TW201139463A - Purification method for hyaluronic acid and/or salts thereof - Google Patents

Purification method for hyaluronic acid and/or salts thereof Download PDF

Info

Publication number
TW201139463A
TW201139463A TW100109189A TW100109189A TW201139463A TW 201139463 A TW201139463 A TW 201139463A TW 100109189 A TW100109189 A TW 100109189A TW 100109189 A TW100109189 A TW 100109189A TW 201139463 A TW201139463 A TW 201139463A
Authority
TW
Taiwan
Prior art keywords
hyaluronic acid
molecular weight
ultrafiltration membrane
dialysis treatment
membrane
Prior art date
Application number
TW100109189A
Other languages
Chinese (zh)
Other versions
TWI504611B (en
Inventor
Masanobu Kohsaka
Katsumi Ishige
Hiromitsu Hoshika
Haruko Sakai
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW201139463A publication Critical patent/TW201139463A/en
Application granted granted Critical
Publication of TWI504611B publication Critical patent/TWI504611B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates

Abstract

Provided is a purification method for hyaluronic acid and/or salts thereof, which includes a process for performing dialysis on a hyaluronic acid solution comprising a high molecular weight hyaluronic acid and/or salts thereof and impurities, by means of an ultrafiltration membrane. The method is capable of producing a high quality hyaluronic acid and/or salts thereof from which proteins, nucleic acids, lactic acid, metals, etc. have been eliminated, with a high yield in a simple manner on an industrial scale.

Description

201139463 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種玻尿酸及/或其鹽之純化方法。 【先前技術】 玻尿酸除作為化妝品之保濕劑以外,亦於眼科、整形外 科、皮膚科等中作為醫藥品而使用。雖然玻尿酸可藉由來 自動物組織,例如雞之雞冠、牛眼之玻璃體等之萃取物而 製造’但由於混入作為夾雜物之硫酸軟骨素等、或因組織 内所3之玻尿酸酶等而易低分子量化,故而亦進行培養具 有玻尿酸生產能力之微生物而由培養液中製造玻尿酸之方 法(酸酵法)(非專利文獻丨及專利文獻1}。 於藉由萃取法或醱酵法製造之玻尿酸中,由於蛋白質戋 發熱性物質等以雜質形式存在,故正研究有將該等分離去 除以獲得高純度之製品之方法。尤其是製造之初始階段之 雜質的去除能減輕以後之純化步驟之負荷’作為獲得亦可 作為醫藥品使用之高純度之製品的方法而期待得到開發。 作為高純度地純化玻尿酸之方法,已知:為去除例如蛋白 質、核酸等副生物、及來自培養基之無機鹽類而於使包含 玻尿酸及其鹽與雜質之玻尿酸溶液通過帶正電之過濾器後 添加水溶性有機溶劑,而使玻尿酸鈉析出、沈澱並萃取上 清液,藉此進行純化之方法(非專利文獻2)。 [非專利文獻 l]J〇urnal General Microbiology,μ 372-375, 1976 ’ [專利文獻1]日本專利特公平4_1296〇號公報 154811.doc 201139463 [專利文獻2]曰本專利特開平9_324〇〇1公報 【發明内容】 然而’於以工業規模獲得可作為㈣品使用之高純度之 玻尿酸類時,於上述方法中亦存在玻尿酸之回收率低等問 題。 本發明係有鑒於上述情況而完成者,其目的在於提供— 種簡便、高產率地以工業規模純化高純度之玻尿酸類之方 法。 本發明者等人為達成上述目的,對將雜質自包含玻尿酸 及其鹽與雜質之玻尿酸溶液中高效地分離去除而簡便且高 效地純化高純度之玻尿酸類的方法進行了各種研究,結果 發現藉由於將玻尿酸類溶液調整至偏酸性2pH值後、利用 超濾膜進行透析處理,可有效去除核酸、發熱性物質、蛋 白質、乳酸、無機鹽類等,從而完成了本發明。 即,根據本發明,提供一種玻尿酸及/或其鹽之純化方 法,其包括於將包含玻尿酸及其鹽與雜質之玻尿酸溶液調 整至偏酸性之pH值後、利用超濾膜進行透析處理之步驟。 根據該製造方法’可高效地去除雜質。 【實施方式】 [術語之說明] 本說明書中之「玻尿酸及/或其鹽」與「玻尿酸類」同 義,可交換使用,係指游離之玻尿酸、及於無損本發明之 目的之範圍内可使用的任意之玻尿酸鹽(並不限定於此, 例如鈉鹽、鉀鹽、鈣鹽、鋰鹽等金屬鹽,或鹽酸鹽、磷酸201139463 6. INSTRUCTION DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a method for purifying hyaluronic acid and/or a salt thereof. [Prior Art] In addition to being a moisturizer for cosmetics, hyaluronic acid is also used as a medicine in ophthalmology, orthopedics, dermatology, and the like. Although hyaluronic acid can be produced by an extract derived from an animal tissue such as a chicken cockscomb or a vitreous of a bull's eye, it is easy to be low due to the incorporation of chondroitin sulfate as an inclusion or the hyaluronic acid in the tissue. Since the molecular weight is increased, a method of producing hyaluronic acid from a culture solution by culturing a microorganism having hyaluronic acid-producing ability (acid yeast method) is also carried out (Non-Patent Document No. 1 and Patent Document 1). Hyaluronic acid produced by an extraction method or a fermentation method In the case where the protein, the exothermic substance, and the like are present in the form of impurities, a method of separating and removing the product to obtain a high-purity product is being studied. In particular, the removal of impurities in the initial stage of the production can reduce the load of the subsequent purification step. 'It is expected to be developed as a method of obtaining a high-purity product which can be used as a pharmaceutical. As a method of purifying hyaluronic acid with high purity, it is known to remove by-products such as proteins and nucleic acids, and inorganic salts derived from a medium. And the hyaluronic acid solution containing hyaluronic acid and its salts and impurities is passed through a positively charged filter. A method of purifying sodium hyaluronic acid by precipitating, precipitating and extracting a supernatant with a water-soluble organic solvent (Non-Patent Document 2) [Non-Patent Document 1] J〇urnal General Microbiology, μ 372-375, 1976 ' [Patent Document 1] Japanese Patent Publication No. Hei 4_1296 No. 154811.doc 201139463 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei 9-324〇〇1 [Invention] However, it is used as an industrial grade to be used as a (four) product. In the case of hyaluronic acid of purity, there is also a problem that the recovery rate of hyaluronic acid is low in the above method. The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-purity hyaluronic acid which is purified on an industrial scale in a simple and high-yield manner. In order to achieve the above object, the inventors of the present invention conducted various studies on a method for efficiently and efficiently purifying high-purity hyaluronic acid by efficiently separating and removing impurities from a hyaluronic acid solution containing hyaluronic acid and a salt thereof and impurities. It was found that it was effective by dialysis treatment using an ultrafiltration membrane after adjusting the hyaluronic acid solution to an acidic 2 pH value. The present invention has been completed by removing nucleic acids, exothermic substances, proteins, lactic acid, inorganic salts, and the like. That is, according to the present invention, there is provided a method for purifying hyaluronic acid and/or a salt thereof, which comprises including hyaluronic acid and a salt thereof The hyaluronic acid solution of the impurity is adjusted to a pH value which is acidic, and the dialysis treatment is performed by using an ultrafiltration membrane. According to the production method, impurities can be efficiently removed. [Embodiment] [Description of Terms] "Hyaluronic acid and / or a salt thereof, synonymous with "hyaluronic acid", and used interchangeably, means free hyaluronic acid, and any hyaluronic acid salt which can be used within the scope of the object of the present invention (not limited thereto, such as sodium salt, a metal salt such as a potassium salt, a calcium salt or a lithium salt, or a hydrochloride or a phosphoric acid

154811.doc 4 S 201139463 鹽、檸檬酸鹽等酸加成物等)或水合物、該等之混合物。 此處,玻尿酸係指N-乙醯基-D_葡萄糖胺與D_葡糖醛酸鍵 結之2糖單元重複連鏈而成之高分子量多糖類,各種鹽主 要係指葡糖醛酸部分成為鹽之形態者。玻尿酸因可摺疊之 鏈部分與D-葡糖醛酸部分之羧基之負電荷的相互作用而易 於空間中展開,藉此可與大量水結合而形成凝膠。另外, 即便為低濃度,但分子間力亦較強,因此具有相對較高之 黏性。由於此種作用,例如具有濕潤關節之作用、柔軟皮 膚之作用等,於生理上亦發揮該等作用。 已知於玻尿酸類中,分子量約200萬Da之玻尿酸鈉與分 子量約相比’作為醫藥品’對治療變形性膝關節 炎、肩關節周圍炎、慢性類風濕性關節炎等發揮出優異之 效果(藥理與治療、VoL22、N〇. 9、289 (1994);藥理與治 療、Vol. 22、No. 9、319 (1994))。另外,除此以外還已知 作為外科手術後之防止黏連用之效果、進而亦於皮膚科領 域、眼科領域中作為醫藥品之效果’ 一部分通常於臨床上 使用。於作為醫藥品使用之情形時,較理想為使用平均分 子量為100萬以上之玻尿酸類。若考慮獲取或處理之容易 性,則作為醫藥品更理想為平均分子量為100萬〜500萬Da 之玻尿酸類,尤其理想為平均分子量為150萬〜400萬0&之 玻尿酸類。另外,此種高分子量玻尿酸類於作為化妝品用 途使用時’亦因其較高之保濕力而發揮優異之效果。 關於本說明書中之「平均分子量」,只要無特別說明, 則於表示玻尿酸類之平均分子量時,係指黏度平均分子量 154811.doc 201139463 111分子量可藉由f者通常使用之方法而求出。 /為可藉由各國之藥典等令通常所使用之測定方法而求 ^更佳為可藉由日本藥典t所使用之敎方法而求出。 4 乂例例如於期望破尿酸納具有與本申請案發明接近 平句刀子量(150萬〜390萬)之情形3夺,其平均分子量可 使用極限黏度刚藉由下式而求出,但並不限定於此。 [式1] 平均分子量154811.doc 4 S 201139463 Salt, citrate and other acid adducts, etc.) or hydrates, mixtures of these. Here, hyaluronic acid refers to a high molecular weight polysaccharide in which N-acetyl-D-glucosamine is repeatedly linked to a D-glucuronic acid-bonded 2-saccharide unit, and various salts mainly refer to a glucuronic acid moiety. Become the form of salt. Hyaluronic acid is easily spread in space due to the interaction of the collapsible chain portion with the negative charge of the carboxyl group of the D-glucuronic acid moiety, whereby it can be combined with a large amount of water to form a gel. In addition, even at a low concentration, the intermolecular force is strong, so that it has a relatively high viscosity. Such an action, for example, has the action of a moist joint, the action of a soft skin, and the like, and also exerts such effects physiologically. It is known that in hyaluronic acid, sodium hyaluronate having a molecular weight of about 2 million Da has an excellent effect on treating deformed knee arthritis, periarthritis of the shoulder, and chronic rheumatoid arthritis as compared with molecular weight. (Pharmacology and Therapy, VoL22, N〇. 9, 289 (1994); Pharmacology and Therapy, Vol. 22, No. 9, 319 (1994)). In addition, it is known that it is generally used clinically as an effect of preventing adhesion after surgery, and also as an effect of pharmaceuticals in the field of dermatology and ophthalmology. In the case of use as a pharmaceutical, it is preferred to use a hyaluronic acid having an average molecular weight of 1,000,000 or more. In view of the ease of obtaining or handling, it is more preferable that the pharmaceutical is a hyaluronic acid having an average molecular weight of 1,000,000 to 5,000,000 Da, and particularly preferably a hyaluronic acid having an average molecular weight of 1.5 to 400,000 Å. Further, when such a high molecular weight hyaluronic acid is used as a cosmetic, it also exerts an excellent effect due to its high moisturizing power. The "average molecular weight" in the present specification means the viscosity average molecular weight 154811.doc 201139463 111 molecular weight can be determined by a method generally used by f unless otherwise specified. / It can be obtained by a measurement method generally used by a Pharmacopoeia of a country, etc., and can be obtained by the method of the Japanese Pharmacopoeia t. 4 For example, in the case where it is desired to break the uric acid sodium, it is similar to the case of the invention of the present application, which is close to the amount of the flat knife (1.5 million to 3.9 million), and the average molecular weight can be obtained by using the following formula, but It is not limited to this. [Formula 1] Average molecular weight

