TWI360452B - Composite lead-free solder composition having nano - Google Patents

Composite lead-free solder composition having nano Download PDF

Info

Publication number
TWI360452B
TWI360452B TW98109282A TW98109282A TWI360452B TW I360452 B TWI360452 B TW I360452B TW 98109282 A TW98109282 A TW 98109282A TW 98109282 A TW98109282 A TW 98109282A TW I360452 B TWI360452 B TW I360452B
Authority
TW
Taiwan
Prior art keywords
weight
tin
silver
free solder
lead
Prior art date
Application number
TW98109282A
Other languages
Chinese (zh)
Other versions
TW201034784A (en
Inventor
Lung Chuan Tsao
Original Assignee
Lung Chuan Tsao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lung Chuan Tsao filed Critical Lung Chuan Tsao
Priority to TW98109282A priority Critical patent/TWI360452B/en
Publication of TW201034784A publication Critical patent/TW201034784A/en
Application granted granted Critical
Publication of TWI360452B publication Critical patent/TWI360452B/en

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

1360452 100年11月16日替換頁 六、發明說明: 【發明所屬之技術領域】 .本發明係關於一種奈求複合無鉛焊錫組成物,特別 是關於一種可抑制錫銀銅合金產生介金屬化合物之奈 米複合無鉛焊錫組成物。 【先前技術】 在目前電子產品中’錫-鉛合金經常用來做為焊料, 以供結合小型電子元件。然而,由於鉛及其化合物對環 境會造成毒性污染,因此國際法規逐漸限制含錯焊料在 電子產品中的使用。例如,“廢棄電子類設備(waste electrical and electronic equipment ’ WEEE)”之規定提出 了對電子產品之收集及回收之標準,及“相關有害物質 禁用(restriction of hazardous substances,RoHS)之規定 則是試圖減少這些電子產品在使用、處理與暴露衍生的 問題,上述規定造成許多電子產品代工大廠開始將銷往 歐洲及曰本等地區的產品組裝轉變爲無錯製程,特別是 各大半導體封裝廒商及被動元件供應商皆順此趨勢推 出各種無錯封裝産品及無錯被動元件產品。 目前在製造成本控制和技術可靠性上,使用無鉛谭 料之產品已經曰趨成熟,其中常見的無鉛焊料大致可依 據含鉛焊料Sn37Pb(含37%之鉛,熔點183°C)的熔點高 低區分為:低熔點焊錫,例如Sn58Bi (含58%之鉍,熔 點138C)、In3Ag (含97%之銦及3%之銀,熔點143°C)、 1360452 100年11月16日替換頁1360452 Replacement page on November 16, 100. Description of the Invention: [Technical Field of the Invention] The present invention relates to a composite lead-free solder composition, in particular, a method for inhibiting the formation of a metal-containing compound of a tin-silver-copper alloy. Nano composite lead-free solder composition. [Prior Art] In current electronic products, tin-lead alloys are often used as solders for bonding small electronic components. However, due to the toxic pollution of lead and its compounds to the environment, international regulations have gradually limited the use of miserable solders in electronic products. For example, the “Waste Electrical and Electronic Equipment 'WEEE” rule sets forth standards for the collection and recycling of electronic products, and the “restriction of hazardous substances (RoHS) regulations are an attempt Reducing the use of these electronic products in the use, processing and exposure of the above-mentioned regulations, many of the electronics OEMs began to transform the assembly of products sold in Europe and Japan into error-free processes, especially the major semiconductor packages廒Commercial and passive component suppliers are following this trend to introduce a variety of error-free packaged products and error-free passive components. Currently, in the production cost control and technical reliability, the use of lead-free tan products has matured, of which common lead-free solder According to the melting point of lead-containing solder Sn37Pb (containing 37% lead, melting point 183 ° C), it is divided into: low melting point solder, such as Sn58Bi (containing 58% of bismuth, melting point 138C), In3Ag (containing 97% of indium and 3% silver, melting point 143 ° C), 1360452 100 November 100 replacement page

Sn52In (含52%之麵’溶點118。〇 ;近似Sn37Pb之共 晶溶點焊料,例如Sn0.7Cu (含0.7%之銅,熔點227。〇)、 Sn3.5Ag (含 3.5%之銅,炫點 221〇C)、Sn9Zn (含 9%之 鋅,熔點 199°C)、Sn3.5AgO.7Cu(含 3.5%之銀及 0.7%之Sn52In (containing 52% of the face 'melting point 118. 〇; approximate Sn37Pb eutectic spot solder, such as Sn0.7Cu (containing 0.7% copper, melting point 227. 〇), Sn3.5Ag (containing 3.5% copper, Hyun point 221 〇 C), Sn9Zn (containing 9% zinc, melting point 199 ° C), Sn3.5AgO.7Cu (including 3.5% silver and 0.7%

銅’炼點221°C);以及,高炫點焊料有Au20Sn (含80% 之金及20%之錫,熔點282。〇、Sn5Sb (含5%之綈,熔 點233-240°C)等。下列表一為常用無錯焊料的材料特性 分析。在考董溶點及成本下,Sn0.7Cu及Sn3.5Ag等錫 銀合金具有較佳的競爭優勢。然而,另一方面,錫銀合 金卻也具有機械性質不佳及焊接可靠度低落等問題》Copper 'refining point 221 ° C); and, high-point solder has Au20Sn (80% gold and 20% tin, melting point 282. 〇, Sn5Sb (including 5% 绨, melting point 233-240 ° C), etc. Table 1 below is a material analysis of commonly used error-free solders. Under the test point and cost, tin-silver alloys such as Sn0.7Cu and Sn3.5Ag have better competitive advantages. However, on the other hand, tin-silver alloys. However, it also has problems such as poor mechanical properties and low welding reliability.

表一、常用無鉛焊料的材料特性分耕。 焊料 Sn37Pb Sn3.5Ag Sn0.7Cu Sn3.5Ag0.7 Cu Au2〇Sn 熔點(°c) 183 221 227 217 280 比重(g/cm3) 8.4 7.5 7.3 7.5 14.51 電阻值(μΩ«η) 15 10.8 10-15 13 17.9 導熱係數(W/cm.°C) 0.5 (85°〇 0.33 (85°〇 — 0.35 (85〇C) 57 熱膨脹係數CTE (ppm/K) 25 30 25 17 16 抗拉強度(Mpa) 46 35 23 48.5 36 抗剪強度(Mpa) 23 27 20-23 — 一 楊氏係數(GPa) 30 16.5 12.8 — 60 延展性(%) 31 39 45 36.5 一Table 1. Material characteristics of commonly used lead-free solders. Solder Sn37Pb Sn3.5Ag Sn0.7Cu Sn3.5Ag0.7 Cu Au2〇Sn Melting point (°c) 183 221 227 217 280 Specific gravity (g/cm3) 8.4 7.5 7.3 7.5 14.51 Resistance value (μΩ«η) 15 10.8 10-15 13 17.9 Thermal conductivity (W/cm.°C) 0.5 (85°〇0.33 (85°〇—0.35 (85〇C) 57 Thermal expansion coefficient CTE (ppm/K) 25 30 25 17 16 Tensile strength (Mpa) 46 35 23 48.5 36 Shear strength (Mpa) 23 27 20-23 — A Young's modulus (GPa) 30 16.5 12.8 — 60 ductility (%) 31 39 45 36.5

