TW201139533A - Thermal conductive sheet - Google Patents

Thermal conductive sheet Download PDF

Info

Publication number
TW201139533A
TW201139533A TW100103577A TW100103577A TW201139533A TW 201139533 A TW201139533 A TW 201139533A TW 100103577 A TW100103577 A TW 100103577A TW 100103577 A TW100103577 A TW 100103577A TW 201139533 A TW201139533 A TW 201139533A
Authority
TW
Taiwan
Prior art keywords
conductive sheet
epoxy resin
thermally conductive
boron nitride
resin
Prior art date
Application number
TW100103577A
Other languages
Chinese (zh)
Other versions
TWI507464B (en
Inventor
Seiji Izutani
Hisae Uchiyama
Takahiro Fukuoka
Kazutaka Hara
Hitotsugu Hirano
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW201139533A publication Critical patent/TW201139533A/en
Application granted granted Critical
Publication of TWI507464B publication Critical patent/TWI507464B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Fluid Mechanics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A thermal conductive sheet containing a plate-like boron nitride particle, wherein the thermal conductivity in a direction perpendicular to the thickness direction of the thermal conductive sheet is 4 W/mK or more, and a glass transition point determined as the peak value of tan[delta] obtained by measuring a dynamic viscoelasticity of the thermal conductive sheet at a frequency of 10 Hz is 125 DEG C. or more.

Description

201139533 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種熱傳導性片材,詳細而言係關於一種 電力電子技術中使用之熱傳導性片材。 【先前技術】 近年來’於混合器件、高亮度LED(Light-Emitting Diode, 發光二極體)器件、電磁感應加熱器件等中,採用藉由半 導體70件轉換•控制電力之電力電子技術。電力電子技術 中,將大電流轉換成熱等,因此對配置於半導體元件附近 之材料要求較高之散熱性(高熱傳導性)。 例如,提出有含有板狀之氮化硼粉末及丙烯酸酯共聚合 樹脂之熱傳導片材(例如參照曰本專利特開2008-280496號 公報)。 曰本專利特開2008-280496號公報之熱傳導片材中,氮 化硼粉末係以其長轴方向(與氮化硼粉末之板厚正交之方 向著片材之厚度方向之方式配向,藉此提昇熱傳導性 片材之厚度方向之熱傳導性。 【發明内容】 然而,熱傳導性片材視用途及目的不同,有要求與厚度 方向正父之正交方向(面方向)上的較高熱傳導性之情形。 此時,曰本專利特開2〇〇8_28〇496號公報之熱傳導片材由 於氮化硼粉末之長軸方向相對於面方向而正交(交叉),故 有面方向之熱傳導性不充分之不良狀況。 又’此種熱傳導性片材例如係為傳導(擴散)由各種器件 153638.doc 201139533 所產生之熱而貼附於各種器件使用,因此要求不會因該熱 發生變形、自各種器件剝離之優異耐熱性(耐變形性)。 本發明之目的在於提供一種面方向之熱傳導性優異、進 而耐熱性亦優異之熱傳導性片材。 本發明之熱傳導性片材之特徵在於:其係含有板狀之氮 化蝴粒子者,並且上述熱傳導性片材之相對於厚度方向為 正交方向之熱傳導率為4 W/m.K以上,以1()赫茲之頻率進 行動態黏彈性測定時所得之以⑽之波峰值的形式求出之 玻璃轉移點為125。(:以上。 本發明之熱傳導性片材係、與厚度方向正交之面方向之熱 傳導性優異’進而耐熱性亦優異。 ,因此’本發明之熱傳導性片材可作為減少高溫下之變 形、抑制剝離、並且操作性優異且面方向之熱傳導性的熱 傳導性片材而用於各種散熱用途。 【實施方式】 本發明之熱傳導性片材含有氮化硼粒子。 八體而S ’熱傳導性片材含有氮㈣(BN)粒子作為必需 成分,進而含有例如樹脂成分。 氮化蝴粒子係形成為板狀(或鱗片狀),且於熱傳導性片 材中以配向於特定方向(下文將述)上之形態分散。 六氮化棚粒子之長邊方向長度(相對於板之厚度方向為正 方向之最大長度)之平均值例如為卜】㈣較佳為 ㈣。又,氮化硼粒子之長邊方向長度之平均值為$ ㈣以上’較佳為10㈣以上’進而佳為2〇叫以上,特佳 153638.doc 201139533 為30 μ„ι以上,最佳為40 μΓΏ以上,且通常例如為丨⑼以 下’較佳為90 μηι以下。 又,氮化硼粒子之厚度(板之厚度方向長度,即粒子之 短邊方向長度)之平均值例如為〇.〇丨〜2〇 μπι,較佳為〇丨〜15 μιη 〇 又,氮化硼粒子之縱橫比(長邊方向長度/厚度)例如為 2〜10000,較佳為1〇〜5000。 而且,氮化硼粒子之藉由光散射法測定之平均粒徑例如 為5 μιη以上,較佳為1〇 μηι以上,進而佳為2〇 以上特 佳為30 μηι以上,最佳為40 μηι以上,且通常為1〇〇 ^爪以 下。 再者,藉由光散射法測定之平均粒徑係利用動態光散射 式粒度分佈測定裝置測定之體積平均粒徑。 若氮化硼粒子之藉由光散射法測定之平均粒徑不滿足上 述範圍,則有熱傳導性片材變脆、操作性下降之情形。 又,氮化硼粒子之體積密度(JIS κ 51〇1,表觀密度)例 如為 0.3~1.5 g/cm3,較佳為 〇·5〜ΐ·〇 g/cm3。 又,氮化硼粒子可使用市售品或對其進行加工而成之加 工品。作為氮化硼粒子之市售品,例如可列舉:201139533 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to a thermally conductive sheet, and more particularly to a thermally conductive sheet used in power electronic technology. [Prior Art] In recent years, in a hybrid device, a high-brightness LED (Light-Emitting Diode) device, an electromagnetic induction heating device, and the like, a power electronic technology that converts and controls electric power by 70 pieces of a semiconductor is used. In the power electronics technology, since a large current is converted into heat or the like, high heat dissipation (high thermal conductivity) is required for a material disposed in the vicinity of the semiconductor element. For example, a heat conductive sheet containing a plate-like boron nitride powder and an acrylate copolymer resin has been proposed (for example, see Japanese Patent Laid-Open Publication No. 2008-280496). In the heat conduction sheet of Japanese Laid-Open Patent Publication No. 2008-280496, the boron nitride powder is aligned in the longitudinal direction of the sheet in the direction perpendicular to the thickness of the boron nitride powder. This improves the thermal conductivity in the thickness direction of the thermally conductive sheet. SUMMARY OF THE INVENTION However, the thermally conductive sheet has a high thermal conductivity in the orthogonal direction (surface direction) of the positive direction of the thickness direction depending on the purpose and purpose. In this case, the thermally conductive sheet of the Japanese Patent Laid-Open Publication No. Hei. No. 2-28-496 discloses the thermal conductivity in the plane direction because the long axis direction of the boron nitride powder is orthogonal (intersecting) with respect to the plane direction. Insufficient adverse conditions. Further, such a thermally conductive sheet is, for example, conductive (diffusion) applied to various devices by heat generated by various devices 153638.doc 201139533, and therefore is required not to be deformed by the heat, Excellent heat resistance (deformation resistance) which is peeled off from various devices. It is an object of the present invention to provide a heat conductive sheet which is excellent in thermal conductivity in the surface direction and further excellent in heat resistance. The thermally conductive sheet of the present invention is characterized in that it contains plate-shaped nitriding butterfly particles, and the thermally conductive sheet has a thermal conductivity of 4 W/mK or more in the direction orthogonal to the thickness direction, and is 1 () The frequency at which the frequency of Hertz is measured in the dynamic viscoelasticity, and the glass transition point obtained in the form of the peak value of (10) is 125. (: The above. The thermally conductive sheet of the present invention has a plane direction orthogonal to the thickness direction. The heat conductive sheet of the present invention can be used as a heat conductive sheet which is excellent in handleability and heat conductivity in the surface direction, and is excellent in heat resistance. [Embodiment] The thermally conductive sheet of the present invention contains boron nitride particles. The eight-body and S' thermally conductive sheet contains nitrogen (tetra) (BN) particles as an essential component, and further contains, for example, a resin component. The particle system is formed into a plate shape (or a scaly shape), and is dispersed in a form of a specific direction (described later) in the thermally conductive sheet. The average value of the length in the longitudinal direction (the maximum length in the positive direction with respect to the thickness direction of the sheet) is, for example, (4) preferably (4). Further, the average length of the long-side direction of the boron nitride particles is $ (four) or more' Preferably, it is 10 (four) or more and further preferably 2 〇 or more, especially 153638.doc 201139533 is 30 μ ι or more, preferably 40 μ ΓΏ or more, and is usually, for example, 丨 (9) or less 'preferably 90 μηι or less. The average value of the thickness of the boron nitride particles (the length in the thickness direction of the sheet, that is, the length in the short side direction of the particles) is, for example, 〇.〇丨2〇μπι, preferably 〇丨15 μιη 〇, boron nitride. The aspect ratio (length in the longitudinal direction/thickness) of the particles is, for example, 2 to 10,000, preferably 1 to 5,000. Further, the average particle diameter of the boron nitride particles measured by a light scattering method is, for example, 5 μm or more. Preferably, it is 1 〇μηι or more, and more preferably 2 〇 or more is preferably 30 μηι or more, most preferably 40 μηι or more, and usually 1 〇〇^ claw or less. Further, the average particle diameter measured by the light scattering method is a volume average particle diameter measured by a dynamic light scattering type particle size distribution measuring apparatus. When the average particle diameter of the boron nitride particles measured by the light scattering method does not satisfy the above range, the thermally conductive sheet becomes brittle and the workability is lowered. Further, the bulk density (JIS κ 51〇1, apparent density) of the boron nitride particles is, for example, 0.3 to 1.5 g/cm3, preferably 〇·5 to ΐ·〇 g/cm3. Further, as the boron nitride particles, commercially available products or processed products obtained by processing them can be used. As a commercial item of a boron nitride particle, the example is mentioned, for example:

