TW200832727A - Target and thin film fabricated by the target - Google Patents

Target and thin film fabricated by the target Download PDF

Info

Publication number
TW200832727A
TW200832727A TW96101775A TW96101775A TW200832727A TW 200832727 A TW200832727 A TW 200832727A TW 96101775 A TW96101775 A TW 96101775A TW 96101775 A TW96101775 A TW 96101775A TW 200832727 A TW200832727 A TW 200832727A
Authority
TW
Taiwan
Prior art keywords
target
atomic percentage
content
iiia
powder
Prior art date
Application number
TW96101775A
Other languages
Chinese (zh)
Inventor
Jong-Ren Lee
Chin-Hsiao Chao
qing-zhong Mao
Original Assignee
Solar Applied Mat Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Applied Mat Tech Corp filed Critical Solar Applied Mat Tech Corp
Priority to TW96101775A priority Critical patent/TW200832727A/en
Publication of TW200832727A publication Critical patent/TW200832727A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The present invention mainly relates to a target represented by (IB)x-(IIIA)y-(VIA)z, where IB is selected from at least one of Cu and Ag, (IIIA) is selected from at least one of In and Ga, VIA is selected from at least one of S, Se, and Te, x represents the atomic percentage of the IB contained, y represents the atomic percentage of the IIIA contained, z represents the atomic percentage of the VIA contained, 0 ≤ x < 1, 0 ≤ y < 1, and 0 ≤ z < 1. The fabrication method of the target comprises the following steps: pre-alloy forming, where a target element and at least one other element of the target elements are synthesized to be pre-alloys; powder producing, where the pre-alloys are grinding into powders; powder mixing, where the powders are mixed together directly or mixed with another element or pre-alloy powder; and sintering, where the mixed powder is sintered into the target. The present invention also includes a thin film used in a solar cell and the thin film is fabricated by sputtering the target.

Description

200832727 九、發明說明: 【發明所屬之技術領域】 本發明主要係有關於一種靶 !扣符,尤指一種具有IB_ IIIA-VIA元i組成之革巴材,盆可 /、Γ應用於濺鍍製造太陽能電 池的薄膜。 【先前技術】200832727 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates mainly to a target! buckle, especially a leather material having the composition of IB_IIIA-VIA element i, which can be used for sputtering A film for manufacturing a solar cell. [Prior Art]