100年11月16日替換真 隨著電子產品的發展漸趨小型化、多功能化、高頻 化及高佈局密度化等,一些電子構裝因應而生,例如: 球格陣列封裝(ball grid array,BGA)、覆晶組裝(fiip_chip assembly ’ FCA)、多晶片模組(multi_chip m〇dule ’ MCM)、晶片尺寸級封裝(chip scaie package,CSP)、晶 圓級封裝(wafer level package,WLP)等。隨著封裝構造 的輸入/輸出端I/0(Input/0utput)數量持續的增加及覆 晶凸塊(flip-chip bump)的直徑持續減小’如第1圖所示 直徑20μιη(微米)的錫銀(SnAg)合金覆晶凸塊,其可用以 連接於晶片(chip)與基板(substrate)之間,以形成覆晶焊 點(flip-chip solder joint)。該覆晶焊點的電流密度通常 隨著尺寸縮小而增高,使得通過焊點的電流密度 (current density)可能高達1〇4安培/平方公分(A/cm2)以 上。在如此高的電流密度經過覆晶焊點時,電流經過所 產生的熱量將以極高的速率增加。許多研究結果指出, 無鉛焊錫與銅焊墊之間的接點存在至少兩種以上之脆 化模式均是起因於在界面處所引發的破壞而造成,其失 效主要因素是機械衝擊(mechanical shock)或是材料 熱膨脹係數(CTE)差異所引發之熱應力,其將造成界 面層生成破脆介金眉化合物(intermetallic compound, IMC),並成為破壞發生的起點;當然。機械衝擊的破 壞起源點也是發生於界面處。 如上所述,當焊料焊接結合於一電子元件上時,在 100年11月16日替換頁 長期高溫使用下’焊料可能必需單獨承受熱應力 (thermal stress) ’促使焊料發生潛變(creep)現象,這種 現象將造成電子訊號無法正確的傳達。例如,在半導體 封裝領域中,當利用錫銀合金焊料(如Sn3.5Ag)、錫銅 合金焊料(如Sn0.7Cu)或金錫合金焊料(如Au20Sn)做為 凸塊以媒介結合晶片焊墊及基板焊墊時,容易產生介金 屬化合物層(例如Ag3Sn、Cu3Sn或AuSn等),其會導致 在溫度循環試驗中造成焊接位置無法承受熱應力 (thermal stress)所引起的潛變(creep),或是無法承受外 加機械應力所引起的負荷。因此,硬脆的介金屬化合物 層容易變成破裂(cracking)發生的起點,因而導致焊點 的失效。為了防止這問題發生’焊錫接點必需擁有穩定 微結構及優異潛變阻抗,並且必需在焊接後避免形成脆 性的介禽屬化合物,以防止成為破損起源點。封裝業界 希望研發新的合金取代上述已知無船焊料合金,以在極 端溫度環境下提供優異潛變阻抗。 故’有必要提供一種無鉛焊錫組成物,以解決習知 技術所存在的問題。 【發明内容】 本發明之主要目的在於提供一種奈米複合無鉛焊錫 組成物’其係在以錫銀銅合金為基材之無鉛焊錫内進一 步添加奈米微粒,以利用奈米微粒的特性有效的細化錫 銀銅合金組織、抑制錫銀銅合金產生粗大化之介金屬化 1360452 100 年11月16曰替換貢 合物以增加其機械強度,及抑制焊接後介金屬之成長’ 並減緩介金屬厚度增加,進而提升電子產品之.焊接 < 靠 度及其使用壽命。 本發明之次要目的在於提供一種奈米複合無鉛焊錫 組成物’其係選擇利用滾軋混煉法或磁性攪拌法將奈米 微粒均勻的混摻在錫銀銅合金内,以順利製造奈米複合 無鉛焊錫,進而有利於提高焊錫混摻品質及降低製造成 本。 為達上述之目的,本發明提供一種奈米複合無鉛焊 錫組成物’其包含:0.01至5.0重量%之銀(Ag)、0.01 至3.0重直%之銅(Cu)、0.25至2.0重量%之奈米微粒及 其餘為錫(Sn) ’其中該奈米微粒選自二氧化鈦(丁丨〇2)、 三氧化二鋁(Αία;)、過氧化鋅(Ζη02)、二氧化锆(zr〇2)、 奈米碳管(carbon nanotube,CNT)或其混合物,及該奈 米微粒之粒徑介於5至500奈米(nm)之間。 在本發明之一實施例中,該奈米複合無鉛焊錫組成 物係由錫銀銅合金(Sn-Ag_Cu alloy)混摻該奈米微粒所 組成。 在本發明之一實施例中,該奈米微粒利用滾軋混煉 法混入錫銀銅合金内。 在本發明之一實施例中,該奈米微粒均勻的散佈在 無錯焊錫疊層的數層錫銀銅合金片體之間。 在本發明之一實施例中,該奈米微粒利用磁性攪拌 去混入锡銀銅合金内。 8 100年11月16曰替換頁 在^發明之一實施例中,銀之含量選自2.5重量%、 重置/°、3.5重量%、3 8重量%、3 9重量。 量%、4.5重量%或5.〇重量%。 重 在本發明之—實施例中銅 。·6重〜議、0.咖或。川 重實施财,該奈_之含量選自 η 〇.5重量%、L〇重量%或1.5重量%。 鈦,1赶發明之—實施例中’該奈米微粒選自二氧化 欽,其粒_2()至3〇奈^ 氧化 該奈求微粒選自三氧化二 I ’該奈米微粒選自過氧化 該奈米微粒選自二氧化 在本發明之一實施例中 鋁,其粒徑為30至40奈米 在本發明之一實施例中 辞,其粒徑為35至45奈米 在本發明之一實施例中 锆,其粒徑為20至30奈米 在本發明之一眘:^点丨士 管’其粒徑為2〇至⑽奈米。该奈米微粒選自奈采碳 在本發明之—實施例中^ 之鈽(Ce)。 〇.〇〗至〇.5重量〇/0 在本發明之—實施例中另 之叙(Bi)。 〇·〇】至0.5重量%On November 16th, 100th, the replacement of the electronic products with the development of electronic products has become smaller, more versatile, high-frequency and high-density density. Some electronic components have been created, for example: ball grid package (ball grid Array, BGA), flip chip assembly (FCA), multi-chip module (MCM), chip scaie package (CSP), wafer level package (WLP level package) )Wait. As the number of input/output terminals I/0 (Input/0utput) of the package structure continues to increase and the diameter of the flip-chip bump continues to decrease, as shown in Fig. 1, the diameter is 20 μm (micrometer). Tin-silver (SnAg) alloy flip-chip bumps, which can be used to connect between a chip and a substrate to form a flip-chip solder joint. The current density of the flip chip is generally increased as the size is reduced, so that the current density through the solder joint may be as high as 1 安 4 amps/cm 2 (A/cm 2 ) or more. At such high current densities through the flip chip, the amount of heat generated by the current will increase at a very high rate. Many studies have pointed out that at least two or more embrittlement modes of the joint between the lead-free solder and the copper pad are caused by the damage caused at the interface, and the main factor of failure is mechanical shock or It is the thermal stress caused by the difference in thermal expansion coefficient (CTE) of the material, which will cause the interfacial layer to form an intermetallic compound (IMC) and become the starting point of the failure; of course. The origin of the breakdown of mechanical shock also occurs at the interface. As described above, when solder soldering is bonded to an electronic component, the solder may have to undergo thermal stress alone during the long-term high-temperature use of the replacement page on November 16, 100, which causes the solder to creep. This phenomenon will cause the electronic signal to be not correctly transmitted. For example, in the field of semiconductor packaging, when a tin-silver alloy solder (such as Sn3.5Ag), a tin-copper alloy solder (such as Sn0.7Cu) or a gold-tin alloy solder (such as Au20Sn) is used as a bump to media bond wafer pads When the substrate pad is used, a metal-containing compound layer (for example, Ag3Sn, Cu3Sn, AuSn, etc.) is easily generated, which causes a creep in the temperature cycle test to be incapable of withstanding thermal stress caused by the thermal stress. Or can not withstand the load caused by external mechanical stress. Therefore, the hard and brittle intermetallic compound layer tends to become the starting point at which cracking occurs, thus causing failure of the solder joint. In order to prevent this problem from happening, the solder joint must have a stable microstructure and excellent creep resistance, and it is necessary to avoid the formation of a brittle predile compound after welding to prevent it from becoming a source of damage. The packaging industry hopes to develop new alloys to replace the known shipless solder alloys described above to provide excellent creep impedance in extreme temperature environments. Therefore, it is necessary to provide a lead-free solder composition to solve the problems of the prior art. SUMMARY OF THE INVENTION The main object of the present invention is to provide a nano-composite lead-free solder composition which is further provided with nano-particles in a lead-free solder based on a tin-silver-copper alloy to utilize the characteristics of the nano-particles. Refining the structure of tin-silver-copper alloy, suppressing the coarsening of the tin-silver-copper alloy. 1360452 Replacement of the complexes on November 16th, in order to increase the mechanical strength and inhibit the growth of the intermetallic metal after welding' and slow down the intermetallic Increased thickness, which in turn enhances the soldering of the electronic product and its service life. A secondary object of the present invention is to provide a nano-composite lead-free solder composition, which is selected by using a rolling kneading method or a magnetic stirring method to uniformly mix nano particles in a tin-silver-copper alloy to smoothly manufacture a nanometer. Composite lead-free solder, which is beneficial to improve the quality of solder blending and reduce manufacturing costs. To achieve the above object, the present invention provides a nanocomposite lead-free solder composition comprising: 0.01 to 5.0% by weight of silver (Ag), 0.01 to 3.0% by weight of copper (Cu), and 0.25 to 2.0% by weight The nano particles and the rest are tin (Sn) ' wherein the nano particles are selected from the group consisting of titanium dioxide (Dings 2), aluminum oxide (Αία;), zinc peroxide (Ζη02), zirconium dioxide (zr〇2) And a carbon nanotube (CNT) or a mixture thereof, and the nanoparticle has a particle size of between 5 and 500 nanometers (nm). In one embodiment of the invention, the nanocomposite lead-free solder composition is composed of a tin-silver-copper alloy (Sn-Ag_Cu alloy) mixed with the nanoparticle. In one embodiment of the invention, the nanoparticles are mixed into a tin-silver-copper alloy by a rolling kneading process. In one embodiment of the invention, the nanoparticles are uniformly dispersed between a plurality of layers of tin-silver-copper alloy sheets of the error-free solder laminate. In one embodiment of the invention, the nanoparticles are de-mixed into the tin-silver-copper alloy using magnetic agitation. 8100 November 16 曰 Replacement page In one embodiment of the invention, the silver content is selected from the group consisting of 2.5% by weight, reset/°, 3.5% by weight, 38% by weight, and 39% by weight. % by weight, 4.5% by weight or 5. % by weight. Re-emphasis in the invention - copper. ·6 heavy ~ discussion, 0. coffee or. Chuanzhong implements the wealth, and the content of the naphthene is selected from η 〇. 5 wt%, L 〇 wt% or 1.5 wt%. Titanium, 1 is invented - in the embodiment, the nanoparticle is selected from the group consisting of dioxins, and the particles 2 to 3 are oxidized. The nanoparticles are selected from the group consisting of trioxide II. The peroxidized nanoparticle is selected from the group consisting of aluminum in an embodiment of the invention having a particle size of 30 to 40 nm. In one embodiment of the invention, the particle size is 35 to 45 nm. In one embodiment of the invention, zirconium having a particle size of from 20 to 30 nm is prudent in one of the inventions: a point of gentleman's tube having a particle size of from 2 Å to (10) nm. The nanoparticle is selected from the group consisting of Naicai carbon (Ce) in the embodiment of the invention. 〇.〇〗 to 55 weight 〇/0 In the present invention - another embodiment (Bi). 〇·〇] to 0.5% by weight