Momentive Performance Materials Japan公司製造之「ρτ 系列(例如「pt-uo」等)、昭和電工公司製造之「sh〇bn UHP」系列(例如「SHoBNUHP-1」等)等。 樹脂成分係可分散氮化硼粒子者’即分散氮化硼粒子之 分散介質(基質例如可列舉熱硬化性樹脂成分、熱塑性 153638.doc 201139533 樹脂成分等樹脂成分。 作為熱硬化性樹脂成分,例如可列舉:環氧樹脂、熱硬 化性聚醯亞胺、酚樹爿a、腺樹脂、三聚氰胺樹脂、不飽和 聚酯樹脂、鄰苯二甲酸二烯丙酯樹脂、聚矽氧樹脂、熱硬 化性胺基甲酸酯樹脂等。 作為熱塑性樹脂成分’例如可列舉:聚烯烴(例如聚乙 烯、聚丙烯、乙烯-丙烯共聚物等)、丙烯酸系樹脂(例如聚 曱基丙稀酸曱醋等)、聚乙酸乙烯酯、乙烯-乙酸乙烯醋共 聚物、聚氣乙烯、聚苯乙烯、聚丙烯腈、聚醞胺(尼龍(註 冊商標))、聚碳酸酯、聚縮醛、聚對苯二甲酸乙二酯、聚 苯醚、聚苯硫醚、聚砜、聚醚砜、聚醚醚酮、聚烯丙基 砜、熱塑性聚醯亞胺、熱塑性胺基甲酸酯樹脂、多胺基雙 順丁烯二醯亞胺、聚醯胺醯亞胺、聚醚醯亞胺、雙順丁烯 二醯亞胺三啡樹脂、聚甲基戊烯、敦樹脂、液晶聚合物、 烯烴-乙烯醇共聚物、離子聚合物、聚芳酯、丙烯腈乙烯_ 苯乙稀共聚物、丙稀腈m乙稀共聚物、丙稀猜-苯 乙烯共聚物等。 該等樹脂成分可單獨使用或併用兩種以上。 熱硬化性樹脂成分中,較佳為列舉環氧樹脂。 環氧㈣於常溫下為液狀、半固體狀及固體狀之任 態。 具體而言’作為環氧樹脂,可列舉;例如雙酚型環氧樹 脂(例,雙盼A型環氧樹脂、雙紛F型環氧樹月旨、雙盼s型環 氧樹月日、氫化雙酹A型環氧樹脂、二聚酸改質雙齡型環氧 153638.doc 201139533 樹脂等)n㈣型環氧樹脂(例如苯㈣料漆型環氧 樹脂、尹_清漆型環氧樹脂、聯苯型環氧樹脂等)、 ::里衣氧樹月日、苐型環氧樹脂(例如雙芳基苐型環氧樹脂 等)一苯基甲烷型環氧樹脂(例如三羥基苯基甲烷型環氧 樹脂等)等芳香族系環氧樹脂,例如異氰尿酸三環氧丙醋 (異氰尿酸三縮水甘油㈤、乙内㈣環氧樹脂等含氮環之 環氧樹脂,例如脂肪族型環氧樹脂,例如脂環式環氧樹腊 (例如一核型環氧樹脂等),例如縮水甘油基醚型環氧樹 脂,例如縮水甘油基胺型環氧樹脂等。 該等環氧樹脂可單獨使用或併用兩種以±。 又,%氧樹脂之環氧當量例如為100〜1〇〇〇 g/e一,較 佳為180〜700 g/eqiv.,軟化溫度(環球法)例如為80t以下 (具體而言為20,,較佳為7〇t以下(具體 35~70°〇 〇 又,環氧樹脂之於80t下之熔融黏度例如為1〇〜2〇〇〇〇 mPa.s,較佳為50~10000 mPa.s。於併用兩種以上之環氧樹 夺將該荨之混合物之熔融黏度設定於上述範圍内。 _於併用兩種以上之環氧樹脂時,例如可列舉液狀之 魏樹脂及固體狀之環氧樹脂之組合,進而佳為列舉液狀 ,芳香族系環氧樹脂及㈣狀之料族㈣氧樹脂之組合 等作為此種組合,具體可列舉:液狀之雙紛型環氧樹脂 及固體狀之二苯基曱烷型環氧樹脂之組合、或液狀之雙酚 型锿氧樹脂及固體狀之雙酚型環氧樹脂之組合。 又’作為環氧樹脂,車交佳為列舉半固體狀之環氧樹脂之 153638.doc 201139533 單獨使用,進而佳為列舉半固體狀之芳香族系環氧樹脂之 單獨使用《作為此種環氧樹脂,更具體可列舉半固體狀之 第型環氧樹脂。 若為液狀之環氧樹脂及固體狀之環氧樹脂之組合、或半 固體狀之環氧樹脂,則可提高熱傳導性片材之階差追隨性 (下文將述)。 又’藉由將性狀互不相同之複數種環氧樹脂組合,可將 玻璃轉移溫度設定於所欲範圍。 又,於併用兩種以上之環氧樹脂時,同時具有軟化溫度 例如未達45t、較佳為饥以下之第1環氧樹脂與軟化溫 度例如為45°C以上、較佳為饥以上之第2環氧樹脂。藉 此,可將樹脂成分(混合物)之動黏度(依據JIs κ 7233,下 文將述)設定於所欲範圍,可提高熱傳導性片材之階差追 隨性。 又’可使環氧樹脂中含有例如硬化劑及硬化促進劑,而 製備成環氧樹脂組合物。 硬化劑係可藉由加熱使環氧樹脂硬化之潛在性硬化劑 (環氧樹脂硬化劑),例如可列舉咪唑化合物、胺化合物、 酸酐化合物、醯胺化合物、醯拼化合物、咪㈣化合物 等又,除上述以外,亦可列舉齡化合物、脈化合物、多 硫化物化合物等。 作為啼唾化合物’例如可列舉:2·苯基咪唑、2-甲基咪 坐2-乙基曱基咪唑、2-苯基·4_曱基-5-羥基曱基咪唑 等。 153638.doc 201139533 作為胺化合物,可列舉:例 =胺、三伸乙基,—胺例伸, 二:基曱院'二胺基二苯基硬等芳香族。 =鄰苯二甲酸"基耐地W.二二基- 烯基琥珀酸酐、二氯琥珀酸 _ 茵酸酐等。 —本甲_四幾酸二肝、氣 等作為酿胺化合物,例如可列舉二氛基二酿胺、聚酿胺 作為醜肼化合物,例如可列舉己二酸二醒拼等。 作為咪吐啉化合物’例如可列舉:甲基味唾啉、乙 土-4_甲基咪嗤啉、乙基咪唾啉、異丙基咪唾啉、2 4•二甲 坐:其苯輸琳、十,咪_、十七燒基:坐 琳、2-苯基-4-甲基咪唑啉等。 該等硬化劑可單獨使用或併用兩種以上。 作為硬化劑,較佳為列舉咪唑化合物。 作為硬化促進劑,可列舉:例如三伸乙基二胺— M,6-二甲基胺基甲基苯齡等三級胺化合物,例如三苯:· 膦、四苯基鐵四苯基硼酸鹽、四·正丁基鱗·〇,〇·二乙基: 硫代磷酸鹽等磷化合物,例如四級銨鹽化合物,例如= 金屬鹽化合物,例如該等之衍生物等。該等硬化促$ 單獨使用或併用兩種以上。 環氧樹脂組合物中之硬化劑之調配比例係相對於環氧樹 153638.doc 201139533 脂100質量份而為例如0.5〜50質量份,較佳為卜1〇質量 份,硬化促進劑之調配比例為例如〇」〜〗〇質量份,較佳為 0.2〜5質量份。 上述硬化劑及/或硬化促進劑視需要可製備成藉由溶劑 加以/谷解及/或分散之溶劑溶液及/或溶劑分散液而使用。 作為溶劑,可列舉··例如丙酮、甲基乙基_等酮類,例 如乙酸乙酯等酯類,例如N,N_二甲基甲醯胺等醯胺類等有 機溶劑等。又,作為溶劑’亦可列舉例如水,例如甲醇、 乙醇、丙醇、異丙醇等醇類等水系溶劑。作為溶劑,較佳 為列舉有機溶劑’進而佳為列舉酮類、醯胺類。 熱塑性樹脂成分中,較佳為列舉聚烯烴。 作為聚烯烴’較佳為列舉聚乙烯、乙烯-丙烯共聚物。 作為聚乙烯’例如可列舉低密度聚乙烯、高密度聚乙烯 等。 作為乙稀-丙婦共聚物’例如可列舉乙稀與丙稀之無規 共聚物、嵌段共聚物或接枝共聚物等。 該等聚烯烴可單獨使用或併用兩種以上。 又’聚浠煙之重量平均分子量及/或數量平均分子量例 如為1000〜10000 。 又,聚烯烴可單獨使用或併用複數種。 樹脂成分中’較佳為列舉熱硬化性樹脂成分,進而佳為 列舉環氧樹脂。 又,樹脂成分之藉由依據JIS K 7233(泡黏度計法)之動 黏度試驗(溫度:25t±〇.5°C,溶劑:丁基卡必醇,樹脂成 153638.doc 201139533 分(固體成分)濃度:40質量%)測定之動黏度例如為 0.22x10-4〜2.〇〇xl〇.4 m2/s,較佳為 〇 9 進而佳為。.4xHTW、2/se又,亦可將上述二二 设定為4例如 ο.22χ10·Μ·ο〇χ1(γ4 m2/s,較佳為 〇 3χΐ〇·4〜 0·9Χ10·4 m2/s,進而佳為 〇4χ1〇·4 〜〇 8χΐ〇·4 m2/s。 於樹脂成分之動黏度超出上述㈣時,有無法對熱傳導 性片材賦予優異之柔軟性及階差追隨性(下文將述)之情 形。另-方面,於樹脂成分之動黏度不滿足上述範圍時, 有無法使氮化删粒子配向於特定方向上之情形。 再者,依據JIS K 7233(泡黏度計法)之動黏度試驗中, 將樹脂成分樣品之泡之上升速度與標準樣品(動黏度已知) 之泡之上升速度進行比較,將上升速度—致之標準樣品之 動黏度判定為樹脂成分之動黏度,藉此測定樹脂成分之動 黏度。 而且,熱傳導性片材中,氮化硼粒子之體積基準之含有 比例(氮化硼粒子相對於固體成分即樹脂成分及氮化硼粒 子之總體積的體積百分率)例如為35體積%以上,較佳為6〇 體積❶/。以上’進而佳為75體積%以上,且通常例如為95體 積%以下,較佳為9〇體積。/c以下。 於氮化硼粒子之體積基準之含有比例不滿足上述範圍 時’有無法使氮化硼粒子於熱傳導性片材中配向於特定方 向上之情形。另一方面’於氮化硼粒子之體積基準之含有 比例超過上述範圍時,有熱傳導性片材變脆、操作性及階 差追隨性下降之情形。 153638.doc 201139533 又’氮化硼粒子相對於形成熱傳導性片材之各成分(氮 化棚粒子及樹脂成分)總量(固體成分總量)丨0 0質量份的質 量基準之調配比例為例如40〜95質量份,較佳為65〜90質量 份’樹脂成分相對於形成熱傳導性片材之各成分總量1〇〇 質量份的質量基準之調配比例為例如5〜6〇質量份,較佳為 10〜35質量份。再者,氮化硼粒子相對於樹脂成分} 〇〇質量 伤的質量基準之調配比例為例如6〇〜1900質量份,較佳為 185〜900質量份。 又,於併用兩種環氧樹脂(第丨環氧樹脂與第2環氧樹脂) 時,第1環氧樹脂相對於第2環氧樹脂之質量比例(第丨環氧. 樹脂之質量/第2環氧樹脂之質量)可根據各環氧樹脂(第1環 氧樹脂及第2環氧樹脂)之軟化溫度等適當設定,例如為 1/99〜99/1,較佳為 10/9〇〜9〇/1〇。 再者,樹脂成分中,除上述各成分(聚合物)以外,例如 含有聚合物前驅物(例如含有低聚物之低分子量聚合物等 及/或單體。 〇 ) 圖1表示本發明之熱傳導性片材之一實施形態之立體 圖,圖2表示用以說明圖丨所示之熱傳導性片材之製造方 的步驟圖。 ' 繼而,參照圖1及圖2對製造本發明之熱傳導性片材之一 貫施形態的方法加以說明。 該方法中,首先,以上述調配比例調配上述各成分,The "ρτ series (such as "pt-uo") manufactured by Momentive Performance Materials Japan, and the "sh〇bn UHP" series (such as "SHoBNUHP-1") manufactured by Showa Denko. The resin component is a dispersion medium in which boron nitride particles are dispersed, that is, a dispersion medium in which boron nitride particles are dispersed (for example, a resin component such as a thermosetting resin component or a thermoplastic resin 153638.doc 201139533 resin component). The thermosetting resin component is, for example, a thermosetting resin component. Examples thereof include epoxy resin, thermosetting polyimide, phenolic tree a, gland resin, melamine resin, unsaturated polyester resin, diallyl phthalate resin, polyoxyxylene resin, and thermosetting property. A urethane resin, etc. As a thermoplastic resin component, a polyolefin (for example, polyethylene, a polypropylene, an ethylene- propylene copolymer, etc.), and an acrylic resin (for example, poly- , polyvinyl acetate, ethylene-vinyl acetate copolymer, polyethylene, polystyrene, polyacrylonitrile, polyamine (nylon (registered trademark)), polycarbonate, polyacetal, polyterephthalic acid Ethylene glycol ester, polyphenylene ether, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyallylsulfone, thermoplastic polyimide, thermoplastic urethane resin, polyamine-based Acetylimine, polyamidimide, polyetherimine, bis-methyleneimine, a polymethylpentene, a resin, a liquid crystal polymer, an olefin-vinyl alcohol copolymer , ionic polymer, polyarylate, acrylonitrile ethylene styrene copolymer, acrylonitrile m ethylene copolymer, acryl guess-styrene copolymer, etc. These resin components may be used alone or in combination of two or more. The thermosetting resin component is preferably an epoxy resin. The epoxy (iv) is in a liquid state, a semi-solid state, or a solid state at normal temperature. Specifically, 'as an epoxy resin, for example, a double Phenol type epoxy resin (for example, double-presence A type epoxy resin, double F-type epoxy tree, double-span s-type epoxy tree, hydrogenated biguanide type A epoxy resin, dimer acid modification Double age epoxy 153638.doc 201139533 resin, etc.) n (four) type epoxy resin (such as benzene (four) paint type epoxy resin, Yin varnish type epoxy resin, biphenyl type epoxy resin, etc.), :: lichen oxygen Tree moon day, 苐 type epoxy resin (such as bisaryl fluorene type epoxy resin), phenylmethane type epoxy resin (such as trihydroxyl An aromatic epoxy resin such as a phenylmethane-based epoxy resin or the like, for example, an epoxy resin containing a nitrogen ring such as isocyanuric acid triglycidyl vinegar (triacetyl methacrylate (5), Bene (4) epoxy resin or the like For example, an aliphatic epoxy resin such as an alicyclic epoxy wax (for example, a mononuclear epoxy resin), for example, a glycidyl ether type epoxy resin such as a glycidylamine type epoxy resin or the like. The epoxy resin may be used singly or in combination of two. The epoxy equivalent of the % oxygen resin is, for example, 100 to 1 g/e, preferably 180 to 700 g/eqiv., and the softening temperature ( The ring and ball method is, for example, 80 t or less (specifically 20, preferably 7 〇 t or less (specifically 35 to 70 ° 〇〇, the melting viscosity of the epoxy resin at 80 t is, for example, 1 〇 to 2 〇〇) 〇〇mPa.s, preferably 50~10000 mPa.s. The melt viscosity of the mixture of the crucibles is set to be within the above range by using two or more kinds of epoxy trees in combination. When two or more kinds of epoxy resins are used in combination, for example, a combination of a liquid Wei resin and a solid epoxy resin is exemplified, and further, a liquid form, an aromatic epoxy resin, and a (four)-like material group are preferably listed (4) Specific examples of the combination of the oxygen resin and the like include a combination of a liquid double-type epoxy resin and a solid diphenylnonane type epoxy resin, or a liquid bisphenol type epoxy resin and A combination of solid bisphenol type epoxy resins. In addition, as an epoxy resin, it is 153638.doc 201139533 which is a semi-solid epoxy resin. It is also used as a semi-solid aromatic epoxy resin. More specifically, the resin may be a semi-solid first epoxy resin. In the case of a combination of a liquid epoxy resin and a solid epoxy resin or a semi-solid epoxy resin, the step followability of the thermally conductive sheet can be improved (described later). Further, by combining a plurality of types of epoxy resins having different properties from each other, the glass transition temperature can be set to a desired range. Further, when two or more kinds of epoxy resins are used in combination, the first epoxy resin having a softening temperature of, for example, less than 45 t, preferably not more than hunger, and the softening temperature are, for example, 45 ° C or higher, preferably hunger or higher. 2 epoxy resin. Thereby, the dynamic viscosity of the resin component (mixture) (according to JIs κ 7233, which will be described later) can be set to a desired range, and the step followability of the thermally conductive sheet can be improved. Further, an epoxy resin composition can be prepared by containing, for example, a curing agent and a curing accelerator in the epoxy resin. The hardener is a latent hardener (epoxy resin hardener) which can cure the epoxy resin by heating, and examples thereof include an imidazole compound, an amine compound, an acid anhydride compound, a guanamine compound, a ruthenium compound, and an amino (tetra) compound. In addition to the above, an ageing compound, a pulse compound, a polysulfide compound, and the like can also be mentioned. Examples of the oxime compound '2' are phenylimidazole, 2-methylmethane 2-ethylmercaptoimidazole, 2-phenyl-4-indolyl-5-hydroxyindenyl imidazole, and the like. 153638.doc 201139533 As the amine compound, there are mentioned, for example, an amine, a tri-ethyl group, an amine-extension, and a second: a thiophene-diaminodiphenyl hard aromatic. = phthalic acid " ketone-resistant W. di-diyl-alkenyl succinic anhydride, dichlorosuccinic acid _ phthalic anhydride and the like. The present invention is exemplified as a stimulating compound, and examples thereof include a di- aryl acetaminophen and a polystyrene as an ugly compound. Examples thereof include adipic acid awake and the like. Examples of the imidazoline compound include methyl sulphur porphyrin, ethion-4-methyl imiline, ethyl imiline, isopropyl imiline, and 2-4 dimethyl sit: Lin, ten, Mi _, seventeen base: sit Lin, 2-phenyl-4-methylimidazoline and so on. These hardeners may be used alone or in combination of two or more. As the hardener, an imidazole compound is preferably exemplified. Examples of the hardening accelerator include tertiary amine compounds such as tri-ethylenediamine-M,6-dimethylaminomethylphenanthrene, such as triphenyl: phosphine, tetraphenyl iron tetraphenylboronic acid Salt, tetra-n-butyl fluorene, hydrazine, diethyl ester: a phosphorus compound such as a thiophosphate, for example, a quaternary ammonium salt compound, for example, a metal salt compound, such as a derivative thereof. These hardenings are used alone or in combination of two or more. The blending ratio of the hardener in the epoxy resin composition is, for example, 0.5 to 50 parts by mass, preferably 1 part by mass, based on 100 parts by mass of the epoxy resin 153638.doc 201139533, and the blending ratio of the hardening accelerator For example, 〇" to 〇" by mass, it is preferably 0.2 to 5 parts by mass. The above-mentioned curing agent and/or curing accelerator may be used as a solvent solution and/or a solvent dispersion liquid which is subjected to / glutenization and/or dispersion by a solvent, if necessary. Examples of the solvent include ketones such as acetone and methylethyl group, and examples thereof include esters such as ethyl acetate, and organic solvents such as guanamine such as N,N-dimethylformamide. Further, examples of the solvent include water, and an aqueous solvent such as an alcohol such as methanol, ethanol, propanol or isopropanol. The solvent is preferably an organic solvent. Further, ketones and guanamines are preferred. Among the thermoplastic resin components, polyolefins are preferred. The polyolefin ' is preferably a polyethylene or an ethylene-propylene copolymer. Examples of the polyethylene' include low density polyethylene, high density polyethylene, and the like. The ethylene-propylene copolymer is exemplified by a random copolymer of ethylene and propylene, a block copolymer or a graft copolymer. These polyolefins may be used singly or in combination of two or more. Further, the weight average molecular weight and/or the number average molecular weight of the polythene cigarette is, for example, 1000 to 10,000. Further, the polyolefin may be used singly or in combination of plural kinds. The resin component is preferably a thermosetting resin component, and more preferably an epoxy resin. Further, the resin component was tested by dynamic viscosity according to JIS K 7233 (bubble viscosity meter method) (temperature: 25t ± 〇. 5 ° C, solvent: butyl carbitol, resin 153638.doc 201139533 (solid content) The concentration of the measured dynamic viscosity is, for example, 0.22 x 10-4 to 2. 〇〇 x l 〇 .4 m 2 / s, preferably 〇 9 and further preferably. .4xHTW, 2/se, or the above two two may be set to 4, for example, ο.22χ10·Μ·ο〇χ1 (γ4 m2/s, preferably 〇3χΐ〇·4~0·9Χ10·4 m2/ s, and further preferably 〇4χ1〇·4 〇8χΐ〇·4 m2/s. When the dynamic viscosity of the resin component exceeds the above (4), it is impossible to impart excellent flexibility and step followability to the heat conductive sheet (hereinafter In the case of the above-mentioned range, when the dynamic viscosity of the resin component does not satisfy the above range, the nitrided particles may not be aligned in a specific direction. Further, according to JIS K 7233 (bubble viscosity meter method) In the dynamic viscosity test, the rising speed of the bubble of the resin component sample is compared with the rising speed of the bubble of the standard sample (the known dynamic viscosity), and the moving viscosity of the standard sample is determined as the dynamic viscosity of the resin component. The kinetic viscosity of the resin component is measured by the volume ratio of the boron nitride particles in the thermal conductive sheet (the volume of the boron nitride particles relative to the solid component, that is, the total volume of the resin component and the boron nitride particles). The percentage) is, for example, 35 vol% or more Preferably, it is 6 〇 volume ❶ /. The above' is more preferably 75% by volume or more, and is usually, for example, 95% by volume or less, preferably 9 Å or less. /c or less. The volume basis of the boron nitride particles is contained. When the ratio does not satisfy the above range, there is a case where the boron nitride particles cannot be aligned in a specific direction in the thermally conductive sheet. On the other hand, when the content ratio of the volume basis of the boron nitride particles exceeds the above range, there is heat conduction. When the sheet becomes brittle, the operability and the step followability decrease. 153638.doc 201139533 Further, the total amount of the boron nitride particles relative to the components (nitride shed particles and resin components) forming the heat conductive sheet (solid) The total amount of the component is 调0 0 parts by mass based on the mass ratio of, for example, 40 to 95 parts by mass, preferably 65 to 90 parts by mass. The total amount of the resin component relative to the total amount of each component forming the thermally conductive sheet is 1 〇〇. The blending ratio of the mass basis is, for example, 5 to 6 parts by mass, preferably 10 to 35 parts by mass. Further, the blending ratio of the boron nitride particles to the mass of the resin component 〇〇 mass damage is, for example, 6 〇 to 1900 parts by mass, preferably 185 to 900 parts by mass. Further, when two epoxy resins (the second epoxy resin and the second epoxy resin) are used in combination, the first epoxy resin is opposite to the second ring. The mass ratio of the oxyresin (the second epoxide. The mass of the resin / the mass of the second epoxy resin) can be appropriately set according to the softening temperature of each epoxy resin (the first epoxy resin and the second epoxy resin), for example, It is 1/99 to 99/1, preferably 10/9 〇 to 9 〇/1 〇. Further, the resin component contains, for example, a polymer precursor (for example, a low content) in addition to the above components (polymer). Fig. 1 is a perspective view showing an embodiment of the thermally conductive sheet of the present invention, and Fig. 2 is a view for explaining the manufacture of the thermally conductive sheet shown in Fig. Step diagram of the party. Next, a method of producing one embodiment of the thermally conductive sheet of the present invention will be described with reference to Figs. 1 and 2 . In the method, first, the above components are formulated in the above-mentioned blending ratio,

攪拌混合,藉此製備混合物。 W 撥拌混合時,為使各成分效率佳地混合,例如可將溶劑 1臟d〇C -.2- ⑤ 201139533 與上述各成分一起調配,或例如驻丄 ^ Λ ^ . 如藉由加熱使樹脂成分(較 佳為熱塑性樹脂成分)溶融。 作為溶劑,可列舉與上述相同之有機溶#卜又,於將上 述硬化劑及/或硬化促進劑製備成溶劑溶液及/或溶劑分散 液時,可不於攪拌混合中追加溶劑,而將溶劑溶液及/或 溶劑分散狀溶誠接作為心㈣混合之混合溶劑而提 供。或者’亦可於擾拌混人φ &、6 , 千見口中進而追加溶劑作為混合溶 劑0 於使用溶#!進行㈣混合之情料,賴拌混合後去除 溶劑。 為去除溶劑,例如於室溫下放置丨〜48小時,或例如於 4〇〜H)(TC下加熱〇·5〜3小時,或例如於G()()i〜% kpa之減壓 環境下於20〜6(TC下加熱〇·5〜3小時。 於藉由加熱使樹脂成分(較佳為熱塑性樹脂成分)熔融 時,加熱溫度例如為樹脂成分之軟化溫度附近或超過其之 溫度,具體而言為40〜15〇t,較佳為70〜140。(:。 繼而’於該方法中,熱壓製所得之混合物。 具體而言’如圖2(a)所示’例如視需要經由2片脫模膜4 熱壓製混合物,藉此獲得壓製片材1A。關於熱壓製之條 件’溫度例如為50〜15(TC,較佳為60~140t,壓力例如為 1〜100 MPa,較佳為5〜50 MPa,時間例如為〇」〜!〇〇分鐘, 較佳為1〜30分鐘。 進而較佳為真空熱壓製混合物。真空熱壓製時之真空度 例如為1〜100 Pa,較佳為5〜50 Pa,溫度、壓力及時間與上 153638.doc 201139533 述熱壓製之該等條件相同。 於熱壓製時之溫度、壓力及/或時間在上述範圍外時, 有無法將熱傳導性片材J之空隙率p(下文將述)調整為所欲 之值之情形。 藉由熱壓製所得之壓製片材1A之厚度例如為50〜1000 μηι ’ 較佳為 1〇0〜8〇〇 μιη。 繼而,於該方法中,如圖2(b)所示,將壓製片材丨Α分割 成複數個(例如4個)’獲得分割片材1B(分割步驟)。壓製片 材1A之分割時,以於厚度方向上投影時分斷成複數個之方 式將壓製片材1A沿著其厚度方向切斷。再者,壓製片材 1A係以使各分割片材1B於厚度方向上投影時成為相同形 狀之方式切斷。 θ繼而,於該方法中’如圖2(c)所示,將各分割片材1B於 厚度方向上積層,獲得積層片材1C(積層步驟)。 其後’於5亥方法中,如圖2⑷所示,熱塵製(較佳為真空 熱壓製)積層片材1C(熱壓製步驟)。熱壓製之條件與上述混 合物之熱壓製之條件相同。 熱壓製後之積層片材ic之厚度例如為i mm以下,較佳 為8 mm以下,且通常例如為〇 〇5爪爪以上,較佳為〇工 mm以上。 其後,為於熱傳導性片材丨使氮化硼粒子2於樹脂成分3 中有效率地配向於特定方向上,而重複實施上述分割步驟 (圖2(b))、積層步驟(圖2(c))及熱壓製步驟(圖2⑷)一系列 步驟° 4複次數並無特別限定,可根據氮化侧粒子之填充 153638.doc 201139533 狀態適當設定,例如為1〜1 〇次,較佳為2~7次。 藉此,可獲得熱傳導性片材1。 所得熱傳導性片材1之厚度例如為1 mm以下,較佳為0.8 mm以下’且通常例如為〇.〇5 mm以上,較佳為0.1 mm以 上。 又,熱傳導性片材1中之氮化硼粒子之體積基準之含有 比例(氮化硼粒子相對於固體成分即樹脂成分及氮化硼粒 子之總體積的體積百分率)如上所述,例如為35體積。/()以上 (較佳為60體積°/〇以上’進而佳為75體積%以上),且通常 為95體積%以下(較佳為90體積%以下)。 於氮化硼粒子之含有比例不滿足上述範圍時,有無法使 氮化硼粒子於熱傳導性片材中配向於特定方向上之情形。 又,於樹脂成分3為熱硬化性樹脂成分時,例如以未硬 化狀態(或半硬化狀態(B階狀態))重複實施上述分割步驟 (圖2(b))、積層步驟(圖2(c))及熱壓製步驟(圖2(a)) 一系列 步驟’並於其最終步驟之熱壓製步驟(圖2(a))後,使未硬 化(或半硬化(B階狀態))之熱傳導性片Mi熱硬化,藉此製 作硬化後之熱傳導性片材1。 使熱傳導性片材1熱硬化時,使用上述熱壓製或乾燥 機。較佳為使用乾燥機。關於該熱硬化之條件,溫度例如 為60〜250°C,較佳為80〜200°C,壓力例如為1〇〇 Mpa以 下,較佳為50 MPa以下。 而且’於如此而獲得之熱傳導性片材1中,如圖丨及其局 部放大示意圖所示,氮化硼粒子2之長邊方向LD係沿著與 153638.doc 15 201139533 熱傳導性片材1之厘许古 + . 方向SD配 啊ϋ厚度方向丁!)交又(正交)的面 向。 又,氮化硼粒子2之長邊方向1^1)與熱傳導性片材1之面 方向SD所成的角度之算術平均值(氮化硼粒子2對於熱傳導 性片材1之配向角度α)例如為25度以下,較佳為2〇度以 下’且通常為〇度以上。 再者,氮化硼粒子2對於熱傳導性片材丨之配向角度^係 藉由剖面拋光儀(cp,Cross section Polisher)對熱傳導性片 材1沿著厚度方向進行切斷加工,對由此露出之剖面利用 掃描式電子顯微鏡(SEM)以可觀察2〇〇個以上之氮化硼粒子 2的視場之倍率拍攝照片,自所得之SEM照片取得氮化硼 粒子2之長邊方向1^>相對於熱傳導性片材丨之面方向§以與 厚度方向TD正交之方向)的傾斜角α,以其平均值之形式而 計算出。 由此’熱傳導性片材1之面方向SD之熱傳導率為4 W/m.K以上,較佳為5 W/m.K以上,更佳為1〇 w/m.K以 上,進而佳為15 W/m.K以上,特佳為25 W/m.K以上,且 通常為200 W/m.K以下。 又’於樹脂成分3為熱硬化性樹脂成分時,熱傳導性片 材1之面方向SD之熱傳導率於熱硬化前後實質上相同。 若熱傳導性片材1之面方向SD之熱傳導率不滿足上述範 圍,則面方向SD之熱傳導性不充分,故有無法用於要求此 種面方向SD之熱傳導性的散熱用途之情形。 再者,熱傳導性片材1之面方向SD之熱傳導率係藉由脈 15363S.doc -】6· ⑤ 201139533 衝加熱法測定。脈衝加熱法中使用氙氣閃光分析儀r LFA· 447型」(NETZSCH公司製造)》 又’熱傳導性片材1之厚度方向TD之熱傳導率例如為 〇·5〜15 W/m«K,較佳為 i〜10 w/m.K。 再者’熱傳導性片材丨之厚度方向TD之熱傳導率可藉由 脈衝加熱法、雷射閃光法或TWA(Cross section Polisher)法 進行測定。脈衝加熱法中使用與上述相同者,雷射閃光法 中使用「TC-9000」(uivac Riko公司製造),TWA法中使用 「a卜Phase mobile」(ai-Phase公司製造)。 由此熱傳 導性片材1之面方向SD之熱傳導率相對於熱 傳導性片材1之厚度方向TD之熱傳導率之比(面方向8])之 熱傳導率/厚度方向TD之熱傳導率)例如為i 5以上,較佳 為3以上,進而佳為4以上,且通常為2〇以下。 又,雖然圖1中未圖示,但熱傳導性片材丨中例如形成有 空隙(間隙)。 熱傳導性片材1 t之空隙之比例、即空隙率p可藉由氮化 硼粒子2之含有比例(體積基準)、進而氮化硼粒子2及樹脂 成分3之混合物之熱壓製(圖2(a))之溫度、壓力及/或時間而 調整,具體而言,可藉由將上述熱壓製(圖2(a))之溫度、 壓力及/或時間設定於上述範圍内而調整。 熱傳導性片材1中之空隙率p例如為3〇體積%以下,較佳 為10體積%以下。 上述空隙率P例如可藉由以下方式測定:首先,藉由剖 面拋光儀(CP)對熱傳導性片材丨沿著厚度方向進行切斷加 153638.doc 201139533 工’對由此露出之剖面利用掃描式電子顯微鏡(SEM)以200 倍觀察,獲得像,根據所得之像對空隙部分與除此以外之 部分進行二值化處理,然後計算出空隙部分相對於熱傳導 性片材1整體之截面積之面積比。 再者’熱傳導性片材1中’硬化後之空隙率P2相對於硬 化前之空隙率P1例如為1〇〇%以下,較佳為50%以下。 為測定空隙率P(P1),於樹脂成分3為熱硬化性樹脂成分 時’使用熱硬化前之熱傳導性片材1。 若熱傳導性片材1之空隙率P在上述範圍内,則可提高熱 傳導性片材1之階差追隨性(下文將述)。 又’熱傳導性片材1之玻璃轉移點為l25〇c以上,較佳為 i3〇°c以上,進而佳為14(rc以上,更佳為15〇<>(:以上進 一步佳為17(TC以上,進一步更佳g19〇〇c以上,進而更佳 為210°C ’且通常為3〇〇eC以下。 若玻璃轉移點為上述下限以上,則可確保熱傳導性片材 之優異之耐熱性,可減少高溫下之變形,抑制剝離。 即’於將熱傳導性片材!貼附於各種器件之情形時,於 該器件之溫度上升而超過熱傳導性片材k玻璃轉移點時 等’有由於線膨脹率之變化而熱傳導性片材ι自各種器件 剝離之情形H該熱傳導性片❸中,將玻璃轉移點 設定為上述上限以上,㈣便器件之溫度上升,亦可抑制 超過熱傳導性片材!之玻璃轉移點,其結果,可減少熱傳 導性片材1之變形’抑制釗離。 再者’玻璃轉移點係作為以喝兹之頻率進行動態㈣ 153638.doc 201139533 性測定時所得之tan6(損耗正切)之波峰值而求出。 又,熱傳導性片材1於依據JIS K 5 600-5-1之圓筒形心轴 法的耐彎曲性試驗中以下述試驗條件評價時,較佳為未觀 察到破裂。 試驗條件 試驗裝置:I型 心軸:直徑10 mm 彎曲角度:90度以上 熱傳導性片材1之厚度:0.3 mm 再者’將I型試驗裝畳之立體圖示於圖3及圖4中,以下 對I型試驗裝置加以說明。 圖3及圖4中,I型試驗裝置1〇具備第}平板丨丨、與第1平 板11並列配置之第2平板12、及為使第丨平板u及第2平板 12相對轉動而設置之心轴(旋轉軸)13。 第1平板11形成為大致矩形平板狀。又,於第1平板Η之 一端部(自由端部)設有止動部14。止動部14係於第2平板12 之表面上以沿著第2平板12之一個端部延伸之方式形成。 第2平板12呈大致矩形平板狀,且以其丨條邊與第丨平板 11之1條邊(與設有止動部14之一個端部相反之側的另一端 部(基端部)之1條邊)鄰接之方式配置。 〜軸13係以沿著彼此鄰接之第丨平板丨丨及第2平板q之1 條邊延伸之方式形成。 ^/亥1型之武驗裝1G如圖3所示,於開始耐f曲性試驗之 前,使第1平板II之表面與第2平板12之表面處於同—平 153638.doc -】9· 201139533 面0 繼而,實施耐彎曲性試驗時,將熱傳導性片材1載置於 第1平板11之表面與第2平板12之表面。再者,將熱傳導性 片材1以其1條邊抵接於止動部14之方式載置。 繼而’如圖4所示,使第1平板η及第2平板12相對轉 動。具體而言,使第1平板11之自由端部與第2平板12之自 由端部以心軸13為中心僅轉動特定角度。詳細而言,使第 1平板11及第2平板12以該等之自由端部之表面接近(對向) 之方式轉動。 由此,熱傳導性片材丨追隨於第丨平板u及第2平板^之 轉動,並且以心軸13為中心彎曲。 進而較佳熱傳導性片材1即便於上述試驗條件下將彎曲 角度設定為18 0度時’亦未觀察到破裂。 再者,於樹脂成分3為熱硬化性樹脂成分時,供於彎曲 性忒驗之熱傳導性片材"系半硬化(B階狀態)之熱傳導性片 材1(即,熱硬化前之熱傳導性片材^。 於在上述料角度之耐Μ性試驗巾㈣料傳導性片 材1破裂時,有無法對熱傳導性片材i賦予優異之柔軟性之 K 7171(2008年)之三點 ,例如未觀察到破裂。 又’該熱傳導性片材1於依據JIS 彎曲試驗中以下述試驗條件評價時 5式驗條件 試驗片:尺寸20 mmx15 mm 支點間距離:5 mm 153638.doc 201139533 試驗速度:20 mm/min(壓頭之下壓速度) 彎曲角度:120度 評價方法:目測觀㈣上述試驗條件進行試驗時 之中央部之裂縫等破裂之有無。 5 、再者’三點彎曲試驗令,於樹脂成分3為熱硬化性樹浐 成分時,使用熱硬化前之熱傳導性片材丨。 9 因此’該熱傳導性片於上述三點f曲試驗 到破裂’故階差追隨性優異。再者,所謂階差追隨性,; 指將熱傳導性片材1設於具有階差之設置對象上時,以: 著該階差密接之方式追隨的特性。 /σ 記 ,,〜, 恥寻標 ^卩,熱傳導性片材1之標記附著性優異。所謂標記附 著性’係指可使上述標記確實地㈣於熱傳導性 特性。 〈 標記具體而言係藉由印刷或刻印等而附著(塗佈、定影 或固著)於熱傳導性片材1。 〜 作為印刷,例如可列舉喷墨印刷、凸版印刷、凹版印 刷、雷射印刷等。 再者於藉由喷墨印刷、凸版印刷或凹版印刷而印刷標 ^己時,例如可於熱傳導性片材i之表面(印刷側面)設置用二 k尚標S己之定影性之油墨定影層。 又,於藉由雷射印刷而印刷標記時,例如可於熱傳導性 片材1之表面(印刷側面)設置用以提高標記之定影性之色粉 定影層》 153638.doc 201139533 作為刻印, 而且,該產 ,例如可列舉雷射刻印、沖印等。 而且,該熱傳導性片材丨係與厚度方向正交之面方向 熱傳導性優異,進而耐熱性亦優異。The mixture was stirred and mixed to prepare a mixture. When W is mixed and mixed, in order to mix the components efficiently, for example, the solvent 1 dirty d〇C -.2- 5 201139533 may be blended with the above components, or for example, 丄^ Λ ^. The resin component (preferably a thermoplastic resin component) is melted. The solvent may be the same as the above-mentioned organic solvent. When the curing agent and/or the curing accelerator are prepared as a solvent solution and/or a solvent dispersion, the solvent may be added without stirring and mixing. And/or the solvent dispersion is provided as a mixed solvent of the core (four) mixture. Alternatively, it is also possible to add a solvent as a mixed solvent to the φ &, 6, and the smear of the mixture, and to mix the mixture with the solution of ##, and to remove the solvent after mixing. To remove the solvent, for example, 丨~48 hours at room temperature, or for example, 4〇~H) (heating at TC for 5~3 hours, or for example, in a decompression environment of G()()i~% kpa When it is heated at TC for 5 to 3 hours, when the resin component (preferably a thermoplastic resin component) is melted by heating, the heating temperature is, for example, near or above the softening temperature of the resin component. Specifically, it is 40 to 15 〇t, preferably 70 to 140. (: Then, in the method, the resulting mixture is hot-pressed. Specifically, as shown in Fig. 2(a), for example, as needed The two release films 4 are hot-pressed, whereby the pressed sheet 1A is obtained. The conditions for the hot pressing are, for example, 50 to 15 (TC, preferably 60 to 140 t, and the pressure is, for example, 1 to 100 MPa, preferably 5〜50 MPa, the time is, for example, 〇"~!〇〇 minutes, preferably 1 to 30 minutes. Further preferably, the mixture is vacuum-pressed. The degree of vacuum during vacuum hot pressing is, for example, 1 to 100 Pa, preferably. For 5~50 Pa, the temperature, pressure and time are the same as those of the above 153638.doc 201139533. When the temperature, pressure and/or time at the time of the production are outside the above range, there is a case where the void ratio p (described later) of the thermally conductive sheet J cannot be adjusted to a desired value. The pressed sheet obtained by hot pressing The thickness of the material 1A is, for example, 50 to 1000 μηι′, preferably 1〇0 to 8〇〇μιη. Then, in this method, as shown in Fig. 2(b), the pressed sheet is divided into a plurality of ( For example, four pieces "the divided sheet 1B is obtained (dividing step). When the pressed sheet 1A is divided, the pressed sheet 1A is cut along the thickness direction thereof so as to be divided into a plurality of pieces when projected in the thickness direction. Further, the pressed sheet 1A is cut so as to have the same shape when the divided sheets 1B are projected in the thickness direction. θ Then, in the method, as shown in FIG. 2(c), each divided piece is formed. The material 1B is laminated in the thickness direction to obtain a laminated sheet 1C (layering step). Thereafter, in the 5 liter method, as shown in Fig. 2 (4), a hot dust (preferably vacuum heat pressing) laminated sheet 1C (heat Pressing step). The conditions of hot pressing are the same as those of the above-mentioned mixture. The thickness of the laminated sheet ic thereafter is, for example, i mm or less, preferably 8 mm or less, and is usually, for example, 〇〇5 claw or more, preferably 〇mm or more. Thereafter, for the heat conductive sheet 丨The boron nitride particles 2 are efficiently aligned in a specific direction in the resin component 3, and the above-described dividing step (Fig. 2(b)), laminating step (Fig. 2(c)), and hot pressing step are repeated (Fig. 2(4) The series of steps is not particularly limited, and may be appropriately set according to the state of the filling of the nitride side particles 153638.doc 201139533, for example, 1 to 1 times, preferably 2 to 7 times. Thereby, the thermally conductive sheet 1 can be obtained. The thickness of the obtained thermally conductive sheet 1 is, for example, 1 mm or less, preferably 0.8 mm or less and is usually, for example, 〇. 5 mm or more, preferably 0.1 mm or more. In addition, the content ratio of the volume of the boron nitride particles in the thermally conductive sheet 1 (volume percentage of the total volume of the boron nitride particles to the solid component, that is, the resin component and the boron nitride particles) is as described above, for example, 35 volume. / () or more (preferably 60 volume / 〇 or more, further preferably 75% by volume or more), and usually 95% by volume or less (preferably 90% by volume or less). When the content ratio of the boron nitride particles does not satisfy the above range, the boron nitride particles may not be aligned in a specific direction in the thermally conductive sheet. When the resin component 3 is a thermosetting resin component, for example, the above-described dividing step (Fig. 2(b)) and the laminating step (Fig. 2 (c) are repeatedly performed in an uncured state (or a semi-hardened state (B-stage state)). )) and the hot pressing step (Fig. 2 (a)) a series of steps 'and after the hot pressing step of the final step (Fig. 2 (a)), the heat is not hardened (or semi-hardened (B-stage state)) The sheet Mi is thermally cured to thereby produce a heat-conductive sheet 1 after hardening. When the heat conductive sheet 1 is thermally cured, the above hot press or dryer is used. It is preferred to use a dryer. With respect to the conditions of the heat curing, the temperature is, for example, 60 to 250 ° C, preferably 80 to 200 ° C, and the pressure is, for example, 1 〇〇 Mpa or less, preferably 50 MPa or less. Further, in the thermally conductive sheet 1 thus obtained, as shown in the drawing and its partially enlarged schematic view, the long-side direction LD of the boron nitride particles 2 is along with the 153638.doc 15 201139533 thermally conductive sheet 1厘古古. . Direction SD with ϋ ϋ thickness direction Ding!) Cross and (orthogonal) face. Further, the arithmetic mean value of the angle formed by the longitudinal direction of the boron nitride particles 2 (1) and the surface direction SD of the thermally conductive sheet 1 (the alignment angle α of the boron nitride particles 2 with respect to the thermally conductive sheet 1) For example, it is 25 degrees or less, preferably 2 degrees or less 'and usually more than the twist. Further, the orientation angle of the boron nitride particles 2 to the thermally conductive sheet is cut by the heat conductive sheet 1 in the thickness direction by a cross section polisher (cp, Cross section Polisher), thereby exposing The cross-section of the boron nitride particles 2 was observed by a scanning electron microscope (SEM) at a magnification of two or more boron nitride particles 2, and the long-side direction of the boron nitride particles 2 was obtained from the obtained SEM photograph. The inclination angle α with respect to the direction of the surface of the thermally conductive sheet § in the direction orthogonal to the thickness direction TD is calculated as the average value. Therefore, the thermal conductivity of the surface direction SD of the thermally conductive sheet 1 is 4 W/mK or more, preferably 5 W/mK or more, more preferably 1 〇 w/mK or more, and still more preferably 15 W/mK or more. It is particularly preferably 25 W/mK or more, and is usually 200 W/mK or less. Further, when the resin component 3 is a thermosetting resin component, the thermal conductivity of the surface direction SD of the thermally conductive sheet 1 is substantially the same before and after the thermosetting. When the thermal conductivity of the surface direction SD of the thermally conductive sheet 1 does not satisfy the above range, the thermal conductivity in the plane direction SD is insufficient, and thus it may not be used for the heat dissipation application in which the thermal conductivity of the surface direction SD is required. Further, the thermal conductivity of the surface direction SD of the thermally conductive sheet 1 is measured by a pulse heating method of 15363S.doc - 6: 5, 2011,395,533. In the pulse heating method, a xenon flash analyzer r LFA·447 type (manufactured by NETZSCH Co., Ltd.) is used. Further, the thermal conductivity of the thermal conductive sheet 1 in the thickness direction TD is, for example, 〇·5 to 15 W/m «K, preferably. For i~10 w/mK. Further, the thermal conductivity of the thickness direction TD of the heat conductive sheet 可 can be measured by a pulse heating method, a laser flash method or a TWA (Cross section Polisher) method. In the pulse heating method, "TC-9000" (manufactured by uivac Riko Co., Ltd.) is used in the laser flash method, and "a Phase Reaction" (manufactured by ai-Phase Co., Ltd.) is used in the TWA method. The ratio of the thermal conductivity of the surface direction SD of the thermally conductive sheet 1 to the thermal conductivity of the thermal conductive sheet 1 in the thickness direction TD (the thermal conductivity of the plane direction 8) or the thermal conductivity of the thickness direction TD is, for example, i. 5 or more is preferably 3 or more, more preferably 4 or more, and usually 2 or less. Further, although not shown in Fig. 1, a gap (gap) is formed in the thermally conductive sheet bundle, for example. The ratio of the voids of the thermally conductive sheet 1 t, that is, the void ratio p, can be thermally suppressed by the ratio of the boron nitride particles 2 (volume basis), and further, a mixture of the boron nitride particles 2 and the resin component 3 (Fig. 2 The temperature, pressure and/or time of a)) are adjusted, and specifically, the temperature, pressure and/or time of the above-mentioned hot pressing (Fig. 2 (a)) can be adjusted within the above range. The void ratio p in the thermally conductive sheet 1 is, for example, 3 vol% or less, preferably 10 vol% or less. The void ratio P can be measured, for example, by first cutting the heat conductive sheet 丨 in the thickness direction by a cross-section polisher (CP) and adding 153638.doc 201139533 An electron microscope (SEM) was observed at 200 times to obtain an image, and the void portion and the other portions were binarized according to the obtained image, and then the cross-sectional area of the void portion with respect to the entire heat conductive sheet 1 was calculated. Area ratio. In the heat conductive sheet 1, the void ratio P2 after curing is, for example, 1% by volume or less, preferably 50% or less, relative to the porosity P1 before hardening. In order to measure the porosity P (P1), when the resin component 3 is a thermosetting resin component, the thermally conductive sheet 1 before thermal curing is used. When the porosity P of the thermally conductive sheet 1 is within the above range, the step followability of the thermally conductive sheet 1 (described later) can be improved. Further, the glass transition point of the thermally conductive sheet 1 is l25 〇 c or more, preferably i3 〇 ° c or more, and further preferably 14 (rc or more, more preferably 15 〇 <> (: further preferably 17 (TC or more, more preferably g19〇〇c or more, further preferably 210°C′ and usually 3〇〇eC or less. When the glass transition point is at least the above lower limit, excellent heat resistance of the thermally conductive sheet can be ensured. It can reduce the deformation at high temperature and suppress the peeling. That is, when the thermal conductive sheet is attached to various devices, when the temperature of the device rises and exceeds the heat transfer sheet k glass transition point, etc. The thermal conductive sheet ι is peeled off from various devices due to a change in the linear expansion ratio. In the thermally conductive sheet, the glass transition point is set to be equal to or higher than the above upper limit, and (4) the temperature of the device is increased, and the thermal conductive sheet may be suppressed. As a result, the glass transition point of the material can be reduced, and the deformation of the heat conductive sheet 1 can be reduced to suppress the detachment. Further, the glass transition point is used as the frequency at the frequency of drinking (4) 153638.doc 201139533 (damage Further, when the thermal conductive sheet 1 is evaluated by the following test conditions in the bending resistance test according to the cylindrical mandrel method of JIS K 5 600-5-1, it is preferable that the thermal conductive sheet 1 is evaluated under the following test conditions. The rupture was observed. Test conditions Test device: Type I mandrel: 10 mm in diameter Bending angle: 90 degrees or more Thermal conductive sheet 1 Thickness: 0.3 mm Further, the three-dimensional illustration of the Type I test is shown in Figure 3 and In Fig. 4, the type I test apparatus will be described below. In Fig. 3 and Fig. 4, the type I test apparatus 1A includes a first plate 丨丨, a second plate 12 arranged in parallel with the first plate 11, and A mandrel (rotating shaft) 13 that is provided to rotate relative to the flat plate u and the second flat plate 12. The first flat plate 11 is formed in a substantially rectangular flat plate shape, and is provided at one end portion (free end portion) of the first flat plate. The movable portion 14. The stopper portion 14 is formed on the surface of the second flat plate 12 so as to extend along one end portion of the second flat plate 12. The second flat plate 12 has a substantially rectangular flat shape, and has a bead edge and a One side of the flat plate 11 (the other end opposite to the side on which one end of the stopper portion 14 is provided (base end portion) One side is disposed adjacent to each other. The axis 13 is formed to extend along one side of the second plate 丨丨 and the second plate q adjacent to each other. ^/Hai 1 type inspection 1G 3, before the start of the f-resistance test, the surface of the first flat plate II and the surface of the second flat plate 12 are in the same plane - 153638.doc -] 9 · 201139533 face 0, and then, when the bending resistance test is performed, The thermally conductive sheet 1 is placed on the surface of the first flat plate 11 and the surface of the second flat plate 12. Further, the thermally conductive sheet 1 is placed such that one of the sides abuts against the stopper portion 14. Then, as shown in Fig. 4, the first flat plate η and the second flat plate 12 are relatively rotated. Specifically, the free end portion of the first flat plate 11 and the free end portion of the second flat plate 12 are rotated by a specific angle around the mandrel 13 . Specifically, the first flat plate 11 and the second flat plate 12 are rotated such that the surfaces of the free end portions approach (opposite). Thereby, the thermally conductive sheet 丨 follows the rotation of the second sheet u and the second sheet, and is bent around the mandrel 13. Further, it is preferable that the thermally conductive sheet 1 does not have cracks even when the bending angle is set to 180 degrees under the above test conditions. In addition, when the resin component 3 is a thermosetting resin component, the heat conductive sheet for the bendability test is a semi-hardened (B-stage state) heat conductive sheet 1 (that is, heat conduction before heat hardening) When the material-resistant sheet 1 is broken at the above-mentioned material angle, there are three points of K 7171 (2008) which cannot provide excellent flexibility to the heat-conductive sheet i, For example, no crack was observed. Further, the heat conductive sheet 1 was evaluated according to the following test conditions in accordance with the JIS bending test. 5 Test condition test piece: size 20 mm x 15 mm Distance between fulcrums: 5 mm 153638.doc 201139533 Test speed: 20 mm/min (pressure speed under the indenter) Bending angle: 120 degrees Evaluation method: Visual observation (4) The presence or absence of cracks in the center portion of the test when the above test conditions are carried out. 5. Furthermore, the 'three-point bending test order, When the resin component 3 is a thermosetting tree composition component, the heat conductive sheet material before heat curing is used. 9 Therefore, the heat conductive sheet has excellent step followability in the three-point f-test to the fracture. Follow-up step When the thermal conductive sheet 1 is placed on a setting object having a step difference, the following characteristics are followed: the σ, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The labeling property of 1 is excellent. The labeling property means that the label can be reliably (four) thermally conductive. The marking is specifically attached (coated, fixed or fixed) by printing or imprinting. Thermal conductive sheet 1. ~ For printing, for example, inkjet printing, letterpress printing, gravure printing, laser printing, etc., when printing a label by inkjet printing, letterpress printing or gravure printing, for example, The fixing layer for fixing the ink can be provided on the surface (printing side) of the thermally conductive sheet i. Further, when the marking is printed by laser printing, for example, the thermally conductive sheet 1 can be used. The surface (printing side) is provided with a toner fixing layer for improving the fixability of the mark. 153638.doc 201139533 As the marking, the production includes, for example, laser marking, printing, etc. Further, the thermally conductive sheet The surface direction of the tantalum system orthogonal to the thickness direction is excellent in thermal conductivity and further excellent in heat resistance.

術中採用之熱傳導性片材, 途、具體而言為電力電子技 更詳細而言例如LED散熱基 板電池用散熱材料所應用之熱傳導性片材。 再者,上述熱壓製步驟(圓2(a))中,例如亦可藉由複數 個砑光輥等軋壓混合物及積層片材lc。 又,於樹脂成分3為熱硬化性樹脂成分時,亦可不進行 如上所述之熱硬化,而以未硬化之熱傳導性片材1之形式 獲得本發明之熱傳導性片材。 即,本發明之熱傳導性片材於樹脂成分為熱硬化性樹脂 成分時,熱硬化之有無及時期並無特別限定,例如亦可如 上所述般於積層步驟(圖2(c))後、或自上述熱壓製步驟(圖 2(a),混合物之熱壓製且未進行熱硬化之熱壓製)起經過特 定期間後、具體而言於應用於電力電子技術時或自其應用 起經過特定期間後,進行熱硬化。 實施例 以下示出實施例對本發明進行更具體說明,但本發明不 受實施例之任何限定。 實施例1 調配PT-110(商品名’板狀之氮化硼粒子,平均粒徑(光 I53638.doc -22- ⑧ 201139533 散射法)為 45 μιη ’ Momentive Performance Materials Japan 公司製造)13.42 g、JER828(商品名,雙酚a型環氧樹脂, 液狀’環氧當量為184〜194 g/eqiv. ’軟化溫度(環球法)未 達25°C,炫融黏度(80^)為70 mPa.s,日本環氧樹脂公司 製造)1 g及EPPN-501HY(商品名,三苯基甲烷型環氧樹 脂,固體狀,環氧當量為163〜175 g/eqiv.,軟化溫度(環球 法)為57〜63。(:,曰本化藥公司製造)2 g、以及硬化劑 (Curezol 2PZ(商品名,四國化成公司製造)之5質量%甲基 乙基酮溶液)3 g(固體成分為〇_15 g)(相對於作為環氧樹脂 之JER828及EPPN-501HY之總量為5質量%)並進行攪拌, 於至溫(23 C )下放置一夜,使甲基乙基酮(硬化劑之溶劑分 散介質)揮發,製備半固體狀之混合物。 再者,上述調配中,氮化硼粒子相對於將硬化劑除外之 固體成分(即氮化硼粒子與環氧樹脂之固體成分)之總體積 的體積百分率(體積%)為70體積〇/〇。 繼而,對所得之混合物以經聚矽氧處理之2片脫模膜夾 持,對該等藉由真空加熱壓製機於pa之環境(真 空環境)下以5噸之荷重(20 MPa)熱壓製2分鐘’藉此獲得厚 度為0_3 mm之壓製片材(參照圖2(a))。 其後,將所得之壓製片材以於壓製片材之厚度方向上投 影時分割成複數個之方式切斷,藉此獲得分割片材(參照 圖2(b))’繼而,將分割片材於厚度方向上積層而獲得積層 片材(參照圖2(c))。 繼而,對所得之積層片材藉由與上述相同之真空加熱壓 153638.doc -23· 201139533 製機以與上述相同之條件進行熱壓製(參照圖2(a))。 接著,將上述切斷、積層及熱壓製一系列操作(參照圖 2)重複4次’獲得厚度為〇 3 mm之熱傳導性片材(B階)。 其後’將所得之熱傳導性片材投入至乾燥機令,於 1 50 C下加熱120分鐘,藉此熱硬化Q 實施例2〜14 依照表1〜表3之調配配方及製造條件與實施例丨同樣地處 理’獲得熱傳導性片材。 (評價) 1. 熱傳導率 對藉由實施例1〜14所得之熱傳導性片材測定熱傳導率。 即藉由使用氣風閃光分析儀「LFA-447型」(NETZSCH 公司製造)之脈衝加熱法測定面方向(SD)之熱傳導率。 將其結果示於表1〜表3中。 2. 玻璃轉移點 對藉由實施例1〜14所得之熱傳導性片材測定玻璃轉移 點。 即利用動態黏彈性測定農置(型號:dms6i〇〇,seic〇 Electronics industrial公司製造),以升溫速度為!/分頻 率為10赫茲之條件分析熱傳導性片材。 根據所付之資料’以加§之波峰值之形式求出玻璃轉移 點。 將其結果示於表1〜表3中。 3·空隙率(P) 153638.doc ⑧ •24- 201139533 藉由下述測定方法測定實施例1〜14之熱硬化前之熱傳導 性片材之空隙率(IM)。 空隙率之測定方法:首先,藉由剖面拋光儀(CP)對熱傳 導性片材沿著厚度方向進行切斷加工,對由此露出之剖面 利用掃描式電子顯微鏡(SEM)以200倍觀察,獲得像。其 後,根據所得之像對空隙部分與除此以外之部分進行二值 化處理,繼而計算出空隙部分相對於熱傳導性片材整體之 截面積的面積比。 將其結果示於表丨〜表3中。 4.階差追隨性(三點彎曲試驗) 對實施例1〜14之熱硬化前之熱傳導性片材依據JIS K 7 17 1(2010年)實施下述試驗條件之三點彎曲試驗,藉此按 下述評價基準評價階差追隨性。將其結果示於表卜表3 中。 試驗條件 。式驗片.尺寸2〇 mmx 15 mm 支點間距離:5 mm 4驗速度:2〇mm/min(壓頭之下壓速度) 彎曲角度:120度 (評價基準) ◎:完全未觀察到破裂。 〇:幾乎未觀察到破裂。 X:明確觀察到破裂。 P刷祆圮視認性(印刷標記附著性··利用喷墨印刷或雷 153638.doc -25- 201139533 射印刷之標記附著性) 對實施例卜〗4之熱傳導性片材藉由喷墨印刷及雷射印刷 而印刷標記,並觀察該標記。 其結果可確認’實施例1〜14之熱傳導性片材均可良好地 看到利用喷墨印刷及雷射印刷兩者所得之標記,印刷炉〆己 附著性良好。 表1 表1 實施 例1 實施 例2 ----1 實施 例3 --—| 實施 例4 實施彳 平均粒徑 (μηι) 實施 例5 ~2Γ~ [80] 實施 例6 各 成 分 之 調 配 配 方 氮化硼粒子 /g*A /[體積%ΓΒ /[體積%]< PT-llO5" 45 13.42 [70] [691 3.83 [40] [38.81 5.75 [50] [48.81 卜 12.22— [68] Γ66 01 UHF >.ls2 9 - L/y.2i Ϊ2.22 [68] 聚合物 熱硬 化性 樹脂 環氧 樹脂 組合 物 環氧樹脂As3 (半固體狀) - 3 3 3 3 166.9] 3 環氧樹月s B (液狀) 1 备 - - 環氧樹脂c#‘5 (固«狀) - - - - - 環氧樹脂0&6 (固體狀) 2 - - - * 硬化劑s7 (固體成分e數) - 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 硬化劑&8 (固體成分ε數) 3 (0.15) - - - 製 造 條 件 熱壓製 溫度[°c] 80 80 80 80 80 80 次數[次] 5 5 5 5 5 5 荷重(MPa)/(噸) 20/5 20/5 20/5 20/5 20/5 20/5 評 價 熱傳導性 片材 熱傳導率 (W/m· k) 面方向(SD) 30 4.5 6.0 30.0 32.5 17.0 厚度方向(TD) 2.0 1.3 3.3 5.0 5.5 5.8 比(SD/TD) 15.0 3.5 1.8 6.0 5.9 2.9 玻璃轉ϋ Ε多點(。〇 216 139 140 139 138 140 空隙率(體積%) 4 0 0 5 12 6 階差追隨性/三點彎曲試驗 JISK 7171(2008) 0 〇 〇 〇 〇 〇 氣化棚粒子 配向角度(〇0(度) 18 18 18 15 13 20 g*A :調配質量 [體積%]« :相對於熱傳導性片材(將硬化劑除外)之總體積之百分率 [想積%]*〇 :相對於熱傳導性片材之總體積之百分率 次數*D :積層片材之熱壓製之次數 153638.doc -26- ⑧ 201139533 表2 表2 實施例 平均粒徑 (μηι) 實施例7 實施例8 實施例9 各 成 分 之 調 配 S己 方 氮化棚粒子 /g*A /[趙積%]*8 /[體積%]< PT-110®1 45 12.22 [68] Γ66.91 12.22 [68] [66.91 13.42 [70] _ UHP-1*2 9 - - - 聚合物 熱硬化 性樹脂 環氧樹脂 組合物 環氧樹脂A83 (半固體狀) - - - 環氧樹脂BS4 (液狀) 1.5 3 - 環氧樹脂CS5 (固體狀) 1.5 - - 環氧樹脂〇&6 (固趙狀) - - 3 硬化劑μ (固體成分g數) 3 (0-15) 3 (0.15) 3 (0.15) 硬化劑μ (固體成分g數) - - - 製 造 條 件 熱壓製 溫度[°c] 80 80 80 次數[次]*D 5 5 5 荷重(MPa)/(噸) 20/5 20/5 20/5 評 價 熱傳導性片材 熱傳導率 (W/m-k) 面方向(SD) 30.0 30.0 24.5 厚度方向(TD) 5.0 5.0 2.1 比(SD/TD) 6.0 6.0 11.7 玻璃轉移點(°c) 130 168 217 空隙率(體積%) 4 2 10 階差追隨性/三點f曲試驗 JIS K717K2008) 〇 〇 X 氮化硼粒子 配向角度(〇0(度) 15 16 16 g*A :調配質量 [體積%]*8 :相對於熱傳導性片材(將硬化劑除外)之總體積之百分率 [體積%]< :相對於熱傳導性片材之總體積之百分率 次數*D :積層片材之熱壓製之次數 27- 153638.doc 201139533 表3 表3 實施例 平均粒徑 (μηι) 實施例 10 實施例 11 實施例 12 實施例 13 實施例 14 各 成 分 之 調 配 配 方 氣化蝴粒子 /g*A /[體積%]# /【體積 PT-110S1 45 3.83 [40] 『38.81 13.42 [70] Γ691 13.42 [70] Γ691 13.42 [70] 【691 13.42 P〇] 『691 UHP-l852 9 - - - - - 聚合物 熱硬 化性 樹脂 環氧 樹脂 組合 物 環氧樹脂A*3 (半固體狀) 3 3 3 3 3 環氧樹脂B8*4 (液狀) - - - - - 環氧樹脂(:®5 (固«狀) - - - - - 環氧樹脂Da6 (固體狀) - - - - - 硬化劑w (固體成分g數) 6 (0.3) 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 硬化劑 (固體成分g數) - - - - - 製 造 條 件 熱壓製 溫度[°c] 80 60 70 80 80 次數[次]*D 5 5 5 5 5 荷重(MPa)/('領) 20/5 20/5 20/5 20/5 40/10 評 價 熱傳導性片 材 熱傳導率 (W/m-k) 面方向(SD) 4.1 10.5 11.2 32.5 50.7 厚度方向(TD) 1.1 2.2 3.0 5.5 7.3 比(SD/TD) 3.7 4.8 3.7 5.9 6.9 玻璃轉移點rc) 145 138 138 139 139 空隙牟(體積%) 0 29 26 8 3 階差追隨性/三點彎曲試驗 JISK 7171(2008) ◎ ◎ ◎ ◎ 〇 氣化棚粒子 配向角度(〇0(度) 20 17 15 15 13 g*A :調配質量 [體積%]*B :相對於熱傳導性片材(將硬化劑除外)之總體積之百分率 [體積%]^ :相對於熱傳導性片材之總體積之百分率 次數*D :積層片材之熱壓製之次數 表1 ~表3中之各成分中之數值於無特別記載時表示g數。 再者,表1〜表3之氮化硼粒子一欄中,上段之數值係氮 化硼粒子之調配質量(g),中段之數值係氮化硼粒子相對於 熱傳導性片材中將硬化劑除外之固體成分(即氮化硼粒子 與環氧樹脂之固體成分)之總體積的體積百分率(體積%), 下段之數值係氮化硼粒子相對於熱傳導性片材之固體成分 (即氮化硼粒子與環氧樹脂及硬化劑之固體成分)之總體積 153638.doc -28- ⑧ 201139533 的體積百分率(體積°/〇)。 又’以下’對表1〜表3之各成分中標準※記號之成分加 以詳細記載。 PT-11(^1 :商品名,板狀之氮化硼粒子,平均粒徑(光散 射法)為 45 μιη ’ Momentive Performance Materials Japan公 司製造 UHP-Ρ2 :商品名為SHoBN UHIM,板狀之氮化硼粒子, 平均粒徑(光散射法)為9 μιη,昭和電工公司製造 環氧樹脂A 3 : 〇gs〇i EG(商品名),雙芳基苐型環氧樹 月曰’半固體狀’環氧當量為294 g/eqiv·,軟化溫度(環球 法)為 47°C,熔融黏度(80。〇)為 1360 mPa.s,Osaka Gas Chemicals公司製造 環氧樹脂B84 : JER828(商品名),雙酚A型環氧樹脂,液 狀’環氧當量為184〜194 g/eqiv.,軟化溫度(環球法)未達 25 C ’熔融黏度(8〇°C )為70 mPa.s,曰本環氧樹脂公司製 造 環氧樹脂5 : JER1002(商品名),雙酚A型環氧樹脂,固 體狀’環氧當量為600〜700 g/eqiv.,軟化溫度(環球法)為 78°C ’熔融黏度(80°C)為10000 mPa.s以上(測定界限以 上)’日本環氧樹脂公司製造 環氧樹脂: EPPN-501HY(商品名),三苯基甲烷型環氧 樹脂’固體狀,環氧當量為163〜175 g/eqiv.,軟化溫度(環 球法)為57〜63°C,曰本化藥公司製造 硬化劑X 7 : Curezol 2PZ(商品名,四國化成公司製造)之5 ]53638.doc •29- 201139533 質量%甲基乙基酮溶液 硬化劑M8: Curez〇i2P4MHZ_pw(商品名,四國化成公司製 造)之5質量%曱基乙基酮分散液 再者上述說明係作為本發明之例示實施形態而提供, 但其僅為例示而非限定性地解釋。該技術領域之業者所瞭 解之本發明之變形例係包括在後述巾請專利範圍内。 【圖式簡單說明】 圖!表示本發明之熱傳導性片材之—實施形態之立體 片材之製造方法的步 圖2係用以說明圖丨所示之熱傳導性 驟圖,且 (a)表示熱壓製混合物或積層片材之步驟 ⑻表示㈣製片#分割成複數個之^驟 (c)表示積層分割片材之步驟。 圖3表示耐彎曲性試驗之I型 前)之立體圖。 之°式驗裝置(耐彎曲性試驗 圖4表示耐彎曲性試驗之I型之 過程中)之立體圖。 _裝置(而ί彎曲性試驗 【主要元件符號說明】 1 熱傳導性片材 ΙΑ 壓製片材 IB 分割片材 1C 積層片材 2 氮化硼粒子 153638.doc -3U - 201139533 3 4 10 11 12 13 14 LD SD TD a 樹脂成分 脫模膜 試驗裝置 第1平板 第2平板 心轴 止動部 長邊方向 面方向 厚度方向 配向角度 153638.doc -31The heat conductive sheet used in the process, specifically, the power electronic technology. More specifically, for example, a heat conductive sheet to which a heat radiating material for an LED heat sink substrate is applied. Further, in the hot pressing step (circle 2 (a)), for example, the mixture and the laminated sheet lc may be rolled by a plurality of calender rolls or the like. Further, when the resin component 3 is a thermosetting resin component, the thermally conductive sheet of the present invention may be obtained in the form of the uncured thermally conductive sheet 1 without performing the above-described thermal curing. In the heat conductive sheet of the present invention, when the resin component is a thermosetting resin component, the presence or absence of heat curing is not particularly limited. For example, as described above, after the lamination step (Fig. 2(c)), Or from the above-mentioned hot pressing step (Fig. 2(a), hot pressing of the mixture and hot pressing without heat hardening) after a certain period of time, specifically when applied to power electronics technology or after a specific period of time from its application After that, it is thermally hardened. EXAMPLES Hereinafter, the present invention will be specifically described by examples, but the present invention is not limited by the examples. Example 1 PT-110 (trade name 'plate-shaped boron nitride particles, average particle size (light I53638.doc -22-8 201139533 scattering method) was 45 μιη 'momentive Performance Materials Japan company) 13.42 g, JER828 (trade name, bisphenol a type epoxy resin, liquid 'epoxy equivalent weight is 184~194 g/eqiv. 'The softening temperature (ring and ball method) is less than 25 ° C, and the viscous melt viscosity (80^) is 70 mPa. s, manufactured by Nippon Epoxy Co., Ltd.) 1 g and EPPN-501HY (trade name, triphenylmethane type epoxy resin, solid, epoxy equivalent 163~175 g/eqiv., softening temperature (ring and ball method) 57 to 63. (:, manufactured by Sakamoto Chemical Co., Ltd.) 2 g, and a curing agent (5 mass% methyl ethyl ketone solution of Curezol 2PZ (trade name, manufactured by Shikoku Chemicals Co., Ltd.)) 3 g (solid content is 〇_15 g) (compared to 5% by mass of JER828 and EPPN-501HY as epoxy resin) and stirred, and allowed to stand at room temperature (23 C) overnight to make methyl ethyl ketone (hardener) The solvent dispersion medium is volatilized to prepare a semi-solid mixture. Further, in the above formulation, boron nitride particles The volume fraction (% by volume) of the total volume of the solid component excluding the hardener (i.e., the solid content of the boron nitride particles and the epoxy resin) is 70 Torr/〇. Then, the obtained mixture is subjected to polyfluorene. The two release films of the treatment were clamped, and they were hot pressed under a load of 5 tons (20 MPa) for 2 minutes by a vacuum heating press in a vacuum environment (a vacuum environment), thereby obtaining a thickness of 0-3 mm. The sheet is pressed (refer to Fig. 2 (a)). Thereafter, the obtained pressed sheet is cut into a plurality of pieces when projected in the thickness direction of the pressed sheet, thereby obtaining a divided sheet (refer to the figure). 2(b))' Then, the divided sheets are laminated in the thickness direction to obtain a laminated sheet (refer to Fig. 2(c)). Then, the obtained laminated sheet is heated by the same vacuum as above 153638. Doc -23·201139533 The machine is hot pressed under the same conditions as above (refer to Fig. 2(a)). Next, the above-mentioned cutting, laminating and hot pressing series of operations (refer to Fig. 2) are repeated 4 times to obtain the thickness. It is a thermal conductive sheet of 3 mm (B-stage). The heat conductive sheet was put into a dryer and heated at 150 C for 120 minutes to thermally harden Q. Examples 2 to 14 The formulations and manufacturing conditions according to Tables 1 to 3 were treated in the same manner as in Example 丨. 'A heat conductive sheet was obtained. (Evaluation) 1. Thermal Conductivity The thermal conductivity of the thermally conductive sheets obtained in Examples 1 to 14 was measured. That is, the thermal conductivity in the plane direction (SD) was measured by a pulse heating method using a gas-flash analyzer "LFA-447 type" (manufactured by NETZSCH Co., Ltd.). The results are shown in Tables 1 to 3. 2. Glass transition point The glass transition point was measured for the thermally conductive sheets obtained in Examples 1 to 14. That is, the dynamic viscoelasticity measurement of the farm (model: dms6i〇〇, manufactured by Seic〇 Electronics Industrial Co., Ltd.) is used to increase the temperature! The heat conductive sheet was analyzed under the condition of a frequency division ratio of 10 Hz. According to the information paid, the glass transition point is obtained in the form of the peak of the §. The results are shown in Tables 1 to 3. 3. Void ratio (P) 153638.doc 8 • 24 - 201139533 The void ratio (IM) of the thermally conductive sheet before heat hardening of Examples 1 to 14 was measured by the following measurement method. Method for measuring void ratio: First, the thermally conductive sheet was cut in the thickness direction by a cross-section polisher (CP), and the exposed cross section was observed by a scanning electron microscope (SEM) at 200 times. image. Thereafter, the void portion and the other portions are binarized according to the obtained image, and then the area ratio of the void portion to the entire cross-sectional area of the thermally conductive sheet is calculated. The results are shown in Tables to Table 3. 4. Step followability (three-point bending test) The heat conductive sheet before thermal hardening of Examples 1 to 14 was subjected to a three-point bending test of the following test conditions in accordance with JIS K 7 17 1 (2010). The step followability was evaluated according to the following evaluation criteria. The results are shown in Table 3. Test conditions . Size. Dimensions 2〇 mmx 15 mm Distance between fulcrums: 5 mm 4 Inspection speed: 2 〇 mm/min (pressure speed under the indenter) Bending angle: 120 degrees (evaluation basis) ◎: No cracking was observed at all. 〇: Little rupture was observed. X: Cracking was clearly observed. P brushing visibility (printing mark adhesion · using inkjet printing or Ray 153638.doc -25-201139533 marking adhesion of printing) The thermal conductive sheet of Example 4 by inkjet printing and The mark is printed by laser printing and observed. As a result, it was confirmed that the thermally conductive sheets of Examples 1 to 14 can be satisfactorily observed by both the ink jet printing and the laser printing, and the printing furnace has good adhesion. Table 1 Table 1 Example 1 Example 2 ----1 Example 3 ---| Example 4 Implementation of 彳 average particle diameter (μηι) Example 5 ~ 2 Γ ~ [80] Example 6 Formulation of each component Boron nitride particles / g * A / [% by volume ΓΒ / [% by volume] < PT-llO5 " 45 13.42 [70] [691 3.83 [40] [38.81 5.75 [50] [48.81 Bu 12.22 - [68] Γ 66 01 UHF >.ls2 9 - L/y.2i Ϊ 2.22 [68] Polymer thermosetting resin epoxy resin composition epoxy resin As3 (semi-solid) - 3 3 3 3 166.9] 3 epoxy tree Month s B (liquid) 1 Preparation - - Epoxy resin c#'5 (solid «like) - - - - - Epoxy resin 0/6 (solid) 2 - - - * Hardener s7 (solid component e number ) - 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) Hardener & 8 (solid content ε) 3 (0.15) - - - Manufacturing conditions Hot pressing temperature [°c] 80 80 80 80 80 80 times [times] 5 5 5 5 5 5 load (MPa) / (ton) 20/5 20/5 20/5 20/5 20/5 20/5 Evaluation of thermal conductivity sheet thermal conductivity (W /m· k) Plane direction (SD) 30 4.5 6.0 30.0 32.5 17.0 Thickness direction (TD) 2.0 1.3 3.3 5.0 5.5 5.8 Ratio (SD/TD) 15.0 3.5 1.8 6.0 5.9 2.9 Glass transition Ε Multi-point (.〇216 139 140 139 138 140 Air gap (% by volume) 4 0 0 5 12 6 Step follower/three-point bending test JISK 7171(2008) 0 配 gasification shed particle alignment angle (〇0 (degrees) 18 18 18 15 13 20 g*A : blending mass [% by volume]« : relative to heat conductive sheet (hardener) Percentage of total volume except [%] * 〇: number of times relative to the total volume of the thermally conductive sheet *D : number of hot pressing of laminated sheets 153638.doc -26- 8 201139533 Table 2 Table 2 EXAMPLES Average particle diameter (μηι) Example 7 Example 8 Example 9 Preparation of each component S-square nitriding shed particles / g * A / [Zhao product %] * 8 / [% by volume] < PT-110® 1 45 12.22 [68] Γ66.91 12.22 [68] [66.91 13.42 [70] _ UHP-1*2 9 - - - Polymer thermosetting resin epoxy resin epoxy resin A83 (semi-solid) - - - Epoxy resin BS4 (liquid) 1.5 3 - Epoxy resin CS5 (solid) 1.5 - - Epoxy resin 〇 & 6 (solid Zhao) - - 3 Hardener μ (solid component g) 3 (0-15) 3 (0.15) 3 (0.15) Hardener μ (g content of solid content) - - - Manufacturing conditions Hot pressing temperature [°c] 80 80 80 times [times] * D 5 5 5 Load (MPa) /(T) 20/5 20/5 20/5 Evaluation of thermal conductivity sheet thermal conductivity (W/mk) Surface orientation (SD) 30.0 30.0 24.5 Thickness direction (TD) 5.0 5.0 2.1 Ratio (SD/TD) 6.0 6.0 11.7 Glass transition point (°c) 130 168 217 Void ratio (% by volume) 4 2 10 Step follower/three-point f-curve test JIS K717K2008) 〇〇X Boron nitride particle alignment angle (〇0 (degrees) 15 16 16 g*A : blending mass [% by volume] * 8 : percentage of total volume relative to the heat conductive sheet (excluding the hardener) [% by volume] < : percentage of the total volume relative to the heat conductive sheet * D: number of hot pressing of laminated sheets 27-153638.doc 201139533 Table 3 Table 3 Example average particle diameter (μηι) Example 10 Example 11 Example 12 Example 13 Example 14 Formulation of each component was gasified Butterfly particle /g*A /[% by volume]# /[Volume PT-110S1 45 3.83 [40] 『38.81 13.42 [70] Γ691 13.42 [70] Γ691 13.42 [70] [691 13.42 P〇] 『691 UHP-l852 9 - - - - - Polymer thermosetting resin epoxy resin epoxy resin A*3 (semi-solid) 3 3 3 3 3 Epoxy resin B8*4 (liquid) - - - - - Epoxy resin (:®5 (solid «) - - - - - Epoxy Da6 (solid) - - - - - Hardener w (solid component g) 6 (0.3) 3 (0.15) 3 (0.15) 3 (0.15) 3 (0.15) Hardener (g number of solid components) - - - - - Manufacturing conditions Hot pressing temperature [°c] 80 60 70 80 80 Times [times]*D 5 5 5 5 5 Load (MPa) / (' collar) 20/5 20/5 20/5 20/5 40/10 Evaluation of thermal conductivity sheet thermal conductivity (W / mk) plane direction (SD) 4.1 10.5 11.2 32.5 50.7 thickness direction (TD 1.1 2.2 3.0 5.5 7.3 Ratio (SD/TD) 3.7 4.8 3.7 5.9 6.9 Glass Transfer Point rc) 145 138 138 139 139 Void 牟 (% by volume) 0 29 26 8 3 Step follower/three-point bending test JISK 7171 ( 2008) ◎ ◎ ◎ ◎ 配 Gasification shed particle alignment angle (〇0 (degrees) 20 17 15 15 13 g*A : blending quality [% by volume]*B: relative to heat conductive sheet (excluding hardener) Percentage of total volume [% by volume]^: relative to heat conduction The total volume percentage of the number of sheets of * D: the number of heat-pressing the laminated sheet of the table values of the components 1 to 3 in the table represents g at the time of no particular description. Further, in the column of boron nitride particles in Tables 1 to 3, the value of the upper stage is the blending mass (g) of the boron nitride particles, and the value of the middle stage is the hardening agent of the boron nitride particles relative to the thermally conductive sheet. The volume fraction (% by volume) of the total volume of the solid component (ie, the solid content of the boron nitride particles and the epoxy resin), and the value of the lower portion is the solid content of the boron nitride particles relative to the thermally conductive sheet (ie, nitriding) The volume fraction (volume °/〇) of the total volume of the boron particles and the solid content of the epoxy resin and the hardener 153638.doc -28- 8 201139533. Further, the following components are listed in detail for the components of the standard * marks in the respective components of Tables 1 to 3. PT-11 (^1: trade name, plate-shaped boron nitride particles, average particle diameter (light scattering method) is 45 μηη] UHP-Ρ2 manufactured by Momentive Performance Materials Japan Co., Ltd.: trade name SHoBN UHIM, plate-shaped nitrogen Boron particles, average particle size (light scattering method): 9 μιη, manufactured by Showa Denko, Epoxy resin A 3 : 〇gs〇i EG (trade name), bisaryl fluorene-type epoxy tree moon 曰 semi-solid 'Epoxy equivalent is 294 g/eqiv·, softening temperature (ring and ball method) is 47 ° C, melt viscosity (80 〇) is 1360 mPa·s, and epoxy resin B84 manufactured by Osaka Gas Chemicals Co., Ltd.: JER828 (trade name) , bisphenol A type epoxy resin, liquid 'epoxy equivalent weight is 184~194 g/eqiv., softening temperature (ring and ball method) is less than 25 C 'melt viscosity (8 ° ° C) is 70 mPa.s, 曰This epoxy resin company manufactures epoxy resin 5: JER1002 (trade name), bisphenol A type epoxy resin, solid epoxy equivalent of 600~700 g/eqiv., softening temperature (ring and ball method) is 78 °C 'The melt viscosity (80 ° C) is 10000 mPa·s or more (above the measurement limit) 'Epoxy resin company made epoxy Resin: EPPN-501HY (trade name), triphenylmethane epoxy resin 'solid state, epoxy equivalent is 163~175 g/eqiv., softening temperature (ring and ball method) is 57~63 °C, 曰本化Pharmaceutical company manufactures hardener X 7 : Curezol 2PZ (trade name, manufactured by Shikoku Chemicals Co., Ltd.) 5 ]53638.doc •29- 201139533 Mass % methyl ethyl ketone solution hardener M8: Curez〇i2P4MHZ_pw (trade name, four The 5% by mass of mercaptoethyl ketone dispersion manufactured by Guohuacheng Co., Ltd. is further provided as an exemplified embodiment of the present invention, but it is merely illustrative and not limiting, as understood by those skilled in the art. The modification of the present invention is included in the scope of the patent application described later. [Brief Description of the Drawing] Fig. 2 shows a step of producing a three-dimensional sheet of the embodiment of the thermally conductive sheet of the present invention. The heat conductivity diagram shown in Fig. , is illustrated, and (a) shows a step (8) of hot pressing the mixture or laminated sheet, and (4) a step of dividing into a plurality of steps (c) indicating a laminated sheet. 3 indicates the type I of the bending resistance test ) Perspective of FIG. Fig. 4 is a perspective view of the bending resistance test (in the case of the type I of the bending resistance test). _ device (and ί bending test [main component symbol description] 1 thermal conductive sheet 压制 pressed sheet IB divided sheet 1C laminated sheet 2 boron nitride particles 153638.doc -3U - 201139533 3 4 10 11 12 13 14 LD SD TD a Resin component release film tester 1st plate 2nd plate mandrel stop direction side direction direction thickness direction alignment angle 153638.doc -31

Claims (1)

201139533 七、申請專利範園: =熱傳導性諸,其特徵在於:其係含有板狀之氣化 删粒子者,並且 2傳導性片材之相對於厚度方向為正交方向之熱 傳導率為4W/m*K以上, 赫m率進行㈣m収時所得之以㈤ 之波峰值的形式求出之玻璃轉移點為125。(:以上。 153638.doc201139533 VII. Application for Patent Park: = Thermal Conductivity, which is characterized in that it contains plate-like gasification particles, and the thermal conductivity of the two conductive sheets in the direction of the thickness is 4W/ m*K or more, the glass transition point obtained by the peak value of (5) obtained by the (m) m-gain is 125. (: Above. 153638.doc
TW100103577A 2010-01-29 2011-01-28 Thermal conductive sheet TWI507464B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010018256 2010-01-29
JP2010090908 2010-04-09
JP2010161853 2010-07-16

Publications (2)

Publication Number Publication Date
TW201139533A true TW201139533A (en) 2011-11-16
TWI507464B TWI507464B (en) 2015-11-11

Family

ID=44408130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103577A TWI507464B (en) 2010-01-29 2011-01-28 Thermal conductive sheet

Country Status (5)

Country Link
US (1) US20110259568A1 (en)
JP (1) JP2012036364A (en)
KR (1) KR20110089105A (en)
CN (1) CN102140332A (en)
TW (1) TWI507464B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049495A (en) * 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
JP5759191B2 (en) 2010-01-29 2015-08-05 日東電工株式会社 Power module
JP6069834B2 (en) * 2011-12-27 2017-02-01 日立化成株式会社 Resin sheet, metal foil with resin, resin cured product, metal substrate, LED substrate, and method for producing metal foil with resin
CN104718620B (en) 2012-10-24 2018-01-02 夏普株式会社 Light-emitting device
JP6284094B2 (en) * 2013-08-23 2018-02-28 国立研究開発法人産業技術総合研究所 Resin composition for dielectric and high frequency dielectric device
JP6340575B2 (en) * 2013-09-09 2018-06-13 パナソニックIpマネジメント株式会社 Coil component, manufacturing method thereof, and coil electronic component
JP6450504B1 (en) 2017-05-10 2019-01-09 積水化学工業株式会社 Insulating sheet and laminate
WO2020194868A1 (en) * 2019-03-27 2020-10-01 富士フイルム株式会社 Method for manufacturing heat dissipation sheet
JP7401809B2 (en) * 2021-09-29 2023-12-20 日亜化学工業株式会社 Light-emitting device and method for manufacturing the light-emitting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576362A (en) * 1992-04-20 1996-11-19 Denki Kagaku Kogyo Kabushiki Kaisha Insulating material and a circuit substrate in use thereof
US6162849A (en) * 1999-01-11 2000-12-19 Ferro Corporation Thermally conductive thermoplastic
US6919504B2 (en) * 2002-12-19 2005-07-19 3M Innovative Properties Company Flexible heat sink
JP2005146057A (en) * 2003-11-12 2005-06-09 Polymatech Co Ltd High-thermal-conductivity molding and method for producing the same
JP4747918B2 (en) * 2005-11-04 2011-08-17 東ソー株式会社 Polyarylene sulfide composition
US20070259211A1 (en) * 2006-05-06 2007-11-08 Ning Wang Heat spread sheet with anisotropic thermal conductivity
JP5002280B2 (en) * 2007-02-14 2012-08-15 日東電工株式会社 Resin molded product manufacturing method
US20080271832A1 (en) * 2007-05-04 2008-11-06 Tyco Electronics Corporation Thermo-conductive, heat-shrinkable, dual-wall tubing
JP5525682B2 (en) * 2007-05-15 2014-06-18 出光ライオンコンポジット株式会社 Polyarylene sulfide resin composition and molded article comprising the same
JP5031450B2 (en) * 2007-06-12 2012-09-19 富士フイルム株式会社 Composite piezoelectric material, ultrasonic probe, ultrasonic endoscope, and ultrasonic diagnostic apparatus
CN101809734B (en) * 2007-09-26 2012-01-25 三菱电机株式会社 Heat conductive sheet, its manufacture method and power module
JP2010201625A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Laminate for flexible substrate and thermally conductive polyimide film
JP5513840B2 (en) * 2009-10-22 2014-06-04 電気化学工業株式会社 Insulating sheet, circuit board, and insulating sheet manufacturing method

Also Published As

Publication number Publication date
CN102140332A (en) 2011-08-03
JP2012036364A (en) 2012-02-23
US20110259568A1 (en) 2011-10-27
TWI507464B (en) 2015-11-11
KR20110089105A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
TW201139533A (en) Thermal conductive sheet
TWI492972B (en) Thermal conductive sheet
TWI480369B (en) Thermal conductive sheet
TW201203477A (en) Power module
TW201139641A (en) Heat dissipation structure
TW201214809A (en) Light-emitting diode device
TW201131716A (en) Thermal conductive sheet, light-emitting diode mounting substrate, and thermal conductive adhesive sheet
JP5698932B2 (en) Thermally conductive sheet
JP2013177562A (en) Thermal conductive sheet
TW201219211A (en) Multilayered resin sheet and method for producing the same, resin sheet laminate and method for producing the same, harded resin sheet, multilayered resin sheet with metal foil, and semiconductor device
TW201333179A (en) Thermal conductive sheet
TW201311443A (en) Thermal conductive sheet and producing method thereof
JP2016155985A (en) Epoxy resin composition, semi-cured epoxy resin composition and cured epoxy resin composition, and resin sheet, prepreg, laminate sheet, metal substrate, wiring board and power semiconductor device, using these
TW201248113A (en) Producing method of thermal conductive sheet and thermal conductive sheet
TW201139643A (en) Thermal conductive sheet
TWI513810B (en) Imaging device module
JP2017059704A (en) Thermally conducting composition, thermally conducting sheet, manufacturing method of thermally conducting sheet, and member
CN106103530B (en) Resin combination, adhesive film and semiconductor device
WO2012039324A1 (en) Heat-conductive resin composition, resin sheet, resin-clad metal foil, cured resin sheet, and heat-dissipating member
JP5910731B2 (en) Method for manufacturing heat conductive sheet, heat conductive sheet, heat conductive sheet with metal foil, and semiconductor device
TW201137010A (en) Thermal conductive sheet
JP2012039061A (en) Heat-conductive sheet
JP2012039064A (en) Heat-conductive sheet
WO2015141746A1 (en) Insulating film and semiconductor device
JP5587220B2 (en) Thermally conductive adhesive sheet

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees