TW201131251A - Liquid crystal displays having color dots with embedded polarity regions - Google Patents

Liquid crystal displays having color dots with embedded polarity regions Download PDF

Info

Publication number
TW201131251A
TW201131251A TW99133491A TW99133491A TW201131251A TW 201131251 A TW201131251 A TW 201131251A TW 99133491 A TW99133491 A TW 99133491A TW 99133491 A TW99133491 A TW 99133491A TW 201131251 A TW201131251 A TW 201131251A
Authority
TW
Taiwan
Prior art keywords
color
pixel
polarity
color point
buried
Prior art date
Application number
TW99133491A
Other languages
Chinese (zh)
Other versions
TWI431364B (en
Inventor
Hiap L Ong
Original Assignee
Kyoritsu Optronics Co Ltd
Hiap L Ong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/721,536 external-priority patent/US8471971B2/en
Application filed by Kyoritsu Optronics Co Ltd, Hiap L Ong filed Critical Kyoritsu Optronics Co Ltd
Publication of TW201131251A publication Critical patent/TW201131251A/en
Application granted granted Critical
Publication of TWI431364B publication Critical patent/TWI431364B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A multi-domain liquid crystal display is disclosed. The display includes embedded polarity regions within the color dots of the display. Specifically, the embedded polarity regions have a polarity that is different from the polarity of the color dot containing the embedded polarity region. This difference in polarity enhances the fringe fields of the color dot or in some situations may create additional fringe fields. The enhanced fringe fields or additional fringe fiends can more quickly restore liquid crystals to their proper position.

Description

201131251 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種液晶顯示器,特別是指一種可以平 '月盃基板製造的大晝素多區域垂直配向液晶顯示器。 【先前技術】 曰初^使用在如計算機與電子錶的簡單單色顯示器的液 • 晶顯不器(Liquid Crystal Display,LCD),係已變成最優勢 的顯示科技。液晶顯示器係經常用來取代陰極射線管 (Cathode Ray Tube,CRT)在電腦顯示與電視顯示上的應 用。液晶顯示器的各種缺點已經被克服以改善液晶顯示器 的品質。舉例來說,廣泛地取代被動矩陣顯示器的主動矩 陣顯示器,係相對於被動矩陣顯示器具有降低龙影 (Ghosting)且改善解析度(Res〇iutj〇n)、色階(c〇i〇r201131251 VI. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display, and more particularly to a large-sized multi-region vertical alignment liquid crystal display that can be fabricated on a flat moon substrate. [Prior Art] The liquid crystal display (LCD), which is used in simple monochrome displays such as computers and electronic watches, has become the most advantageous display technology. Liquid crystal displays are often used to replace the use of cathode ray tubes (CRTs) in computer displays and television displays. Various shortcomings of liquid crystal displays have been overcome to improve the quality of liquid crystal displays. For example, active matrix displays that widely replace passive matrix displays have reduced ghosting and improved resolution (Res〇iutj〇n) and color gradation (c〇i〇r) relative to passive matrix displays.

Gradation)、視角(viewing Angle)、對比(Contrast Ratio)以 Φ 及反應時間(Response Time)的成效。 然而’傳統扭轉向列液晶顯示器(Twisted Nematic LCD) 的主要缺點係為非常窄的視角以及非常低的對比。甚至連 主動式矩陣的視角更窄於陰極射線管的視角。尤其是當觀 — 看者直接地在液晶顯示器前面收看一高晝質影像時,在液 晶顯示器側旁的其他觀看者則無法看到此一高晝質影像。 多區域垂直配向液晶顯示器(Multi-domain Vertical Alignment Liquid Crystal Display,MVA LCD)係被發展來改 - 善液晶顯示器的視角以及對比。請參考圖l(a)-l(c),係表 201131251 示-垂直配向液晶顯示器ΙΟΟ的晝素基本功能。為了清楚 地解說’ ϋ 1的液晶顯示器係僅使用單一區域⑸岭 DomahO。再者’為了清楚地解說,目丨⑷⑷(以及圖2) 的液晶顯示器係依據灰階操作來敘述。再者,圖!⑷.Μ) 係簡化來清楚說明且省略許多1序表層。糊來說,在基 板110與電極12〇之間,實際上的顯示器係可能包括用以 電性連接料同金屬層以及將各金屬層分_絕緣層。 液晶顯示器100具有一第一偏光片105、一第一基板 110、第一電極120、一第一配向層125、多個液晶13〇、 -第,配向層140、-第二電極145、—第二基板15〇以及 -第了偏光片155〇 -般而言,第一基板11〇與第二基板 MO係由透明玻璃所製成。第一電極12〇與第二電極⑷ 係由如氧化銦錫(indium Tin 〇xide,IT〇)之透明導電材質所 製成。第一配向層125與第二配向層140係由聚酿亞氨 (Polyimide。,ΡΙ)所製成’且與在靜止態之液晶13〇垂直地 配向在操作時’—光源(圖未示)係從貼附在第一基板 之^下面的第-偏光片1〇5射出光線。第一偏光片奶係 通吊在帛一方向偏振’且貼附在第二基板150的第二偏 光片155係與第一偏光片1〇4垂直地偏振。因此,從光源 而來的光線並不會同時穿透第—偏光片1()5與第二光偏光 片155 ’除非光線的偏振在第一偏光片105與第二偏光片 155—之間疑轉90度。為了清楚說明,並未顯示很多的液晶。 在實際的顯示器中,液晶係為棒狀分子(rod like molecules),其直徑大約為$埃(Angstr〇m,a),長度大約 20-25埃。因此’在一晝素中有超過一千兩百萬的液晶分 201131251 子,其中畫素的長、寬、高分別為3〇〇微米(mi_eter, gm)、12〇微米、3微米。雖然圖未示,但許多液晶顯示器(特 別是主動矩陣顯示器)包括在第-電極12〇底部上的一保護 層。此保護層係當作在第-電極12Q、裝置與導體之間的 絕緣層’其巾,裝置與導體係可形成在基板上。此保護層 通常地係由氮化石夕(Silicon Nitrides)所形成的。 在圖1 (a)中,液晶130係為垂直配向。在垂直配向中,Gradation), viewing angle, contrast (Contrast Ratio) with Φ and response time (Response Time). However, the main drawback of the conventional Twisted Nematic LCD is the very narrow viewing angle and very low contrast. Even the perspective of the active matrix is narrower than the viewing angle of the cathode ray tube. In particular, when the viewer directly views a high-quality image in front of the liquid crystal display, other viewers beside the liquid crystal display cannot see the high-quality image. Multi-domain Vertical Alignment Liquid Crystal Display (MVA LCD) has been developed to improve the viewing angle and contrast of liquid crystal displays. Please refer to Figure l(a)-l(c), which shows the basic functions of the pixel in the vertical alignment LCD display. In order to clearly illustrate the 'ϋ1' LCD, only a single area (5) Ridge DomahO is used. Further, in order to clearly explain, the liquid crystal display of (4) (4) (and FIG. 2) is described in terms of gray scale operation. Again, the map! (4).Μ) Simplify to clearly illustrate and omit many 1-sequence layers. For the paste, between the substrate 110 and the electrode 12A, the actual display may include electrically connecting the material to the metal layer and dividing the metal layer into an insulating layer. The liquid crystal display 100 has a first polarizer 105, a first substrate 110, a first electrode 120, a first alignment layer 125, a plurality of liquid crystals 13A, - a first, an alignment layer 140, a second electrode 145, and a first electrode The second substrate 15A and the first polarizer 155 are generally made of transparent glass. The first electrode 12A and the second electrode (4) are made of a transparent conductive material such as indium tin bis xide (IT〇). The first alignment layer 125 and the second alignment layer 140 are made of polyimide, and are aligned with the liquid crystal 13〇 in a stationary state during operation—the light source (not shown) Light is emitted from the first polarizer 1〇5 attached to the lower surface of the first substrate. The first polarizer milk system is polarized in the first direction and the second polarizer 155 attached to the second substrate 150 is vertically polarized with the first polarizer 1〇4. Therefore, the light from the light source does not simultaneously penetrate the first polarizer 1 () 5 and the second photo polarizer 155 ' unless the polarization of the light is between the first polarizer 105 and the second polarizer 155. Turn 90 degrees. For the sake of clarity, many liquid crystals are not shown. In an actual display, the liquid crystal is rod like molecules having a diameter of about $ angstrom (Angstr〇m, a) and a length of about 20-25 angstroms. Therefore, there are more than 12 million liquid crystal segments 201131251 in a single element, in which the length, width and height of the pixels are 3 〇〇 micrometers (mi_eter, gm), 12 〇 micrometers, and 3 micrometers. Although not shown, many liquid crystal displays (especially active matrix displays) include a protective layer on the bottom of the first electrode 12 turns. This protective layer is used as an insulating layer between the first electrode 12Q and the device and the conductor. The device and the guiding system can be formed on the substrate. This protective layer is typically formed by Silicon Nitrides. In Fig. 1(a), the liquid crystal 130 is vertically aligned. In vertical alignment,

液晶130並不會將從光源的偏振極光轉向。因此,彳^光源 來的光線並不會穿過液晶顯示器1 〇〇,且對所有顏色及所 有間隙晶胞(cell gap)而言,提供一個完全地光學暗態 (optical black state)及非常高的的對比(c〇ntrast rati0)。因 此’多區域垂直配向液晶顯示器相對傳統的低對比之扭轉 式向列型液晶顯示器而言,係在對比上提供一個顯著的改 善。然而,如圖1(b)所示,當在第一電極120與第二電極 145之間加入一個電場(eiectric fieid)時,液晶130即重新 定向到一傾斜位置(tilted position)。在傾斜位置的液晶係將 從第一偏光片105而來的偏振光線之偏振轉向90度,以致 光線可以穿過第二偏光片155。而傾斜的大小,即控制光 線穿過液晶顯示器的多寡(如畫素的亮度),係與電場強度 成正比。一般而言,單一個薄膜電晶體,係用在每一個晝 素上。然而對彩色顯示器而言,各別的薄膜電晶體係用在 每一色分量(color component,典型地為、綠及藍)。 然而’對不同角度的觀看者而言,光線通過液晶顯示 器120並不是相同的。如圖i(c)所示,在中央左邊的觀看 者172會看到亮晝素(bright pixel),因為液晶顯示器130寬 201131251 闊(光線轉向)的一側係面對觀看者172。位在中央的觀看者 174會看到灰晝素(gray pixel),因為液晶顯示器13〇寬闊的 一側係僅部分地面對觀看者174。而位在中央右側的觀看 者176會看到暗晝素(dark pixel),因為液晶顯示器13〇寬 闊的一側幾乎沒有面對觀看者176。 多區域垂直配向液晶顯示器(MVA LCDs)係被發展來 改善單區域垂直配向液晶顯示器(single_d〇main vertical alignment LCD)的視角問題。請參考圖2,係表示一多區域 垂直配向液晶顯示器(MVA LCDs) 200的畫素。多區域垂直 配向液晶顯示器200係包括一第一偏光片205、一第一基 板210、一第一電極220、一第一配向層225、若干液晶235、 237、若干突起物260、一第二配向層240、一第二電極245、 一第二基板250以及一第二偏光片255。液晶235係形成 晝素的第一區域(first domain),而液晶237則形成晝素的第 二區域(second domain)。當在第一電極220與第二電極245 之間施加一電場時,突起物260會導致液晶235相對液晶 237而傾斜一不同的方向。因此,中央偏左的觀看者會看 到左邊區域(液晶235)呈現黑色(black)而右邊區域(液晶 237)呈現白色(white)。在中央的觀看者則會同時看到兩個 區域而呈現灰色。中央偏右的觀看者則會看到左邊區域呈 現白色而右邊區域呈現黑色。然而,因為個別單獨的晝素 很小,因此三個觀看者都認為晝素是灰色的。如上所述, 液晶的傾斜的大小,係由在電極220與245之間的電場大 小所控制。觀看者所感知的灰階係與液晶傾斜大小相關 聯。多區域垂直配向液晶顯示器也可以擴大到使用四個區 201131251 域’以便在一畫素中的液晶方向被區分為四個主區域,以 提供同時在垂直與水平方向上之寬大且對稱的視角。 因此 k供見大且對稱之視角的多區域垂直配向液晶 顯不器’成本卻非常高,因為將突起物增加到上、下基板 的困難,以及將突起物正確地配向到上、下基板的困難。 尤其是在下基板的一突起物必須設置在上基板的二突起物 中央,任何在上、下基板之間的配向,都將會降低生產良 率。其他在基板上使用物理特性的技術,如已用來取代或 結合突起物使用之氧化銦錫間隙(IT〇 slits),係在製造上非 常昂貴。再者,突起物與氧化銦錫間隙無法使傳輸光線, 也因此降低多區域垂直配向液晶顯示器的亮度 (brightness)。 然而,多區域垂直配向液晶顯示器(MVA LCDs)係已發 展出無須在基板上使用實體構形(如突起物與氧化銦錫間 隙)。特別是’這些多區域垂直配向液晶顯示器(MVALCDs) 使用離散電場以產生多區域。由於無須實體構形,因此去 除掉上基板與下基板對準實體構形的困難。因此,使用離 散電場之多區域垂直配向液晶顯示器(MVA LCDs)具有高 良率’且比在基板上使用實體構形之多區域垂直配向液晶 顯示器(MVA LCDs)需較少的製作花費。 請參考圖3(a)及圖3(b),係圖解說明使用於產生一多 區域垂直配向i夜晶顯示器(MVALCDs),而無須採取將實體 構形形成在基板上的基本概念。尤其是圖3顯示出位在一 第—基板305與一第二基板355之間的晝素310、320及 33〇。一第一偏光片302係黏貼到第一基板305,且一第二 201131251 偏光片357係黏貼到第二基板355。晝素310係包括一第 一電極311、液晶312、液晶313及一第二電極315。書素 320係包括一第一電極321、液晶322、液晶323及一&二 電極325。相似地,畫素330係包括一第一電極331、液晶 332、液曰曰333及一第二電極335。雖然圖未示,但許多液 晶顯示器係包括在電極311、321、331上的一保護層。電 極係通常使用如氧化銦錫(ITO)之一透明導電材質所構 成。再者,一第一配向層306係覆蓋在第一基板3〇5上的 電極。相似地,一第二配向層352覆蓋在第二基板355上 的電極。液晶配向層307與352兩者均提供一垂直液晶配 向。就如後續的詳細描述’電極315、325、335係維持在 一共同電壓V_Com。因此,為簡化製造,電極315、325、 335係生成單一結構(如圖3(a)及3(b)所示多區域垂直配 向液晶顯示器(MVA LCDs) 300係使用不同即性操作電極 315、325、335。舉例來說,若晝素310與33〇的極性為正 者’則畫素320的極性為負。相反地,若晝素31 〇與330 的極性為負者’則晝素320的極性為正。一般而言,每一 畫素的極性係在不同頁框(frames)之間作切換,但交錯極性 的圖案係維持在每一頁框。在圖3(a)中,晝素310、320與 330係在「OFF」狀態,亦即關閉在第一與第二電極之間的 電場。在「OFF」狀態下,某些殘於電場可能存在第一與 第二電極之間。然而,此殘餘電場通常太小而無法使液晶 傾斜。 在圖3(b)中’晝素310、320與330係在「ON」狀態。 圖3(b)係使用「+」與「一」代表電極的電壓極性。因此, 201131251 電極311與331具有正電壓極性,而電極321具有負電壓 極性。基板355及電極315、325與335係保持在共同電壓 V Com ° φ |5τ., 電壓極性^ 係依據電壓v-com所界定’其中’一正 在你认兩勺電壓係高於電壓V-C〇m,一負電壓極性的電壓 係低於電靨 一 用電力線—C〇m。在電極321與325之間的電場327(使 十,無須$示係造成液晶322與液晶323傾斜。一般而 垂直液晶次起物或其他構形,液晶的傾斜方向並未因為一 素邊緣層307與352之液晶而被岐。然、而’在晝 在電極32丨政電場可以影響液晶的傾斜方向。舉例來說’ 素320的與電極325之間的電場327係垂直地圍繞在晝 ^右部分中〜,但傾斜到畫素左部分的左邊’且傾斜到晝 散電場^的右邊。因此’在電極321與電極325之間的離 晶322 ^戍液晶323傾斜到右邊而形成一區域,且造成液 右〜蚪到左邊而形成—第二區域。所以,畫素32〇係 ' ^相f I對稱視角的—多區域晝素。 係具’在電極3U與電極315之間的電場(圖未示) 310、右側破電場’係造成液晶313重新定向並傾斜到畫素 左邊。相^右邊’且造成液晶312傾斜到晝素310左側的 仫直古細在電極331與電極335之間的電場(圖未示) 係具有離散 330右侧 係化成液晶333重新定向並傾斜到畫素 左邊。的右邊’且造成液晶332傾斜到晝素320左側的 因此錯極性會放大每—晝素的離散場效_。 -多區域希旦素列(或晝素欄)之間重覆交錯極性圖;, 一直配向液晶顯示器(MVA LCDs)即可建到^ 1 201131251 實體構形。再者,一交錯極性棋盤圖案可被使用到使每一 晝素產生四區域。 然而,一般而言,離散場效應係相對地小且微弱。因 此,當晝素變大時,晝素邊緣的離散場並無法到達在一晝 素内的所有液晶。所以,在較大畫素中,不太鄰近晝素邊 緣之液晶的傾斜方向係呈現隨機變化,且不產生一多區域 晝素。一般而言,當畫素變得大於40-60μιη時,晝素的離 散場效應不會影響到控制液晶傾斜。因此,對大晝素液晶 顯示器而言,晝素分割方法係用於達到多區域晝素。特別 籲 是,對彩色液晶顯示器而言,畫素係分割成若干色分量。 每一色分量係由如薄膜電晶體(TFT)的一分離的切換元件 所控制。一般來說,色分量係為紅、綠及藍。一晝素的色 分量更進一步分割成若干色點。 每一晝素的極性係在影像的每一連續頁框之間切換, 以避免影響品質降低,其係可能導源於在每一頁框中液晶 在相同方向扭轉。然而,若所有切換元件係為相同極性的 話,則點極性圖案切換可能造成其他如閃爍(flicker)的影像 · 品質問題。為了降低閃爍,切換元件(如電晶體)被配置在 一切換元件驅動架構中,係包括正與負極性。再者,為降 低殘影(crosstalk),切換元件的正與負極性,係被配置在一 固定圖案中,其係提供一更規律的功率分布。三個主要切 換元件驅動架構係為切換元件點反轉驅動架構、切換元件 列反轉驅動架構及切換元件欄反轉驅動架構。在切換元件 點反轉驅動架構中,切換元件形成交錯極性的一期盤圖 案。在切換元件列反轉驅動架構中,在每一列上的切換元 10 201131251 件具有相同極性,然而,在一列中的切換元件與鄰近列令 之切換元件極性相比較,係具有相反極性。在切換元件攔 反轉驅動架構中,每一欄上的切換元件具有相同極性,然 而,在/欄中的切換元件與鄰近攔中的切換元件極性相比 較,係異有相反極性。當切換元件點反轉驅動架構提供最 規律的功率分布時’切換元件點反轉驅動架構的複雜度與 額外費用係超過切換元件列反轉驅動架構或切換元件搁反 .轉驅動架構’而不具成本效益。因此,大部分在低成本成 • 低電壓應用的液晶顯示器,係使用切換元件攔反轉驅動架 構來製造’而切換元件點反轉驅動架構則通常留作高效能 應用。 晝素可包括不同主要分量以配置來達到高品質底成本 的顯示單元。舉例來說,晝素可包括色分量、色點、離散 場放大區域(fringe field amplifying regions,FFAR)、切換 元件、裝置元件區域及關聯點(associated dots)。使用這些 不同源件的顯示係在美國專利申請案「Cite various KY0 • Patent ΚΥΟ-0(Π、KYO-003、KYO-005、KYO-006」,其係 ,在此作結合以參照。 裝置元件區域係不但包括由切換元件及/或儲存電容 所佔據的區域,而且包括用於製造切換元件及/或儲存電容 的區域。為了清楚說明’一不同的裝置元件區域係定義為 用於每一切換元件。 關聯點與離散場放大區域係為被偏極化區域(polarized area),而非為色分量的一部分。關連點係覆蓋裝置元件區 域。一般來說,關聯點係藉由在切換元件及/或儲存電容上 201131251 沉積一絕緣層所製造。接著藉由沉積一電性導電層以形成 關聯點。關聯點係電性連接到特定的切換元件及/或其他已 偏極元件(如色點)。儲存電容係電性連接到特定切換元件 及/或色點電極以補償並彌補液晶胞(liquid cryStai cells)之 開啟(switching-on)及關閉(switching-off)流程期間在液晶 胞上的電容值變化。因此,儲存電容係用以降低液晶胞之 開啟及關閉流程期間的殘影效應(crosstalk effects)。當對關 聯點而言需要形成圖案化電極時,係使用一圖案化遮罩 (patterned mask)。一顏色層(color layer)係增加來對關聯點 參 形成一光屏蔽(light shield)。一般來說,顏色層係為黑色, 然而某些顯示器係使用不同顏色來達到一所欲的顏色圖案 或陰影(shading)。一般而言,顏色層係藉由在相對應的氧 化銦錫玻璃基板上,沉積一彩色滤光層(color filter layer)。 尤其是’一已圖案化的彩色濾光層係沉積在第二基板15〇 與第二電極140之間,且其圖案係對應色點與關聯點的顏 色。然而’某些顯示器也可將一已圖案化的彩色濾光層置 放於在基板上之色點、關聯點或裝置元件區域之電極層的 鲁 底下。 、在某些顯示器中,關聯點係為獨立於切換元件的區 域_再者’顯示器具有額外的關聯點,係並未直接地與切 換,件相關。一般而言,關聯點係包括一主動電極層’例 如氧化鋼錫或其他導電層,且連接到一鄰近的色點或是以 某種手段供電。對不透明的關聯點而言,一黑色矩陣層可 1W加在導電層的底部,以形成不透光區。主動矩陣層可裝 配在氧化銦錫玻璃基板側,以將製造流程(fabrication 12 201131251 process)簡單化。此附加的關聯點改善顯示 用,以改善開口率及在色點内形成多個液晶 示器也,關聯點來改善色彩表現。舉例來說,The liquid crystal 130 does not divert the polarized aurora from the light source. Therefore, the light from the source does not pass through the liquid crystal display 1 and provides a completely optical black state and very high for all colors and all cell gaps. Contrast (c〇ntrast rati0). Therefore, the multi-zone vertical alignment liquid crystal display provides a significant improvement in comparison with the conventional low contrast twisted nematic liquid crystal display. However, as shown in Fig. 1(b), when an electric field (eiectric fieid) is applied between the first electrode 120 and the second electrode 145, the liquid crystal 130 is redirected to a tilted position. The liquid crystal system at the inclined position turns the polarization of the polarized light from the first polarizer 105 by 90 degrees so that the light can pass through the second polarizer 155. The size of the tilt, that is, the amount of light that passes through the liquid crystal display (such as the brightness of the pixels), is proportional to the electric field strength. In general, a single thin film transistor is used on each of the elements. For color displays, however, individual thin film electro-crystal systems are used for each color component (typically, green and blue). However, for viewers of different angles, the light passing through the liquid crystal display 120 is not the same. As shown in Figure i(c), the viewer 172 on the left side of the center will see bright pixels because the side of the LCD display 130 wide 201131251 wide (light turn) faces the viewer 172. The centrally located viewer 174 will see gray pixels because the wide side of the liquid crystal display 13 is only partially facing the viewer 174. The viewer 176 located on the right side of the center will see dark pixels because the wide side of the liquid crystal display 13 has almost no viewer 176. Multi-region vertical alignment liquid crystal displays (MVA LCDs) have been developed to improve the viewing angle of single-d vertical alignment LCDs. Referring to Figure 2, there is shown a pixel of a multi-region vertical alignment liquid crystal display (MVA LCDs) 200. The multi-zone vertical alignment liquid crystal display 200 includes a first polarizer 205, a first substrate 210, a first electrode 220, a first alignment layer 225, a plurality of liquid crystals 235, 237, a plurality of protrusions 260, and a second alignment. The layer 240, a second electrode 245, a second substrate 250, and a second polarizer 255. The liquid crystal 235 forms a first domain of halogen, and the liquid crystal 237 forms a second domain of a halogen. When an electric field is applied between the first electrode 220 and the second electrode 245, the protrusion 260 causes the liquid crystal 235 to be tilted in a different direction with respect to the liquid crystal 237. Therefore, the center-left viewer will see that the left area (liquid crystal 235) appears black and the right area (liquid crystal 237) appears white (white). A viewer in the center will see two areas at the same time and be grayed out. The center-right viewer will see the left area appear white and the right area appear black. However, because individual individual alizarins are small, all three viewers consider the alizarin to be gray. As described above, the magnitude of the tilt of the liquid crystal is controlled by the electric field between the electrodes 220 and 245. The gray level perceived by the viewer is related to the tilt of the liquid crystal. The multi-zone vertical alignment liquid crystal display can also be expanded to use four zones 201131251 domain' so that the liquid crystal direction in one pixel is divided into four main regions to provide a wide and symmetrical viewing angle in both the vertical and horizontal directions. Therefore, the multi-region vertical alignment liquid crystal display for seeing a large and symmetrical viewing angle is very costly because of the difficulty of adding protrusions to the upper and lower substrates, and the correct alignment of the protrusions to the upper and lower substrates. difficult. In particular, a protrusion on the lower substrate must be placed in the center of the two protrusions of the upper substrate, and any alignment between the upper and lower substrates will reduce the production yield. Other techniques that use physical properties on the substrate, such as the indium tin oxide gaps (IT〇 slits) that have been used to replace or bond the protrusions, are very expensive to manufacture. Furthermore, the gap between the protrusions and the indium tin oxide does not allow light to be transmitted, thereby also reducing the brightness of the multi-region vertical alignment liquid crystal display. However, multi-zone vertical alignment liquid crystal displays (MVA LCDs) have been developed that do not require the use of solid features on the substrate (e.g., protrusions and indium tin oxide gaps). In particular, these multi-region vertical alignment liquid crystal displays (MVALCDs) use discrete electric fields to create multiple regions. Since there is no need for a physical configuration, the difficulty of aligning the upper and lower substrates with the physical configuration is eliminated. Therefore, multi-region vertical alignment liquid crystal displays (MVA LCDs) using a discrete electric field have a high yield' and require less fabrication cost than multi-region vertical alignment liquid crystal displays (MVA LCDs) using a solid configuration on a substrate. Referring to Figures 3(a) and 3(b), the illustration is used to create a multi-region vertical alignment i-crystal display (MVALCDs) without the need to adopt a basic concept of forming a solid configuration on a substrate. In particular, Figure 3 shows the elements 310, 320 and 33〇 between a first substrate 305 and a second substrate 355. A first polarizer 302 is adhered to the first substrate 305, and a second 201131251 polarizer 357 is adhered to the second substrate 355. The halogen 310 includes a first electrode 311, a liquid crystal 312, a liquid crystal 313, and a second electrode 315. The book element 320 includes a first electrode 321, a liquid crystal 322, a liquid crystal 323, and a & two electrode 325. Similarly, the pixel 330 includes a first electrode 331, a liquid crystal 332, a liquid helium 333, and a second electrode 335. Although not shown, many liquid crystal displays include a protective layer on the electrodes 311, 321, 331. The electrode system is usually made of a transparent conductive material such as indium tin oxide (ITO). Further, a first alignment layer 306 covers the electrodes on the first substrate 3〇5. Similarly, a second alignment layer 352 covers the electrodes on the second substrate 355. Both of the liquid crystal alignment layers 307 and 352 provide a vertical liquid crystal alignment. As will be described in detail later, the electrodes 315, 325, 335 are maintained at a common voltage V_Com. Therefore, in order to simplify the manufacture, the electrodes 315, 325, and 335 generate a single structure (the multi-region vertical alignment liquid crystal displays (MVA LCDs) 300 shown in FIGS. 3(a) and 3(b) use different operational electrodes 315, 325, 335. For example, if the polarities of the pixels 310 and 33 are positive, then the polarity of the pixel 320 is negative. Conversely, if the polarities of the pixels 31 and 330 are negative, then the pixel 320 The polarity is positive. Generally speaking, the polarity of each pixel is switched between different frames, but the pattern of staggered polarity is maintained in each page frame. In Figure 3(a), The elements 310, 320 and 330 are in the "OFF" state, that is, the electric field between the first and second electrodes is turned off. In the "OFF" state, some residual electric field may exist between the first and second electrodes. However, this residual electric field is usually too small to tilt the liquid crystal. In Fig. 3(b), 'the alizarins 310, 320 and 330 are in the "ON" state. Fig. 3(b) uses "+" and "one". "Represents the polarity of the voltage of the electrode. Therefore, 201131251 electrodes 311 and 331 have a positive voltage polarity, and electrode 321 has a negative voltage polarity. 55 and electrodes 315, 325 and 335 are maintained at a common voltage V Com ° φ | 5τ., the voltage polarity ^ is defined by the voltage v-com 'of which one is recognizing that two spoons of voltage are higher than the voltage VC〇m, The voltage of a negative voltage polarity is lower than the power line of the electric power source - C 〇 m. The electric field 327 between the electrodes 321 and 325 (so that ten, no need to show the liquid crystal 322 and the liquid crystal 323 tilted. Generally, the vertical liquid crystal times In the case of the object or other configuration, the tilt direction of the liquid crystal is not caused by the liquid crystal of the edge layers 307 and 352. However, the electric field in the electrode 32 can affect the tilt direction of the liquid crystal. For example, The electric field 327 between the element 320 and the electrode 325 is perpendicularly surrounded in the right portion of the 〜^, but is tilted to the left of the left part of the pixel and tilts to the right of the astigmatic electric field ^. Thus 'on the electrode 321 and the electrode Between 325, the crystallization 322 ^ 戍 liquid crystal 323 is tilted to the right to form a region, and the liquid right ~ 蚪 to the left to form a second region. Therefore, the pixel 32 ' ' ^ phase f I symmetrical viewing angle - Multi-regional halogen. The tie 'between electrode 3U and electrode 315 The field (not shown) 310, the right broken electric field 'causes the liquid crystal 313 to be redirected and tilted to the left of the pixel. The right side 'and the liquid crystal 312 is tilted to the left side of the pixel 310 to the left side of the electrode 331 and the electrode 335 The electric field (not shown) has a discrete 330 right-handed liquid crystal 333 that is redirected and tilted to the left of the pixel's left side and causes the liquid crystal 332 to tilt to the left of the pixel 320, so the wrong polarity will amplify each - The discrete field effect of 素. - Repeatedly interleaved polar maps between multi-regional Hidden columns (or elementary columns); always aligned to liquid crystal displays (MVA LCDs) to be built into ^ 1 201131251 solid configuration. Furthermore, a staggered polar checkerboard pattern can be used to create four regions for each element. However, in general, the discrete field effect is relatively small and weak. Therefore, when the element becomes larger, the discrete field of the edge of the element cannot reach all the liquid crystals in one element. Therefore, in a larger pixel, the tilt direction of the liquid crystal that is not adjacent to the edge of the pixel is randomly changed, and a multi-regional pixel is not generated. In general, when the pixel becomes larger than 40-60 μm, the dispersive field effect of the halogen does not affect the control of the liquid crystal tilt. Therefore, for large-sized liquid crystal displays, the pixel fractionation method is used to achieve multi-regional elements. In particular, for a color liquid crystal display, the pixels are divided into a plurality of color components. Each color component is controlled by a separate switching element such as a thin film transistor (TFT). In general, the color components are red, green, and blue. The color component of a single element is further divided into several color points. The polarity of each element is switched between each successive frame of the image to avoid affecting the quality degradation, which may be due to the fact that the liquid crystal is twisted in the same direction in each page frame. However, if all of the switching elements are of the same polarity, the switching of the dot pattern may cause other imagery problems such as flicker. In order to reduce flicker, switching elements (e.g., transistors) are arranged in a switching element drive architecture, including positive and negative polarity. Furthermore, to reduce the crosstalk, the positive and negative polarities of the switching elements are arranged in a fixed pattern which provides a more regular power distribution. The three main switching component drive architectures are the switching component dot inversion drive architecture, the switching component column inversion drive architecture, and the switching component bar inversion drive architecture. In the switching element point inversion drive architecture, the switching elements form a phased pattern of interleaved polarity. In the switching element column inversion drive architecture, the switching elements 10 201131251 on each column have the same polarity, however, the switching elements in one column have opposite polarities compared to the switching element polarities of adjacent columns. In the switching element blocking inversion driving architecture, the switching elements on each column have the same polarity, however, the switching elements in the / column are compared with the polarity of the switching elements in the adjacent blocks, and the opposite polarity is different. When the switching element dot inversion drive architecture provides the most regular power distribution, the complexity and extra cost of the switching component point inversion drive architecture exceeds the switching component column inversion drive architecture or the switching component reversal. The drive architecture does not have Cost-effectiveness. As a result, most liquid crystal displays that are low-cost applications for low-voltage applications use switching elements to reverse drive architectures, while switching element dot-reverse drive architectures are often reserved for high-performance applications. A halogen can include display units that are differently configured to achieve a high quality bottom cost. For example, the pixels may include color components, color points, fringe field amplifying regions (FFARs), switching elements, device component regions, and associated dots. The display using these different source members is in the U.S. Patent Application "Cite various KY0 • Patent ΚΥΟ-0 (Π, KYO-003, KYO-005, KYO-006), the disclosure of which is incorporated herein by reference. The area includes not only the area occupied by the switching elements and/or storage capacitors, but also the area used to fabricate the switching elements and/or storage capacitors. For clarity, 'a different device element area is defined for each switching. The associated point and the discrete field amplification area are polarized areas rather than part of the color component. The connected points cover the device component area. Generally, the associated points are through the switching elements and / or storage capacitors are fabricated on 201131251 by depositing an insulating layer. Then, an electrical conductive layer is deposited to form an associated point. The associated points are electrically connected to specific switching elements and/or other polarized elements (such as color points). The storage capacitor is electrically connected to a specific switching element and/or a color point electrode to compensate for and compensate for the switching-on and closing of the liquid cryStai cells. The ching-off process changes the capacitance value on the liquid crystal cell. Therefore, the storage capacitor is used to reduce the crosstalk effects during the opening and closing process of the liquid crystal cell. In the case of an electrode, a patterned mask is used. A color layer is added to form a light shield for the associated point. Generally, the color layer is black, however Some displays use different colors to achieve a desired color pattern or shading. In general, the color layer is deposited by a color filter layer on a corresponding indium tin oxide glass substrate. In particular, a patterned color filter layer is deposited between the second substrate 15 and the second electrode 140, and the pattern corresponds to the color point and the color of the associated point. However, some displays may also be used. A patterned color filter layer is placed under the color of the color point, the associated point, or the electrode layer of the device component region on the substrate. In some displays, the associated point is independent of The area of the switching element _further' display has additional associated points that are not directly related to the switching. In general, the associated point includes an active electrode layer 'such as oxidized steel tin or other conductive layer, and connected To a neighboring color point or by some means. For an opaque point of association, a black matrix layer can be applied 1 W to the bottom of the conductive layer to form an opaque area. The active matrix layer can be assembled in indium oxide. The tin glass substrate side is used to simplify the manufacturing process (fabrication 12 201131251 process). This additional associated point improves display to improve aperture ratio and form multiple LCDs within the color point, as well as correlate points to improve color performance. for example,

Si::置可提供鄰近點之顏色,從有用的色彩圖案以進 '離散場放大區域比關聯點更具多功能。特別是,離 場放大區域可具有非矩形形狀,雖然一般而言,離散場二 大區域整體形狀可以被分割成一套矩形形狀。再者,離散 籲場放大區域係沿-色點之一個以上的側邊延伸。再者,二 某些顯不器中,離散場放大區域可用來替代關聯點。尤其 是在這些顯示器中,離散場放大區域不但覆蓋裝置元件區 域,而且沿鄰近裝置元件區域之色點的一個以上的側 伸〇 一般而言,色點、裝置元件區域及關聯點係裝配在一 格子圖案中,且係由相互緊鄰的一水平點間距HDS及一垂 直點間距VDS所分隔。當離散場放大區域用在取代關聯點 • 時,部分的離散場放大區域也適合在格子圖案中。在某些 顯示器中’可使用多個垂直點間距及多個水平點間距。每 色點、關聯點及裝置元件區域係在一第一維度(如垂直) 具-有二緊鄰的鄰近物(亦即色點、關聯點或裝置元件區 域)’及在一第二維度(如水平)具有二緊鄰的鄰近物。再 者,二緊鄰的鄰近物可以配向或是轉移。每一色點具有一 色點高度CDH及一色點寬度CDW。相似地,每一關聯點 具有一關聯點高度ADH及一關聯點寬度ADW。再者,每 —裝置元件區域具有一裝置元件區域高度DACH及一裝置 13 201131251 元件區域寬度DCAW。在某些顯示器中,色 裝置元件區域係為相同尺寸。然而在某些顯示器中,及 關聯點及I置元件區域可為不同尺寸或形狀。舉例來說, 在某些顯不器中,關聯點比色點具有比較小的高度。 β當一液晶顯示器面板受限於在面板基板上的外部觸碰 壓力時,就會產生觸碰雲紋(touch mura)。對垂直配向液曰 顯示器(包括單一區域及多區域)而言,起因於液晶的物$ 干擾之觸碰雲紋效應係為主要的問題。觸碰雲紋效應所指 的是造成不規則之螢幕均勻性的不規則圖案或區域。液曰^ 的物理干擾係可能由搖動、震動及在顯示器上的按壓所造 成。特別是,垂直配向液晶顯示器對在顯示器上之按壓所 造成的觸碰雲紋效應是非常敏感的。尤其是,在一垂直配 向液晶顯示器上的按壓可使液晶變平,且在顯示芎上造成 一干擾效應。而不幸地,包含觸碰螢幕功能的裝置(亦 装置的使用者施加壓力在顯示器的表面上,以當作提供使 用這輸入到裝置的手段)漸漸地變得受歡迎,其係阻礙了'垂 直配向液晶顯示器的接收度。因此,在垂直配向液晶顯示 器中,需要有一方法或系統使觸碰雲彩效應最小化。 【發明内容】 因此,本發明提供一垂直配向液晶顯示器,用以降低 觸碰雲紋效應。尤其是,本發明的實施例中,係使用具有 色點之新穎的晝素設計,色點具有埋置極性區域(embedded polarity regions)以放大離散電場,離散電場係更快地將液 晶恢復到其正確位置。舉例來說’依據本發明的一實施例, 201131251 旦素係被細分成具有一或多個色點(cDs)的色分量。再者, f本毛月其他實施例中,埋置極性區域可被使用來產生戍 ^匕離散場效應’此離散場效應可以導致在液晶的多區 域,以強化顯示器的視角。 在本發明的-實施例令,一顯示器包括具有一第一切 換70件的一第一晝素;耦接到該第-晝素之該第-切換元 一電極;以及一第二晝素。該第二晝素包括-第 -色勿量’該第一色分量包括一第一色點及一第二色點。 晝素:亦包括耦接到該第二畫素之該第一色分量的該 ▲點與该第二色點的—第—切換元件。該第一電極係 位在》亥第—晝素之該第—色分量的該第__色點與該第二色 =間。該第二晝素之該第—色分量的該第—色點係包括 一第一埋置極性區域,且該第二晝素之該第—色分量的該 第一色點係包括—第二埋置極性區域。—般而言,當該第 -晝素之該第-切換元件配置成具有—第—極性,該第二 畫素之該第i換元件係、配置成具有-第二極I舉例來 說第t極可以疋-色點、一關聯點或一離散場放大區 域。 . 了解。 藉由下列的描述與圖式,將會對本發明更加 【實施方式】 如上所述,傳統的垂直配向液晶顯示器對造成液晶物 理干擾的觸碰雲紋效應是非常㈣的。“,依據本發明 的原則的垂直配向液晶顯示器’係使用具有埋置極性區域 (脈)的色點,而埋置極性區域係強化額外的橫向離散電 15 201131251 晶恢復到其正確方向。因此, 示器可快速地解決由液晶物 場,以在一物理干擾之後使液 依據本發明的垂直配向液晶顯 理干擾所造成的碰觸雲紋效應 圖4(a)及圖4(b)係表示依據本發明—實施例之一晝素 設計指(如後述的編號4赂及佩)不_點極^。、 在實際操作中,一書辛係為I一百始# 在馳之間的—第一點極性 圖案與-第二點極性圖案之間作切換。為了清楚說明,點 極性圖案係涉及如正的點極性圖案,其中第一色分量的第 -色點具有-正極性。相反地,點極性圖案係涉及如負的 點極性圖案,*中第—色分量的第—色點具有-負極性。 特別地’在圖4⑷中’畫素設計41G具有—正的點極性圖 案(因此標示為410 + )’且晝素設計41〇具有一負的點極性 圖案(因此標示為410-)。再者’在不同晝素設計中每一已 偏極元件的極性係以「+」表示正極性,或以「― 負極性。 晝素設計410具有三個色分量cc—卜cc—2及cc 3。 每-色分量包括-色點。為了清楚說明,色點係表^成 QD-X-Y其中X為色分1 (在圖4(a)-4(b)中從1到3),Y 為點編號(在圖4(a)-4(b)中,γ都為。晝素設計41〇也包 括相對應一色分量的一切換元件(表示為SE—丨、兕_2及 SE_3)及相對應每一色分量的一裝置元件區域(表示為 DCAJ、DCA_2及DCA_3)。切換元件兕」、SE」及仏3 係排列成一列(row)。裝置元件區域dCA」、dca—2及 DCA_3係分別地圍繞切換元件se 1、SE 2及SE 3。 晝素設計410的第一色分量ccj具有一色點 201131251 CD—1 —1。色點CD一1一1係與裝置元件區域DCA—丨水平地 配向,並與裝置元件區域DCA一1垂直地相間隔一垂直點間 距VDS1。切換元件sej係耦搂到色點Μ」—丨的電極以 控制色點CD—1—1的極性。色點cdjj包括一埋置極性區 域EPR—1 — 1-1。為了清楚說明,埋置極性區域係以 EPR-X一γ_Ζ表示,其中χ為色分量,γ為點編號,z係在 一色點内所列舉的埋置極性區域。埋置極性區域可具有不 同形狀。舉例來說,在畫素設計41〇中,埋置極性區域具 •有正方形形狀。然而其他實施例可具有圓形形狀、多邊形 形狀(如四邊形及六邊型),甚至或其他不規則形狀。 一般而言,極性所關聯的極性方向通常表示為正極或 負極。更精確地,極性也包括一極性大小/極性量。埋置極 f·生區域可具有與色點相同的極性(亦即正極或負極)方向, 但卻具有不同的極性大小/極性量。再者,埋置極性區域可 /、色點具有不同極性(亦即極性方向)(例如色點極性為正 • 極’相對應的埋置極性區域為負極)。另外,埋置極性區域 鲁可具有中性極性。在本發明的不同實施例係使用不同新賴 技藝或新顆技藝的組合以產生在色點内的埋置極性區域。 在圖4(a)與4(b)的實施例中,色點與在色點内的埋置極性 Q域具有相反的極性9 晝素設計410的第二色分量cc—2具有一色點 CD一2-1。色點CD—2一〗係與裝置元件區域2水平地 配向,並與裝置元件區域DCA_2垂直地相間隔一—垂直點間 距VDS卜色點CD—2—丨係與色點〗垂直地配向,且 與色點CD_1 —1水平地相間隔一水平點間5gHDsi。切換元 17 201131251 件SE_2係耦接到色點CD—2-丨的電極以控制色點cD_2j 的極性。 晝素設計410的第三色分量cc_3具有一色點 CD_3_1。色點CD—係與裝置元件區域dca—3水平地 配向,並與裝置元件區域DCA—3垂直地相間隔一垂直點間 距VDS1。色點CD_3—丨係與色點CD—2—丨垂直地配向,且 與色點CD—2_1水平地相間隔一水平點間距HDSi。切換元 件SE」係耦接到色點CD-3一1的電極以控制色點CD_3_1 的極性。色點CD_3_1包括一埋置極性區域EpR—j。 「色點/埋置極性區域及切換元件的表示係使用符號 一 +」及—」。因此在圖4(a)中,係以畫素設計410+表 不之正的點極性圖案,切換元件犯―丨與se—3、色點CD」」 與CD一3一1及埋置極性區域EpRjjj具有正極性。然而, 切換兀件SE_2、色點CD一2—!及埋置極性區域脈! η 與EPR—3一1_1具有負極性。 ,圖5(a)及5(b)係表示一色點5〇〇的一部分,具有一正 方形形狀的電極510’四邊形形狀的埋置極性區域512、 = '」16及518。圖5(b)係沿圖5⑷之A1_A1,剖線的色點 、剖視圖。如目5(b)所示,色點的埋置極性區域 '、,變在埋置極性區域範圍中之電極導電性所產生的。 ,別是相對應埋置極性區域516與518之改變導電性區 知、517與519,係形成電極51〇。在本發明的一實施例十, ,變導電性區域係為大量地參雜區域以降低改變導電性區 2導電性。在本發明的其他實施例中,埋置極性區域係 ° ^刻導體510的部分及以少量導電材質填滿區域,導 201131251 電材i係如V電性咼分子(如聚乙快p〇lyaCetylene、聚塞吩 polythiophene、聚。必洛 p〇lypyrr〇ie(ppy)、聚笨胺 polyaniline(PANI)及聚笨乙烯p〇iyStyrene)、石夕化鍺及铭石申 化鎵,或一非導體材質,如二氧化矽。由於在改變導電性 區域中的不同導電性’在埋置極性區域中的電場係不同於 圍繞電極510剩餘部份的電場。埋置極性區域與電極51〇 剩餘部分的電場之間的相互影響,係產生橫向力量,在一 物理干擾後可以更快速地重新定向液晶到其正確位置。在 籲 本發明的實施例中’使用非導電材質當作埋置極性區域 者,其埋置極性區域係具有一中性極性。 圖6(a)-6(c)係表示部分的色點600,具有一正方形形狀 的電極610 ’伴隨有具一圓形基底形狀的一埋置極性區域 612。圖6(b)係為圖6(a)之色點600沿Α1-ΑΓ剖線的剖視 圖。圖6(c)係為圖6(a)之色點700(應為600)沿Β1-ΒΓ剖線 的剖視圖。如圖6(b)所示,埋置極性區域612係由一電場 減少層(field reduction layer)614所產生,其係降低在埋置 • 極性區域612中部分導體610(應為電極)的電場。因此,在 埋置極性區域612中的極性大小/極性量,係不同於色點600 的剩餘部份。取決於電場減少層614的獨特的特性,在埋 置極性區域612中的極性大小/極性量可選擇性地降低。關 於完全減少,埋置極性區域612的極性係可設定為中性 (neutral)。一介電材質、保護層或黑色矩陣材質,可是用來 當作在電場減少層614中的減少材料。如圖6(a)、6(b)及 6(c)所示,電場減少層614具有一三維圓柱形形狀。 然而,在本發明的其他實施例中,電場減少層614可 201131251 具有以變化基底形狀與側邊之組合而成的一不同的三維形 狀。舉例來說,圖7(a)-7(c)係為一色點700的部分,具有 一正方形形狀的電極710,伴隨有依據本發明一實施例之 一正方形基底形狀的一埋置極性區域712。圖7(b)係為圖 7(a)之色點700沿Α1-ΑΓ剖線的剖視圖。圖7(c)係為圖7(a) 之色點700沿Β1-ΒΓ剖線的剖視圖。如圖7(b)及7(c)所示, 電場減少層714具有傾斜側,係形成一三維角錐形形狀。 圖8(a)-8(c)係為一色點800的部分,具有一正方形形 狀的電極810,伴隨有依據本發明一實施例之一圓形基底 · 形狀的一埋置極性區域812。圖8(b)係為圖8(a)之色點800 沿Α1-ΑΓ剖線的剖視圖。圖8(c)係為圖8(a)之色點800沿 Β1-ΒΓ剖線的剖視圖。如圖8(b)及8(c)所示,電場減少層 814具有傾斜側,係形成一三維圓錐體形狀。 圖9(a)-9(c)係為一色點900的部分,具有一正方形形 狀的電極910,伴隨有依據本發明一實施例之一圓形基底 形狀的一埋置極性區域912。圖9(b)係為圖9(a)之色點900 沿Α1-ΑΓ剖線的剖視圖。圖9(c)係為圖9(a)之色點900沿 φ Β1-ΒΓ剖線的剖視圖。如圖9(b)及9(c)所示,電場減少層 914具有弧形的傾斜側,係形成一三維圓凹形狀,可為一 扁球體或其他橢球。 圖10(a)-10(c)係為一色點1000的部分,具有一正方形 形狀的電極1010,伴隨有依據本發明一實施例之一圓形基 底形狀的一埋置極性區域1012。圖10 (b)係為圖10 (a)之色 點1000沿Α1-ΑΓ剖線的剖視圖。圖10 (c)係為圖10 (a)之 色點1000沿Β1-ΒΓ剖線的剖視圖。如圖10 (b)沿Α1-ΑΓ 20 201131251 減少層1014具有一三角形形狀、然而,如 -)/σ Β1·Β1’剖線所示,電場減少層1014且有一矩彤 形狀。因此,電場減少層難具有—三維三角立方體形狀二 …圖U⑻-11(c)係為一色點11〇〇的部分,具有一正方來 亟iug ’伴隨有依據本發明—實施例之一圓形基 底形狀的-埋置極性區域1112。圖li(b)係為圖u⑷之色 點1100沿Α1-Α1,剖線的剖視圖。圖u⑻係為圖u⑻之色Si:: sets the color of the adjacent points, from the useful color pattern to the 'discrete field magnification area is more versatile than the associated point. In particular, the field-extended region may have a non-rectangular shape, although in general, the overall shape of the two regions of the discrete field may be divided into a set of rectangular shapes. Furthermore, the discrete field magnifying region extends along one or more sides of the - color point. Furthermore, in some of the displays, the discrete field amplification area can be used to replace the associated points. In particular, in these displays, the discrete field amplification region covers not only the device component region but also more than one side of the color point adjacent to the device component region. In general, the color point, device component region and associated point are assembled in a In the plaid pattern, it is separated by a horizontal dot pitch HDS and a vertical dot pitch VDS which are adjacent to each other. When the discrete field amplification region is used to replace the associated point, a portion of the discrete field amplification region is also suitable for the lattice pattern. In some displays, multiple vertical dot pitches and multiple horizontal dot pitches can be used. Each color point, associated point, and device component area is in a first dimension (eg, vertical) with two adjacent neighbors (ie, color points, associated points, or device component regions) and a second dimension (eg, Horizontal) has two adjacent neighbors. Furthermore, the two adjacent neighbors can be aligned or transferred. Each color point has a color point height CDH and a color point width CDW. Similarly, each associated point has an associated point height ADH and an associated point width ADW. Furthermore, each device component region has a device component region height DACH and a device 13 201131251 component region width DCAW. In some displays, the color device component areas are the same size. However, in some displays, the associated points and I-component regions may be of different sizes or shapes. For example, in some displays, the associated points have a smaller height than the color points. When a liquid crystal display panel is limited by an external touch pressure on the panel substrate, a touch mura is generated. For vertical alignment liquid helium displays (including single and multi-zone), the touch of moiré caused by the interference of liquid crystals is a major problem. The touch moiré effect refers to an irregular pattern or area that causes irregular screen uniformity. The physical interference of the liquid 曰 ^ may be caused by shaking, vibration, and pressing on the display. In particular, vertical alignment liquid crystal displays are very sensitive to the touch moiré effect caused by the pressing on the display. In particular, pressing on a vertical alignment liquid crystal display flattens the liquid crystal and causes an interference effect on the display pupil. Unfortunately, devices that include a touch screen function (also the user of the device exerts pressure on the surface of the display as a means of providing access to the device) are becoming increasingly popular, which hinders 'vertical The degree of acceptance of the alignment LCD. Therefore, in a vertical alignment liquid crystal display, a method or system is required to minimize the touch cloud effect. SUMMARY OF THE INVENTION Accordingly, the present invention provides a vertical alignment liquid crystal display for reducing the touch moiré effect. In particular, in the embodiments of the present invention, a novel halogen design having a color point is used, the color point has embedded polarity regions to amplify the discrete electric field, and the discrete electric field restores the liquid crystal to it more quickly. The correct location. For example, in accordance with an embodiment of the present invention, 201131251 is subdivided into color components having one or more color points (cDs). Furthermore, in other embodiments of the present invention, a buried polar region can be used to create a 场^匕discrete field effect. This discrete field effect can result in multiple regions of the liquid crystal to enhance the viewing angle of the display. In an embodiment of the invention, a display includes a first pixel having a first 70-switch; a first-switching element coupled to the first-element; and a second pixel. The second element includes a -th color and a quantity. The first color component includes a first color point and a second color point. The halogen element also includes a ▲ point coupled to the first color component of the second pixel and a first-switching element of the second color point. The first electrode is located between the first __ color point of the first color component of the hai-di-element and the second color. The first color point of the first color component of the second pixel includes a first buried polarity region, and the first color point of the second color component of the second pixel includes - second Buried polar area. In general, when the first switching element of the first element is configured to have a -first polarity, the ith replacement element of the second pixel is configured to have a second polarity I. The t pole can be a color point, an associated point, or a discrete field amplification area. . To understanding. The present invention will be further described by the following description and drawings. As described above, the conventional vertical alignment liquid crystal display has a very strong (4) touch moire effect causing physical interference of liquid crystal. "The vertically aligned liquid crystal display according to the principles of the present invention" uses a color point having a buried polar region (pulse), and the buried polar region enhances the additional laterally discrete electric 15 201131251 crystal to its correct orientation. The indicator can quickly solve the touch moiré effect caused by the liquid crystal object field to make the liquid vertical interference liquid crystal dominant interference according to the invention after a physical interference, and FIG. 4(a) and FIG. 4(b) show According to the present invention, one of the elements of the design of the element (such as the number 4 and the following) is not _ point pole ^. In actual operation, a book is I一为一一始# between the - The first polarity pattern and the second point polarity pattern are switched. For clarity of illustration, the dot polarity pattern relates to a positive dot polarity pattern, wherein the first color point of the first color component has a positive polarity. The dot polarity pattern relates to a dot pattern of a negative polarity, and the first color point of the first color component has a negative polarity. In particular, in FIG. 4(4), the pixel design 41G has a positive dot polarity pattern (thus Marked as 410 + )' and the alizarin design 41 It has a negative dot polarity pattern (hence the label is 410-). In addition, the polarity of each polarized component in different element designs is "+" for positive polarity or "- negative polarity. The design 410 has three color components cc - cc - 2 and cc 3. The per-color component includes - a color point. For clarity, the color point is expressed as QD-XY where X is the color score 1 (in Figure 4 ( a) -1(b) from 1 to 3), Y is the point number (in Figure 4(a)-4(b), γ is all. The element design 41〇 also includes a switch of the corresponding one color component. Components (denoted as SE-丨, 兕_2, and SE_3) and a device component region (denoted as DCAJ, DCA_2, and DCA_3) corresponding to each color component. The switching components 兕, SE, and 仏3 are arranged in a column ( The device component regions dCA", dca-2, and DCA_3 surround the switching elements se1, SE2, and SE3, respectively. The first color component ccj of the pixel design 410 has a color point 201131251 CD-1 - 1. The point CD 1-1 is horizontally aligned with the device element region DCA-丨, and is vertically spaced from the device component region DCA-1 by a vertical dot pitch VDS1. The switching element sej is coupled To the color point 丨" - the electrode of the 以 to control the polarity of the color point CD 1-1. The color point cdjj includes a buried polarity region EPR-1 - 1-1. For clarity, the buried polar region is EPR- X_γ_Ζ denotes that χ is a color component, γ is a dot number, z is a buried polar region listed in a color point. The buried polar region may have a different shape. For example, in the pixel design 41〇 The buried polar region has a square shape. However, other embodiments may have a circular shape, a polygonal shape (such as a quadrilateral and a hexagonal shape), or even other irregular shapes. In general, the polarity direction associated with polarity is usually expressed as a positive or negative electrode. More precisely, the polarity also includes a polarity size/polarity amount. The buried electrode f. region may have the same polarity (i.e., positive or negative) direction as the color point, but has a different polarity/polarity. Furthermore, the buried polarity region can be /, the color point has a different polarity (i.e., the polarity direction) (for example, the buried polarity region corresponding to the positive polarity of the color point is the negative electrode). In addition, the buried polar region can have a neutral polarity. Different embodiments of the present invention use a combination of different new techniques or new techniques to create a buried polar region within the color point. In the embodiments of Figures 4(a) and 4(b), the color point has an opposite polarity to the buried polarity Q field within the color point. 9 The second color component cc-2 of the elementary design 410 has a color point CD One 2-1. The color point CD-2 is horizontally aligned with the device component region 2, and is vertically spaced from the device component region DCA_2 by one vertical dot pitch VDS color dot CD-2 - the system is vertically aligned with the color point. And horizontally spaced from the color point CD_1-1 by a level of 5gHDsi. Switching element 17 201131251 SE_2 is coupled to the electrode of the color point CD—2-丨 to control the polarity of the color point cD_2j. The third color component cc_3 of the pixel design 410 has a color point CD_3_1. The color point CD is horizontally aligned with the device element region dca-3 and is vertically spaced from the device element region DCA-3 by a vertical dot pitch VDS1. The color point CD_3—the lanthanum line and the color point CD—2—丨 are vertically aligned, and horizontally spaced from the color point CD-2_1 by a horizontal dot pitch HDSi. The switching element SE" is coupled to the electrode of the color point CD-3-1 to control the polarity of the color point CD_3_1. The color point CD_3_1 includes a buried polarity area EpR_j. "The color point/buried polarity area and the switching element are represented by the symbol + + and -". Therefore, in Fig. 4(a), the pixel design pattern 410+ indicates a positive dot polarity pattern, and the switching component commits "丨 and se-3, color point CD"" and CD 3-1 and buried polarity. The region EpRjjj has a positive polarity. However, switch the element SE_2, the color point CD-2, and the buried polarity area pulse! η and EPR-3_1_1 have a negative polarity. 5(a) and 5(b) show a portion of a color point 5〇〇 having a quadrangular shape of the electrode 510' in a quadrangular shape with buried polar regions 512, = '"16 and 518. Fig. 5(b) is a color point and a cross-sectional view taken along line A1_A1 of Fig. 5(4). As shown in Fig. 5(b), the buried polarity region ' of the color point' is generated by the conductivity of the electrode in the range of the buried polarity region. In other words, the conductive regions 517 and 519 are oppositely embedded in the polar regions 516 and 518, and the electrodes 51 are formed. In an embodiment 10 of the present invention, the variable conductivity region is a plurality of impurity regions to reduce the conductivity of the conductivity region 2 . In other embodiments of the present invention, the buried polar region is a portion of the conductor 510 and fills the region with a small amount of conductive material, and the conductive material i is a V-electron molecule such as a poly-p-lye Cetylene. Polythiophene polythiophene, polypyrrole p〇lypyrr〇ie (ppy), polyaniline (PANI) and polystyrene p〇iyStyrene), Shi Xihua and Mingshi Shenhua, or a non-conductor material Such as cerium oxide. The electric field in the buried polar region is different from the electric field surrounding the remaining portion of the electrode 510 due to the difference in conductivity in changing the conductivity region. The interaction between the buried polar region and the electric field of the remaining portion of the electrode 51 , produces lateral forces that can redirect the liquid crystal to its correct position more quickly after a physical disturbance. In the embodiment of the present invention, a non-conductive material is used as a buried polar region, and the buried polar region has a neutral polarity. 6(a)-6(c) show a portion of the color point 600, and the electrode 610' having a square shape is accompanied by a buried polar region 612 having a circular base shape. Fig. 6(b) is a cross-sectional view of the color point 600 of Fig. 6(a) taken along the line Α1-ΑΓ. Fig. 6(c) is a cross-sectional view taken along line Β1-ΒΓ of the color point 700 (which should be 600) of Fig. 6(a). As shown in FIG. 6(b), the buried polarity region 612 is generated by a field reduction layer 614 which reduces the electric field of a portion of the conductor 610 (which should be an electrode) in the buried/polar region 612. . Therefore, the amount of polarity/polarity in the buried polarity region 612 is different from the remainder of the color point 600. Depending on the unique characteristics of the electric field reducing layer 614, the amount of polarity/polarity in the buried polar region 612 can be selectively reduced. With respect to complete reduction, the polarity of the buried polar region 612 can be set to neutral. A dielectric material, a protective layer or a black matrix material is used as a reduced material in the electric field reducing layer 614. As shown in Figures 6(a), 6(b) and 6(c), the electric field reducing layer 614 has a three-dimensional cylindrical shape. However, in other embodiments of the invention, the electric field reducing layer 614 may have a different three-dimensional shape with a combination of varying base shape and side edges. For example, Figures 7(a)-7(c) are portions of a color point 700 having a square shaped electrode 710 accompanied by a buried polar region 712 in the shape of a square substrate in accordance with one embodiment of the present invention. . Figure 7(b) is a cross-sectional view of the color point 700 of Figure 7(a) taken along line Α1-ΑΓ. Figure 7(c) is a cross-sectional view of the color point 700 of Figure 7(a) taken along line Β1-ΒΓ. As shown in FIGS. 7(b) and 7(c), the electric field reducing layer 714 has an inclined side and is formed in a three-dimensional pyramid shape. Figures 8(a)-8(c) are portions of a color point 800 having a square shaped electrode 810 with a buried polar region 812 of a circular substrate shape in accordance with one embodiment of the present invention. Figure 8(b) is a cross-sectional view of the color point 800 of Figure 8(a) taken along line Α1-ΑΓ. Figure 8(c) is a cross-sectional view of the color point 800 of Figure 8(a) taken along line Β1-ΒΓ. As shown in Figs. 8(b) and 8(c), the electric field reducing layer 814 has an inclined side and is formed in a three-dimensional cone shape. Figures 9(a)-9(c) are portions of a color point 900 having a square shaped electrode 910 with a buried polar region 912 in the shape of a circular base in accordance with one embodiment of the present invention. Fig. 9(b) is a cross-sectional view taken along line Α1-ΑΓ of the color point 900 of Fig. 9(a). Figure 9(c) is a cross-sectional view of the color point 900 of Figure 9(a) taken along line φ Β 1-ΒΓ. As shown in Figures 9(b) and 9(c), the electric field reducing layer 914 has a curved inclined side and is formed in a three-dimensional circular concave shape, which may be an oblate spheroid or other ellipsoid. Figures 10(a)-10(c) are portions of a color point 1000 having a square shaped electrode 1010 with a buried polar region 1012 of a circular base shape in accordance with one embodiment of the present invention. Figure 10 (b) is a cross-sectional view of the color point 1000 of Figure 10 (a) taken along line Α1-ΑΓ. Figure 10 (c) is a cross-sectional view of the color point 1000 of Figure 10 (a) taken along line Β1-ΒΓ. 10(b) along Α1-ΑΓ 20 201131251 The reduced layer 1014 has a triangular shape, however, as shown by the line -) / σ Β 1 · Β 1 ', the electric field reducing layer 1014 has a rectangular shape. Therefore, it is difficult for the electric field reducing layer to have a three-dimensional triangular cube shape. The U(8)-11(c) is a portion of a color point 11〇〇 having a square shape 伴随iug 'according to one of the embodiments according to the present invention. Substrate shaped - buried polar region 1112. Figure li(b) is a cross-sectional view of the color point 1100 of Figure u(4) taken along line Α1-Α1, taken along the line. Figure u(8) is the color of Figure u(8)

點1曰100沿B1_B1,剖線的剖視圖。如® 11(b)及U(c)所示, 電场減1114具有弧形的傾斜側,係形成-三維矩形 錐丄在頂部具有i凸凹坑,類似於雙曲面。本發明的其 他實施例可使用其他形狀當作電場減少層。 八 圖12係圖解說明本發明另—實施例,其係—電場減少 層1214之形成係使用在電極❻忉上的一絕緣層及 在絕緣層1214 一 I頂部上的一導電層導電層i2u c 係減少在埋置極性區域1212中之電極121〇的電場。絕緣 層1214—1係使導電層12M—c與電極121〇絕緣。一介電橫 向層或保護層係可使用來取代絕緣層12141,並減少電 場。在本發明的另一實施例中’導電層i2i4 c係以被偏極 化。舉例來說,若電極1210具有一正極性的話,導電層 1214_C則驅使成一負極性。電極121〇與導電層1214_匸之Point 1曰100 along B1_B1, a sectional view of the line. As shown in ® 11(b) and U(c), the electric field minus 1114 has a curved sloping side, forming a three-dimensional rectangular cone with i-pits at the top, similar to a hyperboloid. Other embodiments of the invention may use other shapes as the electric field reducing layer. FIG. 12 is a diagram illustrating another embodiment of the present invention, wherein the electric field reducing layer 1214 is formed by using an insulating layer on the electrode layer and a conductive layer conductive layer i2u c on the top of the insulating layer 1214-I. The electric field of the electrode 121〇 in the buried polar region 1212 is reduced. The insulating layer 1214-1 is such that the conductive layers 12M-c are insulated from the electrodes 121A. A dielectric lateral layer or protective layer can be used to replace the insulating layer 12141 and reduce the electric field. In another embodiment of the invention, the conductive layer i2i4c is biased to be polarized. For example, if electrode 1210 has a positive polarity, conductive layer 1214_C drives a negative polarity. Electrode 121〇 and conductive layer 1214_匸

电場的父互影響,係產生側向力量,係可在一物理干擾之 後更快地將液晶成新定位到其正確位置。一般而言,可附 加一黑色矩陣層以避免從電場減少層1214或絕緣層 1214」的漏光(Ught leakage)。本發明的不同實施例可具有 不同形狀當作導電層i214—C。舉例來說,導電層12MC 21 201131251 可使用如圖6(a>6(c)到圖1丨(a)-ll(c)的形狀,同樣也可為 其他形狀。 ~ 在本發明另一實施例中,埋置極性區域係從導體下所 產生,以允許在電極與液晶介質之間介面的更佳均勻度。 圖13(a)及13(b)係圖解說明依據本發明另一實施例的一色 點1300。色點1300包括一正方形形狀的電極131〇,並伴 Ik有一正方形形狀的埋置極性區域13】2。圖13 係為圖 13⑻之色點1300沿Α1-ΑΓ剖線的剖視圖。如圖13(1))所 不,埋置極性區域1312係由在電極131〇正下方之一埋置 電極(embedded electrode) 1316所產生。埋置電極〗3丨6係以 y絕緣層1314與電極1310相間隔。埋置電極1316係通電 以產生經電極1310 #-電場。在本發明大部分的實施例 中,電極1310與埋置電極1316具有相反的極性方向。舉 例來說,當電極1310具有正極性時,埋置電極1316則具 有一負極性。由電極1310與埋置電極1316所產生之電場 的父互影響,係產生側向力量,可在一物理干擾之後更快 速地將液晶重新定位到其正確位置。 如圖13(c)所產生埋置極性區域的技藝係可組合。 特別是’在圖13⑷中,一改變導電區域1318係由在埋置 極性區域m2内之電極1310所產生。在圖13⑷的實施例 中’改變導電區域1318係由非導體所製成,以便在埋置極 性區域1312中的電場主要的係由埋置電極1316所控制。 在電極1310與埋置電極1316所產生電場之交互影響係產 生側向力量,可在-物理干擾之後更快速地將液晶重新定 位到其正確位置。 22 201131251 圖14(a)-(b)係圖解說明依本發明另一實施例的一色點 1400之部分。色點14〇〇包括一正方形形狀的電極141〇, 並伴ik一正方形形狀埋置極性區域1412。然而,電極1410 並未延伸到埋置極性區域1412。在圖14(a)的實施例中,電 極1410係被蝕刻以產生在埋置極性區域1412的一空隙 (void)。在本發明的其他實施例中,電極係形成有多個空隙。 圖14(b)係為圖14⑻之色點1400沿Α1-ΑΓ剖線的剖 視圖。如圖14(b)所示’埋置極性區域1412係由在電極141〇 • 正下方之一埋置電極M16所產生。埋置電極1416係以一 絕緣層1414與電極141〇相間隔。在圖14(b)的實施例中, 絕緣層1414係被蝕刻以產生在埋置極性區域141〇中的一 空隙。在發明的其他實施例中,絕緣層1414並不包括空 隙。埋置電極1416係通電以產生經在電極141Q之空隙的 一電場。在本發明的大部分實施例巾,電極141〇與埋置電 極1416具有相反極性方向。舉例來說 ,當電極1410具有 正極性時’則埋置電極1416具有一負極性。在電極剛 ,埋置電極1416所產生電場之交互影響係產生側向力 里可在物理干擾之後更快速地將液晶重新定位到其正 確位置。 .如上所述^㊣域可使用内在離散電場(恤恤明 fieldy/tU 0在離散電場係僅適用在小色點上。 因此對較大的顯示器而令,蚩 _ ^ ^ ― ° 畫素係由具許多色點的色分量 母力里係由如薄膜電晶體(TFT)之-相隔的切 換元件所控制。一般而t,&八曰〆 ^ ^ °色分量係為紅色、綠色及藍色。 依據本發明’ 一畫素的乡八θ J巴刀置係更細分為色點。圖15(a) 23 201131251 ==據一畫素設計的-實施例,此畫素 ® 母里的色點與埋置極性區域。尤其是, 包括三個色分量的一畫素設計1500。每一色 色二為了清楚說明’色點係表示成 從Ί糾/置(從1到3),且γ為一點編號 ,_別疋,畫素設計1500係為由九個色點所形 旦’、每色點係包括在色點中心的--埋置極性區 域。一色點CD-X-Y的埋置極性區域係標示成EPR X γ。The parental interaction of the electric field produces lateral forces that can quickly position the liquid crystal to its correct position after a physical disturbance. In general, a black matrix layer may be added to avoid Ught leakage from the electric field reducing layer 1214 or the insulating layer 1214. Different embodiments of the invention may have different shapes as conductive layers i214-C. For example, the conductive layer 12MC 21 201131251 may use a shape as shown in Fig. 6 (a > 6 (c) to Fig. 1 (a) - 11 (c), and may also have other shapes. ~ Another embodiment of the present invention In the example, the buried polar region is generated from under the conductor to allow for better uniformity of the interface between the electrode and the liquid crystal medium. Figures 13(a) and 13(b) illustrate another embodiment in accordance with the present invention. A color point 1300. The color point 1300 includes a square-shaped electrode 131A, and Ik has a square shape of the buried polarity region 13] 2. Figure 13 is a cross-sectional view of the color point 1300 of Figure 13 (8) along the Α1-ΑΓ line As shown in Fig. 13 (1), the buried polar region 1312 is generated by an embedded electrode 1316 directly under the electrode 131. The buried electrode 丨3丨6 is spaced apart from the electrode 1310 by the y insulating layer 1314. The buried electrode 1316 is energized to produce a transelectrode 1310 #- electric field. In most embodiments of the invention, electrode 1310 and buried electrode 1316 have opposite polar orientations. For example, when the electrode 1310 has a positive polarity, the buried electrode 1316 has a negative polarity. The parental interaction of the electric field generated by the electrode 1310 and the buried electrode 1316 creates lateral forces that reposition the liquid crystal to its correct position more quickly after a physical disturbance. The technique of embedding the polar regions as produced in Fig. 13(c) can be combined. Specifically, in Fig. 13 (4), a change conductive region 1318 is generated by the electrode 1310 in the buried polarity region m2. In the embodiment of Fig. 13 (4), the change conductive region 1318 is made of a non-conductor so that the electric field in the buried polar region 1312 is mainly controlled by the buried electrode 1316. The interaction between the electrodes 1310 and the electric field generated by the buried electrode 1316 creates lateral forces that can reposition the liquid crystal to its correct position more quickly after the physical interference. 22 201131251 Figures 14(a)-(b) illustrate portions of a color point 1400 in accordance with another embodiment of the present invention. The color point 14A includes a square-shaped electrode 141A, and the ik-square shape embeds the polar region 1412. However, electrode 1410 does not extend to buried polarity region 1412. In the embodiment of Figure 14(a), electrode 1410 is etched to create a void in buried polarity region 1412. In other embodiments of the invention, the electrode system is formed with a plurality of voids. Fig. 14 (b) is a cross-sectional view taken along line Α1-ΑΓ of the color point 1400 of Fig. 14 (8). As shown in Fig. 14 (b), the buried polar region 1412 is generated by embedding the electrode M16 at one of the electrodes 141A. The buried electrode 1416 is spaced apart from the electrode 141 by an insulating layer 1414. In the embodiment of Fig. 14(b), the insulating layer 1414 is etched to create a void in the buried polar region 141. In other embodiments of the invention, the insulating layer 1414 does not include voids. The buried electrode 1416 is energized to create an electric field that passes through the gap of the electrode 141Q. In most embodiments of the present invention, the electrode 141A and the buried electrode 1416 have opposite polarity directions. For example, when the electrode 1410 has a positive polarity, the buried electrode 1416 has a negative polarity. At the electrode, the interaction of the electric field generated by the buried electrode 1416 creates a lateral force that repositions the liquid crystal to its correct position more quickly after physical interference. As described above, the positive domain can use the intrinsic discrete electric field (the shirtfield field/tU 0 is only applicable to the small color point in the discrete electric field system. Therefore, for larger displays, 蚩_ ^ ^ ― ° pixel system The color component of the color component with many color points is controlled by a switching element such as a thin film transistor (TFT). Generally, the t, & gossip ^ ^ ° color components are red, green and blue. According to the invention, the township eight θ J bark system of one pixel is further subdivided into color points. Fig. 15(a) 23 201131251 == According to a pixel design - the embodiment, the pixel® mother Color point and buried polarity area. In particular, a single pixel design 1500 consisting of three color components. For each color 2, the color point is expressed as Ί / / 从 从 从 从 从 从 从 从 从 从 从For a little number, _ 疋 疋 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画 画The regional system is labeled as EPR X γ.

色點CD-1』亦即色分量1的第-色點)、CD 2 1(亦 即第二色分量的第一色點)及CD」」(亦即第三色分-量的第 一色點)係形成畫素設計·.的第—列。色點cm —2-2及CD一3一2形成畫素設計15〇〇的第二列。然而第 二列係從第-列抵消(offset),以便色點CD—L2 ^色點 CD—2_1。色點CD—1_3、CD一2_3及匚0_3—3形成晝素設計 1500的第三列 '然而第三列係與第—列校準,以便色點 CD_2_3鄰近色點CD_1 2。Color point CD-1" is the first color point of color component 1, CD 2 1 (that is, the first color point of the second color component) and CD"" (ie, the third color-quantity first) The color point is the first column of the pixel design. The color point cm-2-2 and the CD_3-2 form the second column of the pixel design 15〇〇. However, the second column is offset from the first column so that the color point CD - L2 ^ color point CD - 2_1. The color points CD-1_3, CD-2_3, and 匚0_3-3 form the third column of the eutectic design 1500. However, the third column is aligned with the first column so that the color point CD_2_3 is adjacent to the color point CD_1 2 .

一色分量的色點係由如薄膜電晶體(TFT)的一切換元 件所控制’因此-色分量所有色點的極性是相同的。不同 的,計可被使用來使-色分量的色點之間電性連接。舉例 來說,本發明的某些實施例係從切換元件使用透光的氧化 銦錫(ITO)連接到色點。目15(b)係表示一液晶顯示器15〇1 部分的透視圖,而液晶顯示器1501具有晝素設計1500的 畫素1502 °尤其是’ 1] 15(b)係表示一偏光片15〇3黏貼到 一基板 1505。晝素 1502 的電極 Ε11、Ε12、Ε13、Ε2^Ε22、 E23、E3卜E32及E33係形成在基板15〇5的頂面上。其他 24 201131251 畫素的電極⑹亦形成在基板上。電極包括一埋置極 性區域(在每一電極内呈正方形遮蔽),其係可使用上述不 同方法來形成。由於空間限制,埋置極性區域並未在圖i5(b) 中特別地標示。為了清楚說明,其他晝素的電極£係以虛 線表示。一配向層(圖未示)係覆蓋在電極上。亦如圖15(b) 所示為畫素1502的電晶體T1、T2及T3。為了清楚說明, 他·^素的電晶體並未表示在圖15(b)中。 電極 Ell、Ε12、Ε13、Ε21、Ε22、Ε23、Ε31、Ε32 及 Ε33係分別地相對應色點cd」」、CDj一2、cd ι 3、 CK 卜 CD—2—2、CD—23、CD3j、CD3—2 及 CD——3一_3。 如上所^ ’色點CDJ-卜CD丄2、CD—1」係電性連接, 且由如薄膜電晶體的一單一切換元件所電性控制與切換, 而此單一切換元件係位在色點CD一丨一丨。因此如圖U(b)所 不’電晶體T1係耦接到電極E11,且電極Ell、E12、E13 係藉連接件(connect〇rs)1511與1512而電性連接。連接件 1與1512係通常由如氧化姻锡的一透明導電材質所形 成如上所述,埋置極性區域的極性係不同於色點的極性。 因此,埋置極性區域EPR_1_1、EPRJ-2、EPR_1_3的極 (it未在圖15(b)中標不)係由·一極性源(polarity source)所 控制’而極性源係不同於電晶體T1(係控制色點cd_1_1、 -2、CDJ_3極性)。舉例來說,在本發明的一實施例 中,埋置極性區域EPR_1_1、EPR」-2、£PR—1_3(並未在 圖15(b)中標示)係分別地耦接到電極E21、E22、E23。 色點CD_2J、CD_2__2、CD_2_3係電性連接,且由一 早一切換元件所電性控制與切換,而此單一切換元件係位 25 201131251 f色點CD一2_J。因此如圖15⑻所示,電晶體T2係搞接到 電極Ε21,且電極E21、Ε22、Ε23係由連接件ΐ52ι與MM 而電性連接。同樣地,色點CD_3_1、CD—3_2及CD_3—3 ^電性連接,且以一單一切換元件所電性控制與切換,此 單切換元件係位在色點CD一3一丨。因此如圖丨冲)所示, 電晶體T3係耦接到電極E31,且電極EM、幻2、e33係 由連接# 1531與1532而電性連接。 _為了達到多區域,一晝素的第一與第三色分量具有相 同的極性,而第二色分量具有相反的極性。然而對鄰近的參 畫素而言’其極性是相反過來的。對使用圖]5之晝素設計 的多區域垂直配向液晶顯示器而言,二不同電極性圖案係 使用來當作畫素。圖15(c)與15(d)係圖解說明二點極性圖 案。在圖15(c)中,使用晝素設計15〇〇的一畫素151〇係為 第一點極性圖案的例子,其在第二色分量具有正極性,亦 即色點CD—2一1、CD_2—2、CD_2_3,且在第一與第三色分 量為負極性,亦即色點CD_1_1、CD_1_2、CD_1 3、 CD一3一1、CD_3_2及CD—3—3。如上所述’埋置極性區域的 _ 極性係不同於包含埋置極性區域之色點的極性。因此,埋 置極性區域的極性係由一極性源所控制,此極性源係不同 於控制包含埋置極性區域之色點極性的來源。 在圖15(d)中’畫章1520係為第二點極性圖案的例子, 其在第二色分量具有負極性’亦即色點CD_2_1、CD_2_2、 CD_2_3 ’且在第一與第三色分量為正極性,亦即色點 CD」_1、CD_1_2、CD丄3、CD3J、CD_3 一2 及 CD3—3。 如上所述,埋置極性區域的極性係不同於包含埋置極性區 26 201131251 域之色點的極性。在實際操作中,—晝素係在每一影像頁 框間的第-點極性圖案與第二點極性圖案之間進行切換。 為了清楚說明,第-色分量的第一色點具有正極性的點極 性圖案’係當作是正的點極性圖案。相反地,第一色分量 的第-色點具有負極性的點極性圖案,係當作是負的點極 性圖案。因此對圖15⑻的晝素設計而言,圖ΐ5ω為負的 點極性圖案,圖15(d)為正的點極性圖案。 使用圖丨5⑻之畫素設計的畫素係可配置在一棋盤圖 一,此棋盤圖案之一半具有正的點極性圖案,另一半具 有負的點極性圖案。圖15(e)係圖解說明具有晝素p(〇,〇)\ 特(1 = P(2 ’ 〇)、P(卜 υ、P(1 ’ u及 p(2,Ό的棋盤圖案。 側柄Γ日,楚如圖15⑷所示,一畫_x,y)係在第χ行(從左 且第丫列(從底部起),而畫素p(〇,〇)係在底部左角落。 ρ(〇 ’ ο)、p(2 ’ 0)、p(卜1}具有正的點極性圖案且 :素Ρ〇,〇)、ρ(0’ υ、Ρ(2, υ具有負的點極性圖案。因 右:般而言,若X加上y為奇數的話,則一晝素ρ( 則ί =點極性圖案。相反地,h加上y為偶數的話, 」里素p(x ’ y)具有正的點極性圖案。然而,在下一頁框 ^素係域點極性圖案。因此,使㈣ 域垂直配向液晶顯示器,具有一第一組畫素及二十 组查:::,而第一組晝素具有一第一點極性圖案,第二 係::;:有一第二點極性圖案。第-組晝素與第二組書素 係配置在一棋盤圖案中。 —节 —棋H⑷的—徹底檢查係揭示色點亦具有按照極性的 褀盤圖案。因此對一第一極性的每一色點而言,四個鄰 27 201131251 近色點具有一第二極性。舉 P(0,0)的色點CD 3 !俘圍繞且丄/、有正極性之晝素 蚩辛ΡΓ0, I'm ——圍I、負極性的四色點。特別是, :=0 -3-3、畫素P(1,〇)的色點叫1、 旦素P(〇,〇)的色點CD 2】盥 —- 近色點之間的極性反韓;;%仆、由—一2。如上所述,在鄰 α 化色點的離散電場。因為色點 非爷小,所以在圖3(a)與3(b) 散雷場將^ 从您原理下,從色點的離 文冤琢將w成母一色點之液晶十的多區域。 姆)絲线據本發㈣另—畫纽 母一色分夏具有多色點,每一色 、 敁。甘s门 已刀里係包含埋置極性區 或尤疋,圖16(a)與l6(b)係表示一書 同點極性圖案(以ητ俜分别矣-氺,·一京。又计1610的不 1下係刀別表不成_+及1610-),且通 ㊉吏用在财祕元㈣反胸動卿 ㈣ =謝,-畫素係在每一影像頁框間的一二= 楚……: 間進仃切換。為了清楚說明, 刀里 I點具有一正極性的點極性圖案,係表 不成正的點極性圖案。相反地,第一色分量之第二色點旦 負祕的點極性圖案’係表示成負的點極性圖案:; 中,晝素設計161°具有—正的點極性圖 =(且因純不為161〇+)’且在圖16(b)中畫纽計刪 具有-負的點極性圖案(且因此標示為161〇一) =同晝素設計中每-已偏極分量的極性係表示為「+」當 作正極性,或表示成「―」當作負極性。 晝素設計1610係具有三個色分量cc i、cc 2及 CC 一 3(並未在圖16(aH6(b)中標示)。每一色分量包括二色 點。為了清楚說明,色點係表示為CDXY, 28 201131251 色分量(在圖16(a)-16(b)中從1到3) ’且γ為一點編號(在 圖16(a)-l6(b)中從1到2)。晝素設計1610亦包括每一色分 量中的一切換元件(表示為SE_1、SE_2及SE__3)及每一色 分量中的一離散場放大區域(表示為FFAR—l、FFAR 2及 FFAR 一 3)。切換元件SEJ、SE_2及SE 一 3係被置在一列。 圍繞每一切換元件的裝置元件區域,係以離散場放大區域 所覆蓋,且因此不特別的標示在圖16(a)與16(b)中。離散 場放大區域FFAR—1、FFAR_2及FFAR—3亦配置在一列, • 且將於後詳述。 畫素設計1610的第一色分量cc_l具有二色點 CD一 1_1 及 CD—1一2。色點 CD一1_1 及 CD_1_2 形成一行, 且以垂直點間距VDS1而相互間隔。換言之,色點cd 1 1 及CD_1一2係水平的配向,且垂直地以垂直點間距vdsi 而相互間隔。再者,色點⑶丄〗及〇〇丄2係以垂直點偏 移VD01而垂直地補償,垂值點偏移VD〇1係等於垂直點 間距VDS1加上色點南度CDH。士刀換元件SE—工係位在色 _點CD_1_1與CD_1_2之間,以便色點!在切換元件 歹J的帛-側上’色點CD—i—2在切換元件列的一第二侧 上。切換几件SE-1係耦接到色點CD—1_1及CD_1—2的電 以控制色點⑶丄1及CD丄2的電壓極性與電壓大小 /電壓量。 刀里cc—i的色點係包括一埋置極性區域,以將在 #任何觸碰雲紋效應最小化。特別是,色點CD—U PPi?CD一丨―2分別地包括埋置極性區域EPR_1_「及 丄2。如圖16⑷所示,埋置極性區域哪」I及 29 201131251 EPR_1_2係分別的集中在色點CD_1 j及CD_1—2内。任 一在此所述之使用來形成埋置極性區域的不同技藝,係可 與晝素設計1610 —同使用。在本發明一特別實施例中,圖 解說明在圖14(a)-14(b)中係使用此技藝。然而,本發明其 他實施例可使用其他技藝來形成埋置極性區域,可包括多 個埋置極性區域,或可補償埋置極性區域。 如上所述’埋置極性區域的極性係不同於色點的極 性。因此’埋置極性區域EPR_1_1與EPR_1_2係由一極性 源所控制’此極性源係不同於切換元件SE_ 1 (係控制色點 CD_1_1與CD一1—2的極性)。在本發明的某些實施例中, 一顯示器係包括用於埋置極性區域的切換元件(參考圖 16(d)當作一此實施例)。本發明的其他實施例中,可以將埋 置極性區域偶接到不同極性之畫素的其他元件。舉例來 忒,本發明的某些實施例中,埋置極性區域及 EPR_1_2係耦接到離散場放大區域ffarj,其將於後詳 述。 相似地,晝素設計1610的第二色分量cc—2具有二色 點 CD—2一 1 及 CD一2_2。色點 CD—2J 及 CD—2—2 形成一第 二行,且以一垂直點間距VDS1而相互間隔。因此,色點 CD—2_1及CD—2—2係水平的配向,且垂直地以垂直點間距 VDS1而相互間隔。切換元件SE—2係位在色點⑶―與 CD J—2之間,.以便色點CD_2—丨在切換元件列的一第二側 上’色,點CD_2_2在切換元件列的一第二側上。切換元件 『2係耦接到色點CD—2—】及cd—2—2的電極,以控制色 ' -2一1及CD一2一2的電壓極性與電壓大小/電壓量。第 30 201131251 一色分畺CC_2係與第一色分量cc一丨垂直地配向,且與第 一色分量CC-1相間隔一水平點間距HDS1,因此色分量 CC—2與CC—1係由一水平點偏移HD〇1所水平地抵消,而 水平點偏移HD01係等於水平點間距HDS1加上色點寬度 CDW。特別是關於色點,色點CD—2_丨係與色點cDj」 垂直地配向,且以水平點間距HDS1而水平地相互間隔。 相似地,色點CD_2_2係與色點CD_2_i垂直地配向,且以 水平點間距HDS1水平的相間隔。因此色點CD一丨―丨與色 •點CD-2—1形成色點的一第一列,色點cdj—2與色點 CD_2_2形成色點的一第二列。就像色點丨與 CD_1—2,色點CD_2_1與CD_2_2分別地包括埋置極性區 域 EPR_2_1 及 EPR_2—2。 相似地,晝素設計丨61〇的第三色分量CC_3具有二色 點 CD—3—1 及 CD—3一2。色點 CD-3j 及 CD—3一2 形成一第 三行,且以一垂直點間距VDS1而相互間隔。因此,色點 CD一3—1及CD_3一2係水平的配向,且垂直地以垂直點間距 • VDS1而相互間隔。切換元件SE—3係位在色點cd」」與 CD-3-2之間,以便色點CD一3—1在切換元件列的一第一侧 上,色點CD_3_2在切換元件列的一第二側上。切換元件 SE_3係輕接到色點CD_3j及CD—3—2的電極,以控制色 點CD_3_1及CD一3_2的電壓極性與電壓大小/電壓量。第 一色刀f CC—3係與第二色分量cc—2垂直地配向,且與第 一色分1 CC一2相間隔一水平點間距HDS1,因此色分量 CC:3與CC—2係由-水平點偏移HD〇1所水平地抵消。特 別疋關於色點’色點CD一3—丄係與色點CD—2 ^垂直地配 31 201131251 向’且以水平點間距HDS1而水平地相互間隔。相似地, 色點CD_3_2 ^與色點CD—2-2垂直地配向,且以水平點間 距腦1水平的相間隔。因此色點CD_3_1係在色點的第 -列上,色點CD—3—2係在色點的第二列上。就像色點 CD_1_1與CD丄2 ’色點CD-3—i與CD—3—2分別地包括 埋置極性區域EPR—3J及EPR 3 2。 —The color point of a color component is controlled by a switching element such as a thin film transistor (TFT). Therefore, the polarity of all color points of the color component is the same. Different, the meter can be used to electrically connect the color points of the - color component. For example, certain embodiments of the present invention are connected to color points from a switching element using light-transmissive indium tin oxide (ITO). Item 15(b) shows a perspective view of a portion of the liquid crystal display 15〇1, and the liquid crystal display 1501 has a pixel design of 1500. 1502°, especially '1' 15(b) means a polarizer 15〇3 pasted To a substrate 1505. The electrodes Ε11, Ε12, Ε13, Ε2^Ε22, E23, E3, E32 and E33 of the halogen 1502 are formed on the top surface of the substrate 15〇5. Other 24 201131251 The electrode (6) of the pixel is also formed on the substrate. The electrodes include a buried polar region (squared within each electrode) which can be formed using the various methods described above. Due to space constraints, the buried polar regions are not specifically labeled in Figure i5(b). For the sake of clarity, the electrodes of other elements are indicated by dashed lines. An alignment layer (not shown) is overlaid on the electrodes. Also shown in Fig. 15(b) are the transistors T1, T2 and T3 of the pixel 1502. For clarity of explanation, the transistor of the transistor is not shown in Fig. 15(b). The electrodes E11, Ε12, Ε13, Ε21, Ε22, Ε23, Ε31, Ε32, and Ε33 are respectively corresponding to the color point cd"", CDj-2, cd ι 3, CK 卜 CD-2-2, CD-23, CD3j , CD3-2 and CD——3__3. As described above, the 'color point CDJ-b CD丄2, CD-1' is electrically connected, and is electrically controlled and switched by a single switching element such as a thin film transistor, and the single switching element is tied to the color point. The CD is one by one. Therefore, as shown in Fig. U(b), the transistor T1 is coupled to the electrode E11, and the electrodes E11, E12, and E13 are electrically connected by connectors 1511 and 1512. The connectors 1 and 1512 are typically formed of a transparent conductive material such as oxidized sulphur, as described above, and the polarities of the buried polar regions are different from the polarity of the color dots. Therefore, the poles of the buried polar regions EPR_1_1, EPRJ-2, and EPR_1_3 (it is not marked in FIG. 15(b)) are controlled by a polarity source and the polar source is different from the transistor T1 ( Controls the color point cd_1_1, -2, CDJ_3 polarity). For example, in an embodiment of the invention, the buried polarity regions EPR_1_1, EPR"-2, £PR-1_3 (not labeled in FIG. 15(b)) are respectively coupled to the electrodes E21, E22. , E23. The color points CD_2J, CD_2__2, and CD_2_3 are electrically connected, and are electrically controlled and switched by an early switching element, and the single switching element is 25 201131251 f color point CD_2_J. Therefore, as shown in Fig. 15 (8), the transistor T2 is connected to the electrode Ε 21, and the electrodes E21, Ε 22, and Ε 23 are electrically connected by the connectors ΐ52ι and MM. Similarly, the color points CD_3_1, CD_3_2, and CD_3-3 are electrically connected, and are electrically controlled and switched by a single switching element, which is tied to the color point CD. Therefore, as shown in Fig. 2, the transistor T3 is coupled to the electrode E31, and the electrodes EM, 2, and e33 are electrically connected by the connections #1531 and 1532. In order to achieve multiple regions, the first and third color components of a single element have the same polarity, while the second color components have opposite polarities. However, for neighboring pixels, the polarity is reversed. For a multi-region vertical alignment liquid crystal display designed using the pixel of Fig. 5, two different electrode patterns are used as pixels. Figures 15(c) and 15(d) illustrate a two-point polarity pattern. In Fig. 15(c), a pixel 151 昼 design using a ruthenium design is an example of a first dot polarity pattern, which has a positive polarity in the second color component, that is, a color point CD-2 CD_2-2, CD_2_3, and the negative polarity in the first and third color components, that is, the color points CD_1_1, CD_1_2, CD_1 3, CD 3-1, CD_3_2, and CD-3-3. As described above, the _ polarity of the buried polar region is different from the polarity of the color dot including the buried polar region. Therefore, the polarity of the buried polarity region is controlled by a source of polarity that is different from the source that controls the polarity of the color point containing the buried polarity region. In Fig. 15(d), the 'picture 1520' is an example of a second dot polarity pattern having a negative polarity in the second color component, that is, color points CD_2_1, CD_2_2, CD_2_3' and in the first and third color components. It is positive polarity, that is, color point CD"_1, CD_1_2, CD丄3, CD3J, CD_3-2, and CD3-3. As described above, the polarity of the buried polar region is different from the polarity of the color dot including the buried polar region 26 201131251 domain. In actual operation, the halogen is switched between the first-point polarity pattern and the second-point polarity pattern between each image frame. For clarity of explanation, the first color point of the first color component has a positive polarity dot pattern as a positive dot polarity pattern. Conversely, the first color point of the first color component has a negative polarity dot pattern and is considered to be a negative point polar pattern. Therefore, for the pixel design of Fig. 15 (8), Fig. 5ω is a negative dot polarity pattern, and Fig. 15(d) is a positive dot polarity pattern. The pixel design using the pixel design of Fig. 5(8) can be configured on a checkerboard pattern. One of the checkerboard patterns has a positive dot polarity pattern and the other half has a negative dot polarity pattern. Figure 15 (e) illustrates the checkerboard pattern with the elements p(〇,〇)\ 特(1 = P(2 ' 〇), P(卜υ, P(1 'u and p(2, Ό). The handle is on the day, as shown in Figure 15 (4), a picture _x, y) is in the third line (from the left and the third column (from the bottom), while the pixels p (〇, 〇) are in the bottom left corner ρ(〇' ο), p(2 ' 0), p (b 1} have a positive dot polarity pattern and: prime, 〇), ρ (0' υ, Ρ (2, υ has a negative point Polar pattern. Because right: In general, if X plus y is an odd number, then a 昼 ρ (then ί = point polarity pattern. Conversely, h plus y is even, then lysin p (x ' y) has a positive dot polarity pattern. However, on the next page, the matrix is in a polar pattern. Therefore, the (4) domain is vertically aligned to the liquid crystal display, having a first group of pixels and twenty groups of checks::: The first group of pixels has a first point polarity pattern, and the second line::; has a second point polarity pattern. The first group of pixels and the second group of books are arranged in a checkerboard pattern. The thorough inspection of H(4) reveals that the color point also has a pattern of polar disks. For each color point of a first polarity, the four neighbors 27 201131251 has a second polarity of the near color point. The color point CD 3 of the P(0,0) is surrounded and 丄/, which has a positive polarity.昼素蚩辛ΡΓ0, I'm ——The four color points of the circumference I and the negative polarity. In particular, the color point of the pixel of P (1, 〇) is 1, -3-3, and the color of the pixel P (1, 〇) is 1, 〇, 〇) color point CD 2] 盥 - the polarity between the near color points is anti-Korean;;% servant, by -1. As mentioned above, the discrete electric field at the adjacent alpha color point. Because the color point is not The lord is small, so in Figure 3(a) and 3(b) the detonation field will be ^ from your principle, from the color point of the 冤琢 冤琢 成 成 成 成 成 成 成 一 一 一 一 一 多 多 多 多 多 多 多 多 。 According to the hair (4), the color of the new mother has a multi-color point, each color, and 敁. Gansmen has a buried polar zone or a 疋 疋, Figure 16 (a) and l6 (b) The same point polarity pattern of a book (with ητ俜 respectively 矣-氺,·一京. Also counted 1610 is not a knives not a _+ and 1610-), and the Ten Commandments used in the Treasury (4) anti-thoracic movement Qing (4) = Xie, - Picture is one or two between each image frame = Chu...: Switch between. It is clearly stated that the point I in the knife has a positive dot polarity pattern, which is not a positive dot polarity pattern. Conversely, the second color point of the first color component is negative. The dot polarity pattern:;, the pixel design 161° has a positive point polarity map = (and because pure is not 161 〇 +) ' and in Figure 16 (b) draws a negative - negative point polarity The pattern (and therefore labeled 161〇) = the polarity of the per-polar component in the homogenous design is expressed as "+" as positive polarity or as "-" as negative polarity. The halogen design 1610 has three color components cc i, cc 2 and CC - 3 (not shown in Figure 16 (aH6(b)). Each color component includes two color points. For clarity, the color point representation For CDXY, 28 201131251 color components (from 1 to 3 in Figures 16(a)-16(b)) and γ is a point number (from 1 to 2 in Figures 16(a)-l6(b)). The pixel design 1610 also includes a switching element (denoted as SE_1, SE_2, and SE__3) of each color component and a discrete field amplification region (denoted as FFAR-1, FFAR 2, and FFAR-3) in each color component. The elements SEJ, SE_2 and SE-3 are placed in a column. The device element area surrounding each switching element is covered by a discrete field amplification area and is therefore not specifically labeled in Figures 16(a) and 16(b). The discrete field amplification areas FFAR-1, FFAR_2, and FFAR-3 are also arranged in a column, and will be described in detail later. The first color component cc_l of the pixel design 1610 has two color points CD-1_1 and CD-1. 2. The color points CD-1_1 and CD_1_2 form a line and are spaced apart from each other by a vertical dot pitch VDS1. In other words, the color points cd 1 1 and CD_1-2 are horizontally aligned, And vertically spaced apart by the vertical dot spacing vdsi. Furthermore, the color points (3) 丄 and 〇〇丄 2 are vertically compensated by the vertical point offset VD01, and the vertical point offset VD 〇 1 is equal to the vertical dot spacing. VDS1 plus color point south degree CDH. The knife-changing component SE-worker is between the color _ point CD_1_1 and CD_1_2, so that the color point! on the 帛-side of the switching element 歹J 'color point CD-i-2 On a second side of the switching element row, several SE-1s are coupled to the power of the color points CD-1_1 and CD_1-2 to control the voltage polarity and voltage of the color points (3)丄1 and CD丄2/ The amount of voltage. The color point of the cc-i in the knife includes a buried polarity area to minimize the effect of any touch moiré. In particular, the color point CD-U PPi?CD 丨-2 separately includes Buried polarity regions EPR_1_"and 丄2. As shown in Figure 16 (4), where the polar regions are buried" I and 29 201131251 EPR_1_2 are respectively concentrated in the color points CD_1 j and CD_1 - 2. Any of the uses described herein. Different techniques for forming a buried polar region can be used in conjunction with the halogen design 1610. In a particular embodiment of the invention, the illustration is illustrated This technique is used in 14(a)-14(b). However, other embodiments of the invention may use other techniques to form buried polar regions, may include multiple buried polar regions, or may compensate for buried polar regions. As described above, the polarity of the buried polarity region is different from the polarity of the color point. Therefore, the buried polarity regions EPR_1_1 and EPR_1_2 are controlled by a polarity source. This polarity source is different from the switching element SE_1 (the system controls the color point). CD_1_1 and CD 1-2 polarity). In some embodiments of the invention, a display includes switching elements for embedding a polar region (see Figure 16(d) as one such embodiment). In other embodiments of the invention, the buried polar regions can be coupled to other elements of pixels of different polarities. For example, in some embodiments of the present invention, the buried polarity region and EPR_1_2 are coupled to the discrete field amplification region ffarj, which will be described in detail later. Similarly, the second color component cc-2 of the pixel design 1610 has two color points CD-2 - 1 and CD - 2_2. The color points CD-2J and CD-2-2 form a second line and are spaced apart from each other by a vertical dot pitch VDS1. Therefore, the color points CD-2_1 and CD-2-2 are horizontally aligned and vertically spaced apart by the vertical dot pitch VDS1. The switching element SE-2 is located between the color point (3) and the CD J-2, so that the color point CD_2-丨 is 'color on a second side of the switching element column, and the point CD_2_2 is a second in the switching element column. On the side. The switching element "2 is coupled to the color point CD-2" and the electrode of cd-2-2 to control the voltage polarity and voltage/voltage of the color '-2' and CD-2. The 30th 201131251 one-color bifurcation CC_2 is vertically aligned with the first color component cc, and is separated from the first color component CC-1 by a horizontal dot spacing HDS1, so the color components CC-2 and CC-1 are one by one. The horizontal point offset HD〇1 is horizontally offset, and the horizontal point offset HD01 is equal to the horizontal dot pitch HDS1 plus the color point width CDW. In particular, regarding the color point, the color point CD-2_丨 and the color point cDj" are vertically aligned, and are horizontally spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_2_2 is vertically aligned with the color point CD_2_i, and is horizontally spaced by the horizontal dot pitch HDS1. Therefore, the color point CD 丨 丨 丨 and color • The dot CD-2 - 1 forms a first column of color points, and the color point cdj /2 and the color point CD_2_2 form a second column of color points. Like the color point CD and CD_1-2, the color points CD_2_1 and CD_2_2 respectively include the buried polarity areas EPR_2_1 and EPR_2-2. Similarly, the third color component CC_3 of the pixel design 丨61〇 has two color points CD-3-1 and CD-3-2. The color points CD-3j and CD-3-2 form a third line and are spaced apart from each other by a vertical dot pitch VDS1. Therefore, the color points CD 3-1 and CD_3-2 are horizontally aligned, and are vertically spaced apart by a vertical dot pitch • VDS1. The switching element SE-3 is between the color point cd"" and the CD-3-2, so that the color point CD 3-1 is on a first side of the switching element column, and the color point CD_3_2 is in the switching element column. On the second side. The switching element SE_3 is lightly connected to the electrodes of the color points CD_3j and CD-3-2 to control the voltage polarity and voltage magnitude/voltage amount of the color points CD_3_1 and CD-3_2. The first color knife f CC-3 is vertically aligned with the second color component cc-2, and is spaced apart from the first color component 1 CC-2 by a horizontal dot pitch HDS1, so the color components CC: 3 and CC-2 are It is horizontally offset by the horizontal point offset HD〇1. In particular, the color point 'color point CD -3 - 丄 is separated from the color point CD - 2 ^ vertically 31 201131251 and is horizontally spaced from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_3_2^ is vertically aligned with the color point CD-2-2, and is spaced apart from the brain 1 by a horizontal point. Therefore, the color point CD_3_1 is on the first column of the color point, and the color point CD-3-2 is on the second column of the color point. Just as the color points CD_1_1 and CD丄2' color dots CD-3-i and CD-3-2 respectively include buried polar regions EPR-3J and EPR32. -

為了 /月楚㈣’畫素設計161Q的色點係綠示成具有相 同色點同度CDH的色點。然而,本發明的某些實施例可具 有不同色點间度的色點。舉例來說,本發明畫素設計161〇 變型的一貫施例中,色點CD }卜cdIn order to /month Chu (four) 'color design 161Q color point system green is shown to have the same color point and the same degree CDH color point. However, some embodiments of the invention may have color points of varying color points. For example, in the consistent embodiment of the 161 〇 variant of the pixel design of the present invention, the color point CD } cd

1及CD 之 具有比色點CD丄2、CD又2及CD」—2較小的色點高度1 and CD have smaller color point heights than color point CD丄2, CD2 and CD”-2

畫素6又什1610亦包括離散場放大區域FFAR_1、 F^AR_2及FFAR一3。圖16(c)係表示畫素設計161〇之離散 %放大區域FTARJ的更詳細視圖。為清楚說明,離散場 放大區域FTAR_1係、在概念上區分成_垂直放大部VAp及 一水平放大部HAP。在圖16(c)中,水平放大部hap係垂 直地居中在垂直放大部VAp i,並延伸到垂直放大部VAp 的左方。水平放大部與垂直放大部的使用,係允許更加清 楚描述離散場放大區域FFARJ的配置。在本發明的大部 分實施例中,離散場放大區域的電極係由一相接的導體所 形成。水平放大部hap係具有一水平放大部寬度HAP_W 及一水平放大部高度HAP_H。相似地,垂直放大部VAP 具有一垂直放大部寬度VAP_W及一垂直放大部高度 VAP_H。離散場放大區域FFAR_2及FFAR._3具有如離散 場放大區域FFAR__1的形狀。在本發明具有不同尺寸之色 32 201131251 點的實_巾,水平放大部hap躲在色狀間,而不是 居中在垂直放大部VAP上。 如圖16⑻所示’離散場放大區域FFAR_1、FFAR_2 及FFAR一3係位在晝素設計161〇之色點之間。尤其是,離 散場放大區域FFAR—1已被配置,以便離散場放大區域 FFAR_1的水平放大部設置在色點與2之 間’且與色點CD—1—1及CD一丨_2間隔一垂直離散場放大區 域間距VFFARS。離散場放大區域ffaR-〗的垂直放大部 _ 係设置在色點CD—l —1及CD一 1_2的右方,且與色點CD_1 1 及CD-1-2相間隔一水平離散場放大區域間距HFFARS。 因此離散場放大區域FFAR一1係沿著色點CD_1_1的底部 與右側以及色點CD—1 一2的頂部與右側而延伸。再者,此 配置亦造成離散場放大區域FFAR1的垂直放大部位在色 點CD_1_1與CD一2—1之間以及色點CD_1_2與CD 2 2之 間。 一一 相似地,離散場放大區域FFAR—2係被配置,以便離 • 散場放大區域FFAR—2的水平放大部位在色點CD_2j及 CD_2_2之間,且與色點CD一及cD—2_2相間隔一垂直 離散場放大區域間距VFFARS。離散場放大區域FFAR_2 的垂直放大部係被配置到色點CD_2_1及CD_2 2的右方, 且與色點CD_2_1及CD_2一2間隔一水平離散場放大區域間 距HFFARS。因此離散場放大區域FFAR 2係沿著色點 CD一2一1的底部與右側以及色點cD_2_2的頂部與右侧而延 伸。此配置亦造成離散場放大區域FFAR_2的垂直放大部 位在色點CD一2—1與CD—3一1之間以及色點CD—2 2與 33 201131251 CD—3_2 之間。 離散場放大區域FFAR—3係被配置,以便離散場放大 區域FFAR-3的水平放大部位在色點CD—3_1及CD__3_2 之間,且與色點CD—3J及(:〇一3-2相間隔一垂直離散場放 大區域間距VFFARS。離散場放大區域FFAR_3的垂直放 大部係被配置到色點CD一3—1及CD一3_2的右方,且與色點 CD一3_1及CD_3_2間隔一水平離散場放大區域間距 HFFARS。因此離散場放大區域FFar—3係沿著色點 CD_3—1的底部與右侧以及色點CD一3一2的頂部與右側而延 伸0 色點、離散場放大區域及切換元件的極性係使用符號 「+」及「一」表示。因此在繪示晝素設計161〇+之正的 點極性的圖16(a)申,所有的切換元件(亦即切換元件 SE_1、SE_2及SE—3)與所有的色點(亦即色點cd_1_1、 CD」_2、CD一2—卜 CD—2—2、CD_3_1 及 CD_3_2)具有正極 性。然而,所有的離散場放大區域(亦即離散場放大區域 FFARJ、FFAR_2及FFAR一3)具有負極性。如上所述,埋 置極性區域可具有與色點相同的極性方向(亦即正或負), 但卻具有不同的極性大小/極性量。或者,埋置極性區域可 具有不同極性(亦即極性方向)且不同於色點(例如色點極性 為正極性’而埋置極性區域為負極性)。再者,埋置極性區 域可具有中性極性。在本發明一特別實施例中,晝素設計 1610的埋置極性區域具有與色點之不同極性。因此對此實 施例而言’在圖16(a)中的埋置極性區域epr 1 ]、 EPR—1_2、EPR_2_1、EPR_2_2、EPR_3_1 及 EPR 3 2 係 34 201131251 具有負極性。 圖16(b)係表示具有負的點極性圖案之畫素設計 1610。對負的點極性圖案而言,所有的切換元件(亦即切換 元件SE_1、SE_2及SE—3)及所有色點(亦即色點CD_1_1、 CD丄2、CD_2—1、CD_2_2、CD_3_1 及 CD_3_2)具有負極 性。然而所有的離散場放大區域(亦即離散場放大區域 FFAR_1、FFAR_2及FFAR_3)具有正極性。在本發明的特 別實施例中,即晝素設計1610的埋置極性區域係與色點的 籲極性不同,在圖16(b)中埋置極性區域EPR_1_1、EPR_1_2、 EPR_2 J、EPR_2_2、EPR_3_1 及 EPR_3_2 係具有正極性 ° 若鄰近的元件具有相反極性的話,則會放大色點的離 散電場。晝素設計1610係使用離散場放大區域,以使在液 晶結構中多區域之形成的強化與穩定化。一般而言,已偏 極的元件係被指定,以便一第一極性的一色點具有第二極 性的鄰近已偏極元件。舉例來說,對晝素設計1610(圖16(a)) 之正的點極性圖案而言,色點CD_2_2具有正極性。然而 • 鄰近已偏極元件(離散場放大區域FFAR_2極FFAR_1)具有 負極性。因此放大了色點CD_2_2的離散電場。再者,如 下所述,極性反轉機制係尤顯示器層級來實現,以便緊鄰 色點CD_1_2之另一畫素的色點係具有負極性(如圖16(d) 所示)。 因為在晝素設計1610的所有切換元件具有相同極 性,且離散場放大區域需要相反極性,因此離散場放大區 域係由一外部極性源所驅動,亦即從晝素設計1610之特定 畫素外側的一極性源。相反極性的不同來源可用於依據本 35 201131251 l明的不同貫二疋離散場放大 說’切換元件可被使用’或是具有 剛-剛的實施财,具有―相反_ \ 換元件,係亦可被使用來驅動離散場放大區域。因I晝素 設計161G包括導體’以促使離散場放大區域㈣到其他畫 素中的切換元件。尤其是’—當前晝素的導體1612係將離 散場放大區域FFAR一1的電極耦接到在當前晝素上之晝素The pixel 6 and 1616 also include discrete field amplification regions FFAR_1, F^AR_2, and FFAR-3. Fig. 16(c) is a more detailed view showing the discrete % enlargement area FTARJ of the pixel design 161〇. For clarity, the discrete field amplification region FTAR_1 is conceptually divided into a vertical amplification portion VAP and a horizontal amplification portion HAP. In Fig. 16(c), the horizontal amplifying portion hap is vertically centered on the vertical amplifying portion VAp i and extends to the left of the vertical amplifying portion VFc. The use of the horizontal amplifying portion and the vertical amplifying portion allows the configuration of the discrete field magnifying region FFARJ to be more clearly described. In most embodiments of the invention, the electrodes of the discrete field amplification region are formed by a connected conductor. The horizontal amplifying portion hap has a horizontal amplifying portion width HAP_W and a horizontal amplifying portion height HAP_H. Similarly, the vertical amplifying portion VAP has a vertical amplifying portion width VAP_W and a vertical amplifying portion height VAP_H. The discrete field amplification areas FFAR_2 and FFAR._3 have a shape such as a discrete field amplification area FFAR__1. In the present invention, the horizontal enlargement portion hap is hidden in the color, instead of being centered on the vertical enlargement portion VAP. As shown in Fig. 16 (8), the 'discrete field amplification areas FFAR_1, FFAR_2, and FFAR-3 are located between the color points of the pixel design 161〇. In particular, the discrete field amplification region FFAR-1 has been configured such that the horizontal amplification portion of the discrete field amplification region FFAR_1 is disposed between the color point and 2' and is spaced apart from the color point CD_1-1 and CD__2. Vertical discrete field amplification area spacing VFFARS. The vertical amplification portion _ of the discrete field amplification region ffaR- is set to the right of the color points CD_1-1 and CD-1_2, and is spaced apart from the color points CD_1 1 and CD-1-2 by a horizontal discrete field amplification region. Spacing HFFARS. Therefore, the discrete field amplification area FFAR-1 extends along the bottom and right sides of the color point CD_1_1 and the top and right sides of the color point CD-1-2. Furthermore, this configuration also causes the vertical enlarged portion of the discrete field amplification area FFAR1 to be between the color point CD_1_1 and CD 2-1 and between the color points CD_1_2 and CD 2 2 . Similarly, the discrete field amplification region FFAR-2 is configured such that the horizontally magnified portion of the scatter field FFAR-2 is between the color points CD_2j and CD_2_2 and is spaced from the color points CD1 and cD-2_2. A vertical discrete field amplification region spacing VFFARS. The vertical amplifying portion of the discrete field amplifying area FFAR_2 is disposed to the right of the color points CD_2_1 and CD_2 2, and is spaced apart from the color points CD_2_1 and CD_2-2 by a horizontal discrete field amplifying area interval HFFARS. Therefore, the discrete field amplification area FFAR 2 extends along the bottom and right sides of the color point CD 2-1 and the top and right sides of the color point cD_2_2. This configuration also causes the vertical amplification of the discrete field amplification area FFAR_2 to be between the color points CD 2-1 and CD-3 and the color points CD-2 and 33 201131251 CD-3_2. The discrete field amplification area FFAR-3 is configured such that the horizontal amplification of the discrete field amplification area FFAR-3 is between the color points CD-3_1 and CD__3_2, and with the color points CD-3J and (:〇3-2 Interval-vertical discrete field amplification region spacing VFFARS. The vertical amplification portion of the discrete field amplification region FFAR_3 is disposed to the right of the color points CD 3-1 and CD-3_2, and is spaced apart from the color points CD_3_1 and CD_3_2. The discrete field amplification area is HFFARS. Therefore, the discrete field amplification area FFar-3 extends 0 color point, discrete field amplification area along the bottom and right side of the color point CD_3-1 and the top and right sides of the color point CD 3-1. The polarity of the switching element is indicated by the symbols "+" and "one". Therefore, in Figure 16(a), which shows the positive point polarity of the pixel design 161〇+, all the switching elements (ie, the switching element SE_1, SE_2 and SE-3) and all color points (ie, color points cd_1_1, CD"_2, CD-2b, CD-2-2, CD_3_1, and CD_3_2) have positive polarity. However, all discrete field amplification regions ( That is, the discrete field amplification areas FFARJ, FFAR_2, and FFAR-3) have negative polarity As described above, the buried polar regions may have the same polarity direction (i.e., positive or negative) as the color dots, but have different polarity/polarity amounts. Alternatively, the buried polar regions may have different polarities (i.e., polarities). The direction is different from the color point (for example, the color point polarity is positive polarity and the buried polarity area is negative polarity). Further, the buried polarity region may have a neutral polarity. In a particular embodiment of the invention, the halogen The buried polarity region of the design 1610 has a different polarity from the color point. Therefore, the buried polarity region epr 1 in FIG. 16(a), EPR-1_2, EPR_2_1, EPR_2_2, EPR_3_1, and EPR are used for this embodiment. 3 2 Series 34 201131251 has a negative polarity. Figure 16 (b) shows a pixel design 1610 with a negative dot polarity pattern. For negative dot polarity patterns, all switching elements (ie, switching elements SE_1, SE_2 and SE-3) and all color points (ie, color points CD_1_1, CD丄2, CD_2-1, CD_2_2, CD_3_1, and CD_3_2) have negative polarity. However, all discrete field amplification areas (ie, discrete field amplification areas FFAR_1, FFAR_2) And FFAR_3) There is a positive polarity. In a particular embodiment of the present invention, the buried polarity region of the halogen design 1610 is different from the polarity of the color point, and the polar regions EPR_1_1, EPR_1_2, EPR_2 J are buried in FIG. 16(b). EPR_2_2, EPR_3_1, and EPR_3_2 have positive polarity. If adjacent components have opposite polarities, the discrete electric field of the color point is amplified. The Alizarin Design 1610 uses a discrete field amplification region to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, a polarized component is assigned such that a color point of a first polarity has a second polarity adjacent to the biased component. For example, for the positive dot polarity pattern of the halogen design 1610 (Fig. 16(a)), the color point CD_2_2 has a positive polarity. However, the adjacent polarized element (discrete field amplification area FFAR_2 pole FFAR_1) has a negative polarity. Therefore, the discrete electric field of the color point CD_2_2 is amplified. Furthermore, as described below, the polarity inversion mechanism is implemented in a display level so that the color point of another pixel adjacent to the color point CD_1_2 has a negative polarity (as shown in Fig. 16(d)). Because all of the switching elements in the pixel design 1610 have the same polarity and the discrete field amplification regions require opposite polarities, the discrete field amplification region is driven by an external polarity source, ie, outside the specific pixel of the pixel design 1610. A source of polarity. Different sources of opposite polarity can be used to calculate the 'switching element can be used' according to the different two-dimensional discrete field amplification according to the present invention, or have the implementation of the rigid-gang, with the opposite - the replacement component, Used to drive discrete field amplification regions. The 161G includes a conductor ' to drive the discrete field amplification region (4) to the switching elements in the other pixels. In particular, the current conductor 1612 couples the electrodes of the discrete field amplification region FFAR-1 to the elements on the current pixel.

的切換元件SE一1(如圖16(d)及16(e)所示)^連接到切換元 件係經由在當前畫素上之晝素的色點的電極。相似地,一 當前晝素的一導體1614係將離散場放大區域ffAR_2的電 極耦接到在當前晝素上之晝素的切換元件SE_2(如圖16(d) 所示)。連接到切換元件係經由在當前畫素上之晝素的色,點 的電極。一當前畫素的導體1616係將離散場放大區域 FFAR一3的電極耦接到在當前畫素上之晝素的切換元件 SE一3(如圖16(d)及16(e)所示)。連接到切換元件係經由在 當前畫素上之畫素的色點的電極。The switching element SE-1 (shown in Figures 16(d) and 16(e)) is connected to the electrode of the switching element via the color point of the pixel on the current pixel. Similarly, a conductor 1614 of a current pixel couples the electrodes of the discrete field amplification region ffAR_2 to the switching element SE_2 of the pixel on the current pixel (as shown in Figure 16(d)). The connection to the switching element is via the color of the pixel on the current pixel, the electrode of the point. A current pixel conductor 1616 couples the electrodes of the discrete field amplification region FFAR-3 to the switching element SE-3 of the pixel on the current pixel (as shown in Figures 16(d) and 16(e)) . The electrode connected to the switching element is via the color point of the pixel on the current pixel.

這些連接係繪示在圖16(d),其係表示部分的顯示器 1620’顯示器162〇係使用具有一切換元件列反轉驅動機^ 之畫素設計 1610 的畫素 P(〇,〇)、P(1,〇)、P(0,1)及!&gt;(1 U。顯示器1620可具有數以千計列,而在每一列上有數、 千計之畫素。列與行係從在圖16(d)中的部分連續。為了、、&lt; 楚說明,控制切換元件的閘極線與源極線係在圖16(d)中= 略。為了更佳圖解說明每一晝素,係遮蔽每一晝素的區織. 此遮蔽在圖16(d)中係僅為圖解說明用,且並沒有功能上的 36 201131251 意義。顯示器1620的畫素係被配置,以便在一列的所有晝 素具有相同點極性圖案(正或負),且每一連續列係在正與 負極性圖案之間作轉變。因此在第一列(亦即列…的畫素 P(0 ’ 〇)及Ρ(ι,0)具有正的點極性圖案,第二列(亦即列 的畫素P(0 ’ 1)及p(l ’ il)具有負的點極性圖案。然而在下 一頁框,晝素係切換點極性圖案。因此一般而言,當y為 偶數時,一晝素以^”具有一第一點極性圖案,當y為奇 數時,晝素P(x,y)具有一第二點極性圖案。在畫素設計 1610的内部導體1612、1614及1616提供極性給離散場放 大區域。特別是,一第一晝素的離散場放大區域係從一第 二晝素接受電壓極性及電壓大小/電壓量。尤其是,第二畫 素係在第一晝素上的晝素。舉例來說,晝素p(〇,〇)之離散 場放大區域FFAR一1的電極,係經由畫素p(〇,丨)之色點 CD」—2的電極耦接到畫素p(〇 ,丨)的切換元件SE_〗。相似 地畫素P(〇,〇)之離散場放大區域FFAR_2及FFAR 3的 電極,係經由畫素p(〇,1)之色點CD-2-2及CD—3一2的電 • 極搞接到晝素p(0 ’ 1)的切換元件SE 2及SE 3。 顯不器1620亦包括在每一埋置極性區域列的埋置極 性區域切換元件EPR一SE_X_Y。在圖16(d)中,rx」係表 不晝素的列編號’「γ」表示在一畫素内的埋置極性區域列 編唬。因此,埋置極性區域切換元件EpR_SE_〇」及 EPR_SE_〇_2係用以當作在列〇的晝素(亦即晝素p(〇,〇) 及P(1 ’ 0))。特別是,埋置極性區域切換元件EPR^SE-Oj 係麵接到晝素P(〇 ’ 0)的埋置極性區域epr 1 1、EPR 2 1 —— — 及EPR一3一1與畫素p〇,〇)的埋置極性區域EpRj—j、 37 201131251 EPR 2 1及EPR 3_1。埋置極性區域切換元件EPR SE 0 2 —— 一 *— 一一 係耦接到晝素Ρ(〇,〇)的埋置極性區域EPR_1 _2、EPR 2 2 及EPR_3_2與晝素P(1,0)的埋置極性區域EPR_l_2、 EPR_2_2及EPR_3_2。類似地,埋置極性區域切換元件 EPR_SE_1_1及EPR_SEJ_2係用以當作在列1的晝素(亦 即晝素P(〇,1)及P(〗’丨))。特別是,埋置極性區域切換元 件EPR_SE_1_1係耦接到晝素P(0,1)的埋置極性區域 EPR_1J、EPR—2_1及EPR_3一1與晝素p(l ’ 1)的埋置極性 區域EPR一1一1、EPR_2_1及EPR_3—卜埋置極性區域切換 元件EPR一SE_1_2係耦接到晝素P(〇, 1)的埋置極性區域 EPR_1_2、EPR_2_2 及 EPR_3_2 與畫素 p(l,1)的埋置極性 區域 EPR一 1_2、EPR_2_2 及 EPR_3_2。一般而言,一埋置 極性區域切換元件係與在相對應置極性區域切換元件之畫 素中的切換元件相比較,具有不同的極性。因此在圖16(d) 中’埋置極性區域切換元件EPR—SE_0_1及EPR SE 0 2 具有負極性。相反地,埋置極性區域切換元件EPR 1 1 及EPR—SE_1—2具有正極性。在本發明的某些實施例中, 埋置極性區域切換元件係以一更平衡的手段被配置。舉例 來說,在本發明的一特別實施例中,一半的埋置極性區域 切換元件係被置在顯示器右側上,另一半的埋置極性區域 切換元件係配置在顯示器左側上。 由於在顯不器162〇中每一列之切換元件極性,若是一 有第—極㈣話’任何緊鄰元件及埋置極性區域具 一極陡。舉例來說,當畫素Ρ(〇,1)的色點CD_3_2具 、極性時,畫素P(0,丨)的埋置極性區域EPR_3_2、晝素 38 201131251 P(0, 0)的色點3_1、晝素P(0, 1)的離散場放大區域FFAR_2 及FFAR_3具有正極性。在本發明的一特別實施例中,每 一色點具有40微米(micrometer,μηι)的一寬度及60微米的 一高度。每一埋置極性區域具有10微米的一寬度及10微 米的一高度。每一離散場放大區域具有5微米的一垂直放 大部寬度、145微米的一垂直放大部高度、50微米的一水 平放大部寬度及5微米的一水平放大部高度。水平點間距 HDS1為15微米、垂直點間距VDS1為25微米、水平離散 • 場放大間距HFFARS為5微米且垂直離散場放大間距 VFFARS為5微米。 在本發明的另一實施例中,埋置極性區域係使用鄰近 晝素的切換元件偏極化,而不是專用的埋置極性區域切換 元件。圖16(e)係繪示一顯示器1630,顯示器1630係使用 具有一切換元件列反轉機制之晝素設計1610的晝素Ρ(0, 0)、P(1,0) 、P(1,0)及 Ρ(1,1)。顯示器 1630 具有數以 千計列,每一列具有數以千計晝素。列與行係從如圖16(e) • 所示的部分連續。為了清楚說明,控制切換元件的閘極線 與源極線係在圖16(e)中省略。為了更佳圖解說明每一畫 素,係遮蔽每一晝素的區域;此遮蔽在圖16(e)中係僅為圖 解說明用,且並沒有功能上的意義。由於空間限制,色點 係標示為CDXY以相對於CD_X_Y,埋置極性區域係標示 為EPRXY以相對於EPR_X_Y。 因為顯示器1630及1620係非常類似,因此以後僅詳 述其差異處。舉例來說,顯示器1630的晝素係以與顯示器 1620的晝素之相同手段作配置。再者,色點、切換元件及 39 201131251 離政%放大區域的極性是相同的。因此如在顯示器1620 中,在顯示器1630的一畫素在y為偶數時亦具有一第一點 極性圖案’在y為奇數時亦具有一第二點極性圖案。在顯 示益1620與1630之間的主要差異,係在顯示器163〇中之 埋置極性區域的極性是由鄰近晝素的切換元件所提供,而 不是從使用在顯示器1620中專用的埋置極性區域切換.元 件。 在顯示器1630中 '童I係興一第二畫素成對, 以便第一晝素的埋置極性區域耦接到第二畫素的切換元 件,且第二畫素的埋置極性區域叙接到第一畫素的切換元 件。尤其是,在偶數列上的晝素係與在偶數列上之奇數列 中的畫素成對。因此在圖16⑷中,晝素p(G,G)係與畫素 ,1)成對’晝素p(卜〇)係與晝素PU,υ成對。^而 吕,若y為偶數的話,-畫素P(.x,y)係與畫素ρ(χ,γ 成對。相反地,若y為奇數的話,一晝素圭 P(x,Y-1)成對。 ”货。、旦素 如圖16⑷所示,在顯示器163〇中 ^係藉由一導體C」j—Χ—γ(因空間限制而在圖 ΥΧΥ標不)’耦接到成對畫素的一切換元件 晝素(如晝素ρ(ϋ係為色 係縮短為⑽= !)的埋置極性區域EPR12耦接Ώ “,旦素Ρ(0, ,對埋置性區域的導==,: = 疋在不同平面。通常’色點係以氧化銦錫形成l第 40 201131251 -平面’且導體係以導電材質形成在一第二平面。 如上所述,在奇數列上的晝素中’一第一畫素的埋置 極性區域切換元件係耦接到第一晝素下之畫素的切換元 件。舉例來說,晝素p(0,丨)的埋置極性區域EPRJ—2(在 圖16(e)中標示為EPR22)係藉一導體C-〇—匕之―2(在^ 6(幻 中標示為C0122)而耦接到晝素p(〇,〇)的切換元件兕_2。 相似地’晝素P(〇,1)的埋置極性區域EpR—2—丨(在圖16⑷ 中標不為EPR21)係藉一導體c一〇—i_2—1 (在圖16(幻中標示 •為C0121)而耦接到晝素P(〇,0)的切換元件SE_2。一般而 言,當J為奇數時,一導體CJ—j_x_Y係將晝素p(I,乃 -的埋置極性區域EPR_X一γ耦接到晝素p(I,扣丨)的切換元 件 SE_X 〇 在偶數列的晝素中,一第一畫素的埋置極性區域切換 元件係耦接到第一晝素上之晝素的切換元件。舉例來說, 畫素P(0,0)的埋置極性區域EPR_2—2(在圖i 6(e)中標示為 EPR22)係藉一導體C_0一〇—2—2(在圖16(e)中標示為C0022) • ·而耦接到晝素P(〇’ 1)的切換元件SE—2。相似地,畫素P(〇, 〇)的埋置極性區域EPR一2一 1 (在圖16(e)中標示為EPR21)係 --藉一導體C—0—0_2 一 1(在圖l6(e)中標示為匚⑽2^而耦接到 畫素P(0 ’ 1)的切換元件SE_2。一般而言,當j為偶數時, 一導體C_I_J_X_Y係將晝素ρ(ι ’ j)的埋置極性區域 EPR—Χ_γ耦接到晝素p(i ’ j+i)的切換元件π X。 如上所述,在顯示器1630中,鄰近的晝素列具有相反 極性。因此,從在如上所述之從鄰近列到埋置極性區域的 晝素中的切換元件提供極性,造成埋置極性區域的極性不 201131251 2色點的極性。此不同的極性可用作強化在色點中的離 月文電場,且降低在顯示器1630中的觸碰雲紋效應。 圖16(f)係繪示本發明的另一實施例,即埋置極性區域 攸離政場放大區域接收極性。特別是,圖16_表示一顯 ΓίΓ0的部分’顯示器1640係使用具有一切換元件列 轉機制之晝素設計1610的畫素!&gt;(;〇, 〇)、ρ(1,, 1)及P(1 ’ 1)。顯示器164〇可具有數以千計列在每一列 ^具有數財計晝素。列與行係從如圖16⑴所示的部分連 續。為了清楚說明,控制切換元件的閘極線與源極線係在鲁 圖16(f)中省略。為了更佳圖解說明每一畫素,係 ^素的區域;此遮蔽在圖16(f)中係僅為圖解說明用,且並 沒有功能上的意義。由於空間限制,色點係標示為⑽丫 以相對於CD_X一Y,埋置極性區域係標示$ EpRxγ 於 EPR X Y 〇 因為顯示器1640及1620係非常類似,因此以後僅詳 述其差異處。舉例來說,顯示器1640的畫素係以與顯示器 1620的晝素之相同手段作配置。再者,色點、切換元件及籲 離散場放大區域的極性是相同的。因此如在顯示器i㈣ 中,在顯示器1640的一晝素在y為偶數時亦具有一第一點 極,圖案’在y為奇數時亦具有一第二點極性圖案。在顯 不益1620與1640之間的主要差異,係在顯示器164〇中之 埋置極性區域的極性是由離散場放大區域所提供,而不是 從使用在顯示器1620中專用的埋置極性區域切換元件。 具體來說,如圖16(f)所示,在顯示器丨64〇中每一埋 置極性區域係耦接到最接近的離散場放大區域。具體地 42 201131251 說,一晝素p(i,j)的一埋置極性區域EPR_X—γ係藉由一 導體C—I—J一Χ—Υ(由於空間限制在圖! 6⑴中標示為 而耦接到離散場放大區域FFAR一X,其中I與j表示晝素(如 晝素P(I,J)) ’ X係為色分量,且γ表示在畫素中的色點(如 色點CD—X_Y(在圖16⑴係縮短為CDXY))。舉例來說,導 體C0112係將晝素ρ(〇,丨)的埋置極性區域EpR12耦接到 晝素P(0, 1)的離散場放大區域FFAR—1(並未具體標示在圖 16(f)中)。對埋置性區域的導體係用虛線表示,以代表導體 與色點是在不同平面。通常,色點與離散場放大區域係以 氧化銦錫形成在一第一平面,且導體係以導電材質形成在 一第二平面。因此,一導通孔(標示為V)係使用到將離散場 放大區域連接到導體。在圖16(f)中,離散場放大區域係耦 接到如上所述關於圖16 (d)之一最接近晝素的一切換元 件。然而,在本發明的其他實施例中,離散場放大區域係 可使用其他方法接收極性,例如專用的離散場放大區域切 換元件。 如上所述,與色點相比較,離散場放大區域具有一相 反極性。因此’從離散場放大區域提供極性到埋置極性區 域’係造成埋置極性區域的極性不同於色點的極性。此不 同極性係用以強化在色點中的離散電場並降低在顯示器 1640中的觸碰雲紋效應。 依據本發明另一實施例,晝素設計1610可被容易地變 更來與切換元件點反轉驅動機制一同使用。圖17(a)_17(b) 係%示一晝素設計ΠΙΟ的不同點極性圖案,晝素設計ΠΙΟ 係為畫素設計1610(圖16(a)-16(b))的修改版。具體來說, 43 201131251 畫素設計171G具有-正的點極性圖細此標示為i7i〇 )且在圖17(b)中,晝素設計171〇具有一負的點極性圖 案(因此標示$ 1710—)。再者,在不同晝素設計中,每一 已偏極元件的極性係以「+」當作正極性,或以「― 作負極性。 ® 畫素设計1710具有三個色分量cc—i、cc—2及 CC—3(並未在圖】7⑷·】7(b)中標示)。每—色分f包括二色 點旦素叹6十1710亦包括在每一色分量的一切換元件(係 為SE一1、SE_2及SE_3)及每一色分量的離散場放大區域(係 為FFAR—l、ffaR_2及FFAR一3)。在晝素設計171〇中色 點、切換兀件與離散場放大區域的布局係與畫素設計161〇 的布局相同。為了簡短起見,並不重覆布局的描述。切換 元件SE」、SE一2及SE_3係與如上所述晝素設計161〇以 相同手段分別地耦接到色分量cc—丨、cc—2及cc 3。 就如在晝素設計1610中,畫素設計171〇的每一色點 包括-埋置極性區域,其係使在色點中的任何觸碰雲紋效 應最小化。因為在畫素設計1710與晝素設計161〇之埋置 極性區域的配置相同,因此不再重覆描述。一般而言,每 一色點具有居中在色點内的一埋置極性區域。 如上所述,埋置極性區域的極性係不同於色點的極 性。因此埋置極性區域的極性係由一極性源所控制”’,此極 性源係不同於控制包括埋置極性區域之色點的切換元件 SE一1。如上所述,在本發明的某些實施例中,一顯示器包 括專用的埋置極性區域切換元件,以控制埋置極性區域= 極性(參考圖16(d)當作一實施例)。在本發明的1他實施 44 201131251 例,可將埋置極性區域耦接到具有不同極性之晝素的其他 元件(如圖16(f))。 、 晝素設計1710離散場放大區域(FFAR一 1、FFAR 2及 FFAR_3)係與在晝素設計1610中相同。因此如上所述Γ且在 圖16(c)中所詳細繪製’亦應用到畫素設計171〇。再者在 晝素設計1710之離散場放大區域的配置係與如上所述在 晝素設計1610中相同。 色點、離散場放大區域及切換元件係使用「+」及「一」 符號表示。晝素設計1710係指定使用在具有切換元件點^ 轉驅動機制的顯示器中,但亦可與具有切換元件行反轉驅 動機制使用。因此,在表示晝素設計171〇+之正的點極性 圖案的圖17(a)中,切換元件sej與SE—3、色點i、 CD一 1—2、CD_3—1與CD一3_2以及離散場放大區域ffar_2 具有正極性。相反地,切換元件se—2、色點CD一與 CD—2一2以及離散場放大區域FFAR—】與FFAR—2具有負極 性。如上所述,埋置極性區域可具有如色點的相同極性方 向(亦即正或負),但卻具有不同極性大小/極性量。或者, 埋置極性區域可具有與色點不同極性(例如色點極性為正 極性,而埋置極性區域為負極性)。再者,埋置極性區域可 具有中性極性。在本發明的一特別實施例中,晝素設計 1710 的埋置極性區域係與色點具有不同極性。因此對此實施例 而言,在圖17(a)中的埋置極性區域eprjj、、 EPR—3_1.及EPR—3_2具有負極性;而埋置極性區域 EPR—2一1與EPR_2_2具有正極性。 色點、離散場放大區域及切換元件係使用符號「+ 45 201131251 及「一」表示。晝素設計1710係被選定來使用在具有切換 元件點反轉機制的顯示器中,但亦可與具有切換元件行反 轉機制的顯示器使用。因此在繪示畫素設計171〇+之正的 點極性圖案的圖17(a)中,切換元件SE_;[與SE_3、色點 CD_1_1、CD_l-2、CD一3一1與CD—3一2及離傘場放大區域 FFAR—2具有正極性。相反地,切換元件SE_2、色點CD 2 } 與CD_2_2及離散場放大區域ffaR_1與FFAR 3具有負極 性。如上所述,埋置極性區域可具有與色點相同的極性方 向(亦即正或負)’但具有一不同的極性大小/極性量。或者, 埋置極性區域可與色點具有不同極性(亦即極性方向)(亦即 色點極性正極性而埋置極性區域為負極性)。再者,埋置極 性區域可具有中性極性。在本發明的一特別實施例中,畫 素设§十1710的埋置極性區域具有與色點不同的極性。因此 對此實施例而言,當埋置極性區域EpR—2—i與EpR_2_2 具有正極性時,則在圖l7(a)中的埋置極性區域 EPR_1_2、EPR一3一1 與 EPR_3—2 具有負極性。 一— 在繪不晝素設計1710+之正的點極性圖案的圖n(b) 中,切換元件SE—1輿SE—3、色點CDjj'cuhcn 與CD_3一2及離散場放大區域FFAR—2具有負極性。相反 地,切換το件SE_2、色點CD_2_1與CD—2—2及離散場放 大區域FFAR—1與FFAR_3具有正極性。如上所述,埋置 極性區域可具有與色點相同的極性方向(亦即正或負),但 具有一不同的極性大小/極性量。或者,埋置極性區域可與 色點具有不同極性(亦即極財向)(亦即色點極性正極性而 埋置極性區域為負極性)。再者,埋置極性區域可具有中性 46 201131251 極性。在本發明的一特別實施例中,畫素設計1710的埋置 極性區域具有與色點不同的極性。因此對此實施例而言, 當埋置極性區域EPR_2_j與EpR_2_2具有負極性時,則在 圖17(b)中的埋置極性區域epr—i 1、epr一ij2、EPR_3_1 與EPR—3、2具有正極性。 不同於晝素設計1610的切換元件,在晝素設計1710 中的切換元件同時具有正與負極性。尤其是,當切換元件 • SE_2具有一極性時,切換元件se 1與SE_3具有另一極 —- 性。因此’離散場放大區域可被在畫素設計171〇中的切換 元件所偏極化。以下所描述的圖17(c)係依據本發明的一實 施例’其係離散場放大區域在晝素設計1710中被偏極化。 在其他實施例中,離散場放大區域係由一外部極性源所驅 動,亦即晝素設計1710之外側特定畫素的一極性源。相反 極性的來源可依本發明的不同實施例來使用。舉例來說, 特定離散場放大區域切換元件可被使用,或具有恰當點極 性之緊鄰晝素的切換元件亦可被使用來驅動離散場放大區 • 域。圖17(a)-17(b)的實施例中,具有恰當點極性之緊鄰晝 素的切換元件亦可被使用來驅動離散場放大區域。因此, - 晝素1710包括導體以促使離散場放大區域耦接到其他畫 素中的切換元件。特別是,一常前畫素的一導體1712係將 離散場放大區域FFAR_1的電極耦接到在當前晝素上之一 晝素的切換元件SE_1(參考圖17(d)及17(e))。對切換元件 的連接係經由在當前畫素上之晝素的色點的電極。相似 , 地’ 一當前晝素的一導體1714係將離散場放大區域 FFAR-2的電極耦接到在當前晝素上之一畫素的切換元件 47 201131251 SE_2(參考圖17(d)及17(e))。對切換元件的連接係經由在 錳月|〗晝素上之畫素的色點的電極。一當前晝素的一導體 1716係將離散場放大區域FFAR一3的電極耦接到在當前晝 素上之一晝素的切換元件SE_3(參考圖17(d)及17(e))。對 切換元件的連接係經由在當前畫素上之畫素的色點的電 極。這些連接係繪示在圖17(句及17(e)且於後詳述。 圖17(c)係繪示一晝素設計1710-1’係為畫素設計1710 的一修改版。由於晝素設計係相類似,故僅描述差異處。 尤其是在晝素設計1710-1中,導體1712、1714與1716係 为別地由導體1713、1715與1717所取代。導體1713係將 離散場放大區域FFAR_1與耦接到負極性的切換元件 SE一2導體1715係將離散場放大區域與麵接到正 極性的切換元件SE—3。導體1717係將離散場放大區域 FFAR—3與耦接到負極性的切換元件SE_2。 圖17(d)係繪示部分的顯示器mo,係使用具有一切 換元件列反轉驅動機制之晝素設計171〇的晝素p(〇, 〇)、 1(1 ’ 0)、p(0’ 1)與p(卜丨)。顯示器1720具有數以千計列, =列具1數以千計晝素。行與列係在® 17(d)中的部分連 、’·貝為^楚5兒明,控制切換元件的閘極線與源極線係在圖 中省略。再者,位更佳圖解說明每一畫素,係遮蔽每 、,旦素的區域,此遮蔽在圖17(d)中係僅為圖解說明目的, 亚不具功能上的意義。由於空間的限制,色點係標示為 CDXY以相對應CD—χ—γ,且埋-置極性區域係標示為 EPRXY以相對應γ。 顯不裔1720的晝素係被配置,以便在一列的畫素在正 48 201131251 的與負的點極性圖案之間切換。再者,在一行的晝素亦在 正的與負的點極性圖案之間切換。因此,畫素p(〇,〇)與 P(1 ’ 1)具有正的點極性圖案,晝素p(〇,”與ρ(ι,〇)且有 負的點極性圖案。然而,在下一頁框,畫素係轉換點極性 圖案。因此-般而言’當x+y為偶數時,一晝素p(x,y) 具有一第一點極性圖案,當x+y為奇數時,具有一遞二點 極性圖案。在畫素設計1710中的内部導體1712、1714與 1716係提供極性給離散場放大區域。尤其是,一第一晝素 鲁的離政:W放大區域從一第二晝素接收電壓極性與電壓大小 /電壓量。特別地,第二畫素係為在第—畫素上的晝素。舉 例來虎,畫素P(〇,〇)的離散場放大區域FFAR-1之電極, 係經由晝素P(0, 1)的色點CD」_2之電極輕接到晝素p(〇, 1)的切換元件SEJ。相似地,畫素p(〇,_離散場放大 區域FFAR_2與FFAR一3之電極,係分別地經由畫素p(〇, 1)的色點CD_2_2與CD—3—2之電極轉接到晝素p(〇,⑽ 切換元件SEJ2與SE_3。 瞻在顯不器172G中’-第—畫素係與—第二晝素成對, 以便第一畫素的埋置極性區域耦接到第二晝素的切換元 件,且第二畫素的埋置極性區域耦接到第一晝素的切換元 件。尤其是,在偶數列上的晝素係與在偶數列上之奇數列 的晝素成對。因此,在圖17((1)中,晝素p(〇,〇)係與畫素 P(〇,1)成對’且晝素P(1,0)係與晝素p〇,成對。一般 而言,若Y為偶數的話,則一畫素ρ(χ , γ)隹與畫素ρ(χ, Υ+1)成對。相反地,若Υ為奇數的話,一畫素ρ(χ,”係 與畫素Ρ(Χ,Υ-1)成對。 ’ 49 201131251 如圓 l/w尸;τThese connections are illustrated in Figure 16(d), which shows a portion of the display 1620' display 162 using a pixel P (〇, 〇) having a pixel element inversion driver 1610. P(1,〇), P(0,1) and! &gt; (1 U. Display 1620 can have thousands of columns, and there are thousands, thousands of pixels on each column. Columns and rows are continuous from the portion in Figure 16(d). For,, &lt; It is explained that the gate line and the source line of the control switching element are slightly omitted in Fig. 16(d). In order to better illustrate each element, the area of each element is shaded. This mask is shown in Fig. 16. (d) The middle is for illustration only and does not have a functional meaning of 36 201131251. The pixels of display 1620 are configured so that all elements in a column have the same point polarity pattern (positive or negative), and each A continuous column is transformed between the positive and negative polarity patterns. Therefore, the pixels P(0' 〇) and Ρ(ι, 0) in the first column (ie, columns... have a positive dot polarity pattern, second The columns (ie, the columns of pixels P(0' 1) and p(l' il) have a negative dot polarity pattern. However, in the next page frame, the element switches the dot polarity pattern. Therefore, in general, when y is In the case of an even number, a unit has a first point polarity pattern, and when y is an odd number, the pixel P(x, y) has a second point polarity pattern. In the pixel design 1 The inner conductors 1612, 1614, and 1616 of 610 provide polarity to the discrete field amplification region. In particular, the discrete field amplification region of the first pixel receives voltage polarity and voltage magnitude/voltage amount from a second pixel. The second pixel is a halogen on the first element. For example, the electrode of the discrete field amplification region FFAR-1 of the pixel p (〇, 〇) is via the color of the pixel p (〇, 丨) The electrode of the point CD"-2 is coupled to the switching element SE_ of the pixel p(〇,丨). The electrodes of the discrete field amplification regions FFAR_2 and FFAR 3 of the similar pixel P(〇,〇) are via the pixel. The color points of p(〇,1) CD-2-2 and CD-3-2 are connected to the switching elements SE 2 and SE 3 of the prime p (0 ' 1). The display 1620 also includes The buried polarity region switching element EPR_SE_X_Y is embedded in each buried polarity region column. In Fig. 16(d), the rx" column indicates that the column number '"γ" indicates the embedding in one pixel. The polar regions are compiled. Therefore, the buried polar region switching elements EpR_SE_〇 and EPR_SE_〇_2 are used as the pixels in the column (ie, pixels p(〇,〇) and P(1). ' 0 )). In particular, the buried polarity region switching element EPR^SE-Oj is connected to the buried polarity region epr 1 1 , EPR 2 1 — — and EPR 3-1 of the pixel P (〇' 0) Buried polarity regions EpRj-j, 37 201131251 EPR 2 1 and EPR 3_1 with pixels p〇, 。). Buried polar region switching element EPR SE 0 2 —— one*-one is coupled to 昼素Ρ The buried polar regions EPR_1 _2, EPR 2 2 and EPR_3_2 of the (〇, 〇) and the buried polar regions EPR_l_2, EPR_2_2 and EPR_3_2 of the halogen P(1,0). Similarly, the buried polarity area switching elements EPR_SE_1_1 and EPR_SEJ_2 are used as the elements in column 1 (i.e., pixels P(〇, 1) and P(〗). In particular, the buried polar region switching element EPR_SE_1_1 is coupled to the buried polarity regions EPR_1J, EPR-2_1, and EPR_3-1 of the pixel P(0,1) and the buried polarity region of the pixel p(l '1). EPR-1, EPR_2_1 and EPR_3—the buried polar region switching element EPR-SE_1_2 is coupled to the buried polarity regions EPR_1_2, EPR_2_2 and EPR_3_2 of the pixel P(〇, 1) and the pixel p(l,1) The buried polarity regions EPR-1_2, EPR_2_2, and EPR_3_2. In general, a buried polarity area switching element has a different polarity than a switching element in a pixel of a corresponding polarity area switching element. Therefore, in Fig. 16(d), the buried polar region switching elements EPR_SE_0_1 and EPR SE 0 2 have a negative polarity. Conversely, the buried polar region switching elements EPR 1 1 and EPR-SE_1-2 have positive polarity. In some embodiments of the invention, the buried polar region switching elements are configured in a more balanced manner. For example, in a particular embodiment of the invention, half of the buried polarity area switching elements are placed on the right side of the display and the other half of the buried polarity area switching elements are disposed on the left side of the display. Due to the polarity of the switching elements in each of the columns 162, if there is a first-pole (four), any adjacent elements and buried polar regions have a steepness. For example, when the color point CD_3_2 of the pixel 〇(〇,1) has a polarity, the color point of the buried polarity region EPR_3_2 of the pixel P(0, 丨), 昼素38 201131251 P(0, 0) 3_1. The discrete field amplification regions FFAR_2 and FFAR_3 of the halogen P(0, 1) have positive polarity. In a particular embodiment of the invention, each color dot has a width of 40 micrometers (μηι) and a height of 60 micrometers. Each buried polar region has a width of 10 microns and a height of 10 microns. Each discrete field amplification region has a vertical extension width of 5 microns, a vertical magnification height of 145 microns, a horizontal magnification width of 50 microns, and a horizontal magnification height of 5 microns. Horizontal point spacing HDS1 is 15 microns, vertical point spacing VDS1 is 25 microns, horizontal dispersion • Field amplification spacing HFFARS is 5 microns and vertical discrete field amplification spacing VFFARS is 5 microns. In another embodiment of the invention, the buried polar region is polarized using a switching element adjacent to the halogen, rather than a dedicated buried polar region switching element. Figure 16 (e) shows a display 1630 that uses a pixel design (10, 0), P (1, 0), P (1, of a pixel design 1610 having a switching element column inversion mechanism. 0) and Ρ (1,1). Display 1630 has thousands of columns, each column having thousands of pixels. The columns and rows are continuous from the portion shown in Figure 16(e) •. For clarity of explanation, the gate line and the source line of the control switching element are omitted in Fig. 16(e). In order to better illustrate each pixel, the area of each element is masked; this masking is only for illustration in Figure 16(e) and has no functional significance. Due to space constraints, the color point is labeled CDXY to be relative to CD_X_Y, and the buried polarity region is labeled EPRXY to be relative to EPR_X_Y. Since the displays 1630 and 1620 are very similar, only the differences will be described in detail later. For example, the elements of display 1630 are configured in the same manner as the elements of display 1620. Furthermore, the color point, the switching element, and the polarity of the 2011% enlarged area are the same. Thus, as in display 1620, a pixel on display 1630 also has a first dot polarity pattern when y is even, and also has a second dot polarity pattern when y is odd. The main difference between the display benefits 1620 and 1630 is that the polarity of the buried polarity region in display 163A is provided by the switching elements of adjacent pixels, rather than from the buried polar regions dedicated to display 1620. Switch the component. In the display 1630, the second pixel is paired so that the buried polarity region of the first pixel is coupled to the switching element of the second pixel, and the buried polarity region of the second pixel is connected. The switching element to the first pixel. In particular, the elements in the even columns are paired with the pixels in the odd columns on the even columns. Therefore, in Fig. 16 (4), the alizarin p (G, G) is paired with the pixel, and 1) is paired with the alizarin p (dimorphism) and the alizarin PU. ^ and Lu, if y is an even number, the pixel P(.x, y) is paired with the pixel ρ(χ, γ. Conversely, if y is an odd number, a 昼素圭 P(x,Y) -1) Paired. "Goods." As shown in Figure 16 (4), in the display 163, the system is coupled by a conductor C"j-Χ-γ (not limited by space constraints) To a pair of pixels, a switching element, such as a halogen element (the ϋ system is shortened to (10) = !), the buried polarity region EPR12 is coupled to Ώ ", Ρ Ρ (0, , for embedding The conduction of the region ==,: = 疋 is in different planes. Usually the 'color point is formed by indium tin oxide, the 40th 201131251 - plane' and the conductive system is formed in a second plane with a conductive material. As mentioned above, in the odd column The embedded polar region switching element of the first pixel in the upper pixel is coupled to the switching element of the pixel under the first element. For example, the buried polarity of the pixel p(0, 丨) The region EPRJ-2 (labeled as EPR22 in Figure 16(e)) is coupled to the pixel p by a conductor C-〇-匕2 (in ^6 (indicated as C0122)) The switching element 兕_2. Similarly '昼素P(〇,1) The buried polar region EpR—2—丨 (not labeled as EPR21 in Figure 16(4)) is coupled to the halogen P by a conductor c—〇_2—1 (in Figure 16 (indicated by C#1) , 0) switching element SE_2. In general, when J is an odd number, a conductor CJ_j_x_Y couples the buried polar region EPR_X-γ of the alizarin p (I, is - to the pixel p(I, The switching element SE_X of the 丨), in the elements of the even column, the buried polar region switching element of the first pixel is coupled to the switching element of the pixel on the first pixel. For example, the pixel The buried polarity region EPR_2-2 of P(0,0) (labeled as EPR22 in Figure i6(e)) is a conductor C_0-〇-2-2 (labeled C0022 in Figure 16(e)) • • coupled to the switching element SE-2 of the pixel P (〇' 1). Similarly, the buried polarity region EPR 2-1 of the pixel P (〇, 〇) (in Figure 16(e) Labeled as EPR21) - a switching element SE_2 coupled to a pixel P(0 '1) by a conductor C-0-0_2-1 (labeled 匚(10)2^ in Figure l6(e). When j is an even number, a conductor C_I_J_X_Y is a buried polar region of the pixel ρ(ι ' j) EPR_Χ_γ is coupled to the switching element π X of the pixel p(i ' j+i). As described above, in the display 1630, the adjacent pixel columns have opposite polarities. Therefore, from the proximity as described above The switching elements in the elements of the buried polar region provide polarity, causing the polarity of the buried polarity region to be less than the polarity of the 201131251 2 color point. This different polarity can be used to enhance the off-moon electric field in the color point and to reduce the touch moiré effect in display 1630. Fig. 16(f) is a view showing another embodiment of the present invention, in which the buried polar region is separated from the political field amplification region. In particular, Figure 16_ shows a portion of the display </ RTI> display 4040 using a pixel design 1610 having a switching element train mechanism! &gt;(;〇, 〇), ρ(1,, 1) and P(1 ’ 1). The display 164 can have thousands of columns listed in each column. The columns and rows are continued from the portion shown in Fig. 16 (1). For the sake of clarity, the gate line and source line of the control switching element are omitted in Figure 16(f). In order to better illustrate each pixel, the region of the element; this masking is for illustrative purposes only in Figure 16(f) and has no functional significance. Due to space constraints, the color point is labeled as (10) 丫 relative to CD_X-Y, and the buried polarity region is labeled EpRxγ at EPR X Y 〇 Since displays 1640 and 1620 are very similar, only the differences will be described in detail later. For example, the pixels of display 1640 are configured in the same manner as the display 1620. Furthermore, the polarity of the color point, the switching element, and the discrete field amplification region are the same. Thus, as in display i(d), a unit of display 1640 also has a first point when y is even, and pattern 'has a second point pattern when y is odd. The main difference between the significant 1620 and 1640 is that the polarity of the buried polarity region in display 164 is provided by the discrete field amplification region, rather than switching from the buried polarity region dedicated to display 1620. element. Specifically, as shown in Fig. 16(f), each buried polarity region in the display 丨 64 系 is coupled to the closest discrete field amplification region. Specifically, 42 201131251 says that a buried polar region EPR_X-γ of a unitary p(i,j) is represented by a conductor C-I-J-Χ-Υ (due to space limitation in Figure 6(1) Coupling to the discrete field amplification region FFAR-X, where I and j represent halogen (such as halogen P(I, J)) 'X is a color component, and γ represents a color point in the pixel (such as a color point) CD—X_Y (shortened to CDXY in Fig. 16(1)). For example, conductor C0112 couples the buried polar region EpR12 of halogen ρ(〇,丨) to the discrete field of halogen P(0, 1) The magnified area FFAR-1 (not specifically shown in Figure 16(f)). The guiding system for the buried area is indicated by a dashed line to represent that the conductor and the color point are in different planes. Usually, the color point and the discrete field are magnified. The region is formed by indium tin oxide in a first plane, and the conductive system is formed in a second plane by a conductive material. Therefore, a via (designated as V) is used to connect the discrete field amplification region to the conductor. In 16(f), the discrete field amplification region is coupled to a switching element that is closest to the pixel in one of FIG. 16(d) as described above. In other embodiments, the discrete field amplification region may receive polarity using other methods, such as dedicated discrete field amplification region switching elements. As described above, the discrete field amplification regions have an opposite polarity as compared to the color point. The discrete field amplification region provides a polarity to the buried polarity region' which causes the polarity of the buried polarity region to be different from the polarity of the color point. This different polarity is used to enhance the discrete electric field in the color point and reduce the touch in the display 1640. Moiré effect. According to another embodiment of the present invention, the pixel design 1610 can be easily modified for use with the switching element dot inversion driving mechanism. Figure 17(a)_17(b) shows a pixel designΠΙΟ The different polarity pattern, the element design is a modified version of the pixel design 1610 (Fig. 16(a)-16(b)). Specifically, 43 201131251 pixel design 171G has a positive point polarity map This is labeled i7i〇) and in Figure 17(b), the halogen design 171〇 has a negative dot polarity pattern (hence the $1710—). Furthermore, in different pixel designs, the polarity of each polarized component is either "+" as positive polarity or "― is negative polarity. ® pixel design 1710 has three color components cc-i , cc-2 and CC-3 (not shown in Figure 7(4)·]7(b)). Each color sub-f consists of two-color point sighs 6:1710 and also includes a switching element for each color component. (series SE-1, SE_2, and SE_3) and the discrete field amplification regions of each color component (of FFAR-1, ffaR_2, and FFAR-3). In the 171 design, the color point, switching element and discrete field The layout of the enlarged area is the same as that of the pixel design 161. For the sake of brevity, the description of the layout is not repeated. The switching elements SE", SE-2, and SE_3 are the same as the pixel design 161 described above. The means are coupled to the color components cc-丨, cc-2, and cc 3, respectively. As in the Alizarin design 1610, each color point of the 171 design of the pixel design includes a buried polarity region that minimizes any touch moiré effects in the color point. Since the configuration of the pixel region 1710 and the buried polarity region of the pixel design 161 is the same, the description will not be repeated. In general, each color point has a buried polar region centered within the color point. As described above, the polarity of the buried polar region is different from the polarity of the color dot. Therefore, the polarity of the buried polar region is controlled by a polar source different from the switching element SE-1 that controls the color point including the buried polar region. As described above, in some implementations of the invention In the example, a display includes a dedicated buried polarity area switching element to control the buried polarity area = polarity (refer to FIG. 16(d) as an embodiment). In the present invention, the implementation of 44 201131251 can be The buried polar region is coupled to other components with different polarities (Fig. 16(f)). The pixel design 1710 discrete field amplification region (FFAR-1, FFAR 2 and FFAR_3) is designed in the form of a pixel. The same is true in 1610. Therefore, as described above, and detailed in Figure 16(c), 'is also applied to the pixel design 171. The configuration of the discrete field amplification region of the pixel design 1710 is as described above. The same is true for the elementary design 1610. The color point, discrete field amplification area, and switching elements are represented by the "+" and "one" symbols. The Alizarin Design 1710 is intended for use in displays that have a switching element point-to-turn drive mechanism, but can also be used with a switching element line inversion drive mechanism. Therefore, in Fig. 17(a) showing the positive dot pattern of the pixel design 171〇+, the switching elements sej and SE-3, the color point i, the CD 1-2, the CD_3-1 and the CD-3_2, and The discrete field amplification region ffar_2 has a positive polarity. Conversely, the switching element se-2, the color point CD-1 and CD-2-2, and the discrete field amplification area FFAR- and FFAR-2 have negative polarity. As described above, the buried polar regions may have the same polarity direction (i.e., positive or negative) as the color dots, but have different polarity/polarity amounts. Alternatively, the buried polar region may have a different polarity from the color point (e.g., the color point polarity is a positive polarity and the buried polarity region is a negative polarity). Furthermore, the buried polar region can have a neutral polarity. In a particular embodiment of the invention, the buried polar region of the halogen design 1710 has a different polarity than the color point. Therefore, in this embodiment, the buried polar regions eprjj, EPR-3_1., and EPR-3_2 in FIG. 17(a) have a negative polarity; and the buried polar regions EPR-2 and 1 and EPR_2_2 have a positive polarity. . The color point, discrete field amplification area, and switching element are indicated by the symbol "+ 45 201131251 and "one". The Alizarin Design 1710 is selected for use in displays with switching element dot reversal mechanisms, but can also be used with displays having switching element row reversal mechanisms. Therefore, in Fig. 17(a) showing the positive dot pattern of the pixel design 171 〇 +, the switching element SE_; [with SE_3, color point CD_1_1, CD_l-2, CD 3-1 and CD-3 2 and the FFAR-2 from the umbrella field enlargement area has a positive polarity. Conversely, the switching element SE_2, the color points CD 2 } and CD_2_2, and the discrete field amplification areas ffaR_1 and FFAR 3 have negative polarity. As described above, the buried polar region may have the same polarity direction (i.e., positive or negative) as the color point but has a different polarity/polarity amount. Alternatively, the buried polar region may have a different polarity (i.e., a polarity direction) from the color point (i.e., the color point polarity is positive and the buried polarity region is negative polarity). Furthermore, the buried polar regions can have a neutral polarity. In a particular embodiment of the invention, the buried polarity region of the pixel designation §1710 has a different polarity than the color point. Therefore, in this embodiment, when the buried polar regions EpR-2-i and EpR_2_2 have positive polarity, the buried polarity regions EPR_1_2, EPR-3, and EPR_3-2 in FIG. 17(a) have Negative polarity. I— In the figure n(b) of the positive dot pattern of the design of the 1710+, the switching elements SE-1舆SE-3, the color point CDjj'cuhcn and the CD_3-2 and the discrete field amplification area FFAR— 2 has a negative polarity. Conversely, the switching το SE_2, the color points CD_2_1 and CD-2-2, and the discrete field amplification areas FFAR-1 and FFAR_3 have positive polarity. As described above, the buried polarity region may have the same polarity direction (i.e., positive or negative) as the color point, but has a different polarity/polarity amount. Alternatively, the buried polar region may have a different polarity (i.e., a very richer direction) than the color point (i.e., the color point polarity is positive and the buried polarity region is negative). Furthermore, the buried polar region can have a neutral polarity of 46 201131251. In a particular embodiment of the invention, the buried polarity region of the pixel design 1710 has a different polarity than the color point. Therefore, in this embodiment, when the buried polar regions EPR_2_j and EpR_2_2 have a negative polarity, the buried polar regions epr_i1, epr_ij2, EPR_3_1 and EPR-3, 2 in FIG. 17(b) Has a positive polarity. Unlike the switching elements of the halogen design 1610, the switching elements in the halogen design 1710 have both positive and negative polarities. In particular, when the switching element • SE_2 has a polarity, the switching elements se 1 and SE_3 have another polarity. Therefore, the 'discrete field amplification area can be polarized by the switching elements in the pixel design 171'. Figure 17(c), described below, is a discrete field amplification region that is polarized in the halogen design 1710 in accordance with an embodiment of the present invention. In other embodiments, the discrete field amplification region is driven by an external source of polarity, i.e., a source of polarity for a particular pixel on the outside of the pixel design 1710. The source of the opposite polarity can be used in accordance with various embodiments of the invention. For example, a particular discrete field amplification region switching element can be used, or a switching element with a proper point polarity adjacent to the pixel can also be used to drive the discrete field amplification region. In the embodiment of Figures 17(a)-17(b), a switching element having an appropriate point polarity adjacent to the element can also be used to drive the discrete field amplification region. Thus, the halogen 1710 includes a conductor to cause the discrete field amplification region to couple to switching elements in other pixels. In particular, a conductor 1712 of a pre-normal pixel couples the electrode of the discrete field amplification region FFAR_1 to the switching element SE_1 of one of the elements on the current pixel (refer to FIGS. 17(d) and 17(e)) . The connection to the switching element is via the electrode of the color point of the pixel on the current pixel. Similarly, a conductor 1714 of a current element couples the electrode of the discrete field amplification region FFAR-2 to a switching element 47 201131251 SE_2 on the current pixel (refer to FIGS. 17(d) and 17). (e)). The connection to the switching element is via an electrode of the color point of the pixel on the manganese. A current conductor 1716 couples the electrodes of the discrete field amplification region FFAR-3 to the switching element SE_3 of one of the elements on the current pixel (refer to Figs. 17(d) and 17(e)). The connection to the switching element is via the electrode of the color point of the pixel on the current pixel. These connections are shown in Figure 17 (sentence and 17(e) and are detailed later. Figure 17(c) shows a modified version of the 1710-1' as a modified version of the pixel design 1710. The design of the prime system is similar, so only the differences are described. Especially in the pixel design 1710-1, the conductors 1712, 1714 and 1716 are replaced by conductors 1713, 1715 and 1717. The conductor 1713 is a discrete field. The region FFAR_1 and the switching element SE-2 conductor 1715 coupled to the negative polarity connect the discrete field amplification region and the surface to the positive polarity switching element SE-3. The conductor 1717 couples the discrete field amplification region FFAR-3 with The negative polarity switching element SE_2. Fig. 17(d) shows a part of the display mo, which uses a pixel design 171〇 having a switching element column inversion driving mechanism, p(〇, 〇), 1(1) '0), p(0' 1) and p (different). Display 1720 has thousands of columns, = 1 with thousands of pixels. Rows and columns are in ® 17(d) Lian, '·贝为^楚5儿明, the gate line and the source line of the control switching element are omitted in the figure. Furthermore, the bit better illustrates each pixel, which is shaded. In the area of each and every element, this masking is only for the purpose of illustration in Figure 17(d), and the sub-not has a functional meaning. Due to space constraints, the color point is marked as CDXY to correspond to CD-χ-γ. And the burial-polar region is labeled as EPRXY to correspond to γ. The genus of the genus 1720 is configured so that the pixels in one column are switched between the negative dot polarity pattern of positive 48 201131251. The pixels in one row are also switched between the positive and negative dot polarity patterns. Therefore, the pixels p(〇, 〇) and P(1 ' 1) have a positive dot polarity pattern, 昼素p(〇, ” with ρ(ι,〇) and a negative dot polarity pattern. However, in the next page frame, the pixel is converted to a dot polarity pattern. Therefore, in general, when x+y is even, a pixel p ( x, y) has a first dot polarity pattern with a two-point polarity pattern when x+y is odd. The inner conductors 1712, 1714 and 1716 in the pixel design 1710 provide polarity to the discrete field amplification region. In particular, a first 昼 Sulu's departure from politics: W amplified area receives voltage polarity and voltage magnitude/voltage from a second element In particular, the second pixel is a halogen on the first pixel. For example, the electrode of the discrete field amplification region FFAR-1 of the pixel P (〇, 〇) is via the pixel P (0, 1) The electrode of the color point CD"_2 is lightly connected to the switching element SEJ of the pixel p(〇, 1). Similarly, the pixel p (〇, _ discrete field amplification area FFAR_2 and FFAR-3 electrode, respectively The ground is transferred to the pixel p (〇, (10) switching elements SEJ2 and SE_3 via the electrodes of the color points CD_2_2 and CD-3-2 of the pixel p(〇, 1). In the 172G, the '-the first pixel system is paired with the second element, so that the buried polar region of the first pixel is coupled to the switching element of the second pixel, and the second pixel The buried polar region is coupled to the switching element of the first pixel. In particular, the elements in the even columns are paired with the elements in the odd columns on the even columns. Therefore, in Fig. 17 ((1), the alizarin p(〇,〇) is paired with the pixel P(〇,1)' and the alizarin P(1,0) is paired with the alizarin p〇, paired In general, if Y is an even number, then a pixel ρ(χ , γ)隹 is paired with a pixel ρ(χ, Υ+1). Conversely, if Υ is an odd number, a pixel ρ( χ," is paired with Ρ素Ρ (Χ, Υ-1). ' 49 201131251 如圆 l/w尸;τ

示為CUXY)耦接到成對晝素的一切換元件,其中 表示包含埋置極性區域的晝素(如晝素P(I,J.S,X為^ 量’而Y係表示在晝素中的色點CD_X_Y(在圖d、: 縮短為CDXY)。舉例來說,導體咖12係將竺素=A 的埋置極性區域EPR12轉接到畫素p(0,0)—的切換元件) SEJ。對埋置極性區域的導體而言,係以纽表示導體係 與色點是在不同的平面。通常,色點係以氧化_顧在 一第一平面,而導體係以一金屬層形成在一第二平面。Shown as CUXY) is coupled to a switching element of a pair of halogens, wherein the halogen containing the buried polar region is represented (eg, alizarin P (I, JS, X is ^' and Y is expressed in alizarin) The color point CD_X_Y (in the figure d,: shortened to CDXY). For example, the conductor coffee 12 is a switching element that transfers the buried polarity region EPR12 of the pixel = A to the pixel p(0, 0) - SEJ For a conductor embedded in a polar region, the neon indicates that the guiding system and the color point are in different planes. Usually, the color point is oxidized in a first plane, and the guiding system is formed in a metal layer. a second plane.

如上所述,在晝素中之奇數列上,一第„畫素的埋置 極,區域係祕到在第—晝素下之畫素的切換元件。舉例 來說,晝素P(0, 1)的埋置極性區域EPR—2—2(在圖 標示砸22)係藉導體C_〇丄2_2(在圖_中標示c〇i22) 而搞接到晝素P(G ’ G)的切換元件SE_2。相似地,畫素p(〇, 1)的埋置極性區域EPR_2」(在圖17⑷中標示砸川係藉 導體C一〇_1_2一 1(在圖17(d)中標示C0121)而稱接到畫素 p(0,0)的切換元件SE_2。一般而言,一導體CJ-J— 係將晝素P(I,J)的埋置極性區域EPR_X—Y —書辛 P(W-D❸刀換元件SE-X,其巾J為奇數·: 一 在晝素中的偶數列上,一第一晝素的埋置極性區域係 搞接到第畫素上之晝素的切換元件。舉例來說,晝素 P(〇」〇)的埋置極性區域EPR一2_2(在圖17(d)中標示EPR22) 係藉導體C—0—〇一2一2(在圖17(d)中標示c〇022)而耦接到晝 素P(0,1)的切換元件SE—2。相似地,晝素p(〇,〇)的埋置 50 201131251 極性區域EPR一2一1(在圖l7(d)中標示ePR21)係藉導體 C_0_0—2—1(在圖17(d)中標示C〇〇2l)而耦接到晝素p(〇, 〇 的切換元件SE_2。一般而言,一導體c—j_x_Y係將畫 素P(I ’ J)的埋置極性區域EPR—χ_γ耦接到晝素p(I,J+1) 的切換元件SE一X ’其中J為偶數。 如上所述,在顯不器1720中,晝素的鄰近列具有相反 極!生。®此,如上所述從在鄰近列之晝素中的切換元件將 極性S供給埋雜性輯’係造賴置極㈣域的極性不 •同於色點的極性。此不同極性係用以強化在顯示器中172〇 之色點中的離散電場並降低觸碰雲紋效應。 如上所述,在顯示器1720中,畫素的鄰近列具有相反 極I·生。SU匕,如上所述從在鄰近列之晝素中的切換元件將 極性提供給埋置極性區域,係造成埋置極性區域的極性不 同於色點的極性。此不同極性係用以強化在顯示器中172〇 之色點中的離散電場並降低觸碰雲紋效應。 圖n(e)係繪示本發明的另一實施例’其係埋置極性區 域從離散場放大區域接收極性。特別是,圖17(e)係繪示部 分的顯示器1730,係使用具有一切換元件點反轉驅動機制 之畫素設計 1710 的畫素 P(0,〇)、p(i,0)、p(〇,1)與 p(1, L)顯不器1730具有數以千計列’每列具有數以千計畫素。 :與列係從圖17⑷的部分連續。為清楚說明,控制切換元 件的閘極線與源極線係在圖n(e)中省略。再者,為了更佳 圖解說明每—畫素,係遮蔽每一畫素的區域;此遮蔽在圖 办⑷中係僅為圖解說明用,且並沒有功能上的意義。由於 空間限制,色點係標示為CDXY以相對於CD_X—γ,埋置 51 201131251 極性區域係標示為EPRX Y以相對於EPR人γ。 因為顯示器173〇與顯示器172G係非常類似,故僅詳 述”差異處。舉例來說,顯示器173G的晝素仙 月欠琢放大區域的極性係相同。因此如同顯示€】72 0,當巧 為偶數時’在顯示器1730中的-晝素P(x,y)具有一第一 點極性圖案,tx+y為奇數時具有—第二點極性圖案。顯 示器1720與顯示器㈣之間的主要差異,係在於顯示器As described above, in the odd-numbered column in the element, the buried pole of the pixel, the region is secreted to the switching element of the pixel under the first element. For example, the pixel P (0, 1) The buried polarity region EPR-2 (in the icon 砸22) is connected to the pixel P (G ' G) by the conductor C_〇丄2_2 (indicated in the figure _c〇i22) Switching element SE_2. Similarly, the buried polarity region EPR_2" of the pixel p(〇, 1) (in Figure 17(4), it is indicated by the Chuanchuan system by the conductor C_〇_1_2-1 (marked C0121 in Figure 17(d) ) is called the switching element SE_2 connected to the pixel p(0,0). In general, a conductor CJ-J- is the buried polarity region of the halogen P(I,J) EPR_X—Y—书辛P (W-D file changer SE-X, the towel J is an odd number): In the even column of the element, the buried polar region of the first element is connected to the element of the first pixel. Switching components. For example, the buried polarity region EPR-2_2 of the halogen P(〇"〇 (labeled EPR22 in Figure 17(d)) is by conductor C-0-〇1-22 (in Figure 17). (d) is marked with c〇022) and coupled to the switching element SE-2 of the halogen P(0,1). Similarly, the alizarin p(〇埋) buried 50 201131251 Polar region EPR 2-1 (labeled ePR21 in Figure l7 (d)) is coupled by conductor C_0_0 2-1 (labeled C 〇〇 2l in Figure 17 (d)) To the pixel p (〇, 〇 switching element SE_2. In general, a conductor c-j_x_Y couples the buried polarity region EPR_χ_γ of the pixel P(I ' J) to the pixel p (I, J) +1) switching element SE_X' where J is an even number. As described above, in the display 1720, the adjacent columns of the pixels have opposite poles! Health. This, as described above, from the neighboring columns. The switching element in the polarity S is supplied to the burying layer. The polarity of the field is not the same as the polarity of the color point. This different polarity is used to enhance the discrete electric field in the color point of 172 显示器 in the display. And reducing the touch moiré effect. As described above, in the display 1720, the adjacent columns of pixels have opposite poles I. Raw, as described above, the polarity is provided from the switching elements in the adjacent columns of pixels. Buried in the polar region, the polarity of the buried polar region is different from the polarity of the color point. This different polarity is used to enhance the color point of 172 in the display. Discrete electric field and reduce the touch moiré effect. Figure n(e) illustrates another embodiment of the invention in which the buried polar region receives polarity from the discrete field amplification region. In particular, Figure 17(e) depicts The display portion 1730 of the display portion uses pixels P(0, 〇), p(i, 0), p(〇, 1), and p(1, of the pixel design 1710 having a switching element dot inversion driving mechanism. L) The display 1730 has thousands of columns 'each column has thousands of pixels. : Consistent with the column system from the portion of Figure 17 (4). For clarity, the gate line and source line of the control switching element are omitted in Figure n(e). Furthermore, in order to better illustrate each pixel, the area of each pixel is masked; this masking is only for illustration in the diagram (4), and has no functional significance. Due to space constraints, the color point is labeled CDXY to be embedded relative to CD_X-γ. 51 201131251 The polar region is labeled EPRX Y to be relative to the EPR human γ. Since the display 173A is very similar to the display 172G, only the "difference" is detailed. For example, the polarity of the magnifying area of the display 173G is the same as that of the enlarged area. Therefore, as shown in Fig. 72 0, when the skill is In the even case, the 昼 prime P(x, y) in the display 1730 has a first dot polarity pattern, and when tx+y is odd, has a second dot polarity pattern. The main difference between the display 1720 and the display (four), Is in the display

1730中的埋置極性區域係祕龍散場放大區域以接收極 性。The buried polar region in 1730 is the secret field of the secret dragon field to receive polarity.

特別是,如圖17(e)所示,在圖17(幻中每一埋置極性 區域係耦接到最鄰近的離散場放大區域。尤其是,書素 P(I ’ J)的埋置極性區域EPR一Χ_γ係藉由一導體 c」-J-X_y(因空間限制而標示為cijxy)而搞接到離散場 放大區域FFAR_X,其中小j係表示在晝素中的色點(如 色點CD_X一Y(在圖n(e)中縮短為CDXY))。舉例來說,導 體C0112係將晝素p(〇,1)的埋置極性區域EpR]2耦接到 晝素P(0 ’ 1)的離散場放大區域FFAR—1 (並未特別標示在圖 17(e))。對埋置性區域的導體係用虛線表示,以代表導體與 色點是在不同平面。通常,色點係以氧化銦錫形成在一第 一平面,且導體係以導電材質形成在一第二平面。因此, 一導通孔(標示為V)係使用到將離散場放大區域連接到導 體。在圖17(e)中離散場放大區域係如上之圖]7(d)所述輕 接到一鄰近晝素的一切換元件。然而在本發明的其他實施 例中,離散場放大區域係可使用其他方式接收極性,例如 52 201131251 專用的離散場放大區域切換元件。 如上所述,離散場放大區域相對色點而言,具有一相 反極性。從在如上所述之從鄰近列到埋置極性區域的畫素 中的切換元件提供極性,造成埋置極性區域的極性不同於 色點的極性。此不同的極性可用作強化在色點中的離散電 場,且降低在顯示器1720中的觸碰雲紋效應。 在本發明的不同實施例中,係已描述出無須在結構上 使用物理特性,以產生多區域垂直配向液晶顯示器之新穎 • 的結構與方法。如上所述在本發明的結構與方法之不同實 .施例,係僅說明本發明的原理,且並非為了將本發明的範 圍限制到所描述的特定實施例。舉例來說,從此揭露來觀 之,熟悉此技藝者可以界定其他晝素定義、點極性圖案、 晝素設計、色分量、離散場放大區域、垂直放大部、水平 放大部、極性、離散場、電極、基板及膜等等,並依據本 發明的原理使用這些交替的特性以產生一方法或系統。因 _ 此,本發明僅由隨後所述的申請專利範圍所限定。 • 雖然本發明以相關的較佳實施例進行解釋,但是這並 不構成對本發明的限制。應說明的是,本領域的技術人員 根據本發明的思想能夠構造出很多其他類似實施例,這些 均在本發明的保護範圍之中。 根據下述具體實施方式並結合下面的附圖,本發明的 目的、優點和新穎性將會更加清楚。 53 201131251 【圖式簡單說明】 圖 l(a)-l(c) ϋ表示習知單區域垂直配向液晶顯 示器之晝素的三個示意圖。 圖2 係表示習知多區域垂直配向液晶顯 示器之畫素的一示意圖。 圖 3(a)-3(b) 係表示依據本發明一實施例的一多 區域垂直配向液晶顯示器的示意圖。 圖 4(a)-4(b) 係表示依據本發明一實施例的一晝 素設計之示意圖。 • 圖 5(a)-5(b) 係表示依據本發明一實施例之一色 點不意圖。 圖 6(a)-6(c) 係表示依據本發明一實施例之一色 點示意圖。 圖 7(a)-7(c) 係表示依據本發明一實施例之一色點 示意圖。 圖 8(a)-8(c) 係表示依據本發明一實施例之一色 點示意圖。 • 圖 9(a)-9(c) 係表示依據本發明一實施例之一色 點示意圖。 圖 10(a)-10(c) 係表示依據本發明一實施例之一色 點示意圖。 圖 ll(a)-ll(c) 係表示依據本發明一實施例之一色 點不意圖。 圖12 係表示依據本發明一實施例之一色 54 201131251 圖 13(a)-13(c) 點示意圖。 係表示依據本發明一實施例之 圖 14(a)-14(b) 點示意圖。 係表示依據本發明一實施例之/色點 示意圖。 圖 15(a)-15(d) 係表示依據本發明一實施例的/畫素 圖 15(e) 設計之示意圖。 夕 〆_液 係表示依據本發明一實施例之/ 圖 16(a)-16(c) 晶顯示器其中部分的示意圖。 係表示依據本發明一實施例之/多 素設計示意圖。 圖 16(d) 係表示依據本發明一實施例之/液曰曰 圖 16(e) 顯示器其中部分的示意圖。 . 係表示依據本發明一實施例之&quot;浪 晶顯示器其中部分的示意圖。 圖 16(f) ^ 係表示依據本發明一實施例之/液 晶顯示器其中部分的示意圖。 圖 17(a)-17(b) 係表示依據本發明一實施例之〆畫素 設計示意圖。 圖 17(c) 係表示依據本發明一實施例之〆畫 素設計示意圖。 圖 17(d) j系表示依據本發明一實施例之/液 晶顯示器其中部分的示意圖。 圖 17(e) 係表示依據本發明一實施例之/液 55 201131251 晶顯示器其中部分的示意圖。 【主要元件符號說明】 500 色點 510 電極 512 埋置極性區域 514 埋置極性區域 516 埋置極性區域 517 改變導電性區域 518 埋置極性區域 519 改變導電性區域 600 色點 610 電極 612 埋置極性區域 614 電場減少層 700 . 色點 710 電極 712 埋置極性區域 714 電場減少層 800 色點 810 電極 812 埋置極性區域 814 電場減少層 56 201131251In particular, as shown in Fig. 17(e), in Fig. 17 (each embedded polar region is coupled to the nearest adjacent discrete field amplification region. In particular, the embedding of the pixel P (I ' J) The polar region EPR_Χ_γ is connected to the discrete field amplification region FFAR_X by a conductor c"-J-X_y (labeled as cijxy due to space limitation), wherein the small j system represents the color point in the pixel (such as color) Point CD_X_Y (shortened to CDXY in Figure n(e)). For example, conductor C0112 couples the buried polarity region EpR]2 of the halogen p(〇,1) to the halogen P (0) The discrete field amplification region FFAR-1 of '1) (not specifically shown in Fig. 17(e)). The conduction system for the buried region is indicated by a broken line to indicate that the conductor and the color point are in different planes. The dots are formed in a first plane with indium tin oxide, and the conductive system is formed in a second plane by a conductive material. Therefore, a via (designated as V) is used to connect the discrete field amplification region to the conductor. The discrete field amplification region in 17(e) is a switching element that is lightly coupled to a neighboring pixel as described above in Figure 7(d). However, in other embodiments of the invention, The field-of-field amplification region can receive polarity using other means, such as the 52 201131251 dedicated discrete field amplification region switching element. As described above, the discrete field amplification region has an opposite polarity with respect to the color point. From the proximity as described above The switching elements in the pixels listed in the buried polar region provide polarity, causing the polarity of the buried polarity region to be different from the polarity of the color point. This different polarity can be used to enhance the discrete electric field in the color point and is reduced in the display Touch moiré effect in 1720. In various embodiments of the invention, structures and methods have been described that do not require the use of physical properties in the structure to create a multi-region vertical alignment liquid crystal display. The present invention is not limited to the specific embodiments described, and is not intended to limit the scope of the present invention to the specific embodiments described. Artists can define other element definitions, point polarity patterns, pixel designs, color components, discrete field amplification areas, vertical magnification , horizontal amplification, polarity, discrete fields, electrodes, substrates and membranes, etc., and use these alternating characteristics in accordance with the principles of the present invention to produce a method or system. As a result, the invention is only patented as described subsequently The scope of the invention is defined by the accompanying preferred embodiments, which are not intended to limit the invention. It should be noted that those skilled in the art can construct many other similar implementations in accordance with the teachings of the present invention. The objects, advantages and novel features of the present invention will become more apparent from the following detailed description of the embodiments of the invention. (a)-l(c) 三个 denotes three schematic diagrams of a conventional single-region vertical alignment liquid crystal display. Figure 2 is a schematic diagram showing the pixels of a conventional multi-region vertical alignment liquid crystal display. 3(a)-3(b) are views showing a multi-region vertical alignment liquid crystal display according to an embodiment of the present invention. 4(a)-4(b) are schematic views showing the design of a single element in accordance with an embodiment of the present invention. • Figures 5(a)-5(b) show a color point in accordance with one embodiment of the present invention. 6(a)-6(c) are views showing a color point in accordance with an embodiment of the present invention. 7(a)-7(c) are views showing a color point in accordance with an embodiment of the present invention. 8(a)-8(c) are views showing a color point in accordance with an embodiment of the present invention. • Figures 9(a)-9(c) are diagrams showing a color point in accordance with an embodiment of the present invention. Figures 10(a)-10(c) are views showing a color point in accordance with an embodiment of the present invention. Figures 11(a)-ll(c) show a color point intent according to an embodiment of the present invention. Figure 12 is a diagram showing the color of a color 54 201131251 according to an embodiment of the present invention, Figure 13 (a)-13 (c). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 14(a)-14(b) is a schematic view showing an embodiment of the present invention. A schematic diagram of a color point in accordance with an embodiment of the present invention is shown. Figures 15(a)-15(d) are diagrams showing the design of the /pixel Figure 15(e) in accordance with an embodiment of the present invention. The 〆 _ liquid system represents a schematic view of a portion of the crystal display according to an embodiment of the present invention / Figs. 16(a)-16(c). A schematic diagram of a multi-element design in accordance with an embodiment of the present invention is shown. Figure 16 (d) is a view showing a portion of the display of Figure 16 (e) according to an embodiment of the present invention. A schematic diagram showing a portion of a &quot;wave crystal display according to an embodiment of the present invention. Figure 16 (f) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention. 17(a)-17(b) are diagrams showing the design of a 〆 pixel in accordance with an embodiment of the present invention. Figure 17 (c) is a schematic view showing the design of a photographic element according to an embodiment of the present invention. Figure 17 (d) j is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention. Figure 17 (e) is a schematic view showing a portion of a liquid crystal display device according to an embodiment of the present invention. [Main component symbol description] 500 color point 510 electrode 512 buried polarity region 514 buried polarity region 516 buried polarity region 517 changed conductive region 518 buried polarity region 519 changed conductive region 600 color point 610 electrode 612 buried polarity Region 614 Electric field reduction layer 700. Color point 710 Electrode 712 Buried polarity region 714 Electric field reduction layer 800 Color point 810 Electrode 812 Buried polarity region 814 Electric field reduction layer 56 201131251

900 色點 910 電極 912 埋置極性區域 914 電場減少層 1000 色點 1010 電極 1012 埋置極性區域 1014 電場減少層 1100 色點 1110 電極 1112 埋置極性區域 1114 電場減少層 1210 電極 1212 埋置極性區域 1214 電場減少層 1214—C 導電層 1214_I 絕緣層 1300 色點 1310 電極 1312 埋置極性區域 1314 絕緣層 1316 埋置電極 1318 改變導電區域 57 201131251 1400 色點 1410 電極 1412 埋置極性區域 1414 絕緣層 1416 埋置電極 1500 畫素設計 1501 液晶顯不益 1502 畫素 1503 偏光片 1505 基板 1510 畫素 1511 連接件 1512 連接件 1521 連接件 1522 連接件 1531 連接件 1532 連接件 1610 晝素設計 1610 + 晝素設計 1610- 晝素設計 1612 導體 1614 導體 1616 導體900 color point 910 electrode 912 buried polarity area 914 electric field reduction layer 1000 color point 1010 electrode 1012 buried polarity area 1014 electric field reduction layer 1100 color point 1110 electrode 1112 buried polarity area 1114 electric field reduction layer 1210 electrode 1212 buried polarity area 1214 Electric field reduction layer 1214-C Conductive layer 1214_I Insulation layer 1300 Color point 1310 Electrode 1312 Buried polarity region 1314 Insulation layer 1316 Buried electrode 1318 Change conductive region 57 201131251 1400 Color point 1410 Electrode 1412 Buried polarity region 1414 Insulation layer 1416 Embed Electrode 1500 pixel design 1501 LCD display unfavorable 1502 pixel 1503 polarizer 1505 substrate 1510 pixel 1511 connector 1512 connector 1521 connector 1522 connector 1531 connector 1532 connector 1610 昼 design 1610 + 昼 design 1610- Alizarin design 1612 conductor 1614 conductor 1616 conductor

58 20113125158 201131251

1620 顯示器 1630 顯示器 1640 顯示器 1710 晝素設計 1710 + 晝素設計 1710- 晝素設計 1710-1 畫素設計 1712 導體 1713 導體 1714 導體 1715 導體 1716 導體 1717 導體 1720 顯示器 1730 顯示器 ADH 關聯點高度 ADW 關聯點寬度 C0112 導體 CC_1 色分量 CC_2 色分量 CC_3 色分量 CD丄1 色點 CD—1_2 色點 59 201131251 CD丄3 色點 CD_2—1 色點 CD_2_2 色點 CD_2_3 色點 CD_3_1 色點 CD_3_2 色點 CD_3_3 色點· CDH 色點高度 CDW 色點寬度 DCA_1 裝置元件區域 DCA_2 裝置元件區域 DCA_3 裝置元件區域 DCAH 裝置元件區域高度 DCAW 裝置元件區域寬度 E 電極 Ell 電極 E12 電極 E13 電極 E21 電極 E22 電極 E23 電極 E31 電極 E32 電極 60 201131251 E33 EPR 丄 1 EPR丄1 EPR丄2 EPR_2_1 EPR_2_2 EPR_3_1 _ EPR 3 1 EPR_3_2 EPR_SE_ EPR_SE_ EPR_SE_1 EPRSE FFAR—1 FFAR_2 • FFAR—31620 Display 1630 Display 1640 Display 1710 Alias Design 1710 + Alizarin Design 1710 - Alizarin Design 1710 1 Pixel Design 1712 Conductor 1713 Conductor 1714 Conductor 1715 Conductor 1716 Conductor 1717 Conductor 1720 Display 1730 Display ADH Associated Point Height ADW Associated Point Width C0112 Conductor CC_1 Color component CC_2 Color component CC_3 Color component CD丄1 Color point CD—1_2 Color point 59 201131251 CD丄3 Color point CD_2—1 Color point CD_2_2 Color point CD_2_3 Color point CD_3_1 Color point CD_3_2 Color point CD_3_3 Color point · CDH Color point height CDW Color point width DCA_1 Device element area DCA_2 Device element area DCA_3 Device element area DCAH Device element area height DCAW Device element area width E Electrode E11 Electrode E12 Electrode E13 Electrode E21 Electrode E22 Electrode E31 Electrode E32 Electrode 60 201131251 E33 EPR 丄1 EPR丄1 EPR丄2 EPR_2_1 EPR_2_2 EPR_3_1 _ EPR 3 1 EPR_3_2 EPR_SE_ EPR_SE_ EPR_SE_1 EPRSE FFAR-1 FFAR_2 • FFAR-3

HAP HAP—H HAPW HDOl HDS HDS1 HFFARS 電極 埋置極性區域 1埋置極性區域 埋置極性區域 埋置極性區域 埋置極性區域 埋置極性區域 1埋置極性區域 埋置極性區域 1埋置極性區域切換元件 &gt;_2埋置極性區域切換元件 1埋置極性區域切換元件 2埋置極性區域切換元件 離散場放大區域 離散場放大區域 離散場放大區域 水平放大部 水平放大部高度 水平放大部寬度 水平點偏移 水平點間距 水平點間距 水平離散場放大區域間距 61 201131251HAP HAP-H HAPW HDOl HDS HDS1 HFFARS Electrode Buried Polar Region 1 Buried Polar Region Buried Polar Region Buried Polar Region Buried Polar Region Buried Polar Region 1 Buried Polar Region Buried Polar Region 1 Buried Polar Region Switching Element &gt;_2 Buried Polar Region Switching Element 1 Buried Polar Region Switching Element 2 Buried Polar Region Switching Element Discrete Field Amplification Region Discrete Field Amplification Region Discrete Field Amplification Region Horizontal Amplification Port Horizontal Amplification Section Height Horizontal Amplification Section Width Horizontal Point Deviation Moving horizontal point spacing horizontal point spacing horizontal discrete field amplification area spacing 61 201131251

SE_1 SE_2 SE_3 T1 T2 T3 V VAP VAPH VAPW VDOl VDS VDS1 VFFARS 切換元件 切換元件 切換元件 電晶體 電晶體 電晶體 空隙 垂直放大部 垂直放大部高度 垂直放大部寬度 垂值點偏移 垂直點間距 垂直點間距 垂直離散場放大區域間距SE_1 SE_2 SE_3 T1 T2 T3 V VAP VAPH VAPW VDOl VDS VDS1 VFFARS Switching element switching element switching element transistor transistor transistor gap vertical amplification part vertical amplification part height vertical magnification part width value point offset vertical point spacing vertical point spacing vertical Discrete field amplification area spacing

6262

Claims (1)

201131251 七、申請專利範圍·· 1、一種顯不器’係包括. 第晝素,具有一第一切換元件; 一第一電極,係耦接到該第一畫素的該第〆切 換元件; — 一第二晝素,係包含:201131251 VII. Patent application scope··1. A display device includes: a first element having a first switching element; a first electrode coupled to the first switching element of the first pixel; - a second element, containing: «:··, 一第一色分量,具有一第一色點與一第二 色點為第色點具有一第一埋置極性區域,5亥 第一色點具有一第二埋置極性區域;以及 第一切換元件,係耦接到該第二畫素之 «•玄第色分量的該第一色點與該第二畫素之該 第一色分量的該第二色點; 其中,該第一電極係位在該第二晝素之該第一 色分量的該第-色點與該第二畫素之該第一色分量 的該第二色點之間。 2、 依據中請專利範圍第w所述的顯示器,其中該第一 f素更包括-第-色分量,該第_畫素的該第〆色分 里係具有一第一色點,且該電極係為該第一畫素之該 第—色分量的該第一色點的一部分。 3、 依據申請專利範圍第1項所述的顯示器,其中該第一 電極係為該第二晝素的一離散場放大區域。 依據申睛專利範圍第3項所述的顯示器,其中該第一 電極更包括: 一第一水平放大部,係沿該第一色分量之該第二 63 201131251 晝素的該第-色點的-第-側及沿該第―色分量之該 第二晝素的該第二色點的—第—側而延伸;以及&quot; 一第-垂直放大部’係沿該第—色分量之該第二 晝素的該第一色點的一第二側及沿該第一色分量 第二晝素的該第二色點的一第二侧而延伸。 人 5、 依據中請專利範圍第1項所述的顯示器, 畫素的該第一切換元件係架構為具有-第1極了生,且 該第二畫素的該第-切換元件係架構為具有 極性。 一 其中該第― 其中該電場 其中該電場 其中該電場 6、 依據申請專利範圍第!項所述的顯示器 埋置極性區域係包括一電場減少層。° 7、 依據申請專利範圍第6項所述的^示器 減少層係具有一圓柱形形狀。 ° 8、 依據申請專利範圍第6項所述的顯示器 減少層係具有一角錐形形狀。 ° 9依據申請專利範圍第6項所述的顯示器 減J層係具有一圓錐體形狀。 10、 依據”專利範圍第6項所述麵示㊉ 場減少層係為一橢圓形。 -其中該電 11、 依據申請專利範圍第6 場減少層係、具有-三角立方體形狀4以’其中該電 2、依據申請專利範圍第6項所述 :減少層係具有在該電場減少層之 凸凹坑。 7負。卩具有一圓 64 201131251 13、 依據申請專利範圍第6項所述的顯示器,其中該電 場減少層更包括一絕緣層及一導電層。 14、 依據申請專利範圍第13項所述的顯示器,其中該絕 緣層係位在該第二晝素之該第一色分量的該第一色 點與該導電層之間。 15、 依據申請專利範圍第14項所述的顯示器,其中唁第 一埋置極性區域的該導電層係耦接到—第一埋^極 性區域切換元件。 16、 依據申請專利範圍第15項所述的顯示器,其中該第 一埋置極性區域切換元件係架構成具有一第一極 性,該第二畫素之該第一切換元件係架構成具有一第 一極性。 Π、依據申請專利範圍第14項所述的顯示器,其中該第 二晝素之該第一晝素的該第一色點的該電極,係包括 一空隙,且該導電層係位在該空隙之下。 18、 依據申請專利範圍第6項所述的顯示器,其中該第 一埋置極性區域係包括一改變導電區域,該改變導電 區域係在該第二晝素之該第一色分量的該第一色點 的一電極中。 19、 依據申請專利範圍第18項所述的顯示器,其中該改 變導電區域係為一大量地參雜區域。 20、 依據申請專利範圍第19項所述的顯示器,其令該改 變導電區域係由一非導體材質所形成。 ' ~ 21、 依據申請專利範圍第1項所述的顯示器,其中該第 65 201131251 一埋置極性區域係耦接到該第一畫素的該第一切換 元件。 22 23 24 25 26 27 28 、依據申請專利範圍第21項所述的顯示器,其中該第 一埋置極性區域係耦接到該第—晝素的該第—切換 元件。 、依據申請專利範圍第22項所述的顯示器,其中該第 一畫素係包括一第一色分量,係包含:«:··, a first color component having a first color point and a second color point as a first color point having a first buried polarity region, and a first color point having a second buried polarity region And the first switching element is coupled to the first color point of the first color component of the second pixel and the second color point of the first color component of the second pixel; The first electrode is located between the first color point of the first color component of the second pixel and the second color point of the first color component of the second pixel. 2. The display of claim w, wherein the first element further comprises a - color component, the third color of the first pixel has a first color point, and the The electrode is a portion of the first color point of the first color component of the first pixel. 3. The display of claim 1, wherein the first electrode is a discrete field amplification region of the second pixel. The display of claim 3, wherein the first electrode further comprises: a first horizontal amplifying portion along the first color point of the second color of the second color of the 201131251 pixel a first side extending along a first side of the second color point of the second color of the second color component; and a &quot; a first vertical magnification portion along the first color component A second side of the first color point of the second pixel and a second side of the second color point of the second element of the first color component extend. According to the display of claim 1, the first switching element system of the pixel has a first pole, and the first switching element structure of the second pixel is Has polarity. One of the first - where the electric field is the electric field, wherein the electric field is 6, according to the scope of the patent application! The display buried polar region of the present invention includes an electric field reducing layer. ° 7. The reducer layer according to the scope of claim 6 has a cylindrical shape. ° 8. The display reducing layer according to claim 6 of the patent application has a pyramid shape. The display reduced layer J according to claim 6 of the patent application has a conical shape. 10. According to the sixth paragraph of the patent scope, the ten reduction layer is an ellipse. - Among them, the electricity is 11. According to the scope of the patent application, the sixth layer is reduced in layer, and has a triangular cube shape of 4 to 2, according to the scope of claim 6: the reduction layer has a convex pit in the electric field reduction layer. 7 negative. The crucible has a circle 64 201131251 13 , according to the display of claim 6 wherein The electric field reducing layer further includes an insulating layer and a conductive layer. The display according to claim 13 wherein the insulating layer is in the first color of the first color component of the second pixel. The display according to claim 14, wherein the conductive layer of the first buried polarity region is coupled to the first buried polarity region switching element. The display device of claim 15, wherein the first buried polarity area switching element bracket is configured to have a first polarity, and the first switching element of the second pixel is configured to be The display according to claim 14, wherein the electrode of the first color point of the first element of the second element includes a gap, and the conductive layer The display device of the sixth aspect of the invention, wherein the first buried polarity region comprises a change conductive region, the changed conductive region being in the second pixel The display of the first color point of the first color point. The display according to claim 18, wherein the change conductive area is a large number of mixed areas. The display of claim 19, wherein the modified conductive region is formed of a non-conductor material. The display according to claim 1, wherein the 65th 201131251 a buried polar region coupling The first switching element is connected to the first pixel. The display device according to claim 21, wherein the first buried polarity region is coupled to the first The first element - the switching element, according to the patent application range of the display 22, wherein the first system comprises a first pixel color component, system comprising: -第-色點’具有一第三埋置極性區域;以及 一第二色點,具有一第四埋置極性區域; 該帛畫素之s彡第—切換元件係輕接到言 第-畫素之該第一色分量的該第—色點與該第一, 素之該第一色分量的該第二色點。 一 ‘依據申請專利範圍第23項所述的顯示器, ::置極性區域係耦接到該第二晝素之該第一㈣ ‘依據申請專利範圍第24項所述的顯示器a first color point having a third buried polarity region; and a second color point having a fourth buried polarity region; the first element of the 帛 彡 彡 切换 切换 切换 切换 切换 切换 切换 切换The first color point of the first color component and the second color point of the first color component of the first color component. A display according to claim 23, wherein the ::polarity region is coupled to the first (four) of the second pixel, and the display according to claim 24 of the patent application scope 四埋置極性區域係耦接到該第二書 ^ 〇 元件。 息京之该第一切I 依據申請專利範圍帛i項所述的顯示器, 一埋置極性區域係耦接到該第—電極。“ μ 器,該第 1項所述的顯示 器’其中該第 依據申請專利範圍第 二畫素更包括: 66 201131251 一第二色分置,包含一第一色點與一第二色點, 該第二畫素之5亥第二色分量的該第一色點具有一第 三埋置極性區域,該第二畫素之該第二色分量的該第 二色點具有一 四埋置極性區域;以及 一第二切換元件,係耦接到該第二晝素之該第二 色分量的該第一色點與該第二晝素之該第二色分量 的該第二色點。 29、 依據申請專利範圍第28項所述的顯示器,其中:The four buried polar regions are coupled to the second book 元件 element. According to the display of the patent application scope 帛i, a buried polar region is coupled to the first electrode. The "micrometer, the display of the first item" wherein the second pixel of the patent application scope further comprises: 66 201131251 a second color separation comprising a first color point and a second color point, The first color point of the second color component of the second pixel has a third buried polarity region, and the second color point of the second color component of the second pixel has a four buried polarity region And a second switching element coupled to the first color point of the second color component of the second pixel and the second color point of the second color component of the second pixel. According to the display of claim 28, wherein: 該第二晝素之該第一色分量的該第一色點,係與 該第二畫素之該第二色分量的該第一色點在一第一 維度配向; 該第二晝素之該第一色分量的該第一色點,係與 該第二晝素之該第二色分量的該第二色點在一第二 維度配向;以及 該第二畫素之該第一色分量的該第二色點,係與 5玄第二畫素之該第二色分量的該第二色點在該第-維度配向。 30、 依據申請專利範圍第28項所述的顯示器,其中該第 =晝:二1一?換元件係架構成具有-第-極 以°&quot; —I之料二_元件係、架構成該第-極 依2請專利範圍第 :::之該第一切換元件係架構成—第一極性… -旦素之该第—切換元件係架構成—第二極性。 67 31 201131251 32、依攄申凊專利範圍第1項所述的顯示器,其中嗲第 二畫素之5亥第一色分量更包括一第三色點,該第二書 素之該第一色分量的該第三色點具有—第三埋置極 性區域。 33、依據申請專利範圍第32項所述的顯示器,其中該第 二畫素之該第一色點係與該第二畫素之該第一色分 量的該第二色點再一第一維度配向,且該第二晝素之 該第一色分量的該第三色點係從該第二晝素之該第 一色分量的該第一色點在該第一維度與一第二維度 柢消。The first color point of the first color component of the second pixel is aligned with the first color point of the second color component of the second pixel in a first dimension; the second pixel The first color point of the first color component is aligned with the second color point of the second color component of the second pixel in a second dimension; and the first color component of the second pixel The second color point is aligned with the second color point of the second color component of the 5th second pixel in the first dimension. 30. According to the display of claim 28, wherein the first = 昼: two one? The replacement component frame constitutes a first-to-first switching element frame--the first component of the first and second components of the patent range::: Polarity - The first component of the switching element - the second polarity. The display of claim 1 , wherein the first color component of the second pixel further comprises a third color point, the first color of the second pixel The third color point of the component has a third buried polarity region. 33. The display of claim 32, wherein the first color point of the second pixel and the second color point of the first color component of the second pixel are further a first dimension Aligning, and the third color point of the first color component of the second pixel is from the first color point of the first color component of the second pixel in the first dimension and a second dimension Eliminate.
TW99133491A 2010-03-10 2010-10-01 Liquid crystal displays having color dots with embedded polarity regions TWI431364B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/721,536 US8471971B2 (en) 2005-09-15 2010-03-10 Liquid crystal displays having color dots with embedded polarity regions

Publications (2)

Publication Number Publication Date
TW201131251A true TW201131251A (en) 2011-09-16
TWI431364B TWI431364B (en) 2014-03-21

Family

ID=44601589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99133491A TWI431364B (en) 2010-03-10 2010-10-01 Liquid crystal displays having color dots with embedded polarity regions

Country Status (2)

Country Link
CN (1) CN102193232B (en)
TW (1) TWI431364B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018537B2 (en) * 2006-05-22 2011-09-13 Hiap L. Ong Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays
CN100480794C (en) * 2006-07-10 2009-04-22 胜华科技股份有限公司 Multiple-domain liquid crystal display
JP4734503B2 (en) * 2007-02-20 2011-07-27 奇美電子股▲ふん▼有限公司 Multi-domain LCD
TWI338797B (en) * 2007-05-21 2011-03-11 Hiap L Ong Large-pixel multi-domain vertical alignment liquid crystal using fringe fields

Also Published As

Publication number Publication date
CN102193232B (en) 2014-06-18
TWI431364B (en) 2014-03-21
CN102193232A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
CN105159001B (en) Array substrate and its manufacturing method, display panel and display device
TWI374307B (en) Pixels using associated dot polarity for multi-domain vertical alignment liquid crystal display
CN104865737B (en) A kind of display panel, its driving method and display device
CN101819365B (en) Liquid crystal display panel and driving method of pixel column
CN106707648B (en) A kind of display base plate, display device and its driving method
TW201001389A (en) Liquid crystal display
TW201003622A (en) Liquid crystal display and driving method thereof
CN1991534B (en) Liquid crystal display
US9818327B2 (en) Display device
US9472581B2 (en) Display device
US10303002B2 (en) Pixel structure, driving method thereof, display substrate and display device
CN105609066B (en) A kind of display panel and its driving method and display device
TWI338797B (en) Large-pixel multi-domain vertical alignment liquid crystal using fringe fields
CN101738807B (en) Thin film transistor array substrate and liquid crystal display device thereof
US9373647B2 (en) Thin film transistor array panel and liquid crystal display including the same
CN104656322B (en) Liquid crystal display device and three-dimensional display apparatus
TWI406038B (en) Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays
TWI333113B (en) Liquid crystal display and driving method thereof
TW201131251A (en) Liquid crystal displays having color dots with embedded polarity regions
US8018537B2 (en) Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays
TW201329597A (en) Liquid crystal displays having pixels with embedded fringe field amplifiers
CN102023404B (en) Liquid crystal display
TWI477866B (en) Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays
US9443483B2 (en) Liquid crystal displays having pixels with embedded fringe field amplifiers
TWI447480B (en) Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees