TW201127483A - Fabrication method for IB-IIIA-VIA powder by the sol-gel method - Google Patents

Fabrication method for IB-IIIA-VIA powder by the sol-gel method Download PDF

Info

Publication number
TW201127483A
TW201127483A TW99103461A TW99103461A TW201127483A TW 201127483 A TW201127483 A TW 201127483A TW 99103461 A TW99103461 A TW 99103461A TW 99103461 A TW99103461 A TW 99103461A TW 201127483 A TW201127483 A TW 201127483A
Authority
TW
Taiwan
Prior art keywords
powder
iiia
compound
sol
group
Prior art date
Application number
TW99103461A
Other languages
Chinese (zh)
Other versions
TWI425978B (en
Inventor
Chung-Hsin Lu
Szu-Chia Chien
zhi-liang Liu
Original Assignee
Chung-Hsin Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung-Hsin Lu filed Critical Chung-Hsin Lu
Priority to TW99103461A priority Critical patent/TWI425978B/en
Publication of TW201127483A publication Critical patent/TW201127483A/en
Application granted granted Critical
Publication of TWI425978B publication Critical patent/TWI425978B/en

Links

Abstract

The invention provides a fabrication method for IB-IIIA-VIA powder by the sol-gel method, comprising: (a) dissolving a Group IB compound, a Group IIIA compound in an solvent; (b) dissolving an gelation agent in the solvent of the step (a) to form a sol; (c) drying the sol to form a gel; (d) heating the gel to form a precursor powder containing Group IB and IIIA; and (d) subjecting the precursor powder to a thermal process to introduce a Group VIA compound into the precursor powder and to obtain the IB-IIIA-VIA powder.

Description

201127483 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種半導體材料之製法,且特別是有 關於一種以溶膠-凝膠法製備IB-IIIA-VIA化合物粉末之方 法。 【先前技術】 IB-IIIA-VIA化合物具有特殊的能階大小(enei>gy gap),其可藉由調整其各成份之比例而改變材料的電子 (electronic)與光學(optical)特性,因此可應用於太陽能電池 (solar cell)上。若將IB-IIIA-VIA化合物製備成粉末型熊 時,可將其應用於真空製程之把材(target) ’或者可應用於 塗佈製程之原料。然而,製作ib_iiia_via化合物粉末之 最大挑戰在於製備出顆粒微小且均勻之粉末。 溶膠凝膠法包含了系統的液相(溶膠)到固相(凝膠)的 轉換,在典型的溶膠凝膠法中,溶膠的原料是固體粒子(通 常為無機金屬鹽)懸浮在液體中,反應物經過一連串的水解 反應(hydrolysis)、縮合反應(condensation)與聚合反應 (polymerization) ’最後凝結成新的相態,意即凝膠。溶膠 凝膠法之優點在於其可在低溫下製備、可控制性高、產物 均勻性高等優點,因此廣泛地應用於各種領域,如陶瓷、 玻璃、無機薄膜、氣凝膠、有機無機複合材料等。 美國專利公開號US2005/0183767提供一種以溶液方 式製備太1%能電池的方法,首先取含有IB、in a與IA族 元素之有機金屬化合物,將該些有機金屬混合後以形成有 201127483BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing a semiconductor material, and more particularly to a process for preparing a powder of IB-IIIA-VIA compound by a sol-gel method. [Prior Art] The IB-IIIA-VIA compound has a special energy level (enei>gy gap), which can change the electronic and optical properties of the material by adjusting the ratio of its components. Applied to solar cells. When the IB-IIIA-VIA compound is prepared into a powder type bear, it can be applied to a vacuum process target or a material which can be applied to a coating process. However, the biggest challenge in making the ib_iiia_via compound powder is to prepare a powder that is fine and uniform in particle size. The sol-gel method involves the conversion of the liquid phase (sol) to the solid phase (gel) of the system. In a typical sol-gel method, the raw material of the sol is a solid particle (usually an inorganic metal salt) suspended in a liquid. The reactants undergo a series of hydrolysis, condensation and polymerization to finally condense into a new phase, meaning a gel. The sol-gel method has the advantages of being prepared at a low temperature, high controllability, high product uniformity, and the like, and thus is widely used in various fields such as ceramics, glass, inorganic thin films, aerogels, organic-inorganic composite materials, and the like. . U.S. Patent Publication No. US 2005/0183767 provides a method for preparing a 1% energy battery in a solution form, first taking an organometallic compound containing elements of IB, in a and IA, and mixing the organic metals to form 201127483

機金屬液態油墨(organometallic liquid ink),再將此油墨塗 佈於基材上,之後再進行硒化處理,以得到m_IIIA_VIA 薄膜。然而,有機金屬毒性較高且不穩定,因此製備過程 需小心使用。 若能將溶膠凝膠法結合至製備IB-IIIA-VIA化合物之 方法上,應有助於提供微小且均勻的粉末顆粒。 【發明内容】 本發明提供一種ΙΒ-ΙΠΑ-VIA化合物粉末之製法,包 括以下步驟:〇)將ΙΒ族化合物與ΙΠΑ族化合物溶於一溶 W中·(b)力口入一凝勝劑(geiati〇ri agent)於步驟⑻之溶劑中 以形成溶膠(sol) ; (c)乾燥該溶膠以得到一凝膠(gel) ; (d)加 熱該凝膠以得到一含有IB與IIIA族元素之前驅物粉末; 以及(e)對該前驅物粉末進行熱處理製程,以導入一 VIA族 凡素於該前驅物粉末中,以得到ΙΒ·ΠΙΑ_νΐΑ化合物粉末。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 本發明提供一種IB-IIIA-VIA化合物粉末之製法,包 括以下步驟’首先進行步驟(&amp;)將ΙΒ族化合物與ΠΙΑ族化 合物溶於溶劑中,其中ΙΒ族包括銅(Cu)、銀(Ag)、金(Au) 201127483 或上述之組合,而IB族化合物包括含有IB族之氧化物、 氮化物、氫氧化物、_化物、确酸物、醋酸物、硫酸物、 碳酸物、氣酸物、碟酸物、砸酸物、草酸物、填化物,例 如氧化銅(CuO)、氮化銅(Cu(N3)2)、氫氧化銅(Cu(OH)2)、 氣化銅(CuCl2)、硝酸銀(AgN03)、硝酸銅(Cu(N03)2)、硫酸 銅(CuS04)、醋酸銅(Cu(CH3COO)2)、醋酸銀 (CH3COOAg)、碳酸銅(Cu2C03)、草酸銅(CuC204)、氣酸鋼 (Cu(C104)2)、磷酸銅(Cu3(P04)2)、石西酸銅(CuSe04)或磷化鋼 (Cu3P)。 上述之IIIA族包括鋁(A1)、銦(In)、鎵(Ga)或上述之組 合,而IIIA族化合物包括含有ΠΙΑ族之氧化物、氮化物、 氫氧化物、函化物、硝酸物、醋酸物、硫酸物、碳酸物、 氯酸物、填酸物、砸酸物、草酸物或填化物,例如氧化銦 (ln203)、氧化錄(Ga203)、匕ϋ(ΙιιΝ)、IU匕錄(GaN)、氣 氧化銦(In(0H)3)、氫氧化鎵(Ga(OH)3)、氯化鋁(A1C13)、氣 化la(InCl3)、氯化錄(GaCl3)、硝酸雀呂(A1(N03)3)、石肖酉曼鋼 (Ιη(Ν03)3)、硝酸鎵(Ga(N03)3)、醋酸銦(In(CH3COO)3)、醋 酸鋁(ai(ch3coo)3)、碳酸鋁(ai2(co3)3)、草酸鋁 (Al2(C2〇4)3)、醋酸鎵(Ga(CH3COO)3)、硫酸銦(In2(S04)3)、 硫酸鋁(A12(S04)3)、硫酸鎵(Ga2(S04)3)、氣酸銦(In(C104)3)、 氯酸鎵(Ga(C104)3)、磷酸銦(ΙηΡ04)、磷酸鎵(GaP04)、硒酸 銦(In2(Se〇4)3)、砸酸鎵(Ga2(Se〇4)3)、墻化銦(InP)或填化鎵 (GaP)。 此處需注意的是,IB族與IIIA族化合物之選擇,並不 限於上述提及之化合物,只要含有IB族、IIIA族元素之化 201127483 合物皆可。 上述之溶劑除了溶劑水之外,尚可包括醇類、酮類、 醚類、胺類、酸類、驗類或上述之組合。上述醇類包括曱 醇、乙醇、丙醇、異丙醇、正丁醇、異戊醇或乙二醇;酮 類包括丙酮、丁酮、曱基異丁酮;醚類包括曱醚、乙醚、 甲乙醚、二苯醚、乙二醇曱醚、乙二醇丁醚或乙二醇乙醚 醋酸;胺類包括乙二胺、二甲基曱醯胺、三乙醇胺或二乙 醇胺。上述酸類包括硝酸、鹽酸、硫酸、醋酸或丙酮酸。 φ 上述鹼類包括氫氧化鈉(NaOH)、氩氧化钟(KOH)、氫氧化 鋰(LiOH)、尿素(CON2H4)、氨(NH3)、碳酸鈉(Na2C03)、碳 酸氫鈉(NaHC03)或上述之組合。 然而,溶劑之選擇並不限於上述提及之醇類、酮類、 醚類、胺類、酸類、鹼類溶劑,只要是能將上述化合物溶 解之單一或混合溶劑皆可。 上述IB族化合物與ΙΠΑ族化合物之莫耳數比為約 (0.7 〜1.4) : (0.7 〜1.4),較佳為約(0.7 〜1.3) : (0.7 〜1.3),最佳 •為約(0.8〜1.3) : (0.8〜1.3)。 此外,步驟(a)之溶劑中尚可添加IA族化合物或VIA 族化合物,其中添加ΙΑ族化合物可改善太陽電池之特性。 例如,可添加ΙΑ族化合物提高電池之光電轉化效率,其中 ΙΑ族包括鋰(Li),鈉(Na)、鉀(Κ)或上述之組合,而ΙΑ族 之化合物包括IA族之鹵化物、硝酸物、醋酸物、硫酸物、 碳酸物或氣酸物,例如氯化鋰(LiCl)、氣化鈉(NaCl)、氯化 鉀(KC1)、硝酸鋰(LiN03)、硝酸鈉(NaN03)、硝酸鉀(KN〇3)、 醋酸鋰(CH3COOLi)、醋酸鈉(CH3COONa)、醋酸鉀 201127483 (CH3COOK)、硫酸裡(Li2S〇4)、硫酸納(Na2S04)、硫酸針 (K2S04)、碳酸鋰(Li2C03 )、碳酸鈉(Na2C03)、碳酸钟 (K2C03)、氣酸鋰(LiC103)、氯酸鈉(NaC103)或氯酸鉀 (KC103)。 上述之VIA族包括硫(S)、硒(Se)、銻(Te)或上述之組 合,而VIA族化合物包括含有VIA族之氧化物、鹵化物、 鹵氧化物、硫化物、砸化物、胺化物、脲化物、砸酸物、 硫酸物或碲酸物,例如氧化硒(Se02)、氧化碲(Te02)、硫酸 (H2S〇4)、硒酸(H2Se04)、碲酸(H2Te04)、亞硫酸(h2S03)、 亞硒酸(H2Se03)、亞碲酸(H2Te03)、硫脲(thiourea, CS(NH2)2)、石西脲(selenourea,CSe(NH2)2)、二氯化石西 (SeCI〗)、四氯化石西(SeCl4)、二氣化蹄(TeCl〗)、四氯化蹄 (TeCl4)、二溴化砸(SeBr2)、四溴化砸(SeBr4)、二溴化碲 (TeBr2)、四溴化蹄(TeBr4)、氣氧化砸(SeOCl2)或硫化石西 (SeS2)。 上述IB族化合物、IIIA族化合物與IA族化合物莫耳 數比為約(0.7〜1.4) : (0.7〜1.4) : (0.005〜0.2),較佳為約 (0.7〜1.3) : (0.7〜1.3) : (0.006〜0.2),最佳為約(0.^.3): (0.8〜1.3) : (0.008〜0.2)。 接著,進行步驟(b)加入凝膠劑(gelation agent)於步驟(a) 之溶劑中以形成溶膠(sol),其中凝膠劑有兩種,第一種凝 膠劑包括螯合劑與聚合劑,其中螯合劑可與金屬陽離子產 生鍵結,形成錯合物,以增進金屬離子分佈之均勻性與反 應性,而聚合劑之作用在於可與螯合劑產生脫水聚合反 應,以增加反應之均勻性。 201127483 上述螯合劑包括酒石酸、草酸、丙酸、順丁烯二酸、 檸檬酸(citric acid)、五亞乙基六胺(pentaethylenehexamine, PEHA)、曱基丙烯酸縮水甘油g旨(glycidyl methacrylate, GMA)或乙二胺四乙酸(ethylenediaminetetraaccetic acid,EDTA),而聚合劑為含有兩個以上羥基之多元醇,如 乙二醇、丙二醇、丙三醇、丁二醇、丁三醇、丁四醇、戊 二醇、戊三醇、聚乙二醇、甘油等。 另一種凝膠劑為含有經基之高分子,其中含有經基之 φ 高分子包括聚乙烯醇(poly (vinyl alchol))、聚乙烯醇縮丁酸· (p〇ly(viny 1 butyral))或聚乙二醇,此類高分子同樣能提高金 屬離子分佈之均勻性。 接著,進行步驟⑷乾燥溶膠以得到凝膠(gei),其中乾 燥溫度為約70°C〜350°C,時間約為30分鐘〜8小時,此步 驟用以去除多餘的水分,以幫助形成凝膠。 之後,進行步驟(d)加熱凝膠以得到前驅物粉末,加熱 溫度為約約200°C〜8001,時間約為1小時〜5小時,此步 • 驟用以去除多餘水分與有機物。 之後,進行步驟(e)對前驅物粉末進行熱處理製程,以 導入VIA族元素於該前驅物粉末中,以得到IB4IIA-VIA 族化合物粉末。熱處理製程之目的在於改善粉末特性,使 粉末更具有均勻的表面型態(morphology)。上述之via族 與其化合物同前所述,在此不再贅述。 熱處理製程可分成兩種製程,第一種製程包括混合含 有VIA族粉末與前驅物粉末以得到混合粉末;以及將混合 粉末置於氣體氣氛中進行熱處理製程,其中VIA族之粉末 201127483 與前驅物粉末之莫耳數比為約(0.01〜20) : 1 ’較佳為約 (0.5〜10) : 1,更佳為約(1〜4) : 1。 上述之氣體氣氛包括含有VIA族元素之氣體,如硒化 氫(H2Se)、硫化氫(H2S)、砸(Se)蒸氣、硫(S)蒸氣、碲(Te) 蒸氣或上述之組合。