t 22.8 J 溶解玻尿酸類作為醫藥品之注射用溶解液可適當使用通 ㊉所使用之注射用溶解液(例如,各國藥典中所確認者), 該注射用溶解液係於注射用水、生理鹽水等中加入含有 酸、鹼、磷酸鹽之類之緩衝劑的pH值調整劑等者。 該等玻尿酸類可為藉由自動物組織中萃取之萃取法而製 造者’亦可為藉由使用玻尿酸生產微生物g株使其酿酵而 獲得之醱酵法而製造者。然而,於自動物組織所萃取者 中,其他黏多糖等雜質相對較多,且玻尿酸類之分子量亦 較小,故而較理想為使用藉由醱酵法而獲得者。於適於本 發明之醱酵法之一例中,例如可使用鏈球菌屬之微生物並 藉由已知之方法獲得玻尿酸類。 於將藉由醱酵法而獲得之醱酵液用於本發明之方法等中 之情形時’較理想為使用藉由已知之方法、例如離心分離 或過濾處理等殺菌之溶液者。視情況,亦可使用添加乙醇 等水溶性有機溶劑而將玻尿酸析出純化者。另外,亦可使 154811.doc 201139463 用經氧化鋁等處理者。 本說明書中之「鏈球菌」包括:可生產玻尿酸之鏈球菌 (Streptococcus)屬之任意細菌.其變異株。尤其較理想為使 用如專利文獻2中所記載之馬鏈球菌(streptococcus equi)FM-100(微工研菌寄第9027號)、曰本專利特開平2· 234689號公報中所記載之馬鏈球菌fm-300(微工研菌寄第 2319號)之尚產率且穩定地生產玻尿酸之變異株。作為適 合生產玻尿酸之鏈球菌屬細菌之例,其他例如可列舉·馬 鏈球菌(Streptococcus equi)、流行性鏈球菌(Strept〇c〇ccus zooepidemicus)、類馬鏈球菌(Strept〇c〇ccus equisimilis)、 壞乳鏈球菌(Streptococcus dysgalactiae)、釀膿鏈球菌 (Streptococcus py0genes)及該等之變異株等,但並不限定 於此。 所謂本說明書中之「超濾膜」,係指孔徑為〇 〇〇l〜〇 〇i μηι之過濾膜及/或截留分子量為1〇〇〇〜3〇〇〇〇〇左右之過濾 膜。超濾膜之材質大致分為無機膜與有機膜,進而分為疏 水性與親水性。作為疏水性有機膜’可列舉聚硬、聚驗 砜 '聚醚、聚偏二氟乙烯、$乙烯、聚丙烯等,但並不限 定於此。作為親水性有機膜,可列舉聚丙稀腈、聚酿胺、 聚醯亞胺' 醋酸纖維素等,但並不限定於此。其過濾介質 之形狀。括平板臈、管狀膜、捲式膜、中空纖維(腦— fiber)膜等所有模組形式。 過據方式包括端點過濾方式與掃流方式。端點過渡方式 係指將供給於膜之全部水料之方式。_於此,掃流方 154811.doc 201139463 式係}a藉由相對於臈面平行流動而一面抑制供給於膜之水 中所含之懸浮物或膠體堆積於膜面之現象一面進行過濾的 方式於知流方式中,包括單程方式(One-pass method)、 反沖方式(Backlash method)及反向方式(Reverse method), 但並不限定於此。所謂單程方式,係指如圖1之A所示不循 環利用來自超濾膜之透過液而進行過濾之方式。所謂反沖 方式,係指如圆1之B所示包括將來自超濾膜之透過液儲存 ;透k液槽中、自透過液槽轉移至超渡膜上、沖洗附著於 L濾膜表面之玻尿酸類之步驟的過遽方式。所謂反向方 式,係指如圖1之〇所示包括藉由關閉透過液閥門使來自超 遽膜之透過液逆流而沖洗附著於過濾膜表面之玻尿酸類之 步驟的過濾方式。 §月書中之雜質」係指玻尿酸類、水以外之溶劑成 分、無機鹽以外之物質,尤其係指於使用作為最終產品之 玻尿心類時可帶來不利之物質(發熱性物質等)。作為主要 雜質源,可列舉:於玻尿酸類之生產階段中源自組織、微 生物或培養液(培養基)者、或者於其後之純化階段等中混 入者。作為本說明書中之雜質之例,可列舉組織或菌體: 蛋質—核酉义夕糖類、低分子化合物、或内毒素等,但 ,不限疋於此。作為雜質之組織或菌體分別包括:源自於 萃取法中所使用之作為萃取原料之組織的組織片等,或於 醱酵法中所使用之微生 一、 王物冬菌體或菌體片等,但並不限定 於此。作為雜質之蛋白 質及於生產後之步驟中I:之自上述組織、菌之蛋白 ,驟中混入之蛋白質等,但並不限定於 154811.doc 201139463 此。作為雜質之内毒素包括源自上述菌之脂多糖類等,但 並不限定於此。 所謂本說明書中《「低分子化合U指與玻尿酸類 相比刀子里相對較小之化合物,例如分子量為2〇〇〇 Da以 下、或勿子畺為1 〇〇〇 Da或分子量為5〇〇 Da以下之化合 物’但並不限定於此。此種低分子化合物包括各種胺基 酸、有機酸(例如乳酸)、糖(例如葡萄糖)等。 本說明書中之「去除」除包括完全去除對象物質以外, 亦包括部分去除(減少該物質之量)。本說明書十之「純 化」包括去除任意或特定之雜質。 關於本說明書中之各個數值範圍,分別包含由「〜」表 示之上限值及下限值。 [實施形態] 本發明例如係關於以下之實施態樣,但並不限定於此。 實施態樣1. -種玻尿酸及/或其鹽之純化方法,其包括藉由於將包 含玻尿酸及/或其鹽與雜質之玻尿酸溶液調整至偏酸性之 pH值後、利用超濾膜進行透析處理而去除雜質之步驟。 實施態樣2. 如實施態樣1之方法’其中於超濾膜之截留分子量與利 用超濾膜進行透析處理時之pH值滿足下式之條件下利用 超濾膜進行透析處理: pH值 $ -5x1 (Γ5χ(截留分子量)+4.4978。 實施態樣3. 154811.doc 201139463 如實施態樣1或2之方法,其中超濾膜之截留分子 25000〜35000,透析處理時之pH值為3 3以下。 實施態樣4· 如實施態樣1或2之方法,其中上述超濾膜之截留分子量 為12000〜14000,透析處理時之pH值為3 9以下。 實施態樣5 _ 如實施態樣1或2之方法,其中上述超濾膜之截留分子量 為9000〜11 〇〇〇,透析處理時之pH值為41以下。 實施態樣6. 如實施態樣1或2之方法,並中μ .+、 备 央甲上述超濾Μ之截留分子量 為6000〜8000,透析處理時之ρΗ值為4 2以下。 實施態樣7· 如實施態樣1或2之方法,盆中 共〒上述超濾膜之截留分子晋 為4000〜5000,透析處理時之ρΗ值為43以下。 $ 實施態樣8. 其中上述超濾膜為疏 其中上述處理之過渡 其中上述處理時之透 如實施態樣1至7中任一項之方法 水性有機膜。 實施態樣9. 如實施態樣1至8中任一項之方法 方式為反向方式。 實施態樣10. 如實施態樣1至9中任一項之方法 過流速為20〜50 L/m2.hr。 實施態樣11. 154811.doc •10· 201139463 如實施態樣1至10中任一項之方t 22.8 J Dissolved hyaluronic acid As a solution for injection for pharmaceutical use, the injectable solution for use in the Tenth (for example, as confirmed in the Pharmacopoeia of each country) can be suitably used. The solution for injection is based on water for injection, physiological saline, etc. A pH adjuster containing a buffer such as an acid, a base or a phosphate is added thereto. These hyaluronic acids may be produced by an extraction method of extraction by an automatic structure, or may be produced by a fermentation method obtained by producing a microorganism g strain using hyaluronic acid to ferment. However, among the extracts of the animal tissues, other impurities such as mucopolysaccharides are relatively large, and the molecular weight of the hyaluronic acid is also small, so it is preferable to use those obtained by the fermentation method. In one example of the fermentation method suitable for the present invention, for example, a microorganism of the genus Streptococcus can be used and a hyaluronic acid can be obtained by a known method. In the case where the fermentation broth obtained by the fermentation method is used in the method of the present invention or the like, it is preferable to use a solution which is sterilized by a known method such as centrifugation or filtration treatment. The hyaluronic acid may be precipitated and purified by adding a water-soluble organic solvent such as ethanol, as the case may be. In addition, 154811.doc 201139463 can also be used for treatment with alumina or the like. The "Streptococcus" in the present specification includes any strain of the genus Streptococcus which can produce hyaluronic acid. In particular, it is preferable to use a horse chain as described in the patent document 2, Streptococcus equi FM-100 (Microtechnology Research No. 9027), and Japanese Patent Laid-Open No. Hei 2 234 689. The cocci fm-300 (Microtechnology Research No. 2319) is still producing and stably producing a hyaluronic acid mutant. As an example of a bacterium belonging to the genus Streptococcus which is suitable for producing hyaluronic acid, for example, Streptococcus equi, Strept〇c〇ccus zooepidemicus, Strept〇c〇ccus equisimilis And Streptococcus dysgalactiae, Streptococcus py0genes, and the like, but are not limited thereto. The "ultrafiltration membrane" in the present specification refers to a filtration membrane having a pore diameter of 〇 〇〇1 to 〇 μi μηι and/or a filtration membrane having a molecular weight cut off of about 1 〇〇〇 3 〇〇〇〇〇. The material of the ultrafiltration membrane is roughly classified into an inorganic membrane and an organic membrane, and is further classified into a hydrophobicity and a hydrophilicity. Examples of the hydrophobic organic film 'polyhard, polysulfonated sulfone' polyether, polyvinylidene fluoride, ethylene, polypropylene, and the like are not limited thereto. Examples of the hydrophilic organic film include, but are not limited to, polyacrylonitrile, polyacrylamide, and polyamidene cellulose acetate. The shape of its filter media. It includes all modular forms such as flat plate, tubular film, roll film, and hollow fiber (brain-fiber) film. The method of passing data includes endpoint filtering mode and sweeping mode. Endpoint transition mode means the manner in which all water is supplied to the membrane. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The knowing flow method includes a one-pass method, a backlash method, and a reverse method, but is not limited thereto. The so-called single-pass method refers to a method of filtering by using a permeate from an ultrafiltration membrane as shown in Fig. 1A. The so-called back-flushing method means that the permeate from the ultrafiltration membrane is stored as shown in B of the circle 1; in the k-liquid tank, from the permeate tank to the ultra-transition membrane, and the rinsing is attached to the surface of the L membrane. The method of the hyaluronic acid step. The reverse mode refers to a filtration method including a step of rinsing hyaluronic acid attached to the surface of the filtration membrane by backflowing the permeate from the super-membrane by closing the permeate valve as shown in Fig. 1. § “Impurities in the book of the month” refers to substances other than the hyaluronic acid, solvent components other than water, and inorganic salts, especially substances that can cause adverse effects when using the hyaluronic heart as the final product (heat-generating substances, etc.) . The main impurity source is those which are derived from tissues, microorganisms or culture solutions (medium) in the production stage of hyaluronic acid, or in a subsequent purification stage or the like. Examples of the impurities in the present specification include a tissue or a microbial cell: an egg mass, a nucleoside iridium saccharide, a low molecular compound, or an endotoxin, but is not limited thereto. The tissue or the bacterial body as the impurity includes: a tissue piece derived from a tissue used as an extraction raw material used in the extraction method, or the like, or a micro-sheng, Wang Shidong bacterial cell or a bacterial cell sheet used in the fermentation method. However, it is not limited to this. The protein as an impurity and the protein from the above-mentioned tissue, the protein of the fungus, and the protein mixed in the step after the production are not limited to 154811.doc 201139463. The endotoxin as an impurity includes lipopolysaccharides derived from the above-mentioned bacteria, and the like, but is not limited thereto. In the present specification, "low molecular compound U refers to a relatively small compound in a knife compared to hyaluronic acid, for example, a molecular weight of 2 〇〇〇 Da or less, or a 畺 Da 1 Da or a molecular weight of 5 〇〇. The following compounds are not limited thereto. Such low molecular compounds include various amino acids, organic acids (such as lactic acid), sugars (such as glucose), etc. "Removal" in the present specification includes, in addition to complete removal of a target substance. In addition, partial removal (reducing the amount of the substance) is also included. The "purification" of this specification 10 includes the removal of any or specific impurities. Each numerical range in the present specification includes the upper limit and the lower limit by "~". [Embodiment] The present invention relates to, for example, the following embodiments, but is not limited thereto. Embodiment 1. A method for purifying hyaluronic acid and/or a salt thereof, which comprises dialysis treatment by using an ultrafiltration membrane after adjusting a hyaluronic acid solution containing hyaluronic acid and/or a salt thereof and an impurity to an acidic pH value The step of removing impurities. Embodiment 2. The method of Embodiment 1 wherein the pH of the ultrafiltration membrane and the pH of the dialysis treatment using the ultrafiltration membrane satisfy the following formula: dialysis treatment using an ultrafiltration membrane: pH value: -5x1 (Γ5χ (molecular weight cut off) + 4.4978. Embodiments 3. 154811.doc 201139463 The method of embodiment 1 or 2, wherein the ultrafiltration membrane has a molecular weight of 25,000 to 35,000 and the pH of the dialysis treatment is 3 3 The method of Embodiment 1 or 2, wherein the ultrafiltration membrane has a molecular weight cut off of 12,000 to 14000, and the pH value during dialysis treatment is 3 or less. Embodiment 5 _ The method of 1 or 2, wherein the ultrafiltration membrane has a molecular weight cut-off of 9000 to 11 Torr, and the pH of the dialysis treatment is 41 or less. Embodiment 6. The method of the aspect 1 or 2, and the medium μ .+, The molecular weight cutoff of the above-mentioned ultrafiltration cartridge is 6000~8000, and the ρΗ value during dialysis treatment is 4 2 or less. Embodiment 7· As in the method of Embodiment 1 or 2, the above-mentioned ultrafiltration is carried out in the basin. The retention molecule of the membrane is promoted to 4000~5000, and the ρΗ value of dialysis treatment is below 43. The embodiment of the present invention is as follows: wherein the ultrafiltration membrane is a water-based organic membrane in which the above-mentioned treatment is carried out in a manner as described in any one of the first to seventh embodiments. The method of any one of 1 to 8 is a reverse mode. Embodiment 10. The method according to any one of Embodiments 1 to 9 has an overcurrent flow rate of 20 to 50 L/m2.hr. 154811.doc •10· 201139463 As one of the implementation aspects 1 to 10

實施態樣12. 一項之方法,其中上述雜質包括 低分子化合物或内毒素。 其中純化後之上述 ~700 萬 Da 〇 如實施態樣1至11中任一項之方法, 玻尿酸及/或其鹽之平均分子量為35〇萬 實施態樣13. 項之方法’其中上述玻尿酸類 如實施態樣1至12中任一 溶液中之玻尿酸及/或其鹽之濃度為^58^。 以下對本發明之態樣進行說明》 本發明之態樣(例如實施態樣丨)係一種玻尿酸及/或其鹽 之純化方法,其包括藉由於將包含玻尿酸及/或其鹽與雜 質之玻尿酸類溶液調整至偏酸性之pH值後、利用超濾膜進 行透析處理而去除雜質之步驟。根據該純化方法,可藉由 調整至偏酸性之pH值而減少利用超濾膜進行過濾時之玻尿 酸類之損失,而高效地去除雜質。 藉由於超濾膜之截留分子量與利用超濾膜進行透析處理 時之pH值滿足下式之條件下利用超濾膜進行透析處理,可 於實質上不損失玻尿酸類之情況下進行純化:pH值$ -5χ10·5χ(截留分子量)+4.4978。作為滿足上述之式的超濾 膜之截留分子量與利用超濾膜進行透析處理時之pH值,例 如可列舉:超濾膜之截留分子量為35〇〇〇,pH值為2.7 ;超 渡膜之截留分子量為30000,pH值為3.0 ;超滤膜之截留分 子量為25000 ’ pH值為3.3 ;超濾膜之截留分子量為 20000 ’ pH值為3.5 ;超濾膜之截留分子量為14〇〇〇,?11值 154811.doc 201139463 為3.8 ;超濾膜之截留分子量為13〇()(),pH值為3 9 ;㈣ 膜之截留分子量為12_,pH值為39;超遽膜之截留分子 量為_〇,PH值為4.0 ;超遽膜之截留分子量為_〇, PH值為4.0;超渡膜之截留分子量為_〇 , pH值為41 ;超 濾膜之截留分子量為8_,pH值為4」;超濾膜之截留分 子量為7000 ’ PH值為4.2 ;超據膜之截留分子量為6〇〇〇, PH值為4.2;超濾膜之截留分子量為5〇〇〇, pH值為4 3;超 濾膜之截留分子量為4〇〇〇,pH值為4.3。 此處,所謂「實質上不損失玻尿酸類」,係指玻尿酸類 之損失率成為7%以下(回收率成為93%以上)、6%以下(回 收率成為94 /0以上)' 5°/。以下(回收率成為95%以上)、4%以 下(回收率成為96%以上)或3%以下(回收率成為97%以 上)。 若使用截留分子量較高之膜,則玻尿酸類透過超濾膜而 產生損失之風險增高,另一方面若使用截留分子量較低之 膜,則蛋白質等相對高分子之雜質之去除效率下降。根據 上述實施態樣之方法,使用截留分子量較高之膜、與使用 截留分子量較低之臈均可藉由調整至與膜之截留分子量對 應之pH值而於不損失玻尿酸類之情況下去除雜質,因此於 上述態樣之方法中使用之超濾膜的截留分子量並無特別限 定。例如,於使用具有250〇〇〜35〇〇〇之截留分子量之超濾 膜之情形時’可藉由將PH值調整至3·3以下而於不·損失玻 尿8九類之情況下進行純化。於使用具有12000〜14000之截 留分子量之超濾膜之情形時,可藉由將ρΗ值調整至39以 154811.docEmbodiment 12. The method of any of the above, wherein the impurities include a low molecular compound or an endotoxin. The above-mentioned method of the method of any one of the first to eleventh, wherein the average molecular weight of the hyaluronic acid and/or its salt is 3.5 million. The concentration of hyaluronic acid and/or its salt in any of the solutions of Examples 1 to 12 is ^58^. Hereinafter, the aspect of the present invention will be described. The aspect of the present invention (for example, the embodiment) is a method for purifying hyaluronic acid and/or a salt thereof, which comprises a hyaluronic acid containing hyaluronic acid and/or a salt thereof and an impurity thereof. After the solution is adjusted to an acidic pH value, the ultrafiltration membrane is used for dialysis treatment to remove impurities. According to this purification method, the loss of hyaluronic acid when filtering by the ultrafiltration membrane can be reduced by adjusting to a pH value which is acidic, and impurities can be efficiently removed. By using the ultrafiltration membrane for dialysis treatment because the molecular weight of the ultrafiltration membrane and the pH value of the ultrafiltration membrane are dialysis treatment, the purification can be carried out without substantially losing hyaluronic acid: pH value $ -5χ10·5χ (molecular weight cut off) +4.4978. The pH value of the ultrafiltration membrane satisfying the above formula and the pH value of the dialysis treatment by the ultrafiltration membrane include, for example, an ultrafiltration membrane having a molecular weight cut off of 35 Å and a pH of 2.7; The molecular weight cut off is 30,000 and the pH is 3.0; the molecular weight cutoff of the ultrafiltration membrane is 25000', the pH value is 3.3; the molecular weight cutoff of the ultrafiltration membrane is 20000', the pH value is 3.5; and the molecular weight of the ultrafiltration membrane is 14 〇〇〇. ? 11 value 154811.doc 201139463 is 3.8; ultrafiltration membrane molecular weight cut-off is 13 〇 () (), pH is 3 9; (d) membrane molecular weight cut-off molecular weight is 12 _, pH value 39; super 遽 membrane molecular weight cutoff _ 〇, PH value is 4.0; the molecular weight cut-off of the super-membrane is _〇, pH is 4.0; the molecular weight cut-off of the super-membrane is _〇, pH is 41; the molecular weight cut-off of the ultrafiltration membrane is 8_, pH 4 The ultrafiltration membrane has a molecular weight cutoff of 7000 'pH of 4.2; the molecular weight of the ultrafiltration membrane is 6 〇〇〇, the pH value is 4.2; the molecular weight cutoff of the ultrafiltration membrane is 5 〇〇〇, and the pH is 4 3 The ultrafiltration membrane has a molecular weight cut-off of 4 Å and a pH of 4.3. Here, "substantially no loss of hyaluronic acid" means that the loss rate of hyaluronic acid is 7% or less (recovery rate is 93% or more), 6% or less (recovery is 94 / 0 or more) '5°/. The following (recovery rate is 95% or more), 4% or less (recovery rate is 96% or more) or 3% or less (recovery rate is 97% or more). When a membrane having a high molecular weight cut off is used, the risk of loss of hyaluronic acid through the ultrafiltration membrane is increased. On the other hand, when a membrane having a relatively low molecular weight cutoff is used, the removal efficiency of impurities such as proteins with respect to a polymer is lowered. According to the method of the above embodiment, the use of a membrane having a higher molecular weight cut-off and the use of a ruthenium having a lower molecular weight cut-off can be carried out by adjusting the pH corresponding to the molecular weight cut off from the membrane without loss of hyaluronic acid. Therefore, the molecular weight cut off of the ultrafiltration membrane used in the method of the above aspect is not particularly limited. For example, in the case of using an ultrafiltration membrane having a molecular weight cut off of 250 〇〇 to 35 Å, 'the pH can be adjusted to 3.3 or less without the loss of hyaluronic acid. purification. When using an ultrafiltration membrane having a molecular weight cutoff of 12,000 to 14,000, the pH can be adjusted to 39 by 154811.doc.

S •12· 201139463 下而於不損失玻尿酸類之情況下進行純化。於使用具有 9000〜1 1 000之截留分子量之超濾膜之情形時,可藉由將pH 值調整至4.1以下而於不損失玻尿酸類之情況下進行純 化。於使用具有6000〜8000之截留分子量之超濾膜之情形 時,可藉由將pH值調整至4.2以下而於不損失玻尿酸類之 情況下進行純化。於使用具有4000〜5000之截留分子量之 超濾膜之情形時,可藉由將pH值調整至4.3以下而於不損 失玻尿酸類之情況下進行純化。 此處,超濾膜之截留分子量可藉由使用如表1所示之目 標物質進行過濾並調查各自之阻塞率相當於90%之分子量 而確定。 [表1] 用以測定截留分子量之目標物質 種類 分子量 推定分子徑 蔗糖 340 1.1 棉子糖 590 1.3 維生素12 1360 1.7 枯草菌素 1410 1.7 騰島素 5700 2.7 細胞色素C 13000 3.8 肌血球素 17000 4.0 α-胰凝乳蛋白酶原 25000 4.6 胃蛋白酶 35000 5.0 卵白蛋白 43000 5.6 牛白蛋白 66000 6.4 醛縮酶 142000 8.2 γ-球蛋白 150000 8.4 於上述態樣之方法中使用之超濾膜之材質並無特別限 定,就雜質之去除之觀點而言較理想為疏水性有機膜,更 理想為聚砜、聚醚砜、聚醚、聚偏二氟乙烯、聚乙烯、聚 154811.doc -13· 201139463 丙稀。 作為於上述態樣之方法中使用之超滤膜,例如可使用: PM-10、PM-50 ' PM-100(Koch公司製造)’ NTU-3050(曰東 電工公司製造)’ IRIS3065(羅納·普朗克公司製造),FS-1〇(旭化成公司製造),MU-63〇3(可樂麗公司製造)、 DUS〇4〇〇(泰金化學工業公司製造),SLP-3053(旭化成化學 公司製造)等,但並不限定於該等。 上述態樣之方法中之過濾方式並無特別限定,但由於水 透過膜之流速易穩定化、過濾膜之壽命延長等,故而較理 想為掃流方式,其中尤其理想為反向方式。 於上述態樣之方法中,玻尿酸類溶液於超濾膜處理時之 透過流速根據玻尿酸類溶液之性狀或超濾膜之種類而不 同’不能一概而論。例如,於以工業規模純化玻尿酸類 時,較理想為20 L/m2.hr以上,更理想為25 L/m2.hr以上, 尤其理想為30 L/m2.hr以上。因存在剪切玻尿酸類而引起 分子量降低之可能性,故玻尿酸類溶液於過濾時之透過流 速較佳為100 L/m2.hr以下,進而較佳為50 L/m2.hr以下。 於上述態樣之方法中,用以輸送液體之壓力並無限定, 通常較佳為於加壓下通過過濾膜。尤佳為利用泵等加壓而 輸送之方法》當於輸送液體時利用泵施加壓力時,只要不 損壞或堵塞過濾膜而使性能劣化,則無特別限定。施加於 過濾膜上之壓力較佳為〇.〇1 MPa以上0.30 MPa以下、更佳 為0.03 MPa以上0.20 MPa以下、尤佳為〇 〇5 Mpa以上〇1〇 MPa以下。 154811.doc -14· 201139463 進而,根據上述態樣之方法,可減少純化時玻尿酸類之 分子量之下降,尤其是於高分子量(例如,純化後之平均 为子量為350萬〜700萬Da)玻尿酸類之純化中,發揮優異之 效果。另外,即便對先前難以處理之相對高濃度(例如 〇/〜20g/L、〇.5〜15g/L、卜⑺…)之玻尿酸類溶液,亦可 高效地處理。 另外,根據上述態樣之方法,雖然玻尿酸類之消失受到 較低的抑制,但作為雜質,不僅通常可利用超濾膜去除之 低分子化合物(例如胺基酸、糖、有機酸)而且高分子化合 物(例如核酸、内毒素、蛋白質)亦可高效地分離.去除。另 外,上述態樣之方法於核酸、内毒素及或蛋白質之去除中 亦發揮優異之效果。 使用上述態樣之方法時之玻尿酸類溶液之玻尿酸類濃度 就由溶液黏度之高低引起之處理之難易度及玻尿酸類之溶 解度之觀點而言,較理想為0.^20 g/L,最理想為hi〇 g/L ’但並不限定於此。 另外,於上述態樣之方法中,為降低玻尿酸類溶液之黏 度,亦可於玻尿酸類溶液中共存氯化鈉等鹽類。於此情形 時,較理想為避免高濃度鹽之共存使得純化效果不受損 裏作為此種鹽之共存之具體例,可列舉於玻尿酸類溶液 中添加0.1〜5重量%之氯化鈉。 使用上述態樣之方法時之玻尿酸類溶液之溫度較理想為 0〜80°C,但並不限定於此。若溫度為8〇t以下,則可較強 地抑制處理時之玻尿酸類之分解及分子量之降低。 15481I.doc -15- 201139463 另外,於進行超濾透析處理時,作為膜前處理,較理想 為藉由利用2%以下之鹼(例如氫氧化鈉水溶液)、過氧化物 (例如次氣酸鈉水溶液)、界面活性劑、檸檬酸、檸檬酸銨. 酵素清潔劑等藥劑對膜進行清洗處理之化學方法,或藉由 沖洗、海綿球、空氣注入法等物理方法進行。 本發明之進一步之態樣,於上述第一態樣中,除上述步 驟以外,亦可進而包含使玻尿酸類溶液與無機吸附劑、有 機吸附劑及/或活性碳接觸之步驟。 另外,若考慮其後所必須之分離.純化步驟等,則較理 想為避免需要追加之純化步驟之成分的混入。即,為避免 混入新雜質之本發明之其他態樣,係於上述第一態樣中不 包括於玻尿酸類溶液之超濾後,使其與無機吸附劑或有機 吸附劑接觸之步驟的純化方法。關於本發明之進一步之態 樣,於上述第一態樣中不包括使玻尿酸類溶液與無機吸附 劑或有機吸附劑接觸之步驟。於本發明中,即便為超濾亦 可發揮充分之純化效果,故而於重視避免新雜質之混入之 情形時’較理想為單獨利用超滤進行處理。當然,於此情 形時’除超遽以外亦可進行其他純化處理等步驟。 另外,關於本發明之進一步之態樣,係於上述態樣中藉 由馬鏈球菌FM-100(微工研條寄第9027號)或馬鏈球菌FM-300(微工研條寄第2319號)生產玻尿酸類。藉由使用由該等 微生物生產之玻尿酸類作為純化對象,可獲得雜質更少且 高分子量之玻尿酸類純化物,尤其是於作為醫藥使用時發 揮優異之效果。 -16- 154811.docS •12· 201139463 was purified without loss of hyaluronic acid. In the case of using an ultrafiltration membrane having a molecular weight cut off of 9000 to 11,000, it can be purified without loss of hyaluronic acid by adjusting the pH to 4.1 or less. In the case of using an ultrafiltration membrane having a molecular weight cut off of 6000 to 8000, purification can be carried out without loss of hyaluronic acid by adjusting the pH to 4.2 or less. In the case of using an ultrafiltration membrane having a molecular weight cut off of 4000 to 5,000, purification can be carried out without damaging hyaluronic acid by adjusting the pH to 4.3 or less. Here, the molecular weight cut-off of the ultrafiltration membrane can be determined by filtering using the target materials shown in Table 1 and investigating the respective blocking ratios corresponding to a molecular weight of 90%. [Table 1] Specimen species used to determine the molecular weight cutoff. Molecular weight of molecular weight deterministic sucrose 340 1.1 Raffinose 590 1.3 Vitamin 12 1360 1.7 Subtilin 1410 1.7 Teng Shisu 5700 2.7 Cytochrome C 13000 3.8 Myoglobin 17000 4.0 α - chymotrypsinogen 25000 4.6 pepsin 35000 5.0 ovalbumin 43000 5.6 bovine albumin 66000 6.4 aldolase 142000 8.2 γ-globulin 150000 8.4 The material of the ultrafiltration membrane used in the above method is not particularly limited It is preferable that it is a hydrophobic organic film from the viewpoint of removal of impurities, and more preferably polysulfone, polyethersulfone, polyether, polyvinylidene fluoride, polyethylene, poly 154811.doc -13·201139463 propylene. As the ultrafiltration membrane used in the method of the above aspect, for example, PM-10, PM-50 'PM-100 (manufactured by Koch Co., Ltd.) 'NTU-3050 (manufactured by Jidong Electric Co., Ltd.)' IRIS3065 (Rhone can be used) ·Manufactured by Planck, FS-1〇 (made by Asahi Kasei Corporation), MU-63〇3 (made by Kuraray Co., Ltd.), DUS〇4〇〇 (made by Taijin Chemical Industry Co., Ltd.), SLP-3053 (Asahi Kasei Chemicals) The company manufactures, etc., but is not limited to these. The filtration method in the above method is not particularly limited. However, since the flow rate of the water permeable membrane is easily stabilized, the life of the filtration membrane is prolonged, and the like, it is preferable to use a sweeping method, and particularly preferably a reverse mode. In the above method, the flow rate of the hyaluronic acid solution in the ultrafiltration membrane treatment differs depending on the properties of the hyaluronic acid solution or the type of the ultrafiltration membrane, which cannot be generalized. For example, in the case of purifying hyaluronic acid on an industrial scale, it is preferably 20 L/m2.hr or more, more preferably 25 L/m2.hr or more, and particularly preferably 30 L/m2.hr or more. The flow rate of the hyaluronic acid solution at the time of filtration is preferably 100 L/m2.hr or less, and more preferably 50 L/m2.hr or less, due to the possibility of a decrease in molecular weight due to shearing hyaluronic acid. In the above method, the pressure for transporting the liquid is not limited, and it is usually preferred to pass through the filtration membrane under pressure. In particular, when the pressure is applied by a pump when the liquid is transported, the pressure is not particularly limited as long as the performance is deteriorated without damaging or clogging the filter membrane. The pressure applied to the filtration membrane is preferably 〇1 MPa or more and 0.30 MPa or less, more preferably 0.03 MPa or more and 0.20 MPa or less, and particularly preferably 〇5 Mpa or more and 〇1 〇 MPa or less. 154811.doc -14· 201139463 Furthermore, according to the above method, the molecular weight of hyaluronic acid at the time of purification can be reduced, especially at a high molecular weight (for example, the average amount after purification is 3.5 million to 7 million Da). In the purification of hyaluronic acid, it exerts an excellent effect. Further, even a hyaluronic acid solution having a relatively high concentration (e.g., 〇/~20g/L, 〇.5 to 15g/L, or (7)...) which has been difficult to handle previously can be efficiently treated. Further, according to the method of the above aspect, although the disappearance of hyaluronic acid is suppressed to a low level, as an impurity, not only a low molecular compound (for example, an amino acid, a sugar, an organic acid) but also a polymer which can be removed by an ultrafiltration membrane can be used. Compounds (eg, nucleic acids, endotoxins, proteins) can also be efficiently separated and removed. Further, the above method also exerts an excellent effect in the removal of nucleic acids, endotoxin and or proteins. The hyaluronic acid concentration of the hyaluronic acid solution when using the above method is preferably from 0.^20 g/L, from the viewpoint of the ease of treatment caused by the viscosity of the solution and the solubility of hyaluronic acid. It is hi〇g/L 'but it is not limited to this. Further, in the above method, in order to reduce the viscosity of the hyaluronic acid solution, a salt such as sodium chloride may be coexisted in the hyaluronic acid solution. In this case, it is preferable to avoid the coexistence of the high-concentration salt so that the purification effect is not impaired. As a specific example of the coexistence of such a salt, 0.1 to 5 wt% of sodium chloride is added to the hyaluronic acid solution. The temperature of the hyaluronic acid solution in the case of using the above aspect is preferably 0 to 80 ° C, but is not limited thereto. When the temperature is 8 Torr or less, the decomposition of hyaluronic acid and the decrease in molecular weight during the treatment can be strongly suppressed. 15481I.doc -15- 201139463 In addition, in the ultrafiltration dialysis treatment, it is preferred to use 2% or less of a base (for example, an aqueous sodium hydroxide solution) or a peroxide (for example, sodium hypocarbonate) as a membrane pretreatment. Aqueous solution), surfactant, citric acid, ammonium citrate. A chemical method such as an enzyme cleaner to clean the membrane, or a physical method such as rinsing, sponge ball, or air injection. According to a further aspect of the present invention, in the first aspect, in addition to the above steps, the step of contacting the hyaluronic acid solution with the inorganic adsorbent, the organic adsorbent and/or the activated carbon may be further included. Further, in consideration of the separation, purification step, and the like which are necessary thereafter, it is preferable to avoid the incorporation of components which require additional purification steps. That is, in order to avoid the other aspect of the present invention in which new impurities are mixed, the purification method of the step of contacting the inorganic adsorbent or the organic adsorbent after the ultrafiltration of the hyaluronic acid solution in the first aspect is not included. . In a further aspect of the invention, the step of contacting the hyaluronic acid solution with the inorganic adsorbent or organic adsorbent is not included in the first aspect described above. In the present invention, even if it is ultrafiltration, a sufficient purification effect can be exhibited. Therefore, when it is important to avoid the incorporation of new impurities, it is preferable to carry out treatment by ultrafiltration alone. Of course, in this case, other purification steps may be performed in addition to the super-small. In addition, in a further aspect of the present invention, in the above aspect, the Streptococcus equi subsp. FM-100 (Microtech Research No. 9027) or Streptococcus equi subsp. FM-300 (Microtech Research No. 2319) No.) Production of hyaluronic acid. By using hyaluronic acid produced by such microorganisms as a purification target, a purified hyaluronic acid having less impurities and a high molecular weight can be obtained, and in particular, it is excellent in use as a medicine. -16- 154811.doc

S 201139463 藉由使用上述態樣之純化方法可減輕破尿酸類之分離· 純化步驟之負#,因此有關上述態樣之純化方法於製造之 工業製程的較初始階段中使用尤為有效。 再者’藉由上述實施態樣、態樣而說明之純化方法等並 非限疋本發明者,㈤旨在舉例說明而揭示者。本發明之技 純圍係由中請專㈣騎規定,業者可於申請專利範圍 所揭示之發明之技術範圍内進行各種設計變更。 &例如’上述純化方法亦可為進—步包括其他步驟、或者 繼上述純化方法之後進一步實施其他之步驟方法,而製 造玻尿酸類等之方法。作為此種步驟·方法,例如可列 舉·培養玻尿酸生產微生物菌株之步驟;由玻尿酸產生微 生物菌株培養液製造培養濾液之步驟;離心分離純化對象 液之步驟;中和對象液之步驟;微遽純化對象液之步驟; 透,處理對象液之步驟;於純化對象液中添加芳香族系吸 附樹脂並搜拌及超滤之步驟;藉由層析法純化對象液之步 驟;將活性碳自對象液中分離之步驟;將活性碳自對象液 中去除之步驟;添加有機溶劑使玻尿酸類沈殿之步驟;將 玻尿酸類結晶化之步驟;使玻尿酸類乾燥之步驟等。 [實施例] 、下藉由貫細•例更具體地說明本發明,但本發明並不 限定於該等。 實施例1 利用純水將使用馬鏈菌球FM-100(微工研寄第9〇27號)培 養之培養液45 L稀釋為80 L(玻尿酸鈉濃度2〇 g/L)並藉由 154811.doc •17- 201139463 離心分離去除菌體。將所得之粗製玻尿酸調整至pH 2.9 後,利用截留分子量為30000且材質為聚砜之超濾膜(K〇ch 公司製造.PM-100)2 m2,以30 L/m2,hr之透過流速反覆進行 容積比為2倍之濃縮、等倍之稀釋操作,並以透析次數i 〇 次、反向方式進行處理。將食鹽2.4 kg溶解於80 L所得之 溶液中’調整至pH 7後以乙醇240 L使其析出並以乙醇8 L 進行清洗,於40°C下進行真空乾燥,而獲得玻尿酸鈉。將 分析結果及玻尿酸回收率示於表2。 實施例2 將實施例1中所使用之粗製玻尿酸調整至pH 2.9後,利 用截留分子量為30000且材質為聚醚砜之超濾膜(旭化成公 司製造.FS-10)5 m2 ’以30 L/m2.hr之透過流速反覆進行容 積比為2倍之濃縮、等倍之純水稀釋,並以透析次數J i 次、反向方式進行處理。所得之溶液係以與實施例1相同 之方式進行處理而獲得玻尿酸鈉。將分析結果及玻尿酸回 收率示於表2。 實施例3 將實施例1中所使用之粗製玻尿酸調整至pH 3.3後,以 利用截留分子量20000材質聚砜之超濾膜(曰東電工公司製 造.NTU-3050)3 m2,以30 L/m2.hr之透過流速反覆進行容 積比為2倍之濃縮、等倍之純水稀釋,並以透析次數8次、 反向方式進行處理。所得之溶液係以與實施例1相同之方 式進行處理而獲得玻尿酸鈉。將分析結果及玻尿酸鈉之回 收率示於表2。 154811.docS 201139463 The purification method of the above-mentioned aspect can be alleviated in the initial stage of the industrial process of manufacturing by using the purification method of the above aspect to reduce the negative # of the separation and purification steps of the uric acid. Further, the purification method described by the above embodiment and aspects is not limited to the inventors, and (5) is intended to be exemplified and disclosed. The technique of the present invention is stipulated by the special (four) riding regulations, and the manufacturer can make various design changes within the technical scope of the invention disclosed in the patent application scope. & For example, the above purification method may be a method of producing hyaluronic acid or the like by further including other steps or further performing other steps after the above purification method. As such a step and method, for example, a step of cultivating a hyaluronic acid producing microorganism strain; a step of producing a culture filtrate from a hyaluronic acid-producing microbial strain culture solution; a step of centrifuging the purification target liquid; a step of neutralizing the target liquid; and a micro-purification a step of the target liquid; a step of permeating, treating the target liquid; a step of adding an aromatic adsorption resin to the purification target liquid, and mixing and ultrafiltration; a step of purifying the target liquid by chromatography; and an activated carbon from the target liquid The step of separating; the step of removing activated carbon from the target liquid; the step of adding an organic solvent to make the hyaluronic acid swell; the step of crystallizing the hyaluronic acid; and the step of drying the hyaluronic acid. [Embodiment] The present invention will be described more specifically by way of example, but the invention is not limited thereto. Example 1 45 L of the culture medium cultured using spherinella ball FM-100 (Microtechnical Research No. 9〇27) was diluted with pure water to 80 L (sodium hyaluronate concentration 2〇g/L) and 154811 .doc •17- 201139463 Centrifugal separation removes bacteria. After the obtained crude hyaluronic acid was adjusted to pH 2.9, an ultrafiltration membrane (PM-100 manufactured by K〇ch Co., Ltd.) of 2 m 2 having a molecular weight cutoff of 30,000 and a polysulfone was used, and the flow rate was 30 L/m 2 , hr. A concentration-equal dilution operation of 2 times the volume ratio was performed, and the treatment was performed in the same manner as the number of times of dialysis i. 2.4 kg of salt was dissolved in a solution obtained by 80 L. After adjusting to pH 7, it was precipitated with 240 L of ethanol and washed with 8 L of ethanol, and vacuum dried at 40 ° C to obtain sodium hyaluronate. The analysis results and the hyaluronic acid recovery rate are shown in Table 2. Example 2 After the crude hyaluronic acid used in Example 1 was adjusted to pH 2.9, an ultrafiltration membrane (manufactured by Asahi Kasei Co., Ltd., FS-10) having a molecular weight cutoff of 30,000 and a polyethersulfone was used, 5 m2 '30 L/ The permeation flow rate of m2.hr was repeatedly diluted with a volume ratio of 2 times, diluted with pure water, and treated in the reverse order of the number of times of dialysis. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and hyaluronic acid recovery are shown in Table 2. Example 3 After the crude hyaluronic acid used in Example 1 was adjusted to pH 3.3, an ultrafiltration membrane (NTU-3050 manufactured by Nippon Electric Co., Ltd.) 3 m2 using a polysulfone having a molecular weight cut off of 20,000 was used, and 30 L/m2 was used. The permeation flow rate of .hr was repeated with a volume ratio of 2 times concentrated, diluted with pure water, and treated in the reverse direction with 8 times of dialysis. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and the recovery of sodium hyaluronate are shown in Table 2. 154811.doc

S -18- 201139463 實施例4 將實施例1中所使用之粗製玻尿酸調整至pH 2 9後,利 用截留分子量為3G0()()且材質為聚偏二說乙烯之超遽膜(羅 納.普朗克公司製造.IRIS3065)5 m2,以3〇 [/^如之透過流 速反覆進打容積比為2倍之濃縮、等倍之純水稀釋,並以 透析次數9次、反向方式進行處理。所得之溶液係以與實 施例1相同之方式進行處理而獲得玻尿酸鈉。將分析結果 及玻尿酸納之回收率示於表2。 實施例5 將實施例1中所使用之粗製玻尿酸調整至ρΗ 2·7後,利 用截留分子量為40000且材質為聚醚砜之超濾膜(泰金化學 工業公司製造.DUSO40G)5 m2,以30 L/m2.hr之透過流速反 覆進仃谷積比為2倍之濃縮、等倍之純水稀釋,並以透析 次數11次、反向方式進行處理。所得之液係以與實施例工 相同之方式進行處理而獲得15〇 g之玻尿酸鈉。將分析結 果及玻尿酸鈉之回收率示於表2。 實施例6 將實把例1中所使用之粗製玻尿酸調整至pH 3 7後,利 用截留分子量為13GGG且材質為聚颯之超濾膜(可樂麗公司 製造.MU_63〇3)5 m2,以3〇 L/m2.hr之透過流速反覆進行容 積比為2倍之濃縮、等倍之純水稀釋,並以透析次數u 人反向方式進行處理。所得之溶液係以與實施例〖相同 之方式進打處理而獲得玻尿酸鈉。將分析結果及玻尿酸鈉 之回收率示於表2。 154811.doc 201139463 實施例7 將實施例1中所使用之粗製玻尿酸調整至pH 3.7後,利 用截留分子量為10000且材質為聚砜之超濾膜(旭化成化學 公司製造·8Ι^Ρ-3053)4.5 m2,以30 L/m2.hr之透過流速反覆 進行容積比為2倍之濃縮、等倍之純水稀釋,並以透析次 數11次、反向方式進行處理。所得之溶液係以與實施例1 相同之方式進行處理而獲得玻尿酸鈉。將分析結果及玻尿 酸鈉之回收率示於表2。 比較例1 將實施例1中所使用之粗製玻尿酸調整至pH 5.5後,利 用截留分子量為10000且材質為聚砜之疏水性超濾膜$〇(;11 么司製造·ΡΜ-1〇)2 m2 ’以30 L/m2.hr之透過流速反覆進行 谷積比為2倍之濃縮、等倍之稀釋操作,並以透析次數j 5 -人、反向方式進行處理。所得之溶液係以與實施例1相同 之方式進行處理而獲得玻尿酸鈉。將分析結果及玻尿酸回 收率示於表2。 比較例2 將實施例1中所使用之粗製玻尿酸調整至pH 3 6後,利 用截留分子量為20000且材質為乙酸纖維素之親水性超濾 膜(DDS公司製造·CA6〇〇pp)45 m2,以3〇 L/m2hr之透過流 速反覆進行容積比為2倍之濃縮、等倍之純水稀釋,並以 透析人數n反向方式進行處理。所得之溶液係以與實 施例1相同之方式進行處理而獲得玻尿酸鈉。將分析結果 及玻尿酸回收率示於表2。 154811.doc 201139463 比較例3 將實施例1中所得之粗製玻尿酸調整至pH 3.3後,利用 截留为子里為20000且材質為乙酸聚醯亞胺之親水性超遽 膜(曰東電工公司製造.NTU-4220)5 m2,以30 L/m2.hr之透 過流速反覆進行容積比為2倍之濃縮、等倍之純水稀釋, 並以透析次數9次、反向方式進行處理。所得之溶液係以 與實施例1相同之方式進行處理而獲得玻尿酸鈉。將分析 結果及玻尿酸回收率示於表2。 比較例4 將實施例1中所得之粗製玻尿酸調整至ρΗ 3·7後,利用 截留分子量為13000且材質為乙酸聚颯之疏水性超濾膜(可 樂麗公司製造.MU-6303)5 m2,以5 L/m2.hr之透過流速反 覆進行容積比為2倍之濃縮、等倍之純水稀釋,並以透析 人數11 -人、單程方式進行處理。將所得之溶液以與實施例 1相同之方式進行處理而獲得玻尿酸鈉。將分析結果及玻 尿酸回收率示於表2。 比較例5 將實施例1中所使用之粗製玻尿酸調整至?11 3 7後,利 用截留分子量為13000且材質為乙酸聚颯之疏水性超濾膜 (可樂麗公司製造.MU-6303)5 m2,以15 L/m2.hr之透過流速 反^進行容積比為2倍之濃縮、等倍之純水稀釋,並以透 析次數11次、反沖方式進行處理。所得之溶液係以與實施 例1相同之方式進行處理而獲得玻尿酸^將分析結果及 玻尿酸回收率示於表2。 154811.doc -21 - 201139463 【(Νΐ 154811.doc ζ.·εS -18-201139463 Example 4 After the crude hyaluronic acid used in Example 1 was adjusted to pH 2 9 , a molecular weight of 3G0 () () was used, and the material was a super-deposited film of polyethylene. Planck made .IRIS3065) 5 m2, diluted with 3 〇 [/^ according to the flow rate repeatedly into a volume ratio of 2 times concentrated, equal times of pure water, and 9 times of dialysis, reversed deal with. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and the recovery rate of hyaluronic acid are shown in Table 2. Example 5 After adjusting the crude hyaluronic acid used in Example 1 to pH Η 2·7, an ultrafiltration membrane (DUSO40G manufactured by Taijin Chemical Industry Co., Ltd.) 5 m2 having a molecular weight cut off of 40,000 and a polyether sulfone was used. The permeation flow rate of 30 L/m2.hr was reversed into a concentration of 2 times concentrated, equal-purified pure water, and treated in the reverse direction with 11 times of dialysis. The resulting liquid was treated in the same manner as in the working example to obtain 15 g of sodium hyaluronate. The analysis results and the recovery rate of sodium hyaluronate are shown in Table 2. Example 6 The crude hyaluronic acid used in Example 1 was adjusted to pH 3 7 and then subjected to an ultrafiltration membrane (manufactured by Kuraray Co., Ltd., MU_63〇3) 5 m2 having a molecular weight of 13 GGG and a polyfluorene. The permeation flow rate of 〇L/m2.hr was repeatedly diluted with a volume ratio of 2 times, diluted with pure water, and treated in the reverse order of dialysis times. The resulting solution was treated in the same manner as in the examples to obtain sodium hyaluronate. The analysis results and the recovery rate of sodium hyaluronate are shown in Table 2. 154811.doc 201139463 Example 7 After the crude hyaluronic acid used in Example 1 was adjusted to pH 3.7, an ultrafiltration membrane having a molecular weight cut off of 10,000 and made of polysulfone (manufactured by Asahi Kasei Chemical Co., Ltd., 8Ι^Ρ-3053) was used. M2, at a flow rate of 30 L/m2.hr, was subjected to a concentration ratio of 2 times concentration, diluted with pure water, and treated in a reversed manner with 11 times of dialysis. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and the recovery rate of sodium hyaluronate are shown in Table 2. Comparative Example 1 After the crude hyaluronic acid used in Example 1 was adjusted to pH 5.5, a hydrophobic ultrafiltration membrane having a molecular weight cut off of 10,000 and made of polysulfone was used (〇11; manufactured by 么-1〇) 2 M2' was repeatedly subjected to a concentration and equal-fold dilution operation at a permeation flow rate of 30 L/m2.hr, and was treated in the reversed manner by the number of dialysis times. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and hyaluronic acid recovery are shown in Table 2. Comparative Example 2 After the crude hyaluronic acid used in Example 1 was adjusted to pH 3 6 , a hydrophilic ultrafiltration membrane (manufactured by DDS Co., Ltd., CA6〇〇pp) having a molecular weight cut off of 20,000 and a cellulose acetate content of 45 m 2 was used. The volumetric ratio was doubled to a concentration of 2 〇L/m2hr, and the mixture was diluted with twice the pure water, and treated in the reverse direction of the number of dialysis persons n. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and the hyaluronic acid recovery rate are shown in Table 2. 154811.doc 201139463 Comparative Example 3 After the crude hyaluronic acid obtained in Example 1 was adjusted to pH 3.3, a hydrophilic ultra-ruthenium film having a molecular weight of 20,000 and a polyethylenimine acetate was used (manufactured by Jidong Electric Co., Ltd.). NTU-4220) 5 m2, with a volumetric ratio of 30 L/m2.hr, a concentration ratio of 2 times concentrated, equal-fold dilution of pure water, and treatment with 9 times of dialysis and reversed. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and the hyaluronic acid recovery rate are shown in Table 2. Comparative Example 4 After the crude hyaluronic acid obtained in Example 1 was adjusted to ρΗ 3·7, a hydrophobic ultrafiltration membrane (manufactured by Kuraray Co., Ltd. MU-6303) having a molecular weight cutoff of 13,000 and a material of polyacetic acid was used, 5 m 2 , The volume ratio was doubled to a concentration of 2 L/m2.hr, and the mixture was diluted with twice the volume of pure water. The treatment was carried out in a one-way manner with 11-person dialysis. The resulting solution was treated in the same manner as in Example 1 to obtain sodium hyaluronate. The analysis results and the hyaluronic acid recovery rate are shown in Table 2. Comparative Example 5 The crude hyaluronic acid used in Example 1 was adjusted to ? After 11 3 7 , using a hydrophobic ultrafiltration membrane (manufactured by Kuraray Co., Ltd., MU-6303) with a molecular weight cutoff of 13,000 and a molecular weight of 13,000, the volume ratio was reversed at a flow rate of 15 L/m2.hr. Diluted with 2 times concentrated, equal times pure water, and treated with 11 times of dialysis and backflushing. The obtained solution was treated in the same manner as in Example 1 to obtain hyaluronic acid. The analysis results and the hyaluronic acid recovery rate are shown in Table 2. 154811.doc -21 - 201139463 [(Νΐ 154811.doc ζ.·ε

S οοοειS οοοει

S si 0对 卜6 寸 τ ίS si 0 to Bu 6 inch τ ί

L 9 寸 τ ΙΛ ε·ε 9·ε s_s ζ/ε L.i L-τL 9 inch τ ΙΛ ε·ε 9·ε s_s ζ/ε L.i L-τ

6.CN ε·ε 6<ν 6Γ4 1>Ηα. ι,ξ?^- ρ-ΰν 0·Ξ2η1ΒΛΗ)νΗ s οοοει 拗詩 0寸 L6 aftti is鉍 ί ί 装*0 οοοοε §ο·ςι οοοοι 00001 οοο'ει 0000々6.CN ε·ε 6<ν 6Γ4 1>Ηα. ι,ξ?^- ρ-ΰν 0·Ξ2η1ΒΛΗ)νΗ s οοοει 拗诗0 inch L6 aftti is铋ί ί 装*0 οοοοε §ο·ςι οοοοι 00001 Οοο'ει 0000々

S οε οε οε οε οε οε -6- -6- •B-S οε οε οε οε οε οε -6- -6- •B-

A -ΪΝ -ΪΝ 0寸 L6 0寸 L6A -ΪΝ -ΪΝ 0 inch L6 0 inch L6

-SN-SN

•SN•SN

TN ~\ -ΪΝTN ~\ -ΪΝ

•SN 0寸 19 0寸 0寸 0寸 L6 L6 £6 οοοοε οοοοζ• SN 0 inch 19 0 inch 0 inch 0 inch L6 L6 £6 οοοοε οοοοζ

S οε § £6 οεS οε § £6 οε

AA

-SN 4Λ ΤΝ -ΪΝ 0寸 Ζ.6 οοοοε οοοοε 一-屮令®磔 -22- οε οε 【(Λ^Ε)Π】啭痗領^ -ΪΝ ΤΛ -ΪΝ § L6 ,ΤΝ -ΪΝ-SN 4Λ ΤΝ -ΪΝ 0 inch Ζ.6 οοοοε οοοοε 一-屮令®磔 -22- οε οε 【(Λ^Ε)Π】啭痗领^ -ΪΝ ΤΛ -ΪΝ § L6 ,ΤΝ -ΪΝ

TN 0寸 L6 【3/um 09(N】 【1E/D3】 l-^f-e 【%】鉍-0咖 【%】 $TN 0 inch L6 [3/um 09(N] [1E/D3] l-^f-e [%]铋-0咖 [%] $

Juvsa.】窗^粜Juvsa.] window ^粜

EdJE; 【s/qp】^«>il«EdJE; [s/qp]^«>il«

【%】«1-^0VH #1 201139463 測定方法 (1) 核酸含量:對0.1%之玻尿酸鈉於260 nm下之吸光度進 行測定。 (2) 蛋白質含量:將玻尿酸鈉溶解於0.1 N之氫氧化鈉中, 以洛利法進行測定。 (3) 乳酸:以0.1%之濃度溶解玻尿酸鈉,WL-LDH(L-Lactate Dehydrogenase,L-乳酸脫氫酶)法進行測定。 (4) 金屬:將玻尿酸鈉以0.05之濃度溶解於8 N之硝酸中, 進行ICP(Inductively Coupled Plasma,電感耗合等離子體) 發射光譜分析。 (5) 極限黏度:將玻尿酸鈉以0.02°/。之濃度溶解於0.2 Μ之氯 化鈉中,對30°C下之極限黏度進行測定。 [表3] 評價項目 少 中 多 核酸 [260 nm/E] ^0.02 0.02<核酸<10 10$ 核酸 <100 内毒素 [EU/mL] 蕊 0.001 0.001 <ET+1 <0.01 0.01 ^ET*1 <50000 蛋白質 [pg/mL] ^0.04 0.04 < protein < 0.20 0.20 ^protein <0.5 乳酸 [W%] ^0.01 0.01<乳酸<10 10$ 乳酸 <100 胺基酸 [pg/mL] 5 < amino acid < 1000 1000^ amino acid < 150000 金屬*2 [ppm] ^10 10<金屬 <500 500 S 金屬 <1000 ^ET :内毒素 *2Ca、Fe、Mg、Cr、Si、Al、As、Cu、Pb之組成之總計 實施例8 使用具有各種截留分子量之聚颯之疏水性超濾膜、於以 下條件下將實施例1所使用之粗製玻尿酸純化,調查超濾 154811.doc -23· 201139463 時之pH值與玻尿酸之回收率的關係。 HA溶液條件[%] «1-^0VH #1 201139463 Determination method (1) Nucleic acid content: The absorbance of 0.1% sodium hyaluronate at 260 nm was measured. (2) Protein content: The sodium hyaluronate was dissolved in 0.1 N sodium hydroxide and measured by the Loley method. (3) Lactic acid: The sodium hyaluronate was dissolved at a concentration of 0.1%, and the WL-LDH (L-Lactate Dehydrogenase, L-lactate dehydrogenase) method was used for measurement. (4) Metal: Sodium hyaluronate was dissolved in 8 N nitric acid at a concentration of 0.05, and subjected to ICP (Inductively Coupled Plasma) emission spectrum analysis. (5) Ultimate viscosity: sodium hyaluronate is 0.02 ° /. The concentration was dissolved in 0.2 Torr of sodium chloride and the ultimate viscosity at 30 ° C was measured. [Table 3] Evaluation item small medium polynucleic acid [260 nm / E] ^ 0.02 0.02 < Nucleic acid < 10 10 $ Nucleic acid < 100 Endotoxin [EU / mL] Core 0.001 0.001 < ET +1 < 0.01 0.01 ^ET*1 <50000 Protein [pg/mL] ^0.04 0.04 < protein < 0.20 0.20 ^protein <0.5 Lactic acid [W%] ^0.01 0.01<Lactic acid <10 10$ Lactic acid <100 Amino group Acid [pg/mL] 5 < amino acid < 1000 1000^ amino acid < 150000 Metal * 2 [ppm] ^ 10 10 < Metal < 500 500 S Metal < 1000 ^ET : Endotoxin * 2Ca, Fe In total, the composition of Mg, Cr, Si, Al, As, Cu, and Pb was as follows. The crude hyaluronic acid used in Example 1 was purified under the following conditions using a hydrophobic ultrafiltration membrane having various molecular weight cut-offs. The relationship between the pH value of ultrafiltration 154811.doc -23·201139463 and the recovery rate of hyaluronic acid was investigated. HA solution conditions

HA濃度:2 g/L 分子量:440萬(極限黏度:55 dL/g) 過濾條件 線速:1 m/s 透過流速:30 L/(m2.hr)HA concentration: 2 g/L Molecular weight: 4.4 million (limit viscosity: 55 dL/g) Filtration conditions Line speed: 1 m/s Transmission flow rate: 30 L/(m2.hr)

濃縮:2倍濃縮 溫度:25°C 於圖2中表示超濾時之pH值與玻尿酸回收率之關係之圖 表。另外,關於各截留分子量之膜,獲得表示超濾時之pH 值與玻尿酸損失率之關係的式1〜5。使用下述式^算出實 質上不引起各截留分子量之超渡膜中之玻尿酸類之損失的 pH值’於該pH值之範圍内(最適pH值)利用超滤膜進行純 化,藉此可於不損失玻尿酸類之情況下進行純化。 於使用截留分子量為30,000之超濾膜之情形時 (式1)玻尿酸類之損失率(%)=44.86χ(超濾時之PH值)-131.79 (最適pH值^ 2.9) 於使用截留分子量為I3,000之超濾膜之情形時 (式2)玻尿酸類之損失率(%)=40.84x(超濾時^ΡΗ值) 86.92 (最適pH值S3.7) 於使用截留分子量為10,000之超濾膜之情形時Concentration: 2 times concentration Temperature: 25 ° C A graph showing the relationship between pH value and hyaluronic acid recovery rate in ultrafiltration is shown in Fig. 2 . Further, with respect to the film having the molecular weight cut off, Formulas 1 to 5 indicating the relationship between the pH value at the time of ultrafiltration and the hyaluronic acid loss rate were obtained. The pH value of the hyaluronic acid in the ultra-transition membrane which does not substantially cause each molecular weight cutoff is calculated by the following formula, and is purified by using an ultrafiltration membrane within the range of the pH value (optimum pH value). Purification was carried out without loss of hyaluronic acid. When using an ultrafiltration membrane with a molecular weight cut off of 30,000 (Formula 1), the loss rate (%) of hyaluronic acid = 44.86 χ (pH at ultrafiltration) - 131.79 (optimal pH ^ 2.9) In the case of an ultrafiltration membrane of I3,000 (Formula 2), the loss rate of hyaluronic acid (%) = 40.84x (the value of ultrafiltration is ΡΗ) 86.92 (optimal pH value S3.7) using a molecular weight cutoff of 10,000 When the filter is used

154811.doc • 24· S 201139463 (式3)玻尿酸類之損失率(%)=24.36χί#ϊ、全士 (超濾時之pH值)_ 97.19 (最適pH值S 4.0) 於使用截留分子量為7,000之超濾膜之情形時 (式4)玻尿酸類之損失率(%)=7.G9x(超濾時之pH值)_M⑽ (最適pH值S4.1) ' 於使用截留分子量為5,000之超濾膜之情形時 (式5)玻尿酸類之損失率(%)=0.79x(超濾時之^ (最適pH值$ 4.2) 將玻尿酸類之損失率成為3%以下之pHi與超據膜之截 留分子量的關係示於圖3。另外,可明確玻尿酸類之損失 率成為3%以下之pH值與超濾膜之截留分子量之關係滿足 以下之式6。 (式6)玻尿酸類之損失率成為3%以下之pH值=_5 χ丨〇·5χ(截 留分子量)+4.4978 藉由使用式6,可求出最適PH值相對於超濾膜之截留分 子量之上限’藉由以最適pH值利用超濾膜進行透析,可以 3%以下之損失率純化玻尿酸類。 根據以上之實驗可確認’若使用本發明之純化方法,則 可自玻尿酸類溶液中高效地去除雜質而純化高分子量之玻 尿酸類。 以上’基於實施例進行了本發明。該實施例始終為示 例’業者明白可實施各種變形例,且此種變形例亦包含於 本發明之範圍内。 I54811.doc • 25· 201139463 【圖式簡單說明】 、反沖方式(B) 率之關係的圖 之PH值與超濾 圖1係表示掃流方式所含之單程方式(A) 及反向方式(C)之過濾方式的圖; 圖2係表示超濾時之pH值與玻尿酸損失 表;及 圖3係表不玻尿酸類之損失率成為3%以下 膜之截留分子量之關係的圖表。 1548ll.doc 26-154811.doc • 24· S 201139463 (Formula 3) Loss rate of hyaluronic acid (%)=24.36χί#ϊ, 士士(pH at ultrafiltration)_ 97.19 (Optimum pH S 4.0) In the case of 7,000 ultrafiltration membranes (Formula 4) Loss rate of hyaluronic acid (%) = 7. G9x (pH at ultrafiltration) _M (10) (Optimum pH S4.1) 'With a molecular weight cutoff of 5,000 In the case of a filter (Equation 5), the loss rate of hyaluronic acid (%) = 0.79x (when ultrafiltration is used (optimal pH value: 4.2). The loss rate of hyaluronic acid is 3% or less of pHi and super-membrane. The relationship between the molecular weight cut off and the molecular weight cut off is shown in Fig. 3. In addition, it is clear that the relationship between the pH value of the hyaluronic acid loss rate of 3% or less and the molecular weight cut off of the ultrafiltration membrane satisfies the following formula 6. (Formula 6) The loss rate of hyaluronic acid becomes pH value below 3% = _5 χ丨〇 · 5 χ (molecular weight cut off) + 4.4978 By using Equation 6, the upper limit of the optimum molecular value relative to the molecular weight cut off of the ultrafiltration membrane can be determined by using the optimum pH value The membrane is subjected to dialysis, and the hyaluronic acid can be purified at a loss rate of 3% or less. According to the above experiment, it can be confirmed that the purification method of the present invention is used. The high molecular weight hyaluronic acid can be purified by efficiently removing impurities from the hyaluronic acid solution. The present invention has been carried out based on the examples. This embodiment is always an example. The practitioner understands that various modifications can be implemented, and such modifications are also It is included in the scope of the present invention. I54811.doc • 25· 201139463 [Simple description of the diagram], the backlash method (B) The relationship between the pH value of the graph and the ultrafiltration diagram 1 indicates the one-way included in the sweep mode. Figure (2) and the reverse mode (C) filter mode; Figure 2 shows the pH value and hyaluronic acid loss table during ultrafiltration; and Figure 3 shows that the loss rate of hyaluronic acid is 3% or less. A graph of the relationship between molecular weights. 1548ll.doc 26-

Claims (1)

201139463 七、申請專利範圍: 1. 一種玻尿酸及/或其鹽之純化方法,其包括藉由於將包含 玻尿酸及/或其鹽與雜質之玻尿酸溶液調整至偏酸性之 pH值後、利用超濾膜進行透析處理而去除雜質之步驟。 2. 如請求項1之方法,其中於超濾膜之截留分子量與利用 超濾膜進行透析處理時之pH值滿足下式之條件下,利用 超滤膜進行透析處理:pH值$ _5xl〇-5x(截留分子 量)+4.4978 。 3. 5. 6. 8. 如請求項1或2之方法,其中超濾膜之截留分子量為 25000〜35000,透析處理時之pH值為33以下。 如凊求項1或2之方法,其中上述超濾膜之截留分子量為 12000〜14000,透析處理時值為3 9以下。 如"月长項1或2之方法,其中上述超遽膜之截留分子量為 9000〜11000,透析處理時之pH值為以下。 如。月求項1或2之方法,其中上述超濾膜之截留分子量為 6000〜8000 ’透析處理時之PH值為4.2以下。 ‘”、 如凊求項1或2之方法,其中上述超濾膜之截留分子量為 4000〜5000,透析處理時之PH值為4.3以下。 ‘ 其中上述超濾膜為疏水 其中上述處理之過壚方 其中上述處理時之透過 如請求項1至7中任一項之方法 性有機膜。 9. 如請求項1至8中任一項之方法 式為反向方式。 10. 如請求項1至9中任一項之方法 流速為20〜50 L/m2.hr。 1548H.doc 201139463 11.如請求項1 $丨Λ Λ 員1至10中任一項之方法,其中上述雜質包括菌 體蛋白質、核酸、低分子化合物或内毒素。 12· 士明长項1至11中^ —項之方法,其中純化後之上述玻 尿酸及/或其鹽之平均分子量為3 50萬〜700萬Da。 13.如4求項1至12中任—項之方法,其中上述玻尿酸類溶 液中之玻尿酸及/或其鹽之濃度為丨〜5 g/L。 154811.doc201139463 VII. Patent application scope: 1. A method for purifying hyaluronic acid and/or its salt, which comprises using an ultrafiltration membrane by adjusting a hyaluronic acid solution containing hyaluronic acid and/or its salt and impurities to an acidic pH value. The step of performing dialysis treatment to remove impurities. 2. The method of claim 1, wherein the dialysis treatment is performed by using an ultrafiltration membrane under the condition that the molecular weight of the ultrafiltration membrane and the pH of the dialysis treatment using the ultrafiltration membrane satisfy the following formula: pH value _5xl〇- 5x (molecular weight cut off) +4.4978. 3. The method of claim 1 or 2, wherein the ultrafiltration membrane has a molecular weight cutoff of 25,000 to 35,000 and a pH of 33 or less during dialysis treatment. The method of claim 1 or 2, wherein the ultrafiltration membrane has a molecular weight cut off of 12,000 to 14,000 and a dialysis treatment value of 3 or less. For example, the method of "monthly term 1 or 2, wherein the molecular weight cut off of the above super-ruthenium film is 9000~11000, and the pH value during dialysis treatment is below. Such as. The method of claim 1 or 2, wherein the ultrafiltration membrane has a molecular weight cut off of 6000 to 8000 Å and a pH of 4.2 or less during dialysis treatment. The method of claim 1 or 2, wherein the ultrafiltration membrane has a molecular weight cutoff of 4000 to 5000, and the pH of the dialysis treatment is 4.3 or less. ' wherein the ultrafiltration membrane is hydrophobic, wherein the treatment is excessive The method of the present invention, wherein the method of any one of claims 1 to 8 is a reverse mode. The method of any one of the above-mentioned methods, wherein the above-mentioned impurities include the bacterial protein, the method of any one of the above-mentioned impurities, wherein the above-mentioned impurities include the bacterial protein. The nucleic acid, the low molecular compound or the endotoxin. The method of the above-mentioned hyaluronic acid and/or its salt after purification has an average molecular weight of 3,500,000 to 7 million Da. The method of any one of items 1 to 12, wherein the concentration of hyaluronic acid and/or a salt thereof in the hyaluronic acid solution is 丨~5 g/L. 154811.doc
TW100109189A 2010-03-17 2011-03-17 Hyaluronic acid and / or a salt thereof TWI504611B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054598 WO2011114475A1 (en) 2010-03-17 2010-03-17 Purification method for hyaluronic acid and/or salts thereof

Publications (2)

Publication Number Publication Date
TW201139463A true TW201139463A (en) 2011-11-16
TWI504611B TWI504611B (en) 2015-10-21

Family

ID=44648604

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109189A TWI504611B (en) 2010-03-17 2011-03-17 Hyaluronic acid and / or a salt thereof

Country Status (5)

Country Link
JP (1) JP5713995B2 (en)
KR (1) KR101638662B1 (en)
CN (1) CN102812050B (en)
TW (1) TWI504611B (en)
WO (1) WO2011114475A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105237656A (en) * 2015-10-30 2016-01-13 深圳市阳光之路生物材料科技有限公司 Method for purifying sodium hyaluronate
CN105837705A (en) * 2016-03-04 2016-08-10 冯翠军 Method for removing heat source in hyaluronic acid
CN105949478B (en) * 2016-05-05 2021-10-01 宜昌东阳光生化制药有限公司 Method for removing cross-linking agent in cross-linked hyaluronic acid
IT201700081449A1 (en) * 2017-07-18 2019-01-18 Fidia Farm Spa PURIFICATION PROCEDURE OF HYALURONIC ACID
WO2023219171A1 (en) * 2022-05-13 2023-11-16 合同会社Kortuc Japan Method for sterilizing/asepticizing high-viscosity solution

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467196A (en) * 1987-09-08 1989-03-13 Yakult Honsha Kk Production of hyaluronic acid and strain used therefor
JP2728542B2 (en) 1990-05-07 1998-03-18 株式会社日立製作所 Link overload detection device for simultaneous biaxial stretching device
JPH0630605B2 (en) * 1990-10-23 1994-04-27 チッソ株式会社 Method for producing sodium hyaluronate aqueous solution
JPH09324001A (en) 1996-04-02 1997-12-16 Kyowa Hakko Kogyo Co Ltd Purification method for sodium hyaluronate
JP4151092B2 (en) * 1997-10-22 2008-09-17 チッソ株式会社 Method for producing oligohyaluronic acid or a salt thereof
CH692919A5 (en) * 1999-01-28 2002-12-13 Trb Chemedica S A A process for purifying hyaluronic acid high molecular weight.
KR101509139B1 (en) * 2006-11-23 2015-04-08 주식회사 엘지생명과학 Method for purifying hyaluronic acid
US20100137579A1 (en) * 2008-12-01 2010-06-03 Sustineo Biotechnology Co., Ltd. Process for purifying medical grade hyaluronic acid
CN103319627A (en) * 2013-07-10 2013-09-25 南宁中诺生物工程有限责任公司 Method for grading molecule weight of sodium hyaluronate

Also Published As

Publication number Publication date
WO2011114475A1 (en) 2011-09-22
KR20130056222A (en) 2013-05-29
TWI504611B (en) 2015-10-21
KR101638662B1 (en) 2016-07-11
JPWO2011114475A1 (en) 2013-06-27
JP5713995B2 (en) 2015-05-07
CN102812050B (en) 2016-01-20
CN102812050A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
US8283463B2 (en) Sterile hyaluronic acid solutions
FI79346C (en) FRAMSTAELLNING AV HYALURONSYRA MEDELST BAKTERIEKULTUR.
EP2209814B1 (en) Dilute filtration sterilization process for viscoelastic biopolymers
EP3702374B1 (en) Manufacturing process for cyclodextrin derivatives
US11198742B2 (en) Process for the purification of hyaluronic acid
EP2870255B1 (en) Preparation of sodium hyaluronate using a mutant of streptococcus zooepidemicus
TW201139463A (en) Purification method for hyaluronic acid and/or salts thereof
JP6436958B2 (en) Method for decontaminating starch hydrolyzate to prepare glucose polymer for peritoneal dialysis
CN111040048A (en) Ultra-low molecular weight hyaluronic acid and preparation method thereof
Zhou et al. Separation of hyaluronic acid from fermentation broth by tangential flow microfiltration and ultrafiltration
JP4802821B2 (en) Process for producing purified β-D-glucan
CH692919A5 (en) A process for purifying hyaluronic acid high molecular weight.
TWI522369B (en) Purification method and manufacturing method of hyaluronic acid
JP2011195611A (en) Purification method for hyaluronic acid and/or salt thereof
JP5758878B2 (en) Purification method of hyaluronic acid
KR20110056346A (en) Processing for medical hylaronic acid
JP2011195608A (en) Purification method for hyaluronic acid and/or salt thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees