TW201127861A - Acrylic modified urethane urea resin composition and molding product obtained by using the same - Google Patents

Acrylic modified urethane urea resin composition and molding product obtained by using the same Download PDF

Info

Publication number
TW201127861A
TW201127861A TW99131543A TW99131543A TW201127861A TW 201127861 A TW201127861 A TW 201127861A TW 99131543 A TW99131543 A TW 99131543A TW 99131543 A TW99131543 A TW 99131543A TW 201127861 A TW201127861 A TW 201127861A
Authority
TW
Taiwan
Prior art keywords
urea resin
urethane urea
modified urethane
acrylic modified
resin composition
Prior art date
Application number
TW99131543A
Other languages
Chinese (zh)
Other versions
TWI526464B (en
Inventor
Koujirou Tanaka
Masayoshi Imanaka
Shinya Yamamoto
Eiji Sugaya
Kazuki Obi
Original Assignee
Dainippon Ink & Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink & Chemicals filed Critical Dainippon Ink & Chemicals
Publication of TW201127861A publication Critical patent/TW201127861A/en
Application granted granted Critical
Publication of TWI526464B publication Critical patent/TWI526464B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This invention relates to an acrylic modified urethane urea resin composition and a molding product obtained by using the composition, the acrylic modified urethane urea resin composition containing an acrylic modified urethane urea resin (1) and a solvent (2), the acrylic modified urethane urea resin (1) being obtained by reacting a polyol (A) containing an aliphatic cyclic structure, a polyisocyanate (B) containing an aliphatic cyclic structure, a polyamine (C) containing an aliphatic cyclic structure and an acrylic compound (D) having active hydrogen containing groups. The issue to be solved by this invention is to provide a resin composition, capable of forming a molding product having both excellent solvent resistance and excellent heat resistance, in which the solvent resistance of the resin composition is in a level that dissolution or disformatoin or or discoloration of the surface of the molding product will not happen even if various solvents attach.

Description

201127861 六、發明說明: 【發明所屬之技術領域】 本發明係關於例如在以成型材料或塗覆劑、黏著劑等 等爲始之各種用途可使用的丙烯酸改性胺基甲酸酯脲樹脂 組成物。 【先前技術】 使用胺基甲酸酯系成型材料而獲得的成型品,現在使 用在汽車零件及家電零件或包裝材、構成皮革狀片材之表 皮材等各種用途。 對於前述成型品,要求因應於其適用用途的各種特 性。例如使用在汽車內裝材時,有時要求不會因爲醇或食 品中之油脂等附著造成成型品表面變形或變色等之程度的 耐醇性或耐油酸性,再者,有時要求在夏日的高溫環境下 長時間暴露時不會引起成型品變形等的程度的耐熱性。 就如前述不易因爲醇等引起變形等之成型材料,例如 已知有一種分子量3〜20萬且凝膠%爲5 %以下的熱可塑性 聚胺基甲酸酯成型材料,由使聚四亞甲基碳酸酯二醇與有 機二異氰酸酯1種或2種以上反應得到之特定預聚物,與 能與該預聚物之異氰酸酯反應之具有2個活性氪的鏈伸長 劑構成,前述預聚物/鏈伸長劑之莫耳比爲超過1之値,以 能與前述預聚物之末端之未反應異氰酸酯反應的具有1個 活性氫的反應停止材使末端停止(例如參照專利文獻1)。 -4- .201127861 但是,使用前述熱可塑性聚胺基甲酸酯成型材料得到 的成型品,在耐熱性之點上有時於實用上不夠充分,於高 溫環境下長期暴露時,有時會引起變形等。 另一方面,當將前述成型品固定在各種製品的既定位 置時,一般而言’多使用黏着劑。例如製造汽車零件或家 電零件時,有> 在黏接由成型爲既定形狀之成型品構成之 構件彼此時,會使用有機溶劑型黏著劑。 但是,前述黏著劑中包含的有機溶劑,會侵入胺基甲 酸酯系成型品表面,且有時引起該成型品表面的溶解或變 形或變色等。 尤其,當將爲膜或片狀之前述成型品使用有機溶劑型 黏著劑疊層等時,有時會受前述黏著劑中所含之有機溶劑 的影響而引起膜等之溶解或收縮等變形及變色。 .如此,產業界需要開發即使在該情形,仍能形成具備 不會引起成型品表面溶解或變形或變色等之程度的耐溶劑 性及前述耐熱性的成型品的成型材料。 但是,使用前述專利文獻1記載之前述熱可塑性聚胺 基甲酸酯成型材料得到的成型品,雖然對於醇或油酸等油 脂成分具有良好耐性,但是難稱的上對於強溶劑等等各種 有機溶劑具有充分耐溶劑性,有時仍然難以防止由於前述 溶劑附著造成成型品表面開始有樹脂溶解或成型品表面變 形、變色等。 -5- 201127861 如以上’雖然產業界強力需求可形成兼具優異耐熱性 及對於有機溶劑具優異耐溶劑性之成型品的成型材料,但 是實情爲尙未發現此種材料。 先前技術文獻 專利文獻 專利文獻1 日本特開平7-41540號公報 【發明內容】 發明欲解決之課題 本發明欲解決之課題爲提供一種樹脂組成物,可形成 兼顧即使有各種溶劑附著之情形也不會引起成型品表面溶 解或變形或變色等之程度的優異耐溶劑性,與優異耐熱性 的成型品。 解決課題之方法 本案發明人等,爲了解決前述課題努力探討,探討在 如前述文獻1記載之胺基甲酸酯樹脂中導入脂肪族環式構 造。具體而言,探討各種種類的多元醇或聚異氰酸酯之組 合,且探討與各種種類之鏈伸長劑的組合。 其結果發現:含有使含有脂肪族環式構造之多元醇與 含有脂肪族環式構造之聚異氰酸酯與含有脂肪族環式構造 之多元胺與具有含活性氫原子之基的丙烯酸化合物反應而 得到之丙烯酸改性胺基甲酸酯脲樹脂,與溶劑的丙烯酸改 性胺基甲酸酯脲樹脂組成物,可形成兼具優異耐溶劑性與 耐熱性的成型品。 -6- 201127861 即’本發明係關於一種丙烯酸改性胺基甲酸酯脲樹脂 組成物及使用此組成物形成的成型品,其特徵在於:該丙烯 酸改性胺基甲酸酯脲樹脂組成物係含有:使含有脂肪族環 式構造之多元醇(A)、含有脂肪族環式構造之聚異氰酸酯 (B)、含有脂肪族環式構造之多元胺(C)及具有含活性氫原 子之基的丙烯酸化合物(D)反應而得到的丙烯酸改性胺基 甲酸酯脲樹脂(1),及溶劑(2)而成。 發明之效果 若爲本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 可形成具有優異的耐溶劑性及耐熱性的成型品,因此例如 可使用在汽車零件或家電零件、包裝材、膜或片材、皮革 類片材之表皮材等的製造。 又,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 由於可形成具有優異耐溶劑性及耐熱性的被覆膜等,因此 例如可使用在各種基材之表面塗覆劑或黏著劑等。 【實施方式】 實施發明之形態 首先,說明本發明使用之丙烯酸改性胺基甲酸酯脲樹 脂⑴。 本發明使用之丙烯酸改性胺基甲酸酯脲樹脂(1 ),係使 含有脂肪族環式構造之多元醇(A)與含有脂肪族環式構造 之聚異氰酸酯(B)與含有脂肪族環式構造之多元胺(C)與具 有含活性氫原子之基的丙烯酸化合物(D)反應而得到者。 201127861 前述丙烯酸改性胺基甲酸酯脲樹脂(1),於發揮優異耐 溶劑性與耐熱性方面,必需具有脂肪族環式構造。前述脂 肪族環式構造,由前述含有脂肪族環式構造之多元醇與含 有脂肪族環式構造之聚異氰酸酯與含有脂肪族環式構造之 多元胺均供給爲重要。例如,前述丙烯酸改性胺基甲酸酯 脲樹脂(1)中存在之脂肪族環式構造之質量比例即使爲同 程度,若不使用含有脂肪族環式構造之聚異氰酸酯而使用 脂肪族聚異氰酸酯之樹脂組成物,有時會無法形成具有所 望耐溶劑性的成型品。 前述丙烯酸改性胺基甲酸酯脲樹脂(1 ),由得到兼顧優 異耐溶劑性與耐熱性之成型品之觀點,使用具有20〜60質 量%之範圍的脂肪族環式構造者較佳。又,前述脂肪族環 式構造之質量比例,爲相對於前述丙烯酸改性胺基甲酸酯 脲樹脂(1)製造使用之原料之含有脂肪族環式構造之多元 醇(A)與含有脂肪族環式構造之聚異氰酸酯(B)與含有脂肪 族環式構造之多元胺(C)與具有含活性氫原子之基的丙烯 酸化合物(D)之合計質量,脂肪族環式構造在前述原料中所 佔之質量比例。 又,前述丙烯酸改性胺基甲酸酯脲樹脂(1),具有胺基 甲酸酯鍵及脲鍵。使用不具脲鍵,所謂胺基甲酸酯丙烯酸 酯時,成型加工性低,有時難以製造例如薄化的膜等成型 品。因此,就前述丙烯酸改性胺基甲酸酯脲樹脂(1)而言, 就兼具優異的成型加工性,同時具良好的耐熱性與耐溶劑 -8 - 201127861 性的觀點,使用具有4〜10質量%的脲鍵者較佳,5〜8質 量%較佳,6〜7質量%尤佳。又,前述脲鍵之質量比例,爲 相對於作爲前述丙烯酸改性胺基甲酸酯脲樹脂(1)之製造 使用之原料的前述含有脂肪族環式構造之多元醇(A)與含 有脂肪族環式構造之聚異氰酸酯(B)與含有脂肪族環式構 造之多元胺(C)與含有含活性氫原子之基的丙烯酸化合物 (D)的合計質量,脲鍵構造在前述原料中所佔的質量比例。 又,前述丙烯酸改性胺基甲酸酯脲樹脂(1),從兼具優 異成型加工性,同時具良好耐熱性與耐溶劑性的觀點,使 用具有5〜15質量%的胺基甲酸酯鍵者較佳,7〜9質量% 更佳。又,前述胺基甲酸酯鍵之質量比例,係指相對於作 爲前述丙烯酸改性胺基甲酸酯脲樹脂(1)之製造使用之原 料的前述含有脂肪族環式構造之多元醇(A)與含有脂肪族 環式構造之聚異氰酸酯(B)與含有脂肪族環式構造之多元 胺(C)與具有含活性氫原子之基之丙烯酸化合物(D)的合計 質量’胺基甲酸酯鍵構造在前述原料中所佔的質量比例。 前述丙烯酸改性胺基甲酸酯脲樹脂(1),使用具有5 000 〜2 00000之重量平均分子量者,在維持優異耐溶劑性與耐 熱性同時維持良好成型加工性方面較佳,15000〜200000 之範圍更佳。又,前述丙烯酸改性胺基甲酸酯脲樹脂(1)之 重量平均分子量,係使用凝膠滲透層析(GpC),使用四氫呋 喃作爲溶離液,以苯乙烯換算求得之値。 -9- 201127861 本發明使用之丙烯酸改性胺基甲酸酯脲樹脂(1),使用 來自前述丙烯酸化合物(D)之丙烯醯基之當量重量爲10000 〜5 0000之範圍者,於兼顧優異耐溶劑性與耐熱性方面較 佳,10000〜30000更佳。又,前述丙烯醯基之當量重量, 係指構成前述丙烯酸改性胺基甲酸酯脲樹脂(1)之含有脂 肪族環式構造之多元醇(A)與含有脂肪族環式構造之聚異 氰酸酯(B)與含有脂肪族環式構造之多元胺(C)與具有含活 性氫原子之基的丙烯酸化合物(D)的合計質量,除以前述丙 烯酸改性胺基甲酸酯脲樹脂中存在之來自前述丙烯酸化合 物(D)之丙烯醯基之當量得到之値。 其次,說明前述丙烯酸改性胺基甲酸酯脲樹脂(1)之製 造使用的含有脂肪族環式構造之多元醇(A)。 本發明使用之含有脂肪族環式構造之多元醇(A),較佳 爲使用羥基價爲30〜23 0mgKOH/g之範圔者’使用50〜 2 30mgKOH/g之範圍者更佳。又,前述多元醇(A)之羥基價, 係依據JIS K0070進行測定之値。 前述含有脂肪族環式構造之多元醇(A)’例如可使用含 有脂肪族環式構造之聚碳酸酯多元醇、含有脂肪族環式構 造之聚酯多元醇、含有脂肪族環式構造之聚醚多元醇、含 有脂肪族環式構造之丙烯酸多元醇等,含有脂肪族環式構 造之二醇較佳。又,此等之中,由兼顧優異耐溶劑性與耐 熱性之觀點,使用含有脂肪族環式構造之聚碳酸醋多元醇 及含有脂肪族環式構造之聚酯多元醇更佳’使用含有脂肪 -10- 201127861 族環式構造之聚碳酸酯二醇及含有脂肪族環式構造之聚酯 二醇尤佳。 前述含有脂肪族環式構造之聚碳酸酯多元醇,例如可 使用使碳酸酯及/或光氣,與後述約50〜400之較低分子量 的含有脂肪族環式構造之多元醇(al)反應得到者。 前述碳酸酯,例如可使用碳酸甲酯’或碳酸二甲酯、 碳酸乙酯、碳酸二乙酯、環碳酸酯、碳酸二苯酯等。 又,能與前述碳酸酯或光氣反應之含有脂肪族環式構 造之多元醇(al),例如:1,2_環丁二醇、1,3 —環戊二醇、 1,4_環己二醇、環庚二醇、環辛二醇、1,4 —環己烷二甲醇、 羥基丙基環己醇、參環[5,2,1,0,2,6]癸烷—二甲醇、雙環 [4,3,0]—壬二醇、二環己烷二醇、參環[5,3,1,1]十二烷二 醇 '雙環[4,3,0]壬二甲醇、參環[5,3,1,1]十二烷一二乙醇、 羥基丙基參環[5,3,1,1]十二醇、螺[3,4]辛二醇、丁基環己 烷二醇、1,1,一雙環亞己基二醇、環己烷三醇、氫化雙酚A、 1,3—金剛烷二醇等,其中,使用1,4 一環己烷二甲醇較佳。 前述含有脂肪族環式構造之聚酯多元醇,例如可使用 使約50〜400的較低分子量的含有脂肪族環式構造之多元 醇與聚羧酸反應得到者,或使低分子多元醇與含有脂肪族 環式構造之聚羧酸反應得到者,或其一部分爲將ε-己內 酯、γ—戊內酯等環狀酯化合物開環聚合反應並加成者等。 前述含有脂肪族環式構造之聚酯多元醇製造時可使用 之含有脂肪族環式構造之多元醇’可使用於前述含有脂肪 -11- 201127861 族環式構造之聚碳酸酯多元醇之製造可使用者所例示之含 有脂肪族環式構造之多元醇(a 1)爲同樣者。 又,能與前述低分子量之含有脂肪族環式構造之多兀 醇反應的聚羧酸,例如:琥珀酸、己二酸、辛二酸、壬二酸、 癸二酸、十二烷二羧酸、二聚酸之脂肪族聚羧酸、1,4 一環 己烷二羧酸或環己烷三羧酸等含有脂肪族環式構造之聚羧 酸、鄰苯二甲酸、間苯二甲酸、對苯二甲酸、1,4 一萘二羧 酸、2,3—萘二羧酸、2,6—萘二羧酸、聯苯二羧酸、偏苯三 甲酸、苯均四酸等芳香族聚羧酸、及此等之酸酐或酯衍生 物單獨使用或倂用2種以上,使用脂肪族聚羧酸較佳。 前述含有脂肪族環式構造之聚酯多元醇之製造可使用 的含有脂肪族環式構造之聚羧酸,可與前述同樣使用1,4 一環己烷二羧酸等。 與前述含有脂肪族環式構造之聚羧酸反應可使用的多 元醇,除了前述含有脂肪族環式構造之多元醇(a 1)以外, 例如可使用乙二醇、二乙二醇、三乙二醇、四乙二醇、1,2 —丙二醇、1,3 —丙二醇、二丙二醇、三丙二醇、1,2—丁二 醇、1,3 — 丁 二醇、1,4 一丁 二醇、2,3 - 丁 二醇、1,5 —戊二 醇、1,5—己二醇、1,6 —己二醇、2,5 —己二醇、1,7—庚二 醇、1,8 —辛二醇、1,9_ 壬二醇、1,1〇_ 癸二醇、1,11—十 一烷二醇、1,12 —十二烷二醇、2 —甲基一1,3 —丙二醇、新 戊二醇、2 — 丁基一 2 —乙基_1,3 —丙一醇、3 —甲基—1,5 —戊二醇、2 —乙基一1,3—己二醇、2—甲基一1,8_辛二 -12- 201127861 醇、甘油、三羥甲基丙烷、二-三羥甲基丙烷、三·三羥甲 基丙烷、新戊四醇等脂肪族多元醇等。 又’前述含有脂肪族環式構造之聚醚多元醇,例如以 具有2個以上活性氫原子的化合物1種或2種以上作爲起 始劑’將環氧烷(alkylene oxide)加成聚合者。 前述起始劑,例如可使用氫化雙酹A、氫化雙酚F、 1,4 -環己烷二甲醇等與前述含有脂肪族環式構造之多元 醇(al)同樣者。又’視需要,可倂用以往已知的乙二醇、 二乙二醇、三乙二醇、丙二醇、三亞甲基二醇、1,3—丁二 醇、1,4 一丁二醇、ι,6 —己二醇、新戊二醇、甘油、三羥甲 基乙院、二經甲基丙院等脂肪族多兀醇。 又’前述環氧烷,可使用例如環氧乙烷、環氧丙烷、 環氧丁烷、苯乙烯氧化物、表氯醇、四氫呋喃等^ 就前述含有脂肪族環式構造之多元醇(A)而言,如前述 含有脂肪族環式構造之聚碳酸酯多元醇、含有脂肪族環式 構造之聚酯多元醇或含有脂肪族環式構造之聚醚多元醇 等,與其他含有活性氫之鏈伸長劑一起組合使用,由於能 形成耐溶劑性或耐熱性、耐久性優異之成型品故爲較佳。 前述其他含活性氫之鏈伸長劑,例如:乙二醇、1,2 -丙 二醇、1,3 — 丁 二醇、1,4_ 丁 二醇、2,3 — 丁 二醇、3— 甲基 —1,5 —戊二醇、1,6 —己二醇、3,3’一二羥甲基庚烷、1,4 一瓌己烷二甲醇、新戊二醇、3,3 —雙(羥甲基)庚烷、二乙 二醇、二丙二醇、甘油、三羥甲基丙烷、山梨醇、氫醌二 羥乙基醚等多元等可單獨使用或倂用2種以上。 13- 201127861 本發明中,前述含有脂肪族環式構造之多元醇(A)以 外,視需要,也可組合以往已知的脂肪族聚碳酸酯多元醇、 芳香族聚碳酸酯多元醇、脂肪族聚酯多元醇、芳香族聚酯 多元醇、脂肪族聚醚多元醇、芳香族聚醚多元醇等其他多 元醇使用。 前述含有脂肪族環式構造之多元醇(A)’相對本發明之 丙烯酸改性胺基甲酸酯脲樹脂(1)之製造使用之原料含有 脂肪族環式構造之多元醇(A)與含有脂肪族環式構造之聚 異氰酸酯(B)與含有脂肪族環式構造之多元胺(C)與丙烯酸 化合物(D)之合計質量,使用40〜80質量%之範圍較佳。 其次,說明前述含有脂肪族環式構造之聚異氰酸酯 (B)。 前述含有脂肪族環式構造之聚異氰酸酯(B),可使用例 如異佛爾酮二異氰酸酯、4,4’ -二環己基甲烷二異氰酸 酯、2,4一及/或2,6-甲基環己烷二異氰酸酯、環伸己基二 異氰酸酯、甲基環伸己基二異氰酸酯、雙(2 -異氰酸乙基) _ 4 一環伸己基一 1,2-二羧酸酯及2,5-及/或2,6 -降莰烷 二異氰酸酯、二聚酸二異氰酸酯、雙環庚烷三異氰酸酯等。 其中,從賦予本發明之成型品優異的耐溶劑性及耐熱性的 觀點,使用二異氰酸酯較佳,使用異佛爾酮二異氰酸酯或 4,4’一二環己基甲烷二異氰酸酯更佳,使用4,4’一二環己基 甲烷二異氰酸酯尤佳。 -14- 201127861 又,本發明中,前述含有脂肪族環式構造之聚異氰酸 酯(B)以外’視需要’也可組合苯二異氰酸酯或甲苯二異氰 酸酯等芳香族聚異氰酸酯’或六亞甲基二異氰酸酯等脂肪 族聚異氰酸酯等其他聚異氰酸酯使用。 前述含有脂肪族環式構造之聚異氰酸酯(B),相對於得 到之丙烯酸改性胺基甲酸酯脲樹脂(1)之製造使用之原料 即含有脂肪族環式構造之多元醇(A)與含有脂肪族環式構 造之聚異氰酸酯(B)與含有脂肪族環式構造之多元胺(C)與 丙烯酸化合物(D)之合計質量,使用15〜50質量%之範圍較 佳。 其次,說明前述含有脂肪族環式構造之多元胺(C)。 前述含有脂肪族環式構造之多元胺(C),係爲了於前述 丙烯酸改性胺基甲酸酯脲樹脂中導入脲鍵而使用。 前述含有脂肪族環式構造之多元胺(C),例如可使用: 異佛爾酮二胺、4,4’ 一二環己基甲烷二胺、二胺基環己烷、 甲基二胺基環己烷、哌哄、降莰二胺等,其中,使用二胺 較佳,尤其,使用異佛爾酮二胺、4,4’ -二環己基甲烷二 胺,於形成優異的耐熱性及耐溶劑性優的成型品方面較佳。 又,本發明,除了前述含有脂肪族環式構造之多元胺 (C )以外,視需要,也可將乙二胺等以往作爲鏈伸長劑已知 的脂肪族多元胺等,在不損及本發明效果之範圍倂用。 前述含有脂肪族環式構造之多元胺(C)’相對於得到之 丙烯酸改性胺基甲酸酯脲樹脂(1)之製造使用之原料即含 -15- 201127861 有脂肪族環式構造之多元醇(A)與含有"目旨肪族環式構造之· 聚異氰酸醋(B)與含有脂肪族環式構造之多元胺(c)與丙烯 酸化合物(D)之合計質量’使用1〜20質量%之範圍較佳。 其次說明前述具有含活性氫原子之基的丙稀酸化合物 (D)。 本發明使用之具有含活性氫原子之基的丙燃酸化合物 (D),係於在前述丙嫌酸改性胺基甲酸醋脲樹脂中導入丙燃 醯基時使用者,使用具有能與異氰酸酯基反應之含活性氫 原子之基者。 前述含活性氫原子之基’例如羥基、羧基等’羥基較 佳。 前述丙烯酸化合物(D),可使用前述具羥基之丙烯酸化 合物或具羧基之丙烯酸化合物等,但使用具羥基之丙烯酸 化合物較佳。 前述含羥基之丙烯酸化合物,例如可使用:(甲基)丙烯 酸2_羥基乙酯、(甲基)丙烯酸2—羥基丙酯、(甲基)丙烯 酸3-羥基丁酯、(甲基)丙烯酸4_羥基丁酯等含羥基之丙 烯酸烷基酯、聚乙二醇單丙烯酸酯、聚丙二醇單丙烯酸酯 等。其中’從耐溶劑性與耐熱性之觀點,使用含羥基之丙 烯酸烷基酯較佳,從原料取得之容易度的觀點,使用丙烯 酸2-羥基乙酯或丙烯酸4一羥基丁酯更佳。 前述丙嫌酸化合物(D),相對於丙烯酸改性胺基甲酸酯 脲樹脂(1)之製造使用之原料即含有脂肪族環式構造之多 201127861 元醇(A)與含有脂肪族環式構造之聚異氰酸酯(B)與含有脂 肪族環式構造之多元胺(C)與丙烯酸化合物(D)之合計質 量,使用0.05〜10質量%之範圍較佳。 又,前述丙烯酸化合物(D)之一部分,也可在本發明之 丙烯酸改性胺基甲酸酯脲樹脂組成物中以未反應狀態存 在。即,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 可以同時含有前述丙烯酸改性胺基甲酸酯脲樹脂(1)及未 反應之前述丙烯酸化合物(D)。 其次,說明本發明使用之溶劑(2)。 前述溶劑(2)可使用有機溶劑及水溶劑,但是由更提升 成型品之成型性的觀點,使用有機溶劑更佳。 前述溶劑(2)使用有機溶劑時,雖不特別限定,但是可 使用例如乙酸乙酯、乙酸丁酯、乳酸乙酯、賽路蘇、乙酸 賽路蘇、丙酮、甲基乙基酮 '甲基異丁基酮、環己酮、甲 苯、二甲苯、二甲基甲醯胺、二甲基乙醯胺、丙二醇單甲 基醚、丙二醇單甲醚乙酸酯、乙腈、二甲基亞砸、N —甲基 吡咯啶酮、N—乙基吡咯啶酮、甲醇、異丙醇、2 — 丁醇、 正丁醇、異丙醇、乙二醇單甲基醚乙酸酯等,此等可單獨 使用也可倂用。又,此等有機溶劑,可視使用的用途適當 選擇。 又,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物 中,前述丙烯酸改性胺基甲酸酯脲樹脂(1)與前述溶劑(2) 之質量比例,爲(1)/(2) = 10〜50/90〜50較佳,15〜35/85 〜6 5更佳。 201127861 其次說明前述丙烯酸改性胺基甲酸酯脲樹脂(1)之製 造方法。 前述丙烯酸改性胺基甲酸酯脲樹脂(1)之製造方法,例 如以下製法(i)〜製法(Π)之方法。其中,依照以下(i)之方 法製造’容易控制反應故較佳。 製法(0,係於前述溶劑(2)下,使前述含有脂肪族環式 構造之多元醇(A)與前述含有脂肪族環式構造之聚異氰酸 酯(B),及視需要與前述其他含有活性氫的鏈伸長劑反應, 而得到於分子末端具有異氰酸酯基之胺基甲酸酯預聚物, 其次,使前述胺基甲酸酯預聚物與前述含有脂肪族環式構 造之多元胺(C)與前述丙烯酸化合物(D)反應而製造丙烯酸 改性胺基甲酸酯脲樹脂(1)。 前述含有脂肪族環式構造之多元醇(A)與前述含有脂 肪族環式構造之聚異氰酸酯(B)之反應,於該含有脂肪族環 式構造之多元醇(A)具有之羥基與含有脂肪族環式構造之 聚異氰酸酯(B)具有之異氰酸酯基的當量比例[異氰酸醋基/ 羥基]爲1.1/1.0〜5.0/1.0之範圍進行較佳,丨.5/1,0〜 3.0/1.0之範圍更佳。又,前述含有脂肪族環式構造之多元 醇(A)與前述含有脂肪族環式構造之聚異氰酸醋(B)之反 應,於2 0〜1 2 0。(:之條件下約進行3 0分鐘〜2 4小時較佳。 前述含有脂肪族環式構造之多元醇(A)與含有脂肪族 環式構造之聚異氰酸酯(B)之反應得到之在前述分子末端 具有異氰酸醋基的胺基甲酸醋預聚物’與前述含有脎肪族 -18- 201127861 環式構造之多元胺(C)與前述丙烯酸化合物(D)之反應,例 如可藉由將前述胺基甲酸酯預聚物與前述含有脂肪族環式 構造之多元胺(C)一次供給或逐次供給並使反應,而製造胺 基甲酸酯脲預聚物,並藉由使該胺基甲酸酯脲預聚物與前 述丙烯酸化合物(D)反應,而製造丙烯酸改性胺基甲酸酯脲 樹脂(1)。此時,前述胺基甲酸酯預聚物具有之異氰酸酯基 與含有脂肪族環式構造之多元胺(C)之胺基之當量比例[胺 基/異氰酸酯基],爲0.70/1.0〜0.99/1.0之範圍較佳。又, 將前述胺基甲酸酯預聚物與前述含有脂肪族環式構造之多 元胺(C)與前述丙烯酸化合物(D) —次混合或逐次混合,於 20〜80 °C之條件下大致反應約1〜3小時也可製造。 又,前述製法(Π),係於前述溶劑(2)下,使前述含有 脂肪族環式構造之聚異氰酸酯(B)與前述含有脂肪族環式 構造之多元胺(C)反應而藉此得到於分子末端具有異氰酸 酯基的聚脲預聚物,其次,使該聚脲預聚物與前述含有脂 肪族環式構造之多元醇(A)與前述丙烯酸化合物(D)反應, 及視需要使與前述其他含有活性氫的鏈伸長劑反應,藉此 製造丙烯酸改性胺基甲酸酯脲樹脂(1)。 前述含有脂肪族環式構造之聚異氰酸酯(B)與前述含 有脂肪族環式構造之多元胺(C)的反應,於前述含有脂肪族 環式構造之聚異氰酸酯(B)具有之異氰酸酯基與前述含有 脂肪族環式構造之多元胺(c)具有之胺基的當量比例[異氰 酸酯基/胺基]爲1.171.0〜5· 0/的範圍進行較佳。又,前 -19- 201127861 述含有脂肪族環式構造之聚異氰酸酯(B)與前述含有脂肪 族環式構造之多元胺(C)之反應,於20〜80 °c的條件下進行 約3 0分鐘〜1小時較佳。 含有脂肪族環式構造之聚異氰酸酯(B)與前述含有脂 肪族環式構造之多元胺(C)之反應得到之於前述分子末端 具有異氰酸酯基的聚脲預聚物,與前述含有脂肪族環式構 造之多元醇(A)與前述丙烯酸化合物(D)之反應’可藉由將 例如前述聚脲預聚物與前述含有脂肪族環式構造之多元醇 (A)—次或逐次供給並使反應,而製造於分子末端具有異氰 酸酯基的胺基甲酸酯脲預聚物,並使該胺基甲酸酯脲預聚 物與前述丙烯酸化合物(D)反應,藉此製造丙烯酸改性胺基 甲酸酯脲樹脂(1)。又,也可藉由將前述聚脲預聚物與前述 含有脂肪族環式構造之多元醇(A)與前述丙烯酸化合物(D) 一次或逐次混合並使反應而製造。 製造前述丙烯酸改性胺基甲酸酯脲樹脂(1)時,於前述 製法(i)及(Π)任一者之情形均可視需要使用三級胺觸媒或 有機金屬系觸媒而促進反應。 利用以上方法得到之含有丙烯酸改性胺基甲酸酯脲樹 脂(1)與溶劑(2)的本發明之丙烯酸改性胺基甲酸酯脲樹脂 組成物’也可視需要含有硬化劑或硬化促進劑。 前述硬化劑,可使用例如紫外線硬化劑或電子束硬化 劑等光硬化劑、熱硬化劑。 -20- 201127861 前述紫外線硬化劑,爲光增感性物質,例如可使用如 苯偶因烷基醚之苯偶因醚系;二苯基酮、鄰苯甲醯基苯甲 酸甲酯等二苯基酮系;苄基二甲基縮酮、2,2~二乙氧基苯 乙酮、2 —羥基—2-甲基苯丙酮' 4 —異丙基一2 —羥基一2 —甲基苯丙酮、1,1——氯苯乙酮等苯乙酮系;2 —氯一 9 一 氧硫灿哽、2—甲基—9 一氧硫卩(Μ星、2—異丙基—9 —氧硫 η山嘎等9~氧硫Β山卩星(thioxanthone)系化合物。 又,前述電子束硬化劑,例如可使用鹵化烷基苯、二 硫醚系化合物等。 又,其他光硬化劑,例如可使用羥基烷基苯酮系化合 物、烷基—9 一氧硫ώ嗤系化合物、毓鹽系化合物等。 又,前述熱硬化劑,可使用有機過氧化物,具體而言, 可使用二醯基過氧化物系、過氧化酯系、過氧化氫系、二 烷基過氧化物系、酮過氧化物系、過氧化縮酮系、烷基過 酯系、過碳酸酯系化合物等。 前述硬化劑之使用量,視使用之種類而不同,通常相 對於前述丙烯酸改性胺基甲酸酯脲樹脂(1)100質量份,使 用0.1〜10質量份之範圍較佳,使用1〜5質量份之範圍更 佳。 又,前述硬化促進劑,例如可使用環烷酸鈷、辛烯酸 鈷等有機金屬鹽、胺系、β —二酮類等。 本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物,如前 述者以外’在不損及本發明之效果之範圍也可添加其他添 加劑。 -2 1- 201127861 前述其他添加劑,由防止由於大氣中之氧的影響造成 自由基聚合停止等之觀點,例如可使用乙二醇單烯丙醚、 二乙二醇單烯丙醚、丙二醇單烯丙醚、二丙二醇單烯丙醚、 1,2-丁二醇單烯丙醚、三羥甲基丙烷二烯丙醚、甘油二烯 丙醚 '新戊四醇三烯丙醚等多元醇類之烯丙醚化合物等。 又’前述其他添加劑,由提高得到之成型品之耐熱性 或耐久性之觀點,可使用丙烯酸化合物。 前述丙烯酸化合物,例如與作爲前述丙烯酸化合物(D) 例示者同樣者’或二(甲基)丙烯酸1,6 —己二醇酯、二(甲 基)丙烯酸1,4一丁二醇酯、二(甲基)丙烯酸乙二醇酯、二(甲 基)丙烯酸三丙二醇酯、二(甲基)丙烯酸新戊二醇酯、二(甲 基)丙烯酸四乙二醇酯、二(甲基)丙烯酸三乙二醇酯、二(甲 基)丙烯酸聚乙二醇酯、三羥甲基丙烷三(甲基)丙烯酸酯等 多官能丙烯酸化合物。 又’前述其他添加劑,例如:塡充材或顏料、染料、界 面活性劑、抗靜電劑、紫外線吸收劑、聚合禁止劑、黏著 性賦予劑、可塑劑、抗氧化劑、塗平劑、成膜助劑、安定 劑或難燃劑等以往已知的各種添加劑,可在不損及本發明 效果之範圍使用。 使本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物硬化 的方法,視前述硬化劑之種類而不同。例如使用前述紫外 線硬化劑之丙烯酸改性胺基甲酸酯脲樹脂組成物,可使用 金屬鹵化物燈、水銀燈、紫外線L E D燈等一般的紫外線光 -22- 201127861 照射裝置照射既定的紫外線而使硬化。另一方面,使用前 述熱硬化劑之丙烯酸改性胺基甲酸酯脲樹脂組成物,可例 如使用高溫爐等,較佳爲於50〜250 °C之溫度加熱而使硬 化。 又’前述丙烯酸改性胺基甲酸酯脲樹脂組成物如前 述,可使用在形成各種成型品之成型材料等、塗覆劑、黏 著劑等各種用途。其中,前述丙烯酸改性胺基甲酸酯脲樹 脂組成物,由於耐熱性或耐溶劑性優異,故使用在要求創 作性的構成櫃台或浴槽等建築構件或汽車構件、醫療構 件、電子電機構件等各種工業製品之構件等成型品之製造 較佳。 前述丙烯酸改性胺基甲酸酯脲樹脂組成物成型並製造 成型品之方法,例如可應用使用加熱模具的壓製成型法、 射出成型法、RTM(抗蝕劑轉移模塑)成型法、連續成型法、 抽拉成型法等。 使用前述丙烯酸改性胺基甲酸酯脲樹脂組成物製造膜 或片狀成型品之方法’例如將前述丙條酸改性胺基甲酸酯 脲樹脂組成物利用例如簾流塗佈法或模塗法等狹縫塗佈 法、刀塗法、輥塗法、狹縫塗佈法,具體而言,模塗法等 塗佈於離型基材表面’並視需要乾燥後,照射紫外線或加 熱等並硬化之方法較佳。 以上方法得到的成型品’耐溶劑性與耐熱性優異,因 此可使用於例如櫃台或浴槽等成型品、建築構件、汽車零 -23- 201127861 件、家電零件、醫療器具零件、各種容器、包裝用途或皮 革狀片材的表皮層或中間層形成用的膜或片材等各種用 途。 又’前述丙烯酸改性胺基甲酸酯脲樹脂組成物使用在 塗覆劑或黏著劑時,就將此等塗佈在各種基材表面之方法 而言’例如:簾流塗佈法或模塗法等狹縫塗佈法、刀塗法、 輥塗法等。 以前述方法塗佈後,視需要將溶劑乾燥並使硬化進行 之方法’如前述’可視使用的硬化劑種類,利用加熱或照 射紫外線等而形成被覆膜或黏著層。又,前述乾燥可於常 溫下自然乾燥’也可加熱乾燥。加熱乾燥通常於40〜250 °C 進行約1〜6 0 0秒的時間較佳。 前述方法形成之被覆膜或黏著層,前述耐溶劑性及耐 熱性優異’因此可使用於例如金屬基材或塑膠基材、木質 基材等各種基材的表面被覆或黏著。 實施例 [實施例1] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入含有脂肪族環式構造之 聚碳酸酯多元醇(宇部興產(股)製 UC ~ 100.、羥基價: 116.4)500.0質量份,加入異佛爾酮二異氰酸酯222.2質量 份、甲苯180.6質量份,一面抑制發熱,一面於80 °C反應3 小時,藉此得到於分子末端具有異氰酸酯基的胺基甲酸酯 預聚物的甲苯溶液。 -24- 201127861 其次,將冷卻至40 °C的前述甲苯溶液與Ν,Ν —二甲基 甲醯胺1447.2質量份與甲苯543.1質量份混合後,與異佛 爾酮二胺73.6質量份混合,於60°C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2-羥基乙酯8.1質量份與第二丁醇241.2質量份混合,於70 °C 反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹脂組 成物(1)(丙烯醯基之當量重量;LWx104、重量平均分子 量;21000、非揮發成分;25質量%)。 [實施例2] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器之5公升的四口燒瓶中’加入含有脂肪族環式構造之 聚碳酸酯多元醇(宇部興產(股)製UC_100'羥基價·· 116.4)500.0質量份,加入異佛爾酮二異氰酸酯222.2質量 份、甲苯180.6質量份’一面抑制發熱,一面於80 °C使反 應3小時,藉此得到於分子末端具有異氰酸酯基的胺基甲 酸酯預聚物的甲苯溶 '液° 其次,將冷卻至40 °C的前述甲苯溶液與N,N—二甲基 甲醯胺1 445.9質量份與甲苯542.4質量份混合後’與異佛 爾酮二胺75.2質量份混合’於60 °C使反應3小時’藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 -25- 201127861 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2 -羥基乙酯5.8質量份與第二丁醇241.0質量份混合,於7(TC 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹脂 組成物(11)(丙烯醯基之當量重量;1.61X104、重量平均分 子量;39000、非揮發成分;25質量%)。 [實施例3] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升四口燒瓶中,加入含有脂肪族環式構造的聚 碳酸酯多元醇(宇部興產(股)製 UC — 100、羥基價: 116.4)500.0質量份,加入異佛爾酮二異氰酸酯222.2質量 份、甲苯180.6質量份,一面抑制發熱,一面於80 °C反應3 小時,藉此得到於分子末端具有異氰酸酯基的胺基甲酸酯 預聚物的甲苯溶液。 其次,將冷卻至40 °C的前述甲苯溶液與N,N—二甲基 甲醯胺1 444.6質量份與甲苯541 .7質量份混合後,與異佛 爾酮二胺76.8質量份混合,於60°C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯腺預聚物溶液與丙烯酸2 -羥基乙酯3.5質量份與第二丁醇240.8質量份混合,於70 °C 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹脂 組成物(111)(丙烯醯基之當量重量;2.66χ104、重量平均分 子量;64000、非揮發成分;25質量%)。 -26- .201127861 [實施例4] 於配備溫度計、攪拌機、惰性氣體導入口、及回 卻器的5公升的四口燒瓶中,加入含有脂肪族環式構 聚碳酸酯多元醇(宇部興產(股)製UC- 100、羥基 116.4) 500.0質量份,加入4,4’一二環己基甲烷二異氰 262.4質量份、甲苯190.6質量份,一面抑制發熱,一 8〇 °C使反應3小時,藉此得到於分子末端具有異氰酸 的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40°C的前述甲苯溶液與Ν,Ν-二 甲醯胺1516.8質量份與甲苯567.8質量份混合後,與 爾酮二胺76.8質量份混合,於6〇°C使反應3小時,藉 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸 羥基乙酯3.5質量份與第二丁醇252.8質量份混合,於 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲 組成物(IV)(丙烯醯基之當量重量;2· 80 χΙΟ4、重量平 子量;128000、非揮發成分;25質量%)。 [實施例5] 於配備溫度計、攪拌機、惰性氣體導入口、及回 卻器的5公升的四口燒瓶中,力卩入含有脂肪族環式構 聚碳酸酯多元醇(宇部興產(股)製 UC-100、羥基 116.4) 500.0質量份’加入4,4’一二環己基甲烷二異氰 流冷 造之 價: 酸酯 面於 酯基 甲基 異佛 此得 物溶 2 -7 0°C 樹脂 均分 流冷 造之 價: 酸酯 -27- 201127861 262.4質量份、甲苯190·6質量份,一面抑制發熱’一 8〇°C使反應3小時’藉此得到於分子末端具有異氰酸 的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40 °C的前述甲苯溶液與N,N—二 甲醯胺1549.3質量份與甲苯584.1質量份混合後,混合 —二環己基甲烷二胺94.9質量份,於60 °C使反應3小 藉此得到於分子末端具有異氰酸酯基的胺基甲酸酯脲 物溶液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸 羥基乙酯3.5質量份與第二丁醇258.2質量份混合’於 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲 組成物(V)(丙烯醯基之當量重量;2·86χ104、重量平均 量;172000、非揮發成分;25質量%)。 [實施例6] 於配備溫度計、攪拌機、惰性氣體導入口、及回 卻器的5公升的四口燒瓶中,加入使1,4 —環己烷二甲 己二酸反應得到的含有脂肪族環式構造的聚酯多元国 基價:1 1 2.2)500.0質量份,加入4,4’—二環己基甲烷 氰酸酯262.4質量份、甲苯190.6質量份,一面抑制發 於8 0°C使反應3小時,藉此得到於分子末端具有異氰 基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至40°C的前述甲苯溶液與N,N-二 甲醯胺1 5 1 6 · 8質量份與甲苯5 6 7.8質量份混合後,與 面於 酯基 甲基 4,4, 時, 預聚 2 -7 〇°c 樹脂 分子 流冷 醇與 享(羥 二異 ί熱, 酸酯 甲基 異佛 -28- 201127861 爾酮二胺76.8質量份混合,於60。<:使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2 -羥基乙酯3.5質量份與第二丁醇252.8質量份混合,於70 °C 使反應約1小時,藉此得到胺基甲酸酯脲樹脂組成物 (VI)(丙烯醯基之當量重量;2.8〇xl〇4、重量平均分子量; 1 57000、非揮發成分;25質量%)。 [比較例1] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入含有脂肪族環式構造的 聚碳酸酯多元醇(宇部興產(股)製 UC — 100、羥基價: 116.4)500.0質量份,加入異佛爾酮二異氰酸酯222.2質量 份、甲苯180.6質量份,一面抑制發熱,一面於80 °C使反 應3小時,藉此得到於分子末端具有異氰酸酯基的胺基甲 酸酯預聚物的甲苯溶液。 其次,將冷卻至40°C的前述甲苯溶液與N,N—二甲基 甲醯胺1 442.6質量份與甲苯540.7質量份混合後,與異佛 爾酮二胺79.2質量份混合,於60 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與第二丁醇 240.4質量份混合,於70°C使反應1小時,藉此得到胺基甲 -29- 201127861 酸酯脲樹脂組成物(VII)(丙烯醯基之當量重量;-、重量平 均分子量;7 0000、非揮發成分;25質量%)。 [比較例2 ] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入1,6 —己二醇系聚碳酸酯 多元醇(Nippon pol yurethane industry(股)製「NIPPORAN 981」、經基價:112.2)500.0質量份,加入異佛爾酮二異氰 酸酯222.2質量份、甲苯180.6質量份,一面抑制發熱,一 面於8 0°C使反應3小時,藉此得到於分子末端具有異氰酸 酯基的胺基甲酸酯預聚物的甲苯溶液。 其次,將冷卻至4(TC的前述甲苯溶液與N,N-二甲基 甲醯胺1 444.6質量份與甲苯541.7質量份混合後,與異佛 爾酮二胺76.8質量份混合,於60 °C使反應3小時,藉此得 到於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶 液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2 -羥基乙酯3.5質量份與第二丁醇240.8質量份混合,於70 °C 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹脂 組成物(VIII)(丙烯醯基之當量重量;2.66χ104、重量平均 分子量;61000、非揮發成分;25質量%)。 [比較例3] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中’加入含有脂肪族環式構造的 -30- 201127861 聚碳酸酯多元醇(宇部興產(股)製uc — 100、羥基價: 116.4)500.0質量份,加入異佛爾酮二異氰酸酯222·2質量 份、甲苯180.6質量份,一面抑制發熱,—面於8(rc使反 應3小時’藉此得到於分子末端具有異氰酸醋基的胺基甲 酸酯預聚物的甲苯溶液。 其次,將冷卻至40 °C的前述甲苯溶液與N,N -二甲基 甲胺1355.1質量份與甲苯497.0質量份混合後,與乙二胺 2 7 . 1質量份混合,於6 0 °C使反應3小時,藉此得到於分子 末端具有異氰酸酯基的胺基甲酸酯預聚物溶液。 其次,將前述胺基甲酸酯預聚物溶液與丙烯酸2~淫 基乙酯3.5質量份與第二丁醇2 2 5.8質量份混合,於70 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯樹脂組 成物(IX)(丙烯醯基之當量重量;2·5〇χ1 04、重量平均分子 量;59000、非揮發成分;25質量%)。 [比較例4] 於配備溫度計、攪拌機、惰性氣體導入口、及回流冷 卻器的5公升的四口燒瓶中,加入使ι,4_ 丁二醇與己二酸 反應得到的聚酯多元醇(羥基價:1 1 2.2)5 00.0質量份,加入 異佛爾酮二異氰酸酯222.2質量份 '甲苯180.6質量份,一 面抑制發熱’一面於8 0。(:使反應3小時,藉此得到於分子 末端具有異氰酸酯基的胺基甲酸酯預聚物的甲苯溶液。 其次’將冷卻至40 °C的前述甲苯溶液與N,N -二甲基 甲醯胺1 444.6質量份與甲苯541.7質量份混合後,混合異 -3 1 - 201127861 佛爾酮二胺76.8質量份,於60°C使反應3小時,藉此得到 於分子末端具有異氰酸酯基的胺基甲酸酯脲預聚物溶液。 其次,將前述胺基甲酸酯脲預聚物溶液與丙烯酸2-羥基乙酯3.5質量份與第二丁醇240.8質量份混合,於70 °C 使反應約1小時,藉此得到丙烯酸改性胺基甲酸酯脲樹脂 組成物(X)(丙烯醯基之當量重量:2.66χ104、重量平均分子 量;64000、非揮發成分;25質量%)。 [丙烯酸改性胺基甲酸酯脲樹脂之重量平均分子量之測定 方法] 上述實施例及比較例得到的丙烯酸改性胺基甲酸酯脲 樹脂之重量平均分子量,係利用凝膠滲透層析(GPC)依照標 準聚苯乙烯換算求得。將得到的丙烯酸改性胺基甲酸酯脲 樹脂組成物的固體成分〇.4g溶解於四氫呋喃i〇〇g,作爲測 定試樣。 測定裝置使用東曹(股)製高速液體層析HLC - 822 0 型。管柱,係組合東曹(股)製管柱TSK_GEL(HXL - H、 G5000HXL、 G4000HXL、 G3000HXL、 G2000HXL)使用。 測定條件:管柱溫度爲40 °C、溶離液爲四氫呋喃、流量爲 1.0mL/min、試樣注入量500μί,標準聚苯乙烯使用TSK標 準聚苯乙烯。 [成型品(膜)之製作方法] 對於上述實施例及比較例得到的樹脂組成物的固體成 分 100 質量份,混合 IRGACURE 184(Ciba Japan (股)製、 光聚合起始劑)2質量份,並攪拌1〇分鐘,藉此得到塗佈液》 -32- 201127861 將前述塗佈液塗佈在施行過離型處理的聚對苯二甲酸 乙二酯膜上後,使用熱風乾燥機於10(TC乾燥20分鐘後, 使用輸送帶型式的紫外線照射裝置(Gs-YU ASA(股)公司製 CSOT—40)照射l〇〇〇mJ/cm2,藉此得到硬化後膜厚爲50μιη 之膜。 [耐溶劑性之評價方法] 將以前述方法製作之膜切成縱 50mmx橫50mm的大 小,藉此得到試驗膜。其次,將前述試驗膜以不受張力的 方式固定於內部尺寸爲縱40mmx橫40mm的框體,作爲試 驗片。 接著,將前述試驗片於溫度23°C及相對濕度50%的環 境下,浸泡於四氫呋喃(THF)中1分鐘。 前述浸泡後,將前述試驗片從前述四氫呋喃中取出, 以目視觀察前述試驗膜之形狀等進行評價。 ◎;試驗膜保持浸泡前的形狀’其表面未發生針孔或 白化》 〇;試驗膜保持浸泡前的形狀’但是確認其表面有針孔 或白化。 △:試驗膜的一部分(膜面積的不到約30%)溶解。 X;試驗膜的總面積的50 %以上溶解’且幾乎未保持浸 泡前的膜形狀。 -33- 201127861 [耐熱性之評價方法] 前述方法製作的膜的流動開始溫度,使用島津Fl〇w tester CFT 5 0 0D - 1(島津製作所(股)製),於測定開始溫度; 4(TC、升溫速度;3.0°C/分、升溫法、缸筒壓力;9.807xl〇5Pa、 模頭;lmmxlmmL、負荷;98N'保持時間;600秒的條件 進行測定。 前述流動開始溫度大致爲1 80°C以上者,評價爲耐熱性 優異。 [表1] 表1 實施例1 實施例2 實施例3 實施例4 實施例5 多元醇(A) CH-PC CH-PC CH-PC CH-PC CH-PC 聚翼ϋϊ(Β) | IPDI IPDI IPDI H12MDI H12MDI 多元S'(c) 1 IPDA IPDA IPDA IPDA H12MDA 涵涵合物(D) HEA HEA HEA HEA HEA 耐溶劑性 〇 0 〇 ◎ ◎ 耐熱性(°C) 185 190 196 218 220 [表2] 表2 實施例6 比較例1 比較例2 比較例3 比較例4 多元醇 CH-AA CH-PC HG-PC CH-PC BG-AA 聚Sti酸酯 H12MDI IPDI IPDI IPDI IPDI ϊ元胺 IPDA IPDA IPDA EDA IPDA 合物 HEA — HEA HEA HEA 耐溶劑性 ◎ X X X X 耐熱性(。〇 185 178 184 190 177 ' 以下說明表1〜2中之簡稱。 CH— PC」爲宇部興產(股)製UC— 100(1,4~環己烷 二甲醇系聚碳酸酯多元醇、羥基價:116.4)。 「HG-PC」爲 Nippon polyurethane industry(股)製 「NIPP0Ran 981」(1,6-己二醇系聚碳酸酯多元醇、羥基 價·· 1 1 2.2 )。 -34- 201127861 「BG—AA」爲使1,4一丁二醇與己二酸反應得到的聚 酯多元醇(羥基價:112.2)。 「CH— AA」爲使1,4_環己烷二甲醇與己二酸反應得 到的含有脂肪族環式構造之聚酯多元醇(羥基價:112.2)。 「IPDI」爲異佛爾酮二異氰酸酯。 「H12MDI」爲4,4,一二環己基甲烷二異氰酸酯。 「IPDA」爲異佛爾酮二胺。 「EDA」爲乙二胺。 「H12MDA」爲4,4’ —二環己基甲烷二胺》 「HEA」爲丙烯酸2_羥基乙酯。 產業利用性 若爲本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 由於可形成具備優異耐溶劑性及耐熱性的成型品,因此例 如可使用在製造汽車零件或家電零件、包裝材、膜或片材、 皮革狀片材的表皮材等。 又,本發明之丙烯酸改性胺基甲酸酯脲樹脂組成物, 由於可形成具備優異耐溶劑性及耐熱性的被覆膜等,因此 可使用於例如各種基材之表面塗覆劑或黏著劑等。 【圖式簡單說明】 4rrr, 撕0 【主要元件符號說明】 ATT. 撕。 -35-201127861 VI. Description of the Invention: [Technical Field] The present invention relates to an acrylic modified urethane urea resin which can be used, for example, in various applications starting from a molding material or a coating agent, an adhesive, or the like. Things. [Previous Art] A molded article obtained by using a urethane-based molding material is now used in various applications such as automobile parts, home electric appliance parts or packaging materials, and skin materials constituting leather-like sheets. For the above-mentioned molded articles, various characteristics are required in response to their intended use. For example, when it is used in automotive interiors, it is required to have alcohol resistance or oil resistance which is not caused by adhesion or discoloration of the surface of the molded article due to adhesion of oil or fat in food, and sometimes, in summer. When exposed to a high temperature environment for a long period of time, heat resistance to a degree such as deformation of a molded article is not caused. For example, as described above, a molding material which is less likely to be deformed by alcohol or the like, for example, a thermoplastic polyurethane molding material having a molecular weight of 3 to 200,000 and a gel % of 5% or less is known, and the polytetramethylene is made of A specific prepolymer obtained by reacting one or more kinds of a carbonate diol with an organic diisocyanate, and a chain extender having two active oximes capable of reacting with the isocyanate of the prepolymer, the prepolymer/ When the molar ratio of the chain extender is more than 1, the terminal is stopped by a reaction stop material having one active hydrogen which can react with the unreacted isocyanate at the end of the prepolymer (see, for example, Patent Document 1). -4- . 201127861 However, the molded article obtained by using the thermoplastic urethane molding material may not be practically sufficient in terms of heat resistance, and may be deformed when exposed to a high temperature environment for a long period of time. On the other hand, when the molded article is fixed to the position of the various articles, the adhesive is generally used. For example, when manufacturing an automobile part or a household electric component, an organic solvent type adhesive is used when bonding members formed of a molded article formed into a predetermined shape. However, the organic solvent contained in the above-mentioned adhesive may invade the surface of the urethane-based molded article, and may cause dissolution, deformation, discoloration, or the like on the surface of the molded article. In particular, when an organic solvent-type adhesive is laminated to the molded article in the form of a film or a sheet, deformation or shrinkage of the film or the like may be caused by the influence of the organic solvent contained in the adhesive. Discoloration. . In this case, the industry needs to develop a molding material having a molded article having solvent resistance and heat resistance which does not cause dissolution or deformation or discoloration of the surface of the molded article. However, the molded article obtained by using the thermoplastic urethane molding material described in Patent Document 1 has good resistance to oil and fat components such as alcohol or oleic acid, but it is difficult to refer to various organic solvents such as strong solvents. The solvent has sufficient solvent resistance, and it is sometimes difficult to prevent the surface of the molded article from being dissolved by the resin due to the adhesion of the solvent, or the surface of the molded article being deformed or discolored. -5- 201127861 As above, although there is a strong demand in the industry to form a molding material which has excellent heat resistance and a molded article having excellent solvent resistance to organic solvents, it is actually found that such a material is not found. OBJECTS OF THE INVENTION PROBLEM TO BE SOLVED BY THE INVENTION The object of the present invention is to provide a resin composition which can be formed even in the case where various solvents are attached. A molded article having excellent solvent resistance to the extent that the surface of the molded article is dissolved or deformed or discolored, and excellent heat resistance. MEANS FOR SOLVING THE PROBLEMS In order to solve the above problems, the inventors of the present invention have intensively studied the introduction of an aliphatic cyclic structure into the urethane resin described in the above-mentioned Document 1. Specifically, a combination of various types of polyols or polyisocyanates is discussed, and combinations with various types of chain extenders are discussed. As a result, it was found that a reaction was carried out by reacting a polyhydric alcohol having an aliphatic cyclic structure with a polyisocyanate having an aliphatic cyclic structure and a polyamine having an aliphatic cyclic structure and an acrylic compound having a group having an active hydrogen atom. The acrylic modified urethane urea resin and the solvent-modified acrylic urethane urea resin composition can form a molded article having excellent solvent resistance and heat resistance. -6- 201127861 That is, the present invention relates to an acrylic modified urethane urea resin composition and a molded article formed using the same, characterized in that the acrylic modified urethane urea resin composition The present invention comprises a polyol (A) having an aliphatic cyclic structure, a polyisocyanate (B) having an aliphatic cyclic structure, a polyamine (C) having an aliphatic cyclic structure, and a group having an active hydrogen atom. The acrylic modified urethane urea resin (1) obtained by the reaction of the acrylic compound (D) and the solvent (2) are obtained. Advantageous Effects of Invention According to the acrylic modified urethane urea resin composition of the present invention, a molded article having excellent solvent resistance and heat resistance can be formed, and therefore, it can be used, for example, in automobile parts, home appliance parts, packaging materials, and the like. Production of a film or sheet, a skin material such as a leather sheet, or the like. Further, since the acrylic modified urethane urea resin composition of the present invention can form a coating film having excellent solvent resistance and heat resistance, for example, a coating agent or adhesion to various substrates can be used. Agents, etc. [Embodiment] Mode for carrying out the invention First, an acrylic modified urethane urea resin (1) used in the present invention will be described. The acrylic modified urethane urea resin (1) used in the present invention is a polyhydric alcohol (A) having an aliphatic cyclic structure and a polyisocyanate (B) having an aliphatic cyclic structure and an aliphatic ring. The polyamine (C) of the formula is obtained by reacting with an acrylic compound (D) having a group containing an active hydrogen atom. 201127861 The acrylic modified urethane urea resin (1) is required to have an aliphatic ring structure in terms of exhibiting excellent solvent resistance and heat resistance. The aliphatic cyclic structure is important in that the polyol having an aliphatic cyclic structure and a polyisocyanate having an aliphatic cyclic structure and a polyamine having an aliphatic cyclic structure are supplied. For example, even if the mass ratio of the aliphatic ring structure present in the acrylic modified urethane urea resin (1) is the same, if an aliphatic polyisocyanate containing an aliphatic cyclic structure is not used, an aliphatic polyisocyanate is used. In the resin composition, a molded article having a desired solvent resistance may not be formed. The acrylic modified urethane urea resin (1) is preferably an aliphatic ring structure having a range of 20 to 60% by mass from the viewpoint of obtaining a molded article having both excellent solvent resistance and heat resistance. Further, the mass ratio of the aliphatic cyclic structure is an aliphatic cyclic structure-containing polyol (A) and an aliphatic group which are used for the raw material for the production of the acrylic modified urethane urea resin (1). The total mass of the polyisocyanate (B) having a cyclic structure and the polyamine (C) having an aliphatic cyclic structure and the acrylic compound (D) having a group having an active hydrogen atom, and the aliphatic ring structure is in the aforementioned raw material. The proportion of quality. Further, the acrylic modified urethane urea resin (1) has a urethane bond and a urea bond. When a urethane acrylate having no urea bond is used, molding workability is low, and it may be difficult to produce a molded article such as a thinned film. Therefore, in view of the above-mentioned acrylic modified urethane urea resin (1), it has excellent moldability, and has good heat resistance and solvent resistance - 8 - 201127861. 10% by mass of the urea bond is preferred, 5 to 8 mass% is preferred, and 6 to 7 mass% is particularly preferred. Further, the mass ratio of the urea bond is the above-mentioned aliphatic ring-containing polyol (A) and aliphatic group with respect to the raw material used for the production of the acrylic modified urethane urea resin (1). The total mass of the polyisocyanate (B) having a cyclic structure and the polyamine (C) having an aliphatic cyclic structure and the acrylic compound (D) containing a group containing an active hydrogen atom, and the urea bond structure occupies the aforementioned raw material Quality ratio. In addition, the acrylic modified urethane urea resin (1) has a urethane having 5 to 15% by mass from the viewpoint of having excellent moldability and good heat resistance and solvent resistance. The bond is preferably, and 7 to 9 mass% is more preferable. In addition, the mass ratio of the urethane bond refers to the aforementioned aliphatic cyclic structure-containing polyol (A) which is a raw material used for the production of the acrylic modified urethane urea resin (1). And a total mass of urethane with a polycyclic isocyanate (B) having an aliphatic cyclic structure and a polyamine (C) having an aliphatic cyclic structure and an acrylic compound (D) having a group having an active hydrogen atom The bond structure constitutes a mass ratio in the aforementioned raw materials. The acrylic modified urethane urea resin (1), which has a weight average molecular weight of from 5,000 to 20,000, is preferable in that it maintains excellent solvent resistance and heat resistance while maintaining good moldability, 15,000 to 200,000. The range is better. Further, the weight average molecular weight of the acrylic modified urethane urea resin (1) was determined by gel permeation chromatography (GpC) using tetrahydrofuran as a dissolving solution in terms of styrene. -9- 201127861 The acrylic modified urethane urea resin (1) used in the present invention has an equivalent weight of from 10,000 to 50,000 using the acryl oxime group derived from the acrylic compound (D), and is excellent in compatibility. It is preferable in terms of solvent property and heat resistance, and more preferably 10,000 to 30,000. Further, the equivalent weight of the acrylonitrile group means a polyhydric alcohol (A) having an aliphatic cyclic structure constituting the acrylic modified urethane urea resin (1) and a polyisocyanate having an aliphatic cyclic structure. (B) the total mass of the polyamine (C) having an aliphatic cyclic structure and the acrylic compound (D) having a group having an active hydrogen atom, divided by the presence of the aforementioned acrylic modified urethane urea resin The equivalent of the acrylonitrile group derived from the aforementioned acrylic compound (D) is obtained. Next, the polyol (A) containing an aliphatic cyclic structure used for the production of the above-mentioned acrylic modified urethane urea resin (1) will be described. The polyol (A) having an aliphatic cyclic structure used in the present invention is preferably a one having a hydroxyl group value of 30 to 23 mg/KOH, and a range of 50 to 2 30 mgKOH/g is more preferably used. Further, the hydroxyl value of the polyol (A) is measured in accordance with JIS K0070. The polyol (A) having an aliphatic cyclic structure can be, for example, a polycarbonate polyol having an aliphatic cyclic structure, a polyester polyol having an aliphatic cyclic structure, or a polycyclic structure having an aliphatic ring structure. The ether polyol, the acrylic polyol having an aliphatic cyclic structure, and the like, and the diol having an aliphatic cyclic structure are preferred. Further, among these, from the viewpoint of achieving both excellent solvent resistance and heat resistance, it is preferable to use a polycarbonate polyol having an aliphatic ring structure and a polyester polyol having an aliphatic ring structure. -10- 201127861 A polycarbonate diol having a ring structure and a polyester diol having an aliphatic ring structure are particularly preferred. The polycarbonate polyol having an aliphatic cyclic structure may be, for example, a carbonate (and/or phosgene) which is reacted with a lower molecular weight polyhydric alcohol (al) having an aliphatic ring structure of about 50 to 400 to be described later. Get the winner. As the above carbonate, for example, methyl carbonate' or dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclic carbonate, diphenyl carbonate or the like can be used. Further, the polyol (al) having an aliphatic cyclic structure which can react with the above carbonate or phosgene, for example, 1,2-cyclobutanediol, 1,3-cyclopentanediol, 1,4_ ring Hexanediol, cycloheptanediol, cyclooctanediol, 1,4-cyclohexanedimethanol, hydroxypropylcyclohexanol, cyclized [5,2,1,0,2,6]decane-two Methanol, bicyclo[4,3,0]-nonanediol, dicyclohexanediol, cyclized [5,3,1,1]dodecanediol 'bicyclo[4,3,0]indole dimethanol , ginseng [5,3,1,1]dodecane-diethanol, hydroxypropyl-cyclo[5,3,1,1]dodecanol, spiro[3,4]octanediol, butyl ring Hexanediol, 1,1, biscyclohexylenediol, cyclohexanetriol, hydrogenated bisphenol A, 1,3 -adamantanediol, etc., wherein 1,4-cyclohexanedimethanol is preferably used. . The polyester polyol having an aliphatic cyclic structure may be, for example, a reaction of a lower molecular weight polyol having an aliphatic cyclic structure of about 50 to 400 with a polycarboxylic acid, or a low molecular polyol. A polycarboxylic acid reaction containing an aliphatic cyclic structure, or a part thereof, is a ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolactone or γ-valerolactone, and the like. The polyol containing an aliphatic cyclic structure which can be used in the production of the polyester polyol having an aliphatic cyclic structure can be used for the production of the above-mentioned polycarbonate polyol having a fat-type 11-11726861 ring structure. The polyol (a 1) having an aliphatic ring structure exemplified by the user is the same. Further, a polycarboxylic acid capable of reacting with the above-mentioned low molecular weight polyhydric alcohol having an aliphatic cyclic structure, for example, succinic acid, adipic acid, suberic acid, sebacic acid, sebacic acid, dodecane dicarboxylic acid An aliphatic polycarboxylic acid of an acid or a dimer acid, a polycyclic carboxylic acid having an aliphatic cyclic structure, an isophthalic acid, an isophthalic acid, or the like, a 1,4-cyclohexanedicarboxylic acid or a cyclohexanetricarboxylic acid. Aromatic acids such as terephthalic acid, 1,4 naphthalene dicarboxylic acid, 2,3-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, biphenyl dicarboxylic acid, trimellitic acid, pyromellitic acid The polycarboxylic acid and the acid anhydride or ester derivative thereof are used singly or in combination of two or more kinds, and an aliphatic polycarboxylic acid is preferably used. The polycarboxylic acid having an aliphatic cyclic structure which can be used for the production of the polyester polyol having an aliphatic ring structure can be used, and 1,4-cyclohexanedicarboxylic acid or the like can be used in the same manner as described above. A polyol which can be used in the reaction with the above-mentioned polycarboxylic acid having an aliphatic cyclic structure, in addition to the above-mentioned polyol (a 1) containing an aliphatic cyclic structure, for example, ethylene glycol, diethylene glycol or triethyl glycol can be used. Glycol, tetraethylene glycol, 1,2-propylene glycol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3 -butanediol, 1,5-pentanediol, 1,5-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1, 8 —octanediol, 1,9-nonanediol, 1,1〇-nonanediol, 1,11-undecanediol, 1,12-dodecanediol, 2-methyl-1,3 - propylene glycol, neopentyl glycol, 2-butyl-2-ethyl-1,3-propanol, 3-methyl-1,5-pentanediol, 2-ethyl-1,3-hexan Alcohol, 2-methyl-1,8-octyl-12-201127861 Alcohol, glycerol, trimethylolpropane, di-trimethylolpropane, tris-methylolpropane, neopentyl alcohol, etc. Polyols, etc. Further, the polyether polyol having an aliphatic cyclic structure, for example, an alkylene oxide is added to a polymerizer by using one or two or more compounds having two or more active hydrogen atoms as a starting agent. As the starting agent, for example, hydrogenated biguanide A, hydrogenated bisphenol F, 1,4-cyclohexanedimethanol or the like can be used in the same manner as the above-mentioned polyol (al) having an aliphatic cyclic structure. In addition, as the case requires, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, which are known in the past, may be used. I,6, hexylene glycol, neopentyl glycol, glycerol, trimethylol ethene, dimethicone, and other aliphatic sterols. Further, as the above-mentioned alkylene oxide, for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran or the like can be used, and the above-mentioned polyol having an aliphatic cyclic structure (A) can be used. In addition, the polycarbonate polyol having an aliphatic cyclic structure, a polyester polyol containing an aliphatic cyclic structure, or a polyether polyol containing an aliphatic cyclic structure, and the like, and other chains containing active hydrogen The combination of the extenders is preferred because it can form a molded article excellent in solvent resistance, heat resistance and durability. Other active chain extenders containing active hydrogen, such as ethylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 3-methyl- 1,5-pentanediol, 1,6-hexanediol, 3,3'-dihydroxymethylheptane, 1,4-hexanehexane dimethanol, neopentyl glycol, 3,3-bis(hydroxyl) Molecular weights such as methyl)heptane, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, sorbitol, and hydroquinone dihydroxyethyl ether may be used singly or in combination of two or more. 13-201127861 In the present invention, in addition to the polyol (A) having an aliphatic ring structure, a conventionally known aliphatic polycarbonate polyol, aromatic polycarbonate polyol, or aliphatic may be combined as needed. Other polyols such as polyester polyols, aromatic polyester polyols, aliphatic polyether polyols, and aromatic polyether polyols are used. The raw material containing the aliphatic cyclic structure (A)', which is used in the production of the acrylic modified urethane urea resin (1) of the present invention, contains an aliphatic cyclic structure polyol (A) and contains The total mass of the polyisocyanate (B) having an aliphatic ring structure and the polyamine (C) having an aliphatic ring structure and the acrylic compound (D) is preferably in the range of 40 to 80% by mass. Next, the above polyisocyanate (B) having an aliphatic cyclic structure will be described. As the polyisocyanate (B) having an aliphatic cyclic structure, for example, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4 and/or 2,6-methyl ring can be used. Hexane diisocyanate, cyclohexyl diisocyanate, methylcyclohexyl diisocyanate, bis(2-isocyanatoethyl)-4 cyclohexyl-1,2-dicarboxylate and 2,5- and / Or 2,6-norbornane diisocyanate, dimer acid diisocyanate, bicycloheptane triisocyanate or the like. Among them, from the viewpoint of imparting excellent solvent resistance and heat resistance to the molded article of the present invention, it is preferred to use a diisocyanate, and it is more preferable to use isophorone diisocyanate or 4,4'-dicyclohexylmethane diisocyanate. 4'-dicyclohexylmethane diisocyanate is particularly preferred. Further, in the present invention, in addition to the polyisocyanate (B) having an aliphatic ring structure, an aromatic polyisocyanate or hexamethylene group such as phenylene diisocyanate or tolylene diisocyanate may be combined as needed. Other polyisocyanates such as aliphatic polyisocyanates such as isocyanates are used. The polyisocyanate (B) having an aliphatic cyclic structure and the raw material used for the production of the obtained acrylic modified urethane urea resin (1), which contains an aliphatic cyclic structure polyol (A), The total mass of the polyisocyanate (B) having an aliphatic ring structure and the polyamine (C) having an aliphatic ring structure and the acrylic compound (D) is preferably in the range of 15 to 50% by mass. Next, the above polyamine (C) containing an aliphatic cyclic structure will be described. The polyamine (C) having an aliphatic cyclic structure is used for introducing a urea bond into the acrylic modified urethane urea resin. The polyamine (C) having an aliphatic cyclic structure may be, for example, isophoronediamine, 4,4'-dicyclohexylmethanediamine, diaminocyclohexane or methyldiamine ring. Hexane, piperazine, norborne diamine, etc., wherein a diamine is preferably used, in particular, isophorone diamine and 4,4'-dicyclohexylmethanediamine are used to form excellent heat resistance and resistance. It is preferred in terms of a solvent-improving molded article. Moreover, in addition to the above-mentioned polyamine (C) containing an aliphatic cyclic structure, if necessary, an aliphatic polyamine which is conventionally known as a chain extender such as ethylenediamine may be used without damaging the present. The scope of the effects of the invention is applied. The raw material containing the aliphatic cyclic structure polyamine (C)' relative to the obtained acrylic modified urethane urea resin (1) is a raw material having an aliphatic ring structure of -15-201127861. The total mass of the alcohol (A) and the polyamine (B) containing the aliphatic ring structure and the polyamine (c) and the acrylic compound (D) containing the aliphatic ring structure are used. A range of ~20% by mass is preferred. Next, the above-mentioned acrylic acid compound (D) having a group containing an active hydrogen atom will be explained. The propionic acid compound (D) having an active hydrogen atom-containing group used in the present invention is used in the above-mentioned acrylic acid-modified urethane urethane resin, and is used as an isocyanate. The base of the active hydrogen atom containing the base reaction. The base of the above-mentioned active hydrogen atom is preferably a hydroxyl group such as a hydroxyl group or a carboxyl group. As the acrylic compound (D), the above-mentioned acrylic acid compound having a hydroxyl group or an acrylic acid compound having a carboxyl group can be used, but an acrylic acid compound having a hydroxyl group is preferably used. As the hydroxyl group-containing acrylic compound, for example, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, or (meth)acrylic acid 4 can be used. A hydroxyl group-containing alkyl acrylate such as hydroxybutyl ester, polyethylene glycol monoacrylate, polypropylene glycol monoacrylate or the like. Among them, from the viewpoint of solvent resistance and heat resistance, it is preferred to use a hydroxyl group-containing alkyl acrylate, and it is more preferable to use 2-hydroxyethyl acrylate or 4-hydroxybutyl acrylate from the viewpoint of easiness of obtaining from a raw material. The above-mentioned acrylic acid compound (D), which is used as a raw material for the production of the acrylic acid modified urethane urea resin (1), contains an aliphatic ring structure of 201127861 alcohol (A) and an aliphatic ring type. The total mass of the polyisocyanate (B) and the polyamine (C) having an aliphatic cyclic structure and the acrylic compound (D) is 0. A range of 05 to 10% by mass is preferred. Further, a part of the acrylic compound (D) may be present in an unreacted state in the acrylic modified urethane urea resin composition of the present invention. That is, the acrylic modified urethane urea resin composition of the present invention may contain the above-mentioned acrylic modified urethane urea resin (1) and the unreacted acrylic compound (D). Next, the solvent (2) used in the present invention will be explained. An organic solvent and a water solvent can be used for the solvent (2), but an organic solvent is more preferable from the viewpoint of further improving the moldability of the molded article. When the organic solvent is used as the solvent (2), it is not particularly limited, and for example, ethyl acetate, butyl acetate, ethyl lactate, serosol, celecoxib acetate, acetone, methyl ethyl ketone 'methyl group can be used. Isobutyl ketone, cyclohexanone, toluene, xylene, dimethylformamide, dimethylacetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, acetonitrile, dimethyl hydrazine, N-methylpyrrolidone, N-ethylpyrrolidone, methanol, isopropanol, 2-butanol, n-butanol, isopropanol, ethylene glycol monomethyl ether acetate, etc. It can also be used alone. Further, these organic solvents are appropriately selected depending on the intended use. Further, in the acrylic modified urethane urea resin composition of the present invention, the mass ratio of the acrylic modified urethane urea resin (1) to the solvent (2) is (1) / (2) ) = 10~50/90~50 is better, 15~35/85~6 5 is better. 201127861 Next, a method for producing the above-mentioned acrylic modified urethane urea resin (1) will be described. The method for producing the acrylic modified urethane urea resin (1) is exemplified by the following methods (i) to ? (manufacturing method). Among them, it is preferred to manufacture the product in accordance with the method (i) below. The method (0) is based on the solvent (2), and the polyol (A) having an aliphatic cyclic structure and the polyisocyanate (B) having an aliphatic cyclic structure, and optionally other active substances Hydrogen chain extender reacts to obtain a urethane prepolymer having an isocyanate group at the molecular end, and secondly, the aforementioned urethane prepolymer and the aforementioned polycyclic amine having an aliphatic cyclic structure (C) The acrylic acid-modified urethane urea resin (1) is produced by reacting with the acrylic compound (D). The polyol (A) having an aliphatic cyclic structure and the aforementioned polyisocyanate having an aliphatic cyclic structure ( The reaction ratio of B) to the equivalent ratio of the hydroxyl group of the polyol (A) having an aliphatic cyclic structure to the isocyanate group of the polyisocyanate (B) having an aliphatic cyclic structure [isocyanate/hydroxyl group ] is 1. 1/1. 0~5. 0/1. The range of 0 is better, 丨. 5/1, 0~ 3. 0/1. The range of 0 is better. Further, the reaction of the polyol (A) having an aliphatic cyclic structure and the polyisocyanuric acid (B) having an aliphatic cyclic structure is carried out at 20 to 120. (3: Preferably, it is preferably carried out for about 30 minutes to 2 hours, and the above-mentioned molecule is obtained by reacting the polyol (A) having an aliphatic cyclic structure with a polyisocyanate (B) having an aliphatic cyclic structure. The reaction of the amino hydroxyacetate prepolymer having an isocyanate group at the end with the aforementioned polyamine (C) containing a cyclic structure of the aliphatic -18-201127861 and the aforementioned acrylic compound (D) can be, for example, The urethane prepolymer and the aforementioned polycyclic amine (C) containing an aliphatic cyclic structure are supplied or successively supplied and reacted to produce a urethane urea prepolymer, and the amine is made by The urethane urea prepolymer is reacted with the aforementioned acrylic compound (D) to produce an acrylic modified urethane urea resin (1). At this time, the aforementioned urethane prepolymer has an isocyanate group and The equivalent ratio of the amine group (amino group/isocyanate group) of the polyamine (C) having an aliphatic cyclic structure is 0. 70/1. 0~0. 99/1. The range of 0 is preferred. Further, the urethane prepolymer and the polycyclic amine (C) having an aliphatic cyclic structure are mixed or sequentially mixed with the acrylic compound (D), and are roughly mixed at 20 to 80 ° C. The reaction can also be carried out for about 1 to 3 hours. Further, in the above-mentioned production method, the polyisocyanate (B) having an aliphatic cyclic structure and the polyamine (C) having an aliphatic cyclic structure are reacted under the solvent (2). a polyurea prepolymer having an isocyanate group at a molecular terminal, and secondly, reacting the polyurea prepolymer with the above-mentioned aliphatic ring structure-containing polyol (A) with the aforementioned acrylic compound (D), and if necessary, The other active hydrogen-containing chain extender is reacted to thereby produce an acrylic modified urethane urea resin (1). The reaction of the polyisocyanate (B) having an aliphatic cyclic structure and the polyamine (C) having an aliphatic cyclic structure, the isocyanate group having the polycyclic isocyanate (B) having an aliphatic cyclic structure, and the aforementioned The equivalent ratio [isocyanate group / amine group] of the amine group (c) having an aliphatic cyclic structure is 1. 171. A range of 0 to 5 · 0 / is preferable. Further, the reaction of the polyisocyanate (B) having an aliphatic cyclic structure and the polyamine (C) having an aliphatic cyclic structure described above is carried out in the above-mentioned -19-201127861, and is carried out at about 20 to 80 ° C for about 30 Minutes to 1 hour are preferred. a polyurea prepolymer having an aliphatic cyclic structure (B) and an aliphatic cyclic structure-containing polyamine (C) obtained by reacting the above-mentioned molecular terminal having an isocyanate group, and the above-mentioned aliphatic ring The reaction of the polyol (A) of the formula with the aforementioned acrylic compound (D) can be supplied by sub- or successively supplying, for example, the polyurea prepolymer described above and the aforementioned polyol (A) having an aliphatic cyclic structure. The reaction is carried out to produce a urethane urea prepolymer having an isocyanate group at the molecular terminal, and reacting the urethane urea prepolymer with the aforementioned acrylic compound (D), thereby producing an acrylic modified amine group. Formate urea resin (1). Further, the polyurea prepolymer may be produced by mixing and reacting the above-mentioned polyhydric alcohol (A) having an aliphatic cyclic structure and the above-mentioned acrylic compound (D) one by one or sequentially. When the acrylic modified urethane urea resin (1) is produced, in the case of any of the above methods (i) and (Π), it is possible to use a tertiary amine catalyst or an organometallic catalyst to promote the reaction. . The acrylic modified urethane urea resin composition of the present invention containing the acrylic modified urethane urea resin (1) and the solvent (2) obtained by the above method may also contain a hardener or a hardening promotion as needed. Agent. As the curing agent, for example, a light curing agent such as an ultraviolet curing agent or an electron beam curing agent, or a thermal curing agent can be used. -20- 201127861 The ultraviolet curing agent is a photo-sensitizing substance, and for example, a phenylene ether type such as a benzoin alkyl ether; a diphenyl group such as diphenyl ketone or methyl o-benzoyl benzoate; Ketones; benzyl dimethyl ketal, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone 4 -isopropyl-2-hydroxyl-2-methylpropiophenone 1,1 - acetophenone, such as chloroacetophenone; 2 - chloro-9 oxosulfan, 2-methyl-9 oxopurine (comet, 2-isopropyl-9-oxygen) A thioxanthone-based compound such as sulfonium yam, etc. Further, as the electron beam curing agent, for example, a halogenated alkylbenzene or a disulfide-based compound can be used. A hydroxyalkylphenone compound, an alkyl-9 oxosulfonium compound, a phosphonium salt compound, etc. may be used. Further, as the thermosetting agent, an organic peroxide may be used, and specifically, a diterpenoid may be used. Base peroxide, peroxyester, hydrogen peroxide, dialkyl peroxide, ketone peroxide, peroxyketal, alkyl perester And a percarbonate-based compound. The amount of the curing agent used varies depending on the type of use, and is usually 0.1% by mass based on 100 parts by mass of the acrylic modified urethane urea resin (1). The range of 1 to 10 parts by mass is preferably in the range of 1 to 5 parts by mass. Further, as the curing accelerator, for example, an organic metal salt such as cobalt naphthenate or cobalt octylate, an amine system or a β-diketone can be used. The acrylic modified urethane urea resin composition of the present invention may be added to other additives as described above without departing from the effects of the present invention. -2 1- 201127861 The above-mentioned other additives are used to prevent the radical polymerization from being stopped due to the influence of oxygen in the atmosphere, and the like, for example, ethylene glycol monoallyl ether, diethylene glycol monoallyl ether, propylene glycol monoene can be used. Polyols such as propyl ether, dipropylene glycol monoallyl ether, 1,2-butanediol monoallyl ether, trimethylolpropane diallyl ether, glycerol diallyl ether, pentaerythritol triallyl ether An allyl ether compound or the like. Further, as the other additives described above, an acrylic compound can be used from the viewpoint of improving the heat resistance or durability of the obtained molded article. The acrylic compound is, for example, the same as the exemplified as the acrylic compound (D), or 1,6-hexanediol di(meth)acrylate, 1,4-butylene glycol di(meth)acrylate, and Ethylene glycol (meth)acrylate, tripropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, di(meth)acrylic acid A polyfunctional acrylic compound such as triethylene glycol ester, polyethylene glycol di(meth)acrylate, or trimethylolpropane tri(meth)acrylate. 'The other additives mentioned above, for example: cerium filling materials or pigments, dyes, surfactants, antistatic agents, ultraviolet absorbers, polymerization inhibitors, adhesion imparting agents, plasticizers, antioxidants, coating agents, film forming aids Various conventionally known additives such as a agent, a stabilizer, or a flame retardant can be used without departing from the effects of the present invention. The method of curing the acrylic modified urethane urea resin composition of the present invention differs depending on the type of the curing agent. For example, the acrylic modified urethane urea resin composition using the ultraviolet curing agent can be cured by irradiating a predetermined ultraviolet ray with a general ultraviolet light-22-201127861 irradiation device such as a metal halide lamp, a mercury lamp or an ultraviolet LED lamp. . On the other hand, the acrylic modified urethane urea resin composition using the above-mentioned thermosetting agent can be, for example, a high-temperature furnace or the like, and is preferably heated at a temperature of 50 to 250 ° C to be hardened. Further, as described above, the acrylic modified urethane urea resin composition can be used in various applications such as a molding material for forming various molded articles, a coating agent, and an adhesive. In addition, since the acrylic-modified urethane urea resin composition is excellent in heat resistance and solvent resistance, it is used in a building member such as a counter or a bathtub, a car member, a medical member, an electronic motor member, or the like. The manufacture of molded articles such as members of various industrial products is preferred. The method for molding and producing a molded article of the above-mentioned acrylic modified urethane urea resin composition, for example, a press molding method using a heating mold, an injection molding method, an RTM (resist transfer molding) molding method, and a continuous molding method can be applied. Method, drawing method, etc. A method of producing a film or a sheet-shaped molded article using the above-described acrylic modified urethane urea resin composition, for example, using the above-mentioned propylene acid-modified urethane urea resin composition by, for example, curtain coating or molding A slit coating method such as a coating method, a knife coating method, a roll coating method, or a slit coating method, specifically, a die coating method or the like is applied to the surface of the release substrate, and after drying, it is irradiated with ultraviolet rays or heated. The method of waiting for hardening is preferred. Since the molded article obtained by the above method is excellent in solvent resistance and heat resistance, it can be used for, for example, a molded article such as a counter or a bathtub, a building member, a car No. -23-201127861, a household appliance part, a medical device part, various containers, and a packaging use. Or a skin or a layer of a leather-like sheet for various uses such as a film or sheet for forming an intermediate layer. Further, when the above-mentioned acrylic modified urethane urea resin composition is used in a coating agent or an adhesive, such a method is applied to various substrate surfaces, for example, a curtain coating method or a mold. A slit coating method such as a coating method, a knife coating method, a roll coating method, or the like. After the coating by the above method, the solvent is dried and the curing is carried out as needed. The coating film or the adhesive layer is formed by heating or irradiating ultraviolet rays or the like as described above. Further, the drying may be naturally dried at normal temperature, or may be dried by heating. The heat drying is usually carried out at 40 to 250 ° C for about 1 to 600 seconds. The coating film or the adhesive layer formed by the above method is excellent in solvent resistance and heat resistance. Therefore, it can be coated or adhered to the surface of various substrates such as a metal substrate, a plastic substrate, or a wood substrate. EXAMPLES [Example 1] A polycarbonate polyol having an aliphatic ring structure was added to a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser (Ube Industries, Ltd.) ) UC ~ 100. , hydroxyl price: 116. 4) 500. 0 parts by mass, adding isophorone diisocyanate 222. 2 parts by mass, toluene 180. 6 parts by mass of the mixture was reacted at 80 ° C for 3 hours while suppressing heat generation, whereby a toluene solution of a urethane prepolymer having an isocyanate group at a molecular terminal was obtained. -24- 201127861 Next, the toluene solution cooled to 40 °C with hydrazine, hydrazine-dimethylformamide 1447. 2 parts by mass with toluene 543. After mixing 1 part by mass, with isophorone diamine 73. 6 parts by mass of the mixture was mixed at 60 ° C for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the aforementioned urethane urea prepolymer solution and 2-hydroxyethyl acrylate are 8. 1 part by mass and second butanol 241. 2 parts by mass of the mixture, and reacted at 70 ° C for about 1 hour, thereby obtaining an acrylic modified urethane urea resin composition (1) (equivalent weight of propylene sulfhydryl group; LWx 104, weight average molecular weight; 21000, non-volatile Ingredient; 25 mass%). [Example 2] A polycarbonate polyol containing an aliphatic ring structure was added to a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser (Ube Industries, Ltd.) UC_100' hydroxyl price·· 116. 4) 500. 0 parts by mass, adding isophorone diisocyanate 222. 2 parts by mass, toluene 180. 6 parts by mass of the mixture was allowed to react at 80 ° C for 3 hours, thereby obtaining a toluene solution of the urethane prepolymer having an isocyanate group at the molecular terminal. Next, it was cooled to 40 ° C. The aforementioned toluene solution and N,N-dimethylformamide 1 445. 9 parts by mass with toluene 542. 4 parts by mass after mixing with isophorone diamine 75. 2 parts by mass of the mixture was allowed to react at 60 ° C for 3 hours, whereby a solution of a urethane urea prepolymer having an isocyanate group at the molecular terminal was obtained. -25- 201127861 Next, the aforementioned urethane urea prepolymer solution and 2-hydroxyethyl acrylate 5. 8 parts by mass with second butanol 241. 0 parts by mass of the mixture was reacted at 7 (TC for about 1 hour, whereby an acrylic modified urethane urea resin composition (11) (equivalent weight of acrylonitrile group; 61X104, weight average molecular weight; 39000, non-volatile content; 25 mass%). [Example 3] A polycarbonate polyol having an aliphatic ring structure was added to a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser (Ube Industries, Ltd.) — 100, hydroxyl price: 116. 4) 500. 0 parts by mass, adding isophorone diisocyanate 222. 2 parts by mass, toluene 180. 6 parts by mass of the mixture was reacted at 80 ° C for 3 hours while suppressing heat generation, whereby a toluene solution of a urethane prepolymer having an isocyanate group at a molecular terminal was obtained. Next, the toluene solution cooled to 40 ° C and N,N-dimethylformamide 1 444. 6 parts by mass with toluene 541. 7 parts by mass after mixing with isophorone diamine 76. 8 parts by mass of the mixture was mixed at 60 ° C for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the aforementioned urethane prepolymer solution and 2-hydroxyethyl acrylate 3. 5 parts by mass with second butanol 240. 8 parts by mass of the mixture was mixed at 70 ° C for about 1 hour, whereby an acrylic modified urethane urea resin composition (111) (equivalent weight of acrylonitrile group; 66χ104, weight average molecular weight; 64000, non-volatile component; 25 mass%). -26- . 201127861 [Example 4] An aliphatic cyclic polycarbonate polyol was added to a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a returning device (Ube Industries, Ltd.) UC-100, hydroxyl 116. 4) 500. 0 parts by mass, 4,4'-dicyclohexylmethane diisocyanide 262. 4 parts by mass, toluene 190. 6 parts by mass, while suppressing heat generation, the reaction was carried out for 3 hours at 8 ° C to obtain a toluene solution of a urethane prepolymer having isocyanic acid at the molecular end. Next, the toluene solution cooled to 40 ° C and hydrazine, hydrazine - dimethylformamide 1516. 8 parts by mass with toluene 567. After mixing 8 parts by mass, the ketone diamine 76. 8 parts by mass of the mixture was allowed to react at 6 ° C for 3 hours, and a urethane urea prepolymer having an isocyanate group at the molecular end was used. Next, the aforementioned urethane urea prepolymer solution and hydroxyethyl acrylate 3. 5 parts by mass with second butanol 252. 8 parts by mass of the mixture was allowed to react for about 1 hour, thereby obtaining an acrylic modified urethane urea composition (IV) (equivalent weight of propylene fluorenyl group; 2·80 χΙΟ4, weight: 18,000, non-volatile Ingredient; 25 mass%). [Example 5] In a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas introduction port, and a returning device, an aliphatic cyclic polycarbonate polyol was contained in it (Ube Industries, Ltd.) UC-100, hydroxyl 116. 4) 500. 0 parts by mass 'addition of 4,4'-dicyclohexylmethane diisocyanate cold-cutting price: the acid ester surface is ester-ester methyl isophora. This product is dissolved in 2 -7 0 °C. : Acidate-27- 201127861 262. 4 parts by mass and 190. 6 parts by mass of toluene were used to suppress heat generation. The reaction was carried out for 3 hours to obtain a toluene solution of a urethane prepolymer having isocyanic acid at the molecular terminal. Next, the toluene solution cooled to 40 ° C and N, N-dimethylamide 1549. 3 parts by mass with toluene 584. After mixing 1 part by mass, the mixture is dicyclohexylmethanediamine 94. 9 parts by mass, the reaction was carried out at 60 ° C for 3 minutes to obtain a urethane urea solution having an isocyanate group at the molecular terminal. Next, the aforementioned urethane urea prepolymer solution and hydroxyethyl acrylate 3. 5 parts by mass with second butanol 258. 2 parts by mass of the mixture was allowed to react for about 1 hour, thereby obtaining an acrylic modified urethane urea composition (V) (equivalent weight of propylene fluorenyl group; 2.86 χ 104, weight average amount; 172,000, nonvolatile content) ;25 mass%). [Example 6] An aliphatic ring obtained by reacting 1,4 -cyclohexanedipic adipic acid was placed in a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a returning device. Polyester multi-country base price: 1 1 2. 2) 500. 0 parts by mass, 4,4'-dicyclohexylmethane cyanate 262. 4 parts by mass, toluene 190. 6 parts by mass of the reaction was carried out at 80 ° C for 3 hours to obtain a toluene solution of a urethane prepolymer having an isocyano group at the molecular terminal. Next, the toluene solution cooled to 40 ° C and N,N-dimethylformamide 1 5 1 6 · 8 parts by mass with toluene 5 6 7. After mixing 8 parts by mass, with the ester group methyl 4,4, prepolymerized 2 -7 〇 °c resin molecular flow cold alcohol and enjoy (hydroxy diisohydric, ester methyl isophora-28- 201127861 ketone diamine 76. 8 parts by mass, at 60. <: The reaction was allowed to proceed for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the aforementioned urethane urea prepolymer solution was mixed with 3.5 parts by mass of 2-hydroxyethyl acrylate and 252.8 parts by mass of second butanol, and the reaction was allowed to proceed at 70 ° C for about 1 hour, thereby obtaining an amine group A. Acid ester urea resin composition (VI) (equivalent weight of propylene fluorenyl group; 2.8 〇 xl 〇 4, weight average molecular weight; 1 57000, nonvolatile component; 25% by mass). [Comparative Example 1] A polycarbonate polyol having an aliphatic ring structure was added to a 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser (Ube Industries, Ltd.) UC - 100, hydroxyl group: 116.4) 500.0 parts by mass, 222.2 parts by mass of isophorone diisocyanate and 180.6 parts by mass of toluene were added, and the reaction was carried out at 80 ° C for 3 hours while suppressing heat generation, thereby obtaining a molecular terminal. A toluene solution of an isocyanate-based urethane prepolymer. Next, the toluene solution cooled to 40 ° C was mixed with 44,6 parts by mass of N,N-dimethylformamide and 540.7 parts by mass of toluene, and then mixed with 79.2 parts by mass of isophoronediamine at 60 °. The reaction was carried out for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the aforementioned urethane urea prepolymer solution was mixed with 240.4 parts by mass of the second butanol, and the reaction was allowed to proceed at 70 ° C for 1 hour, thereby obtaining an amine-based methyl -29-201127861 acid ester urea resin composition ( VII) (equivalent weight of propylene fluorenyl group; -, weight average molecular weight; 70,000, nonvolatile component; 25% by mass). [Comparative Example 2] In a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser, 1,6-hexanediol-based polycarbonate polyol (Nippon pol yurethane industry) was added. "NIPPORAN 981", base price: 112.2) 500.0 parts by mass, 222.2 parts by mass of isophorone diisocyanate and 180.6 parts by mass of toluene were added, and the reaction was allowed to proceed at 80 ° C for 3 hours while suppressing heat generation. A toluene solution of a urethane prepolymer having an isocyanate group at the molecular end is obtained. Next, the toluene solution cooled to 4 (TC) was mixed with N,N-dimethylformamide 1 444.6 parts by mass and 541.7 parts by mass of toluene, and then mixed with 76.8 parts by mass of isophoronediamine at 60 °. C was allowed to react for 3 hours, thereby obtaining a urethane urea prepolymer solution having an isocyanate group at the molecular terminal. Next, the aforementioned urethane urea prepolymer solution and 2-hydroxyethyl acrylate solution were 3.5 masses. The mixture was mixed with 240.8 parts by mass of the second butanol, and the reaction was allowed to proceed at 70 ° C for about 1 hour, thereby obtaining an acrylic modified urethane urea resin composition (VIII) (equivalent weight of the acrylonitrile group; 2.66 χ 104, Weight average molecular weight; 61000, nonvolatile content; 25% by mass. [Comparative Example 3] Adding an aliphatic ring in a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux cooler Structure -30- 201127861 Polycarbonate polyol (U-Xing Xing (ec) uc - 100, hydroxyl price: 116.4) 500.0 parts by mass, adding isophorone diisocyanate 222. 2 parts by mass, toluene 180.6 parts by mass, Suppressing fever, 8 (rc is allowed to react for 3 hours) to thereby obtain a toluene solution of a urethane prepolymer having an isocyanate group at the molecular end. Next, the toluene solution cooled to 40 ° C with N, N - 1355.1 parts by mass of dimethylmethylamine was mixed with 497.0 parts by mass of toluene, and then mixed with ethylenediamine 27.1 parts by mass, and reacted at 60 ° C for 3 hours, thereby obtaining an amino group having an isocyanate group at the molecular terminal. a formic acid ester prepolymer solution. Next, 3.5 parts by mass of the urethane prepolymer solution and 5.8 parts by mass of the second butanol 2 5.8 parts by mass are mixed, and the reaction is about 1 at 70. After that, an acrylic modified urethane resin composition (IX) (equivalent weight of acrylonitrile group; 2·5〇χ10, weight average molecular weight; 59000, nonvolatile content; 25% by mass) was obtained. Comparative Example 4] A polyester polyol (hydroxyl price) obtained by reacting iota, 4-butanediol with adipic acid was placed in a 5 liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser. :1 1 2.2) 5 00.0 parts by mass, adding isophorone diisocyanate 222.2 The portion of 'toluene 180.6 parts by mass, while suppressing heat generation' was on the surface of 80. (: The reaction was carried out for 3 hours, thereby obtaining a toluene solution of a urethane prepolymer having an isocyanate group at the molecular terminal. Next, 'cooling to 40 ° C of the above toluene solution and N,N-dimethylformamide 1 444.6 parts by mass and 541.7 parts by mass of toluene, mixed with iso-3 1 - 201127861 phorone diamine 76.8 parts by mass, at 60 ° C The reaction was allowed to proceed for 3 hours, whereby a urethane urea prepolymer solution having an isocyanate group at the molecular terminal was obtained. Next, the aforementioned urethane urea prepolymer solution was mixed with 3.5 parts by mass of 2-hydroxyethyl acrylate and 240.8 parts by mass of second butanol, and the reaction was allowed to proceed at 70 ° C for about 1 hour, thereby obtaining acrylic acid modification. Aurethane urea resin composition (X) (equivalent weight of propylene fluorenyl group: 2.66 χ 104, weight average molecular weight; 64,000, nonvolatile component; 25% by mass). [Method for Measuring Weight Average Molecular Weight of Acrylic Modified Aurethane Urea Resin] The weight average molecular weight of the acrylic modified urethane urea resin obtained in the above Examples and Comparative Examples was determined by gel permeation chromatography ( GPC) is obtained according to standard polystyrene conversion. The solid component of the obtained acrylic modified urethane urea resin composition was dissolved in tetrahydrofuran ig as a measurement sample. The measuring device was a high-speed liquid chromatography HLC-822 0 type manufactured by Tosoh Corporation. The pipe string is used in combination with TCA_GEL (HXL-H, G5000HXL, G4000HXL, G3000HXL, G2000HXL). The measurement conditions were as follows: the column temperature was 40 ° C, the solution was tetrahydrofuran, the flow rate was 1.0 mL/min, the sample injection amount was 500 μί, and the standard polystyrene was TSK standard polystyrene. [Production Method of Molded Product (Film)] 2 parts by mass of IRGACURE 184 (manufactured by Ciba Japan Co., Ltd., photopolymerization initiator) was mixed with 100 parts by mass of the solid content of the resin composition obtained in the above Examples and Comparative Examples. After stirring for 1 minute, a coating liquid was obtained. -32-201127861 After coating the coating liquid on the polyethylene terephthalate film subjected to the release treatment, a hot air dryer was used at 10 ( After TC was dried for 20 minutes, a film of a film thickness of 50 μm was obtained by irradiating l〇〇〇mJ/cm 2 with a belt type ultraviolet irradiation device (CSOT-40 manufactured by Gs-YU ASA Co., Ltd.). Method for Evaluating Solvent Resistance] A film prepared by the above method was cut into a size of 50 mm in length and 50 mm in width to obtain a test film. Next, the test film was fixed to an internal dimension of 40 mm in length and 40 mm in width without being tensioned. The test piece was then used as a test piece. The test piece was immersed in tetrahydrofuran (THF) for 1 minute in an environment of a temperature of 23 ° C and a relative humidity of 50%. After the immersion, the test piece was taken out from the aforementioned tetrahydrofuran. Take out The shape of the test film was observed and evaluated, etc. ◎; The shape of the test film before the immersion was kept 'no pinhole or whitening on the surface 》 〇; the test film maintained the shape before immersion', but it was confirmed that there was pinhole or whitening on the surface. △: A part of the test film (less than about 30% of the film area) was dissolved. X; 50% or more of the total area of the test film was dissolved' and the film shape before the immersion was hardly maintained. -33- 201127861 [Evaluation of heat resistance Method] The flow initiation temperature of the film produced by the above method was measured using Shimadzu Flw tester CFT 5 0 0D-1 (manufactured by Shimadzu Corporation) at the measurement start temperature; 4 (TC, temperature increase rate; 3.0 ° C / min , heating method, cylinder pressure; 9.807xl 〇 5Pa, die; lmmxlmmL, load; 98N' holding time; 600 seconds of the measurement. The flow start temperature is approximately 180 ° C or more, evaluated as excellent heat resistance [Table 1] Table 1 Example 1 Example 2 Example 3 Example 4 Example 5 Polyol (A) CH-PC CH-PC CH-PC CH-PC CH-PC Polypterene (Β) | IPDI IPDI IPDI H12MDI H12MDI Multiple S'(c) 1 IPDA IPDA IPDA IPDA H12MDA Han Constituent (D) HEA HEA HEA HEA HEA Solvent resistance 〇0 〇 ◎ ◎ Heat resistance (°C) 185 190 196 218 220 [Table 2] Table 2 Example 6 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Polyol CH-AA CH-PC HG-PC CH-PC BG-AA PolySti Ester H12MDI IPDI IPDI IPDI IPDI Amino acid IPDA IPDA IPDA EDA IPDA Compound HEA — HEA HEA HEA Solvent Resistance ◎ XXXX Heat Resistance ( . 〇 185 178 184 190 177 ' The following is abbreviated in Tables 1 to 2. CH-PC is UC-100 (1,4~cyclohexane dimethanol polycarbonate polyol, hydroxyl price: 116.4) manufactured by Ube Industries. "HG-PC" is "NIPP0Ran 981" manufactured by Nippon polyurethane industry (1,6-hexanediol-based polycarbonate polyol, hydroxyl group·1 1 2.2). -34- 201127861 "BG-AA" is a polyester polyol obtained by reacting 1,4-butanediol with adipic acid (hydroxyl price: 112.2). "CH-AA" is a polyester polyol having an aliphatic cyclic structure obtained by reacting 1,4_cyclohexanedimethanol with adipic acid (hydroxyl price: 112.2). "IPDI" is isophorone diisocyanate. "H12MDI" is 4,4, dicyclohexylmethane diisocyanate. "IPDA" is isophorone diamine. "EDA" is ethylenediamine. "H12MDA" is 4,4'-dicyclohexylmethanediamine. "HEA" is 2-hydroxyethyl acrylate. Industrial Applicability The composition of the acrylic modified urethane urea resin of the present invention can form a molded article having excellent solvent resistance and heat resistance, and can be used, for example, in the manufacture of automobile parts, home appliance parts, and packaging materials. , film or sheet, skin material of leather-like sheet, and the like. Further, since the acrylic-modified urethane urea resin composition of the present invention can form a coating film having excellent solvent resistance and heat resistance, it can be used for, for example, surface coating agents or adhesion of various substrates. Agents, etc. [Simple description of the diagram] 4rrr, tear 0 [Description of main component symbols] ATT. Tear. -35-

Claims (1)

201127861 七、申請專利範圍: 1. 一種丙烯酸改性胺基甲酸酯脲樹脂組成物,其特徵在於 含有:使含有脂肪族環式構造之多元醇(A)、含有脂肪族環 式構造之聚異氰酸酯(B)、含有脂肪族環式構造之多元胺 (C)及具有含活性氫原子之基的丙烯酸化合物(D)反應而 得到的丙烯酸改性胺基甲酸酯脲樹脂(1 ),及溶劑(2)而 成。 2 ·如申請專利範圍第1項之丙烯酸改性胺基甲酸酯脲樹脂 組成物’其中該丙烯酸改性胺基甲酸酯脲樹脂組成物 中,該丙烯酸改性胺基甲酸酯脲樹脂(1)與該溶劑(2)的質 量比例爲(1)/(2) = 10〜50/90〜50。 3. 如申請專利範圍第1或2項之丙烯酸改性胺基甲酸酯脲 樹脂組成物,其中該丙烯酸改性胺基甲酸酯脲樹脂具有 之來自該丙烯酸化合物(D)之丙烯醯基的當量重量爲 1 0000〜5 00 0 0的範圍。 4. 如申請專利範圍第1至3項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中相對於爲該丙烯酸改性胺基 甲酸酯脲樹脂之製造原料之該含有脂肪族環式構造之多 元醇(A)、含有脂肪族環式構造之聚異氰酸酯(B)、含有脂 肪族環式構造之多元胺(C)及具有含活性氫原子之基的丙 烯酸化合物(D)的合計質量,脂肪族環式構造之質量比例 爲20〜60質量%。 -36- 201127861 5 ·如申請專利範圍第1至4項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該多元醇(A)爲具有30〜230 mgKOH/g之經基價者。 6. 如申請專利範圍第1至5項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該含有脂肪族環式構造之多 元醇(A),係選自由含有脂肪族環式構造之聚碳酸酯多元 醇及含有脂肪族環式構造之聚酯多元醇構成之群組中1 種以上。 7. 如申請專利範圍第6項之丙烯酸改性胺基甲酸酯脲樹脂 組成物,其中該含有脂肪族環式構造之聚碳酸酯多元 醇,係使1,4-環己烷二甲醇與碳酸酯及/或光氣反應而獲 得者。 8 .如申請專利範圍第1至7項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該含有脂肪族環式構造之聚 異氰酸酯(B),係選自由4,4’一二環己基甲烷二異氰酸酯 及異佛爾酮二異氰酸酯構成之群組中1種以上。 9.如申請專利範圍第1至8項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該(甲基)丙烯酸化合物(D), 爲含有羥基之丙烯酸烷基酯》 1 0.如申請專利範圍第1至9項中任一項之丙烯酸改性胺基 甲酸酯脲樹脂組成物,其中該丙烯酸改性胺基甲酸酯脲 樹脂(1)爲具有5000〜200000之重量平均分子量者。 -37- 201127861 11 · 一種成型品,係將如申請專利範圍第1至1 0項中任一 項之丙烯酸改性胺基甲酸酯脲樹脂組成物成型而獲得。 -38- 201127861 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 無。 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201127861 VII. Patent application scope: 1. An acrylic modified urethane urea resin composition characterized by comprising: a polyhydric alcohol (A) having an aliphatic cyclic structure and a polycyclic structure containing an aliphatic ring structure An acrylic modified urethane urea resin (1) obtained by reacting an isocyanate (B), a polyamine (C) having an aliphatic cyclic structure, and an acrylic compound (D) having a group containing an active hydrogen atom, and Solvent (2). 2. The acrylic modified urethane urea resin composition as claimed in claim 1 wherein the acrylic modified urethane urea resin composition is the acrylic modified urethane urea resin The mass ratio of (1) to the solvent (2) is (1) / (2) = 10 to 50 / 90 to 50. 3. The acrylic modified urethane urea resin composition according to claim 1 or 2, wherein the acrylic modified urethane urea resin has an acrylonitrile group derived from the acrylic compound (D) The equivalent weight is in the range of 1 0000 to 5 00 0 0. 4. The acrylic modified urethane urea resin composition according to any one of claims 1 to 3, wherein the composition is the same as the raw material of the acrylic modified urethane urea resin. Polyhydric alcohol (A) having an aliphatic cyclic structure, polyisocyanate (B) having an aliphatic cyclic structure, polyamine (C) having an aliphatic cyclic structure, and an acrylic compound having a group containing an active hydrogen atom (D) The total mass of the aliphatic ring structure is 20 to 60% by mass. The acrylic modified urethane urea resin composition according to any one of claims 1 to 4, wherein the polyol (A) has a temperature of 30 to 230 mgKOH/g. Base price. 6. The acrylic modified urethane urea resin composition according to any one of claims 1 to 5, wherein the aliphatic cyclic structure-containing polyol (A) is selected from the group consisting of aliphatic One or more of the group consisting of a polycarbonate polyol having a ring structure and a polyester polyol having an aliphatic ring structure. 7. The acrylic modified urethane urea resin composition according to claim 6, wherein the polycarbonate polyol having an aliphatic cyclic structure is 1,4-cyclohexanedimethanol and Obtained by the reaction of carbonate and/or phosgene. The acrylic modified urethane urea resin composition according to any one of claims 1 to 7, wherein the polyisocyanate (B) having an aliphatic cyclic structure is selected from 4, 4 One or more of the group consisting of 'dicyclohexylmethane diisocyanate and isophorone diisocyanate. The acrylic modified urethane urea resin composition according to any one of claims 1 to 8, wherein the (meth)acrylic compound (D) is an alkyl acrylate having a hydroxyl group. The acrylic modified urethane urea resin composition according to any one of claims 1 to 9, wherein the acrylic modified urethane urea resin (1) has 5000 to 200000 The weight average molecular weight of the person. -37- 201127861 11 - A molded article obtained by molding an acrylic modified urethane urea resin composition according to any one of claims 1 to 10. -38- 201127861 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the component symbols of this representative figure: None. 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW099131543A 2009-09-18 2010-09-17 Acrylic modified urethane urea resin composition and molding product obtained by using the same TWI526464B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009217001 2009-09-18

Publications (2)

Publication Number Publication Date
TW201127861A true TW201127861A (en) 2011-08-16
TWI526464B TWI526464B (en) 2016-03-21

Family

ID=43758465

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131543A TWI526464B (en) 2009-09-18 2010-09-17 Acrylic modified urethane urea resin composition and molding product obtained by using the same

Country Status (5)

Country Link
JP (2) JP4877432B2 (en)
KR (1) KR101751767B1 (en)
CN (1) CN102574979B (en)
TW (1) TWI526464B (en)
WO (1) WO2011033852A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5725335B2 (en) * 2011-03-16 2015-05-27 Dic株式会社 Prism sheet and manufacturing method thereof
JP5598409B2 (en) * 2011-04-08 2014-10-01 Dic株式会社 Urethane urea resin composition, optical film, and method for producing optical film
JP2019137756A (en) * 2018-02-08 2019-08-22 第一工業製薬株式会社 Polyurethane resin, polyurethane resin composition, and optical film
JP7230449B2 (en) * 2018-11-19 2023-03-01 コニカミノルタ株式会社 optical film
CN112812489A (en) * 2021-02-04 2021-05-18 浙江科普特新材料有限公司 Modified plastic based on interpenetrating network structure and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172915A (en) * 1981-04-16 1982-10-25 Nippon Synthetic Chem Ind Co Ltd:The Photocurable urethane-acrylic resin composition
JPS5951245A (en) * 1982-09-17 1984-03-24 Ajinomoto Co Inc Novel aspartic acid derivative, its preparation and surface active agent containing said derivative as active component
JPH0292915A (en) * 1988-09-30 1990-04-03 Sanyo Chem Ind Ltd Modified polyurethane resin composition and production thereof
JPH04170415A (en) * 1990-11-02 1992-06-18 Mitsubishi Rayon Co Ltd Curable resin composition
JP2991900B2 (en) * 1993-09-30 1999-12-20 第一工業製薬株式会社 Radiation-curable polyurethane polymer emulsion composition and method for producing the same
JP2923187B2 (en) * 1993-11-18 1999-07-26 第一工業製薬株式会社 Radiation-curable aqueous printing ink composition
JP3738477B2 (en) * 1996-01-29 2006-01-25 三菱化学株式会社 Modified urethane resin and method for producing the same
JP3650988B2 (en) * 1998-09-18 2005-05-25 日本ポリウレタン工業株式会社 Polyurethane resin for coating agent and coating agent composition
JP4103201B2 (en) * 1998-09-25 2008-06-18 東レ株式会社 Polyamide resin composition for automobile electrical component housing and use thereof
JP2001055539A (en) * 1999-08-20 2001-02-27 Nippon Polyurethane Ind Co Ltd Polyurethane-based primer
JP2001055540A (en) 1999-08-20 2001-02-27 Nippon Polyurethane Ind Co Ltd Polyurethane-based primer
JP3772341B2 (en) * 1999-11-30 2006-05-10 日本ポリウレタン工業株式会社 Printing ink binder and printing ink
AU3272301A (en) * 2000-01-27 2001-08-07 Fairfax Express Corp. System and method of vending building modules over a network
US7396875B2 (en) * 2003-06-20 2008-07-08 Bayer Materialscience Llc UV-curable waterborne polyurethane dispersions for soft touch coatings
CN100392017C (en) * 2005-10-12 2008-06-04 中国化工建设总公司常州涂料化工研究院 Acrylate polyurethane water-dispersed resin and its making method
EP1845143A1 (en) * 2006-04-14 2007-10-17 Cytec Surface Specialties, S.A. Aqueous radiation curable polyurethane compositions
JP4993408B2 (en) * 2007-02-22 2012-08-08 日本ポリウレタン工業株式会社 Polyurethane resin for decorative sheet primer and primer for decorative sheet using the same

Also Published As

Publication number Publication date
KR20120082349A (en) 2012-07-23
KR101751767B1 (en) 2017-06-28
JP2011132548A (en) 2011-07-07
JPWO2011033852A1 (en) 2013-02-07
TWI526464B (en) 2016-03-21
CN102574979A (en) 2012-07-11
JP5387607B2 (en) 2014-01-15
WO2011033852A1 (en) 2011-03-24
JP4877432B2 (en) 2012-02-15
CN102574979B (en) 2013-11-06

Similar Documents

Publication Publication Date Title
TW474978B (en) Polyurethane-based adhesives and mixtures thereof
JP6528067B1 (en) Resin composition for film formation, laminated film, and article to which the laminated film is attached
TW201217408A (en) Aqueous polyurethane resin dispersion and method for manufacture thereof, and its use
TW201127861A (en) Acrylic modified urethane urea resin composition and molding product obtained by using the same
TW201700697A (en) Adhesive composition and manufacturing method thereof, laminate and manufacturing method thereof
JP5585849B2 (en) Primer composition
TW200932776A (en) Aqueous polyurethane resin, coating film, and artificial and synthetic leather
TW200829669A (en) Base material for adhesive and method for producing adhesive
JP2007023117A (en) Urethaneurea composition, urethaneurea resin, and adhesive using the same
US6596819B2 (en) Polyisocyanate curing agent for laminate adhesive and process for production thereof
MXPA05001740A (en) Urethane acrylate gel coat resin and method of making.
JP5725335B2 (en) Prism sheet and manufacturing method thereof
TWI495654B (en) Acrylic modified urethane urea resin composition and molding product obtained by using the same
JP4003232B2 (en) Marking sheet base film
JP5459463B2 (en) Primer composition
JP2001262114A (en) Polyisocyanate curing agent for laminate adhesive
JP5510891B2 (en) Primer composition
JP4636422B2 (en) Polyisocyanate curing agent, method for producing the same, and laminating adhesive composition using the curing agent
JP2023042982A (en) Two-liquid curable adhesive, laminate and package
JP2012194308A (en) Prism sheet and method of manufacturing the same
JP2010215866A (en) Primer composition for spray coating