此外,氣體氣氛尚包括其他氣體,如 氮氣(N2)、氫氣(H2)、氬氣(Ar)、一氧化碳(CO)、二氧化碳 (C02)、氨氣(NH3)、一氧化氣(NO)、氧氣(〇2)、空氣或上 述之組合。 第二種熱處理製程包括將前驅物粉末置於含有VIA氣 體氣氛中進行熱處理製程,此處之VIA族氣體氣氛同上所 述,在此不再贅述。不論是第一種或第二種熱處理製程, 其製程溫度為約300°C〜900°C,時間為約1小時〜24小時。 此處需注意的是,上述步驟(a)〜步驟(c)之製備過程, 可於一般室溫與大氣環境下進行,不需額外控制製程之氣 氛、溫度、濕度與壓力。 相較於習知之合金製備法,本發明利用溶膠凝膠法製 備IB-IIIA-VIA化合物粉末之優點在於金屬離子於溶液中 分佈較為均勻,製程溫度較低,且製備時間較短。相較於 先前技術(US 2005/0183767)使用有機金屬作為起始物,本 發明步驟(a)之IB族或IIIA族化合物不但無毒性,且化學 穩定性較高,且製備成本較低,更有利於產業上之應用。An organometallic liquid ink is applied to the substrate, followed by selenization to obtain a m_IIIA_VIA film. However, organometallics are highly toxic and unstable, so the preparation process should be used with care. If the sol-gel method can be incorporated into the method of preparing the IB-IIIA-VIA compound, it should contribute to the provision of minute and uniform powder particles. SUMMARY OF THE INVENTION The present invention provides a method for preparing a bismuth-quinone-VIA compound powder, comprising the steps of: dissolving a steroid and a steroid in a solution of W; (b) Geiati〇ri agent) in the solvent of step (8) to form a sol (sol); (c) drying the sol to obtain a gel; (d) heating the gel to obtain an element containing IB and IIIA elements a precursor powder; and (e) subjecting the precursor powder to a heat treatment process to introduce a VIA group of the precursor powder into the precursor powder to obtain a ΙΒ·ΠΙΑ_νΐΑ compound powder. The above and other objects, features, and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The method for preparing a -IIIA-VIA compound powder comprises the following steps: &amp; first step (&amp;) dissolving a steroid and a steroid in a solvent, wherein the lanthanum comprises copper (Cu), silver (Ag), gold (Au) ) 201127483 or a combination thereof, and the IB group compound includes an oxide, a nitride, a hydroxide, a sulphate, a sulphate, an acetate, a sulphate, a carbonate, a sulphuric acid, a sulphuric acid, a sulphate, Capric acid, oxalic acid, fillers, such as copper oxide (CuO), copper nitride (Cu(N3)2), copper hydroxide (Cu(OH)2), vaporized copper (CuCl2), silver nitrate (AgN03) , copper nitrate (Cu(N03)2), copper sulfate (CuS04), copper acetate (Cu(CH3COO)2), silver acetate (CH3COOAg), copper carbonate (Cu2C03), copper oxalate (CuC204), gas-acid steel (Cu (C104) 2), copper phosphate (Cu3 (P04) 2), copper lithate (CuSe04) or phosphatized steel (Cu3P). The above Group IIIA includes aluminum (A1), indium (In), gallium (Ga) or a combination thereof, and the Group IIIA compound includes an oxide, a nitride, a hydroxide, a hydroxide, a nitrate, and an acetic acid containing a lanthanum group. , sulphate, carbonate, chlorate, acid, citrate, oxalate or filler, such as indium oxide (ln203), oxidized (Ga203), 匕ϋ (ΙιιΝ), IU 匕 (GaN ), gas indium oxide (In(0H)3), gallium hydroxide (Ga(OH)3), aluminum chloride (A1C13), gasified la(InCl3), chlorinated (GaCl3), nitric acid (L1) (N03) 3), Shi Xiaoximan Steel (Ιη(Ν03)3), gallium nitrate (Ga(N03)3), indium acetate (In(CH3COO)3), aluminum acetate (ai(ch3coo)3), aluminum carbonate ( Ai2(co3)3), aluminum oxalate (Al2(C2〇4)3), gallium acetate (Ga(CH3COO)3), indium sulfate (In2(S04)3), aluminum sulfate (A12(S04)3), sulfuric acid Gallium (Ga2(S04)3), indium sulphate (In(C104)3), gallium chlorate (Ga(C104)3), indium phosphate (ΙηΡ04), gallium phosphate (GaP04), indium selenate (In2(Se) 〇 4) 3), gallium ruthenate (Ga 2 (Se 〇 4) 3), indium (InP) or filled with gallium (GaP). It should be noted here that the selection of the Group IB and Group IIIA compounds is not limited to the above-mentioned compounds, as long as they contain the Group IB and Group IIIA elements. The above solvent may include, in addition to the solvent water, an alcohol, a ketone, an