f實施方式J 目的、特徵、優點能更 為了讓本發明之上述及其他 100年11月16日替換頁 明顯易懂,下文將特舉本發明較佳實施例,並配合所附 圖式’作詳細朗如下。 、在本發明之較佳實施例中,本發明係提供一種奈米 複合無鉛焊錫組成物,以應用焊接結合各種電子產品之 電子元件,例如應用在半導體封裝領域中,做為凸塊 (bump)焊料,以供焊接結合晶片焊墊及基板焊墊;或者 做為基板下表面焊墊上的錫球(solder ball)焊料。另外, 本發明之奈米複合無鉛焊錫組成物亦可能應用於做為 被動元件之電極預焊料(pre-solder);或應用於做為電子 元件之表面黏著技術(surface mount technology,SMT) 的焊料,以便將電子元件焊接結合於電路板(例如主機 板或手機板)上。惟,上述僅是列舉說明本發明之奈米 複合無錯焊錫組成物的可能應用領域,但並非用以限制 本發明。 在本發明之較佳實施例中’本發明之奈米複合無鉛 知錫組成物主要係由錫銀銅合金(Sn-Ag-Cu alloy)混摻 奈米微粒所組成’其中該錫銀銅合金可選自各種既有錫 銀銅合金之配比,但大致包含:O.Oi至5 〇重量%之銀 (Ag)及〇.〇1至3.〇重量%之銅(Cu),該奈米微粒混摻至 錫銀銅合金内的比例則為0.25至2.0重量%,及其餘則 以錫(Sn)補足至1〇〇重量%。必要時,本發明可另包含: 0.01至0.5重量%之鈽(Ce)(例如添加0.25重量%),以減 緩Ag3Sn顆粒粗大化並抑制時效推球測試的強度下降 問題;或亦可包含0.01至0.5重量%之鉍(Bi)(例如添加 1360452 100牟11月16日替換頁 〇·5重量%) ’以降低奈米複合無鉛焊錫之熔點。在本發 明之較佳實施例中,該奈米微粒係指預先研磨成具有奈 米等級粒徑之特定物質族群,其較佳選自二氧化鈦 (Ti〇2)、三氧化二鋁(Al2〇3)、過氧化鋅(Zn〇2)、二氧化 結(Zr〇2)、奈米碳管(carb〇n nanotube,CNT)或其混合 物°同時,在本發明中,該奈米微粒之粒徑係控制介於 5至500奈米(nm)之間。f. The purpose, features, and advantages of the present invention can be made apparent by the above-described and other alternative pages of the present invention on November 16th, and the preferred embodiments of the present invention will be described hereinafter. The details are as follows. In a preferred embodiment of the present invention, the present invention provides a nanocomposite lead-free solder composition for applying soldering electronic components combined with various electronic products, for example, in the field of semiconductor packaging, as a bump. Solder for solder bonding of wafer pads and substrate pads; or as solder ball solder on the lower surface pads of the substrate. In addition, the nano-composite lead-free solder composition of the present invention may also be applied to an electrode pre-solder as a passive component; or as a solder for surface mount technology (SMT) of an electronic component. In order to solder the electronic components to the circuit board (such as the motherboard or mobile phone board). However, the above is merely illustrative of possible fields of application of the nano-composite error-free solder composition of the present invention, but is not intended to limit the present invention. In a preferred embodiment of the present invention, the nanocomposite lead-free tin-forming composition of the present invention is mainly composed of a tin-silver-copper alloy (Sn-Ag-Cu alloy) mixed with nanoparticles, wherein the tin-silver-copper alloy It may be selected from various ratios of tin-silver-copper alloys, but generally comprises: O.Oi to 5 〇% by weight of silver (Ag) and 〇.〇1 to 3. 〇% by weight of copper (Cu), the nai The proportion of the rice particles blended into the tin-silver-copper alloy is 0.25 to 2.0% by weight, and the remainder is supplemented with tin (Sn) to 1% by weight. If necessary, the present invention may further comprise: 0.01 to 0.5% by weight of cerium (Ce) (for example, adding 0.25 % by weight) to slow the coarsening of the Ag3Sn particles and suppress the problem of the strength drop of the aging push test; or may also include 0.01 to 0.5% by weight of bismuth (Bi) (for example, adding 1360452 100 牟November 16, replacement page 5·5 wt%) to reduce the melting point of the nanocomposite lead-free solder. In a preferred embodiment of the invention, the nanoparticle means a group of specific substances pre-ground to have a nanometer-sized particle size, preferably selected from the group consisting of titanium dioxide (Ti〇2) and aluminum oxide (Al2〇3). ), zinc peroxide (Zn〇2), a zirconium oxide (Zr〇2), a carbon nanotube (CNT) or a mixture thereof. Meanwhile, in the present invention, the particle size of the nanoparticle The system is controlled between 5 and 500 nanometers (nm).

在本發明之較佳實施例中,該奈米複合無鉛焊錫組 成物中的銀之含量係控制介於0.01至5.0重量%之間, 較佳介於2.5至5.0重量%之間,特別是2.5重量%、3.0 重量%、3.5重量%、3.8重量%、3.9重量%、4.0重量%、 4.5重量%或5.0重量%。再者,銅之含量係控制介於0.01 至3.0重量%之間,較佳介於〇.2至1.0重量%之間,特 別是0.5重量%、0.6重量%、0.7重量%、0.8重量%或 0.9重量%。在一實施例中,本發明之錫銀銅合金基材 較佳選自下列組成比例的其中一種(皆以重量百分比 計):錫-2.5%銀-0.8〇/〇銅(即8112.5八名0.8(:11)、錫-3.0%銀 -0.5%銅(即8113.0入经0.5(:11)、錫-3.5%銀-0.5〇/〇銅(即 8113.5入8〇.5(:11)、錫-3.5%銀-0.9%銅(即8113.5八呂0.9〇1)、 錫-3.8〇/〇銀-0.5〇/〇銅(即8113.8入§0.5(:11)、錫3.8%銀-0.7〇/〇 銅(即 Sn3.8AgO.7Cu)、錫-3.9°/。銀-0.6% 銅(即 Sn3.9AgO.6Cu),或錫-4.0% 銀-0.5% 銅(即 Sn4.0Ag0.5Cu),特別是選自錫-3.5%銀-〇.5°/。銅(即 Sn3.5AgO.5Cu),但並不限於此。 11 1360452 100年11月16日替換頁 在本發明之較佳實施例中,該奈米複合無鉛焊錫組 成物中的奈米微粒係可選自二氧化鈦、三氧化二鋁、過 氧化辞、二氧化锆、奈米碳管或其混合物,且該奈米微 粒混摻至錫銀銅合金内的比例係控制介於0.25至2.0重 量%之間,較佳為0.25至1.8重量%之間,特別是0.25 至1.5重量%之間。該奈米微粒之粒徑係控制介於5至 500奈米(nm)之間,較佳為介於20至100奈米之間, 特別是介於20至50奈米之間。在一實施例中,該奈米 微粒係選自二氧化鈦,其粒徑為20至30奈米(例如25 奈米或30奈米),及其混摻比例係控制為0.25至1.5重 量%。在另一實施例中,該奈米微粒係選自三氧化二 鋁,其粒徑為30至40奈米(例如35奈米),及其混摻 比例係控制為0.25至1.5重量%。在又一實施例中,該 奈米微粒係選自過氧化鋅,其粒徑為35至45奈米(例 如40奈米),及其混摻比例係控制為0.25至1.5重量%。 在又一實施例中,該奈米微粒係選自二氧化锆,其粒徑 為20至30奈米(例如20奈米),及其混摻比例係控制 為0.25至1.5重量%。在又一實施例中,該奈米微粒係 選自奈米碳管,其粒徑(管徑)為20至100奈米(例如25 奈米),其長度為100至3000奈米,及其混摻比例係控 制為0.25至1.5重量%。 請參照第2A至2E及3A至3B圖所示,本發明較 佳實施例之奈米複合無鉛焊錫組成物主要係由錫銀銅 合金混摻該奈米微粒所組成,其中較佳選擇利用滾軋混 12 1360452 2法或磁性授拌法將該奈米微教均勾 合金内,兩者之製程步驟係將依序於 請參照第2A至2E圖所示,在太| 例中,本發明選擇使用雜混煉法$之—第一實施 錫銀銅合金片體u :首先準備數個In a preferred embodiment of the invention, the silver content of the nanocomposite lead-free solder composition is controlled to be between 0.01 and 5.0% by weight, preferably between 2.5 and 5.0% by weight, especially 2.5 parts by weight. %, 3.0% by weight, 3.5% by weight, 3.8% by weight, 3.9% by weight, 4.0% by weight, 4.5% by weight or 5.0% by weight. Furthermore, the copper content is controlled between 0.01 and 3.0% by weight, preferably between 〇.2 and 1.0% by weight, in particular 0.5% by weight, 0.6% by weight, 0.7% by weight, 0.8% by weight or 0.9. weight%. In one embodiment, the tin-silver-copper alloy substrate of the present invention is preferably selected from one of the following composition ratios (all in weight percent): tin - 2.5% silver - 0.8 〇 / 〇 copper (ie 8112.5 eight 0.8 (:11), tin-3.0% silver-0.5% copper (ie 8113.0 into 0.5(:11), tin-3.5% silver-0.5〇/〇 copper (ie 8113.5 into 8〇.5(:11), tin -3.5% silver-0.9% copper (ie 8113.5 八吕 0.9〇1), tin-3.8 〇/〇 silver-0.5〇/〇 copper (ie 8113.8 into §0.5 (:11), tin 3.8% silver-0.7〇/ Beryllium copper (ie Sn3.8AgO.7Cu), tin-3.9°/. silver-0.6% copper (ie Sn3.9AgO.6Cu), or tin-4.0% silver-0.5% copper (ie Sn4.0Ag0.5Cu), In particular, it is selected from the group consisting of tin-3.5% silver-〇.5°/. copper (ie, Sn3.5AgO.5Cu), but is not limited thereto. 11 1360452 November 16, 2010 Replacement Page In the preferred embodiment of the present invention The nanoparticle in the nano composite lead-free solder composition may be selected from the group consisting of titanium dioxide, aluminum oxide, peroxide, zirconium dioxide, carbon nanotubes or a mixture thereof, and the nano particles are mixed into The ratio in the tin-silver-copper alloy is controlled to be between 0.25 and 2.0% by weight, preferably between 0.25 and 1.8% by weight. Between 0.25 and 1.5% by weight, the particle size of the nanoparticle is controlled between 5 and 500 nanometers (nm), preferably between 20 and 100 nanometers, especially Between 20 and 50 nm. In one embodiment, the nanoparticulate is selected from the group consisting of titanium dioxide having a particle size of 20 to 30 nm (e.g., 25 nm or 30 nm), and a blending ratio thereof. The control is 0.25 to 1.5% by weight. In another embodiment, the nanoparticle is selected from the group consisting of aluminum oxide, having a particle size of 30 to 40 nm (for example, 35 nm), and the mixing ratio thereof is controlled. It is 0.25 to 1.5% by weight. In still another embodiment, the nanoparticle is selected from the group consisting of zinc peroxide having a particle size of 35 to 45 nm (for example, 40 nm), and the mixing ratio thereof is controlled to 0.25. In another embodiment, the nanoparticle is selected from the group consisting of zirconium dioxide, having a particle size of 20 to 30 nm (for example, 20 nm), and the mixing ratio thereof is controlled to 0.25 to 1.5. In still another embodiment, the nanoparticle is selected from the group consisting of a carbon nanotube having a particle diameter (tube diameter) of 20 to 100 nm (for example, 25 nm) and a length of 100 to 3000 nm, and the blending ratio thereof is controlled to be 0.25 to 1.5% by weight. Referring to Figures 2A to 2E and 3A to 3B, the nano composite lead-free solder composition of the preferred embodiment of the present invention is mainly The tin-silver-copper alloy is mixed with the nanometer particles, and the preferred method is to use the rolling mixed 12 1360452 2 method or the magnetic mixing method to apply the nano-fine teaching to the alloy, and the process steps of the two will be Referring to Figures 2A to 2E, in the example of the present invention, the present invention chooses to use the hybrid compounding method - the first implementation of the tin-silver-copper alloy sheet u: first prepare a plurality of

米微粒】2藉㈣當様㈣並將該奈 各該錫銀銅合金片體,且 51 UX)塗佈在 體η堆疊成-無鉛烊錫疊層丨。接;的:銀銅合金片 滾軋該無錯焊錫疊4卜使其延展且用—滚輪2 :在-成第-次滚乾後,將該無鉛焯 次的對折堆疊。隨後,利用該二滚輪 丁 滾札’再次使其延展增加長度及減少厚度。=二人Rice microparticles] 2 (4) When 様 (4) and the tin-silver-copper alloy sheet, and 51 UX) are coated on the body η stacked into a lead-free bismuth-doped laminate.接接: Silver-copper alloy sheet Rolling the error-free solder stack 4 to make it extend and use - roller 2: After the first-time spin-drying, the lead-free 对 times are folded in half. Subsequently, the two rollers are used to stretch again to increase the length and reduce the thickness. = two people

100年11月〗6日替換頁 L-------- 的混摻在錫銀銅 下文進行詳細說 =續 =峨及對折之製程,直到該錫銀銅^ 金片體11的厚度減小至—預定值。如此,即可獲得一 奈米複合無料錫1G,並使該奈米微粒12實質均句的 散佈在數百層或數千層❸該錫銀銅合金片體u之間。 在凡成滾軋混煉法之上述步驟後,該奈米複合無鉍 1〇可直接使用於各種焊接用途,並可製成⑽、 棒狀或條⑽;或者,亦可選擇進—步以回焊(refl〇w) 或重熔(remelting)的步驟加以處理,以重熔成為本發明 之無鉛焊錫組成物,此時該錫銀銅合金的基材已無層狀 構造,且該奈米微粒12可實質均勻的散佈在該錫銀銅 合金的基材内(未繪示)。在本製程中,本發明之銀、銅 13 100年11月16日替換頁 及奈米微粒之組成比例必需控制介於本發明上文提及 之組成比例範圍。 請參照第3A至3B圖所示,在本發明之一第二實施 例中,本發明選擇使用磁性攪拌法,其中首先準備錫銀 銅合金31及至少一種奈米微粒32。接著,再準備一容 器4及在其内預先放置—磁性攪拌子5,並將該錫銀銅 合金31及奈米微粒32倒入該容器4内。隨後,利用一 加熱型電磁攪拌器6加熱該容器4,以熔化該錫銀銅合 金31,同時利用該加熱型電磁攪拌器6内部之磁性轉 盤(未緣示)帶動该磁性搜拌子5轉動,以均勻混合該錫 銀銅合金31及奈米微粒32。在本發明中,該奈米微粒 32可在一開始就加入該容器4内,或選擇在該錫銀銅 合金31熔化後再緩慢加入其中。再者,該錫銀銅合金 31可直接選自錫銀銅之合金粉末,或亦可選自錫、銀 及銅之個別金屬粉末按比例混合之複合粉末。在攪拌一 預定時間後,倒出熔融金屬液使其冷卻固化成一奈米複 合無鉛焊錫30,如此該奈米微粒32即可實質均勻的散 佈在該錫銀銅合金31内。在本製程中,銀、銅及奈米 微粒之組成比例必需控制介於本發明上文提及之組成 比例範圍。 在本發明由滚軋混煉法或磁性授拌法製備奈米複合 無鉛焊锡組成物後,該奈米微粒係均勻散佈在該錫銀銅 合金中,且該奈米微粒皆可承受300度以上的高溫,故 具有不參與烊接熔融反應、不會聚集粗化及不會有擴散 14 1360452 __ 100年11月16日替換頁 現象等優良特性。因此,舉例來說,在一實施例中,當 - 本發明之奈米複合無鉛焊錫組成物應用於半導體封裝 t 領域以做為凸塊(bump)材料時,其係可先回焊(refl0W;) • 結合在晶片之鋁墊或銅墊(未繪示)上,並接著焊接結合 在基板之銅墊(未繪示)上,以在晶片之鋁墊或銅墊及基 板之銅墊之間形成一凸塊焊接構造。在凸塊焊接構造 中’該奈米微粒可有效的抑制在錫銀銅合金與銅墊之間 _ 產生介金屬化合物(intermetallic compound,IMC)層, 使介金屬化合物層減至—較不顯著的程度。再者,即使 在奈米複合無鉛焊錫之焊接位置形成不顯著的介金屬 化合物層’位於介金屬化合物層附近的該奈米微粒也能 夠做為阻礙粒子,以有效抑制介金屬化合物層處的銅穿 過介金屬化合物層而擴散至錫銀銅合金内。更詳言之, ί於抑制銅的擴散可以避免在介金屬化合物層形^成克 肯多微孔洞(Kirkenda11 ν。♦因而可有效降低介金屬化 • 合物層因微孔洞而造成的結構脆化及破裂(cracking)風 險0 另外’本發明在錫_合金之基㈣混摻該奈米微 混摻㈣機械強度係明顯優於單純祕銅合金之機 =強度,但其延展性將持平或小幅度下降。本發明提高 $械強度之原理係合金材料科料的析出強化機構原 。因此’基於上述原理,本發明的奈米微粒可以有效 的細化錫銀銅合金組織、抑制錫銀鋼合金產生粗大化之 介金屬化合物以增加其機械強度,及抑制焊接後介金屬 15 1360452 __ 100年11月16日替換頁 - 之成長,並減緩介金屬厚度增加,以防止錫銀銅合金形 成的焊接點在溫度循環試驗或外力機械衝擊下發生破 裂(cracking)面,進而提升電子產品可靠度及其使用壽 命。 - 為了證實上述觀點,在本發明之較佳實施例中,本 ' 發明奈来複合無鉛焊錫組成物係以錫銀銅 . (Sn3.5Ag〇.5Cu)無鉛焊料為基底分別添加0.25重量%、 φ OJ重量%及I.0重量%的二氧化鈦奈米微粒(粒徑30奈 来)’以利用熱差分析儀(DSC)測試固相線溫度(s〇lidus temPerature)、液相線溫度(liquidus temperature)及熔點 範圍(melting range),及進行機械性質分析,其分析結 果如下列表二及表三所示: 表二、本發明奈米複合無鉛焊錫組成物及一般錫銀銅 (SAC)無鉛焊料利用熱差分析儀測試固相線溫度(Ts)、液 相線溫度(T!)及熔點範圚(八D的分妍資料〇 焊料 奈米Ti02 Ts T, △T (重量%) CC) ΓΟ (°C) 習用SAC — 220.1 223.6 3.5 本發明 SAC-0.25TiO2 0.25 220.5 224.8 4.3 本發明 SAC-0.5TiO2 0.5 220.6 225.7 5.1 本發明 SAC-1.0TiO2 1.0 220.9 226.8 5.9 表三、本發明奈米複合無錯焊錫組成物及一般錫銀銅 jSAC)無鉛焊料之機械性質分析。 _ 焊料 奈米 顯微硬度 抗拉強度 0.2降伏 延展性 16 ,452 100年11月16日替換頁In November, 100, the replacement page of L-------- is mixed in tin-silver-copper. The following is a detailed description of the process of continuation = 峨 and half-fold until the thickness of the tin-silver-copper sheet Decrease to - predetermined value. Thus, a nano-composite tin-free 1G can be obtained, and the nano-particles 12 can be substantially spread over hundreds or thousands of layers of the tin-silver-copper alloy sheet u. After the above steps of the rolling and mixing method, the nano composite composite can be directly used for various welding purposes, and can be made into (10), rod or strip (10); or, Reflowing or remelting is performed to remelt into the lead-free solder composition of the present invention, at which time the substrate of the tin-silver-copper alloy has no layered structure, and the nano The particles 12 can be substantially uniformly dispersed in the substrate of the tin-silver-copper alloy (not shown). In the present process, the composition ratio of the silver and copper of the present invention on November 16, 100, and the composition of the nanoparticles must be controlled within the composition ratio range mentioned above in the present invention. Referring to Figures 3A through 3B, in a second embodiment of the present invention, the present invention selectively employs a magnetic stirring method in which a tin-silver-copper alloy 31 and at least one nanoparticle 32 are first prepared. Next, a container 4 is prepared and a magnetic stirrer 5 is placed in advance, and the tin-silver-copper alloy 31 and the nanoparticle 32 are poured into the container 4. Subsequently, the container 4 is heated by a heating type electromagnetic stirrer 6 to melt the tin-silver-copper alloy 31, and the magnetic stirrer 5 is rotated by the magnetic turntable (not shown) inside the heated electromagnetic stirrer 6. The tin-silver-copper alloy 31 and the nano-particles 32 are uniformly mixed. In the present invention, the nanoparticle 32 may be added to the container 4 at the beginning, or may be slowly added thereto after the tin-silver-copper alloy 31 is melted. Further, the tin-silver-copper alloy 31 may be directly selected from the alloy powder of tin-silver-copper or may be selected from a composite powder in which individual metal powders of tin, silver and copper are mixed in proportion. After stirring for a predetermined period of time, the molten metal is poured out to be cooled and solidified into a nanometer-composite lead-free solder 30, so that the nanoparticle 32 can be substantially uniformly dispersed in the tin-silver-copper alloy 31. In the present process, the composition ratio of silver, copper and nanoparticles must be controlled within the composition ratio range mentioned above in the present invention. After the nano-composite lead-free solder composition is prepared by the rolling kneading method or the magnetic mixing method, the nano-particles are evenly dispersed in the tin-silver-copper alloy, and the nano-particles can withstand more than 300 degrees. The high temperature, so it has the excellent characteristics of not participating in the splicing melting reaction, not gathering coarsening and there will be no diffusion 14 1360452 __ 100 November replacement page phenomenon. Thus, for example, in one embodiment, when the nanocomposite lead-free solder composition of the present invention is applied to the field of semiconductor package t as a bump material, it can be reflowed first (refl0W; • is bonded to the aluminum pad or copper pad (not shown) of the wafer, and then soldered to the copper pad (not shown) of the substrate to be between the aluminum pad or the copper pad of the wafer and the copper pad of the substrate. A bump welded structure is formed. In the bump soldering structure, the nanoparticle can effectively inhibit the formation of an intermetallic compound (IMC) layer between the tin-silver-copper alloy and the copper pad, and the intermetallic compound layer is reduced to less significant. degree. Furthermore, even if the nano-composite layer in the vicinity of the intermetallic compound layer is formed in the solder joint of the nano-composite lead-free solder, the nano-particles can be used as barrier particles to effectively suppress the copper at the intermetallic compound layer. It diffuses into the tin-silver-copper alloy through the intermetallic compound layer. More specifically, suppressing the diffusion of copper can avoid the formation of a kekendo micropore in the intermetallic compound layer (Kirkenda11 ν. ♦ thus effectively reducing the intermetallic metal layer due to micropores) Structural embrittlement and cracking risk 0 In addition, the present invention is based on the tin-alloy base (four) mixed with the nano-micromixed (four) mechanical strength system is significantly better than the pure copper alloy machine = strength, but its ductility will The principle of improving the mechanical strength of the present invention is the precipitation strengthening mechanism of the alloy material. Therefore, based on the above principle, the nanoparticle of the present invention can effectively refine the tin-silver-copper alloy structure and suppress the tin-silver. The steel alloy produces a coarsened intermetallic compound to increase its mechanical strength, and inhibits the growth of the post-weld intermetallic metal, and slows the increase in the thickness of the intermetallic metal to prevent the formation of tin-silver-copper alloy. The solder joints crack the surface under temperature cycling test or external mechanical shock, thereby improving the reliability of the electronic product and its service life. In a preferred embodiment of the invention, the present invention has a composition of 0.25 wt%, φ OJ wt%, and I.0, respectively, based on tin-silver-copper. (Sn3.5Ag〇.5Cu) lead-free solder. % by weight of titanium dioxide nanoparticle (particle size 30 nits) 'to test the solidus temperature, liquidus temperature and melting range using a thermal difference analyzer (DSC) And the mechanical properties analysis, the analysis results are shown in Table 2 and Table 3 below: Table 2, the nano composite lead-free solder composition of the present invention and the general tin-silver-copper (SAC) lead-free solder using a thermal difference analyzer to test the solid phase Wire temperature (Ts), liquidus temperature (T!) and melting point range (eight D data, solder nano-Ti02 Ts T, ΔT (% by weight) CC) ΓΟ (°C) Conventional SAC — 220.1 223.6 3.5 The present invention SAC-0.25TiO2 0.25 220.5 224.8 4.3 The present invention SAC-0.5TiO2 0.5 220.6 225.7 5.1 The present invention SAC-1.0TiO2 1.0 220.9 226.8 5.9 Table 3, the present invention nano-composite error-free solder composition and general tin silver copper jSAC) Analysis of mechanical properties of lead-free solder_ solder nano microhardness tensile strength 0.2 fluctuating ductility 16 , 452 100 November 16 replacement page

Ti02 (重量%) (Hv) (MPa) 強度 (MPa) (Pet) 習用SAC — 15.2 55.7 53.2 48.6 本發明 SAC-0.25TiO2 0.25 17.1 61.5 59.5 40.5 本發明 SAC-0.5TiO2 0.5 17.5 69.1 67.6 32.1 本發明 SAC-1.0TiO2 1.0 18.5 70.1 69.3 25.2Ti02 (% by weight) (Hv) (MPa) Strength (MPa) (Pet) Conventional SAC — 15.2 55.7 53.2 48.6 The present invention SAC-0.25TiO2 0.25 17.1 61.5 59.5 40.5 The present invention SAC-0.5TiO2 0.5 17.5 69.1 67.6 32.1 The SAC of the present invention -1.0TiO2 1.0 18.5 70.1 69.3 25.2

請參照第4A及4B圖所示,其係將一般錫銀銅 (Sn3.5AgO.5Cu)無鉛焊料合金及其回焊(refl〇w)結合於 晶片之銅墊上的合金顯微組織之電子顯微照相圖,其顯 示錫銀銅合金之基底内有灰白色粗大針狀Ag3Sn及灰 黑色針狀Ci^Sn5等介金屬化合物。請參照第5A、5B、 5C及6圖所示’其係本發明在錫銀鋼(sn3 5Ag〇.5Cu) 無錯焊料中分別添加〇·25重量%、0.5重量%及1〇重量 %的二氧化鈦奈米微粒所製備的奈米複合無鉛焊錫合Please refer to Figures 4A and 4B, which are electronic displays of the alloy microstructure of a general tin-silver-copper (Sn3.5AgO.5Cu) lead-free solder alloy and its reflow soldering (refl〇w) bonded to the copper pad of the wafer. The micrograph shows that the base of the tin-silver-copper alloy has a gray-white coarse needle-like Ag3Sn and a gray-black needle-like Cu^Sn5 intermetallic compound. Referring to Figures 5A, 5B, 5C, and 6, the present invention adds 〇·25 wt%, 0.5 wt%, and 1 wt% of tin-silver steel (sn3 5Ag〇.5Cu) error-free solder, respectively. Nano-composite lead-free solder joint prepared by titanium dioxide nano particles

金及其回焊結合於晶片之銅墊上的合金顯微組織之電 子顯微照相圖,其顯示錫銀銅合金之基底内並未出現粗 大介金屬化合物,其中界面層僅生成CU6Sn5介金屬化 合物,並未生成ChSn介,金屬化合物。另外,在銲錫位 置並未生成板狀的人心如及CU6%5等介金屬化合物, 加二氧滅奈錄粒能有效細蝴微組織、抑制 ;金屬化合物生成與成*,並減緩克肯多微孔洞 (Kirkendall void)的產生。請參照第7圖所示,— 發明之奈米複合無錯焊锡添加不同含量之二氧⑽太 米微粒的機械性質分析曲線圖,其中可知本發明在錫二 17 1360452 1〇0年11月16日替換頁 、.銅(SnDAgG.Wu)無料料基底时別 %、〇·5重量%及Μ重量%的二氧化鈦奈米微粒^ 力⑽·應變(%)的表現優於單純的錫銀; (Sn^5Ag0.5CU)無錯焊料,且二氧化鈦奈米微粒的含量 愈高,其機械性質的表現愈好。 如上所述本發明係在以錫銀銅合金為基材之無錯 .焊錫内進-步添加奈米微粒,以利用奈米微粒的特性^ 丨 效的細化錫銀銅合金組織、抑制錫銀銅合金產生粗大化 丨之介金屬化合物以増加其機械強度,及抑制焊接後介金 屬之成長,並減緩介金屬厚度增加,進而提升電子產品 之焊接可罪度及其使用壽命。再者,本發明係選擇利用 滚軋混煉法或磁性攪拌法將奈米微粒均勻的混摻在錫 銀銅合金内,以順利製造奈米複合無鉛焊錫,故亦有利 於提尚焊錫混摻品質及降低製造成本。 雖然本發明已以較佳實施例揭露然其並非用以限 丨制本發明,任何熟習此項技藝之人士,在不脫離本發明 之精神和範圍内,當可作各種更動與修飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖:習用連接於晶片上的錫銀(SnAg)合金覆晶凸塊 之示意圖。 第2A至2E圖:本發明第一實施例之奈米複合無鉛焊 錫組成物製造方法之流程示意圖。 18 1360452 100年11月16日替換頁 第3A至3B圖:本發明第二實施例之奈米複合無鉛焊 錫組成物製造方法之流程示意圖。 第4A及4B圖:習用錫銀銅(Sn3.5AgO.5Cu)無鉛焊料合 金及其回焊結合於晶片之銅墊上的合金顯微組織之電 子顯微照相圖。 第5A、5B及5C圖:本發明在錫銀銅無錯焊料中不同 含量的二氧化鈦奈米微粒所製備的奈米複合無鉛焊錫 合金及其回焊結合於晶片之銅墊上的合金顯微組織之 電子顯微照相圖。 第6圖:本發明在錫銀銅無鉛焊料中添加二氧化鈦奈米 微粒,並將奈米複合無鉛焊錫合金回焊結合於晶片之銅 墊上的界面合金顯微組織之電子顯微照相圖。 第7圖所示,本發明之奈米複合無鉛焊錫添加不同含量 之二氧化鈦奈米微粒的機械性質分析曲線圖。 【主要元件符號說明】 1 無鉛焊錫疊層 10 奈米複合無鉛焊錫 11 錫銀銅合金片體 12 奈米微粒 2 滾輪 30 奈米複合無錯焊錫 31 錫銀銅合金 32 奈米微粒 4 容器 5 磁性攪拌子 6 加熱型電磁攪拌器 19An electron micrograph of the microstructure of the alloy and its reflow solder bonded to the copper pad of the wafer, which shows that no coarse intermetallic compound is present in the substrate of the tin-silver-copper alloy, wherein the interfacial layer only forms a CU6Sn5 intermetallic compound, ChSn media, metal compounds were not produced. In addition, in the solder position, no plate-shaped human heart and other metal compounds such as CU6%5 are formed, and the addition of dioxetane can effectively fine-tune the microstructure and inhibit; the formation and formation of metal compounds and slow down Kekendo The creation of a Kirkendall void. Please refer to Figure 7 for the mechanical properties analysis of different amounts of dioxin (10) rice particles added to the nano-composite error-free solder of the invention. It can be seen that the invention is in Xi 2 17 1360452 1 November 2005 On the daily replacement page, the copper (SnDAgG.Wu) material-free substrate, %, 〇·5% by weight, and Μ% by weight of the titanium dioxide nanoparticles (10)·strain (%) behaved better than pure tin-silver; Sn^5Ag0.5CU) is a solder-free solder, and the higher the content of titanium dioxide nanoparticles, the better the mechanical properties. As described above, in the present invention, nano-particles are further added in a solder-free solder using a tin-silver-copper alloy as a substrate to refine the tin-silver-copper alloy structure and suppress tin by utilizing the characteristics of the nanoparticle. The silver-copper alloy produces a coarse-grained intermetallic compound to increase its mechanical strength, inhibit the growth of the intermetallic metal after welding, and slow down the increase in the thickness of the intermetallic metal, thereby improving the soldering sin and the service life of the electronic product. Furthermore, the present invention selects the uniform blending of nano particles in a tin-silver-copper alloy by a rolling kneading method or a magnetic stirring method to smoothly manufacture a nano-composite lead-free solder, which is also advantageous for the promotion of soldering and blending. Quality and reduced manufacturing costs. While the present invention has been described in its preferred embodiments, the present invention is not intended to be limited thereto, and it is intended that various modifications and changes may be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a tin-silver (SnAg) alloy flip-chip bump attached to a wafer. 2A to 2E are schematic views showing the flow of a method for producing a nano composite lead-free solder composition according to a first embodiment of the present invention. 18 1360452 Replacement page on November 16, 100 Figures 3A to 3B are schematic views showing the flow of a method for producing a tin composite lead-free solder composition according to a second embodiment of the present invention. Figures 4A and 4B: Electron photomicrographs of a conventional tin-silver-copper (Sn3.5AgO.5Cu) lead-free solder alloy and its alloy microstructure reflowed to a copper pad of the wafer. 5A, 5B and 5C: a nano-composite lead-free solder alloy prepared by different amounts of titanium dioxide nano-particles in a tin-silver-copper error-free solder according to the present invention and an alloy microstructure bonded to a copper pad of a wafer Electron micrograph. Fig. 6 is an electron micrograph showing the microstructure of an interface alloy in which a titanium-titanium-copper nano-particle is added to a tin-silver-copper lead-free solder and a nano-composite lead-free solder alloy is reflow-bonded to a copper pad of the wafer. Fig. 7 is a graph showing the mechanical property analysis of different amounts of titanium dioxide nanoparticles added to the nanocomposite lead-free solder of the present invention. [Main component symbol description] 1 Lead-free solder laminate 10 Nano composite lead-free solder 11 Tin-silver-copper alloy sheet 12 Nanoparticle 2 Roller 30 Nano-composite error-free solder 31 Tin-silver-copper alloy 32 Nanoparticle 4 Container 5 Magnetic Stirrer 6 heating type electromagnetic stirrer 19

Claims (1)

1360452 - - 100年11月16日替換頁 七、申請專利範圍: 1. 一種奈米複合無鉛焊錫組成物,其包含:0.01至5.0 重量%之銀、0.01至3.0重量%之銅、0.25至2.0重 - 量%之奈米微粒及其餘為錫,其中該奈米微粒選自二 - 氧化鈦、三氧化二鋁、過氧化鋅、二氧化鍅、奈米碳 . 管或其混合物,及該奈米微粒之粒徑介於5至500 • 奈米之間。 2. 如申請專利範圍第1項所述之奈米複合無鉛焊錫組 ® 成物,其中該奈米複合無錯焊錫組成物係由錫銀銅合 金混摻該奈米微粒所組成。 3. 如申請專利範圍第2項所述之奈米複合無鉛焊錫組 成物,其中該奈米微粒利用滾軋混煉法混入錫銀銅合 金内。 4. 如申請專利範圍第3項所述之奈米複合無鉛焊錫組 成物,其中該奈米微粒均勻的散佈在一無鉛焊錫疊層 φ 的數層錫銀銅合金片體之間。 5. 如申請專利範圍第2項所述之奈米複合無鉛焊錫組 成物,其中該奈米微粒利用磁性攪拌法混入錫銀銅合 金内。 6. 如申請專利範圍第1項所述之奈米複合無鉛焊錫組 成物,其中銀之含量選自2.5重量%、3.0重量%、3.5 ' 重量%、3.8重量%、3.9重量%、4.0重量%、4.5重 • 量%或5.0重暈%。 7. 如申請專利範圍第1或6項所述之奈米複合無鉛焊錫 20 1360452 100年】1月〗6日替換頁 組成物’其中銅之含量選自0.5重量 0.7重量%、0.8重量%或〇.9重量%。 項所述之奈米複合無錯焊锡組 ,、巾該奈米㈣之含量選自 **%'!.〇 tt〇/o,tl5tt〇/〇〇 重里/〇 〇,5 9二nt圍第1或8項所述之奈米複合無錯烊锡 該奈米微粒選自二氧化鈦,其粒徑為 10.如申請專利範圍第i或8項所述之 組成物,其中該奈米微粒選;^ ° :錯焊錫 30至40奈米。 ㈣一氧化一紹,其粒徑為 1L如申請專利範圍第!或8項述太 組成物,1中兮太半迚之不未複合無鉛焊錫 35至45奈米 粒選自過氧化鋅,其粒徑為 〜申請專利範圍第…項所述 組成物,其中該奈米微粒選 二,锡 20至30奈米。 軋化錯,其粒徑為 13.如申請專利範圍第】或8項 組成物’其中該奈米微㈣自锡 2〇至10〇奈米。 目不未石厌吕,其粒徑為 14:請1項所述之奈米複合— 战物,另包含0.01至0.5重 纤场、且 成物,另包含_至〇.5重量%之叙。…口知錫組 21 1360452 - • 100年11月16日替換頁 四、指定代表圖: ' (一)本索指定代表圖為:第(6 )圖。 - (二)本代表圖之元件符號簡單說明: * 無 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1360452 - - November 16, 2010 Replacement Page VII. Patent Application Range: 1. A nanocomposite lead-free solder composition comprising: 0.01 to 5.0% by weight of silver, 0.01 to 3.0% by weight of copper, 0.25 to 2.0 The weight-% of the nanoparticle and the balance are tin, wherein the nanoparticle is selected from the group consisting of di-titanium oxide, aluminum oxide, zinc peroxide, cerium oxide, nanocarbon tube or a mixture thereof, and the naphthalene The particle size of the rice particles is between 5 and 500 • nanometer. 2. The nanocomposite lead-free solder group according to claim 1, wherein the nano-composite error-free solder composition is composed of tin-silver-copper alloy mixed with the nanoparticle. 3. The nanocomposite lead-free solder composition according to claim 2, wherein the nanoparticle is mixed into the tin-silver-copper alloy by rolling and kneading. 4. The nanocomposite lead-free solder composition of claim 3, wherein the nanoparticle is uniformly dispersed between a plurality of layers of tin-silver-copper alloy sheets of a lead-free solder laminate φ. 5. The nanocomposite lead-free solder composition of claim 2, wherein the nanoparticle is mixed into the tin-silver-copper alloy by magnetic stirring. 6. The nanocomposite lead-free solder composition of claim 1, wherein the silver content is selected from the group consisting of 2.5% by weight, 3.0% by weight, 3.5'% by weight, 3.8% by weight, 3.9% by weight, 4.0% by weight. , 4.5 weight • % by volume or 5.0% of halo. 7. The nanocomposite lead-free solder as described in claim 1 or 6 of the patent scope 20 1360452 100 years] January 6th replacement page composition 'where the copper content is selected from 0.5 weight 0.7% by weight, 0.8% by weight or 〇. 9% by weight. The nano-composite error-free soldering group described in the item, the content of the nanometer (four) is selected from **%'!.〇tt〇/o, tl5tt〇/〇〇重里/〇〇, 5 9二nt circumference The nanocomposite of the present invention is characterized in that the nanoparticle is selected from the group consisting of titanium dioxide and having a particle size of 10. The composition of the invention of claim 1 or 8 wherein the nanoparticle is selected; ^ ° : Wrong solder 30 to 40 nm. (4) One oxidation, one particle size is 1L, as claimed in the patent scope! Or 8 items of the composition, 1 兮 迚 迚 不 复合 复合 复合 复合 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 The rice particles are selected two, and the tin is 20 to 30 nm. The rolling is wrong, and its particle size is 13. For example, the scope of the patent application or the eighth component of the composition 'where the nano-micro (four) is from tin 2 to 10 nanometer. It is not ruthless, and its particle size is 14: Please refer to the nanocomposite-warfare described in 1 item, and also contain 0.01 to 0.5 heavy fiber field, and the product, including _ to 〇.5 wt% . ...口知锡组 21 1360452 - • Replacement page on November 16, 100. 4. Designation of representative drawings: ' (1) The representative figure of the present is: (6). - (2) A brief description of the symbol of the representative figure: * None 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW98109282A 2009-03-20 2009-03-20 Composite lead-free solder composition having nano TWI360452B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98109282A TWI360452B (en) 2009-03-20 2009-03-20 Composite lead-free solder composition having nano

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98109282A TWI360452B (en) 2009-03-20 2009-03-20 Composite lead-free solder composition having nano

Publications (2)

Publication Number Publication Date
TW201034784A TW201034784A (en) 2010-10-01
TWI360452B true TWI360452B (en) 2012-03-21

Family

ID=44855641

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109282A TWI360452B (en) 2009-03-20 2009-03-20 Composite lead-free solder composition having nano

Country Status (1)

Country Link
TW (1) TWI360452B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742600B2 (en) 2012-10-08 2014-06-03 Industrial Technology Research Institute Dual-phase intermetallic interconnection structure and method of fabricating the same
TWI460046B (en) * 2012-11-12 2014-11-11 Accurus Scient Co Ltd High strength silver-free lead-free solder
TWI469845B (en) * 2012-08-08 2015-01-21 Senju Metal Industry Co High temperature lead free solder alloy
CN110512102A (en) * 2019-10-11 2019-11-29 云南锡业集团(控股)有限责任公司研发中心 A kind of preparation method of Sn-Ag-Cu alloy preform weld tabs

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2005112C2 (en) 2010-07-19 2012-01-23 Univ Leiden Process to prepare metal nanoparticles or metal oxide nanoparticles.
CN102922177B (en) * 2012-10-25 2014-08-13 哈尔滨工业大学 Nano intermetallic compound soldering paste and preparation method thereof
CN108927609B (en) * 2018-08-13 2020-08-07 深圳市亿铖达工业有限公司 Preparation method of composite lead-free solder paste
CN114871628A (en) * 2022-05-31 2022-08-09 杭州华光焊接新材料股份有限公司 Low-silver high-strength lead-free tin-based solder and preparation method thereof
CN116604221B (en) * 2023-07-19 2023-10-13 长春理工大学 Infrared detection window solder material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI469845B (en) * 2012-08-08 2015-01-21 Senju Metal Industry Co High temperature lead free solder alloy
US8742600B2 (en) 2012-10-08 2014-06-03 Industrial Technology Research Institute Dual-phase intermetallic interconnection structure and method of fabricating the same
TWI460046B (en) * 2012-11-12 2014-11-11 Accurus Scient Co Ltd High strength silver-free lead-free solder
CN110512102A (en) * 2019-10-11 2019-11-29 云南锡业集团(控股)有限责任公司研发中心 A kind of preparation method of Sn-Ag-Cu alloy preform weld tabs
CN110512102B (en) * 2019-10-11 2021-06-22 云南锡业集团(控股)有限责任公司研发中心 Preparation method of Sn-Ag-Cu alloy preformed soldering lug

Also Published As

Publication number Publication date
TW201034784A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
TWI360452B (en) Composite lead-free solder composition having nano
TWI417399B (en) Composite lead-free solder alloy composition having nano-particles
Wang et al. Recent progress on the development of Sn–Bi based low-temperature Pb-free solders
Sun et al. Properties and Microstructures of Sn‐Ag‐Cu‐X Lead‐Free Solder Joints in Electronic Packaging
KR101160860B1 (en) Cream solder and method of soldering electronic part
JP4753090B2 (en) Solder paste and electronic device
WO2013038817A1 (en) Electroconductive material, and connection method and connection structure using same
Yao et al. Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu–xNi composite solder joints on electrolytic Ni/Au metallized substrate
WO2013038816A1 (en) Electroconductive material, and connection method and connection structure using same
JP2014223678A (en) Joint method, joint structure, electronic device, method for production of electronic device, and electronic component
WO2013132953A1 (en) Bonding method, electronic device manufacturing method, and electronic component
US20120248176A1 (en) Solder pastes for providing impact resistant, mechanically stable solder joints
Zhao et al. Effect of nano-Al2O3 reinforcement on the microstructure and reliability of Sn–3.0 Ag–0.5 Cu solder joints
JP6402127B2 (en) Bonding method of electronic parts
Sharma et al. Microstructure, mechanical properties, and drop reliability of CeO2 reinforced Sn–9Zn composite for low temperature soldering
KR20060032185A (en) Carbon nanotube reinforced composite solders and mounting methods using the same
Bashir et al. Effects of tin particles addition on structural and mechanical properties of eutectic Sn–58Bi solder joint
Liu et al. Recent development of nano-solder paste for electronics interconnect applications
TW201127541A (en) Manufacturing method for lead-free solder material mixed with metal micro-particles
US9079272B2 (en) Solder joint with a multilayer intermetallic compound structure
JP5724088B2 (en) Metal filler and lead-free solder containing the same
Mohankumar et al. Nano-particle reinforced solders for fine pitch applications
JP5147349B2 (en) Bump forming paste and bump structure
JP5558503B2 (en) Lead-free solder alloy and manufacturing method thereof
JP2013163185A (en) Filler metal, solder paste, and connecting structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees