matrix Polymer A 20 20 2 0 20 20 20 Matrix Polymer B 80 80 80 80 80 80 A Ingredient Thermal Conductivity A - 1 1 60 320 240 240 240 240 Thermally conductive material A - 2 5 60 400 320 400 560 640 Thermally conductive material A-3 880 880 1,040 960 800 720 D Component methacryloxypropyltrimethoxydecane - - - - - - Ethylene trimethoxy decane 3 3 3 3 3 3 3-glycidoxypropyl trimethoxy decane C Component lanthanide hardening catalyst PUCAT B7 Titanium hardening catalyst T-50 3 3 3 3 3 3 Titanium Hardening catalyst TA-30 - - - - - - A component / composition (% by mass) 94 C component / B component (% by mass) 3 D component / B component (% by mass) 3 A - 1 / A component (quality % ) 10 20 15 15 15 15 A-2/A component (% by mass) 3 5 25 20 25 3 5 40 A-3/A component (% by mass) 5 5 5 5 65 60 5 0 45 Heat Conductivity W / m.  K 3. 6 3. 7 3. 6 3. 6 3. 6 3 .  5 Non-sticky minute 40 40 40 40 4 0 3 5 Hardness (CSC2) 60 65 60 65 65 70 Viscosity (P4 · s) 4 3 3 5 64 635 460 4 74 609 -23- 201141924 [Table 3] Example 14 Example 15 Example 16 Example 17 Example 18 Example 19 B Component Matrix Polymer A 20 20 100 100 100 100 Matrix Polymer B 80 80 - - - - A Component Thermal Conductive Tanning Material A-1 264 264 400 240 8 0 240 Thermal conductivity material A-2 530 5 3 0 48 0 480 480 640 Thermal conductivity material A-3 968 968 720 880 104 0 720 D component methacryloxypropyltrimethoxy decane - 10 ethylene Trimethoxydecane 3 - 3 3 3 3 3_glycidoxypropyltrimethoxydecane 2 2 2 2 C Component Lanthanide Hardening Catalyst B 7 3 3 3 3 Titanium Hardening Catalyst T-50 3 - Titanium hardening catalyst TA-30 •- 0. 5 A component / composition (% by mass) 94 C component / B component (% by mass) 3 0. 5 3 D component/B component (% by mass) 3 10 5 A - 1 / A component (% by mass) 15 15 2 5 15 5 15 A-2/A component (% by mass) 3 0 3 0 3 0 3 0 3 0 40 A - 3 / A component (% by mass) 5 5 5 5 45 5 5 65 45 Thermal conductivity W/m · K 4. 0 4. 1 3. 9 4. 1 4. 3 3 .  8 Non-sticky minutes 50 30 5 0 50 5 0 50 Hardness (CSC2) 75 70 45 5 0 60 45 Viscosity (Pa · s) 586 3 70 269 1 50 28 7 3 3 9 -24- 201141924 [Table 4] Implementation Example 20 Example 21 Example 22 Comparative Example 1 B Component Matrix Polymer A 100 100 100 100 Matrix Polymer B - - - - A Component Thermal Conductive Tanning Material A-1 8 0 400 240 80 Thermal Conductive Tanning Material A-2 640 320 3 20 1520 Thermal Conductive Tanning A-3 880 880 1040 - D Component Methyl propylene methoxypropyl trimethoxy decane ethylene trimethoxy decane 3 3 3 3 3-glycidoxypropyl trimethoxy Base decane 2 2 2 2 C Component lanthanide-hardening catalyst PUCAT B7 3 3 3 3 Titanium-based hardening catalyst T-50 Titanium-based hardening catalyst TA-30 A component/composition (% by mass) 94 C component / B component (% by mass) 3 D component/B component (% by mass) 5 A-1/A component (% by mass) 5 25 1 5 5 A-2/A component (% by mass) 40 20 20 95 A-3/A component (% by mass) 5 5 5 5 65 0 Thermal conductivity W/m · K 4. twenty three. 8 4. 1 The material cannot be uniformly mixed with the polymer, and the non-stickiness cannot be measured. 5 0 50 5 0 Hardness (CSC2) 50 50 50 Viscosity (Pa · s) 3 49 3 5 1 337 -25- 201141924 [Table 5] Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 B Component Matrix Polymer A 100 1 00 100 Matrix Polymer B - - - A Component Thermal Conductive Tanning Material A-1 10 480 Thermal Conductive Tanning Material A-2 1590 - 480 Thermal Conductivity Dip A-3 - 1120 1120 D component methacryloxypropyltrimethoxydecane / ethylene trimethoxy decane 3 3 3 3-glycidoxypropyl trimethoxy decane 2 2 2 / C Tantalum hardening catalyst PUCAT B7 3 3 3 / Titanium hardening catalyst T-50 Titanium hardening catalyst TA-30 A component/composition (% by mass) 94 C component/B component (% by mass) 3 D component/ Component B (% by mass) 5 A-1/A component (% by mass) 0. 63 3 0 0 A-2/A component (% by mass) 99. 37 0 30 A-3/A component (% by mass) 0 70 70 Thermal conductivity W/m · K The material cannot be uniformly mixed with the polymer and cannot be measured. 3 4. 3 1. 9 non-sticky minutes 5 0 50 3 60 hardness (CSC2) 5 0 50 3 0 viscosity (Pa.  s) 600 800 1 80 According to the present embodiment, the excellent effects exhibited by the present invention can be known. The mixing ratios of the three (A) components of Examples 1 to 4, 8 to 9, 11 to 12, and 14' 17 exhibited more excellent effects because they were in a more appropriate range. In the case of using a polyolefin diol having a hydrolyzable alkylene group at both ends of the (B-1) molecular chain and a polyolefin diol having a hydrolyzable alkylene group at one end of the molecular chain, 'Examples 1 to 4' The mixing ratios of the three (A) components -26 to 201141924 and other components of 6,8 to 9, 11 to 12, and 14' are more excellent because they are in a more appropriate range. In the case where the (B-1) polyolefin diol having a hydrolyzable sand sulfonate group at both ends of the molecular chain is used alone, it is understood that the present invention exhibits an excellent effect. Example 1 7 The mixing ratio of the three (A) components was in a more appropriate range, so that a more excellent effect was exhibited. INDUSTRIAL APPLICABILITY The heat conductive moisture-curing resin composition has high workability, high-degree thermal conductivity, flexibility after hardening, and rapid hardenability, and is excellent in heat dissipation of electronic parts fixed with high precision. The media is best suited. The heat-transfer-moisture-curable resin composition is highly productive because it has a high curing speed. The softness of the present invention is such that no stress is applied during hardening, and the electronic component exhibits softness. The heat conductive moisture-curable resin composition can be used as a one-component room temperature moisture-curing heat-dissipating material. By applying the electronic component which heats the heat conductive moisture-hardening resin composition, the heat generated from the electronic component can be radiated toward the outside. [Simple description of the diagram] None. [Main component symbol description] 4nr pick. -27-

Claims (1)

201141924 七、申請專利範圍: 1. 一種組成物,其特徵爲含有下述(A)至(D)成分而成: (A)含有(A-1)平均粒徑0.1至2μιη之塡料成分、 (Α-2)平均粒徑2至20μιη之塡料成分、(Α-3)平均粒徑 20至100 μπι之塡料成分而成之塡料成分; (Β)具有水解性矽烷基之聚烯烴二醇; (C) 硬化觸媒; (D) 矽烷偶合劑。 2. 如申請專利範圍第1項之組成物,其中(Α)成分係具有 絕緣性之熱傳導性塡料。 3. 如申請專利範圍第1項之組成物,其中(Β)成分係黏度 3 00至3,000mPa· s,重量平均分子量3,〇〇〇至25,000 之具有水解性矽烷基之聚烯烴二醇。 4. 如申請專利範圍第1項之組成物,其中(B)成分係(B-1) 分子鏈兩末端具有水解性矽烷基之聚烯烴二醇。 5. 如申請專利範圍第1項之組成物,其中(B)成分係(B-2) 分子鏈單末端具有水解性矽烷基之聚烯烴二醇。 6. 如申請專利範圍第1項之組成物,其中(B)成分係含有 (B-1)分子鏈兩末端具有水解性矽烷基之聚烯烴二醇, 及(B-2)分子鏈單末端具有水解性矽烷基之聚烯烴二醇 而成。 7. 如申請專利範.圍第1項之組成物,其中相對於該組成 物整體,(A)成分含有60至95質量%之量:相對於(B) 成分,(C)成分含有〇.〇1至10賣量%之量;相對於(B) -28- 201141924 成分,(D)成分含有0.01至10質量%之量。 8. 如申請專利範圍第1項之組成物,其中(C)成为爲祕系 硬化觸媒。 9. 如申請專利範圍第1項之組成物,其中(C)成分爲駄系 硬化觸媒。 1 0.如申請專利範圍第1項之組成物,其中該組成物之硬 化體顯示柔軟的物性。 11. 一種熱傳導性組成物,其係含有如申請專利範圍第1 至10項中任一項之組成物而成。 1 2.—種熱傳導性濕氣硬化型樹脂組成物,其係含有如申 請專利範圍第1至1 〇項中任一項之組成物而成。 13. —種散熱材料,其特徵爲含有如申請專利範圍第1至 1 〇項中任一項之組成物而成。 14. —種散熱方法,其特徵爲藉由將如申請專利範圍第1 至10項中任一項之組成物塗布於電子零件,而將發自 電子零件的熱散熱於外部。 •29- 201141924 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無0 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 益。201141924 VII. Patent application scope: 1. A composition characterized by containing the following components (A) to (D): (A) a dip component containing (A-1) an average particle diameter of 0.1 to 2 μm, (Α-2) a distillate component having an average particle diameter of 2 to 20 μm, a crucible component having an average particle diameter of 20 to 100 μm; (Β) a polyolefin having a hydrolyzable alkylene group Glycol; (C) hardening catalyst; (D) decane coupling agent. 2. The composition of claim 1 wherein the (Α) component is an insulating thermal conductivity coating. 3. The composition of claim 1, wherein the (Β) component is a polyolefin diol having a hydrolyzable alkylene group having a viscosity of from 300 to 3,000 mPa·s, a weight average molecular weight of from 3, and up to 25,000. 4. The composition of claim 1, wherein the component (B) is a polyolefin diol having a hydrolyzable alkylene group at both ends of the molecular chain. 5. The composition of claim 1, wherein the component (B) is a polyolefin diol having a hydrolyzable alkylene group at one end of the molecular chain. 6. The composition of claim 1 wherein the component (B) comprises (B-1) a polyolefin diol having a hydrolyzable alkylene group at both ends of the molecular chain, and (B-2) a molecular chain single terminal It is a polyolefin diol having a hydrolyzable alkylene group. 7. The composition of claim 1, wherein the component (A) is contained in an amount of 60 to 95% by mass relative to the entire composition: the component (C) contains lanthanum relative to the component (B). 〇1 to 10% by volume; relative to (B) -28- 201141924, the component (D) is contained in an amount of 0.01 to 10% by mass. 8. For the composition of the first item of the patent scope, (C) is a secret curing catalyst. 9. The composition of claim 1 wherein the component (C) is a lanthanide hardening catalyst. 10. The composition of claim 1, wherein the hardened body of the composition exhibits soft physical properties. A thermally conductive composition comprising the composition according to any one of claims 1 to 10. 1 2. A thermally conductive moisture-curable resin composition comprising the composition according to any one of claims 1 to 1 of the patent application. A heat dissipating material characterized by comprising the composition according to any one of claims 1 to 1. A method of dissipating heat, which is characterized in that the composition of any one of claims 1 to 10 is applied to an electronic component to dissipate heat from the electronic component to the outside. • 29- 201141924 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: None 0. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: Benefit.
TW100111472A 2010-04-08 2011-04-01 Heat-conductive moisture-curable resin composition TWI568777B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089116 2010-04-08

Publications (2)

Publication Number Publication Date
TW201141924A true TW201141924A (en) 2011-12-01
TWI568777B TWI568777B (en) 2017-02-01

Family

ID=44762583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111472A TWI568777B (en) 2010-04-08 2011-04-01 Heat-conductive moisture-curable resin composition

Country Status (5)

Country Link
JP (1) JP5828835B2 (en)
KR (1) KR101832336B1 (en)
CN (1) CN102834462B (en)
TW (1) TWI568777B (en)
WO (1) WO2011125636A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013042638A1 (en) * 2011-09-21 2015-03-26 スリーボンドファインケミカル株式会社 Thermally conductive moisture curable resin composition
WO2013051721A1 (en) * 2011-10-06 2013-04-11 電気化学工業株式会社 Thermally conductive composition for low outgassing
CN108884311B (en) * 2016-03-31 2021-05-14 日本瑞翁株式会社 Polyether polymer composition and sheet
JP6891876B2 (en) * 2016-03-31 2021-06-18 日本ゼオン株式会社 Polyester-based polymer composition
US11459426B2 (en) 2016-11-30 2022-10-04 Zeon Corporation Polyether polymer composition, method for producing same, and sheet in which same is used
KR101756824B1 (en) * 2017-01-03 2017-07-11 주식회사 아모센스 Electrically insulated and heat radiated coating composition and electrically insulated and heat radiated commodities with the same
KR102166470B1 (en) 2017-05-16 2020-10-16 주식회사 엘지화학 Resin Composition
CN114846088B (en) * 2019-12-11 2023-06-27 三键有限公司 Curable resin composition, method for producing same, and cured product

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011870A (en) * 1989-02-08 1991-04-30 Dow Corning Corporation Thermally conductive organosiloxane compositions
JPH05230284A (en) * 1992-02-19 1993-09-07 Hitachi Ltd Resin composition, its production, and resin-sealed semiconductor device
JPH06283343A (en) * 1993-03-25 1994-10-07 Hitachi Ltd Manufacture of flyback transformer
JPH0995609A (en) * 1995-09-29 1997-04-08 Asahi Glass Co Ltd Room temperature curing composition and its production
JP3948642B2 (en) * 1998-08-21 2007-07-25 信越化学工業株式会社 Thermally conductive grease composition and semiconductor device using the same
JP2000086881A (en) * 1998-09-16 2000-03-28 Ge Toshiba Silicones Co Ltd Room-temperature-vulcanizable silicon-functional polyether composition
JP2001302936A (en) * 2000-02-15 2001-10-31 Sekisui Chem Co Ltd Heat-conductive resin composition
JP2002003732A (en) * 2000-06-26 2002-01-09 Sekisui Chem Co Ltd Heat-conductive resin composition and resin sheet
DE10355318A1 (en) * 2003-11-27 2005-06-23 Wacker-Chemie Gmbh Process for the preparation of organyloxysilyl-terminated polymers
JP4480457B2 (en) * 2004-05-17 2010-06-16 株式会社カネカ Curable composition
JP4629475B2 (en) * 2005-03-30 2011-02-09 株式会社カネカ Composition for heat dissipation sheet and heat dissipation sheet obtained by curing the composition
KR20110021916A (en) * 2008-05-23 2011-03-04 쇼와 덴코 가부시키가이샤 Curable composition containing a reactive (meth)acrylate polymer and a cured product thereof
JP5607298B2 (en) * 2008-07-29 2014-10-15 株式会社カネカ Thermal conductive material
JP2011256214A (en) * 2008-10-08 2011-12-22 Denki Kagaku Kogyo Kk Heat-conductive moisture curable resin composition

Also Published As

Publication number Publication date
CN102834462B (en) 2015-04-29
KR101832336B1 (en) 2018-02-26
TWI568777B (en) 2017-02-01
CN102834462A (en) 2012-12-19
JP5828835B2 (en) 2015-12-09
KR20130079344A (en) 2013-07-10
WO2011125636A1 (en) 2011-10-13
JPWO2011125636A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
TW201141924A (en) Heat-conductive moisture-curable resin composition
JP6886439B2 (en) Composite member and adhesive composition
TWI592455B (en) An adhesive composition, an adhesive sheet, and the manufacturing method of a semiconductor device
TWI741212B (en) Resin composition, resin film, semiconductor laminate, semiconductor laminate manufacturing method, and semiconductor device manufacturing method
TWI386473B (en) Hot-melt silicone adhesive
TW201336910A (en) Thermal conductive sheet
TW201542695A (en) Thermal conductive silicone composition and electrical/electronic devices
JP6452243B2 (en) Polyimide resin composition and adhesive film using the same
TWI649391B (en) Next, the sheet, and the cut grain bonding film
TW201437016A (en) Thermal conductive composite silicone rubber sheet
JP6265105B2 (en) Silicone resin, resin composition, resin film, semiconductor device and manufacturing method thereof
JP2015137327A (en) Resin composition, resin film, and semiconductor device and method for manufacturing the same
TW201135823A (en) Film for flip chip type semiconductor back surface
TW201629147A (en) Epoxy resin composition, film-like epoxy resin composition, cured product, and electronic device
WO2010041708A1 (en) Heat-conductive moisture-curable resin composition
TW201842055A (en) Resin composition and resin sheet
TWI748126B (en) Resin composition, resin film, semiconductor laminate, semiconductor laminate manufacturing method, and semiconductor device manufacturing method
US11879077B2 (en) Thermally conductive moisture-curable resin composition and cured product thereof
JP5970462B2 (en) Thermally conductive composition for low outgas
JP2008121005A (en) Adhesive composition, semi-cured adhesive composition, adhesive film, laminated adhesive film, and their manufacturing method
JP2016171314A (en) Sealing sheet, method for manufacturing sealed optical semiconductor element and method for manufacturing optical semiconductor device
TWI773698B (en) Silicone resin adhesive composition and protective sheet for preventing electrification
JPWO2019220540A1 (en) Semiconductor device, thermosetting resin composition and dicing die bonding integrated tape used for its manufacture
WO2013118849A1 (en) Thermal conductive sheet
JP7256944B2 (en) Moisture-curable resin composition and cured product