ether, an amine, an acid, a test, or a combination thereof. The above alcohols include decyl alcohol, ethanol, propanol, isopropanol, n-butanol, isoamyl alcohol or ethylene glycol; ketones include acetone, methyl ethyl ketone, decyl isobutyl ketone; ethers include oxime ether, diethyl ether, Methyl ether, diphenyl ether, ethylene glycol oxime ether, ethylene glycol butyl ether or ethylene glycol ethyl ether; amines include ethylene diamine, dimethyl decylamine, triethanolamine or diethanolamine. The above acids include nitric acid, hydrochloric acid, sulfuric acid, acetic acid or pyruvic acid. φ The above bases include sodium hydroxide (NaOH), argon oxide clock (KOH), lithium hydroxide (LiOH), urea (CON2H4), ammonia (NH3), sodium carbonate (Na2C03), sodium hydrogencarbonate (NaHC03) or the above The combination. However, the choice of the solvent is not limited to the above-mentioned alcohols, ketones, ethers, amines, acids, base solvents, and may be any single or mixed solvent capable of dissolving the above compounds. The molar ratio of the above IB compound to the steroid is about (0.7 to 1.4): (0.7 to 1.4), preferably about (0.7 to 1.3): (0.7 to 1.3), and the optimum is about 0.8. ~1.3) : (0.8~1.3). Further, a IA group compound or a VIA group compound may be added to the solvent of the step (a), and the addition of the steroid compound may improve the characteristics of the solar cell. For example, a steroid can be added to increase the photoelectric conversion efficiency of the battery, wherein the lanthanum includes lithium (Li), sodium (Na), potassium (Κ) or a combination thereof, and the steroid compound includes a IA group halide, nitric acid. , acetic acid, sulfuric acid, carbonate or gaseous acid, such as lithium chloride (LiCl), sodium (NaCl), potassium chloride (KC1), lithium nitrate (LiN03), sodium nitrate (NaN03), nitric acid Potassium (KN〇3), lithium acetate (CH3COOLi), sodium acetate (CH3COONa), potassium acetate 201127483 (CH3COOK), sulfuric acid (Li2S〇4), sodium sulfate (Na2S04), sulfuric acid needle (K2S04), lithium carbonate (Li2C03 ), sodium carbonate (Na2C03), carbonic acid clock (K2C03), lithium silicate (LiC103), sodium chlorate (NaC103) or potassium chlorate (KC103). The above Group VIA includes sulfur (S), selenium (Se), tellurium (Te) or a combination thereof, and the Group VIA compound includes oxides, halides, oxyhalides, sulfides, tellurides, amines of Group VIA. a compound, a urea compound, a citrate, a sulphate or a citric acid, such as selenium oxide (Se02), cerium oxide (Te02), sulfuric acid (H2S〇4), selenate (H2Se04), citric acid (H2Te04), sulfurous acid (h2S03), selenite (H2Se03), telluric acid (H2Te03), thiourea (CS(NH2)2), selenourea (CSe(NH2)2), chlorinated stone (SeCI) ), Tetrachloride West (SeCl4), Digassed Hoof (TeCl), Tetrachloride (TeCl4), Bismuth dibromide (SeBr2), Neodymium tetrabromide (SeBr4), Bismuth dibromide (TeBr2) , TeBr4, TeOCl2 or SeS2. The Moir number ratio of the above Group IB compound, Group IIIA compound and Group IA compound is about (0.7 to 1.4): (0.7 to 1.4): (0.005 to 0.2), preferably about (0.7 to 1.3): (0.7 to 1.3) ) : (0.006~0.2), the best is about (0.^.3): (0.8~1.3) : (0.008~0.2). Next, step (b) is carried out by adding a gelation agent to the solvent of the step (a) to form a sol (sol), wherein the gelling agent has two kinds, and the first gelling agent comprises a chelating agent and a polymerization agent. The chelating agent can bond with the metal cation to form a complex to promote the uniformity and reactivity of the metal ion distribution, and the polymerization agent functions to generate a dehydration polymerization reaction with the chelating agent to increase the uniformity of the reaction. . 201127483 The above chelating agents include tartaric acid, oxalic acid, propionic acid, maleic acid, citric acid, pentaethylenehexamine (PEHA), glycidyl methacrylate (GMA). Or ethylenediaminetetraaccetic acid (EDTA), and the polymerization agent is a polyol containing two or more hydroxyl groups, such as ethylene glycol, propylene glycol, glycerol, butanediol, butyl alcohol, butyl alcohol, pentane Glycol, glycerol, polyethylene glycol, glycerin, and the like. Another gelling agent is a polymer containing a warp group, and the polymer containing a warp group includes poly (vinyl alchol) and polyvinylpyrrolidine (p〇ly (viny 1 butyral)). Or polyethylene glycol, such polymers can also improve the uniformity of metal ion distribution. Next, the step (4) is performed to dry the sol to obtain a gel (gei), wherein the drying temperature is about 70 ° C to 350 ° C, and the time is about 30 minutes to 8 hours. This step is used to remove excess water to help form a gel. gum. Thereafter, the step (d) is carried out to heat the gel to obtain a precursor powder having a heating temperature of about 200 ° C to 8001 for a period of about 1 hour to 5 hours. This step is for removing excess water and organic matter. Thereafter, the precursor powder is subjected to a heat treatment process in the step (e) to introduce a Group VIA element into the precursor powder to obtain a powder of the IB4IIA-VIA compound. The purpose of the heat treatment process is to improve the powder properties and to make the powder more uniform in its morphology. The above-mentioned via family and its compounds are as described above and will not be described again. The heat treatment process can be divided into two processes, the first process includes mixing the VIA powder and the precursor powder to obtain a mixed powder; and placing the mixed powder in a gas atmosphere for heat treatment, wherein the VIA powder 201127483 and the precursor powder The molar ratio is about (0.01 to 20): 1 ' is preferably about (0.5 to 10): 1, more preferably about (1 to 4): 1. The above gas atmosphere includes a gas containing a Group VIA element such as hydrogen selenide (H2Se), hydrogen sulfide (H2S), ruthenium (Se) vapor, sulfur (S) vapor, ruthenium (Te) vapor or a combination thereof. In addition, the gas atmosphere includes other gases such as nitrogen (N2), hydrogen (H2), argon (Ar), carbon monoxide (CO), carbon dioxide (C02), ammonia (NH3), monooxide (NO), oxygen. (〇2), air or a combination of the above. The second heat treatment process comprises subjecting the precursor powder to a heat treatment process in a gas atmosphere containing VIA, wherein the gas atmosphere of the Group VIA is the same as described above and will not be described herein. Regardless of the first or second heat treatment process, the process temperature is about 300 ° C to 900 ° C, and the time is about 1 hour to 24 hours. It should be noted here that the preparation process of the above steps (a) to (c) can be carried out under normal room temperature and atmospheric environment without additional control of the atmosphere, temperature, humidity and pressure of the process. Compared with the conventional alloy preparation method, the invention has the advantages of preparing the IB-IIIA-VIA compound powder by the sol-gel method, that the metal ions are uniformly distributed in the solution, the process temperature is low, and the preparation time is short. Compared with the prior art (US 2005/0183767), using organometallic as a starting material, the Group IB or IIIA compound of the step (a) of the present invention is not only non-toxic, but also has high chemical stability, and the preparation cost is low, and Conducive to industrial applications.

本發明製得之IB-IIIA-VIA化合物粉末,由X光繞射 圖谱分析證實產物為黃銅礦(chalcopyrite)之晶體結構。另 外’由掃描式電子顯微鏡(SEM)分析得知,其顆粒大小為 約〇·〇1〜3 μιη’較佳為約〇.〇1〜〇.1 μιη,且所得之ib-IIIA-VIA 201127483 化合物粉末為球狀結構,其具有多維(multiPle-dimension) 表面型態,於後續塗佈製程時,具有多維的表面型態之黄 銅礦粉末可得到較為均勻的塗佈表面。 綜上所述,本發明利用溶膠凝膠法製備1Β·ΠΙΑ-νΐΑ 化合物粉末,藉由凝膠劑’使金屬離子均勻的分佈於溶膠 溶液中,經過乾燥形成凝膠後’再配合後續的熱處理製程 以得到顆粒小且均勻的粉末。 由上述製法製得之1B-IIIA-VIA化合物粉末’其可作 • 為真空製程之靶材(target),其中真空製程包括蒸鍍或濺鍍。 此外,上述ΙΒ-ΙΠΑ-VIA化合物粉末製成裝料(slurry) 混合後,可作為塗佈製程之原料,其中塗佈製程包括旋轉 塗佈(spin coating)、棒狀塗佈(bar coating)、浸潰塗佈(dip coating)、滾筒塗佈(roll coating)、喷霧塗佈(spray coating)、 凹版式塗佈(gravure coating)、喷墨印刷(ink jet printing)、 狹縫塗佈(slot coating)或刮刀塗佈(blade c〇ating)。再者, IB_IIIA_VIA化合物粉末亦可作為太陽能電池(Solar Cell)之 ® 吸光材料。 【實施例】 實施例1 水溶液, 合劑。 依CUInSe2化學成分比例, ’先加入檸檬酸當作螯合劑 ’配出CuCl2和InCl3之混合 合劑,再加入乙二醇當作聚 ,進行乾燥得到凝膠狀產物, 將此水溶液攪拌均勻後, 201127483 將此凝膠狀產物在400oC的爐中加熱三小時排除有機物以 獲得前驅物,將前驅物與過量的硒粉進行球磨混合,使&amp; 與(CU++In3+)之莫耳數比為L1:1,然後在氮氫還原氣氛下 500°c加熱一小時,即可獲得所需的CuInSe2粉體。 第1圖為粉體之X-ray繞射分析圖譜,圖中顯示此粉 體具有(112)、(204)/(220)與(312)/(116)三支主要繞射峰,^ 中(204)與(220)為同位置之繞射峰,(312)與(116)亦為同^立 置之繞射峰’符合ICDD卡編號895646圖譜,此粉體為黃 銅礦結構。 、 實施例2 依CuIn0 5Ga0.5Se2化學成分比例,配出CuCl2、InCl3、 Ga(N03)3與Se02i水溶液,並加人5莫耳%的NaC1於水 溶液中,先加入草酸當作螯合劑再加入甘油當作聚合劑。 將此水溶液攪拌均勻後,進行乾燥得到凝膠狀產物,將此 凝膠狀產物在500°C的爐中加熱三小時排除有機物以獲得 則驅物’然後將前驅物在氮氫還原氣氛下55〇〇c加熱三十 分鐘,即可獲得所需的CuIn〇 5G() 5Se2粉體。 此粉體經X-ray繞射圖譜分析後具有(112)、(204)/(220) 與(312)/(116)三支主要繞射峰,符合ICDE)卡編號4〇1488 圖譜’此粉體為黃銅礦結構。 實施例3 依CuIn0.7Ga0.3Se2化學成分比例,配出CuCl2、InCl3 201127483 與Ga(N〇3)3之水溶液’再加入乙二胺四乙酸 (ethylenediamineteraacetic acid,EDTA)當作螯合劑,再加入 丙二醇當作聚合劑。 將此水溶液授拌均勻後’進行乾燥得到凝膠狀產物, 將乾燥後的凝膠狀產物在550〇c的爐中加熱一小時排除有 機物以獲付别驅物,再將前驅物和過量的栖粉進行球磨混 合,使Se與(Cu++In3++Ga3+)之莫耳數比為1.5:1,然後在含 碼氣的氮風還原氣氛下550°C加熱30分鐘,即可獲得所需 % 的 CuIn〇.7Ga〇_3Se2 粉體。 此粉體經X-ray繞射圖譜分析後具有(112)、(2〇4)/(220) 與(312)/(116)三支主要繞射峰,其中(2〇4)與(22〇)為同位置 之繞射峰,(312)與(116)亦為同位置之繞射峰,符合ICDD 卡編號351102圖譜,此粉體為黃銅礦結構。 實施例4 鲁 依Cui jAlSe2化學成分比例’配出CuCl2與Α1(Ν〇3)3 之水溶液,並加入10莫耳%的NaC1於水溶液中,再加入 聚乙烯醇(polyvinyl Alcoho卜pvA)當作凝膠劑,將此水溶 液攪拌均勻後,進行乾燥得到凝膠狀產物,將乾燥後的凝 膠狀產物在350°C的爐中加熱三小時排除有機物以獲得前 驅物’再將前驅物和過量的硒粉及硫粉進行球磨混合,使 (Se+S)與(Cu++In3++Ga3+)之莫耳數比為2:1,然後在氮氫還 原氣氛下450°c加熱一小時,即可獲得所需的CuAl(Se,S)2 粉體。 201127483 此粉體經X-ray繞射圖譜分析後具有(112)、(204)與 (312)二支主要繞射峰’符合ICDd卡編號75〇1〇1圖譜,此 粉體為黃銅礦結構。 實施例5 依Cu0.8GaSe2化學成分比例,配出CuCl2、Ga(N03)3 ^、HJeO3之/tCi合水溶液’先加入酒石酸當作螯合劑再加入 丁二醇當作聚合劑。 將此水溶液攪拌均勻後,進行乾燥得到凝膠狀產物, 將„狀產物在Wc的爐中加熱一小時排除有機物以 獲得則驅物’然後將前驅物在氮氫還原氣氛下5〇〇〇C加熱 一小時,即可獲得所需的cuGaSe2粉體。 Μ 此粉體經X_ray繞射圖譜分析後具有(112)、(220)、(204) 與(312)、(116)五支主要繞射峰,符合ICDD卡編號81〇9〇3 圖譜,此粉體為黃鋼礦結構。 實施例6 依AglnuSes化學成分比例,配出AgN03和In(N〇3)3 之水/谷液’加入聚乙二醇(p〇lyethyiene giyC〇i, peg)當作凝 膠劑’將此水溶液攪拌均勻後,進行乾燥得到凝膠狀產物, 將此凝膠狀產物在4〇〇°c的爐中加熱三小時排除有機物以 獲得前驅物’將此前驅物和過量的硒粉進行球磨混合,使 Se與(Ag++In3+)之莫爾數比為3:1,然後在含硒氣的氮氫還 原氣氛下550°C加熱十八小時,即可獲得所需的Aginise2 201127483 粉體。 此粉體經X-ray繞射圖譜分析後可發現有(112)、(204) 與(312)三支主要繞射峰,符合ICDD卡編號7501 18圖譜, 此粉體為黃銅鑛結構。 雖然本發明已以數個較佳實施例揭露如上,然其並非 用以限定本發明,任何所屬技術領域中具有通常知識者, 在不脫離本發明之精神和範圍内,當可作任意之更動與潤 φ 飾,因此本發明之保護範圍當視後附之申請專利範圍所界 定者為準。The powder of the IB-IIIA-VIA compound obtained by the present invention was confirmed by X-ray diffraction pattern analysis to be a crystal structure of chalcopyrite. In addition, it is known by scanning electron microscopy (SEM) that the particle size is about 〇·〇1~3 μιη′, preferably about 〇.〇1~〇.1 μιη, and the obtained ib-IIIA-VIA 201127483 The compound powder has a spherical structure and has a multi-ply-dimension surface type, and a chalcopyrite powder having a multi-dimensional surface state can obtain a relatively uniform coated surface in a subsequent coating process. In summary, the present invention utilizes a sol-gel method to prepare a powder of a compound of Β·ΠΙΑ-νΐΑ, which is uniformly distributed in a sol solution by a gelling agent, and is dried to form a gel, and then combined with subsequent heat treatment. The process is to obtain a small and uniform powder. The powder of 1B-IIIA-VIA compound produced by the above process can be used as a target for a vacuum process, wherein the vacuum process includes evaporation or sputtering. In addition, after the above-mentioned ΙΒ-ΙΠΑ-VIA compound powder is mixed into a slurry, it can be used as a raw material of a coating process, wherein the coating process includes spin coating, bar coating, Dip coating, roll coating, spray coating, gravure coating, ink jet printing, slit coating (slot) Coating) or blade coating. Furthermore, the IB_IIIA_VIA compound powder can also be used as a solar cell (Solar Cell) ® light absorbing material. [Examples] Example 1 Aqueous solution, mixture. According to the chemical composition ratio of CUInSe2, 'first add citric acid as a chelating agent' to prepare a mixed mixture of CuCl2 and InCl3, and then add ethylene glycol as a poly-polymer, and dry to obtain a gelatinous product, and the aqueous solution is stirred evenly, 201127483 The gelatinous product was heated in a 400 ° C oven for three hours to remove organic matter to obtain a precursor, and the precursor was ball-milled with an excess of selenium powder so that the ratio of &amp; to (CU++In3+) was L1. :1, and then heated at 500 ° C for one hour under a nitrogen-hydrogen reducing atmosphere to obtain a desired CuInSe 2 powder. The first picture is the X-ray diffraction analysis of the powder. The figure shows that the powder has three main diffraction peaks (112), (204)/(220) and (312)/(116), ^ (204) and (220) are the diffraction peaks at the same position, and (312) and (116) are also the same diffraction peaks as the ICDD card number 895646, which is a chalcopyrite structure. Example 2 According to the chemical composition ratio of CuIn0 5Ga0.5Se2, an aqueous solution of CuCl2, InCl3, Ga(N03)3 and Se02i was added, and 5 mol% of NaC1 was added to the aqueous solution, and oxalic acid was first added as a chelating agent and then added. Glycerin is used as a polymerization agent. After the aqueous solution was stirred uniformly, it was dried to obtain a gel-like product, and the gelled product was heated in an oven at 500 ° C for three hours to remove the organic matter to obtain a precursor, and then the precursor was subjected to a nitrogen-hydrogen reducing atmosphere. The heat of 〇〇c is heated for thirty minutes to obtain the desired CuIn〇5G() 5Se2 powder. The powder has three major diffraction peaks (112), (204)/(220) and (312)/(116) after X-ray diffraction pattern analysis, which conforms to ICDE) card number 4〇1488 map 'this The powder is a chalcopyrite structure. Example 3 According to the chemical composition ratio of CuIn0.7Ga0.3Se2, an aqueous solution of CuCl2, InCl3 201127483 and Ga(N〇3)3 was added, and ethylenediamineteraacetic acid (EDTA) was added as a chelating agent, and then added. Propylene glycol is used as a polymerization agent. After the aqueous solution is uniformly mixed, it is dried to obtain a gelatinous product, and the dried gelatinous product is heated in a 550 〇c oven for one hour to remove the organic matter to obtain the other precursor, and then the precursor and the excess are added. The tortoise powder is ball-milled and mixed so that the molar ratio of Se to (Cu++In3++Ga3+) is 1.5:1, and then heated at 550 ° C for 30 minutes under a nitrogen-containing reducing atmosphere containing a code gas. %% of CuIn〇.7Ga〇_3Se2 powder is required. The powder has three main diffraction peaks (112), (2〇4)/(220) and (312)/(116) after X-ray diffraction pattern analysis, among which (2〇4) and (22) 〇) is the diffraction peak of the same position, and (312) and (116) are also the diffraction peaks at the same position, which conforms to the ICDD card number 351102 map, and the powder is a chalcopyrite structure. Example 4 Proton Cui jAlSe2 chemical composition ratio 'Equipped with an aqueous solution of CuCl2 and Α1(Ν〇3)3, and added 10 mol% of NaC1 in an aqueous solution, and then added polyvinyl alcohol (polyvinyl Alcoho pvA) as The gelling agent is stirred uniformly to obtain a gelatinous product, and the dried gelatinous product is heated in an oven at 350 ° C for three hours to remove the organic matter to obtain a precursor, and then the precursor and excess The selenium powder and the sulfur powder are ball-milled and mixed so that the molar ratio of (Se+S) to (Cu++In3++Ga3+) is 2:1, and then heated at 450 ° C for one hour under a nitrogen-hydrogen reducing atmosphere. The desired CuAl(Se,S)2 powder can be obtained. 201127483 This powder has two main diffraction peaks (112), (204) and (312) after X-ray diffraction pattern analysis. It conforms to the ICDd card number 75〇1〇1 map. This powder is chalcopyrite. structure. Example 5 According to the ratio of the chemical composition of Cu0.8GaSe2, a solution of CuCl2, Ga(N03)3^, and HJeO3/tCi was added, and tartaric acid was first added as a chelating agent and then butanediol was added as a polymerization agent. After the aqueous solution was stirred uniformly, it was dried to obtain a gel-like product, and the product was heated in a Wc furnace for one hour to remove the organic matter to obtain a precursor, and then the precursor was subjected to a nitrogen-hydrogen reducing atmosphere at 5 〇〇〇C. After heating for one hour, the desired cuGaSe2 powder can be obtained. Μ This powder has five major diffractions of (112), (220), (204) and (312), (116) after X-ray diffraction pattern analysis. The peak is in accordance with the ICDD card number 81〇9〇3 map, and the powder is a yellow steel ore structure. Example 6 According to the chemical composition ratio of AglnuSes, the water/gluten solution of AgN03 and In(N〇3)3 is added to the aggregate. Ethylene glycol (p〇lyethyiene giyC〇i, peg) is used as a gelling agent. After the aqueous solution is stirred uniformly, it is dried to obtain a gelatinous product, which is heated in a furnace at 4 ° C. The organic matter was removed for three hours to obtain the precursor. The ballast and the excess selenium powder were ball-milled to make the Mohr number ratio of Se to (Ag++In3+) 3:1, and then the hydrogen reduction of the selenium-containing gas. Heat at 550 ° C for 18 hours to obtain the desired Aginise 2 201127483 powder. This powder is X-ray After the spectroscopic analysis, there are three main diffraction peaks (112), (204) and (312), which are in accordance with the ICDD card number 7501 18, which is a chalcopyrite structure. Although the present invention has several comparisons The preferred embodiments are disclosed above, but are not intended to limit the invention, and any one of ordinary skill in the art can make any changes and modifications without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

15 201127483 【圖式簡單說明】 第1圖為一 X-ray繞射圖’用以說明本發明之黄銅石廣 粉末之結構。 【主要元件符號說明】15 201127483 [Simple description of the drawing] Fig. 1 is an X-ray diffraction pattern' for explaining the structure of the brass stone powder of the present invention. [Main component symbol description]

1616

Claims (1)

201127483 七、申請專利範圍: 1. 一種以溶膠-凝膠法製備IB-IIIA-VIA化合物粉末之 方法,包括以下步驟: (a) 將IB族化合物與IIIA族化合物溶於一溶劑中; (b) 加入一凝膠劑(gelation agent)於步驟(a)之溶劑中以 形成溶膠(sol); (c) 乾燥該溶膠以得到一凝膠(gel); (d) 加熱該凝膠以得到一含有IB與ΠΙΑ族元素之前驅 φ 物粉末;以及 (e) 對該前驅物粉末進行熱處理製程,以導入一 VIA族 元素於該前驅物粉末中,以得到IB-IIIA-VIA化合物粉末。 2. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中IB族化合物與IIIA 族化合物之莫耳數比為約(0.7〜1.4) : (0.7〜1.4)。 3. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中該溶劑包括水、醇 φ 類、酮類、醚類、胺類、酸類、鹼類或上述之組合。 4. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB_IIIA-VIA化合物粉末之方法,其中步驟(a)中尚包括混合 IA族化合物或VIA族化合物於該溶劑中。 5. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中該凝膠劑包括一螯合 劑與一聚合劑。 6. 如申請專利範圍第5項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中該螯合劑包括酒石 17 201127483 酸、草酸、丙酸、順丁烯二酸、檸檬酸(citric acid)、五亞 乙基六胺(pentaethylenehexamine,PEHA)、曱基丙稀酸縮水 甘油酯(glycidyl methacrylate, GMA)或乙二胺四乙酸 (ethylenediaminetetraaccetic acid,EDTA)。 7. 如申請專利範圍第5項所述之以溶膠-凝膠法製備 IB-ΠΙΑ-VIA化合物粉末之方法,其中該聚合劑包括含有兩 個以上羥基之多元醇。 8. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中該凝膠劑包括含有羥 基之高分子。 9. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中該熱處理製程包括以 下步驟: 混合一含有VIA族粉末與該前驅物粉末以得到混合粉 末;以及 將該混合粉末置於一氣體氣氛中進行熱處理製程。 10. 如申請專利範圍第1項所述之以溶膠-凝膠法製備 IB-IIIA-VIA化合物粉末之方法,其中該熱處理製程包括以 下步驟:將該前驅物粉末置於一含有VIA族氣體氣氛中進 行熱處理製程。201127483 VII. Patent application scope: 1. A method for preparing IB-IIIA-VIA compound powder by sol-gel method, comprising the following steps: (a) dissolving a group IB compound and a group IIIA compound in a solvent; Adding a gelation agent to the solvent of step (a) to form a sol; (c) drying the sol to obtain a gel; (d) heating the gel to obtain a gel a precursor powder containing IB and a lanthanum element; and (e) a heat treatment process for the precursor powder to introduce a Group VIA element into the precursor powder to obtain a powder of the IB-IIIA-VIA compound. 2. The method for preparing a powder of IB-IIIA-VIA compound by a sol-gel method as described in claim 1, wherein the molar ratio of the group IB compound to the group IIIA compound is about (0.7 to 1.4): (0.7~1.4). 3. A method for preparing a powder of IB-IIIA-VIA compound by a sol-gel method as described in claim 1, wherein the solvent comprises water, an alcohol φ, a ketone, an ether, an amine, an acid, A base or a combination of the above. 4. A method of preparing a powder of IB_IIIA-VIA compound by a sol-gel method as described in claim 1, wherein step (a) further comprises mixing a compound of Group IA or a compound of Group VIA in the solvent. 5. A method of preparing a powder of IB-IIIA-VIA compound by a sol-gel method as described in claim 1, wherein the gelling agent comprises a chelating agent and a polymerization agent. 6. A method for preparing a powder of IB-IIIA-VIA compound by a sol-gel method as described in claim 5, wherein the chelating agent comprises tartar 17 201127483 acid, oxalic acid, propionic acid, maleic acid , citric acid, pentaethylene hexamine (PEHA), glycidyl methacrylate (GMA) or ethylenediaminetetraaccetic acid (EDTA). 7. A method of preparing a powder of IB-ΠΙΑ-VIA compound by a sol-gel method as described in claim 5, wherein the polymerization agent comprises a polyol having two or more hydroxyl groups. 8. A method of preparing a powder of IB-IIIA-VIA compound by a sol-gel method as described in claim 1, wherein the gelling agent comprises a polymer containing a hydroxyl group. 9. The method of preparing a powder of IB-IIIA-VIA compound by a sol-gel method according to claim 1, wherein the heat treatment process comprises the steps of: mixing a powder containing a group VIA with the powder of the precursor to obtain Mixing the powder; and subjecting the mixed powder to a gas atmosphere for heat treatment. 10. The method for preparing a powder of IB-IIIA-VIA compound by a sol-gel method as described in claim 1, wherein the heat treatment process comprises the step of: placing the precursor powder in a gas containing a VIA gas atmosphere The heat treatment process is carried out.
TW99103461A 2010-02-05 2010-02-05 Fabrication method for ib-iiia-via powder by the sol-gel method TWI425978B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99103461A TWI425978B (en) 2010-02-05 2010-02-05 Fabrication method for ib-iiia-via powder by the sol-gel method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99103461A TWI425978B (en) 2010-02-05 2010-02-05 Fabrication method for ib-iiia-via powder by the sol-gel method

Publications (2)

Publication Number Publication Date
TW201127483A true TW201127483A (en) 2011-08-16
TWI425978B TWI425978B (en) 2014-02-11

Family

ID=45024832

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99103461A TWI425978B (en) 2010-02-05 2010-02-05 Fabrication method for ib-iiia-via powder by the sol-gel method

Country Status (1)

Country Link
TW (1) TWI425978B (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
JP4177480B2 (en) * 1998-05-15 2008-11-05 インターナショナル ソーラー エレクトリック テクノロジー,インコーポレイテッド Compound semiconductor film and related electronic device manufacturing method
US6127202A (en) * 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
TW200832727A (en) * 2007-01-17 2008-08-01 Solar Applied Mat Tech Corp Target and thin film fabricated by the target
CN101245443B (en) * 2007-02-17 2011-05-25 光洋应用材料科技股份有限公司 Target material and thin membrane manufactured with the target material
CN101468398A (en) * 2007-12-28 2009-07-01 财团法人工业技术研究院 Method for producing nano-scale yellow copper structure powder and polymer thin-film solar cell

Also Published As

Publication number Publication date
TWI425978B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
Su et al. Fabrication of Cu 2 ZnSnS 4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route
CN110265708B (en) Solid-phase synthesis method for synthesizing garnet-structured lithium lanthanum zirconium oxygen-based solid electrolyte material under synergistic action of quaternary ammonium hydroxide
Egorova et al. Liquid-phase synthesis and physicochemical properties of xerogels, nanopowders and thin films of the CeO 2–Y 2 O 3 system
TW201100330A (en) Fabrication method for chalcopyrite powder
US11087976B2 (en) Kesterite material of CZTS, CZTSe or CZTSSe type
JP6330051B2 (en) Method for doping Cu (In, Ga) (S, Se) 2 nanoparticles with sodium or antimony
CN106803601B (en) preparation method of solid electrolyte lithium lanthanum titanium oxide film
CN109746019B (en) Preparation method and application of gallium indium zinc ternary oxynitride
TWI495114B (en) Fabrication method for light absorbing layers precursor solution
Noguera-Gomez et al. Low-demanding in situ crystallization method for tunable and stable perovskite nanoparticle thin films
CN113415823A (en) Preparation method of zinc titanate for thermal control coating of spacecraft
CN111646493A (en) Hydrothermal preparation method of yttrium oxide nano powder
TW201127483A (en) Fabrication method for IB-IIIA-VIA powder by the sol-gel method
JP2003252626A (en) Titanium dioxide precursor, manufacturing method of the same and titanium dioxide and its manufacturing method using the same
CN108439462B (en) Preparation method of pyrochlore type rare earth titanate powder
CN110144215A (en) A kind of nanocrystal surface orientation passivating method and product based on atomic layer deposition
CN1621490A (en) Process for preparing rare-earth red luminescent materials
WO2012168790A1 (en) Semiconductor particle and method of manufacture thereof
Liang et al. Cu 2 ZnSnS 4 Nanoparticles Synthesized by a Novel Diethylenetriamine-Assisted Hydrothermal Method
WO2013180137A1 (en) Production method for compound semiconductor thin film, and solar cell provided with said compound semiconductor thin film
CN110330968B (en) Up-conversion luminescent material and preparation method and application thereof
KR20150088409A (en) Method of forming a gdc/lscf composite powder
JP2013189328A (en) Method for producing czts particle
CN109485090B (en) Chromium-doped barium stannate nano powder with adjustable forbidden bandwidth and preparation method thereof
JP2010067727A (en) Nano-ink precursor, nano-ink and film formed using nano-ink

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees