201140653 六、發明說明: 【發明所屬之技術領域】 本發明之實施形態係關於一種模片之表面處理方法及裝 置以及圖案形成方法。 本申請案係基於2010年3月31日提出申請之先前之曰本 專利申請案No. 2010-81019、及2010年12月16日提出申請 之先前之曰本專利申請案N〇. 2010-280514,且主張該等之 優先權權益,該等之全部内容以引用之方式併入本文中。 【先前技術】 近年來,作為形成微細圖案之方法,奈米壓印法受到關 注。於奈米壓印法中,使形成有凹凸圖案之壓印用模片與 塗佈於被處理基板上之光阻劑相接觸,使光阻劑硬化後, 使模片自光阻劑脫模,藉此形成光阻圖案。 為使模片容易自光阻劑脫模,提出有於模片表面形成脫 模層之方法(例如參照τ. zhang等人「Vap〇r Dep〇sited[Technical Field] The present invention relates to a surface treatment method and apparatus for a die and a pattern forming method. The present application is based on the prior patent application No. 2010-81019 filed on March 31, 2010, and the previous patent application filed on December 16, 2010. N. 2010-280514 And claiming such priority rights, the entire contents of which are hereby incorporated by reference. [Prior Art] In recent years, as a method of forming a fine pattern, a nanoimprint method has been attracting attention. In the nanoimprint method, an imprinting die formed with a concave-convex pattern is brought into contact with a photoresist coated on a substrate to be processed, and after the photoresist is cured, the die is released from the photoresist. Thereby, a photoresist pattern is formed. In order to facilitate the release of the die from the photoresist, a method of forming a release layer on the surface of the die is proposed (for example, see τ. zhang et al. "Vap〇r Dep〇sited".
Release Layers for Nanoimprint Lithography」,Proc 〇f SPIE’ Vol. 6151,117, 2〇〇6)e脫模層例如藉由將模片浸潰 於脫模劑溶液中,於高溫高濕下保持表面所附著之溶液 後’進行沖洗、乾燥而形成。 然而,上述處理中,存在於處理前模片之表面、處理環 境中' 脫模劑溶液中等之胺、水分、有機物、微粒等吸附 於模片表面,使得所形成之脫模層之均勻性下降。若使用 包3 Π玄均勻性較低之脫模層之模片而形成光阻圖案,則存 153931.doc 201140653 在於光阻圖案上蓋生缺陷之問題β 【發明内容】 根據本實施形態’模片之表面處理方法包括:對包含具 有凹凸之圖案面之模片表面進行氮氧化或者使水吸附於上 述表面,而使上述表面分佈0Η基之步驟;以及於上述分 佈有ΟΗ基之模片表面結合偶合劑之步驟。該等處理係於 將胺管理至特定濃度以下之環境下進行。 【實施方式】 以下,基於圖式對本發明之實施形態進行說明。 (第1實施形態)圖1表示本發明之第丨實施形態之模片之 表面處理裝置的概略構成。表面處理裝置1〇〇包含··第1腔 室110;第2腔室120;搬送臂131,其沿著搬送路徑13〇搬 送模片;裝載部140,其安放處理前之模片;以及卸載部 150,其搬出處理後之模片。於裝載部14〇與第1腔室ιι〇之 間、第1腔室110與第2腔室120之間、以及第2腔室12〇與卸 載部150之間設置有隔離壁。 再者,可於第1腔室Π 〇、第2腔室120之側面設置可開閉 之擋閘(未圖示圖1中,為方便起見將搬送臂131表示於 腔室之下方,但實際上搬送臂丨31設置於與腔室相同程度 之南度’可經由擔閘將模片搬入至腔室,或者自腔室搬 出。 又’於表面處理裝置100之上部設置有第1過濾器16〇及 第2過濾器170。第1過濾器i 60係去除微粒之高效率粒子空 氣過慮器(high efficiency particulate air filter)。第 2過滤器 153931.doc 201140653 170係去除氨等胺之化學過濾器。藉由第i過濾器16〇及第2 過遽器170’使表面處理裝置1〇〇内成為微粒、胺極少之環 境。例如,將胺管理至數ppb水準。 第1腔室110係使模片之表面與0H自由基進行反應之腔 至’其包含保持部111、第1氣體供給部1丨2及光照射部 113 ° 保持部111係對藉由裝載部14〇安放且藉由搬送臂13丨搬 送之模片101進行保持。模片丨〇!係例如利用電漿蝕刻,於 、曰通光罩中所使用之全透明之石英基板上形成凹凸圖案 者。 第1氣體供給部112將H2〇/〇2/N2之混合氣體供給至第1腔 室Π0内。第1氣體供給部n2可控制混合氣體之混合比或 流量,而調整第1腔室110内之濕度。 光照射部113對模片1〇1之具有凹凸之圖案面照射光。光 照射部113包含Xe準分子燈作為光源,發出波長172 nm( 光。 光照射部113可為對整個模片1〇1表面照射光者,亦可為 對模片101之一部分照射光者。較佳為以可驅動於平面方 向或垂直方向之方式設置光照射部113或保持部1U,而使 模片101相對於光照射部113可相對地移動。又,亦可使得 能夠調節光對模片1〇丨表面之照射角度。 再者介於光照射部113與模片1 〇 1表面之間之氣體使光 照射部113所發出之光衰減。因此,對第丨腔室ιι〇内之濕 度、氧氣濃度、光照射部113所發出之光之強度、光照射 153931.doc 201140653 部113與模片ι〇1表面之間之距離進行調整以使光照射部 113所發出之光到達模片ι〇1表面。 又,光照射部113由石英QZ所覆蓋,由此可防止光照射 部 113 對模片 1〇1之污染(c〇ntaniinati〇n)。 第2腔至120係一面加熱模片一面供給偶合劑而產生偶合 反應之腔室,其包含保持部121、加熱部122、第2氣體供 給部123及冷卻部(未圖示)。 保持部121對藉由搬送臂131自第1腔室u〇搬送之模片 101進行保持。 加熱部122例如為加熱器,對由保持部J 2丨所保持之模片 1〇1進行加熱。加熱部122可調節模片101之表面溫度。 第2氣體供給部123將矽烷偶合劑與&之混合氣體供給至 第2腔室120内。矽烷偶合劑係例如含有“且於端部具有烷 氧基(RO-)或NHx(x=l、2)基之烴或碳氟化合物。 冷卻部係對模片〗〇1進行冷卻。冷卻部例如藉由接近冷 卻板(cool plate)來保持模片1〇1而對模片1〇1進行冷卻。 又,亦可使第2氣體供給部123供給低溫之乾燥空氣而對模 片進行冷卻。 其次,利用圖1〜圖3,對使用上述表面處理裝置1〇〇進行 模片之表面處理之方法進行說明。圖2係說明表面處理方 法之流程圖。又,圖3係對模片所進行之表面處理之各步 驟的模式圖❶ (步驟SI01)將包含具有凹凸之圖案面之模片1〇1安放於 表面處理裝置100之裝載部14〇。由於向表面處理裝置1〇〇 153931.doc • 6 - 201140653 之内部供給通過過濾器160、170之環境氣體,故而可將胺 管理至數ppb水準,並且微粒極少。搬送臂i 3丨將模片i i 自裝載部140搬送至第1腔室no。所搬送之模片1〇1由保持 部111所保持。 (步驟S102)第1氣體供給部112將h2〇/〇2/N2之混合氣體供 給至第1腔室110内。藉此,第i腔室110内成為高濕度環 境。 (步驟S103)光照射部113對模片1 〇丨表面照射波長丨72 nm 之光。藉此,對環境中之氧氣產生作用而生成臭氧,進而 生成氧化能力較強之氧自由基。其結果,如圖3(a)所示, 有機物得到去除。 又’藉由光照射,使經淨化之石英模片1 〇 i表面之矽氧 鍵(Si-O-Si)利用〇H自由基進行0H化(氫氧化),如圖3(]3)所 示,均勻且細密地分佈有矽烷醇基(si_〇H)。此時,於矽 烷醇基上進而吸附有過剩之水分。 (步驟S104)光照射部ι13停止光之照射,第1氣體供給部 Π2停止混合氣體之供給。繼而,藉由搬送臂ι31將模片 1〇1移送至第2腔室120。移送至第2腔室120之模片101由保 持部121所保持。 (步驟S105)加熱部122以18〇。(:之温度加熱模片101。藉 此’將模片101表面經〇H化之部位所吸附之過剩之水分去 除。加熱較佳為於可去除過剩之吸附水且不會使分佈於模 片1〇1表面之0H基脫離之1〇〇。〇以上、20〇cc以下之範圍内 進行。 153931.doc 201140653 亦可於第2腔室120設置吸氣減壓機構,於加熱之同時, 對第2腔室120内進行減壓。例如,較佳為將第2腔室丨2〇内 減壓至10·5 Pa以下。 (步驟S106)加熱部122持續加熱。利用未圖示之感測器 測量第2腔室120内之環境之水分,將水分減少至ppb級 後,第2氣體供給部123將矽烷偶合劑與乾燥n2之混合氣體 供給至第2腔室120内。如圖3(c)所示,矽烷偶合劑之水解 基(例如甲氧基)與環境中所殘存之微量水分進行水解反 應,產生矽烷醇基,進而與石英模片1〇1表面之矽烷醇基 進行脫水縮合反應’由此產生偶合反應。 (步驟S107)加熱部122停止加熱,冷卻部冷卻模片1〇1。 (步驟S108)將模片自卸載部15〇搬出。 於步驟S103中進行氫氧化處理之模片1〇1表面容易吸附 氨或胺。又’由於氨或胺、水分、醇等為偶合反應之副產 物,故而若該等物質存在於反應部位,則會抑制偶合反 應。然而,於本實施形態中,藉由化學過濾器17〇,而形 成將胺抑制為極低濃度之處理環境。又,亦可藉由減壓或 加熱而去除偶合反應中不需要之反應生成。因此,可有效 促進偶合反應。 又,若偶合反應時之環境中存在剩餘之水分,則於環境 中產生偶合反應,使偶合劑相互凝聚而產生微粒。因此, 反應種減少,且反應中所產生之胺等副產物或微粒附著於 反應部位之模片101表面而抑制偶合反應。然而,於本實 施形態中’由於供給乾燥氮氣,且進行加熱,故而可將第 153931.doc 201140653 2腔室120内保持為極低濕度。進而,亦可形成將偶合反應 中因反應所產生之胺等副產物之濃度抑制為低漠度之構 成。例如,於以蒸氣之形式供給矽烷偶合劑之情形時,於 偶合反應中使反應環境氣體於第2腔室m與第2氣體供給 部123之間循環而去除反應副產物。於該情形時,較理想 為於循環路徑設置化學過濾器。 又,於本實施形態中,由於進行偶合反應期間亦進行加 熱,故而可自反應部位迅速去除偶合反應中所產生之副產 物之胺,而可於模片1〇1表面均勻且細密地進行偶合反 應,從而如圖3(d)所示,可於模片1〇1表面形成均勻且牢固 之脫模層10。 藉由上述處理而形成脫模層之模片101可於利用如下所 述之壓印法形成圖案時使用。首先,於被處理基板上塗佈 壓印材料,其後,使實施有上述表面處理之模片101與壓 印材料相接觸,於該狀態下使壓印材料硬化。繼而,藉由 使模片自壓印材料脫模而於被處理基板上形成圖案。使用 本實施形態之實施有表面處理之模片101所形成的圖案可 將缺陷密度抑制為〇.Hs/cm2以下。又,可延長模片1〇1之 壽命。 如此般,藉由使用本實施形態之實施有表面處理之模片 101,可提高壓印品質,而可提高使用壓印所製作之儲存 裝置(storage device)或 LED(Light Emitting Diode,發光二 極體)等之生產性。 於上述第1實施形態中,於產生偶合反應時(步驟Sl〇6 153931.doc 201140653 夕烷偶σ劑,亦可將液狀之偶 中溶解有偶合劑 ^ ^ m 液體疋轉塗佈或喷霧塗佈或輥塗於模 片101表面。又,亦可利 • j用化予氣相沈積法或物理氣相沈 積法或晶體成長法或基蚀、土 食法次蒸鍍法,使矽烷偶合劑成膜於模片 101表面又’亦可於錢偶合劑中混合碎貌醇觸媒等觸 媒而供給至模片1G1表面。再者,於以液體之形式供給石夕 烧偶合劑之情料’亦可於偶合反應中使㈣偶合劑於第 2腔室120與㈣偶合劑供給部(未圖示)之間循環而去除反 應副產物。於該情形時,較理想為於循環路徑設置去除副 產物之過濾器》 又,於上述第1實施形態中,使模片表面與〇H自由基進 行反應,亦有不直接與〇H自由基進行反應之方法。首 先,於第1腔室110中,光照射部113照射波長252 nm2 光,使模片101表面親水化。此時,亦可將臭氧作用於模 片101表面。 接著,第1氣體供給部112將H2〇/〇2/N2之混合氣體供給 至第1腔室110内,使高濕度環境對模片101表面產生作 用。藉此,可使模片101表面吸附水。 將該模片101移送至第2腔室120,於減壓下,藉由加熱 部122以180°c左右進行加熱。藉此’去除模片1 〇 1表面所 吸附之過剩之水分,而於模片101表面形成單層 (monolayer)之吸附水層。 繼而,第2氣體供給部123供給矽烷偶合劑與乾燥乂之混 合氣體,使矽烷偶合劑對吸附水層產生作用,而產生偶合 153931.doc -10- 201140653 反應。由於藉由加熱而去除過剩之吸附水,故而可有效促 進偶合反應。 藉由上述方法,亦可與上述第丨實施形態相同地,如圖 3(d)所示於模片ιοί表面形成均勻且牢固之脫模層10。 (第2實施形態)圖4表示本發明之第2實施形態之模片之 表面處理裝置的概略構成。表面處理裝置2〇〇為如下構 成’即’於圖1所示的上述第1實施形態之表面處理裝置 100之裝載部140與第1腔室no之間進而包含腔室 210〜240 ° 搬送臂131於腔室之間移送模片ι〇1。於表面處理裝置 200之上部設置有第i過濾器ι6〇及第2過濾器17〇,故而可 將裝置内部保持為微粒或胺極少之環境。 圖4中’在與圖1所示之第1實施形態相同之部分標註相 同符號而省略說明。 腔室210係去除附著於模片1〇1表面之金屬或以等無機物 微粒。圖5表示腔室210之模式圖。腔室21〇包含加壓輥 211、轉盤212、213、黏著片材214及搬送台215 » 黏著片材214係於聚氣乙稀(pVc,p〇iyVinyi chi〇ride)之 基材上形成有丙烯酸系黏著層之片材。 轉盤212係沿著倒捲輥狀黏著片材214之方向(圖中順時 針方向)進行旋轉,而抽出黏著片材2 i 4。 轉盤213係沿著捲取黏著片材214之方向(圖中順時針方 向)進行旋轉,而將黏著片材214捲取成輥狀。 搬送台215係以通過加壓輥211之下方之方式,搬送模片 153931.doc 201140653 1〇1(向圖中右方向)。 加壓輥211係一面沿著送出黏著片材214之方向(圖中逆 時針方向)進行旋轉,一面對藉由搬送台215所搬送之模片 101之表面壓接黏著片材214,並進行剝離。藉此,自模片 101表面去除無機物微粒。 圖4中表示有於腔室210内保持模片ι〇1之保持部216,但 於搬送台215在與搬送臂131之間直接搬入、搬出模片1〇1 之情形時,可省略保持部216。 圖4所示之腔室230係去除吸附於模片1〇1表面之水或胺 等分子之腔室,其包含保持部231、加熱部232及吸氣口 233 ° 保持部23 1係於腔室21 0内保持已去除無機物微粒之模片 101 ° 加熱部232例如為加熱器,對由保持部23〗所保持之模片 1〇1進行加熱。加熱部232較佳為&15(rc〜2〇(rc&s2s 度進行加熱。 吸氣口 233連結於未圖示之吸氣機構,經由吸氣口 233排 出腔室230内之氣體’而使腔室内減壓。 藉由加熱及減壓,如圖6(a)所示,自模片1〇1表面去除吸 附分子。模片ιοί表面所殘存之有機物於第丨腔室ιι〇内, 如圖6(b)(與圖3(a)相同之圖)所示,被照射波長為172⑽之 光而去除》 腔室230内處於減壓狀態,其環境(内部麼力)與進行前 後處理之腔室21〇、第!腔室11〇有所不同。因此,於腔室 153931.doc 201140653 210與腔室230之間、腔室23〇與第}腔室11〇之間分別設置 有構成加載互鎖室之腔室(加載互鎖腔室(1〇ad l〇ck chamber))220、240 ° 加載互鎖腔室220包含保持部κι、氣體供給口 222及吸 氣口 223。保持部221係保持腔室21〇内之實施有處理之模 片1〇1。吸氣口 223連結於未圖示之吸氣機構,可對腔室内 進行減壓。經由氣體供給口 222 ,將氮氣(惰性氣體)自未圖 不之氣體供給部供給至加載互鎖腔室22〇内,由此可使腔 室内成為氮氣環境。 加載互鎖腔室240包含保持部mi、氣體供給口 242及吸 氣口 243。保持部241係保持腔室23〇内之實施有處理之模 片101。吸軋口 243連結於未圖示之吸氣機構,可對腔室内 進行減壓。經由氣體供給口 242,將氮氣(惰性氣體)自未圖 示之氣體供給部供給至加載互鎖腔室240内,由此可使腔 室内成為氮氣環境。 加載互鎖腔室220、240與腔室230之間藉由閘閥252、 253而隔開。例如,於將模片1〇1自加載互鎖腔室22〇搬送 至腔室230之情形時,對加載互鎖腔室22〇内進行減壓後, 打開閘閥252。又,例如於將模片ι〇1自腔室23〇搬送至加 載互鎖腔室240之情形時,對加載互鎖腔室24〇内進行減壓 後’打開閘閥253。 於腔室210與加载互鎖腔室220之間設置有隔離壁251, 並於加載互鎖腔室240與第i腔室U0之間設置有隔離壁 254。 153931.doc 201140653 再者,於腔室210或加載互鎖腔室220、240之側面,可 與第1腔室110、第2腔室120同樣地設置搬送路徑π〇及可 搬送模片101之擋閘(未圖示)。進而,亦可於加載互鎖腔室 220與腔室230之間、及腔室230與加載互鎖腔室240之間, 另行設置未圖示之搬送機構。 上述表面處理裝置200於進行上述第i實施形態之模片之 表面處理之前,會去除模片表面之無機物微粒或吸附分 子,故而可於模片表面形成更加均勻且牢固之脫模層。 又,於形成脫模層之前會於腔室210及腔室230内對模片表 面進行淨化,故而可暫時去除部分缺損之脫模層,而再次 形成均勻之脫模層。 (第3貫施形態)圖7表示本發明之第3實施形態之模片之 表面處理裝置之概略構成。表面處理裝置3〇〇包含:第1腔 至310,第2腔室320 ;搬送臂331 ,其沿著搬送路徑33〇搬 送模片;裝載部340,其安放處理前之模片;保管部38〇, 其保管處理後之模片;以及卸載部35〇,其搬出由保管部 380所保管之模片。 於裝載部340與第1腔室31〇之間、第丨腔室31〇與第2腔室 320之間、第2腔室320與保管部380之間、以及保管部38〇 - 與卸載部350之間設置有隔離壁。 再者’可於第1腔室310、第2腔室32〇、保管部38〇之側 面又置可開閉之擔閘(未圖示)。圖7中,為方便起見將搬送 ^331表示於腔室之下方,但實際上搬送臂331設置於與腔 室相同程度之高度’可經由擋間將模片搬入至腔室内,或 153931.doc -14· 201140653 者自腔室搬出。 又,於表面處理裝置300之上部設置有第}過濾器% 第2過濾器370。帛1過濾、器36〇係去除微粒之高效^粒子空 氣過濾器。第2過濾器370係去除氨等胺之化學過滹器。藉 由第1過遽器360及第2過遽器37〇,可使表面處理^置3〇3〇 内成為微粒、胺極少之環境。例如,可將胺管理至數 水準。 第1腔室310係去除模片表面上殘存之光阻劑殘渣等有機 物之腔室,藉由電漿灰化(plasma ashing)將有機物灰化而 去除。將第1腔室310之構成之一例示於圖8。 第2腔室320係向模片表面供給藥液而去除模片表面上殘 存之無機物微粒之腔室。又,於第2腔室32〇内產生偶合反 應,而於模片表面形成脫模層。於第2腔室32〇内,無需對 模片表面進行乾燥,便可形成均勻之脫模層。對模片表面 進行乾燥會存在產生乾燥痕跡(水印(water mark乃等缺陷, 甚至引起壓印缺陷之問題。因此,於模片洗淨中不對模片 表面進行乾燥而實施偶合反應,藉此可防止形成脫模層前 之模片表面之污染’且可形成均勻且牢固之脫模層,從而 可降低壓印時之缺陷。 具體而言,如圖9所示,第2腔室32〇包含保持模片3〇1並 使其旋轉之保持旋轉部4 〇 〇及藥液供給部4丨〇。 保持旋轉部400包含旋轉杯4〇1、旋轉軸4〇2、旋轉底座 4〇3及夾盤銷404。旋轉軸402沿著大致垂直之方向延伸, 於旋轉軸402之上端安裝有圓盤狀之旋轉底座4〇3。旋轉軸 15393I.doc -15- 201140653 402及旋轉底座403可藉由未圖示之馬達而進行旋轉。 夾盤銷404設置於旋轉底座403之周緣部。藉由使夾盤銷 404夾持模片3 01,使得保持旋轉部4〇〇可大致水平地保持 模片301並使其旋轉。 右自藥液供給部410向模片301表面之旋轉中心附近供給 藥液,則藥液向模片301之外周方向擴散。又,保持旋轉 部400可對模片301進行旋轉乾燥。向模片3〇ι之外周方向 飛散之多餘藥液由旋轉杯401所捕獲,經由廢液管4〇5而排 出。 藥液供給部410可向模片3〇1表面供給洗淨液、醇、稀釋 劑及矽烷偶合劑。洗淨液係經由供給線411而供給,並自 喷嘴412喷出。作為洗淨液’例如可使用硫酸、氳氟酸、 鹽酸、過氧化氫等。 同樣地,醇係經由供給線413而供給,並自喷嘴々Μ喷 出。作為醇,例如可使用異丙醇或乙醇等。 又,稀釋劑係經由供給線415而供給,並自喷嘴416喷 出。作為稀釋劑,例如可使用己炫、pGME(pr〇州咖 giyco】 m〇nomethyl ether,單甲基醚丙二醇)、pGMEA (Propylene Giycol Mon〇methyl Ether ,單甲基醚丙 二醇乙酸酯)、γ_丁内酯等。 又,石夕烧偶合劑係經由供給線417而供給,並自喷嘴川 喷出。石夕炫偶合劑係例如含有Si且於端部具有燒氧基(R0-)或NHx(x = l、2)基之烴或碳氟化合物❶ 繼而’使用圖1〇,對保管部則進行說明。保管部彻係 15393 丨.doc 201140653 於第2腔室320内保管形成有脫模層之模片3〇1 β 如圖10所示’於保管部38〇之上部設置有去除微粒之高 效率粒子空氣過濾器3 8!、及去除氨等胺之化學過濾器 - 382。因此,保管部38〇之内部成為微粒、胺較第i腔室31〇 及第2腔室320更少之環境,胺濃度、微粒數被管理至特定 值以下。又,向保管部380供給氮氣(惰性氣體),使保管部 380之内部成為氮氣環境。 利用上述保管部380保管模片301直至即將進行光阻圖案 之形成為止,藉此可防止脫模層於保管中受到污染。 繼而,使用圖11所示之流程圖,對使用上述表面處理裝 置300進行模片301之表面處理之方法進行說明。此處,模 片301係例如利用電漿蝕刻,於普通光罩中所使用之全透 明之石英基板上形成凹凸圖案者。 (步驟S301)將包含具有凹凸之圖案面之模片3〇1安放於 表面處理裝置300之裝載部340 〇由於向表面處理裝置3〇〇 之内部供給通過過濾器360、370之環境氣體,故而可將胺 管理至數ppb水準,並且微粒極少。搬送臂331將模片3〇1 自裝載部340搬送至第1腔室3 10。 (步驟S302)於第丨腔室31〇内進行電漿灰化,而去除模片 301表面所殘存之光阻劑殘渣等有機物。 (步驟S303)搬送臂331將模片301自第丨腔室31〇搬送至第 2腔室320。所搬送之模片301夾持於圖9所示之夾盤銷 404 〇 (步驟S304)使模片301以特定之旋轉速度進行旋轉,將 153931.doc -17 - 201140653 洗淨液自藥液供給部410供給至模片3〇1表面之旋轉中心附 近。洗淨液接受由模片301之旋轉所產生之離心力而遍佈 於模片301之整個表面,而對模片3〇1進行洗淨處理。藉 此’可去除模片301表面所殘存之無機物微粒。 (步驟S305)將醇自藥液供給部41〇供給至模片3〇1表面之 旋轉中心附近。醇接受由模片301之旋轉所產生之離心力 而遍佈於模片301之整個表面。藉此,可將模片3〇1表面所 殘留之洗淨液置換成醇。 (步驟S306)將稀釋劑自藥液供給部41〇供給至模片3〇1表 面之旋轉中心附近。稀釋劑接受由模片3〇1之旋轉所產生 之離心力而遍佈於模片3〇1之整個表面。藉此,可將模片 301表面上殘留之醇置換成稀釋劑。 (步驟S307)將矽烷偶合劑自藥液供給部41〇供給至模片 301表面之旋轉中心附近。矽烷偶合劑接受由模片3〇1之旋 轉所產生之離心力而遍佈於模片301之整個表面。石夕烧偶 合劑之水解基(例如曱氧基)與環境中或模片3〇1上殘存之微 量水分進行水解反應,產生矽烷醇基,進而與模片3〇 1表 面之梦烧醇基進行脫水縮合反應’由此產生偶合反應。藉 此,可於模片301之表面形成均勻之脫模層。 (步驟S308)將稀釋劑自藥液供給部410供給至模片3〇1表 面之旋轉中心附近。稀釋劑接受由模片3〇1之旋轉所產生 之離心力而遍佈於模片301之整個表面。由此,可將模片 301表面上殘留之矽烷偶合劑置換成稀釋劑。 (步驟S309)對模片301進行乾燥處理。例如將模片3〇1之 153931.doc 201140653 旋轉速度提尚至特定之旋轉乾燥旋轉速度,進行將模片 301表面上殘留之稀釋劑甩乾之旋轉乾燥處理。 (步驟S3 10)將模片301自第2腔室320搬出並搬入至保管 部3 80。將模片301保管於保管部380中直至即將進行光阻 圖案之形成為止。 如此般,於本實施形態中,於第2腔室32〇内,自步驟 S3 04之濕式洗淨處理至步驟83〇7之脫模層形成為止之期 間,未對模片301進行乾燥而放任其為潤濕之狀態。由於 模片301未暴露於環境中,可防止有機物等附著於模片3〇ι 表面,因此可形成均勻且牢固之脫模層。 又,藉由使用本實施形態之實施有表面處理之模片 301,可提高壓印品質,而可提高使用壓印所製作之儲存 裝置或LED等之生產性。 上述第3實施形態係藉由電漿灰化而去除模片3〇1上之有 機物,亦可照射紫外線將有機物分解而去除,也可使用發 煙石肖酸、臭氧水、高漠度臭氧水等氧化性液體將有機物氧 化分解而去除。又,亦可使用有機溶劑而去除有機物。 又,亦可將表面處理裝置3〇〇之保管部38〇設置於表面處 理裝置100、200上。 再者’本發明並不原封不動地限定於上述實施形態,可 於實施階段,在不脫離其主旨之範圍内對構成要素進行變 形而進行具體化…藉由適當組合上述實施形態中所揭 =數個構成要素’可形成各種發明。例如,可自實施 中所揭示之總構成要素刪除若干構成要素。進而,亦 】5393 l.doc -19· 201140653 可適當組合不同實施形態之構成要素。 【圖式簡單說明】 圖1係本發明之第1實施形態之模片之表面處理裝置的概 略構成圖; 圖2係說明該第丨實施形態之模片之表面處理方法的流程 圖; 圖3係對該第1實施形態之模片所進行的表面處理之各步 驟之模式圖; 圖4係本發明之第2實施形態之模片之表面處理裝置的概 略構成圖; 圖5係去除微粒之模式圖; 圖6係對該第2實施形態之模片所進行的表面處理之各步 驟之模式圖; 圖7係本發明之第3實施形態之模片之表面處理裝置的概 略構成圖; 圖8係表示該第3實施形態之表面處理裝置之第.丨腔室之 構成之一例的圖; 圖9係表示該第3實施形態之表面處理裝置之第2腔室之 構成之一例的圖; 圖1 〇係表示該第3實施形態之表面處理裝置之保管部之 構成之一例的圖;及 圖11係說明該第3實施形態之模片之表面處理方法之流 程圖。 【主要元件符號說明】 153931.doc -20· 201140653 10 脫模層 100、300 表面處理裝置 101 、 301 模片 110 、 310 第1腔室 111 、 121 、 216 、 221 、 231 、 241 保持部 112 第1氣體供給部 113 光照射部 120 、 320 第2腔室 122 ' 232 加熱部 123 第2氣體供給部 130 、 330 搬送路徑 131 ' 331 搬送臂 140 、 340 裝載部 150 ' 350 卸載部 160 > 360 第1過濾器 170 ' 370 第2過濾器 210 ' 230 腔室 211 加壓輥 212 、 213 轉盤 214 黏者片材 215 搬送台 220 ' 240 加載互鎖腔室 222 ' 242 氣體供給口 223 ' 233 吸氣口 153931.doc -21 - 201140653 251 、 254 隔離壁 252 ' 253 閘閥 380 保管部 381 高效率粒子空氣過濾器 382 化學過濾器 400 保持旋轉部 401 旋轉杯 402 旋轉軸 403 旋轉底座 404 夾盤銷 405 廢液管 410 藥液供給部 411 、 413 、 415 、 417 供給線 412 、 414 、 416 、 418 噴嘴 Qz 石英 153931.doc -22-Release Layers for Nanoimprint Lithography", Proc 〇f SPIE' Vol. 6151,117, 2〇〇6) e release layer, for example, by dipping the die in a release agent solution, maintaining the surface under high temperature and high humidity After the attached solution, it is formed by rinsing and drying. However, in the above treatment, the amine, moisture, organic matter, particles, etc., which are present in the surface of the pre-treatment die and in the treatment environment, are adsorbed on the surface of the die, so that the uniformity of the formed release layer is lowered. . If a photoresist pattern is formed using a die of a release layer having a lower uniformity of the package, the 153931.doc 201140653 is a problem of covering defects on the photoresist pattern. [Invention] According to the present embodiment, the die The surface treatment method comprises the steps of: oxidizing or absorbing water on the surface of the surface of the mold comprising the pattern surface having irregularities, and arranging the surface of the surface of the mold; and bonding the surface of the mold having the sulfhydryl group The step of the coupling agent. These treatments are carried out in an environment where the amine is managed to a specific concentration or lower. [Embodiment] Hereinafter, embodiments of the present invention will be described based on the drawings. (First Embodiment) Fig. 1 shows a schematic configuration of a surface treatment apparatus for a mold according to a third embodiment of the present invention. The surface treatment apparatus 1A includes a first chamber 110, a second chamber 120, a transfer arm 131 that transports a die along the transport path 13A, a loading unit 140 that mounts a die before processing, and an unloading The part 150 moves out of the processed die. A partition wall is provided between the loading unit 14A and the first chamber ιι, between the first chamber 110 and the second chamber 120, and between the second chamber 12A and the unloading portion 150. Further, an openable and closable shutter may be provided on the side surfaces of the first chamber 〇 and the second chamber 120 (not shown in Fig. 1, the transfer arm 131 is shown below the chamber for convenience, but actually The upper transfer arm 31 is disposed at a south degree similar to the chamber. The mold can be carried into the chamber via the brake, or can be carried out from the chamber. Further, the first filter 16 is disposed on the upper portion of the surface treatment apparatus 100. And the second filter 170. The first filter i 60 is a high efficiency particulate air filter for removing particulates. The second filter 153931.doc 201140653 170 is a chemical filter for removing amines such as ammonia. The surface of the surface treatment apparatus 1 is made into an environment in which the particles and the amine are extremely small by the i-th filter 16A and the second buffer 170'. For example, the amine is managed to a level of several ppb. The cavity on which the surface of the die reacts with the 0H radical to the 'the holding portion 111, the first gas supply portion 1丨2, and the light irradiation portion 113°. The holding portion 111 is placed by the loading unit 14 and transported by the loading unit 14 The arm 101 is transported by the arm 101, and the die 101 is held, for example. The plasma etching is used to form a concave-convex pattern on the completely transparent quartz substrate used in the photomask. The first gas supply unit 112 supplies the mixed gas of H2〇/〇2/N2 to the first chamber Π0. The first gas supply unit n2 can control the mixing ratio or flow rate of the mixed gas to adjust the humidity in the first chamber 110. The light irradiation unit 113 illuminates the pattern surface having the unevenness of the die 1〇1. The portion 113 includes a Xe excimer lamp as a light source and emits a wavelength of 172 nm (light. The light irradiation portion 113 may be a surface that irradiates light to the entire surface of the dies 1 〇 1 or may illuminate a portion of the dies 101. In order to drive the light irradiation portion 113 or the holding portion 1U so as to be driven in the planar direction or the vertical direction, the die 101 can be relatively moved with respect to the light irradiation portion 113. Further, the light pairing die 1 can be adjusted. The angle of illumination of the surface of the crucible is further attenuated by the gas between the light-irradiating portion 113 and the surface of the die 1 〇1, thereby attenuating the light emitted by the light-irradiating portion 113. The oxygen concentration, the intensity of the light emitted by the light irradiation unit 113, and the light The distance between the portion 113 and the surface of the die ι 1 is adjusted so that the light emitted from the light-irradiating portion 113 reaches the surface of the die 〇 1. Further, the light-irradiating portion 113 is covered by the quartz QZ. Thereby, contamination of the die 1〇1 by the light-irradiating portion 113 can be prevented. The second cavity to the 120-system heats the die while supplying a coupling agent to generate a coupling reaction chamber including the holding portion. 121. The heating unit 122, the second gas supply unit 123, and a cooling unit (not shown). The holding unit 121 holds the die 101 conveyed from the first chamber u by the transfer arm 131. The heating unit 122 is, for example, a heater, and heats the die 1〇1 held by the holding unit J 2丨. The heating portion 122 can adjust the surface temperature of the die 101. The second gas supply unit 123 supplies the mixed gas of the decane coupling agent and the & to the second chamber 120. The decane coupling agent is, for example, a hydrocarbon or a fluorocarbon having "an alkoxy group (RO-) or an NHx (x = 1, 2) group at the end. The cooling portion cools the die 〇1. For example, the die 1〇1 is cooled by holding the die 1〇1 close to a cooling plate. Further, the second gas supply unit 123 may supply low-temperature dry air to cool the die. Next, a method of performing surface treatment of a die using the above-described surface treatment apparatus 1 will be described with reference to Fig. 1 to Fig. 3. Fig. 2 is a flow chart showing a surface treatment method, and Fig. 3 is for a die. A pattern diagram of each step of the surface treatment (step SI01) places the pattern 1〇1 including the pattern surface having the unevenness on the loading portion 14A of the surface treatment apparatus 100. Since the surface treatment apparatus 1153153.doc • 6 - 201140653 internally supplies the ambient gas through the filters 160, 170, so the amine can be managed to a few ppb level, and the particles are extremely small. The transfer arm i 3丨 transports the die ii from the loading unit 140 to the first chamber No. The transported die 1〇1 is held by the holding portion 111 (Step S102) The first gas supply unit 112 supplies the mixed gas of h2〇/〇2/N2 to the first chamber 110. Thereby, the inside of the i-th chamber 110 becomes a high-humidity environment (step S103). The light-irradiating portion 113 irradiates the surface of the die 1 with light having a wavelength of 丨72 nm, thereby generating an action on oxygen in the environment to generate ozone, thereby generating an oxygen radical having a strong oxidizing ability. (a), the organic matter is removed. Further, by the irradiation of light, the oxime bond (Si-O-Si) on the surface of the purified quartz die 1 〇i is oxidized by hydrazine H radical (hydrogenation As shown in Fig. 3 (3), the stanol group (si_〇H) is uniformly and finely distributed. At this time, excess water is further adsorbed on the stanol group. (Step S104) Light irradiation unit When the light irradiation is stopped, the first gas supply unit Π2 stops the supply of the mixed gas. Then, the die 1〇1 is transferred to the second chamber 120 by the transfer arm 119, and is transferred to the die 101 of the second chamber 120. It is held by the holding portion 121. (Step S105) The heating portion 122 is heated at a temperature of 18 Å. (The temperature of the mold 101 is heated. The excessive moisture adsorbed by the 〇H-formed portion is removed. The heating is preferably such that the excess adsorbed water can be removed without detaching the 0H group distributed on the surface of the die 1〇1. It is carried out in the range of cc or less. 153931.doc 201140653 An inhalation/decompression mechanism may be provided in the second chamber 120 to decompress the inside of the second chamber 120 while heating. For example, it is preferable to use the second chamber 120. The chamber was decompressed to a pressure of 10·5 Pa or less. (Step S106) The heating unit 122 continues to heat. The moisture in the environment in the second chamber 120 is measured by a sensor (not shown) to reduce the moisture to the ppb level, and the second gas supply unit 123 supplies the mixed gas of the decane coupling agent and the dry n2 to the second chamber. 120 inside. As shown in Fig. 3(c), the hydrolyzable group (e.g., methoxy group) of the decane coupling agent is hydrolyzed with a trace amount of water remaining in the environment to produce a stanol group, and further a stanol with a surface of the quartz mold 1〇1. The base undergoes a dehydration condensation reaction' thereby producing a coupling reaction. (Step S107) The heating unit 122 stops heating, and the cooling unit cools the die 1〇1. (Step S108) The die is carried out from the unloading unit 15〇. The surface of the mold 1〇1 subjected to the oxidation treatment in the step S103 is easily adsorbed with ammonia or an amine. Further, since ammonia or an amine, water, alcohol or the like is a by-product of the coupling reaction, if these substances are present at the reaction site, the coupling reaction is suppressed. However, in the present embodiment, the chemical filter 17 is used to form a treatment environment for suppressing the amine to an extremely low concentration. Further, it is also possible to remove the reaction which is not required in the coupling reaction by pressure reduction or heating. Therefore, the coupling reaction can be effectively promoted. Further, if there is residual water in the environment at the time of the coupling reaction, a coupling reaction occurs in the environment, and the coupling agents are agglomerated to each other to generate fine particles. Therefore, the reaction species is reduced, and by-products or fine particles such as amines generated in the reaction adhere to the surface of the die 101 at the reaction site to suppress the coupling reaction. However, in the present embodiment, since the dry nitrogen gas is supplied and heated, the inside of the chamber 120 of the 153931.doc 201140653 2 can be kept at an extremely low humidity. Further, it is also possible to form a configuration in which the concentration of by-products such as amines generated by the reaction in the coupling reaction is suppressed to a low degree of humidity. For example, when a decane coupling agent is supplied as a vapor, the reaction environment gas is circulated between the second chamber m and the second gas supply unit 123 in the coupling reaction to remove reaction by-products. In this case, it is preferable to provide a chemical filter for the circulation path. Further, in the present embodiment, since the heating is performed during the coupling reaction, the amine of the by-product generated in the coupling reaction can be quickly removed from the reaction site, and the surface of the die 1〇1 can be uniformly and finely coupled. The reaction is such that, as shown in Fig. 3(d), a uniform and firm release layer 10 can be formed on the surface of the die 1〇1. The mold 101 which forms the release layer by the above treatment can be used when forming a pattern by the imprint method as described below. First, an imprint material is applied onto a substrate to be processed, and thereafter, the die 101 subjected to the above surface treatment is brought into contact with the imprint material, and the imprint material is cured in this state. Then, a pattern is formed on the substrate to be processed by demolding the mold from the imprint material. The pattern formed by the surface-treated die 101 of the present embodiment can suppress the defect density to 〇.Hs/cm2 or less. Moreover, the life of the die 1 〇 1 can be extended. As described above, by using the surface-treated die 101 of the present embodiment, the imprint quality can be improved, and a storage device or an LED (Light Emitting Diode) manufactured by using the imprint can be improved. Productivity, etc. In the first embodiment, when a coupling reaction is generated (step S1〇6 153931.doc 201140653 ε 偶 σ 剂 , , , , , , 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液 液The mist is coated or rolled on the surface of the die 101. Alternatively, the vapor can be vaporized or vapor deposited by a vapor deposition method or a crystal growth method or a base etching or a soil evaporation method to form a decane. The coupling agent is formed on the surface of the die 101 and can also be supplied to the surface of the die 1G1 by mixing a catalyst such as a pulverized alcohol catalyst with a money coupling agent. Further, the film is supplied to the surface of the die 1C in the form of a liquid. In the coupling reaction, the (4) coupling agent may be circulated between the second chamber 120 and the (iv) coupling agent supply portion (not shown) to remove reaction by-products. In this case, it is preferable to use the circulation path. Further, in the first embodiment, the surface of the die is reacted with the 〇H radical, and there is a method of not directly reacting with the 〇H radical. First, in the first cavity In the chamber 110, the light irradiation portion 113 irradiates light having a wavelength of 252 nm 2 to make the surface of the die 101 pro At this time, ozone may be applied to the surface of the die 101. Next, the first gas supply unit 112 supplies a mixed gas of H2〇/〇2/N2 to the first chamber 110 to make a high-humidity environment. The surface of the die 101 acts. Thereby, water can be adsorbed on the surface of the die 101. The die 101 is transferred to the second chamber 120, and heated by the heating portion 122 at about 180 °C under reduced pressure. Thereby, the excess moisture adsorbed on the surface of the die 1 〇1 is removed, and a monolayer adsorbed aqueous layer is formed on the surface of the die 101. Then, the second gas supply unit 123 supplies the decane coupling agent and the dried mash. Mixing the gas to cause the decane coupling agent to act on the adsorbed aqueous layer to produce a coupling 153931.doc -10- 201140653. Since the excess adsorbed water is removed by heating, the coupling reaction can be effectively promoted. Similarly to the above-described embodiment, as shown in Fig. 3(d), a uniform and strong release layer 10 is formed on the surface of the mold ιοί. (Second Embodiment) Fig. 4 shows a second embodiment of the present invention. A schematic configuration of a surface treatment device for a die. The surface treatment apparatus 2 is configured to include a chamber 210 to 240 ° between the loading unit 140 and the first chamber no of the surface treatment apparatus 100 of the first embodiment shown in FIG. 1 . The die ι 〇 1 is transferred between the chambers. The i-th filter ι6 〇 and the second filter 17 设置 are provided on the upper surface of the surface treatment apparatus 200, so that the inside of the apparatus can be kept in an environment where there are few particles or amines. In Fig. 4, the same portions as those in the first embodiment shown in Fig. 1 are denoted by the same reference numerals, and the description thereof will be omitted. The chamber 210 removes metal or the like inorganic particles adhering to the surface of the die 1〇1. FIG. 5 shows a schematic view of the chamber 210. The chamber 21A includes a pressure roller 211, a turntable 212, 213, an adhesive sheet 214, and a transfer table 215. The adhesive sheet 214 is formed on a substrate of polyethylene oxide (pVc, p〇iyVinyi chi〇ride). A sheet of acrylic adhesive layer. The turntable 212 is rotated in the direction of the roll-up adhesive sheet 214 (clockwise direction in the drawing), and the adhesive sheet 2 i 4 is taken out. The turntable 213 is rotated in the direction in which the adhesive sheet 214 is taken up (clockwise in the drawing), and the adhesive sheet 214 is taken up in a roll shape. The transfer table 215 conveys the die 153931.doc 201140653 1〇1 (to the right in the drawing) so as to pass under the pressure roller 211. The pressure roller 211 rotates in the direction in which the adhesive sheet 214 is fed out (counterclockwise in the drawing), and the adhesive sheet 214 is pressed against the surface of the die 101 conveyed by the transfer table 215, and is carried out. Stripped. Thereby, inorganic particles are removed from the surface of the die 101. 4, the holding portion 216 for holding the die ι 1 in the chamber 210 is shown. However, when the transfer table 215 is directly loaded and unloaded between the transfer arm 131 and the die 1〇1, the holding portion can be omitted. 216. The chamber 230 shown in FIG. 4 is a chamber for removing molecules such as water or amine adsorbed on the surface of the die 1〇1, and includes a holding portion 231, a heating portion 232, and an intake port 233°. The holding portion 23 1 is attached to the chamber. The mold 101 in which the inorganic fine particles have been removed is held in the chamber 21 0. The heating unit 232 is, for example, a heater, and heats the mold 1 1 held by the holding portion 23 . The heating unit 232 is preferably & 15 (rc 2 〇 (the rc & s 2 s degree is heated. The intake port 233 is connected to a suction mechanism (not shown), and the gas in the chamber 230 is discharged through the intake port 233 Decompressing the chamber. By heating and decompressing, as shown in Fig. 6(a), the adsorbed molecules are removed from the surface of the die 1〇1. The organic matter remaining on the surface of the die ιοί is placed in the first chamber ιι〇, As shown in Fig. 6(b) (the same figure as Fig. 3(a)), the light is irradiated with a wavelength of 172 (10), and the inside of the chamber 230 is decompressed, and the environment (internal force) and pre-treatment are performed. The chamber 21〇 and the first chamber 11〇 are different. Therefore, a configuration is provided between the chamber 153931.doc 201140653 210 and the chamber 230, and between the chamber 23〇 and the chamber 11〇. The chamber for loading the interlocking chamber (loading chamber) 220, 240 ° The loading interlock chamber 220 includes a holding portion κι, a gas supply port 222, and an air inlet 223. The holding portion The 221 is a mold 1〇1 for performing processing in the chamber 21〇. The intake port 223 is connected to a suction mechanism (not shown), and the chamber can be reduced. Nitrogen gas (inert gas) is supplied from the gas supply portion not shown to the load lock chamber 22 via the gas supply port 222, whereby the chamber can be made into a nitrogen atmosphere. The load lock chamber 240 contains the hold. The portion mi, the gas supply port 242, and the intake port 243. The holding portion 241 holds the processed die 101 in the chamber 23A. The suction port 243 is connected to an air suction mechanism (not shown), and can be used in the chamber. The pressure is reduced, and nitrogen gas (inert gas) is supplied from the gas supply unit (not shown) to the load lock chamber 240 via the gas supply port 242, whereby the chamber can be made into a nitrogen atmosphere. The lock chamber 220 is loaded. , 240 is separated from the chamber 230 by gate valves 252, 253. For example, when the die 1〇1 is transferred from the load lock chamber 22 to the chamber 230, the load lock chamber is loaded. After depressurization is performed within 22 inches, the gate valve 252 is opened. Further, for example, when the die ι 1 is transferred from the chamber 23 to the load lock chamber 240, the load lock chamber 24 is reduced. After pressing, 'open the gate valve 253. Between the chamber 210 and the load-lock chamber 220 There is a partition wall 251, and a partition wall 254 is disposed between the load lock chamber 240 and the i-th chamber U0. 153931.doc 201140653 Furthermore, on the side of the chamber 210 or the load lock chambers 220, 240, Similarly to the first chamber 110 and the second chamber 120, a transport path π〇 and a shutter (not shown) that can transport the die 101 can be provided. Further, the lock chamber 220 and the chamber 230 can be loaded. A transfer mechanism (not shown) is provided between the chamber 230 and the load lock chamber 240. The surface treatment apparatus 200 removes inorganic fine particles or adsorbed molecules on the surface of the mold before the surface treatment of the mold of the above-described i-th embodiment, so that a more uniform and firm release layer can be formed on the surface of the mold. Further, the surface of the die is cleaned in the chamber 210 and the chamber 230 before the release layer is formed, so that the partially removed release layer can be temporarily removed, and a uniform release layer can be formed again. (Third embodiment) Fig. 7 shows a schematic configuration of a surface treatment apparatus for a die according to a third embodiment of the present invention. The surface treatment apparatus 3A includes a first chamber 310 and a second chamber 320, a transfer arm 331 that transports the die along the transport path 33, a loading unit 340 that houses the die before the process, and a storage unit 38. Then, the die after the storage process; and the unloading unit 35〇 carry out the die stored in the storage unit 380. Between the loading unit 340 and the first chamber 31〇, between the second chamber 31〇 and the second chamber 320, between the second chamber 320 and the storage unit 380, and between the storage unit 38〇- and the unloading unit A partition wall is provided between the 350s. Further, a brake (not shown) that can be opened and closed can be placed on the side of the first chamber 310, the second chamber 32, and the storage portion 38A. In Fig. 7, for convenience, the transfer 331 is shown below the chamber, but in reality the transfer arm 331 is disposed at the same height as the chamber, and the die can be carried into the chamber via the block, or 153931. Doc -14· 201140653 The person moved out of the chamber. Further, the first filter % second filter 370 is provided on the upper portion of the surface treatment apparatus 300.帛1 filter, device 36 is a high-efficiency ^ particle air filter for removing particles. The second filter 370 is a chemical filter that removes an amine such as ammonia. By the first damper 360 and the second damper 37 〇, the surface treatment can be set to 3 〇 3 成为 into an environment in which fine particles and amines are extremely rare. For example, amines can be managed to a number of levels. The first chamber 310 is a chamber for removing an organic substance such as a photoresist residue remaining on the surface of the die, and is removed by ashing the organic matter by plasma ashing. One of the configurations of the first chamber 310 is shown in Fig. 8 . The second chamber 320 is a chamber for supplying a chemical solution to the surface of the die to remove inorganic particles remaining on the surface of the die. Further, a coupling reaction is generated in the second chamber 32, and a release layer is formed on the surface of the die. In the second chamber 32, it is possible to form a uniform release layer without drying the surface of the die. Drying the surface of the die may cause dry marks (watermarks (such as water mark), which may cause defects in embossing defects. Therefore, the surface of the die is not dried in the die cleaning to perform a coupling reaction. Preventing the contamination of the surface of the die sheet before the release layer is formed and forming a uniform and firm release layer, thereby reducing defects during imprinting. Specifically, as shown in FIG. 9, the second chamber 32 includes The holding portion 3〇1 is held and rotated to hold the rotating portion 4 and the chemical supply unit 4A. The holding rotating portion 400 includes a rotating cup 4〇1, a rotating shaft 4〇2, a rotating base 4〇3, and a clip. The disk pin 404. The rotating shaft 402 extends in a substantially vertical direction, and a disk-shaped rotating base 4〇3 is mounted on the upper end of the rotating shaft 402. The rotating shaft 15393I.doc -15- 201140653 402 and the rotating base 403 can be The motor is rotated by a motor (not shown). The chuck pin 404 is provided on the peripheral portion of the rotary base 403. By holding the chuck pin 404 with the die 310, the holding rotary portion 4 can hold the die substantially horizontally. 301 and rotate it. Right self-medicated liquid supply unit 41 When 0 is supplied to the vicinity of the center of rotation of the surface of the die 301, the chemical solution is diffused in the outer circumferential direction of the die 301. Further, the holding rotary portion 400 can spin-dry the die 301. The scattered excess chemical solution is captured by the rotating cup 401 and discharged through the waste liquid pipe 4〇5. The chemical liquid supply unit 410 can supply the cleaning liquid, the alcohol, the diluent, and the decane coupling agent to the surface of the die 3〇1. The cleaning liquid is supplied through the supply line 411 and is ejected from the nozzle 412. As the cleaning liquid, for example, sulfuric acid, hydrofluoric acid, hydrochloric acid, hydrogen peroxide or the like can be used. Similarly, the alcohol is supplied via the supply line 413. Further, as the alcohol, for example, isopropyl alcohol or ethanol can be used. Further, the diluent is supplied through the supply line 415 and ejected from the nozzle 416. As the diluent, for example, it is possible to use it. pGME (pr〇州咖giyco) m〇nomethyl ether, monomethyl ether propylene glycol), pGMEA (Propylene Giycol Mon〇methyl Ether, monomethyl ether propylene glycol acetate), γ-butyrolactone, etc. The squeezing agent is supplied via the supply line 417, and The nozzle is sprayed out. The Shi Xi Xuan coupling agent is, for example, a hydrocarbon or fluorocarbon containing Si and having an alkoxy group (R0-) or NHx (x = 1, 2) at the end, and then using FIG. The storage unit will be described. The storage unit is 15393 丨.doc 201140653. The mold 3〇1β in which the release layer is formed is stored in the second chamber 320. As shown in Fig. 10, the upper part of the storage unit 38〇 is provided. There are high-efficiency particle air filters for removing particulates, and chemical filters for removing amines such as ammonia - 382. Therefore, the inside of the storage unit 38 is less than the environment in which the fine particles and the amine are smaller than the i-th chamber 31 and the second chamber 320, and the amine concentration and the number of particles are managed to a specific value or less. Further, nitrogen gas (inert gas) is supplied to the storage unit 380, and the inside of the storage unit 380 is placed in a nitrogen atmosphere. The mold 301 is stored by the storage unit 380 until the formation of the photoresist pattern, whereby the release layer is prevented from being contaminated during storage. Next, a method of performing surface treatment of the mold 301 by using the surface treatment apparatus 300 described above will be described using a flowchart shown in Fig. 11 . Here, the pattern 301 is formed by, for example, plasma etching to form a concave-convex pattern on a fully transparent quartz substrate used in a conventional photomask. (Step S301) The die 3'1 including the pattern surface having the unevenness is placed on the loading portion 340 of the surface treatment apparatus 300, and the ambient gas passing through the filters 360, 370 is supplied to the inside of the surface treatment apparatus 3, so that The amine can be managed to a few ppb levels with very few particles. The transfer arm 331 transports the die 3〇1 from the loading unit 340 to the first chamber 3 10 . (Step S302) Plasma ashing is performed in the second chamber 31, and organic substances such as photoresist residue remaining on the surface of the die 301 are removed. (Step S303) The transfer arm 331 transports the die 301 from the second chamber 31 to the second chamber 320. The transported die 301 is clamped to the chuck pin 404 所示 shown in FIG. 9 (step S304) to rotate the die 301 at a specific rotational speed, and the 153931.doc -17 - 201140653 washing liquid is supplied from the chemical liquid. The portion 410 is supplied to the vicinity of the center of rotation of the surface of the die 3〇1. The cleaning liquid receives the centrifugal force generated by the rotation of the die 301 over the entire surface of the die 301, and the die 3〇1 is washed. By this, the inorganic fine particles remaining on the surface of the die 301 can be removed. (Step S305) The alcohol is supplied from the chemical solution supply unit 41 to the vicinity of the center of rotation of the surface of the die 3〇1. The alcohol receives the centrifugal force generated by the rotation of the die 301 and spread over the entire surface of the die 301. Thereby, the washing liquid remaining on the surface of the die 3〇1 can be replaced with alcohol. (Step S306) The diluent is supplied from the chemical supply unit 41 to the vicinity of the center of rotation of the surface of the die 3〇1. The diluent receives the centrifugal force generated by the rotation of the die 3〇1 and spread over the entire surface of the die 3〇1. Thereby, the alcohol remaining on the surface of the die 301 can be replaced with a diluent. (Step S307) The decane coupling agent is supplied from the chemical solution supply unit 41 to the vicinity of the rotation center of the surface of the die 301. The decane coupling agent is distributed over the entire surface of the die 301 by the centrifugal force generated by the rotation of the die 3〇1. The hydrolyzable group (for example, decyloxy group) of the Shixi sinter coupling agent is hydrolyzed with a trace amount of water remaining in the environment or on the die 3〇1 to produce a stanol group, and further with the surface of the die 3〇1 The dehydration condensation reaction is carried out 'to thereby generate a coupling reaction. Thereby, a uniform release layer can be formed on the surface of the die 301. (Step S308) The diluent is supplied from the chemical supply unit 410 to the vicinity of the rotation center of the surface of the die 3〇1. The diluent is distributed over the entire surface of the die 301 by the centrifugal force generated by the rotation of the die 3〇1. Thereby, the decane coupling agent remaining on the surface of the die 301 can be replaced with a diluent. (Step S309) The die 301 is subjected to a drying process. For example, the rotational speed of the 153931.doc 201140653 of the die 3〇1 is raised to a specific spin drying rotational speed, and the spin drying process of drying the thinner remaining on the surface of the die 301 is performed. (Step S3 10) The die 301 is carried out from the second chamber 320 and carried into the storage unit 380. The die 301 is stored in the storage unit 380 until the formation of the photoresist pattern. As described above, in the present embodiment, the mold 301 is not dried in the second chamber 32A from the wet cleaning process in the step S304 to the formation of the release layer in the step 83〇7. Let it be in a state of wetting. Since the die 301 is not exposed to the environment, the organic matter or the like can be prevented from adhering to the surface of the die 3, so that a uniform and firm release layer can be formed. Further, by using the surface-treated die 301 of the present embodiment, the imprint quality can be improved, and the productivity of a storage device or an LED manufactured by using the imprint can be improved. In the third embodiment, the organic matter on the die 3〇1 is removed by plasma ashing, and the organic matter may be decomposed and removed by irradiation with ultraviolet rays, and fuming sulphuric acid, ozone water, and highly indifference ozone water may be used. The oxidizing liquid removes the organic matter by oxidative decomposition. Further, an organic solvent can also be used to remove the organic matter. Further, the storage unit 38 of the surface treatment apparatus 3 may be placed on the surface treatment apparatuses 100 and 200. In addition, the present invention is not limited to the above-described embodiments, and the constituent elements may be modified and embodied in the scope of the invention without departing from the spirit and scope of the invention. Several constituent elements can form various inventions. For example, several constituent elements may be deleted from the general constituent elements disclosed in the implementation. Furthermore, 5393 l.doc -19· 201140653 The components of the different embodiments can be combined as appropriate. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic configuration diagram of a surface treatment apparatus for a mold sheet according to a first embodiment of the present invention; and Fig. 2 is a flow chart showing a surface treatment method of a mold sheet according to the third embodiment; Fig. 4 is a schematic view showing the steps of the surface treatment apparatus of the second embodiment of the present invention; Fig. 4 is a schematic view showing the surface treatment apparatus of the mold according to the second embodiment of the present invention; Fig. 6 is a schematic view showing the steps of the surface treatment of the die of the second embodiment; Fig. 7 is a schematic view showing the surface treatment device of the die according to the third embodiment of the present invention; 8 is a view showing an example of a configuration of a first chamber of the surface treatment apparatus according to the third embodiment; and FIG. 9 is a view showing an example of a configuration of a second chamber of the surface treatment apparatus according to the third embodiment; Fig. 1 is a view showing an example of a configuration of a storage unit of the surface treatment apparatus according to the third embodiment; and Fig. 11 is a flow chart showing a surface treatment method of the mold according to the third embodiment. [Description of main component symbols] 153931.doc -20· 201140653 10 Release layer 100, 300 Surface treatment apparatus 101, 301 Die 110, 310 First chambers 111, 121, 216, 221, 231, 241 Holding portion 112 1 gas supply unit 113 light irradiation unit 120, 320 second chamber 122' 232 heating unit 123 second gas supply unit 130, 330 transport path 131' 331 transport arm 140, 340 loading unit 150' 350 unloading unit 160 > 360 First filter 170' 370 second filter 210' 230 chamber 211 pressure roller 212, 213 turntable 214 adhesive sheet 215 transfer table 220 '240 load lock chamber 222 ' 242 gas supply port 223 ' 233 suction Air port 153931.doc -21 - 201140653 251, 254 partition wall 252 ' 253 gate valve 380 storage portion 381 high efficiency particle air filter 382 chemical filter 400 holding rotating portion 401 rotating cup 402 rotating shaft 403 rotating base 404 chuck pin 405 Waste liquid pipe 410 chemical liquid supply parts 411, 413, 415, 417 supply lines 412, 414, 416, 418 Nozzles Qz Quartz 153931.doc -22-