在石化燃料逐漸缺乏之時抑 I κ吋代,加上全球氣候變遷以及 空氣污染等問題日益嚴重,替代性能源之應用愈來愈受到 人們重視,而其中,太陽能電池(solar ceIl)因具有可提供 低廉且源源不絕電力之潛力而受到注目。於現今之產品 中,太陽能電池粗略可分為: (1) 晶片型(wafer type)太陽能電池:包含單晶 crystal)矽及多晶(p〇lycrystalline)矽,·以及 (2) 薄膜型(thin film type)太陽能電池。 雖然石夕晶片型為目前市場主流,但因其為間接能隙 (indirect energy gap),故需要較厚之矽材料做為吸收層 (absorber);而薄膜型中具有IB七IA_VIA元素組成㈠γ CuInGaSe2, CIGS)之材料係為直接能隙(direct energy 訌p), 且光之吸收效率很高,加上可藉由In/Ga成份的比例來調 整能隙的大小,因此僅需很薄一層材料即可產生高光電轉 換效率,故可大幅節省材料,降低太陽能電池製作成本。 因此具有IB-IIIA-VIA元素組成之太陽能電池為未來前展 性極佳之產品。 CIGS薄膜之製作方式有化學氣相沉積法(CVD, 5 200832727 chemlcal vapor deposition,如美國專利第 5474939 號專利 所揭示)、物理氣相沉積法(PVD,physical vap〇r dep〇siti〇n, .如美國專利第5141564號專利所揭示)及液相沉積法(LpE、 liquid phase deposition)等;其中屬於物理氣相沉積法之濺 鍍法(sputter)係為可提供製程低廉且薄膜特性佳之方法, 但目前並無具有完整元素組成之CIGS濺鍍靶材Garget, 因此CIGS薄膜並無法直接以濺鍍法製造。 # 目前CIGS薄膜的製造方法m於基板上沉積先驅物 (precursor),再經由硒化(selenizati〇n)製程之熱化學反應形 成CIGS薄膜(如日本第10·ι35495號專利所揭示),然此製 程相當繁瑣。 此外,於曰本第2000-73 1 63號專利中,荻原淳一郎等 人利用鑄造(casting)方法來製作Cu_Ga(銅_鎵)合金靶材, 藉由控制降溫速率使得具脆性(brittle)之合金於冷 卻過程中不會裂開;另於中國第1719626號專利中,莊大 φ明等人亦使用鑄造方式來製作Cu_Ga合金靶材。雖然鑄造 可獲得高密度及低氧含量之靶#,但此銅冑二元合金應用 於製作太陽能電池之吸收層時,需使用較煩雜之共濺鍍 (Co sputtering)或多道錢鑛(munSpUtteHng)程序,甚或還 需加上硒化(selenization)方法,如此方可製作出cigs系 列之合金溥膜,因此製程上亦相當複雜;另熔煉㈤⑷ Cu-Ga二元合金時,因Ga之蒸汽壓很高,使得鑄件(i叫州 之成份不易控制;再者,鑄造會衍生縮孔(shrinkage)及成 份偏析(segregation)等問題。 6 200832727 综上所述,如何製作具有线元素成份(ΐΒ·ιιΐΑ_νΐΑ ::係為使用濺鍍製程製造㈣太陽能電池之關鍵瓶頸, 供—含完整成份&lt; ciGS㈣,則可大幅降低製程 设雜度,亦可降低太陽能電池的製造成本。 【發明内容】In the gradual lack of fossil fuels, I κ generations, coupled with global climate change and air pollution, the use of alternative energy sources has become more and more important, among which solar cells (solar ceIl) have It is attracting attention by providing the potential for low-cost and endless power. In today's products, solar cells can be roughly divided into: (1) wafer type solar cells: including single crystal crystals and polycrystalline (p〇ly crystalline), and (2) thin film type (thin) Film type) solar cell. Although the Shixi wafer type is the mainstream in the current market, because it is an indirect energy gap, a thicker tantalum material is required as an absorber, and a thin film type has an IB seven IA_VIA element composition (a) γ CuInGaSe2 , CIGS) is a direct energy 讧p, and the light absorption efficiency is very high, and the size of the energy gap can be adjusted by the ratio of In/Ga components, so only a thin layer of material is needed. High photoelectric conversion efficiency can be produced, which can greatly save materials and reduce the cost of solar cell fabrication. Therefore, solar cells with the composition of IB-IIIA-VIA elements are excellent products for future development. CIGS films are produced by chemical vapor deposition (CVD, 5, 200832727, chemlcal vapor deposition, as disclosed in U.S. Patent No. 5,474,939), physical vapor deposition (PVD, physical vap〇r dep〇siti〇n, . As disclosed in U.S. Patent No. 5,141,564, and liquid phase deposition (LpE, liquid phase deposition), etc., the sputtering method belonging to the physical vapor deposition method is a method for providing a low process and good film properties. However, there is currently no CIGS sputtering target with complete elements, so the CIGS film cannot be directly fabricated by sputtering. # The current CIGS film manufacturing method m deposits a precursor on the substrate, and then forms a CIGS film by a thermochemical reaction of a selenization process (as disclosed in Japanese Patent No. 10 ι 35495). The process is quite cumbersome. In addition, in Japanese Patent No. 2000-73 1 63, Sugawara Ichiro et al. used a casting method to fabricate a Cu_Ga (copper-gallium) alloy target to control a brittle alloy by controlling the rate of temperature drop. In the process of cooling, it will not crack; in addition, in China Patent No. 1719626, Zhuang Da φ Ming et al. also used the casting method to make Cu_Ga alloy target. Although it is possible to obtain a high-density and low-oxygen target for casting, this copper-bismuth binary alloy is used for making an absorption layer of a solar cell, and it is necessary to use a more complicated co-sputter (Co sputtering) or a multi-channel mine (munSpUtteHng). The procedure, or even the selenization method, is required to produce the ciger film of the cigs series, so the process is also quite complicated; when smelting (5) (4) Cu-Ga binary alloy, due to the vapor pressure of Ga Very high, making castings (i is called the state of the composition is not easy to control; in addition, casting will be derived from shrinkage and composition segregation) 6 200832727 In summary, how to make a component with line elements (ΐΒ· ιιΐΑ_νΐΑ :: is a key bottleneck for the manufacture of (4) solar cells using a sputtering process. The supply of complete components &lt; ciGS (4) can greatly reduce the process complexity and reduce the manufacturing cost of solar cells.

有鑑於現有CIGS薄膜的製程相當繁瑣,本發明之目 的在於提供一種靶材,其可應用於製造具有 元素組成之薄膜。 本發明之另一目的在提供一種以該靶材所製作之薄 膜,其可應用於太陽能電池上,而可以較低廉的製造成本 製造太陽能電池。 為達成前述之目的,本發明之第一種靶材的元素組成 為 IBx-IliAy-VIAz ;其中, 係至少選自於一種以下之群纽:Cu及Ag ; ΠΙΑ係至少選自於一種以下之群組:in及Ga ; VIA係至少選自於一種以下之群組:s、Se及丁e ; x為IB含量的原子百分比、y為ΙΠΑ含量的原子百分 比、ζ為VIA含量的原子百分比,且滿足〇$χ&lt;1、〇&lt;y&lt;i、 0&lt;Z&lt;1 5 x+y+z=l ° 本發明之第二種靶材,其元素組成為IBx-IIIAy-VIAz ; 其中, IB係至少選自於一種以下之群組:Cu及Ag ; ΙΠΑ係至少選自於一種以下之群組:In及Ga ; VIA係至少選自於一種以下之群組:S、Se及Te ; 7 200832727 y為πια含量的原子百分 ’且滿足0&lt;X&lt;1、〇£y&lt;l、 x為ΙΒ含量的原子百分比、 比、z為VIA含量的原子百分比 0&lt;Z&lt;1,X + y +則。 本發明之靶材的製法係包含以下步驟: 一種以 形成預合金:將-靶材元素與靶材元素組成中 上的其他7G素合成預合金,· 造粉··將預合金製成粉末;In view of the cumbersome process of the conventional CIGS film, it is an object of the present invention to provide a target which can be applied to the production of a film having an elemental composition. Another object of the present invention is to provide a film made of the target which can be applied to a solar cell and which can be manufactured at a relatively low manufacturing cost. To achieve the foregoing objective, the first target of the present invention has an elemental composition of IBx-IliAy-VIAz; wherein, the at least one selected from the group consisting of Cu and Ag; the lanthanide is at least selected from the group consisting of Group: in and Ga; VIA is selected from at least one of the following groups: s, Se, and butyl e; x is the atomic percentage of the IB content, y is the atomic percentage of the cerium content, and ytterbium is the atomic percentage of the VIA content. And satisfying 〇$χ&lt;1, 〇&lt;y&lt;i, 0&lt;Z&lt;1 5 x+y+z=l ° The second target of the present invention has an elemental composition of IBx-IIIAy-VIAz; The IB system is at least selected from the group consisting of Cu and Ag; the lanthanide is at least selected from the group consisting of In and Ga; and the VIA is at least selected from the group consisting of S, Se, and Te; 7 200832727 y is the atomic percentage of πια content and satisfies 0 &lt;X&lt;1, 〇£y&lt;l, x is the atomic percentage, ratio, z is the atomic percentage of VIA content 0; Z&lt;1, X + y + then. The method for producing a target of the present invention comprises the steps of: forming a pre-alloy: synthesizing a pre-alloy from another 7G element in which the target element and the target element are composed, and pulverizing the powder into a pre-alloy;

Φ 一奶4 •將此粉末直接混合或再與數材元素組成中的其 他元素或預合金粉末混合; 燒結:混合粉末經燒結後形成靶材。 本發=之薄膜係使用上述之革巴材濺鑛而成。 上述薄膜係可用於太陽能電池。 本發明可達成的具體功效包括: 1 ·本發明的靶材具有完整ΙΒ_ΙΙΙΑ·νΐΑ元素組成, 因此將此靶材經由一次的濺鍍製程,π可鍍製出具有完整 IB-IIIA-VIA元素組成的薄膜,此薄膜可直接應用於太陽 能電池中’避免現冑CIGS薄膜需經多重㈣或則匕處理 方可製作的問^ ’大幅降低薄膜製程的複雜度與太陽能電 池的製造成本。 2 ·本發明在靶材的製造過程中,先形成預合金,因 此在之後的燒結過程中,不會因材料熔融而產生材料成份 變異及破壞的現象,確保本發明之靶材的優良品質。 【實施方式】 本發明之第一種靶材,其元素組成為IBx_niAy_VIAz ; 8 200832727 其中, IB係至少選自於一種以下厶群組:Cu(銅)及Ag(銀); ΠΙΑ係至少選自於_種以f之群組:In(銦)及Ga(鎵); VIA係至少選自於一種以下之群組:S(硫)、Se(硒)及 Te(碲); X為IB含量的原子百分比^、y為IIIA含量的原子百分 比、z為VIA含量的原子百分此,且滿足〇£x&lt;l、0&lt;y&lt;l、 〇&lt;ζ&lt;1 ,且 x+y+z=l 〇 ® 本發明之第二種靶材,其元素組成為IBx-IIIAy-VIΑζ ; 其中, IB係至少選自於一種以下之群組:ClI及Ag ; ΪΠΑ係至少選自於一種以下之群組:in及Ga ; VIA係至少選自於一種以下之群組:s、Se及Te ; X為IB含量的原子百分比、y為ΠΙΑ含量的原子百分 比、ζ為via含量的原子百分比,且滿足〇&lt;χ&lt;]1 ★ 〇$y&lt;1、 〇&lt;Ζ&lt;1 , χ+γ+Ζ=1 〇 虽在製造含有IB-IIIA-VIA元素組成之靶材時,由於 ΠΙΑ及VIA用於製造靶材之元素其熔點皆很低(IIIA如In 之熔點為156.6°C,Ga之熔點為29.9t ; VIA如S之熔點 為112.8°C,Se之熔點為217t,Te之熔點為449 5。〇, 故其蒸氣壓很南’而IB元素之溶點相對於IHA及VIA而 。很回(如Cu之熔點為i〇84.6°C,Ag之熔點為961.9°C ), 是以若單純使用熔煉製程來製造此ΙΒ_ΙΠΑ_νΐΑ多元化合 物靶材,並不容易獲得特性良好之鑄錠。 9 200832727 若早使用粉末冶金(powder metallurgy)之方式製造四 nIA_VI a 系列 μ,亦 @ IIIA 及 νΐΑ μ μ 二二^ 兀素之熔點相對於IIIA及VIA而言报高,若ΐβ與⑴A及 VIA之元素粉末進行燒結(sinteHng)時,例如使用㈣㈣, W P職lng)或熱均壓(HIp, W_㈣時則 熔點低之70素會熔融而導致材料破壞。 由於粉末冶金方法所製作之靶材較鑄造方法而言,其 革巴材品質較佳’因此本發明係使用粉末冶金來製m iiia-vIA元素組成之抑。當將―素與㈣元素电 成中-種以上的其他元素合成化合物時,一般將此化合物 私之為預合金。再將此預合金直接或再加入其他靶材元 進行粉末冶金的製程,即可製造本發明之靶材。 /、 本發明革巴材的製法如下,其步驟請參照第_圖所示。 形成預合金ϋ材元素與革巴特元素組成中 上的其他元素合成預合金,此預合金合成之方 煉、熱化學反應或其他方法。 w 造粉:將預合金製成粉末’粉末之製成方法可採用機 械方法,如將預合金壓碎或擊碎後,再㈣磨或棒 研磨’或其他物理化學方法如霧化法(atomization)等。仃 _混粉:將此粉末直接混合或再與革巴材元素組 他元素粉末或預合金粉末混合; 、/、 燒結:混合粉末經燒結後形成具優良特性之 合粉末之燒結可嶋法、熱均塵法或者熱塵法合併二 廢法進行’鋒材可再經加工成形為可供錢機使用: &lt;革巴 10 200832727 材 本發明之第一種靶材包含以下各種靶材· 〜當 X 係為 0,0.5&lt;Ζ&lt;0.6,ΙΙΙΑ 係為 In_Ga,viA 係為 Se, 可得到In-Ga-Se乾材。 當 IB 係為 Cu、Ag 或 Cu_Ag,m 咏馬 In-Ga,viaΦ Milk 4 • Mix the powder directly or mix it with other elements or pre-alloyed powders in the composition of the elements; Sintering: The mixed powder is sintered to form a target. The film of this hair = is made by splashing the above-mentioned leather material. The above film system can be used for a solar cell. The specific efficiencies achievable by the present invention include: 1 · The target of the present invention has a complete ΙΒ ΙΙΙΑ ΐΑ ΐΑ ΐΑ element composition, so the target can be plated to have a complete IB-IIIA-VIA element composition through a sputtering process. The film can be directly used in solar cells. 'Ask the current CIGS film to be processed by multiple (4) or 匕 processing. 'The complexity of the film process and the manufacturing cost of the solar cell are greatly reduced. 2. The present invention forms a pre-alloy in the manufacturing process of the target material, so that in the subsequent sintering process, the material composition is not mutated and destroyed due to melting of the material, and the excellent quality of the target of the present invention is ensured. [Embodiment] The first target of the present invention has an elemental composition of IBx_niAy_VIAz; 8 200832727 wherein IB is at least selected from the group consisting of Cu (copper) and Ag (silver); In the group of f: In (indium) and Ga (gallium); VIA is selected from at least one of the following groups: S (sulfur), Se (selenium) and Te (碲); X is IB content The atomic percentage ^, y is the atomic percentage of the IIIA content, and z is the atomic percentage of the VIA content, and satisfies x£x&lt;l, 0 &lt;y&lt;l, 〇&lt;ζ&lt;1, and x+y+z =l 〇® The second target of the present invention has an elemental composition of IBx-IIIAy-VIΑζ; wherein the IB is at least selected from the group consisting of ClI and Ag; the lanthanide is at least selected from the group consisting of Group: in and Ga; VIA is selected from at least one of the following groups: s, Se, and Te; X is the atomic percentage of the IB content, y is the atomic percentage of the cerium content, ζ is the atomic percentage of the via content, and Satisfy 〇&lt;χ&lt;]1 ★ 〇$y&lt;1, 〇&lt;Ζ&lt;1, χ+γ+Ζ=1 〇Although in the manufacture of targets containing IB-IIIA-VIA elements, The melting point of the elements used in the manufacture of the target by VIA and VIA is very low (IIIA such as the melting point of In is 156.6 ° C, the melting point of Ga is 29.9 t; the melting point of VIA such as S is 112.8 ° C, and the melting point of Se is 217 t, Te The melting point is 449 5. 〇, so the vapor pressure is very south' and the melting point of IB element is relative to IHA and VIA. It is very good (such as the melting point of Cu is i〇84.6 °C, the melting point of Ag is 961.9 °C) In the case of simply using a smelting process to produce the ΙΒ_ΙΠΑ_νΐΑ multi-component target, it is not easy to obtain an ingot with good properties. 9 200832727 If the powder metallurgy (powder metallurgy) is used to manufacture four nIA_VI a series μ, also @ IIIA And the melting point of νΐΑ μ μ bismuth bismuth is higher than that of IIIA and VIA. If ΐβ is sintered with elemental powder of (1)A and VIA (sinteHng), for example, (4) (4), WP (lng) or thermal pressure equalization ( In the case of HIp, W_(iv), the 70% of the melting point will melt and cause material damage. Since the target made by the powder metallurgy method is better than the casting method, the quality of the leather is better. Therefore, the present invention uses powder metallurgy to produce m. Iiia-vIA element composition When the compound is synthesized with other elements of the medium or above, the compound is generally pre-alloyed. The pre-alloy is directly or re-added to other target materials for powder metallurgy. The target of the invention. /, The method for preparing the leather material of the present invention is as follows, and the steps thereof are shown in the figure _. Forming a pre-alloyed coffin element with other elements in the Gebat elemental composition to synthesize a pre-alloy, a pre-alloy synthesis, a thermochemical reaction or other method. w Pulverizing: the pre-alloyed powder can be made by a mechanical method, such as crushing or crushing the pre-alloy, then (four) grinding or rod grinding ' or other physical and chemical methods such as atomization (atomization) )Wait.仃 _ mixed powder: the powder is directly mixed or mixed with the elemental powder or pre-alloyed powder of the material of the slab; and /, sintering: the sintered powder is sintered to form a sintered powder with excellent characteristics, The hot dust method or the hot dust method combines the two waste methods to carry out the 'Front material can be processed and formed into a machine for use: &lt;Goba 10 200832727 The first target of the present invention comprises the following various targets · When X is 0, 0.5 &lt; Ζ &lt; 0.6, ΙΙΙΑ is In_Ga, and viA is Se, In-Ga-Se dry material can be obtained. When the IB system is Cu, Ag or Cu_Ag, m 咏马 In-Ga,via

係為 Se,可得到 Cu_In_Ga_Se、AIs Se, can get Cu_In_Ga_Se, A

Ga-Se|,#〇 〜或 Cu-Ag如 當 IB 係為 Cu、Ag 或 Cu-Ag,ιπα 俜 a r 诉為Ga,VIA係 為 Se,可得到 Cu_Ga_Se、A Ga_s ^ 5 4 Lu-Ag-Ga-Se 靶材。 當 IB 係為 Cu、Ag 或 Cu-Ag,IIIA 係為 in,via 係 Se,可得到 CU-In-Se、Ag-In_Se 或 Cu_Ag_In士 靶材。 當 x 係為 〇,0·428&lt;ζ&lt;0.6,ΪΠΑ 係為 In,VIA 係為“, 可得到In-Se、革巴材。 當 X 係為 0 ’ 0.5&lt;Ζ&lt;0·6,ΠΙΑ 係為 In_Ga,VIA 係為 s, 可得到In-Ga-S把材。 ' 乂 當 IB 係為 Cu、Ag 或 Cu-Ag,IIIA 係為 In-Ga,via 係為 s,可得到 Cu如Ga-S、Ag-In_Ga S 或 Cu Ag如Ga s 革巴材。 …口當 X 係為 0,0.5&lt;Z&lt;0.6,„IA 係為 In Ga,viA 係為 Te, 可得到In-Ga-Te$巴材。 當IB係為CU,ΙΙΙΑ係為In-Ga,VIA係為Te,可得 W Cu-In-Ga-Te 等巴材。 e當1B係為Cu’ ΠΙΑ係為In,VIA係為Te,可得到Cu_In_T e革巴材。藉由上述的製法,可製造出具有完整ΐΒ_πΐΑ_νΐΑ 200832727 元素組成之靶材。而由於本發明的靶材具有完整ΙΒ-ΠΙΑ-VIA元素組成,因此將此乾材經由一次的錢鍍製程,即可 鍍製出具有完整IB-IIIA-VIA元素組成的薄膜,可直接應 用於太陽能電池中,避免現有CIGS薄膜需經多重濺鍍及/ 或硒化處理方可製作的問題,大幅降低太陽能電池的製造 成本。 【圖式簡單說明】 第一圖係為本發明之流程圖。 【主要元件符號說明】 無 12Ga-Se|, #〇~ or Cu-Ag, such as when IB is Cu, Ag or Cu-Ag, ιπα 俜ar is Ga, and VIA is Se, Cu_Ga_Se, A Ga_s ^ 5 4 Lu-Ag- Ga-Se target. When IB is Cu, Ag or Cu-Ag, IIIA is in, and via is Se, CU-In-Se, Ag-In_Se or Cu_Ag_In targets can be obtained. When x is 〇, 0·428 &lt; ζ &lt; 0.6, ΪΠΑ is In, VIA is ", can get In-Se, leather material. When X is 0 ' 0.5 &lt; Ζ &lt; 0 · 6, ΠΙΑ It is In_Ga, VIA is s, and In-Ga-S can be obtained. '乂 IB is Cu, Ag or Cu-Ag, IIIA is In-Ga, and via is s, Cu can be obtained. -S, Ag-In_Ga S or Cu Ag such as Ga s leather bar. The mouth X is 0, 0.5 &lt; Z &lt; 0.6, IA is In Ga, viA is Te, and In-Ga- is obtained. Te$ 巴材. When the IB system is CU, the lanthanide system is In-Ga, and the VIA system is Te, W Cu-In-Ga-Te and other materials can be obtained. e When the 1B system is Cu', the lanthanide is In, and the VIA is Te, Cu_In_T e leather material can be obtained. By the above-mentioned method, a target having a complete ΐΒ_πΐΑ_νΐΑ 200832727 element composition can be produced. Since the target of the present invention has a complete ΙΒ-ΠΙΑ-VIA element composition, the dry material can be plated with a complete IB-IIIA-VIA element through a one-time gold plating process, which can be directly applied. In the solar cell, the problem that the existing CIGS film needs to be subjected to multiple sputtering and/or selenization treatment can be avoided, and the manufacturing cost of the solar cell is greatly reduced. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a flow chart of the present invention. [Main component symbol description] None 12

Claims (1)

200832727 十、申請專利範圍: 1 · 一種靶材,其元素組成為IBx-IIIAy-VIAz ;其中, IB係至少選自於一種以下之群組·· Cu及Ag ; III A係至少選自於一種以下之群組:I]Q及Ga ; VIA係至少選自於一種以下之群組·· s、se及丁^ ; X為1B含量的原子百分比、y為ΠΙΑ含量的原子百分 比、Ζ為VIA含量的原子百分比,且滿足〇Sx&lt;l、〇&lt;y&lt;1、 0&lt;ζ&lt;1 , x+y+z=l 〇 2 ·如申請專利範圍第1項所述之靶材,其中的χ係 為 0 ’ ΙΙΙΑ 係為 in_Ga,係為 Se。 3 ·如申請專利範圍第1項所述之靶材,其中的a 係為 Cu、Ag 或 Cu-Ag,πια 係為 In-Ga,VIA 係為 se。 4 ·如申請專利範圍第i項所述之靶材,其中的IB 係為 Cu、Ag 或 Cu_Ag,ΙΠΑ 係為 Ga,VIA 係為 Se。 5 ·如申請專利範圍第l項所述之靶材,其中的ib 係為 Cu、Ag 或 cU-Ag,ΠΙΑ 係為 In,VIA 係為 Se。 6 ·如申請專利範圍第1項所述之靶材,其中的χ ^ 為 0 ’ ΙΙΙΑ 係為 in,via 係為 Se。 、 7 ·如申請專利範圍第1項所述之靶材,苴 、 ^ '、τ的χ係 為 0,ΙΙΙΑ 係為 in_Ga,via 係為 S。 ' 8 ·如申請專利範圍第1項所述之靶材,i ,、T 的 係為 Cu、Ag 或 Cu-Ag,ΠΙΑ 係為 In-Ga,VIA 係為 s。 9 ·如申凊專利範圍第1項所述之靶材,t ’、〒的IB 係為 C u,111A 係為 I n _ g a,VI a 係為丁 e。 13 200832727 1〇·如申凊專利範圍第丄項所述之靶材,其中的IB 係為Cu,ΠΙΑ係為In,VIA係為Te。 1 1 · 一種鞑材,其元素組成為ΙΒχ_ΙΙΙΑ_νΐΑ ; y 2 中, IB係至少選自於一種以下之群組:Cu及Ag ; ΠΙΑ係至少選自於一種以下之群組:In及Ga ; VIA係至少選自於一種以下之群組·· s、s e及丁e ; X為IB含買的原子百分比、y為IHA含量的原子百分 比、z為VIA含量的原子百分比,且滿足〇&lt;χ&lt;ι、、 〇&lt;z&lt;l , x+y+z=i 〇 1 2 · 一種薄臈,其係使用如申請專利範圍第1項或 第1 1項所述之革巴材藏鍵而成。 1 3 ·如申請專利範圍第1 2項所述之薄膜,其係用 於太陽能電池。 Φ 十^^圖式· 如次頁 14200832727 X. Patent application scope: 1 · A target material whose element composition is IBx-IIIAy-VIAz; wherein IB is at least selected from the group consisting of Cu and Ag; III A is at least selected from one type The following groups: I]Q and Ga; VIA is selected from at least one of the following groups: s, se, and butyl; X is the atomic percentage of the 1B content, y is the atomic percentage of the cerium content, and Ζ is VIA The atomic percentage of the content, and satisfies 〇Sx&lt;l, 〇&lt;y&lt;1, 0&lt;ζ&lt;1, x+y+z=l 〇2 · target as described in claim 1, wherein The χ system is 0 ' ΙΙΙΑ is in_Ga, and the system is Se. 3. The target material according to claim 1, wherein a is Cu, Ag or Cu-Ag, πι is In-Ga, and VIA is se. 4. The target material as described in claim i, wherein the IB is Cu, Ag or Cu_Ag, the lanthanum is Ga, and the VIA is Se. 5. The target of claim 1, wherein ib is Cu, Ag or cU-Ag, lanthanide is In, and VIA is Se. 6 · The target material as claimed in claim 1, wherein χ ^ is 0 ΙΙΙΑ is in and the via is Se. 7. For the target described in the first paragraph of the patent application, the χ, ^ ', τ χ is 0, the ΙΙΙΑ is in_Ga, and the via is S. ' 8 · For the target described in the first paragraph of the patent application, i, T are Cu, Ag or Cu-Ag, ΠΙΑ is In-Ga, and VIA is s. 9 · As claimed in claim 1, the target IB of the patent range is t u, the IB of the 〒 is C u, the 111A is I n _ g a, and the VI a is butyl. 13 200832727 The target of the invention as claimed in claim 3, wherein the IB system is Cu, the lanthanide system is In, and the VIA system is Te. 1 1 · A coffin whose elemental composition is ΙΒχ_ΙΙΙΑ_νΐΑ; y 2 , IB is at least selected from the group consisting of Cu and Ag; the lanthanide is at least selected from the group consisting of: In and Ga; VIA It is at least selected from the group consisting of: s, se, and butyl e; X is the atomic percentage of IB, y is the atomic percentage of IHA content, z is the atomic percentage of VIA content, and satisfies 〇&lt;χ&lt;;ι,,〇&lt;z&lt;l, x+y+z=i 〇1 2 · A thin sputum using the gram material of the material as described in claim 1 or item 11. to make. 1 3 The film according to claim 12, which is used for a solar cell. Φ 十^^图· 如次页 14
TW96101775A 2007-01-17 2007-01-17 Target and thin film fabricated by the target TW200832727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96101775A TW200832727A (en) 2007-01-17 2007-01-17 Target and thin film fabricated by the target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96101775A TW200832727A (en) 2007-01-17 2007-01-17 Target and thin film fabricated by the target

Publications (1)

Publication Number Publication Date
TW200832727A true TW200832727A (en) 2008-08-01

Family

ID=44818953

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96101775A TW200832727A (en) 2007-01-17 2007-01-17 Target and thin film fabricated by the target

Country Status (1)

Country Link
TW (1) TW200832727A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406431B (en) * 2009-10-29 2013-08-21 Bosin Technology Co Ltd Method of manufacturing absorption layer of solar cells and its structure
TWI410510B (en) * 2010-09-15 2013-10-01 Univ Nat Cheng Kung Target precursor structure
TWI413704B (en) * 2010-09-15 2013-11-01 Univ Nat Cheng Kung Process for producing target
TWI425978B (en) * 2010-02-05 2014-02-11 Chung Hsin Lu Fabrication method for ib-iiia-via powder by the sol-gel method
TWI496904B (en) * 2009-11-13 2015-08-21 Jx Nippon Mining & Metals Corp Cu-In-Ga-Se quaternary alloy sputtering target
US9273389B2 (en) 2010-09-27 2016-03-01 Jx Nippon Mining & Metals Corporation Cu—In—Ga—Se quaternary alloy sputtering target

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI406431B (en) * 2009-10-29 2013-08-21 Bosin Technology Co Ltd Method of manufacturing absorption layer of solar cells and its structure
TWI496904B (en) * 2009-11-13 2015-08-21 Jx Nippon Mining & Metals Corp Cu-In-Ga-Se quaternary alloy sputtering target
TWI425978B (en) * 2010-02-05 2014-02-11 Chung Hsin Lu Fabrication method for ib-iiia-via powder by the sol-gel method
TWI410510B (en) * 2010-09-15 2013-10-01 Univ Nat Cheng Kung Target precursor structure
TWI413704B (en) * 2010-09-15 2013-11-01 Univ Nat Cheng Kung Process for producing target
US9273389B2 (en) 2010-09-27 2016-03-01 Jx Nippon Mining & Metals Corporation Cu—In—Ga—Se quaternary alloy sputtering target

Similar Documents

Publication Publication Date Title
JP5923569B2 (en) Cu-Ga sputtering target
CN101260513B (en) Preparation method of solar energy battery copper-indium-gallium-selenium film key target material
CN102347398B (en) The sodium sputtering doping method of extensive CIGS base film photovoltaic material
EP1922761B1 (en) Process for preparation of absorption layer of solar cell
CN102630254B (en) Low melting point sputter targets for chalcogenide photovoltaic applications and methods of manufacturing the same
CN100418235C (en) Cu-Ga alloy target for Cu-In-Ga-Se film solar battery and preparing process thereof
CN101245443B (en) Target material and thin membrane manufactured with the target material
TW200832727A (en) Target and thin film fabricated by the target
JP2009528680A (en) High-throughput printing of chalcogen layers and the use of intermetallic materials
TW201033376A (en) Method for manufacturing multi-element metal chalcogenide synthesis
US8871143B2 (en) Amalgam method for forming a sputter target useful in the manufacture of thin-film solar photovoltaic cells
JP2009287092A (en) Method for producing sputtering target for use in forming chalcopyrite type semiconductor film
TW201124544A (en) Chalcogenide absorber layers for photovoltaic applications and methods of manufacturing the same
EP1547974B1 (en) Iron silicide powder and method for production thereof
JPWO2012042959A1 (en) Cu-In-Ga-Se quaternary alloy sputtering target
JP2012092438A (en) Mo-based sputtering target and method of manufacturing the same, and cigs-based thin-film solar cell using the same
JP5752624B2 (en) CZTS compound semiconductor manufacturing method
Malik et al. Atmospheric pressure synthesis of In2Se3, Cu2Se, and CuInSe2 without external selenization from solution precursors
CN115849909B (en) Copper indium gallium selenium target material, preparation method thereof and solar cell
EP2182083B1 (en) Copper-gallium alloy sputtering target and method for fabricating the same
JP6002207B2 (en) Method for producing CIGS-based solar cell alloy
TWI413704B (en) Process for producing target
KR101798620B1 (en) Method for manufacturing thermoelectric materials
CN117185815A (en) Cu (In, ga, al, ca) Se 2 Preparation process of ceramic target material
TWI410510B (en) Target precursor structure