TW201135956A - Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell - Google Patents

Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell Download PDF

Info

Publication number
TW201135956A
TW201135956A TW99131725A TW99131725A TW201135956A TW 201135956 A TW201135956 A TW 201135956A TW 99131725 A TW99131725 A TW 99131725A TW 99131725 A TW99131725 A TW 99131725A TW 201135956 A TW201135956 A TW 201135956A
Authority
TW
Taiwan
Prior art keywords
substrate
surface treatment
solar cell
treatment step
cell according
Prior art date
Application number
TW99131725A
Other languages
Chinese (zh)
Other versions
TWI451586B (en
Inventor
Byung-Jun Kim
Original Assignee
Byung-Jun Kim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byung-Jun Kim filed Critical Byung-Jun Kim
Publication of TW201135956A publication Critical patent/TW201135956A/en
Application granted granted Critical
Publication of TWI451586B publication Critical patent/TWI451586B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Disclosed is a solar cell, and particularly, to a surface processing method of a silicon substrate for a solar cell, and a manufacturing method of a solar cell. The surface processing method of a silicon substrate for a solar cell comprises first surface processing step of forming a plurality of first protrusion portions on outer surface of a silicon substrate by etching the substrate sliced from a silicon ingot by using acid aqueous solution, and second surface processing step of forming a plurality of second protrusion portions having smaller size than that of the first protrusion portions by dry-etching a surface where anti-reflection film is to be formed, in the outer surface of the substrate having the first protrusion portions formed thereon through the first surface processing step.

Description

201135956 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種太陽能電池,特別是太陽能電池之矽基板 的表面處理方法及太陽能電池之製造方法。 【先前技術】 通常’太陽能電池可透過將一種光伏特效應,即光電動勢效 應而產生電動勢。 其中,可按基板的材料將太陽能電池分為:矽基太陽能電 池、化合物半導體太陽能電池及化合物/層疊式太陽能電池。此 處,可將矽基太陽能電池分為:晶態矽太陽能電池,如:單晶矽 太陽能電池與多晶矽太陽能電池;以及非晶矽太陽能電池。 其中’可透過基板之反射率等一些因素確定太陽能電池之能 效’同時透過使光入射面上的光反射,即反射率達到最小化而使 太陽能電池之能效達到最大。 在具有較低製造成本的晶態矽太陽能電池的方面,人們已經 提出了許多用於使光的反射達到最小化之方法,藉以提高太陽能 電池之效能。 【發明内容】 因此’本發明之目的在於提供一種太陽能電池之矽基板的表 面處理方法及一種太陽能電池的製造方法,藉以最大化地減小太 陽能電池之表面上的光反射。 為了達到本發明的目的,這裡對本發明進行具體而概括地敘 述,本發明之一方面提供了一種太陽能電池之矽基板的表面處理 201135956 方法’ &種方法包含有:第一表面處理步驟,係對用酸性溶液從 石夕鑄塊上切#]下之錄板飾_,藉以在魏板之外表面上形 成複數個第-蛛部分;以及第二表面處理步驟,伽於在將要 形成抗反射臈之處透過乾式_於絲板之外表面上,即在具有 透過第-表面處理步驟在上面形成了第—凸起部分之魏板^外 表面中形成尺寸小於第一凸起部分的複_第二凸起部分。 在此第-表面處理步驟中,酸性溶液包含有硝酸與氣敦酸, 在這種酸性溶液中硝酸與氫氟酸的重量比為1:1〜5.5:1。 其中’可透過滾筒將此石夕基板傳送至包含有酸性溶液的藉濕 台’藉以透過對此雜板進行侧來執行第—表面處理步驟 ',、、此 處在可6°c〜10°c的溫度中執行1〜10分鐘的蝕刻製程。 同時’還可以透過將基板浸泡於包含有酸性溶液的熊濕台而 對此石夕基板進行侧的浸泡法執行此第—表面處理步驟,其中可 在6°C〜10°C的溫度中執行20分鐘蝕刻製程。 在第-表面處理步驟之前,此方法還可包含:基板損傷處理 步驟,藉以ϋ過雜驗或雜溶液絲從《續塊上切割下之石夕 基板上的損傷。 在第一表面處理步驟之後,這種方法還可包含:第一第一清 洗步驟,係用於移除在第一表面處理步驟中所產生的雜質;第一 蝕刻步驟,係用於透過鹼性化合物部分地對殘留在矽基板之外表 面上的多孔石夕氧化物進行蝕刻;第二清洗步驟,係用於在第二勉 刻步驟之後移除殘留在矽基板之外表面上的雜質;以及乾燥步 驟,藉以在第二清洗步驟之後對石夕基板進行乾燥。 201135956 β而在此第-表面處理步驟之後與第二表面處理步驟之前,或 是僅在第二表面處理步驟之後,這種方法還可包含有·石夕基板中 凸起部分之背面的移除步驟,藉以透過對石夕基板之背面進行乾式 钱刻,移除形成於石夕基板之背面的第一凸起部分以及形成於在第 -表面處理步驟中所形成之第一凸起部分的外表面中形成由抗反 射膜之表面的相對面上的第一凸起部分。 其中第二凸起部分具有三角形橫截面,同時,第二凸起部分 朝向第-凸起部分之頂部的側面比第二凸柳分之另—側面短。 其中,矽基板係為單晶矽基板或多晶矽基板。 其中’在進行第-表面處理步驟之後,當雜板之外表面中 將要形成抗反射膜之外表面的面積為理想面積時,在第一表面處 理步驟中接受蝕刻之表面的實際面積與理想面積間之比率介於 1-2:1〜3·2:1的範圍内。 為了獲得本發明的這些目的和其他特徵,現依照本發明之目 的對本發明作具體化和概括性地描述,此處還提供了一種太陽能 電池的製造方法,係包含上述太陽能電池之雜板的表面處理^ 法。 因此,本發明具有下列優點: 首先,可透過濕式姓刻在第一表面處理步驟中形成多個第一 凸起部分,並透過乾式触刻在第二表面處理步驟中形成多個第二 凸起部分。因此,可顯著地減小矽基板之反射率,進而提供太陽 月t*電池的能效。 具體而言,可在低溫下透過酸性溶液執行第一表面處理步 201135956 驟,而不是在高溫下透過鹼性溶液執行此第 此,可提高製㈣產率及可靠性。 ❹步驟。因 面處理最大化地減小反神。 透過&種表 理4三並:=式_進行用於形成凸出部分的第-表面處 處=間條透過她顺行_形成恤起部分的 理步:因:透:式:Γ用於形成凸出部分的第,處 之狀对,谢位 本發明之前述及其他的目的、特徵、 部分在如下的她娜瓣蝴細戰f 【實施方式】 =,將接合關對本發明實施例進行詳盡的描述。 基====_軸_電池々 頂為第厂1第圖= 本發明實施例之太陽能電池之結構的剖面圖,「第 」如「第i n 7"之太陽能電池之製造方法的流程圖。 帛圖」所示,本發明實施例之太陽能電池包含有、 基板I係具㈣捿面結構;正面電極 電成=有·石夕 :的上表面(即,光— 電極3’係形成於底面(下文簡稱.基板的背面,)上,_以及抗^面 201135956 射膜4 ’係形成於矽基板1之表面上。 其中,石夕基板1係由晶態石夕材料形成,具體而言是由多晶 矽形成的。為了增大光接收面積,可不在太陽能電池之光接收面 上形成電極,而是僅在基板的背面上形成電極。 如「第2圖」所示,這種太陽能電池的製造方法包含有下列 步驟:基板處理步,驟(S10),透過線鑛對石夕鑄塊進行切割,藉以 對石夕基板1進行處理;表面處理步驟(S20),藉以在基板處理步 驟(S10)之後’執行在石夕基板!之表面上形成凸出部分;推雜步 驟(S30),藉以在表面處理步驟(S2〇)後形成?^^接面結構;抗 反射膜形成步驟(40),藉以在摻雜步驟(S3〇)後,在矽基板i 之表面上形成抗反射膜4 ;以及電極形成步驟(S5〇),藉以分別於 矽基板1之正面與背面形成正面電極2與背面電極3。 同時,依照本發明實施例之太陽能電池的製造方法,也可於 摻雜步驟(S30)之别執行電極形成步驟(g5〇)。同時,可單獨地 執行基板處理步驟(sio)’或是與包含有表面處理步驟(S2〇)之 多個後續步驟一同執行此基板處理步驟。 同時,還可按其它方式執行這種太陽能的製造方法,下文不 再進行贅述。此處,將參照表面處理步驟(S2〇)對本發明實施例 中用於太陽能電池之石夕基板的表面處理方法進行描述。 「第3圖」為本發明實施例之太陽能電池之矽基板的表面處 理方法的流程圖。 如「第3圖」所示’這種太陽能電池之矽基板的表面處理方 法包含有:第一表面處理步驟(S21〇),透過對用酸的水溶液對從 201135956 矽鑄塊上切下的基板進行蝕刻,藉以於矽基板1之外表面上形成 複數個第一凸起部分;以及第二表面處理步驟(S230),藉以在 透k第表面處理步驟(S210)在其上形成第一凸起部分的石夕 基板1之外表面中對將要形成抗反射膜4之處的表面進行侧, 藉以形成複數個第二凸起部分。 在第一表面處理步驟(S210)中,可透過酸性溶液對從矽鑄 塊上切下的基板進行侧,藉以於此石夕基板1之外表面上形成複 數個第一凸起部分10。具體而言,如「第4A圖」所示,執行此 第一表面處理步驟(咖),_於雜板1之外表面上形成複數 個第一凸起部分。 在於此第—表面處理步驟(S21G)中使用酸性水溶液之狀況 下’將要形成抗反射膜4處絲板1之表_反射率低於使驗 性水溶液之狀況。因此,可增从的接收量,進而提高太陽能電 池的性能。 當於此第—表面處理步驟(S21G)中使紐性溶液時,第一 f面處理步驟(S21G)在很大程度上依賴於絲板1的材料。但 疋在使用n液時’會減小對⑦基板〗之材料的依賴性。 在第一表面處理步驟(奶〇)巾,最好在石夕基板1的光接收 面(即’表面)上形成第—凸起部分1G。為了防止在光接收面(即, 基板的背面)之相對表面上形成第—凸起部分H),可在雜板! 的背面上胁形縣罩的光罩職倾,藉⑽止财基板i 的背面形成這些第一凸起部分。 田在第表面處理步驟(S210)巾使用酸性溶液時,可使 201135956 用包含有硝酸與氫紐的水溶液。此處,這種溶液之重量配比與 濃度等參數取決於蝕刻溫度、蝕刻深度等條件。 在第-表面處理步驟(S210)巾,最好透過重量比為i】〜5 $] 的硝酸與氫驗混合成這魏性雜。同時,這魏性溶也可還 包含有表面活性劑與催化劑。 當使用酸性溶液時,可使用包含有:石肖酸、氣氣酸基乙酸(或 去離子水)的水溶液。 同時’在第一表面處理步驟(S21〇)巾,_深度(侧高 度)最好是1微米至10微米。 同時’還可透過内聯法(inlinemeth〇d)執行第一表面處理步 驟(S210),藉以透過由滾筒將石夕基板1轉移至包含:t酸性溶液的 藉濕台’進而财基板1進行侧,而此侧製程可在6t:〜lot: 的溫度中執行1〜10分鐘。 匕卜還了透過使梦基板1浸泡於包含有酸性溶液之藉濕台 中對此石夕基板1進行侧,進而執行第-表面處理步驟(S210), 而此敍刻製程可在忙〜1(TC的溫度中執行15〜25分鐘。 在這種第一表面處理步驟(S21〇)中,可透過酸性溶液執行 濕式钱刻。因此,這種太陽能f池的製造綠還包含有至少一種 後續製程,如:用於對經蝕刻處理後之矽基板丨之表面進行乾燥 的製程。 具體而言’在第一表面處理步驟(S210)後,這種太陽能電 池的製造方法還包含:第-清洗步驟(sm),藉以歸在第一表 面處理步驟(S21G)巾所產生的顆粒;第二触刻步驟(S213),藉 201135956 以透過驗性化合物(氫氧化納或氫氧化鉀)來分部分地對殘留於 石夕基板1之外表面上之多孔二氧化石夕(Si02)進行敍刻;第二清 洗步驟(S214) ’藉以在第二姓刻步驟(S213)之後移除殘留在石夕 基板1之外表面上的雜質;以及乾燥步驟(S215),藉以在第二清 洗步驟(S214)之後對矽基板1進行乾燥處理。 其中’可執行第-清洗步驟(S212)與第二清洗步驟(S214) 藉以移除石夕基板1之表面上所殘留的雜質。此外,還可依據雜質 的麵及特性在-個階段或多個階段中執行第一清洗步驟(s2i2) 與第二清洗步驟(S214)。 「第4A圖」為透過「第3圖」所示之表面處理中第一表面處 理步驟進行首次處理之基板的部分剖面圖,「第4B圖」與「第4C 圖」分別示出了接受第-表面處理步驟之基板面積比率小於u 或大於3.2的部分剖面圖。此處,「第4A圖」至「第5圖」為簡 單示出。了基板的示意圖。因此,侧深度、頂端高度與尺寸都會 出現誤差。大體上,此截面可具有不規則形狀以及各種形狀。 此處’假設絲板1的核財將要形餅射的抗反麵4 之面積為實際面積Sr,其中可透過第__表面處理步驟(s2i〇)中 對石夕基板丨所進行之侧,藉以使絲板i之外表面上具有複數 個第一凸起部分1〇。同時,還假設完全平坦的表面面積為理想面 積Si在上述每些假设的前提下,如「第圖」與「第$圖」所 不,在執行了第—表面處理步驟(咖)之後鱗基板工之實 際面積Sr與理想面積Si間之比率位於12:1〜3 2:1範圍内。 如第4B圖」所不,當面積比率小於12時,第一表面處理 11 201135956 步驟(測)所形成較少的第—凸起部分ω,會使之反射率降低。 如「第4C圖」所示,當面積比率大於3.2時,此時,在第二 表面處理⑽0)步驟中透過電聚進行之反應並不劇烈,因此會 削弱表面處理效果。此外,當此面積比率大於3 2時,在太陽能電 池的製造方法之後續製程中,會阻礙電極形成步驟(S50)中用於 形成電極的金屬材料之擴散。進而,會對後續製程產生不利影響, 如:會形成空氣間隙。 在第-表面處理步驟(S21G)之前,這種製造方法還包含: 基板損傷處理步驟(S11)’係用於透過酸性溶液或臉性溶液去除 從矽鑄塊上切下的矽基板1之損傷。 在使用酸性溶液時,可用硝酸與氫氟酸、猶、氫氟酸及乙 酸(或去軒水)的混合水雜。鱗,俩錢_的重量比 為7:1 ’同時這種混合水溶液中水的重量比是由本技術領域中具有 通常知識者所確定的。 而在使紐性錢讀对,可在8叱〜贼的溫度中執行 15〜25分鐘之條件下執行基板損傷處理步驟(su)。當使用驗性 溶液時’可使用氫氧化納或氫氧化鉀,同時還可額外地加入2_異 丙醇(2-isopropyl-alcohol)。 在基板損傷處理步驟(S11)中,最好在石夕基板為單晶石夕時使 用驗性溶液。但是,當此石夕基板為多晶石夕時,最好使用酸性溶液。 此處,可以聯合使用基板損傷處理步驟(su)與第一表面處 理步驟(S210)。 第6圖」為經本發明實施例之第一表面處理步驟與第二表 12 201135956 面處理步驟處理後之基板的剖面圖。 此處,第二表面處理步驟(S230)係為用於形成微小凸起部 W紋理),即第二凸起部分2G之步驟’其中可對具有經第 面處理步驟(_處理表面並將要形成抗反射膜4的石夕基板! 之外表面進行乾式侧。特別的是,如「第6圖」所示,第 面處理步驟⑽0)係用於在石夕基板i之表面上形成複數個;二 凸起部分2〇 (紋理)。此處,第二凸起部分20係為尺寸小於第一 凸起部分1G _、凸起。射,第—凸起部分10的寬度約為2 微水至20微米’而其高度約為i微米至1〇微米,最好為球狀(理 想狀況)。因此,此第—凸起部分之寬度可對應於餘,而其高度 (侧深度)可對應於半徑。另—方面,此第二凸起部分之^ 寸大約為100微米至800微米。 &其中’透過反應離子侧歧透過_可爾職真空壓力 狀態的真空㈣導搞合賴在第二表面處理步驟(咖)中執行 乾式钱刻。 同時,在進行乾式蝕刻時,可使用cl2/CF4/〇2、sf6/〇2、 CHF3/SF6/02、刚、F2及上述氣體之混合氣體作為侧氣體。 其中’執行_乾式爛的咖為幾秒至幾分鐘。 a為了透過反應離子_執行乾式⑽,可於轉板丨的上方 文裝具有複數個孔洞的平板,藉以協助形成微小凸起,即第 起部分20。 同時,可透過乾式_設備之基板支撐板上賴有複數個石夕 土板1的托盤對基板進行轉移,藉以執行乾式钮刻。 13 201135956 砂某Γ二Γ透過第二表面處理步驟_)使經過表面處理的 石夕基板1具有如「第6圖」所示之表面。 在第二表面處理步驟(咖)中可卿基板丨上 個第二凸起部分2〇,而这 硬数 ^ 起卩分2G小於賴第—表面處 , )所形成的第一凸起部分10之尺寸。 並且=6圖」所7^ ’此第二凸起部分2G具有三角形的橫截面, 面的相=起部分㈣之㈣侧面比這個側 在第-表面處理步驟(S21)中,可純含有形成了抗反射膜 的全部外表面、與外表__絲板之背_及勤上形成第 一凸起部分10。 其中’形成於石夕基板i之外表面上的第一凸起部分10可透過 降低光反射率而·光接㈣。但是m凸起部分1〇會在 電極形成步驟(S5G) ’即在形成此第一凸起部分1()以後的後續製 ^中造成不便’具體而言,這些第一凸起部分10會在製造具有較 π忐效的太陽能電池之基板時造成不便。 ,因此’最好僅細基板丨之外表面巾的表面(光接收面)上 域第ΰ;起部分1〇。此處,可於其它表面上形成此第一凸起部 分10 ’而需要移除的光接收面上形成此第一凸起部分1〇。 為了使透過屏蔽圖案於石夕基板之外表面上形成電極的電極圖 案形成過程更為簡便,需要對石夕基板1之外表面進行反餘刻。因 此’在執行第-表面處理步驟(S210)錢與第二表面處理步驟 (S230)之剛,或是僅在執行第二表面處理步驟(S230)之後, 201135956 步驟⑽ο) / 法還包含有:基板凸转分之背面移除 盆中移除形成於石夕基板背面上的第一凸起部分10, 二面進凸起部分1G之相對面上將要透過對石夕基板之 二订W刻而於第一表面處理步驟⑽0)中形成抗反射 膜4。 ^板凸起刀之背面移除步驟(S220)中,可在石夕基板! 之背面處於向上的狀態下在第—表面處理步驟(咖)後透過將 石夕基板1裝餅乾式_識财對此錄板i進行反侧,而後 使用反應離子餘刻或感應耦合電漿钱刻對石夕基板1進行钱刻,藉 以使其厚度為3微米至1G微米。此處,可透過树基板1上方安 裝具有複數個孔洞的平板來執行這一製程。 在基板凸起部分之背面移除步驟(S22〇)中所使用的侧氣 體,含有:SF6/02、SF6/N2、刚、⑽、順、Clp3、ρ2或者上 述氣體的混合氣體。此處,執行_的時_域秒鐘至幾分鐘。 由於可透過乾式侧執行基板凸起部分之背面移除步驟 (S220 ) ’所以當進行濕式侧時,無須分麟此絲板之背面進 行乾式侧步驟、圖案形成步财及移除步驟。此處,可執行圖 案形成過程鄕除過程,藉以防止树基板之背面上形成凸起部 分。進而,可縮短矽基板的表面處理時間。 具體而言,若執行圖案形成過程與移除過程,則當製造矽基 板之背面沒有凸起部分的魏板丨時’需防止在第_表面處理之 前於石夕基板1之背面形成凸起部分。接下來,可對此雜板進行 蝕刻,進而可移除矽基板1之背面上所形成的圖案。因此,可僅 ΙΓ 15 201135956 於石夕基板1之表面上形成凸出部分。 由於在使用乾式蝕刻之本發明實施例的製造方法中無須透過 濕式钱刻執行醜製程與移除製程,所以由於當透過乾式餘刻執 行基板凸起部分之背面移除步驟(S22〇)時,可降低成本並縮短 製造時間’ _獲财基板之經侧後的背表面。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell, particularly a surface treatment method for a tantalum substrate of a solar cell, and a method of manufacturing the solar cell. [Prior Art] Generally, a solar cell can generate an electromotive force by transmitting a photovoltaic special effect, that is, a photoelectromotive force effect. Among them, solar cells can be classified into materials based on substrates: germanium-based solar cells, compound semiconductor solar cells, and compound/stacked solar cells. Here, the ruthenium-based solar cells can be classified into: crystalline germanium solar cells, such as: single crystal germanium solar cells and polycrystalline germanium solar cells; and amorphous germanium solar cells. Among them, the energy efficiency of the solar cell can be determined by some factors such as the reflectivity of the substrate. At the same time, the energy efficiency of the solar cell is maximized by reflecting the light on the light incident surface, that is, the reflectance is minimized. In the aspect of crystalline germanium solar cells having lower manufacturing costs, many methods for minimizing reflection of light have been proposed to improve the performance of solar cells. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a surface treatment method for a tantalum substrate of a solar cell and a method of manufacturing the solar cell, thereby minimizing light reflection on the surface of the solar cell. In order to achieve the object of the present invention, the present invention is specifically and generally described herein. One aspect of the present invention provides a surface treatment of a tantalum substrate for a solar cell. 201135956 Method '& method includes: a first surface treatment step, For the use of an acidic solution from the Shixi ingot block, under the cutting board _, to form a plurality of first-spider parts on the outer surface of the Wei board; and a second surface treatment step, gazing at the formation of anti-reflection Where the 臈 is formed by the dry _ on the outer surface of the silk plate, that is, in the outer surface of the slab having the first convex portion formed thereon through the first surface treatment step, the size is smaller than that of the first convex portion _ The second raised portion. In this first surface treatment step, the acidic solution contains nitric acid and gas acid, and the weight ratio of nitric acid to hydrofluoric acid in the acidic solution is 1:1 to 5.5:1. Wherein 'the through-drum can be conveyed to the wet platform containing the acidic solution' to perform the first surface treatment step through the side of the miscellaneous sheet, where it can be 6 ° c ~ 10 ° An etching process of 1 to 10 minutes is performed in the temperature of c. At the same time, the first surface treatment step can be performed by immersing the substrate in a bear wet platform containing an acidic solution, and the surface treatment step can be performed at a temperature of 6 ° C to 10 ° C. 20 minute etching process. Prior to the first surface treatment step, the method may further comprise: a substrate damage treatment step whereby the damage on the substrate is cut from the slab by the miscellaneous or miscellaneous solution. After the first surface treatment step, the method may further include: a first first cleaning step for removing impurities generated in the first surface treatment step; and a first etching step for transmitting alkaline The compound partially etches the porous stellite oxide remaining on the outer surface of the ruthenium substrate; the second cleaning step is for removing impurities remaining on the outer surface of the ruthenium substrate after the second etch step; a drying step whereby the Shixi substrate is dried after the second washing step. 201135956 β and after the first surface treatment step and before the second surface treatment step, or only after the second surface treatment step, the method may further comprise removing the back side of the convex portion of the substrate. a step of removing the first convex portion formed on the back surface of the stone substrate and the first convex portion formed in the first surface treatment step by performing dry etching on the back surface of the stone substrate A first convex portion on the opposite side of the surface of the anti-reflection film is formed in the surface. Wherein the second convex portion has a triangular cross section, and at the same time, the side of the second convex portion facing the top of the first convex portion is shorter than the other side of the second convex portion. The germanium substrate is a single crystal germanium substrate or a polycrystalline germanium substrate. Wherein 'after the first surface treatment step, when the area of the outer surface of the anti-reflection film to be formed in the outer surface of the miscellaneous sheet is a desired area, the actual area and the ideal area of the surface subjected to the etching in the first surface treatment step The ratio between the two is in the range of 1-2:1 to 3·2:1. In order to obtain the objects and other features of the present invention, the present invention will be specifically and broadly described in accordance with the purpose of the present invention, and a method of manufacturing a solar cell comprising the surface of the solar cell of the above solar cell is also provided. Processing ^ method. Therefore, the present invention has the following advantages: First, a plurality of first convex portions can be formed in the first surface treatment step through the wet type, and a plurality of second convex portions can be formed in the second surface treatment step by dry-touching Part. Therefore, the reflectance of the germanium substrate can be remarkably reduced, thereby providing the solar cell t* battery energy efficiency. Specifically, the first surface treatment step 201135956 can be performed by passing the acidic solution at a low temperature, instead of performing the first step through the alkaline solution at a high temperature, and the yield and reliability can be improved. ❹ Steps. The surface treatment minimizes anti-god. Through & kind of symmetry 4: and = = _ for the first surface where the convex portion is formed = the strip is passed through her _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The above-mentioned and other objects, features, and parts of the present invention are formed in the following aspects. [Embodiment] =, the joint is closed to the embodiment of the present invention. Detailed description. Base ====_Axis_Battery dome is the first plant 1 FIG. 1 is a cross-sectional view showing the structure of a solar cell according to an embodiment of the present invention, and a flow chart of a method for manufacturing a solar cell according to "in 7th". As shown in the figure, the solar cell of the embodiment of the present invention comprises: a substrate I (four) facet structure; the front surface is electrically formed = the upper surface of the stone (ie, the light electrode 3' is formed on the bottom surface) (hereinafter referred to as the back surface of the substrate), _ and the anti-surface 201135956 film 4' are formed on the surface of the ruthenium substrate 1. Among them, the shixi substrate 1 is formed of a crystalline shi shi material, specifically In order to increase the light receiving area, electrodes may not be formed on the light receiving surface of the solar cell, but electrodes may be formed only on the back surface of the substrate. As shown in Fig. 2, the solar cell is manufactured. The method comprises the following steps: a substrate processing step, a step (S10), cutting a Shixi ingot through a line ore, thereby processing the Shixi substrate 1; and a surface treatment step (S20), thereby performing a substrate processing step (S10) After 'executing in Shi Xiji Forming a convex portion on the surface of the plate!; pushing the step (S30), thereby forming a junction structure after the surface treatment step (S2〇); and forming an anti-reflection film forming step (40), thereby performing the doping step ( After S3), an anti-reflection film 4 is formed on the surface of the ruthenium substrate i; and an electrode formation step (S5 〇), whereby the front surface electrode 2 and the back surface electrode 3 are formed on the front and back surfaces of the ruthenium substrate 1, respectively. In the method of manufacturing a solar cell according to the embodiment of the invention, the electrode forming step (g5〇) may be performed in the doping step (S30). Meanwhile, the substrate processing step (sio) may be performed separately or may include surface treatment. The substrate processing step is performed together with a plurality of subsequent steps of the step (S2). Meanwhile, the solar energy manufacturing method can also be performed in other manners, which will not be described below. Here, reference will be made to the surface treatment step (S2〇). A surface treatment method for a solar cell substrate for a solar cell according to an embodiment of the present invention is described. FIG. 3 is a flow chart of a surface treatment method for a tantalum substrate of a solar cell according to an embodiment of the present invention. As shown in the "Fig. 3", the surface treatment method of the tantalum substrate of the solar cell includes: a first surface treatment step (S21〇), which is cut from the 201135956 矽 ingot by an aqueous solution of acid. The substrate is etched to form a plurality of first convex portions on the outer surface of the ruthenium substrate 1; and a second surface treatment step (S230), whereby the first convex is formed thereon at the k-surface treatment step (S210) The surface of the outer portion of the stone substrate 1 is side to the surface where the anti-reflection film 4 is to be formed, thereby forming a plurality of second convex portions. In the first surface treatment step (S210), the acidic solution is permeable. The side of the substrate cut from the crucible ingot is subjected to a side, whereby a plurality of first convex portions 10 are formed on the outer surface of the substrate. Specifically, as shown in Fig. 4A, the first surface treatment step (coffee) is performed, and a plurality of first convex portions are formed on the outer surface of the miscellaneous sheet 1. In the case where an acidic aqueous solution is used in the first surface treatment step (S21G), the surface reflectance of the wire sheet 1 at which the antireflection film 4 is to be formed is lower than that of the test aqueous solution. Therefore, the amount of reception can be increased, thereby improving the performance of the solar battery. When the neodymium solution is used in this first surface treatment step (S21G), the first f-face treatment step (S21G) largely depends on the material of the silk plate 1. However, when using n liquid, the dependence on the material of the 7 substrate is reduced. In the first surface treatment step (milk), it is preferable to form the first convex portion 1G on the light receiving surface (i.e., the 'surface) of the stone substrate 1. In order to prevent the formation of the first convex portion H) on the opposite surface of the light receiving surface (i.e., the back surface of the substrate), it may be in the miscellaneous plate! On the back side of the damper-shaped hood, the reticle is tilted, and the first raised portion is formed by the back of the substrate 10i. In the first surface treatment step (S210), when the acid solution is used, the 201135956 can be used as an aqueous solution containing nitric acid and hydrogen. Here, the weight ratio and concentration of such a solution depend on conditions such as etching temperature, etching depth, and the like. In the first surface treatment step (S210), it is preferred to mix the nitric acid and hydrogen with a weight ratio of i]~5 $] to form the Wei hetero. At the same time, this Wei-smelting solution may also contain a surfactant and a catalyst. When an acidic solution is used, an aqueous solution containing: oxalic acid, gas-acid acetic acid (or deionized water) can be used. At the same time, in the first surface treatment step (S21), the depth (side height) is preferably from 1 micrometer to 10 micrometers. At the same time, the first surface treatment step (S210) can also be performed by an inline method (S210), whereby the substrate is transferred to the wet platform comprising: t acidic solution by the drum, and the side of the financial substrate 1 is further This side process can be performed for 1 to 10 minutes at a temperature of 6t:~lot:. Further, by immersing the dream substrate 1 in the wet platform containing the acidic solution, the side of the stone substrate 1 is subjected to the first surface treatment step (S210), and the etching process can be busy ~1 ( The temperature of the TC is performed for 15 to 25 minutes. In this first surface treatment step (S21〇), the wet etching can be performed through the acidic solution. Therefore, the manufacturing green of the solar energy f pool also includes at least one subsequent The process, for example, is a process for drying the surface of the etched substrate 。. Specifically, after the first surface treatment step (S210), the method for manufacturing the solar cell further includes: Step (sm), whereby the particles produced by the first surface treatment step (S21G) are collected; the second etch step (S213), by means of 201135956, by means of an organic compound (sodium hydroxide or potassium hydroxide) The porous silica dioxide (SiO 2 ) remaining on the outer surface of the Shi Xi substrate 1 is etched; the second cleaning step (S214) 'by removing the residue remaining in Shi Xi after the second surging step (S213) On the outer surface of the substrate 1 And a drying step (S215), whereby the crucible substrate 1 is subjected to a drying treatment after the second cleaning step (S214). wherein 'the first cleaning step (S212) and the second cleaning step (S214) may be performed to remove the stone The impurities remaining on the surface of the substrate 1. Further, the first cleaning step (s2i2) and the second cleaning step (S214) may be performed in one stage or in multiple stages depending on the surface and characteristics of the impurities. FIG. 4 is a partial cross-sectional view of the substrate subjected to the first surface treatment step in the surface treatment shown in FIG. 3, and FIG. 4B and FIG. 4C respectively show the acceptance of the first surface treatment. The substrate area ratio of the step is less than u or a partial cross-sectional view of more than 3.2. Here, "4A" to "5th" are simply shown. The schematic view of the substrate. Therefore, the side depth, the tip height and the size will appear. In general, the cross section may have an irregular shape and various shapes. Here, it is assumed that the area of the anti-reverse surface 4 of the core board 1 is the actual area Sr, which is permeable to the __ surface treatment. Step (s2i 〇) the side of the 夕 丨 substrate 丨, so that the outer surface of the silk plate i has a plurality of first convex portions 1 〇. Meanwhile, it is also assumed that the completely flat surface area is the ideal area Si in each of the above Under the premise of hypothesis, such as "figure" and "figure $", after the first surface treatment step (coffee) is executed, the ratio between the actual area Sr of the scale substrate and the ideal area Si is 12:1~ 3 2:1. As shown in Fig. 4B, when the area ratio is less than 12, the first surface treatment 11 201135956 step (measurement) forms fewer first convex portions ω, which reduces the reflectance. As shown in "Fig. 4C", when the area ratio is larger than 3.2, at this time, the reaction by electropolymerization in the second surface treatment (10) 0) is not severe, and thus the surface treatment effect is impaired. Further, when the area ratio is larger than 3 2, the diffusion of the metal material for forming the electrode in the electrode forming step (S50) is hindered in the subsequent process of the solar cell manufacturing method. In turn, it will have an adverse effect on subsequent processes, such as an air gap. Prior to the first surface treatment step (S21G), the manufacturing method further comprises: the substrate damage treatment step (S11)' is for removing the damage of the tantalum substrate 1 cut from the tantalum ingot through the acidic solution or the facial solution. . When an acidic solution is used, a mixed water of nitric acid and hydrofluoric acid, hepta, hydrofluoric acid, and acetic acid (or decanter) may be used. The weight ratio of the scales to the money is 7:1' while the weight ratio of water in the mixed aqueous solution is determined by those of ordinary skill in the art. In the case of reading the new money, the substrate damage processing step (su) can be performed under the condition of 15 to 25 minutes in the temperature of 8 叱 to thief. When an inert solution is used, sodium hydroxide or potassium hydroxide can be used, and 2-isopropyl-alcohol can be additionally added. In the substrate damage treatment step (S11), it is preferable to use an assay solution when the stone substrate is a single crystal. However, when the Shishi substrate is polycrystalline, it is preferable to use an acidic solution. Here, the substrate damage processing step (su) and the first surface treatment step (S210) may be used in combination. Figure 6 is a cross-sectional view of the substrate after the first surface treatment step of the embodiment of the present invention and the surface treatment of the second table 12 201135956. Here, the second surface treatment step (S230) is a step for forming a fine convex portion W texture, that is, the second convex portion 2G, wherein the second surface portion 2G may have a first processing step (the processing surface is to be formed) The outer surface of the anti-reflection film 4 is on the dry side. Specifically, as shown in FIG. 6, the first surface treatment step (10) 0) is for forming a plurality of surfaces on the surface of the stone substrate i; Two raised portions 2〇 (texture). Here, the second convex portion 20 is smaller in size than the first convex portion 1G_, the projection. The first raised portion 10 has a width of about 2 micrometers to 20 micrometers and a height of about 1 micrometer to 1 micrometer, preferably spherical (ideal condition). Therefore, the width of the first convex portion may correspond to the remainder, and the height (side depth) thereof may correspond to the radius. On the other hand, the second raised portion has a size of about 100 micrometers to 800 micrometers. & where 'through the reactive ion side 透过 _ _ er vacuum pressure state of the vacuum (four) guide to perform the dry money engraving in the second surface treatment step (coffee). Meanwhile, in the dry etching, a mixed gas of cl2/CF4/〇2, sf6/〇2, CHF3/SF6/02, just, F2, and the above gas may be used as the side gas. Among them, the 'executive_dry rotten coffee is a few seconds to a few minutes. a In order to perform the dry type (10) through the reactive ions, a flat plate having a plurality of holes may be installed above the transfer plate to assist in forming minute projections, i.e., the first portion 20. At the same time, the substrate can be transferred through the tray of the plurality of stone slabs 1 on the substrate support plate of the dry type device, thereby performing dry button engraving. 13 201135956 The second surface treatment step _) causes the surface treated stone substrate 1 to have a surface as shown in Fig. 6. In the second surface treatment step (coffee), the first convex portion 2 is formed on the substrate, and the first convex portion 2 is formed by the second convex portion 2, and the hard portion is 2G smaller than the Lai-surface. The size. And the second convex portion 2G has a triangular cross section, and the phase of the surface = the portion (4) of the side (four) is more purely formed than the side in the first surface treatment step (S21). The entire outer surface of the anti-reflection film, the back of the outer surface of the silk plate, and the first convex portion 10 are formed on the surface. Wherein the first convex portion 10 formed on the outer surface of the stone substrate i is permeable to reduce the light reflectance and the light is connected (four). However, the m convex portion 1〇 may cause inconvenience in the electrode forming step (S5G)', that is, in the subsequent process after forming the first convex portion 1(), specifically, the first convex portions 10 will It is inconvenient to manufacture a substrate having a solar cell of a more π effect. Therefore, it is preferable that only the surface of the surface towel (light receiving surface) other than the fine substrate ΰ is in the upper side; Here, the first convex portion 10' may be formed on the other surface and the first convex portion 1'' is formed on the light receiving surface which needs to be removed. In order to make the electrode pattern forming process by forming the electrode on the outer surface of the stone substrate through the shielding pattern, the outer surface of the stone substrate 1 needs to be reversed. Therefore, after performing the first surface treatment step (S210) and the second surface treatment step (S230), or only after performing the second surface treatment step (S230), the 201135956 step (10) ο) / method further includes: The first convex portion 10 formed on the back surface of the stone substrate is removed from the back surface removing basin of the substrate convex portion, and the opposite surface of the two-sided convex portion 1G is to be etched through the second surface of the stone substrate. The anti-reflection film 4 is formed in the first surface treatment step (10) 0). ^ The back of the plate knives removal step (S220) can be used in the Shixi substrate! The back side is in an upward state, after the first surface treatment step (coffee), the stone substrate 1 is loaded with a biscuit type _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The Shishi substrate 1 is engraved to have a thickness of 3 micrometers to 1 micrometer. Here, the process can be performed by mounting a plate having a plurality of holes above the tree substrate 1. The side gas used in the step (S22) of the back surface removal portion of the substrate convex portion contains: SF6/02, SF6/N2, just, (10), cis, Clp3, ρ2 or a mixed gas of the above gases. Here, the time_ field of _ is executed to a few seconds. Since the back side removal step (S220) of the raised portion of the substrate can be performed through the dry side, when the wet side is performed, the dry side step, the pattern forming step, and the removing step are not required to be performed on the back side of the screen. Here, the pattern forming process erasing process can be performed to prevent the formation of the convex portion on the back surface of the tree substrate. Further, the surface treatment time of the tantalum substrate can be shortened. Specifically, if the pattern forming process and the removing process are performed, when the back surface of the germanium substrate is not provided with the convex portion, the convex portion of the back surface of the stone substrate 1 is prevented from being formed before the first surface treatment. . Next, the dope can be etched to remove the pattern formed on the back side of the substrate 1. Therefore, a convex portion can be formed on the surface of the Shishi substrate 1 only on 2011 15 201135956. Since the ugly process and the removal process are not required to be performed by wet etching in the manufacturing method of the embodiment of the present invention using dry etching, since the back surface removing step (S22 〇) of the convex portion of the substrate is performed by the dry process , can reduce the cost and shorten the manufacturing time ' _ get the back surface of the substrate after the side.

tM A. 第一表面處理 以2.1的比例對硝酸與氫氟酸進行混合,藉以獲得酸性溶液。 蝕刻時間:内聯法(inlinemethod)持續1到10分鐘 姓刻溫度:約為6。〇〜1〇。〇 B. 第二表面處理(乾式侧:反應離子侧) 在5〇毫托之反應氣壓下,CHF3約為12標準立方米/分鐘, C12約為72鮮立方米/分鐘,約為標準立方米/分鐘, SF6為65標準立方米/分鐘。而第二表面處理係在,瓦特之射 頻功率之電聚中執行5秒至1〇秒。 C. 較佳實施例與比較實施例間之比較 女^ 厂矣· 1 」所不,透過本發明之方法進行處理的矽基板1所體 現的反射率遠遇小於透過習知方法進行處理的基板表面之反射 率。 16 201135956 「表1」 實例 反射率 (%,350奈米〜1〇50奈米) 僅執行基板損壞處理 28.96 執行基板損壞處理及反應離子姓 刻處理 10.51 執行第一表面處理與第二表面處 理(本發明) 7.79 其中’依據本發明實施例,在進行了第一表面處理與第二表 面處理之後透過電漿輔助化學氣相沈積(PECVD)所形成的具有 抗反射膜4之;5夕基板的反射率為140。 此處,本發明之前述實施例及優點僅是示範性的並且不對本 發明之揭露構成限制。而本發明所教示之内容也可便利地用於其 它類型的設備。同時,以上描述旨在對本發明進行說明,而無意 於限疋本發明清求保護之主題的範圍。同時,本技術領域中具有 通常知識者可⑽解本㈣之雜手段、實雛變化方式。 此外’當結合任意-個實施例對指定特徵、結構或特性進行描述 時,經由本領域之技術人員結合另外—些實侧也可輯到相同 之效果。 雖然本發日狀前软實施觸露如上,祕並_以限定本 發明。在不脫離本發明之精神和範圍内,所為之更動與潤飾,均 17 201135956 X月之專梅魏圍。關財發明所界定之保護範圍請參考 所附之申請專利範圍。 【圖式簡單說明】 第1圖為太陽能電池之結構的剖面圖; 第2圖為胁朗第〗圖卿之太電紅製造方法的流 程圖; 第3圖為胁說明本發明實施例之太陽能電池_基板之表 面處理方法的流程圖; 第4A圖為透過第3圖所示的表面處理方法之第一表面處理 步驟對其表面進行處理之基板的部分剖面圖; 第4B圖至第4C圖分別為經過第一表面處理後基板之面積比 率小於1.2及大於3.2的部分剖面圖; 第5圖為透過第3圖所示之表面處理方法形成凸起部分之狀 態的原理圖;以及 第6圖為經過本發明實施例之表面處理方法之第一表面處理 與第二表面處理的石夕基板之部分剖面圖。 【主要元件符號說明】 1 ...........................石夕基板 2 ...........................正面電極 3 ...........................面電極 4 ...........................抗反射膜 18 201135956 ίο ...........................第一凸起部分tM A. First surface treatment Nitric acid and hydrofluoric acid were mixed at a ratio of 2.1 to obtain an acidic solution. Etching time: Inline method (inlinemethod) lasts 1 to 10 minutes. Name engraved temperature: about 6. 〇~1〇. 〇B. Second surface treatment (dry side: reactive ion side) Under a reaction pressure of 5 Torr, CHF3 is about 12 standard cubic meters per minute, and C12 is about 72 fresh cubic meters per minute, which is about standard cubic meters. /min, SF6 is 65 standard cubic meters / minute. The second surface treatment is performed for 5 seconds to 1 second in the electropolymerization of the Watt frequency power. C. Comparison between the preferred embodiment and the comparative example. The substrate 1 processed by the method of the present invention exhibits a reflectance that is less than that of the substrate processed by the conventional method. The reflectivity of the surface. 16 201135956 "Table 1" Example reflectance (%, 350 nm ~ 1 〇 50 nm) Only substrate damage treatment is performed 28.96 Performing substrate damage treatment and reactive ion etch processing 10.51 Performing the first surface treatment and the second surface treatment ( The present invention] 7.79 wherein: according to an embodiment of the present invention, after the first surface treatment and the second surface treatment, the anti-reflection film 4 is formed by plasma-assisted chemical vapor deposition (PECVD); The reflectance is 140. The foregoing embodiments and advantages of the invention are intended to be illustrative and not restrictive. The teachings of the present invention are also convenient for use with other types of devices. In the meantime, the above description is intended to be illustrative of the present invention and is not intended to limit the scope of the claimed subject matter. At the same time, those skilled in the art can (10) solve the miscellaneous means of this (4), and change the mode of the actual chick. Further, when a specified feature, structure, or characteristic is described in combination with any of the embodiments, the same effect can be obtained by a person skilled in the art in combination with another solid side. Although the soft implementation of the present invention is as described above, it is intended to limit the invention. Without changing the spirit and scope of the present invention, the changes and retouchings are all made by the Meiwei Weiwei of 2011. Please refer to the attached patent application scope for the scope of protection defined by Guancai Invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing the structure of a solar cell; Fig. 2 is a flow chart showing a method for manufacturing a galvanic red of the scorpion; and Fig. 3 is a view showing the solar energy of the embodiment of the present invention FIG. 4A is a partial cross-sectional view of the substrate subjected to the surface treatment process by the first surface treatment step of the surface treatment method shown in FIG. 3; FIGS. 4B to 4C a partial cross-sectional view of the area ratio of the substrate after the first surface treatment is less than 1.2 and greater than 3.2; and FIG. 5 is a schematic diagram showing a state in which the convex portion is formed by the surface treatment method shown in FIG. 3; and FIG. It is a partial cross-sectional view of the first surface treatment and the second surface treatment of the surface treatment substrate according to the surface treatment method of the embodiment of the present invention. [Main component symbol description] 1 ...........................Shi Xi substrate 2 ............ ...............front electrode 3 ...........................face electrode 4 .. .........................Anti-reflection film 18 201135956 ίο ................... ........the first raised part

Sr ...........................實際面積Sr ...........................real area

Si ...........................理想面積 19Si ...........................Ideal area 19

Claims (1)

201135956 七、申請專利範圍: 1. 一種太陽能電池之矽基板的表面處理方法,係包含: 第一表面處理步驟,係對用一酸性溶液從一s夕鑄塊上切刻 下之一矽基板進行蝕刻,藉以在該矽基板之外表面上形成複數 個第一凸起部分;以及 第二表面處理步驟,係用於在將要形成一抗反射膜之處透 過乾式姓刻於該;5夕基板之外表面上,即在具有透過第一表面處 理步驟在上面形成了該等第一凸起部分之矽基板的外表面中 形成尺寸小於該等第一凸起部分的複數個第二凸起部分。 2. 如請求項第1項所述之太陽能電池之矽基板的表面處理方法, 在第一表面處理步驟中,該酸性溶液包含有:硝酸與氫氟酸。 3. 如請求項第2項所述之太陽能電池之矽基板的表面處理方法, 其中透過按1:1〜5.5:1之重量比率對硝酸與氫氟酸進行混合, 藉以獲得該酸性溶液。 4. 如請求項第1項所述之太陽能電池之石夕基板的表面處理方法, 其中在透過滾筒對該石夕基板進行傳送的同時,在6。〇〜1〇。〇的 溫度中對該石夕基板進行15〜25分鐘的#刻。 5. 如請求項第1項所述之太陽能電池之絲板的表面處理方法, 其中透過將該矽基板浸泡於包含有酸性溶液之蘸濕台而對詨 矽基板進行飯刻的-浸泡方法執行該第一表面處理步驟,同時 在6 C〜1〇。〇的溫度中執行2〇分鐘的蝕刻製程。 20 201135956 6. 如請求項第1項所述之太陽能電池之矽基板的表面處理方法, 在該第一表面處理步驟之前,還包含:基板缺陷處理步驟,藉 以透過酸性溶液或驗性溶液去除從一石夕鑄塊上切下的該石夕基 板之缺陷。 7. 如求項第1項所述之太陽能電池之碎基板的表面處理方法, 在該第一表面處理步驟之前,還包含: 第一清洗步驟,係用於移除在該第一表面處理步驟中所產 生的雜質; 第二蝕刻步驟,係用於透過鹼性化合物部分地對殘留在該 石夕基板之外表面上的多孔矽氧化物進行蝕刻; 第二清洗步驟,係用於在第二蝕刻步驟之後移除殘留在該 矽基板之外表面上的雜質;以及 乾燥步驟,藉以在該第二清洗步驟之後對該石夕基板進行乾 燥。 8.如晴求項第1項所叙太陽㈣池之絲㈣表面處理方法, f執行該第一表面處理步驟之後及第二表面處理步驟之前,或 疋在該第二表面處理步驟之前,這種表面處理方法還包含:該 矽基板中該等凸起部分之背面的移除步驟,藉以透過對該石夕基 板之背面進仃乾式侧’移除形成於财基板之背面的該等第 凸起。P刀以及形成於在該第一表面處理步驟 等第喝部分的外表面中形成由該抗反射膜之表面L對 S 21 201135956 面上的該等第一凸起部分。 並月求項第1項所述之太陽能電池之♦基板的表面處理方法, 八中該等第二凸起部分具有—三角形橫截面,同時,該等第二 凸起。P刀朝向該等第一凸起部分之頂部的側面比該等第二凸 起部分之另一侧面短。 瓜如清求項第1項所述之太陽能電池之絲板的表面處理方法, 其中該續基板係為—單晶%基板或-多晶梦基板。 U‘如叫求項第1項至第1G項中之任意-項所述之太陽能電池之 / 土板的表面處理方法,其巾’在進行該第—表面處理步驟之 後,當該石夕基板之外表面中將要形成該抗反射膜之外表面的面 積為-理想面積時,在該第一表面處理步驟中接受钱刻之表面 的貫際面積與該理想面積間之—比率介於的範圍 内。 12. -種太陽能電池的製造方法,包含有透過請求項第】項至第⑴ 項中之任意-賴述之太陽能電池之魏板的表面處理方法。 13. 如請求項第12項所述之太陽能電池的製造方法,其中,在進 仃該第-表面處理步驟之後’當财基板之外表面巾將要形成 該抗反射膜之外表面的面積為一理想面積時,在該第一表面處 理步驟中接受侧之表面的實際面積與該理想面積間之一比 率介於1.2:1〜3.2:1的範圍内。 22201135956 VII. Patent application scope: 1. A surface treatment method for a tantalum substrate of a solar cell, comprising: a first surface treatment step of etching a ruthenium substrate cut from a singaping block by an acidic solution; a plurality of first convex portions formed on the outer surface of the germanium substrate; and a second surface treatment step for transmitting a dry type in the place where an anti-reflection film is to be formed; Surfaces, i.e., a plurality of second raised portions having a smaller dimension than the first raised portions are formed in the outer surface of the substrate having the first raised portions formed thereon through the first surface treatment step. 2. The surface treatment method of the tantalum substrate for a solar cell according to claim 1, wherein in the first surface treatment step, the acidic solution comprises: nitric acid and hydrofluoric acid. 3. The surface treatment method of the tantalum substrate for a solar cell according to claim 2, wherein the acidic solution is obtained by mixing nitric acid and hydrofluoric acid at a weight ratio of 1:1 to 5.5:1. 4. The surface treatment method of the solar cell substrate of the solar cell according to claim 1, wherein the substrate is transported while passing through the roller. 〇~1〇. The temperature of the crucible is carried out for 15 to 25 minutes on the stone substrate. 5. The surface treatment method for a solar cell wire according to claim 1, wherein the immersion method is performed by immersing the ruthenium substrate in a wetness table containing an acidic solution The first surface treatment step is simultaneously at 6 C~1 〇. A 2 minute etching process is performed in the temperature of the crucible. The method for surface treatment of the tantalum substrate of the solar cell according to claim 1, further comprising: a substrate defect processing step for removing the acidic solution or the test solution before the first surface treatment step The defect of the Shishi substrate cut on a stone slab. 7. The surface treatment method for the broken substrate of the solar cell according to Item 1, further comprising: a first cleaning step for removing the first surface treatment step before the first surface treatment step The second etching step is for partially etching the porous tantalum oxide remaining on the outer surface of the stone substrate through the basic compound; the second cleaning step is for the second The impurities remaining on the outer surface of the germanium substrate are removed after the etching step; and a drying step of drying the stone substrate after the second cleaning step. 8. The surface treatment method of the sun (four) pool wire (4) as described in item 1 of the present invention, f after performing the first surface treatment step and before the second surface treatment step, or before the second surface treatment step The surface treatment method further includes: removing the back surface of the convex portions in the germanium substrate, thereby removing the first protrusions formed on the back surface of the financial substrate by inserting the back side of the stone substrate into the dry side . The P-knife and the first convex portion formed on the surface of the anti-reflection film L on the surface of the S 21 2011 35956 are formed in the outer surface of the drinking portion such as the first surface treatment step. In the method of surface treatment of a substrate for a solar cell according to Item 1, the second convex portion has a triangular cross section and at the same time, the second protrusion. The side of the P-blade facing the top of the first raised portions is shorter than the other side of the second raised portions. The method for surface treatment of a silk plate for a solar cell according to the above item 1, wherein the continuous substrate is a single crystal% substrate or a polycrystalline dream substrate. The method for surface treatment of a solar cell/soil plate according to any one of the items 1 to 1G, wherein the towel is after the first surface treatment step, when the stone substrate When the area of the outer surface of the anti-reflection film to be formed in the outer surface is an ideal area, the ratio between the cross-sectional area of the surface subjected to the engraving and the ideal area in the first surface treatment step is in a range Inside. 12. A method of manufacturing a solar cell, comprising the surface treatment method of the solar cell of the solar cell according to any one of the above-mentioned items (1) to (1). 13. The method of manufacturing a solar cell according to claim 12, wherein, after the step of the first surface treatment, the surface of the outer surface of the surface of the anti-reflection film is formed as an ideal surface. In the case of the area, a ratio between the actual area of the surface of the receiving side and the ideal area in the first surface treatment step is in the range of 1.2:1 to 3.2:1. twenty two
TW099131725A 2010-04-14 2010-09-17 Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell TWI451586B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100034501 2010-04-14

Publications (2)

Publication Number Publication Date
TW201135956A true TW201135956A (en) 2011-10-16
TWI451586B TWI451586B (en) 2014-09-01

Family

ID=43466608

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131725A TWI451586B (en) 2010-04-14 2010-09-17 Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell

Country Status (3)

Country Link
KR (3) KR101052059B1 (en)
CN (3) CN102222719B (en)
TW (1) TWI451586B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684289B (en) * 2017-12-08 2020-02-01 南韓商三星Sdi股份有限公司 Solar cell

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145472B1 (en) * 2010-11-29 2012-05-15 현대중공업 주식회사 Method for fabricating solar cell
DE102012213793B3 (en) * 2012-08-03 2013-10-24 Solarworld Innovations Gmbh Method for inspecting wire-sawn silicon substrate for solar cell, involves exposing silicon substrate with infrared radiation and detecting infrared radiation transmitted by silicon substrate, where detected infrared radiation is evaluated
KR101976420B1 (en) * 2013-03-06 2019-05-09 엘지전자 주식회사 Solar cell and method for manufacturing the same
KR102027138B1 (en) * 2013-07-02 2019-10-01 성균관대학교산학협력단 Method for producing solar cell substrate formed concave and convex and solar cell with the same
CN105161575A (en) * 2015-09-30 2015-12-16 江苏盎华光伏工程技术研究中心有限公司 Silicon wafer pretreatment method, silicon wafer and solar cell
CN105405931A (en) * 2015-12-23 2016-03-16 浙江晶科能源有限公司 Solar cell and production method thereof
CN106960882B (en) * 2017-03-20 2018-06-15 河北盛平电子科技有限公司 A kind of surface metallised ceramic cube and production method
CN108091557A (en) * 2017-11-29 2018-05-29 江苏彩虹永能新能源有限公司 A kind of rear surface of solar cell etching technics

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3772456B2 (en) * 1997-04-23 2006-05-10 三菱電機株式会社 Solar cell, method for manufacturing the same, and semiconductor manufacturing apparatus
JP2000101111A (en) * 1998-09-17 2000-04-07 Sharp Corp Manufacture of solar cell
DE10150040A1 (en) * 2001-10-10 2003-04-17 Merck Patent Gmbh Etching passivating and antireflection layers made from silicon nitride on solar cells comprises applying a phosphoric acid and/or etching medium containing a salt of phosphoric acid the surface regions to be etched
KR101023143B1 (en) * 2004-02-25 2011-03-18 삼성에스디아이 주식회사 Device for texturing silicon wafer for solar cell
JP4766880B2 (en) 2005-01-18 2011-09-07 シャープ株式会社 Crystal silicon wafer, crystal silicon solar cell, method for manufacturing crystal silicon wafer, and method for manufacturing crystal silicon solar cell
JP5226255B2 (en) * 2007-07-13 2013-07-03 シャープ株式会社 Manufacturing method of solar cell
KR101088280B1 (en) * 2007-10-24 2011-11-30 미쓰비시덴키 가부시키가이샤 Process for manufacturing solar cell
KR20100013649A (en) * 2008-07-31 2010-02-10 삼성전자주식회사 Photovoltaic device and method of manufacturing the same
KR101447434B1 (en) * 2008-09-09 2014-10-13 주성엔지니어링(주) Solar cell, method and apparatus for fabrication of the solar cell
CN101613884B (en) * 2009-04-02 2011-09-07 常州天合光能有限公司 Polycrystalline silicon fuzzing process by acid method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684289B (en) * 2017-12-08 2020-02-01 南韓商三星Sdi股份有限公司 Solar cell

Also Published As

Publication number Publication date
KR101052059B1 (en) 2011-07-27
CN102222719B (en) 2013-10-16
KR20110115068A (en) 2011-10-20
KR20110115071A (en) 2011-10-20
CN102222721A (en) 2011-10-19
CN102222721B (en) 2013-12-25
TWI451586B (en) 2014-09-01
CN102222723B (en) 2014-04-30
CN102222723A (en) 2011-10-19
CN102222719A (en) 2011-10-19
KR101630802B1 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
TW201135956A (en) Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell
US8119438B2 (en) Method of manufacturing solar cell
Kim et al. Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication
WO2012150627A1 (en) Method for cleaning silicon substrate, and method for producing solar cell
KR20120011006A (en) Methods for damage etch and texturing of silicon single crystal substrates
JP2005150614A (en) Solar battery, and manufacturing method thereof
CN102703989A (en) Monocrystal-like solar battery texturing process
KR20040068928A (en) Semiconductor texturing process
JP6091458B2 (en) Photoelectric conversion device and manufacturing method thereof
TW201212246A (en) Surface processing method of silicon substrate for solar cell, and manufacturing method of solar cell
US6197611B1 (en) Method for producing silicon solar cell
KR101657626B1 (en) Method for manufacturing solar cell and solar cell manufactured by the same method
WO2004023567A2 (en) Method of manufacturing a solar cell
Barrio et al. Texturization of silicon wafers with Na2CO3 and Na2CO3/NaHCO3 solutions for heterojunction solar-cell applications
Marrero et al. Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells
KR101212896B1 (en) Texturing of multicrystalline silicon for solar cell using an acidic solution
JP6144778B2 (en) Manufacturing method of solar cell
JP2011146432A (en) Method of manufacturing silicon substrate for solar battery
Marstein et al. Acidic texturing of multicrystalline silicon wafers
JP2010245568A (en) Method of manufacturing solar cell
CN110993740A (en) Method for producing a solar cell and solar cell
JP2007142471A (en) Method for manufacturing solar cell
US20110180132A1 (en) Texturing and damage etch of silicon single crystal (100) substrates
Han et al. Wet-texturing process for a thin crystalline silicon solar cell at low cost with high efficiency
TW201829742A (en) Wet etching surface treatment method and microporous silicon chip prepared by the same containing a hydrofluoric acid, a nitric acid, a buffer solution and water