TW201139699A - Non-oriented magnetic steel sheet - Google Patents

Non-oriented magnetic steel sheet Download PDF

Info

Publication number
TW201139699A
TW201139699A TW100106011A TW100106011A TW201139699A TW 201139699 A TW201139699 A TW 201139699A TW 100106011 A TW100106011 A TW 100106011A TW 100106011 A TW100106011 A TW 100106011A TW 201139699 A TW201139699 A TW 201139699A
Authority
TW
Taiwan
Prior art keywords
mass
content
steel sheet
less
inventive example
Prior art date
Application number
TW100106011A
Other languages
Chinese (zh)
Other versions
TWI398530B (en
Inventor
Takahide Shimazu
Hotaka Honma
Yousuke Kurosaki
Hisashi Mogi
Kenji Kosuge
Takeaki Wakisaka
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of TW201139699A publication Critical patent/TW201139699A/en
Application granted granted Critical
Publication of TWI398530B publication Critical patent/TWI398530B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Disclosed is a non-oriented magnetic steel sheet which contains 0.3-5.3% by mass of Cr, 1.5-4% by mass of Si, 0.4-3% by mass of Al and 0.0003-0.01% by mass of W. The non-oriented magnetic steel sheet has a C content of 0.006% by mass or less, an Mn content of 1.5% by mass or less, an S content of 0.003% by mass or less and an N content of 0.003% by mass or less, and the balance is made up of Fe and unavoidable impurities.

Description

201139699 六、發明說明: t發明戶斤屬之技術領域3 發明領域 本發明係有關於一種適合馬達之鐵芯材料的無方向性 電磁鋼板。 c先前技術3 發明背景 近年來,由節能化之需求,關於使用無方向性電磁鋼 板之電氣機器的領域,正追求於冷暖氣機器之馬達、電氣 汽車用之驅動馬達等更加地降低消耗電力。又,驅動馬達 之控制,取代電流之ON-OFF控制,現今以反向器使諧波重 疊之PWM(脈波寬度調變:pulse width modulation)波形控制 係為主流。因此,現正對無方向性電磁鋼板追求優異之高 頻特性。 以往,以改善無方向性電磁鋼板之高頻鐵損為目的, 進行了增加Si、A1及Cr之含量以提升比電阻、及盡力地減 少無方向性電磁鋼板之厚度的方法。依據該等方法,可降 低渦流損耗。 然而,含有Cr之無方向性電磁鋼板中,於製造過程、 製造後之加工過程等,Cr系碳化物將析出,鐵損上升而劣 化。於製造過程之退火中,有Cr系碳化物析出的情形。又, 於使用無方向性電磁鋼板之顧客中,有進行衝壓油之燃燒 消失、用以製造分離鐵芯之收縮配合、消除應力退火等的 情形。該等加工等係以200°C〜750°C左右較低之溫度進行, 201139699 且於該時於晶粒邊界有〇系碳化物析出。 。此處,為了抑制於含有Cr之無方向性電磁鋼板的g系 碳化物之析出’有人提出了含有M。之技術(專利文獻小然 而,該技術中,高價之M〇含量係0·05質量%以上,使材料 成本顯著地上升。 先前技術文獻 專利文獻 專利文獻1:日本專利特開2002_294417號公報 專利文獻2 :曰本專利特開2〇〇7162〇62號公報 專利文獻3:曰本專利特開平6_1〇8149號公報 專利文獻4 ·日本專利特開2〇〇2_2419〇7號公報 專利文獻5 :日本專利特表2〇〇7_516345號公報 C 明内】 發明概要 發明欲解決之課題 本發明係以提供一種可抑制成本上升,且高頻特性更 為良好之無方向性電磁鋼板為目的。 用以欲解決課題之手段 本發明之要旨,係如以下所示。 (1)一種無方向性電磁鋼板,其特徵在於,含有Cr : 0.3 質量°/。〜5.3質量%、Si: 1.5質量%〜4質量%、A1: 0.4質量%〜3 質量%、及W : 0.0003質量%〜0.01質量%,C含量係0.006質 量%以下,Μη含量係1.5質量%以下,S含量係〇.〇〇3質量% 以下,Ν含量係〇.〇〇3質量%以下’且剩餘部分係由?6及不 201139699 可避免的雜質所構成。 (2)如⑴之無方向性電磁鋼板 隨質量質量%、Ti : 、3選自於由M〇 : 3處薏0/〇〜0.007質量〇/〇、 及Nb : 0. 2質量%〜0.004質量%所構成之群之至少一種。 ⑺如⑴邮)之無方向性電磁鋼板,其更含有選自於由 V : 〇.〇〇〇5f S〇^〇.〇〇5 ft〇/〇 . 2r : 〇.〇〇〇3f t〇/〇^〇 〇〇3f 量%、Cu : 0.0〇1質量%〜〇 2質量、 : 0.001 質量 %〜〇·2 質量%、Ni : 0.〇〇1質量%〜〇2質 貝里/〇、Sb . 〇·001質量%〜〇 2 質量%、稀土你ο·_2質量%侧續量%、及Ca:〇_ 質量%〜0.006質量%所構成之群之至少—種。 發明效果 依據本發明,即使含有Cr,因含有適量之以,故可避 免脆化並增大比電阻,且可以減本抑船系碳化物之析 出及磁性衰減,提升高頻特性。 C實施方式;3 用以實施發明之形態201139699 VI. Description of the invention: Technical field of the invention of the invention 3. Field of the Invention The present invention relates to a non-oriented electrical steel sheet suitable for a core material of a motor. C. Prior Art 3 In recent years, in the field of electric equipment using non-directional electromagnetic steel sheets, there has been a demand for energy saving, and motors for cooling and heating machines, driving motors for electric vehicles, and the like are being further reduced in power consumption. Further, the control of the drive motor replaces the ON-OFF control of the current, and the PWM (pulse width modulation) waveform control in which the inverter is harmonically overlapped is now mainstream. Therefore, excellent non-directional electromagnetic steel sheets are being pursued for superior high frequency characteristics. In the past, in order to improve the high-frequency iron loss of the non-oriented electrical steel sheet, a method of increasing the contents of Si, A1, and Cr to increase the specific resistance and to reduce the thickness of the non-oriented electrical steel sheet as much as possible has been carried out. According to these methods, the eddy current loss can be reduced. However, in the non-oriented electrical steel sheet containing Cr, Cr-based carbides are precipitated during the manufacturing process and after the manufacturing process, and the iron loss is increased and deteriorated. In the annealing of the manufacturing process, there is a case where Cr-based carbides are precipitated. Further, among the customers who use the non-oriented electrical steel sheet, there are cases where the combustion of the stamping oil disappears, the shrinkage of the separated iron core is produced, and the stress relief annealing is performed. These processes are performed at a temperature lower than about 200 ° C to 750 ° C, 201139699, and at this time, lanthanide carbides are precipitated at grain boundaries. . Here, it has been proposed to contain M in order to suppress precipitation of g-based carbides in a non-oriented electrical steel sheet containing Cr. However, in the technique, the high-priced M〇 content is 0.05 mass% or more, and the material cost is remarkably increased. PRIOR ART DOCUMENT PATENT DOCUMENT Patent Document 1: Japanese Patent Laid-Open Publication No. 2002-294417 (2) Patent Document 3: Japanese Patent Laid-Open Publication No. Hei 2 No. Hei 2 No. Hei. OBJECTS OF THE INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION The present invention has an object of providing a non-oriented electrical steel sheet which can suppress an increase in cost and has higher frequency characteristics. Means for Solving the Problems The present invention is as follows. (1) A non-oriented electrical steel sheet comprising Cr: 0.3 mass% / 5. 5.3 mass%, Si: 1.5 mass% - 4 mass %, A1: 0.4% by mass to 3% by mass, and W: 0.0003% by mass to 0.01% by mass, C content is 0.006% by mass or less, Μη content is 1.5% by mass or less, and S content is 〇.〇〇3% by mass. The content of niobium is 〇.〇〇3 mass% or less' and the remainder is composed of impurities that can be avoided by ?6 and not 201139699. (2) Non-directional electrical steel sheets of (1) with mass%, Ti: 3 It is at least one selected from the group consisting of M〇: 3 薏0/〇~0.007 mass 〇/〇, and Nb: 0.2% by mass to 0.004% by mass. (7) Non-directional electromagnetic as in (1) postal) The steel sheet, which is further contained, is selected from the group consisting of V: 〇.〇〇〇5f S〇^〇.〇〇5 ft〇/〇. 2r : 〇.〇〇〇3f t〇/〇^〇〇〇3f%, Cu : 0.0〇1% by mass to 〇2 by mass, : 0.001% by mass of 〇·2% by mass, Ni: 0. 〇〇1% by mass of 〇2 贝Berry/〇, Sb. 〇·001% by mass 〇 2% by mass, rare earth, ο. _2 mass% of the side amount, and Ca: 〇 _ mass% to 0.006 mass% of at least one of the groups. EFFECTS OF THE INVENTION According to the present invention, even if Cr is contained, since an appropriate amount is contained, embrittlement can be avoided and the specific resistance can be increased, and precipitation of the ship-based carbide and magnetic attenuation can be reduced, and high-frequency characteristics can be improved. C embodiment; 3 for implementing the invention

Cr與Si及A1同樣地,可增大無方向性電磁鋼板之比電 阻。又,Cr與Si及A1不同,不易使無方向性電磁鋼板脆化。 另方面έ有Cr之無方向性電磁鋼板,特別於cr含量為 〇.3質量%以上之無方向性電磁鋼板中,於200。(:〜700°C左右 之溫度下容易析出Cr系碳化物。Cr系碳化物於晶粒邊界薄 片狀地析出’成為磁壁移動之阻礙。因此,特別將使4〇〇Hz 以上之高頻鐵損顯著地劣化。Cr系碳化物於750。(:以上之高 溫下不會析出’而於2〇〇。〇〜700°C左右之低溫析出。 201139699 此處,本發明人等針對抑制(Cr,Fe)7C3等Cr系碳化物之 析出的技術致力地進行檢討。結果,發現於除了 Cr之外亦 含有W之無方向性電磁鋼板中,藉由w與Cr之相互作用, Cr系碳化物之析出受到抑制,且鐵損之劣化亦受到抑制。 該理由雖於現在尚未明確,但認為是於(^系碳化物之析出 行為中作為碳化物形成元素之W有效地作用的緣故。並 且,亦發現於除了 Cr及W之外,更含有Mo、Ti、及/或Nb 時,藉由該等元素與Cr之相互作用,Cr系碳化物之析出更 加受到抑制。該理由於現在亦尚未明確,但認為是於&系 碳化物之析出行為中作為碳化物形成元素、丁丨 ' 及/ 或Nb有效地作用的緣故。 另外,詳細内容係如後述,於Cr含量低之無方向性電 磁鋼板中含有w時,w系碳化物將會析出,即使w 800t 〜1100 C左右之溫度進行再結晶退火,結晶之成長仍會受到 阻礙,而無法得到所期尺寸之結晶粒。Mo、Ti '及Nb亦相 同。因此,Cr含量為預定值以上係為重要。另外,如前述, 系反化物析出之溫度低,故於8〇〇°C〜1100。(:左右之溫 度下的再結晶退火中,㈣碳化物不會析出。因此,結晶 粒之成長不易受到Cr系碳化物之阻礙。 本發明人等發現,於含有適量之的無 方向 性電磁鋼板中,例如處以下之所謂的磁性衰減、即 Fe3C(㈣碳鐵)之析出亦受_制。本發日狀等亦發現於更 =量之、Ti、及/或灿時,將更加抑制¥之析出。 "彳L隨著馬達旋射之溫度上升漸漸地鐵損劣化 6 201139699 的現象,以預先使磁性衰減不易產生為極佳。 以下,更加詳細地說明本發明之實施形態。 本貫施形態之無方向性電磁鋼板含有Cr : 〇 3質量 /〇 5_3貝里〇/〇、Sl ·· J 5質量%〜4質量%、u質量質 里%、及W: 0.0003質量%〜〇〇1質量%。又,c含量係〇_ 資里%以下,Mn含量係h5質量%以下,S含量係0.003質量 %以下,N含量係〇.〇〇3質量%以下。並且,剩餘部分係由以 及不可避免的雜質所構成。 於匸含罝大於〇.〇〇6質量%時,即使含有適量之買等,充 分地抑制Ο系碳化物之析出係為_。並且,受經析出之 ,系反化物的影響’南頻特性、特別是低溫下之高頻特性 又’C亦為磁性衰減之原因。因此,將c含量設為〇._ 、下另方面’工業上為將C含量降低至小於⑽㈣ 質量% ’需要大量之成本。因此,C含量以0_5質量%以 上為佳。 可避免脆化並増大無方向性電磁鋼板之比電阻。於 =他_3綱時,不易充分轉職絲。又,於 二=於0.3質量,時,w等碳化物容易析出且容易阻 礙再、,Ό日日退火之結晶粒的成長。— 5.3質量科,即使含有適量之:面’粉含量大於 物之析出係為困難。並且,受_出“地抑制。系碳化 -性,是㈣二::: $設為0.3質量%〜5.3質量%。另 將C 3 果,α含量以〇.5質量%以上為佳’為充分地得到前述效 上為佳,以1.6質量%以上較佳。 201139699 又,為了降低Cr系碳化物之析出,Cr含量以5.0質量%以下 為佳,以2.5質量%以下較佳,以2.1質量%以下更佳。Similarly to Si and A1, Cr can increase the specific resistance of the non-oriented electrical steel sheet. Further, unlike Cr and Si, Cr is less likely to embrittle the non-oriented electrical steel sheet. On the other hand, there is a non-oriented electrical steel sheet of Cr, particularly in a non-oriented electrical steel sheet having a Cr content of 3% by mass or more, at 200. (: Cr-based carbides are easily precipitated at temperatures of about ~700 °C. Cr-based carbides are deposited in the form of flakes at the grain boundaries, which is a hindrance to the movement of the magnetic walls. Therefore, high-frequency irons of 4 Hz or higher are particularly required. The damage is remarkably deteriorated. The Cr-based carbide is precipitated at 750. (The temperature is not precipitated at the above high temperature, but is precipitated at a temperature of about 2 〇〇 to about 700 ° C. 201139699 Here, the inventors of the present invention are directed to suppression (Cr) , Fe) 7C3 and other methods for the precipitation of Cr-based carbides. The results show that Cr-based carbides are found in the non-oriented electrical steel sheets containing W in addition to Cr, by the interaction of w and Cr. The precipitation is suppressed, and the deterioration of the iron loss is also suppressed. This reason is not clear yet, but it is considered to be effective as a carbide forming element in the precipitation behavior of the carbide. It has also been found that when Mo, Ti, and/or Nb are contained in addition to Cr and W, the precipitation of Cr-based carbides is further suppressed by the interaction of these elements with Cr. The reason is not yet clear. But think it is & carbonization In the precipitation behavior of the material, it is effective as a carbide-forming element, butadiene' and/or Nb. The details are as follows, when w is contained in a non-oriented electrical steel sheet having a low Cr content, w-carbonization The material will be precipitated, and even if recrystallization annealing is performed at a temperature of about 800 to 1100 C, the growth of the crystal will be hindered, and the crystal grains of the desired size cannot be obtained. Mo, Ti' and Nb are also the same. Therefore, the Cr content is In addition, as described above, since the temperature at which the reaction product is precipitated is low, it is at 8 〇〇 ° C to 1100. (In the recrystallization annealing at a temperature of about 3,000 Å, the carbide does not precipitate. Therefore, the growth of the crystal grains is less likely to be hindered by the Cr-based carbide. The present inventors have found that, in the case of containing an appropriate amount of the non-oriented electrical steel sheet, for example, the so-called magnetic attenuation below, that is, Fe3C ((tetra) carbon iron) The precipitation is also subject to the _ system. The hair date and the like are also found in the case of more, Ti, and / or can, it will further inhibit the precipitation of ¥. "彳L as the temperature of the motor spins rise, the subway damage gradually deteriorates. 6 201139699 phenomenon, It is preferable that the magnetic attenuation is not easily generated in advance. Hereinafter, the embodiment of the present invention will be described in more detail. The non-oriented electrical steel sheet of the present embodiment contains Cr: 〇3 mass/〇5_3 Berry/〇, S1· · J 5 mass% to 4 mass%, u mass mass %, and W: 0.0003 mass% to 〇〇1 mass%. Further, the c content is 〇 _ _ _ 5% or less, and the Mn content is h 5% by mass or less, S The content is 0.003 mass% or less, and the N content is 〇.〇〇3 mass% or less. Further, the remaining portion is composed of unavoidable impurities. When the cerium contains more than 〇.〇〇6 mass%, even if it contains an appropriate amount Buying, etc., sufficiently suppresses the precipitation of lanthanide carbides as _. Further, it is affected by the influence of the anti-sludge, and the south frequency characteristic, especially the high-frequency characteristic at low temperature, is also the cause of magnetic attenuation. Therefore, the c content is set to 〇._, and the other aspect 'industrially lowering the C content to less than (10) (four) mass%' requires a large amount of cost. Therefore, the C content is preferably 0-5 mass% or more. It can avoid embrittlement and increase the specific resistance of non-directional electromagnetic steel sheets. When he is _3, it is not easy to transfer the wire. Further, when the mass is 0.3 mass, the carbide such as w is likely to be precipitated, and it is easy to hinder the growth of the crystal grains which are annealed again. — 5.3 Quality Section, even if it contains an appropriate amount: the surface of the powder is greater than the precipitation of the substance is difficult. In addition, it is "inhibited by the ground". It is (4) 2::: $ is set to 0.3% by mass to 5.3% by mass. Further, C 3 is used, and the α content is preferably 5% by mass or more. In order to reduce the precipitation of Cr-based carbides, the Cr content is preferably 5.0% by mass or less, more preferably 2.5% by mass or less, and the mass is 2.1, and the mass is preferably 1.6% by mass or more. % is better.

Si係增大比電阻而改善高頻鐵損。於Si含量小於1.5質 量%時,充分地得到該效果係為困難。另一方面,於Si含量 大於4質量%時,因脆化使冷加工變得困難。因此,將Si含 量設為1.5質量%〜4質量%。另外,為使高頻鐵損更為下降, Si含量以大於2質量%為佳。 A1係增大比電阻而改善高頻鐵損。於A1含量小於0.4質 量%時,充分地得到該效果係為困難。另一方面,於A1含 量大於3質量%時,因脆化使冷加工變得困難。又,A1含量 越高,磁束密度越下降而有劣化之傾向。因此,將A1含量 設為0.4質量%〜3質量%。 於Μη含量大於1.5質量%時,脆性變得顯著。因此,將 Μη含量設為1.5質量以下。另一方面,於Μη含量為0.05質量 %以上時,將有效地增大比電阻,減少鐵損。因此,Μη含 量以0.05質量%以上為佳。 於S含量大於0.00 3質量%時,Μ n S等硫化物之形成變得 顯著,隨之阻礙了磁壁之移動,磁性劣化。因此,將S含量 設為0.003質量%以下。另一方面,工業上為將S含量降低至 小於0.0002質量%,需要大量的成本。因此,S含量以0.0002 質量%以上為佳。 於Ν含量大於0.003質量%時,氮化物之形成變得顯 著,隨之磁性劣化。又,於Ν含量大於0.003質量%時,於 鋼之鑄造時有產生稱作起泡之凸起狀的表面缺陷的情形。 201139699 因此,將N含量設為0.003質量%以下。另一方面,工業上 為將N含量降低至小於〇._4質量%,需要大量之成本。因 此,N含量以〇.〇〇〇4質量%以上為佳。 w與c反應形成碳化物,抑制Cr系碳化物之析出。冒亦 可抑制磁性衰減。於W含量小於〇 〇〇〇3質量%時,充分地得 到該等效果係為困難’多數之㈣碳化物析出至粒界等。 另一方面,於W含量大於0.01質量%時,貿系碳化物之量變 得過剩,磁性下降。因此,將1含量設為〇 〇〇〇3質量%〜〇 〇1 質量%。為了更加抑制Cr系碳化物之析出,w含量以0.0005 貝里%以上為佳。又,只要w含量為〇〇〇5質量%的話,即 可充分地抑制Cr系碳化物之析出,故由成本面來看,胃含 $以0.005質量%以下為佳。另外,於以含量為2質量%以下 之無方向性電磁鋼板中,於Cr含量小於〇.3質量%時,隨著 W系碳化物之析出’結晶粒之成長受到阻礙,磁性下降。 因此於& S量為2質量%以下之無方向性電磁鋼板中含有 W時,Cr含量為〇.3質量%以上係為重要。 依據如此之本實施形態之無方向性電磁鋼板,即使含 有Cr,因含有適量之w,故可避免脆化並增大比電阻且 可以低成本抑制Cr系碳化物之析出及磁性衰減,提升高頻 特性。因此’本實施形態適用於高頻用途。 於幾未含有Cr之低Si系的無方向性電磁鋼板中,隨著 你系奴化物之析出結晶粒之成長受到阻礙,但於本實施形 態中,因含有〇.3質量%以上之Cr,故w系碳化物極不易析 出。因此,藉由積極地活用W,可抑制Cr系碳化物之析出, 201139699 改善磁性。 另外,本實施形態之無方向性電磁鋼板,以更含有選 自於由Mo : 0.001質量。/。~0.03質量%、Ti : 0.0005質量 %〜0.007質量%、及Nb : 0.0002質量%〜0.004質量°/。所構成 之群之至少一種為佳。The Si system increases the specific resistance to improve the high frequency iron loss. When the Si content is less than 1.5% by mass, it is difficult to sufficiently obtain this effect. On the other hand, when the Si content is more than 4% by mass, cold working becomes difficult due to embrittlement. Therefore, the Si content is set to 1.5% by mass to 4% by mass. Further, in order to further lower the high-frequency iron loss, the Si content is preferably more than 2% by mass. A1 increases the specific resistance and improves the high-frequency iron loss. When the A1 content is less than 0.4% by mass, it is difficult to sufficiently obtain the effect. On the other hand, when the A1 content is more than 3% by mass, cold working is difficult due to embrittlement. Further, the higher the A1 content, the lower the magnetic flux density and the tendency to deteriorate. Therefore, the A1 content is set to 0.4% by mass to 3% by mass. When the content of Μη is more than 1.5% by mass, the brittleness becomes remarkable. Therefore, the Μη content is set to 1.5 mass or less. On the other hand, when the content of Μη is 0.05% by mass or more, the specific resistance is effectively increased to reduce the iron loss. Therefore, the Μη content is preferably 0.05% by mass or more. When the S content is more than 0.003 mass%, the formation of a sulfide such as Μ n S becomes remarkable, and accordingly, the movement of the magnetic wall is hindered and the magnetic properties are deteriorated. Therefore, the S content is made 0.003 mass% or less. On the other hand, industrially, in order to reduce the S content to less than 0.0002% by mass, a large amount of cost is required. Therefore, the S content is preferably 0.0002% by mass or more. When the content of niobium is more than 0.003 mass%, the formation of nitride becomes remarkable, and magnetic properties are deteriorated. Further, when the content of cerium is more than 0.003 mass%, there is a case where a surface defect called blistering is generated during the casting of steel. 201139699 Therefore, the N content is made 0.003 mass% or less. On the other hand, in the industry, in order to reduce the N content to less than 〇._4% by mass, a large amount of cost is required. Therefore, the N content is preferably 〇.〇〇〇4% by mass or more. w reacts with c to form a carbide and suppresses precipitation of Cr-based carbide. It also suppresses magnetic attenuation. When the W content is less than 〇3 mass%, it is difficult to sufficiently obtain such effects. Most of the (tetra) carbides are precipitated to the grain boundaries and the like. On the other hand, when the W content is more than 0.01% by mass, the amount of the trade-off carbide becomes excessive and the magnetic properties are lowered. Therefore, the content of 1 is set to 〇3 mass% to 〇1 mass%. In order to further suppress the precipitation of Cr-based carbides, the w content is preferably 0.0005 Berry% or more. In addition, as long as the w content is 〇〇〇5 mass%, precipitation of Cr-based carbides can be sufficiently suppressed. Therefore, the stomach content is preferably 0.005% by mass or less from the viewpoint of cost. In addition, in the non-oriented electrical steel sheet having a content of 2% by mass or less, when the Cr content is less than 0.3% by mass, the growth of the W-based carbide is inhibited, and the growth of the crystal grains is hindered, and the magnetic properties are lowered. Therefore, when W is contained in the non-oriented electrical steel sheet having a &S amount of 2% by mass or less, it is important that the Cr content is 0.3% by mass or more. According to the non-oriented electrical steel sheet according to the present embodiment, even if Cr is contained, since an appropriate amount of w is contained, brittleness can be avoided, specific resistance can be increased, and precipitation of Cr-based carbide and magnetic attenuation can be suppressed at a low cost, and the height is increased. Frequency characteristics. Therefore, this embodiment is suitable for high frequency applications. In the low-Si-based non-oriented electrical steel sheet containing no Cr, the growth of the precipitated crystal grains is inhibited, but in the present embodiment, Cr is contained in an amount of 3% by mass or more. Therefore, the w-based carbide is extremely difficult to precipitate. Therefore, by actively utilizing W, precipitation of Cr-based carbides can be suppressed, and 201139699 improves magnetic properties. Further, the non-oriented electrical steel sheet of the present embodiment further contains a mass selected from Mo: 0.001. /. ~0.03 mass%, Ti: 0.0005 mass% - 0.007 mass%, and Nb: 0.0002 mass% - 0.004 mass ° /. At least one of the groups formed is preferred.

Mo與W同樣地,與C反應形成碳化物,抑制Cr系碳化 物之析出。Mo亦可抑制磁性衰減。於Mo含量小於0.001質 量%時’不易得到該等效果。另一方面,於Mo含量大於0.03 質量%時,Mo系碳化物之量變得過剩,磁性下降。因此, Mo含量以0.001質量%〜〇.〇3質量%為佳。為了更加抑制^ 系碳化物之析出,Mo含量以〇·〇〇2質量0/〇以上為佳。又,只 要Mo含量為〇〇2質量%的話,即可充分地抑制&系碳化物 之析出,故由成本面來看,Mo含量以0.02質量%以下較佳。Similarly to W, Mo reacts with C to form a carbide, and suppresses precipitation of a Cr-based carbide. Mo also inhibits magnetic attenuation. When the Mo content is less than 0.001% by mass, such effects are not easily obtained. On the other hand, when the Mo content is more than 0.03 mass%, the amount of the Mo-based carbide becomes excessive and the magnetic properties are lowered. Therefore, the Mo content is preferably 0.001% by mass to 〇.3% by mass. In order to further suppress the precipitation of the carbide, the Mo content is preferably 〇·〇〇2 mass 0/〇 or more. In addition, as long as the Mo content is 〇〇2% by mass, the precipitation of & carbides can be sufficiently suppressed. Therefore, the Mo content is preferably 0.02% by mass or less from the viewpoint of cost.

Ti亦與w同樣地’與c反應形成碳化物,抑制Cr系碳化 物之析出。Ti亦可抑制磁性衰減。於丁丨含量小於〇 〇〇〇5質量 /〇時,不易充分地得到該等效果。另一方面,於丁i含量大於 0.007質量%時,丁丨系碳化物之量變得過剩,磁性下降。因 此,Ή含量以0.0005質量%〜0.007質量%為佳。為了更加抑 制Cr系碳化物之析出,卩含量以〇〇〇〇7質量%以上較佳。 又,為了抑制Ti系碳化物之過剩析出,Ti含量以〇〇〇5質量 %以下較佳。Ti also reacts with c to form carbides in the same manner as w, and suppresses precipitation of Cr-based carbides. Ti also suppresses magnetic attenuation. When the content of butyl sulfonium is less than 〇 5 mass / 〇, it is difficult to sufficiently obtain such effects. On the other hand, when the content of butyl i is more than 0.007 mass%, the amount of butyl stellate carbide becomes excessive and the magnetic properties are lowered. Therefore, the niobium content is preferably 0.0005 mass% to 0.007 mass%. In order to further suppress the precipitation of Cr-based carbides, the niobium content is preferably 7% by mass or more. Further, in order to suppress excessive precipitation of Ti-based carbides, the Ti content is preferably 5% by mass or less.

Nb亦與W同樣地,與c反應形成碳化物,抑制&系碳 化物之析出。Nb亦可抑制磁性衰減。sNb含量小於〇 〇〇〇2 質里%時,不易充分地得到該等效果。另一方面,於Nb含 10 201139699 量大於0_004質量%時,Nb系碳化物之量變得過剩,再結晶 退火之結晶粒的成長受到阻礙。因此,Nb含量以0.0002質 量%〜0.004質量%為佳。為了更加抑制〇系碳化物之析出, Nb含量以0.0003質量%以上較佳。又,為了抑制Nb系碳化 物之過剩析出,Nb含量以0.0035質量%以下較佳。 另外,如前述,Mo、Ti及Nb呈現與W相同之作用,但 W較Mo、Ti及Nb更有效。又,於含有前述範圍之M〇、Ti 及/或Nb時,相較於未包含該等任一者之情形,利用w系碳 化物之再結晶退火對結晶粒之成長的阻礙更加不易產生。 因此’以含有選自於由Mo、Ti及Nb所構成之群之至少一種 為佳’以含有该專3種元素全部特佳。這是因為於除了 w以 外含有Mo、Ti及/或Nb時’係特別有效地抑制Cr系碳化物之 析出及雪明碳鐵之析出(磁性衰減)。 另外,於本實施形態之無方向性電磁鋼板,亦可更含 有選自於由V : 0.0005質量%~0.005質量%、Zr : 0.0002質量 %〜0.003 質量%、Cu : 0.001 質量%〜〇·:)_ 質量。/〇、Sn : 〇 〇〇1 質量。〜0.2質量。/。、Ni : 0.001 質量%〜0.2質量。/〇、% : 0.001 質量%~0.2質量%、REM(稀土元素):0.0002質量%〜〇 〇〇4 質量%、及Ca : 0.0005質量%〜0.006質量%所構成之群之至 少一種。 V亦與W同樣地,與C反應形成碳化物,抑制&系碳化 物之析出。於V含量小於0_0005質量。/〇時,不易充分地得到 該效果。另一方面’即使V含量大於0.005質量。/〇,仍無法 得到合乎含量之效果,使成本顯著地上升。又,V系碳化物 201139699 之量變得過剩,再結晶退火之結晶粒的成長受到阻礙。因 此,V含量以〇 〇〇〇5質量%〜〇 〇〇5質量%為佳。Similarly to W, Nb reacts with c to form a carbide, and suppresses the precipitation of & Nb also inhibits magnetic attenuation. When the sNb content is less than 〇 2 mascara%, it is difficult to sufficiently obtain such effects. On the other hand, when the amount of Nb contains 10 201139699 is more than 0 - 004% by mass, the amount of Nb-based carbides becomes excessive, and the growth of crystal grains which are recrystallized and annealed is hindered. Therefore, the Nb content is preferably 0.0002% by mass to 0.004% by mass. In order to further suppress the precipitation of the lanthanoid carbide, the Nb content is preferably 0.0003 mass% or more. Further, in order to suppress excessive precipitation of the Nb-based carbide, the Nb content is preferably 0.0035 mass% or less. Further, as described above, Mo, Ti, and Nb exhibit the same effects as W, but W is more effective than Mo, Ti, and Nb. Further, when M〇, Ti and/or Nb in the above range are contained, the retardation of the growth of the crystal grains by the recrystallization annealing of the w-based carbide is less likely to occur than in the case where none of the above is included. Therefore, it is preferable to include at least one selected from the group consisting of Mo, Ti, and Nb to contain all of the three elements. This is because when Mo, Ti and/or Nb are contained in addition to w, the precipitation of Cr-based carbides and the precipitation of snow-based carbon (magnetic attenuation) are particularly effectively suppressed. Further, the non-oriented electrical steel sheet according to the present embodiment may further contain V: 0.0005 mass% to 0.005 mass%, Zr: 0.0002 mass% to 0.003 mass%, and Cu: 0.001 mass% to 〇: )_ Quality. /〇,Sn: 〇 〇〇1 Quality. ~0.2 quality. /. Ni: 0.001% by mass to 0.2% by mass. /〇, %: 0.001 mass% to 0.2 mass%, REM (rare earth element): 0.0002 mass% to 〇4 mass%, and Ca: 0.0005 mass% to 0.006 mass%. Similarly to W, V reacts with C to form a carbide, and suppresses the precipitation of carbonaceous material. The V content is less than 0_0005 mass. When /〇, it is not easy to get this effect adequately. On the other hand' even if the V content is more than 0.005 mass. /〇, still can not get the effect of the content, so that the cost rises significantly. Further, the amount of the V-based carbide 201139699 is excessive, and the growth of the crystal grains subjected to recrystallization annealing is hindered. Therefore, the V content is preferably 5% by mass to 5% by mass.

Zr亦與w同樣地,與c反應形成碳化物,抑制Cr系碳化 物之析出。於Ζι·含量小於G._2f量科,不易充分地得到 該效果。另一方面,即使Zr含量大於〇〇〇3質量%, 得到合乎含量之效果,使成本顯著地上升。又,Zr系碳化 物之量變得過剩,再結晶退火之結晶粒的成長受到阻礙。 因此’ Zr含量以〇.0002質量%〜〇〇〇3質量%為佳。Similarly to w, Zr reacts with c to form a carbide, thereby suppressing the precipitation of Cr-based carbide. The content of the Ζι· content is less than the G._2f amount, and it is not easy to sufficiently obtain this effect. On the other hand, even if the Zr content is more than 〇〇〇3 mass%, the effect of the content is obtained, and the cost is remarkably increased. Further, the amount of Zr-based carbides is excessive, and the growth of crystal grains subjected to recrystallization annealing is inhibited. Therefore, the content of Zr is preferably 0002.00% by mass to 〇〇〇3% by mass.

Cu、Sn、Ni及Sb可改善集合組織。該等元素分別於含 量小於0.001質量%時’不易充分地得到該效果,於含量大 於〇.2質量%時’成本增加。因此,Cu、Sn、Ni及Sb之含量 分別以0.001質量%〜〇.2質量%為佳。 REM及Ca形成粗大之氧硫化物而使s無害化。於REM 含罝小於0.0002質量%時、及〇3含量小於〇〇〇〇5質量%時, 不易充分地得到該效果。另一方面,於REM含量大於〇 〇〇4 質量%時、及Ca含量大於0.006質量%時’成本增加。因此, REM含量以0.0002質量%〜0.004質量。/〇為佳,Ca含量以 0.0005質量%〜0.006質量%為佳。 如此,於亦含有V及/或Zr時,可更加抑制Cr^、碳化物 之析出,例如,可更加抑制75(TC以下之低溫下的磁性衰 減。又,該等W、Mo、Ti、Nb、V、Zr等可藉由添加於熔 融鋼而於無方向性電磁鋼板中含有。因此,工業上亦充分 可能生產此種無方向性電磁鋼板。 接著,說明製造無方向性電磁鋼板之方法。 12 201139699 首先,以通常之方法,藉由調整成分 之熔融鋼,由該熔融鋼製作 作則述組成 自 (纽),進行扁胚加执, 再進n軋延。扁胚加熱之溫度並未特別限制 ' 制細微析出物之形成,以例如,95〇。(: :為了抑 為佳。藉熱軋㈣得之熱軋板的厚度並未特觀制,= 如0.8mm〜3.0mm左右。 接者’視需要進行熱軋板之退火(熱軋板退火)。藉由進 行熱軋板退火’提升磁束密度,可降低磁滯彳員失。祕板退 火之溫度並未特別限制,以例如,·㈠刚。c左右為佳。 之後’進行冷軋延。藉由冷軋延所得之冷軋板的厚度 並未特別限制,但為得較高之高頻磁性,以例如,薄如 0.1mm~0.35mm左右之厚度為佳。於冷軋板之厚度大於 0.35mm時,渦流損耗變大,高頻鐵損容易劣化。又,於冷 軋板之厚度小於〇.lmm時,生產性容易下降。 於冷乳延後’藉由進行冷軋板之脫脂、及再結晶退火, 使結晶粒成長。再結晶退火中,例如,進行連續退火。退 火溫度並未特別限制,係例如,80〇。(:〜1100。(:左右。再結 曰曰退火後之結晶粒的粒徑以3〇μηι〜丨2〇μιη&右為佳。另外, 本實施形態中,再結晶退火之結果以鋼板全面為肥粒鐵單 相之再結晶組織為佳。 接著’藉由進行預定之塗布液的塗布及燒附,形成絕 緣被膜之絕緣被膜,係形成例如,有機絕緣被膜、無機絕 緣被膜、或包含無機物質及有機物質之混合絕緣被膜。 如此可製造無方向性電磁鋼板。 13 201139699 經製造之無方向性電磁鋼板,例如,出貨後於顧客端 加工。該加工係例如,進行衝壓成鐵芯用形狀、積層、收 縮配合、700°C〜800°C左右下之消除應力退火等。藉由該等 一連串之加工,可形成馬達之鐵芯。另外,未進行積層後 之消除應力退火的無方向性電磁鋼板被稱作全製程材(fu t j process material),而進行消除應力退火之無方向性電磁鋼 板被稱作半製程材(semi process material)。 [實施例] 接著,說明本發明人等進行之實驗。該等實驗之條件 等係用以確認本發明之實施可能性及效果而採用之例本 發明並未受該等例所限定。 首先,使用實驗室之真空爐,製作含有表丨及表2所示 之成分,且剩餘部分係由Fe及不可避免的雜質所構成的熔 融鋼,進行該熔融鋼之鑄造,得到粗鋼。表丨中以粗線框住 的數值係顯示該數值超出本發明規定之範圍。接著進行 粗鋼之熱軋延,得到厚度2mm之熱軋板。之後,於N2氣體 環境氣體巾以IGGGt進行減板退;U分鐘。然後,進行酸 洗及冷軋延,得到厚度0.30mm之冷軋板。接著於5〇%之 %氣體及50%N2氣體之混合氣體環境氣體中進行再結晶退 火。該再結晶退火巾,以進行3G秒鐘之均熱處理。 之後’將再結晶退火後之鋼板衝壓成—邊長度為刚_之 試料。 14 201139699 [表1] 試 料 No. 成分(質量%) 備考 C Cr Si A1 Μη S N W Mo Ti Nb V Zr 1 0.0005 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 本發明例 2 0.0058 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 本發明例 3 0.0062 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 比較例 4 0.0095 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 比較例 5 0.0035 0.2 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 比較例 6 0.0035 0.4 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 本發明例 7 0.0035 1.6 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 本發明例 8 0.0035 5.0 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 本發明例 9 0.0035 5.4 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 比較例 10 0.0035 8.5 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 比較例 11 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.0001 0.0003 0.0001 0 0.0001 0 比較例 12 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.0003 0.0003 0.0001 0 0.0001 0 本發明例 13 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.0005 0.0003 0.0001 0 0.0001 0 本發明例 14 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.006 0.0003 0.0001 0 0.0001 0 本發明例 15 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.010 0.0003 0.0001 0 0.0001 0 本發明例 16 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.013 0.0003 0.0001 0 0.0001 0 比較例 17 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.0008 0.0001 0.004 0.0001 0.0001 本發明例 18 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.0012 0.0001 0.004 0.0001 0.0001 本發明例 19 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.003 0.0001 0.004 0.0001 0.0001 本發明例 20 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.020 0.0001 0.004 0.0001 0.0001 本發明例 21 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.030 0.0001 0.004 0.0001 0.0001 本發明例 22 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.033 0.0001 0.004 0.0001 0.0001 比較例 23 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.05 0.0001 0.004 0.0001 0.0001 比較例 24 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0003 0.0001 0.003 0.002 本發明例 25 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0007 0.0001 0.003 0.002 本發明例 26 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0032 0.0001 0.003 0.002 本發明例 27 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0069 0.0001 0.003 0.002 本發明例 28 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0074 0.0001 0.003 0.002 比較例 29 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0001 0 0.001 本發明例 30 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0002 0 0.001 本發明例 31 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0020 0 0.001 本發明例 32 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0040 0 0.001 本發明例 33 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0045 0 0.001 比較例 34 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0003 0.001 本發明例 35 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0005 0.001 本發明例 36 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0021 0.001 本發明例 37 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0049 0.001 本發明例 38 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0056 0.001 比較例 39 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0001 本發明例 40 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0003 本發明例 41 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0015 本發明例 42 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0028 本發明例 43 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.002 0.0028 本發明例 44 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0035 比較例 15 201139699 % 本發明例 本發明例 本發明例 本發明例 本發明例 本發明例 ¢3 〇 0.0002 ο ο 0.0001 0.003 REM 〇 ο ο ο 0.0005 〇 〇 0.0002 0.0002 g ο ο 0.0001 0.0002 0.0002 CN 0.0001 0.0001 〇 0.0001 κη Ο Ο Ο 0.0001 0.0002 〇 5 0.0005 Ο 0.0001 0.0001 〇 N 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 > 0.002 0.002 0.002 0.002 0.002 0.002 成分(質量%) 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.002 0.002 0.002 0.002 0.002 0.002 〇 〇 〇 ο ο ο ο 1—Η ο ο ο ο 〇 〇 0.001 0.001 0.001 0.001 0.001 0.001 Z 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 C/3 0.001 0.001 0.001 0.001 0.001 0.001 C S Ο ο ο ro d rn < t^; 卜 Λ p — ρ ο — ρ — ρ 寸_ ρ — ύ Ο ο ιη υ 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 ζ· 201139699 此外,測定各試料之鐵損及磁束密度。鐵損,係測定 於頻率為400Hz、最大磁束密度為1.0T之條件下的鐵損 (W10/400)。又,算出於軋延方向上經磁化時之值與於與其 垂直之方向(板寬方向)上經磁化時之值的平均值。又,磁束 密度,係測定於頻率為50Hz、最大磁化力為5000A/m之條 件下之磁束密度(B50)。於表3之「熱處理前」攔顯示該等 結果。 鐵損及磁束密度之測定後,於N2氣體環境氣體中以450 °C進行退火2小時。並且,再次測定各試料之鐵損及磁束密 度。於表3之「熱處理後」欄顯示該結果。 17 201139699 [表3] 試料 No 熱處理貧 熱處理後 備考 W10/400(W/kg) B50(T) W10/400( W/kg) B50(T) 1 13.4 1.665 13.4 1.665 本發明例 2 13.4 1.664 13.4 1.664 本發明例 3 13.5 1.662 14.3 1.661 比較例 4 13.7 1.660 15.9 1.657 比較例 5 15.9 1.687 15.9 1.687 比較例 6 14.6 1.687 14.6 1.687 本發明例 7 13.9 1.635 13.9 1.635 本發明例 8 12.6 1.570 12.7 1.567 本發明例 9 12.6 1.569 13.6 1.565 比較例 10 11.9 1.541 14.9 1.536 比較例 11 13.1 1.627 15.7 1.627 比較例 12 13.1 1.627 13.4 1.627 本發明例 13 13.1 1.627 13.3 1.627 本發明例 14 13.1 1.627 13.2 1.627 本發明例 15 13.2 1.627 13.2 1.627 本發明例 16 14.1 1.627 14.1 1.627 比較例 17 13.5 1.602 13.7 1.598 本發明例 18 13.5 1.602 13.7 1.602 本發明例 19 13.5 1.602 13.7 1.602 本發明例 20 13.5 1.602 13.7 1.602 本發明例 21 13.5 1.602 13.6 1.602 本發明例 22 14.3 1.603 14.3 1.600 比較例 23 16.7 1.604 16.7 1.599 比較例 24 12.6 1.611 12.8 1.608 本發明例 25 12.6 1.611 12.8 1.611 本發明例 26 12.6 1.611 12.8 1.611 本發明例 27 12.7 1.611 12.8 1.611 本發明例 28 13.1 1.612 13.6 1.612 比較例 29 13.4 1.639 13.5 1.636 本發明例 30 13.4 1.639 13.5 1.639 本發明例 31 13.4 1.639 13.5 1.639 本發明例 32 13.5 1.639 13.5 1.639 本發明例 33 14.8 1.640 14.8 1.640 比較例 34 10.9 1.621 11.0 1.619 本發明例 35 10.9 1.621 10.9 1.621 本發明例 36 10.9 1.621 10.9 1.621 本發明例 37 10.9 1.621 10.9 1,621 本發明例 38 11.5 1.621 11.5 1.621 比較例 39 10.9 1.595 11.0 1.595 本發明例 40 10.9 1.595 10.9 1.595 本發明例 41 10.9 1.595 10.9 1.595 本發明例 42 10.9 1.595 10.9 1.595 本發明例 43 10.9 1.595 10.9 1.595 本發明例 44 11.3 1.595 11.3 1.595 比較例 45 10.9 1.602 10.9 1.602 本發明例 46 10.9 1.605 10.9 1.605 本發明例 47 10.9 1.604 10.9 1.604 本發明例 48 10.9 1.607 10.9 1.607 本發明例 49 10.9 1.611 10.9 1.611 本發明例 50 10.9 1.601 10.9 1.601 本發明例 18 201139699 如表3所示’本發明範圍所屬之試料No. 1〜No.2、 Ν〇.6~Ν〇.8、Ν〇·12~Ν〇.15、Ν〇.17〜Ν〇·21、Ν〇.24〜Ν〇.27、Cu, Sn, Ni, and Sb improve aggregate organization. When the content is less than 0.001% by mass, respectively, the effect is not sufficiently obtained, and when the content is more than 0.2% by mass, the cost increases. Therefore, the contents of Cu, Sn, Ni and Sb are preferably 0.001% by mass to 〇.2% by mass, respectively. REM and Ca form coarse oxysulfides to make s harmless. When the REM content is less than 0.0002% by mass and the 〇3 content is less than 5% by mass, the effect is not sufficiently obtained. On the other hand, when the REM content is more than 〇4% by mass and the Ca content is more than 0.006% by mass, the cost increases. Therefore, the REM content is 0.0002% by mass to 0.004% by mass. Preferably, the Ca content is preferably 0.0005 mass% to 0.006 mass%. Thus, when V and/or Zr are also contained, precipitation of Cr^ and carbide can be further suppressed, and for example, magnetic attenuation at a low temperature of 75 (TC or lower) can be further suppressed. Further, such W, Mo, Ti, Nb V, Zr, etc. can be contained in a non-oriented electrical steel sheet by being added to molten steel. Therefore, it is also industrially possible to produce such a non-oriented electrical steel sheet. Next, a method of manufacturing a non-oriented electrical steel sheet will be described. 12 201139699 First, in the usual way, by adjusting the molten steel of the composition, the composition of the molten steel is made from the (new), the flat embryo is added, and the n-rolling is carried out. The temperature of the flat embryo heating is not In particular, it is limited to the formation of fine precipitates, for example, 95 〇. (:: For the sake of suppression, the thickness of the hot-rolled sheet obtained by hot rolling (4) is not specially made, = about 0.8 mm to 3.0 mm. The receiver 'anneals the hot-rolled sheet as needed (hot-rolled sheet annealing). By performing hot-rolled sheet annealing to increase the magnetic flux density, the hysteresis loss can be reduced. The temperature of the annealing of the secret plate is not particularly limited, for example, , (a) just. c is around. After 'following The thickness of the cold-rolled sheet obtained by cold rolling is not particularly limited, but is preferably a high-frequency magnetic property, for example, a thickness as thin as about 0.1 mm to 0.35 mm. When the thickness is more than 0.35 mm, the eddy current loss becomes large, and the high-frequency iron loss is liable to be deteriorated. Further, when the thickness of the cold-rolled sheet is less than 〇.lmm, the productivity is liable to decrease. After the cold emulsion is delayed, the cold-rolled sheet is used. Degreasing and recrystallization annealing to grow crystal grains. In the recrystallization annealing, for example, continuous annealing is performed. The annealing temperature is not particularly limited, and is, for example, 80 Å. (: ~1100. (: Left and right. The particle size of the crystal grains after annealing is preferably 3 〇 μηι 丨 2 〇 μ η η 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Then, an insulating film of an insulating film is formed by coating and baking a predetermined coating liquid, and for example, an organic insulating film, an inorganic insulating film, or a mixed insulating film containing an inorganic substance and an organic substance is formed. Directionality 13 201139699 The non-oriented electrical steel sheet produced by the company is processed at the customer's end after shipment. For example, it is stamped into a core shape, laminated, and shrink-fit, and is about 700 ° C to 800 ° C. The stress relief annealing, etc. The iron core of the motor can be formed by the series of processes. In addition, the non-oriented electrical steel sheet which is not subjected to stress relief annealing after lamination is called a fu tj process material. The non-oriented electrical steel sheet subjected to the stress relief annealing is referred to as a semi process material. [Examples] Next, an experiment conducted by the inventors of the present invention will be described. The conditions of the experiments and the like are used to confirm the implementation possibilities and effects of the present invention. The invention is not limited by the examples. First, a molten steel containing a surface and a component shown in Table 2, and the remainder consisting of Fe and unavoidable impurities was produced using a laboratory vacuum furnace, and the molten steel was cast to obtain a crude steel. The numerical values in the form of bold lines indicate that the value is outside the scope of the invention. Next, hot rolling of the crude steel was carried out to obtain a hot rolled sheet having a thickness of 2 mm. Thereafter, the N2 gas ambient gas towel was reduced by IGGGt; U minutes. Then, pickling and cold rolling were carried out to obtain a cold-rolled sheet having a thickness of 0.30 mm. Then, recrystallization annealing is carried out in a mixed gas atmosphere of 5% by volume of gas and 50% of N2 gas. The recrystallization annealing roll was subjected to a soaking treatment for 3 G seconds. Thereafter, the steel sheet after recrystallization annealing was punched into a sample having a side length of just _. 14 201139699 [Table 1] Sample No. Component (% by mass) Preparation C Cr Si A1 Μη SNW Mo Ti Nb V Zr 1 0.0005 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 Inventive Example 2 0.0058 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 Inventive Example 3 0.0062 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 Comparative Example 4 0.0095 2.1 2.3 1.2 0.6 0.001 0.0014 0.004 0.01 0.004 0.002 0.001 0.0006 Comparative Example 5 0.0035 0.2 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 Comparative Example 6 0.0035 0.4 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 Inventive Example 7 0.0035 1.6 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 Inventive Example 8 0.0035 5.0 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 Inventive Example 9 0.0035 5.4 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 Comparative Example 10 0.0035 8.5 1.9 1.4 0.1 0.003 0.0005 0.005 0.001 0.002 0.0002 0.005 0.0003 Comparative Example 11 0.0057 2.5 3.2 0.7 0.2 0 .0002 0.0014 0.0001 0.0003 0.0001 0 0.0001 0 Comparative Example 12 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.0003 0.0003 0.0001 0 0.0001 0 Inventive Example 13 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.0005 0.0003 0.0001 0 0.0001 0 Inventive Example 14 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.006 0.0003 0.0001 0 0.0001 0 Inventive Example 15 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.010 0.0003 0.0001 0 0.0001 0 Inventive Example 16 0.0057 2.5 3.2 0.7 0.2 0.0002 0.0014 0.013 0.0003 0.0001 0 0.0001 0 Comparative Example 17 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.0008 0.0001 0.004 0.0001 0.0001 Inventive Example 18 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.0012 0.0001 0.004 0.0001 0.0001 Inventive Example 19 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.003 0.0001 0.004 0.0001 0.0001 Inventive Example 20 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.020 0.0001 0.004 0.0001 0.0001 Inventive Example 21 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.030 0.0001 0.004 0.0001 0.0001 Inventive Example 22 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.033 0.0001 0.004 0.0001 0.0001 Comparative Example 23 0.0042 5.0 1.5 0.4 0.5 0.002 0.0027 0.003 0.05 0.0001 0.004 0.0001 0.0001 Comparative Example 24 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0003 0.0001 0.003 0.002 Inventive Example 25 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0007 0.0001 0.003 0.002 Inventive Example 26 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0032 0.0001 0.003 0.002 Inventive Example 27 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0069 0.0001 0.003 0.002 Inventive Example 28 0.0038 1.1 3.3 2.5 1.4 0.002 0.0011 0.01 0.02 0.0074 0.0001 0.003 0.002 Comparative Example 29 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0001 0 0.001 Inventive Example 30 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0002 0 0.001 Inventive Example 31 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0020 0 0.001 Inventive Example 32 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0040 0 0.001 Inventive Example 33 0.0015 1.6 2.8 0.6 0.1 0.001 0.003 0.0007 0.005 0.003 0.0045 0 0.001 Comparative Example 34 0.0051 0. 5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0003 0.001 Inventive Example 35 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0005 0.001 Inventive Example 36 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0021 0.001 Inventive Example 37 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0049 0.001 Inventive Example 38 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0056 0.001 Comparative Example 39 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0001 Inventive Example 40 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0003 Inventive Example 41 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0015 Inventive Example 42 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0028 Inventive Example 43 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.002 0.0028 Inventive Example 44 0.0051 0.5 4.0 1.7 0.3 0.001 0.0004 0.001 0.01 0.002 0.0007 0.0001 0.0035 Comparative Example 15 201139699 % The present invention EXAMPLES OF THE INVENTION Example of the invention Example of the invention Example of the invention ¢3 〇0.0002 ο ο 0.0001 0.003 REM 〇ο ο ο 0.0005 〇〇0.0002 0.0002 g ο ο 0.0001 0.0002 0.0002 CN 0.0001 0.0001 〇0.0001 κη Ο Ο Ο 0.0001 0.0002 〇5 0.0005 Ο 0.0001 0.0001 〇N 0.0028 0.0028 0.0028 0.0028 0.0028 0.0028 > 0.002 0.002 0.002 0.002 0.002 0.002 Ingredients (% by mass) 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.002 0.002 0.002 0.002 0.002 0.002 〇〇〇ο ο ο ο 1—Η ο ο ο ο ο 0.001 0.001 0.001 0.001 0.001 0.001 Z 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 C/3 0.001 0.001 0.001 0.001 0.001 0.001 CS Ο ο ο ro d rn <t^; Λ Λ p — ρ ο — ρ — ρ Inch _ ρ — ύ Ο ο ιη υ 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 ζ· 201139699 In addition, the iron loss and magnetic flux density of each sample were measured. The iron loss was measured at an iron loss (W10/400) at a frequency of 400 Hz and a maximum magnetic flux density of 1.0T. Further, the average value of the value at the time of magnetization in the rolling direction and the value in the direction perpendicular to the direction (plate width direction) was calculated. Further, the magnetic flux density was measured at a magnetic flux density (B50) at a frequency of 50 Hz and a maximum magnetization of 5000 A/m. These results are shown in Table 3, “Before Heat Treatment”. After the iron loss and the magnetic flux density were measured, annealing was performed at 450 ° C for 2 hours in an N 2 gas atmosphere. Further, the iron loss and the magnetic flux density of each sample were measured again. The results are shown in the "After Heat Treatment" column of Table 3. 17 201139699 [Table 3] Sample No Heat treatment after lean heat treatment Preparation W10/400 (W/kg) B50(T) W10/400(W/kg) B50(T) 1 13.4 1.665 13.4 1.665 Inventive Example 2 13.4 1.664 13.4 1.664 Inventive Example 3 13.5 1.662 14.3 1.661 Comparative Example 4 13.7 1.660 15.9 1.657 Comparative Example 5 15.9 1.687 15.9 1.687 Comparative Example 6 14.6 1.687 14.6 1.687 Inventive Example 7 13.9 1.635 13.9 1.635 Inventive Example 8 12.6 1.570 12.7 1.567 Inventive Example 9 12.6 1.569 13.6 1.565 Comparative Example 10 11.9 1.541 14.9 1.536 Comparative Example 11 13.1 1.627 15.7 1.627 Comparative Example 12 13.1 1.627 13.4 1.627 Inventive Example 13 13.1 1.627 13.3 1.627 Inventive Example 14 13.1 1.627 13.2 1.627 Inventive Example 15 13.2 1.627 13.2 1.627 The present invention Example 16 14.1 1.627 14.1 1.627 Comparative Example 17 13.5 1.602 13.7 1.598 Inventive Example 18 13.5 1.602 13.7 1.602 Inventive Example 19 13.5 1.602 13.7 1.602 Inventive Example 20 13.5 1.602 13.7 1.602 Inventive Example 21 13.5 1.602 13.6 1.602 Inventive Example 22 14.3 1.603 14.3 1.600 Comparative Example 23 16.7 1.604 16.7 1.599 Comparative Example 24 12.6 1.611 12.8 1.608 EXAMPLE 25 12.6 1.611 12.8 1.611 Inventive Example 26 12.6 1.611 12.8 1.611 Inventive Example 27 12.7 1.611 12.8 1.611 Inventive Example 28 13.1 1.612 13.6 1.612 Comparative Example 29 13.4 1.639 13.5 1.636 Inventive Example 30 13.4 1.639 13.5 1.639 Inventive Example 31 13.4 1.639 13.5 1.639 Inventive Example 32 13.5 1.639 13.5 1.639 Inventive Example 33 14.8 1.640 14.8 1.640 Comparative Example 34 10.9 1.621 11.0 1.619 Inventive Example 35 10.9 1.621 10.9 1.621 Inventive Example 36 10.9 1.621 10.9 1.621 Inventive Example 37 10.9 1.621 10.9 1,621 Inventive Example 38 11.5 1.621 11.5 1.621 Comparative Example 39 10.9 1.595 11.0 1.595 Inventive Example 40 10.9 1.595 10.9 1.595 Inventive Example 41 10.9 1.595 10.9 1.595 Inventive Example 42 10.9 1.595 10.9 1.595 Inventive Example 43 10.9 1.595 10.9 1.595 The present invention Example 44 11.3 1.595 11.3 1.595 Comparative Example 45 10.9 1.602 10.9 1.602 Inventive Example 46 10.9 1.605 10.9 1.605 Inventive Example 47 10.9 1.604 10.9 1.604 Inventive Example 48 10.9 1.607 10.9 1.607 Inventive Example 49 10.9 1.611 10.9 1.611 Inventive Example 50 10.9 1.601 10.9 1.601 this Inventive Example 18 201139699 As shown in Table 3, the samples No. 1 to No. 2, Ν〇.6 to Ν〇.8, Ν〇·12~Ν〇.15, Ν〇.17~Ν to which the scope of the present invention belongs are shown. 〇·21, Ν〇.24~Ν〇.27,

No.29~No.32 'No.34~No.37 'No.39~No.43 ' ^Νο.45~Νο.5〇 中,於熱處理前後可得低鐵損。換言之,於熱處理前,因 可得充分大小之結晶粒故可得低鐵損,於熱處理後,藉由 抑制Cr糸碳化物之析出專可維持低鐵損。此外,由試料 No_43與試料Νο·45〜Νο·50之比較結果,可知於含有選自於 由Cu、Sn、Ni、Sb、REM及Ca所構成之群之至少一種時, 將提升磁束密度。 另一方面,試料No_3〜No_4中,因C含量過高,隨著熱 處理多量之碳化物析出’鐵損之劣化係為顯著。試料N〇.5 中’因Cr含量過低,故鐵損大。試料No.9〜No.10中,因Cr 含量過南’隨著熱處理多量之Cr系碳化物析出,鐵損之劣 化係為顯著。試料No.ll中,因W含量過低,隨著熱處理多 量之Cr系碳化物析出,鐵損之劣化係為顯著。試料No.16中, 因W含量過高,故鐵損大。試料No.22〜No.23中,因Mo含量 過咼,故鐵損大。試料No.28中,因Ti含量過高,故鐵損大。 試料No.33中’因Nb含量過高’故鐵損大。試料N〇38中, 因V含量過高,V系碳化物析出過剩,再結晶退火之結晶粒 的成長受到阻礙’相較於V以外之成分相同的試料 1^〇.34〜]^〇.37,鐵損變高。試料]^〇_44中,因21'含量過高,No.29~No.32 'No.34~No.37 'No.39~No.43 ' ^Νο.45~Νο.5〇 Low iron loss can be obtained before and after heat treatment. In other words, before the heat treatment, a low iron loss can be obtained because a sufficient size of crystal grains can be obtained, and after the heat treatment, low iron loss can be maintained by suppressing the precipitation of Cr糸 carbide. Further, as a result of comparison between the sample No. 43 and the sample Νο·45~Νο·50, it is understood that the magnetic flux density is increased when at least one selected from the group consisting of Cu, Sn, Ni, Sb, REM, and Ca is contained. On the other hand, in the samples No. 3 to No. 4, since the C content was too high, a large amount of carbide precipitated with heat treatment showed a significant deterioration in iron loss. In the sample N〇.5, the iron loss is large because the Cr content is too low. In sample No. 9 to No. 10, since the Cr content was too south, a large amount of Cr-based carbide was precipitated, and the deterioration of iron loss was remarkable. In the sample No. 11, when the W content was too low, a large amount of Cr-based carbide was precipitated, and the deterioration of the iron loss was remarkable. In sample No. 16, since the W content was too high, the iron loss was large. In samples No. 22 to No. 23, since the Mo content was too high, the iron loss was large. In sample No. 28, since the Ti content was too high, the iron loss was large. In sample No. 33, the iron loss was large because the Nb content was too high. In the sample N〇38, since the V content is too high, the V-based carbide precipitates excessively, and the growth of the crystal grains which are recrystallized and annealed is hindered as a sample which is the same as the component other than V. 1^〇.34~]^〇. 37, the iron loss becomes high. In the sample]^〇_44, because the 21' content is too high,

Zr系碳化物析出過剩,再結晶退火之結晶粒的成長受到阻 礙’相較於Zr以外之成分相同的試料Νο·39〜N〇 43,鐵損變 高。另外,試料No.38及No.44之鐵損本身雖較一部分之本 19 201139699 發明例低,但未能得到合乎含量之效果,成本上升顯著。 又,如表3所示,於僅W含量相異之試料No.11〜No.16 之間,W含量小於本發明範圍之下限的試料No.11中,伴隨 熱處理之鐵損劣化係為顯著。由此可知,W可抑制伴隨熱 處理之鐵損的劣化。又,W含量低之試料No.30〜No.32中, 因亦含有適量之Mo、Ti及Nb,故伴隨熱處理之鐵損的劣化 幾乎受到抑制。由此可知,於含有預定量之Mo、Ti及Nb時, 效果特別大。此外,試料Νο·34〜No.37、及Νο.39〜Νο·43*, 因含有適量之V及Zr,故鐵損特別低。 產業上之可利用性 本發明可使用於例如,電磁鋼板製造產業及電磁鋼板 利用產業。 t圖式簡單說明3 (無) 【主要元件符號說明】 (無) 20Zr-based carbides are excessively precipitated, and the growth of crystal grains which are recrystallized and annealed is hindered. The sample having the same composition as that of Zr is Νο·39~N〇, and the iron loss is high. Further, although the iron loss of the samples No. 38 and No. 44 was lower than that of the invention example of the present invention, the cost was not significantly improved, and the cost was significantly increased. Further, as shown in Table 3, in Sample No. 11 in which the W content differs only between samples No. 11 to No. 16 in which the W content is different, and the W content is less than the lower limit of the range of the present invention, the iron loss deterioration accompanying the heat treatment is remarkable. . From this, it is understood that W can suppress deterioration of iron loss accompanying heat treatment. Further, in samples No. 30 to No. 32 having a low W content, since an appropriate amount of Mo, Ti, and Nb were also contained, deterioration of iron loss accompanying heat treatment was almost suppressed. From this, it is understood that the effect is particularly large when a predetermined amount of Mo, Ti, and Nb are contained. In addition, the samples Νο·34~No.37, and Νο.39~Νο·43* have extremely low iron loss because they contain an appropriate amount of V and Zr. Industrial Applicability The present invention can be applied to, for example, the electromagnetic steel sheet manufacturing industry and the electromagnetic steel sheet utilization industry. t diagram simple description 3 (none) [main component symbol description] (none) 20

Claims (1)

201139699 七、申請專利範圍: 1. 一種無方向性電磁鋼板,其特徵在於,含有: Cr : 0.3質量%〜5.3質量% ; Si : 1.5質量%〜4質量% ; ' A1 : 0.4質量%〜3質量% ;及 W : 0.0003 質量%〜0.01 質量0/〇, C含量係0.006質量%以下,Μη含量係1.5質量%以 下,S含量係0.003質量%以下,Ν含量係0.003質量%以 下,且剩餘部分係由Fe及不可避免的雜質所構成。 2. 如申請專利範圍第1項之無方向性t磁鋼板,其更含有 選自於由Mo : 0.001質量%~0.03質量°/〇、Ti : 0.0005質量 %〜0.007質量%、及Nb : 0.0002質量%〜0.004質量%所構 , 成之群之至少一種。 3. 如申請專利範圍第1項之無方向性電磁鋼板,其更含有 選自於由V : 0·0005質量%〜0.005質量%、Zr : 0.0003質 量%~0.003 質量%、Cu : 0.001 質量。〜0.2 質量%、Sn : 0.001質量%〜0.2質量%、Ni : 0.001質量%〜0.2質量%、 Sb : 0.001質量%〜0.2質量%、稀土元素:0.0002質量 %〜0.004質量%、及Ca : 0.0005質量%〜0.006質量%所構 成之群之至少一種。 4. 如申請專利範圍第2項之無方向性電磁鋼板,其更含有 選自於由V : 0.0005質量%〜0.005質量。/。、Zr : 0.0003質 量%〜0.003質量%、Cu : 0.001質量°/。〜0.2質量%、Sn : 0.001質量%〜0.2質量%、Ni : 0.001質量%〜0.2質量%、 21 201139699 Sb : 0.001質量%〜0.2質量%、稀土元素:0.0002質量 %〜0.004質量%、及Ca : 0.0005質量%〜0.006質量%所構 成之群之至少一種。 22 201139699 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。(無) (二) 本代表圖之元件符號簡單說明: (無) 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201139699 VII. Patent application scope: 1. A non-oriented electrical steel sheet characterized by comprising: Cr: 0.3% by mass to 5.3% by mass; Si: 1.5% by mass to 4% by mass; 'A1: 0.4% by mass to 3 % by mass; and W: 0.0003% by mass to 0.01 mass 0/〇, C content is 0.006 mass% or less, Μη content is 1.5 mass% or less, S content is 0.003 mass% or less, and cerium content is 0.003 mass% or less, and the remainder Part of it consists of Fe and unavoidable impurities. 2. The non-oriented t-magnetic steel sheet according to item 1 of the patent application is further selected from the group consisting of Mo: 0.001% by mass to 0.03 mass%/〇, Ti: 0.0005 mass% to 0.007 mass%, and Nb: 0.0002 It is composed of at least one of mass% to 0.004% by mass. 3. The non-oriented electrical steel sheet according to claim 1, further comprising V: 0.0001 mass% to 0.005 mass%, Zr: 0.0003 mass% to 0.003 mass%, and Cu: 0.001 mass. ~0.2% by mass, Sn: 0.001% by mass to 0.2% by mass, Ni: 0.001% by mass to 0.2% by mass, Sb: 0.001% by mass to 0.2% by mass, rare earth elements: 0.0002% by mass to 0.004% by mass, and Ca: 0.0005 At least one of the groups consisting of % by mass to 0.006 mass%. 4. The non-oriented electrical steel sheet according to claim 2, further comprising a mass selected from the group consisting of V: 0.0005 mass% to 0.005 mass. /. Zr: 0.0003% by mass to 0.003 mass%, and Cu: 0.001 mass%/. ~0.2% by mass, Sn: 0.001% by mass to 0.2% by mass, Ni: 0.001% by mass to 0.2% by mass, 21 201139699 Sb: 0.001% by mass to 0.2% by mass, rare earth element: 0.0002% by mass to 0.004% by mass, and Ca : at least one of the group consisting of 0.0005 mass% to 0.006 mass%. 22 201139699 IV. Designated representative map: (1) The representative representative of the case is: ( ). (None) (2) A brief description of the symbol of the representative figure: (none) 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW100106011A 2010-02-25 2011-02-23 Non - directional electromagnetic steel plate TWI398530B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039867 2010-02-25

Publications (2)

Publication Number Publication Date
TW201139699A true TW201139699A (en) 2011-11-16
TWI398530B TWI398530B (en) 2013-06-11

Family

ID=44506735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106011A TWI398530B (en) 2010-02-25 2011-02-23 Non - directional electromagnetic steel plate

Country Status (8)

Country Link
US (1) US8591671B2 (en)
EP (1) EP2540853B1 (en)
JP (1) JP4860783B2 (en)
KR (1) KR101302895B1 (en)
CN (1) CN102753718A (en)
BR (1) BR112012021177B1 (en)
TW (1) TWI398530B (en)
WO (1) WO2011105327A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468533B (en) * 2012-05-31 2015-01-11 Nippon Steel & Sumitomo Metal Corp Non - directional electromagnetic steel plate
TWI504762B (en) * 2011-09-27 2015-10-21 Jfe Steel Corp Non - directional electromagnetic steel plate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177684A (en) * 2013-03-15 2014-09-25 Jfe Steel Corp Nonoriented electromagnetic steel sheet excellent in high frequency iron loss property
CN104152800A (en) * 2014-08-07 2014-11-19 河北钢铁股份有限公司 Low-magnetic-anisotropy non-oriented silicon steel plate and preparation technology thereof
CR20170156A (en) * 2014-10-20 2017-09-22 Arcelormittal METHOD OF PRODUCTION OF LEAF CONTAINING A SILICON STEEL SHEET OF NON-ORIENTED GRAIN, STEEL SHEET OBTAINED AND USE OF THIS.
WO2016175121A1 (en) * 2015-04-27 2016-11-03 新日鐵住金株式会社 Non-oriented magnetic steel sheet
MX2018007972A (en) 2015-12-28 2018-11-09 Jfe Steel Corp Non-oriented electromagnetic steel sheet and method for producing non-oriented electromagnetic steel sheet.
KR101892231B1 (en) 2016-12-19 2018-08-27 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
WO2020091039A1 (en) * 2018-11-02 2020-05-07 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293043A (en) 1988-09-30 1990-04-03 Nkk Corp Tool steel for molding plastics
JPH06108149A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Production of nonoriented silicon steel sheet extremely excellent in core loss after consumer annealing
US5783143A (en) * 1994-02-18 1998-07-21 Handa; Takuo Alloy steel resistant to molten zinc
JP4018790B2 (en) * 1998-02-10 2007-12-05 新日本製鐵株式会社 Non-oriented electrical steel sheet for high frequency and manufacturing method thereof
JP4068731B2 (en) 1998-10-07 2008-03-26 新日本製鐵株式会社 High grade non-oriented electrical steel sheet and manufacturing method thereof
JP4288811B2 (en) 2000-01-20 2009-07-01 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP3488173B2 (en) 2000-04-04 2004-01-19 新日本製鐵株式会社 Cr-containing thin steel sheet excellent in ridging resistance and method for producing the same
WO2001098550A1 (en) 2000-06-19 2001-12-27 Nkk Corporation Non-oriented electromagnetic steel sheet and method for production thereof
JP2002212689A (en) 2001-01-22 2002-07-31 Nkk Corp Silicon steel sheet
JP4622162B2 (en) * 2000-06-19 2011-02-02 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP2002212688A (en) 2001-01-22 2002-07-31 Nkk Corp Nonoriented silicon steel sheet
JP2002241907A (en) 2001-02-19 2002-08-28 Kawasaki Steel Corp Monoriented silicon steel sheet having excellent high frequency magnetic property and blanking workability
JP4613436B2 (en) 2001-04-02 2011-01-19 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP4852804B2 (en) 2001-07-13 2012-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet
JP3835227B2 (en) 2001-09-21 2006-10-18 住友金属工業株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP3952762B2 (en) 2001-12-11 2007-08-01 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent iron loss and caulking properties
JP2003247052A (en) 2001-12-19 2003-09-05 Jfe Steel Kk Nonoriented silicon steel sheet having excellent high frequency property
JP3947964B2 (en) 2002-02-26 2007-07-25 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
CA2507970C (en) 2002-12-24 2011-05-10 Jfe Steel Corporation Fe-cr-si based non-oriented electrical steel sheet and method for producing the same
US20050000596A1 (en) 2003-05-14 2005-01-06 Ak Properties Inc. Method for production of non-oriented electrical steel strip
EP1816226B1 (en) 2004-11-04 2011-04-13 Nippon Steel Corporation Non-oriented electrical steel sheet superior in core loss.
KR100973627B1 (en) 2005-07-07 2010-08-02 수미도모 메탈 인더스트리즈, 리미티드 Non-oriented electromagnetic steel sheet and process for producing the same
JP4415932B2 (en) 2005-12-13 2010-02-17 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet for rotor
CN101466851B (en) 2006-06-16 2012-08-22 新日本制铁株式会社 Method of manufacturing high intensity electromagnetic steel plate
JP4510911B2 (en) 2008-07-24 2010-07-28 新日本製鐵株式会社 Method for producing high-frequency non-oriented electrical steel slabs
CN101603145B (en) * 2009-07-28 2011-12-07 首钢总公司 Method for manufacturing high-efficiency non-oriented electrical steel for motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504762B (en) * 2011-09-27 2015-10-21 Jfe Steel Corp Non - directional electromagnetic steel plate
US9466411B2 (en) 2011-09-27 2016-10-11 Jfe Steel Corporation Non-oriented electrical steel sheet
TWI468533B (en) * 2012-05-31 2015-01-11 Nippon Steel & Sumitomo Metal Corp Non - directional electromagnetic steel plate

Also Published As

Publication number Publication date
KR101302895B1 (en) 2013-09-06
CN102753718A (en) 2012-10-24
US8591671B2 (en) 2013-11-26
JP4860783B2 (en) 2012-01-25
WO2011105327A1 (en) 2011-09-01
EP2540853A4 (en) 2013-10-30
BR112012021177B1 (en) 2018-06-05
US20120321502A1 (en) 2012-12-20
KR20120099533A (en) 2012-09-10
TWI398530B (en) 2013-06-11
JPWO2011105327A1 (en) 2013-06-20
BR112012021177A2 (en) 2016-05-17
EP2540853A1 (en) 2013-01-02
EP2540853B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
CN110573643B (en) Non-oriented electromagnetic steel sheet
TW201139699A (en) Non-oriented magnetic steel sheet
JP5756862B2 (en) Oriented electrical steel sheet excellent in magnetism and method for producing the same
TWI445828B (en) High strength non - directional electromagnetic steel plate
JP6870687B2 (en) Non-oriented electrical steel sheet
TW201233813A (en) Process for production of non-oriented electromagnetic steel sheet
JP5429411B1 (en) Non-oriented electrical steel sheet
JP2019508574A (en) Non-oriented electrical steel sheet and method of manufacturing the same
WO2017111548A1 (en) Non-directional electrical steel sheet and method for manufacturing same
JP2020503444A (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN108699621A (en) The manufacturing method of orientation electromagnetic steel plate
TW201319269A (en) Non-oriented electromagnetic steel sheet, method for producing same, laminate for motor iron core, and method for producing said laminate
WO2018117643A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
TW201443248A (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
WO2017111509A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP6724712B2 (en) Non-oriented electrical steel sheet
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
KR101892231B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP6624393B2 (en) Non-oriented electrical steel sheet with excellent recyclability
JP7273945B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20160078081A (en) Non-orinented electrical steel sheet and method for manufacturing the same
US20220018002A1 (en) Non-oriented electrical steel sheet having superior magnetic properties and method of manufacturing same
WO2019132130A1 (en) Non-oriented electrical steel sheet and method for producing same
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP5768327B2 (en) Method for producing non-oriented electrical steel sheet with excellent high magnetic field iron loss