201127965 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有奈米微粒之複合無鉛焊錫合 金組成物,特別是關於一種可提高機械性質及抗潛變的 能力,以及抑制焊接後介金屬成長之具有奈米微粒之複 合無錯焊錫合金組成物。 【先前技術】 在目前電子產品中,錫-鉛合金經常用來做為焊料, 以供結合小型電子元件。然而,由於船及其化合物對環 境會造成毒性污染,因此國際法規逐漸限制含鉛焊料在 電子產品中的使用。例如,“廢棄電子類設備(waste electrical and electronic equipment,WEEE)’’之規定提出 了對電子產品之收集及回收之標準,及“相關有害物質 禁用(restriction of hazardous substances,R〇HS)之規定 則是試圖減少這些電子產品在使用、處理與暴露衍生的 問題,上述規定造成許多電子產品代工大廠開始將銷往 歐洲及曰本等地區的產品組裝轉變爲無鉛製程,特別是 各大半導體封裝廠商及被動元件供應商皆順此趨勢推 出各種無鉛封裝產品及無鉛被動元件産品。 目前在製造成本控制和技術可靠性上,使用無鉛焊 料之産品已經日趨成熟’《中常見的無錯禪料大致可依 據含鉛焊料Sn37Pb(含37%之鉛,熔點183。〇的熔點高 低區分為.低炫點焊錫合金,例如%58則(含π。/。之錢 201127965 熔點138°C)、In3Ag (含97%之銦及3〇/。之銀,熔點143 °C)、In48Sn (含 48%之銦,熔點 118°C);近似 Sn37Pb 之共晶熔點焊料,例如Sn0.7Cu (含0.7%之銅,溶點227 °C)、Sn3.5Ag (含 3.5%之銅,熔點 221°C)、Sn9Zn (含 9%之鋅,熔點199°〇、8113.5八§0.7〇1(含3.5%之銀及 0.7%之銅,熔點221°C);以及,高熔點焊料有Au20Sn (含 80%之金及20%之錫,熔點282°C)、Sn5Sb (含5%之銻, 熔點233-240°C)等。下列表一為常用無鉛焊料的材料特 性分析。 表一、常用無船焊料的材料特性分析。201127965 VI. Description of the Invention: [Technical Field] The present invention relates to a composite lead-free solder alloy composition having nano particles, in particular to an ability to improve mechanical properties and resistance to creep, and to suppress post-weld soldering A composite error-free solder alloy composition having nanoparticles grown by metal. [Prior Art] In current electronic products, tin-lead alloys are often used as solders for combining small electronic components. However, due to the toxic pollution of the ship and its compounds to the environment, international regulations have gradually restricted the use of lead-containing solders in electronic products. For example, the "waste electrical and electronic equipment (WEEE)"'s regulations set forth standards for the collection and recovery of electronic products, and the provisions of the "restriction of hazardous substances" (R〇HS). It is an attempt to reduce the problems associated with the use, handling and exposure of these electronic products. These regulations have caused many electronics OEMs to begin to convert their products to Europe and Sakamoto into lead-free processes, especially for major semiconductors. Packaging manufacturers and passive component suppliers are following this trend to introduce a variety of lead-free package products and lead-free passive components. At present, in terms of manufacturing cost control and technical reliability, products using lead-free solder have become increasingly mature. 'The common error-free zen material can be roughly based on lead-containing solder Sn37Pb (containing 37% lead, melting point 183. For low-point solder alloys, for example, %58 (including π./. 201127965 melting point 138 °C), In3Ag (97% indium and 3〇/. silver, melting point 143 °C), In48Sn ( Contains 48% indium, melting point 118 ° C); eutectic melting point solder similar to Sn37Pb, such as Sn0.7Cu (containing 0.7% copper, melting point 227 ° C), Sn3.5Ag (containing 3.5% copper, melting point 221 °C), Sn9Zn (containing 9% zinc, melting point 199 ° 〇, 8113.5 八 § 0.7 〇 1 (containing 3.5% silver and 0.7% copper, melting point 221 ° C); and, high melting point solder with Au20Sn (including 80% gold and 20% tin, melting point 282 ° C), Sn5Sb (including 5% bismuth, melting point 233-240 ° C), etc. Table 1 below is a material analysis of commonly used lead-free solders. Table 1, commonly used Analysis of material properties of ship solder.
焊料 Sn37Pb Sn3.5Ag In48Sn Sn3.5Ag0.7 Cu Au20Sn 熔點(°c) 183 221 118 217 280 比重(g/cm3) 8.4 7.5 - 7.5 14.51 電阻值(μΩαη) 15 10.8 - 13 17.9 導熱係數(W/cm.°C) 0.5 (85〇〇 0.33 (85°〇 36.2 0.35 (85°C) 57 熱膨脹係數CTE (ppm/K) 25 30 22 17 16 抗拉強度(Mpa) 46 35 11.9 48.5 36 抗剪強度(Mpa) 23 27 11.9 — — 楊氏係數(GPa) 30 16.5 30.5 — 60 延展性(%) 31 39 80 36.5 — 201127965 隨著電子產品的發展漸趨小型化、多功能化、高頻 化及高佈局密度化等,一些電子構裝因應而生,例如: 發光二極體(light emitting diode ’ LED)、光纖(0pticai fiber)或導熱介面材料(thermai interface material,TIM) 封裝技術等。上述的LED或光纖在其輸入/輪出端 I/〇(Input/Output)的端子或接頭處需要藉由焊錫焊接結 合外部電源線或訊號線,另外封裝技術亦需藉由 焊錫做為導熱介面材料(ΤΙΜ)以媒介連接於散熱片與半 導體晶片之間。然而,考量上述焊錫合金進行焊接的溫 度不得影響LED、光纖、半導體晶片或電路基板的材料 結構穩定性,因此上述焊接製程必需選用低熔點焊錫合 金,例如銦錫合金或銦銀合金,其中最常見的低熔點焊 錫合金有純銦(pure In)、In3.5Ag及In48Sn銦錫合金, 其熔點甚低’如In48Sn銦錫合金熔點為,因此在 其熔化溫度下進行焊接製程將不會影響上述電子元件 之材料特性。然而,許多研究結果指出,無鉛焊錫合金 與焊點之間的接點存在之脆化模式可能影響電子產σ 之焊接可靠度及其使用壽命。該脆化模式大多起因於界 面處所發生的破壞裂痕,其失效主要因素是機械衝擊 (shock or impact)或是材料熱膨脹係數(CTE)差異 所引發之熱應力,其將造成界面層生成硬脆介金屬化人 物(mtermetallic compound,IMC) ’並成為破壞發生的 起點,而機械衝擊的破壞起源點也是發生於界面處。 201127965 如上所述,當焊料焊接結合於一電子元件上時,在 長期高溫使用下’焊料可能必需單獨承受熱應力 (thermal stress),促使焊料發生潛變(creep)現象,這種 現象將造成電子訊號無法正確的傳達。例如,在半導體 封裝領域中,當利用銦錫合金焊料(In48Sn)、錫銀合金 焊料(如Sn3.5Ag)、錫銅合金焊料(如Sn0.7Cu)或金錫合 金焊料(如Au20Sn)做為凸塊以媒介結合晶片焊塾及基 φ 板焊墊(其表面材質為銅、金或銀)時,容易產生介金屬 化合物層(例如AgsSn、Ci^Sn或AuSn等),該些介金屬 化合物層會導致在溫度循環試驗中造成焊接位置無法 承受熱應力(thermal stress)所引起的潛變(creep),或是 無法承受外加機械應力所引起的負荷。因此’硬脆的介 金屬化合物層容易變成破裂(craeking)發生的起點,因 而導致焊點的失效,而影響電性連接或散熱效果。為了 防止這問題發生,焊錫接點必需擁有穩定微結構及優異 • 潛變阻抗’並且必需在焊接後避免形成脆性的介金屬化 合物,以防止成為破損起源點。料希望研發新的焊錫 合金取代上述已知無料料合金,以便在符合低溶點焊 料應用下進一步提供優異潛變阻抗。 故,有必要提供_種無料錫合金組絲,以解決 習知技術所存在的問題。 【發明内容】 本發明之主要目的在於提供—種具有奈米微粒之複 201127965 合無鉛焊錫合金組成物,其係在以銦錫合金為基材之無 鉛焊錫内進一步添加奈米微粒,以利用奈米微粒的特性 有效的細化銦錫合金組織,增加其機械強度及提高抗潛 變的能力,及抑制焊接後介金屬之成長,並減緩介金屬 厚度增加,進而提升電子產品之焊接可靠度及其使用壽 命。 本發明之次要目的在於提供一種具有奈米微粒之複 合無鉛焊錫合金組成物,其係選擇利用滾軋混煉法或磁 性攪拌法將奈米微粒均勻的混摻在銦錫合金内,以順利 製造複合無鉛烊錫合金,進而有利於提高焊錫合金混摻 品質及降低製造成本。 為達上述之目的,本發明提供一種具有奈米微粒之 複合無鉛焊錫合金組成物,其包含:40 0至6〇 〇重量0/〇 之銦(In)、0.01至2.0重量%之奈米微粒及其餘為錫 (Sn),其中該奈米微粒選自二氧化鈦(Ti〇2)、三氧化二 鋁(ai2o3)、過氧化辞(Zn〇2)、二氧化鍅(Zr〇2)、奈米碳 管(carbon nanotube,CNT)或其混合物,及該奈米微粒 之粒徑介於5至500奈米(nm)之間。 在本發明之一實施例中,該複合無鉛焊錫合金組成 物係由銦錫合金(In-Sn alby)進—步混摻該奈綠粒所 組成。 在本發日狀-實施射’該奈米微_職軋混煉 法混入銦錫合金内。 在本發明之一實施例中,該奈米微粒均勻的散佈在 201127965 一無錯焊錫疊層的數層銦錫合金片體之間。 在本發明之一實施例中,該奈米微粒利用磁性攪拌 法混入姻錫合金内。 在本發明之一實施例中,銦之含量選自介於47.0至 52.0重量%之間。 在本發明之一實施例中,該奈米微粒之含量選自 0.25重量%、0.5重量%、1.0重量%或1.5重量%。 在本發明之一實施例中,該奈米微粒選自二氧化 鈦,其粒徑為20至200奈米。 在本發明之一實施例中,該奈米微粒選自三氧化二 鋁,其粒徑為30至200奈米。 在本發明之一實施例中,該奈米微粒選自過氧化 鋅,其粒徑為35至45奈米。 在本發明之一實施例中,該奈米微粒選自二氧化 锆,其粒徑為20至30奈米。 在本發明之一實施例中,該奈米微粒選自奈米碳 管,其粒徑為20至100奈米。 在本發明之一實施例中,另添加鈽(Ce)、鑭(La)及 錙(Lu)的1種或以上的元素0.01至0.5重量%。 在本發明之一實施例中,另添加銀(Ag)、銅(Cu)、鋅 (Zn)、鎳(Ni)及鍺(Ge)的1種或以上的元素0.01至5.0 重量%。 【實施方式】 201127965 為了讓本發明之上述及其他目的、特徵、優點能更 明顯易懂,下文將特舉本發明較佳實施例,並配合所附 圖式,作詳細說明如下。 在本發明之較佳實施例中,本發明係提供一種具有 奈米微粒之複合無鉛焊錫合金組成物,以應用焊接結合 各種電子產品之電子元件,例如應用在發光二極體 (LED)、光纖或導熱介面材料(ΤΙΜ)封裝技術等領域中, 做為端子、接點或散熱片焊接用之低熔點焊料。另外, 本發明之複合無鉛焊錫合金組成物亦可能應用於做為 被動元件之電極預焊料(pre_solder);或應用於做為電子 元件之表面黏者技術(surface mount technology » SMT) 的焊料等’以便將電子元件焊接結合於電路板(例如主 機板或手機板)上。惟,上述僅是列舉說明本發明之具 有奈米微粒之複合無鉛焊錫合金組成物的可能應用領 域’但並非用以限制本發明。 在本發明之較佳實施例中’本發明之具有奈米微粒 之複合無鉛焊錫合金組成物主要係由銦錫合金(In_Sn alloy)進一步混摻奈米微粒所組成,其中該銦錫合金可 選自各種既有銦踢合金之配比,但大致包含:4〇 〇至 6〇.〇重量%之銦(In),該奈米微粒混摻至銦錫合金内的 比例則為0.01至2.0重量%,及其餘則以錫(Sn)補足至 1〇〇重量%。必要時,本發明可另添加鈽(Ce)、鑭(La) 及镏(Lu)的1種或以上的元素o.oi至〇 5重量%,及/ 或另添加銀(Ag)、銅(Cu)、鋅(Zn)、鎳(Ni)及鍺(Ge)的1 10 201127965 種或以上的元素0.01至5.0重量%。例如,該銦 可選擇性另包含:0.01至0.5重量%之鈽(Ce)(例如添加 〇. 2 5重量%),以提高機械性質並抑制時效推球測試^ 度下降問題(若焊墊表面材質為鋼時);或亦可包含 至5.0重量%之銀(Ag)(例如添加3.0重量。/❶),以更進一 步提高複合無鉛焊錫合金之機械性質及導熱性;或亦可 包含0.01至3.5重量%之銅(Cu)(例如添加〇 9重量%), 可抑制接合時銅接點大量擴散進入奈米複合無鉛焊錫 s金另外,該奈米微粒能有效的抑制含有銀或銅之奈 米複合無鉛焊錫合金組成物内形成粗大、細長的介金^ 化合物。在本發明之較佳實施例中,該奈米微粒係指預 先研磨成具有奈米等級粒徑之特定物質族群,其較佳選 自二氧化鈦(Ti〇2)、三氧化二鋁(Αία3)、過氧化鋅 (Ζη〇2)、二氧化锆(Zr〇2)、奈米碳管(carbon nanotube, CNT)或其混合物。同時,在本發明中,該奈米微粒之 粒役係控制介於5至5〇〇奈米(nm)之間。 在本發明之較佳實施例中,該複合無鉛焊錫合金組 成物中的銦之含量係控制介於4〇·〇至6〇〇重量%之 間,較佳介於47.0至52.0重量之間,特別是介於48.0 至49.0重篁%之間’例如48.0重量%、48.25重量%、 48.5重量%、48.75重量%、49.〇重量%或52.0重量%等。 在一實施例中,本發明之銦錫合金基材較佳選自下列組 成比例的其中一種(皆以重量百分比計):銦-52.0%錫 (即11152如)、銦-51.75%錫(即^151.75811)、銦-51.5%錫 201127965 (即1:151.5811)、銦-51.75%錫(即11151.75811)、銦-;51%錫 (即In51Sn)或銦-48.0%錫(即In48Sn),特別是選自 In48Sn或In48.5Sn,但並不限於此。 在本發明之較佳實施例中,該複合無鉛焊錫合金組 成物中的奈米微粒係可選自二氧化鈦、三氧化二鋁、過 氧化辞、二氧化锆、奈米碳管或其混合物,且該奈米微 粒混摻至銦錫合金内的比例係控制介於0.01至2.0重量 %之間,較佳為0.1至1.8重量%之間,特別是0.2至1.5 重量%之間。該奈米微粒之粒徑係控制介於5至500奈 米(nm)之間,較佳為介於5至100奈米之間,特別是介 於5至50奈米之間。在一實施例中,該奈米微粒係選 自二氧化鈦,其粒徑為5至200奈米之間(例如25奈米 或30奈米之間),及其混摻比例係控制為0.25至1.5重 量%之間。在另一實施例中,該奈米微粒係選自三氧化 二鋁,其粒徑為30至200奈米之間(例如35奈米),及 其混摻比例係控制為0.25至1.5重量%之間。在又一實 施例中,該奈米微粒係選自過氧化鋅,其粒徑為35至 45奈米之間(例如40奈米),及其混摻比例係控制為0.25 至1.5重量%之間。在又一實施例中,該奈米微粒係選 自二氧化锆,其粒徑為20至30奈米之間(例如20奈 米),及其混摻比例係控制為0.25至1.5重量%之間。 在又一實施例中,該奈米微粒係選自奈米碳管,其粒徑 (管徑)為20至100奈米之間(例如25奈米),其長度為 100至3000奈米之間,及其混摻比例係控制為0.25至 12 201127965 1.5重量%之間。 請參照第1A至1E及2A至π㈤一 佳實施例之複合心焊錫人〜圖所示’本發明較 粒所組成,其中較佳選擇_魏“ 法或磁性攪拌法將該奈米微粒均 煉 内’兩者之製程步祕將料訂㈣料細說金Solder Sn37Pb Sn3.5Ag In48Sn Sn3.5Ag0.7 Cu Au20Sn Melting point (°c) 183 221 118 217 280 Specific gravity (g/cm3) 8.4 7.5 - 7.5 14.51 Resistance value (μΩαη) 15 10.8 - 13 17.9 Thermal conductivity (W/cm .°C) 0.5 (85〇〇0.33 (85°〇36.2 0.35 (85°C) 57 Thermal expansion coefficient CTE (ppm/K) 25 30 22 17 16 Tensile strength (Mpa) 46 35 11.9 48.5 36 Shear strength ( Mpa) 23 27 11.9 — — Young's Coefficient (GPa) 30 16.5 30.5 — 60 Ductility (%) 31 39 80 36.5 — 201127965 With the development of electronic products, the miniaturization, multi-function, high frequency and high layout Densification, etc., some electronic components are born, such as: light emitting diode 'LED, optical fiber (0pticai fiber) or thermal interface material (TIM) packaging technology, etc. The fiber needs to be soldered to the external power line or signal line at the input/output terminal or connector of the input/output terminal. The package technology also needs solder as the thermal interface material (ΤΙΜ). The medium is connected between the heat sink and the semiconductor wafer. However, the temperature of soldering of the above solder alloy shall not affect the material structural stability of the LED, the optical fiber, the semiconductor wafer or the circuit substrate. Therefore, the soldering process must use a low melting point solder alloy such as indium tin alloy or indium silver alloy, among which the most common The low melting point solder alloys are pure In, In3.5Ag and In48Sn indium tin alloys, which have a very low melting point. For example, the melting point of In48Sn indium tin alloy is such that the soldering process at its melting temperature will not affect the above electrons. The material properties of the components. However, many studies have pointed out that the embrittlement mode of the joint between the lead-free solder alloy and the solder joint may affect the solder reliability and lifetime of the electronic product σ. The embrittlement mode is mostly caused by the interface. The main cause of failure in the location is the thermal shock caused by the shock or impact or the difference in thermal expansion coefficient (CTE) of the material, which will cause the interface layer to form a mtermetallic compound (IMC). ) 'and become the starting point of destruction, and the origin of the damage of mechanical shock is also in the boundary 201127965 As mentioned above, when solder is soldered to an electronic component, the solder may have to be subjected to thermal stress alone during long-term high-temperature use, causing the solder to creep. This phenomenon will occur. The electronic signal is not transmitted correctly. For example, in the field of semiconductor packaging, when using indium tin alloy solder (In48Sn), tin silver alloy solder (such as Sn3.5Ag), tin-copper alloy solder (such as Sn0.7Cu) or gold-tin alloy solder (such as Au20Sn) as When the bump is bonded to the wafer pad and the base φ pad (the surface material is copper, gold or silver), the intermetallic compound layer (for example, AgsSn, Ci^Sn or AuSn, etc.) is easily generated, and the intermetallic compound The layer causes the welding position to be unable to withstand the creep caused by thermal stress in the temperature cycle test, or the load caused by the applied mechanical stress. Therefore, the 'hard and brittle dielectric compound layer easily becomes the starting point of craeking, which leads to failure of the solder joint and affects the electrical connection or heat dissipation effect. In order to prevent this from happening, solder joints must have a stable microstructure and excellent • creep resistance and must avoid the formation of brittle intermetallic compounds after soldering to prevent damage. It is desirable to develop new solder alloys to replace the above known no-material alloys to further provide superior creep resistance in applications that meet low melting point soldering applications. Therefore, it is necessary to provide a material-free tin alloy wire to solve the problems of the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a composition of a 201127965 lead-free solder alloy having nano-particles, which is further provided with nano-particles in a lead-free solder based on an indium-tin alloy to utilize nai The characteristics of the rice particles effectively refine the indium-tin alloy structure, increase its mechanical strength and improve the resistance to creep, and inhibit the growth of the metal after welding, and slow down the increase of the thickness of the metal, thereby improving the welding reliability of the electronic product. Its service life. A secondary object of the present invention is to provide a composite lead-free solder alloy composition having nano particles, which is selected by uniformly mixing nano particles into an indium tin alloy by a rolling kneading method or a magnetic stirring method. The manufacture of composite lead-free antimony-tin alloys is beneficial to improve the quality of solder alloy blending and reduce manufacturing costs. To achieve the above object, the present invention provides a composite lead-free solder alloy composition having nano particles comprising: 40 to 6 Å by weight of indium (In), 0.01 to 2.0% by weight of nano particles. And the remainder is tin (Sn), wherein the nanoparticle is selected from the group consisting of titanium dioxide (Ti〇2), aluminum oxide (ai2o3), peroxide (Zn〇2), cerium oxide (Zr〇2), and nanometer. The carbon nanotube (CNT) or a mixture thereof, and the nanoparticle have a particle size of between 5 and 500 nanometers (nm). In one embodiment of the invention, the composite lead-free solder alloy composition consists of indium-tin alloy (In-Sn alby) mixed with the nano-particles. In the present invention, the nano-micro-kneading method is mixed into the indium-tin alloy. In one embodiment of the invention, the nanoparticles are uniformly dispersed between the layers of indium tin alloy sheets of the 201127965 error-free solder laminate. In one embodiment of the invention, the nanoparticles are mixed into the sage alloy by magnetic agitation. In one embodiment of the invention, the indium content is selected from between 47.0 and 52.0% by weight. In an embodiment of the invention, the content of the nanoparticles is selected from the group consisting of 0.25 wt%, 0.5 wt%, 1.0 wt% or 1.5 wt%. In one embodiment of the invention, the nanoparticle is selected from the group consisting of titanium dioxide having a particle size of from 20 to 200 nanometers. In one embodiment of the invention, the nanoparticle is selected from the group consisting of aluminum oxide having a particle size of from 30 to 200 nanometers. In one embodiment of the invention, the nanoparticles are selected from the group consisting of zinc peroxide having a particle size of from 35 to 45 nanometers. In one embodiment of the invention, the nanoparticles are selected from the group consisting of zirconium dioxide having a particle size of from 20 to 30 nanometers. In one embodiment of the invention, the nanoparticle is selected from the group consisting of carbon nanotubes having a particle size of from 20 to 100 nanometers. In one embodiment of the present invention, one or more elements of cerium (Ce), lanthanum (La) and lanthanum (Lu) are further added in an amount of 0.01 to 0.5% by weight. In one embodiment of the present invention, one or more elements of silver (Ag), copper (Cu), zinc (Zn), nickel (Ni), and germanium (Ge) are further added in an amount of 0.01 to 5.0% by weight. The above and other objects, features, and advantages of the present invention will become more apparent from the description of the appended claims. In a preferred embodiment of the present invention, the present invention provides a composite lead-free solder alloy composition having nano particles for applying soldering electronic components of various electronic products, for example, to a light emitting diode (LED), an optical fiber. Or in the field of thermal interface material (ΤΙΜ) packaging technology, as a low melting point solder for soldering terminals, contacts or heat sinks. In addition, the composite lead-free solder alloy composition of the present invention may also be applied to an electrode pre-solder as a passive component or as a solder for surface mount technology (SMT) of an electronic component. In order to solder the electronic components to the circuit board (such as the motherboard or mobile phone board). However, the foregoing is merely illustrative of possible applications of the composite lead-free solder alloy composition having nanoparticles of the present invention, but is not intended to limit the present invention. In a preferred embodiment of the present invention, the composite lead-free solder alloy composition having nanoparticles of the present invention is mainly composed of an indium alloy (In_Sn alloy) further mixed with nano particles, wherein the indium tin alloy is optional. From the ratio of various existing indium alloys, but generally includes: 4 〇〇 to 6 〇. 〇% by weight of indium (In), the ratio of the nano particles mixed into the indium tin alloy is 0.01 to 2.0 weight %, and the rest is supplemented with tin (Sn) to 1% by weight. If necessary, the present invention may additionally add one or more elements of cerium (Ce), lanthanum (La) and lanthanum (Lu) to o. oi to 5% by weight, and/or additionally add silver (Ag), copper ( Elements of 1 10 201127965 or more of Cu), zinc (Zn), nickel (Ni), and antimony (Ge) are 0.01 to 5.0% by weight. For example, the indium may optionally further comprise: 0.01 to 0.5% by weight of cerium (Ce) (for example, adding 〇2.55% by weight) to improve mechanical properties and suppress the problem of aging ball test (if the surface of the pad When the material is steel), or may be included to 5.0% by weight of silver (Ag) (for example, 3.0 weight / ❶) to further improve the mechanical properties and thermal conductivity of the composite lead-free solder alloy; or may also include 0.01 to 3.5% by weight of copper (Cu) (for example, 9% by weight of yttrium) can suppress the large amount of copper joints from diffusing into the nanocomposite lead-free solder s gold during bonding. In addition, the nanoparticle can effectively inhibit the silver or copper containing A coarse, slender gold compound is formed in the composition of the rice composite lead-free solder alloy. In a preferred embodiment of the present invention, the nanoparticle means a specific substance group preliminarily ground to have a nanometer-sized particle size, which is preferably selected from the group consisting of titanium dioxide (Ti〇2) and aluminum oxide (Αία3). Zinc peroxide (Ζη〇2), zirconium dioxide (Zr〇2), carbon nanotube (CNT) or a mixture thereof. Meanwhile, in the present invention, the granules of the nanoparticles are controlled to be between 5 and 5 nanometers (nm). In a preferred embodiment of the present invention, the content of indium in the composite lead-free solder alloy composition is controlled between 4 〇·〇 and 6 〇〇 wt%, preferably between 47.0 and 52.0 wt. It is between 48.0 and 49.0% by weight 'for example 48.0% by weight, 48.25% by weight, 48.5% by weight, 48.75% by weight, 49.% by weight or 52.0% by weight, and the like. In one embodiment, the indium tin alloy substrate of the present invention is preferably selected from one of the following composition ratios (all in weight percent): indium - 52.0% tin (ie, 11152), indium - 51.75% tin (ie, ^151.75811), indium-51.5% tin 201127965 (ie 1:151.5811), indium-51.75% tin (ie 11151.75811), indium-; 51% tin (ie In51Sn) or indium-48.0% tin (ie In48Sn), especially It is selected from In48Sn or In48.5Sn, but is not limited thereto. In a preferred embodiment of the present invention, the nanoparticles in the composite lead-free solder alloy composition may be selected from the group consisting of titanium dioxide, aluminum oxide, peroxide, zirconium dioxide, carbon nanotubes or mixtures thereof, and The proportion of the nanoparticulates blended into the indium tin alloy is controlled to be between 0.01 and 2.0% by weight, preferably between 0.1 and 1.8% by weight, in particular between 0.2 and 1.5% by weight. The particle size of the nanoparticles is controlled to be between 5 and 500 nanometers (nm), preferably between 5 and 100 nanometers, especially between 5 and 50 nanometers. In one embodiment, the nanoparticle is selected from the group consisting of titanium dioxide having a particle size between 5 and 200 nanometers (eg, between 25 nanometers or 30 nanometers), and the blending ratio is controlled to be 0.25 to 1.5. Between weight%. In another embodiment, the nanoparticle is selected from the group consisting of aluminum oxide having a particle size of between 30 and 200 nanometers (eg, 35 nanometers), and the blending ratio thereof is controlled to be 0.25 to 1.5 weight percent. between. In still another embodiment, the nanoparticle is selected from the group consisting of zinc peroxide having a particle size between 35 and 45 nanometers (eg, 40 nanometers), and the blending ratio thereof is controlled to be 0.25 to 1.5% by weight. between. In still another embodiment, the nanoparticle is selected from the group consisting of zirconium dioxide having a particle size of between 20 and 30 nanometers (eg, 20 nanometers), and the blending ratio thereof is controlled to be 0.25 to 1.5% by weight. between. In still another embodiment, the nanoparticle is selected from the group consisting of carbon nanotubes having a particle size (tube diameter) of between 20 and 100 nanometers (eg, 25 nanometers) and a length of 100 to 3000 nanometers. The ratio of the blending ratio and its blending ratio is controlled to be between 0.25 and 12 201127965 1.5% by weight. Please refer to the composite core solder of the preferred embodiments of FIGS. 1A to 1E and 2A to π(5). The invention is composed of the particles of the present invention, wherein the nanoparticle is homogenized by a preferred method or a magnetic stirring method. Inside the 'the two process steps will be ordered (four) to detail the gold
請參照第1八至1E圖所示,在本發明之一第 例中,本發明選擇使用滾軋混煉法 姻踢合金片趙11及至少-種奈米微粒丨2,== 微粒12藉由適當方式(例如藉由助焊劑㈣塗佈:各 該銦錫合金片體11上,且將所有的銦錫合金片體U堆 疊成一無鉛焊錫疊層1。接著,利用二滾輪2滾軋該無 鉛焊錫疊層1,使其延展增加長度及減少厚度。在完成 第一次滾軋後,將該無鉛焊錫疊層丨進行至少一次的對 折堆疊。隨後,利用該二滾輪2進行第二次滾軋,再次 使其延展增加長度及減少厚度。以相同原理,連續進行 數次滾軋及對折之製程,直到該銦錫合金片體u的厚 度減小至一預定值。如此,即可獲得一複合無錯烊踢入 金10 ’並使該奈米微粒12實質均勻的散佈在數百層戈 數千層的該銦錫合金片體11之間。在完成滾軋混煉法 之上述步驟後,該奈米複合無鉛焊錫合金1〇可直 用於各種焊接用途,並可選擇製成粒狀、棒狀或條片 狀;或者,亦可選擇進一步以120至130°c之溫度進行 回焊(reflow)或重熔(remelting)的步驟加以處理,以重炫 13 201127965 成為本發明之無鉛焊錫合金組成物,此時該銦錫合金的 基材已無層狀構造,且該奈米微粒12可眘 j貝負岣勻的散 佈在該銦錫合金的基材内(未繪示)。在本製程中,本發 明之銦及奈米微粒之組成比例必需控制介於本發明上 文提及之組成比例範圍。在上述製程期間,該奈米微粒 12的結構及物理化學性質並沒有任何實質改變。 請參照第2A至2B圖所示’在本發明之一第二實施 例中,本發明選擇使用磁性攪拌法,其中首先準備銦錫 &金31及至少一種奈米微粒32。接著,再準備一容器 4及在其内預先放置一磁性攪拌子5,並將該銦錫合金 31及奈米微粒32倒入該容器4内。隨後,利用一加熱 型電磁攪拌器6以120至150°C之溫度加熱該容器4, 以炼化該銦錫合金31,同時利用該加熱型電磁授摔器6 内部之磁性轉盤(未繪示)帶動該磁性攪拌子5轉動,以 均勻混合該銦錫合金31及奈米微粒32。在本發明中, 該奈米微粒32可在一開始就加入該容器4内,或選擇 在該銦錫合金31熔化後再緩慢加入其中。再者,該銦 錫合金31可直接選自銦錫之合金,或亦可選自錫及钢 之個別金屬按比例及混合之複合奈米微粒。在攪拌一預 定時間後,倒出溶融金屬液使其冷卻固化成一複合無船 焊錫合金30,如此該奈米微粒32即可實質均勻的散佈 在該銦錫合金31内。在本製程中,銦錫及奈米微粒之 組成比例必需控制介於本發明上文提及之組成比例範 圍。在上述製程期間,該奈米微粒32的結構及物理化 201127965 學性質並沒有任何實質改變。 在本發明由滾軋混煉法或磁性攪拌法製備具有奈米 微粒之複合無船焊錫合金組成物後,該奈米微粒係均勻 散佈在該銦錫合金中,且該奈米微粒皆可承受3〇〇度以 上的高溫’故具有不參與焊接溶融反應、不會聚集粗化 及不會有擴散現象等優良特性。因此,舉例來說,在一 實施例中’當本發明之複合無錯烊錫合金組成物應用於 導熱介面材料(TIM)封裝技術領域以做為導熱介面材料 層時’其係可結合在覆晶晶片之頂表面與散熱片(未繪 示)之間,並接著以120至13(TC之溫度進行回焊 (reflow),使該導熱介面材料層焊接結合在兩者之間, 以在覆晶晶片與散熱片之銅表面或鍍金表面之間形成 導熱焊接構造。或者,本發明之複合無鉛焊錫合金组成 物亦可應用於LED或光纖在其輪入/輸出端 I/〇(InPm/0utput)的端子或接頭的銅表面或鍍金或銀之 表面(未緣示),以使其能焊接結合外部電源線或訊號 線。在上述焊接構造中,該奈米微粒可有效的抑制在姻 錫合金與銅、冑或金之間產生介金屬化合物 ⑽emetallic eomp麵d,IMC)層,使介金屬化合物層 =至-較賴著_度。再者’即使在複合無錯焊锡人 金之焊接位置形成不顯著的介金屬化合物層,位於 屬化合物層料㈣奈米獅也能夠做為阻礙粒子,以 有效抑制介金屬化合物層處的銅、銀或金 合物層而擴散至銦錫合金内。更詳言之,由於二制銅化 15 201127965 銀或金的擴散可以避免在介金屬化合物層形成克肯多 微孔洞(Kirkendall void),因而可有效降低介金屬化合物 層因微孔/同而造成的結構脆化及破裂(cracking)風險。 另外’本發明在銦錫合金之基材内混摻該奈米微 粒,混摻後的機械強度係明顯優於單純銦錫合金之機械 強度,但其延展性將持平或小幅度下降。本發明提高機 械強度之原理係關於合金材料學中的析出強化機構原 理。因此,基於上述原理,本發明的奈米微粒可以有效 的細化銦錫合金組織、抑制銦錫合金產生粗大化之介金 屬化合物以增加其機械強度,及抑制焊接後介金屬之成 長,並減缓介金屬厚度增加,以防止銦錫合金形成的焊 接點在溫度循環試驗或外力機械衝擊下發生破裂 (cracking)面,進而提升電子產品可靠度及其使用壽 命。另外,本發明具有奈米微粒之複合無鉛焊錫合金組 成物的抗潛變阻抗明顯的提高,且相近於金錫AU-20Sn 無船鲜錫的性質。 為了证實上述觀點,在本發明之較佳實施例中,本 發明複合無錯焊錫合金組成物係以銦錫(Sn48ln)無鉛焊 料為基底分別添加〇.25重量%、Q 5重量%及1 0重量% 的二氧傾奈频粒(純3〇奈朴銦舰(Sn術3細 無錯焊料為基底添加〇.5重量%的二氧化鈦奈米微粒(粒 徑30=米)與錮錫銅(Sn48In〇 9Cu)無錯焊料為基底添加 〇.5重里/〇的一氧化鈦奈米微粒(粒徑奈米)等為例, 以利用熱差分析儀(DSC)測試固相線溫度⑽㈣ 201127965 temperature)、液相線溫度(iiqUidus temperature)及溶點 範圍(melting range),及進行機械性質分析,其分析結 果如下列表二及表三及第3圖所示: 表二、本發明複合無鉛焊錫合金組成物及一般銦錫 (In48Sn)無鉛焊料利用熱差分析儀測試固相線溫度 (Ts)、液相線溫度(1^)及炼點範圍(ΔΤ)的分析資料。 焊料 奈米Ti〇2 (重量%) Ts (°C) τ, (°C) △Τ (°C) 習用In48Sn — 117.3 122.7 5.4 本發明 In48Sn-0.25TiO2 0.25 117.4 123.1 5.7 本發明 In48Sn-0.5TiO2 0.5 117.5 123.5 6.0 本發明 In48Sn-1.0TiO2 1.0 117.4 123.9 6.5 本發明 Ιη488η3Α8-0.5Ή〇2 0.5 122.1 128.3 6.2 本發明 In48Sn0.9Cu-0.5TiO2 0.5 121.1 127.9 6.8Referring to Figures 18 to 1E, in one of the examples of the present invention, the present invention selectively uses a rolling kneading method for the alloying of the alloy piece Zhao 11 and at least a kind of nanoparticle 丨2, == particles 12 It is coated by a suitable method (for example, by flux (4): each of the indium tin alloy sheets 11, and all the indium tin alloy sheets U are stacked into a lead-free solder laminate 1. Then, the roller 2 is rolled by the two rollers 2 The lead-free solder laminate 1 is extended to increase the length and reduce the thickness. After the first rolling is completed, the lead-free solder laminate is stacked at least once. Then, the second roller 2 is used for the second rolling. Rolling, again extending the length and reducing the thickness. On the same principle, the rolling and folding processes are successively performed until the thickness of the indium tin alloy sheet u is reduced to a predetermined value. The composite is erroneously kicked into the gold 10' and the nanoparticle 12 is substantially uniformly dispersed between the hundreds of layers of the indium tin alloy body 11 of the layer. After the above steps of the rolling and kneading method are completed, The nano composite lead-free solder alloy 1 〇 can be used directly for various For welding purposes, it can be made into pellets, rods or strips; alternatively, it can be further processed by reflow or remelting at a temperature of 120 to 130 ° C. Rebirth 13 201127965 becomes the lead-free solder alloy composition of the present invention. At this time, the substrate of the indium tin alloy has no layered structure, and the nanoparticle 12 can be uniformly dispersed in the indium tin alloy. In the substrate (not shown). In the present process, the composition ratio of the indium and nanoparticle of the present invention must be controlled within the composition ratio range mentioned above in the present invention. During the above process, the nanoparticle 12 There is no substantial change in the structure and physicochemical properties. Please refer to Figures 2A to 2B. In a second embodiment of the present invention, the present invention selectively uses a magnetic stirring method in which indium tin & gold 31 is first prepared. And at least one of the nanoparticles 32. Next, a container 4 is prepared and a magnetic stirrer 5 is placed in advance, and the indium tin alloy 31 and the nanoparticle 32 are poured into the container 4. Subsequently, a Heating type electromagnetic stirrer 6 to 120 The container 4 is heated to a temperature of 150 ° C to refine the indium tin alloy 31, and the magnetic stirrer 5 (not shown) inside the heating type electromagnetic repeller 6 is used to rotate the magnetic stirrer 5 to uniformly mix. The indium tin alloy 31 and the nanoparticle 32. In the present invention, the nanoparticle 32 may be added to the container 4 at the beginning, or may be slowly added after the indium tin alloy 31 is melted. The indium tin alloy 31 may be directly selected from the alloy of indium tin, or may be selected from the composite metal nanoparticles of the respective metals of tin and steel in proportion and mixed. After stirring for a predetermined time, the molten metal liquid is poured out and cooled. The composite is formed into a composite shipless solder alloy 30 such that the nanoparticles 32 are substantially uniformly dispersed in the indium tin alloy 31. In the present process, the composition ratio of indium tin and nanoparticle must be controlled within the composition ratio range mentioned above in the present invention. During the above process, the structure and physical properties of the nanoparticle 32 did not change substantially. After the composite shipless solder alloy composition having nano particles is prepared by the rolling kneading method or the magnetic stirring method, the nano particles are evenly dispersed in the indium tin alloy, and the nano particles can withstand 3 high temperature above the temperature, so it has excellent characteristics such as not participating in the welding and melting reaction, no aggregation and coarsening, and no diffusion. Thus, for example, in one embodiment, 'when the composite error-free bismuth tin alloy composition of the present invention is applied to the field of thermal interface material (TIM) packaging technology as a layer of a thermal interface material, the system can be combined Between the top surface of the crystal wafer and a heat sink (not shown), and then reflowing at a temperature of 120 to 13 (the temperature of the TC, the thermal interface material layer is welded and bonded between the two to cover The thermal conductive soldering structure is formed between the crystal wafer and the copper surface or the gold plating surface of the heat sink. Alternatively, the composite lead-free solder alloy composition of the present invention can also be applied to the LED/fiber at its wheel input/output terminal I/〇 (InPm/0utput The copper surface of the terminal or joint or the surface of the gold or silver plate (not shown) so that it can be soldered to the external power line or signal line. In the above welded structure, the nanoparticle can effectively suppress the solder in the tin The intermetallic compound (10) emetallic eomp surface d, IMC) layer is formed between the alloy and copper, tantalum or gold, so that the intermetallic compound layer = to - is more than _ degrees. Furthermore, even if an insignificant intermetallic compound layer is formed at the joint position of the composite error-free soldering person gold, the genus compound layer (4) nano-lion can also be used as an inhibitory particle to effectively suppress copper at the layer of the intermetallic compound, The silver or gold layer is diffused into the indium tin alloy. More specifically, due to the diffusion of silver or gold, the copper or gold can avoid the formation of Kirkendall voids in the intermetallic compound layer, thereby effectively reducing the intermetallic compound layer due to micropores/same The resulting structural embrittlement and the risk of cracking. Further, the present invention blends the nano-particles in a substrate of an indium-tin alloy, and the mechanical strength after blending is significantly superior to that of the pure indium-tin alloy, but the ductility thereof will be flat or small. The principle of the present invention for improving mechanical strength is related to the principle of precipitation strengthening mechanism in alloy material science. Therefore, based on the above principle, the nanoparticle of the present invention can effectively refine the indium tin alloy structure, inhibit the indium tin alloy from coarsening the intermetallic compound to increase its mechanical strength, and inhibit the growth of the intermetallic metal after welding, and reduce The thickness of the slow-moving metal is increased to prevent the solder joint formed by the indium-tin alloy from cracking on the temperature cycle test or external mechanical impact, thereby improving the reliability of the electronic product and its service life. In addition, the composite anti-potential resistance of the composite lead-free solder alloy composition having nanoparticles of the present invention is remarkably improved, and is similar to that of the gold tin AU-20Sn non-shipping tin. In order to confirm the above, in the preferred embodiment of the present invention, the composite error-free solder alloy composition of the present invention is added with 铟.25 wt%, Q 5 wt% and 1 respectively on the basis of indium tin (Sn48ln) lead-free solder. 0% by weight of dioxane-nanoparticles (pure 3 〇nap indium ship (Sn technology 3 fine error-free solder for the substrate added 5. 5 wt% of titanium dioxide nanoparticles (particle size 30 = m) and bismuth copper (Sn48In〇9Cu) error-free solder is added to the substrate by adding 55 mile/〇 of titanium oxide nanoparticle (particle size nanoparticle) as an example to test the solidus temperature using a thermal differential analyzer (DSC) (10) (4) 201127965 Temperature), liquidus temperature (iiqUidus temperature) and melting range (melting range), and mechanical properties analysis, the analysis results are shown in Table 2 and Table 3 and Figure 3: Table 2, composite lead-free solder of the present invention Alloy composition and general indium tin (In48Sn) lead-free solder using a thermal difference analyzer to test the solidus temperature (Ts), liquidus temperature (1^) and refining range (ΔΤ) analysis data. 2 (% by weight) Ts (°C) τ, (°C) △Τ (°C) Conventional In48Sn — 117.3 122.7 5.4 In48Sn-0.25TiO2 of the invention 0.25 117.4 123.1 5.7 In48Sn-0.5TiO2 of the invention 0.5 117.5 123.5 6.0 In48Sn-1.0TiO2 1.0 117.4 123.9 6.5 of the invention Ιη488η3Α8-0.5Ή〇2 0.5 122.1 128.3 6.2 The invention In48Sn0.9Cu- 0.5TiO2 0.5 121.1 127.9 6.8
表三、本發明複合無鉛焊錫合金組成物及一般銦錫 (In48Sn)無鉛焊料之機械性質分析。 焊料 奈米Ti02 (重量%) 顯微 硬度 (Hv) 抗拉 強度 (MPa) 0.2降伏 強度 (MPa) 延展性 (Pet) 習用In48Sn — 9.8 10.3 9.5 78.6 本發明 In48Sn-0.25Ti〇2 0.25 11.2 13.1 12.5 72.5 本發明 In48Sn-0.5Ti〇2 0.5 13.5 15.1 14.6 65.2 本發明 In48Sn-1.0TiO2 1.0 13.7 16.5 16.1 56.1 17 201127965 本發明 In48Sn3 Ag-0.5TiO2 0.5 15.2 18.1 17.6 50.1 In48Sn0.9Cu-0.5TiO2 0.5 14.3 17.5 16.9 52.1 如上所述,本發明係在以銦錫合金為基材之無船焊 錫合金内進一步添加奈米微粒,以利用奈米微粒的特性 有效的細化銦錫合金組織、抑制含有小量的銀或銅之銦 錫合金產生粗大化之介金屬化合物,以增加其機械強度 及抗潛變的能力,及抑制焊接後介金屬之成長,並減缓 介金屬厚度增加,進而提升電子產品之焊接可靠度及其 _ 使用壽命。再者,本發明係選擇利用滾軋混煉法或磁性 攪拌法將奈米微粒均勻的混摻在銦錫合金内,以順利製 造具有奈米微粒之複合無鉛焊錫合金,故亦有利於提高 焊錫合金混摻品質及降低製造成本。 雖然本發明已以較佳實施例揭露,然其並非用以限 制本發明,任何熟習此項技藝之人士,在不脫離本發明 之精神和範圍内,當可作各種更動與修飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 * 【圖式簡單說明】 第1A至1E圖:本發明第一實施例之具有奈米微粒之 複合無鉛焊錫合金組成物製造方法之流程示意圖。 第2A至2B圖:本發明第二實施例之具有奈米微粒之 複合無鉛焊錫合金組成物製造方法之流程示意圖。 第3圖:本發明具有奈米微粒之複合無鉛焊錫合金組成 18 201127965 物(In48Sn_0.25TiO2、In48Sn-0.5TiO2、In48Sn-1.0TiO2)及 般銦錫無鉛焊料(In48Sn)之應力及應變關係圖。 【主要元件符號說明】 1 無鉛焊錫疊層 10 複合無鉛焊錫合金 11 銦錫合金片體 12 奈米微粒 2 滚輪 30 複合無鉛焊錫合金 31 銦錫合金 32 奈米微粒 4 容器 5 磁性攪拌子 6 加熱型電磁攪拌器 19Table 3 shows the mechanical properties of the composite lead-free solder alloy composition of the present invention and the general indium tin (In48Sn) lead-free solder. Solder Nano Ti02 (% by weight) Microhardness (Hv) Tensile Strength (MPa) 0.2 Falling Strength (MPa) Ductility (Pet) Conventional In48Sn — 9.8 10.3 9.5 78.6 In48Sn-0.25Ti〇2 0.25 11.2 13.1 12.5 72.5 In48Sn-0.5Ti〇2 of the invention 0.5 13.5 15.1 14.6 65.2 In48Sn-1.0TiO2 1.0 13.7 16.5 16.1 56.1 17 201127965 In48Sn3 Ag-0.5TiO2 0.5 15.2 18.1 17.6 50.1 In48Sn0.9Cu-0.5TiO2 0.5 14.3 17.5 16.9 52.1 As described above, the present invention further adds nanoparticle in a ship-free solder alloy based on an indium tin alloy to effectively refine the indium tin alloy structure and suppress the inclusion of a small amount of silver or the characteristics of the nanoparticle. Copper indium tin alloys produce coarsened intermetallic compounds to increase their mechanical strength and resistance to creep, and to inhibit the growth of dielectrics after soldering, and to reduce the thickness of the intermetallics, thereby improving the soldering reliability of electronic products. And its _ service life. Furthermore, in the present invention, the nanoparticle is uniformly blended in the indium tin alloy by a rolling kneading method or a magnetic stirring method to smoothly produce a composite lead-free solder alloy having nano particles, which is also advantageous for improving soldering. Alloy blending quality and reduced manufacturing costs. The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. * BRIEF DESCRIPTION OF THE DRAWINGS Figs. 1A to 1E are schematic views showing the flow of a method for producing a composite lead-free solder alloy composition having nanoparticles according to a first embodiment of the present invention. 2A to 2B are schematic views showing the flow of a method for producing a composite lead-free solder alloy composition having nanoparticles according to a second embodiment of the present invention. Fig. 3 is a graph showing the relationship between stress and strain of a composite lead-free solder alloy composition of nanoparticles of the present invention 18 201127965 (In48Sn_0.25TiO2, In48Sn-0.5TiO2, In48Sn-1.0TiO2) and a general indium tin lead-free solder (In48Sn). [Main component symbol description] 1 Lead-free solder laminate 10 Composite lead-free solder alloy 11 Indium tin alloy wafer 12 Nanoparticle 2 Roller 30 Composite lead-free solder alloy 31 Indium tin alloy 32 Nanoparticle 4 Container 5 Magnetic stirrer 6 Heating type Electromagnetic stirrer 19