TWI495114B - Fabrication method for light absorbing layers precursor solution - Google Patents

Fabrication method for light absorbing layers precursor solution Download PDF

Info

Publication number
TWI495114B
TWI495114B TW098108878A TW98108878A TWI495114B TW I495114 B TWI495114 B TW I495114B TW 098108878 A TW098108878 A TW 098108878A TW 98108878 A TW98108878 A TW 98108878A TW I495114 B TWI495114 B TW I495114B
Authority
TW
Taiwan
Prior art keywords
light absorbing
absorbing layer
layer according
group
compound
Prior art date
Application number
TW098108878A
Other languages
Chinese (zh)
Other versions
TW201036175A (en
Inventor
Chung Hsin Lu
Chung Hsien Wu
Tsung Han Lee
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW098108878A priority Critical patent/TWI495114B/en
Publication of TW201036175A publication Critical patent/TW201036175A/en
Application granted granted Critical
Publication of TWI495114B publication Critical patent/TWI495114B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

光吸收層之製備方法及前驅物溶液Preparation method of light absorbing layer and precursor solution

本發明係有關於光吸收層,且特別是有關於一種CIGS太陽能電池之光吸收層。This invention relates to light absorbing layers, and more particularly to a light absorbing layer of a CIGS solar cell.

近年來由於受到全球氣候變遷、環境污染問題以及資源日趨短缺的影響,在環保意識高漲與能源危機的警訊下刺激了太陽光電產業的蓬勃發展。於各種太陽能電池中,由於硒化銅銦鎵電池(Cu(In,Ga)Se2 ,CIGS)具備高轉換效率、穩定性佳、低材料成本、可製成薄膜等優點,因此受到極大的重視。In recent years, due to global climate change, environmental pollution problems and the shortage of resources, the solar photovoltaic industry has been booming under the warning of high environmental awareness and energy crisis. Among various solar cells, since Cu (In,Ga)Se 2 , CIGS has high conversion efficiency, good stability, low material cost, and can be made into a film, it has received great attention. .

CIGS化合物屬於黃銅礦(chalcopyrite)結構,其主要由ⅠB-ⅢA-ⅥA族化合物所組成,其為一種直接能隙(direct bandgap)半導體材料,可藉由調控材料組成而改變半導體之能隙,是目前作為光吸收層之主要材料。The CIGS compound belongs to the chalcopyrite structure, which is mainly composed of IB-IIIA-VIA compound, which is a direct bandgap semiconductor material, which can change the energy gap of the semiconductor by regulating the composition of the material. It is currently the main material for the light absorbing layer.

目前製作CIGS吸收層的方法主要分為真空和非真空製程,真空製程包括共蒸鍍(co-evaporation)、濺鍍(sputter)等製程,而非真空製程包括電沉積(electrodeposition)、無電極電鍍(electroless)、塗佈製程(coating process)或化學噴霧熱裂解法(chemical spray pyrolysis),其中真空製程較早發展,技術也較成熟,但是由於製程成本與設備較為昂貴,因此,許多公司分別朝向非真空技術的開發。At present, the method for fabricating the CIGS absorber layer is mainly divided into a vacuum and a non-vacuum process, and the vacuum process includes a co-evaporation process, a sputtering process, and the like, and the non-vacuum process includes electrodeposition (electrodeposition) and electrodeless plating. (electroless), coating process or chemical spray pyrolysis, in which the vacuum process develops earlier and the technology is more mature, but because the process cost and equipment are expensive, many companies are headed Development of non-vacuum technology.

美國專利US 5871630提出一種電沉積製作CIGS光吸收層之方法,其利用電化學方式得到含有銅、銦、鎵和硒之薄膜,接著利用物理氣相沉積法,使薄膜中的鎵/(銦+鎵)之比率為約0.39。U.S. Patent No. 5,871,630 discloses a method of electrodeposition of a CIGS light absorbing layer by electrochemically obtaining a film containing copper, indium, gallium and selenium, followed by physical vapor deposition to make gallium/(indium +) in the film. The ratio of gallium is about 0.39.

美國ISET公司(International Solar Electronic Technology Inc.)提出一種油墨製程(ink process),其將銅、銦、鎵之奈米金屬氧化物均勻塗佈於基材之上,再經硒化步驟(selenization)得到CIGS薄膜。International Solar Electronic Technology Inc. has proposed an ink process that uniformly coats copper, indium, and gallium nano-oxides onto a substrate and then selenization. A CIGS film was obtained.

美國UniSun公司提出一種噴霧熱裂解方式,其先經超音波噴霧氧化得到金屬氧化物粉體,再將粉體進行研磨與分散得到漿料,再將漿料以噴灑的方式塗佈於基材上,最後經由硒化步驟,得到CIGS薄膜。UniSun Corporation of the United States has proposed a spray pyrolysis method, which first obtains metal oxide powder by ultrasonic spray oxidation, then grinds and disperses the powder to obtain a slurry, and then sprays the slurry onto the substrate by spraying. Finally, a CIGS film is obtained through a selenization step.

上述提及的方法中,大多數需要先合成金屬薄膜,再經由硒化步驟得到CIGS薄膜,其製程較為複雜。而電沉積與無電極電鍍法雖不需硒化製程,但是其需要經由複雜的氧化還原反應,因此鍍液不易調配且電極選擇受限。Among the above-mentioned methods, most of them need to synthesize a metal thin film, and then obtain a CIGS thin film through a selenization step, which is complicated in the process. Electrodeposition and electroless plating do not require a selenization process, but they require a complex redox reaction, so the plating solution is difficult to prepare and the electrode selection is limited.

綜上所述,若能提供一種簡易製作CIGS光吸收層之方法,未來極有產業應用價值。In summary, if a method for easily fabricating a CIGS light absorbing layer can be provided, the future has great industrial application value.

本發明提供一種光吸收層之製備方法,包括:混合包括ⅠB族、ⅢA族、ⅣA族之化合物於一溶劑中以得到一前驅物溶液(precursor);塗佈該前驅物溶液於一基板之上;將該基板置於一氣氛(atmosphere)中進行熱處理,使該基板之上形成光吸收層。The present invention provides a method for preparing a light absorbing layer, comprising: mixing a compound including Group IB, Group IIIA, and Group IVA in a solvent to obtain a precursor solution; coating the precursor solution on a substrate The substrate is placed in an atmosphere for heat treatment to form a light absorbing layer on the substrate.

本發明另提供一種光吸收層,包括ⅠB-ⅢA-ⅣA族化合物,係由上述光吸收層之製備方法製備而得。The present invention further provides a light absorbing layer comprising a compound of the group IB-IIIA-IVA, which is obtained by the method for preparing the above light absorbing layer.

本發明亦提供一種前驅物溶液,包括ⅠB族化合物、ⅢA族化合物、ⅥA族化合物與一溶劑。The invention also provides a precursor solution comprising a Group IB compound, a Group IIIA compound, a Group VIA compound and a solvent.

本發明另外提供一種太陽能電池,包括:一背電極,形成於該基板之上;一光吸收層(light absorbing layer),形成於該背電極之上,其中該光吸收層包括ⅠB-ⅢA-ⅥA族化合物,係由申請專利範圍第1項所述之光吸收層之製備方法製備而得;一緩衝層(buffer layer),形成於該光吸收層之上;一透明導電層(transparent conducting oxide,TCO);以及一前電極,形成於該透明導電層之上。The present invention further provides a solar cell comprising: a back electrode formed on the substrate; a light absorbing layer formed on the back electrode, wherein the light absorbing layer comprises IB-IIIA-VIA The compound is prepared by the method for preparing the light absorbing layer described in claim 1; a buffer layer is formed on the light absorbing layer; and a transparent conducting oxide (transparent conducting oxide, TCO); and a front electrode formed on the transparent conductive layer.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features and advantages of the present invention will become more <RTIgt;

本發明提供一種光吸收層之製造方法,包括:首先製備一前驅物溶液(precursor),藉由混合ⅠB族、ⅢA族、ⅥA族化合物之化合物於溶劑中而得,其中ⅠB族包括銅(Cu)、銀(Ag)、金(Au)或上述之組合,而ⅠB族化合物包括含有ⅠB族之氧化物、氮化物、氫氧化物、鹵化物、硝酸物、醋酸物、硫酸物、碳酸物、氯酸物、磷酸物、硒酸物、草酸物、磷化物,例如氧化銅(CuO)、氮化銅(Cu(N3 )2 )、氫氧化銅(Cu(OH)2 )、氯化銅(CuCl2 )、硝酸銀(AgNO3 )、硝酸銅(Cu(NO3 )2 )、硫酸銅(CuSO4 )、醋酸銅(Cu(CH3 COO)2 )、醋酸銀(CH3 COOAg)、碳酸銅(Cu2 CO3 )、草酸銅(CuC2 O4 )、氯酸銅(Cu(ClO4 )2 )、磷酸銅(Cu3 (PO4 )2 )、硒酸銅(CuSeO4 )或磷化銅(Cu3 P)。ⅢA族包括鋁(Al)、銦(Ⅰn)、鎵(Ga)或上述之組合,而ⅢA族化合物包括含有ⅢA族之氧化物、氮化物、氫氧化物、鹵化物、硝酸物、醋酸物、硫酸物、碳酸物、氯酸物、磷酸物、硒酸物、草酸物或磷化物,例如氧化銦(In2 O3 )、氧化鎵(Ga2 O3 )、氮化銦(InN)、氮化鎵(GaN)、氫氧化銦(In(OH)3 )、氫氧化鎵(Ga(OH)3 )、氯化鋁(AlCl3 )、氯化銦(InCl3 )、氯化鎵(GaCl3 )、硝酸鋁(Al(NO3 )3 )、硝酸銦(In(NO3 )3 )、硝酸鎵(Ga(NO3 )3 )、醋酸銦(In(CH3 COO)3 )、醋酸鋁(Al(CH3 COO)3 )、碳酸鋁(Al2 (CO3 )3 )、草酸鋁(Al2 (C2 O4 )3 )、醋酸鎵(Ga(CH3 COO)3 )、硫酸銦(In2 (SO4 )3 )、硫酸鋁(Al2 (SO4 )3 )、硫酸鎵(Ga2 (SO4 )3 )、氯酸銦(In(ClO4 )3 )、氯酸鎵(Ga(ClO4 )3 )、磷酸銦(InPO4 )、磷酸鎵(GaPO4 )、硒酸銦(In2 (SeO4 )3 )、硒酸鎵(Ga2 (SeO4 )3 )、磷化銦(InP)或磷化鎵(GaP)。VIA族包括硫(S)、硒(Se)、銻(Te)或上述之組合,而VIA族化合物包括含有VIA族之氧化物、鹵化物、鹵氧化物、硫化物、硒化物、胺化物、脲化物、硒酸物、硫酸物或碲酸物,例如氧化硒(SeO2 )、氧化碲(TeO2 )、硫酸(H2 SO4 )、硒酸(H2 SeO4 )、碲酸(H2 TeO4 )、亞硫酸(H2 SO3 )、亞硒酸(H2 SeO3 )、亞碲酸(H2 TeO3 )、硫脲(thiourea,CS(NH2 )2 )、硒脲(seenourea,CSe(NH2 )2 )、二氯化硒(SeCl2 )、四氯化硒(SeCl4 )、二氯化碲(TeCl2 )、四氯化碲(TeCl4 )、二溴化硒(SeBr2 )、四溴化硒(SeBr4 )、二溴化碲(TeBr2 )、四溴化碲(TeBr4 )、氯氧化硒(SeOCl2 )或硫化硒(SeS2 )。The invention provides a method for manufacturing a light absorbing layer, comprising: first preparing a precursor solution obtained by mixing a compound of a group IB, a group IIIA and a group VIA compound in a solvent, wherein the group IB comprises copper (Cu) ), silver (Ag), gold (Au) or a combination thereof, and the group IB compound includes an oxide, a nitride, a hydroxide, a halide, a nitrate, an acetate, a sulfate, a carbonate, Chloric acid, phosphoric acid, selenate, oxalic acid, phosphide, such as copper oxide (CuO), copper nitride (Cu(N 3 ) 2 ), copper hydroxide (Cu(OH) 2 ), copper chloride (CuCl 2 ), silver nitrate (AgNO 3 ), copper nitrate (Cu(NO 3 ) 2 ), copper sulfate (CuSO 4 ), copper acetate (Cu(CH 3 COO) 2 ), silver acetate (CH 3 COOAg), carbonic acid Copper (Cu 2 CO 3 ), copper oxalate (CuC 2 O 4 ), copper chlorate (Cu(ClO 4 ) 2 ), copper phosphate (Cu 3 (PO 4 ) 2 ), copper selenate (CuSeO 4 ) or phosphorus Copper (Cu 3 P). Group IIIA includes aluminum (Al), indium (In), gallium (Ga), or a combination thereof, and the Group IIIA compound includes an oxide, a nitride, a hydroxide, a halide, a nitrate, an acetate, and a group IIIA. Sulfate, carbonate, chlorate, phosphate, selenate, oxalate or phosphide, such as indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), indium nitride (InN), nitrogen Gallium (GaN), indium (Indium) (In(OH) 3 ), gallium hydroxide (Ga(OH) 3 ), aluminum chloride (AlCl 3 ), indium chloride (InCl 3 ), gallium chloride (GaCl 3 ) ), aluminum nitrate (Al(NO 3 ) 3 ), indium nitrate (In(NO 3 ) 3 ), gallium nitrate (Ga(NO 3 ) 3 ), indium acetate (In(CH 3 COO) 3 ), aluminum acetate ( Al(CH 3 COO) 3 ), aluminum carbonate (Al 2 (CO 3 ) 3 ), aluminum oxalate (Al 2 (C 2 O 4 ) 3 ), gallium acetate (Ga(CH 3 COO) 3 ), indium sulfate ( In 2 (SO 4 ) 3 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), gallium sulfate (Ga 2 (SO 4 ) 3 ), indium chlorate (In(ClO 4 ) 3 ), gallium chlorate (Ga (ClO 4 ) 3 ), indium phosphate (InPO 4 ), gallium phosphate (GaPO 4 ), indium selenate (In 2 (SeO 4 ) 3 ), gallium selenate (Ga 2 (SeO 4 ) 3 ), indium phosphide (InP) or gallium phosphide (GaP). Group VIA includes sulfur (S), selenium (Se), tellurium (Te) or a combination thereof, and Group VIA compounds include oxides, halides, oxyhalides, sulfides, selenides, amines of Group VIA, Urea, selenate, sulphate or sulphuric acid, such as selenium oxide (SeO 2 ), strontium oxide (TeO 2 ), sulfuric acid (H 2 SO 4 ), selenate (H 2 SeO 4 ), citric acid (H) 2 TeO 4 ), sulfurous acid (H 2 SO 3 ), selenite (H 2 SeO 3 ), telluric acid (H 2 TeO 3 ), thiourea (CS(NH 2 ) 2 ), selenium urea ( seenourea, CSe (NH 2) 2 ), selenium dichloride (SeCl 2), selenium tetrachloride (SeCl 4), tellurium dichloride (TeCl 2), four tellurium chloride (TeCl 4), selenium dibromide (SeBr 2 ), selenium tetrabromide (SeBr 4 ), cesium dibromide (TeBr 2 ), cesium tetrabromide (TeBr 4 ), selenium oxychloride (SeOCl 2 ) or selenium sulfide (SeS 2 ).

上述前驅物溶液中,其中ⅠB族、ⅢA族、ⅥA族化合物之莫耳數比為約(0.7~.3):(0.7~.3):(.5~20),較佳為約(0.8~1.2):(0.8~1.2):(1.7~16),最佳為約(0.8~1.2):(0.8~1.2):(1.8~15)。In the above precursor solution, the molar ratio of the group IB, IIIA, and VIA compounds is about (0.7~.3): (0.7~.3): (.5~20), preferably about (0.8). ~1.2): (0.8~1.2): (1.7~16), the best is about (0.8~1.2): (0.8~1.2): (1.8~15).

而上述化合物之選擇,並不限於上述提及之化合物,只要是能含ⅠB族、ⅢA族、ⅥA族之化合物皆可。而溶劑包括水、酸類、鹼類、醇類、酮類、醚類、胺類或其它有機溶劑,這些溶劑為無毒性之一般溶劑,其中酸類包括硝酸、鹽酸、硫酸、醋酸或丙酮酸;鹼類包括氫氧化鈉溶液或檸檬酸溶液、氨水;醇類包括甲醇、乙醇、丙醇、異丙醇、正丁醇、異戊醇或乙二醇;酮類包括丙酮、丁酮、甲基異丁酮;醚類包括甲醚、乙醚、甲乙醚、二苯醚、乙二醇甲醚、乙二醇丁醚或乙二醇乙醚醋酸;胺類包括乙二胺、二甲基甲醯胺、三乙醇胺或二乙醇胺。然而,溶劑之選擇並不限於上述提及之醇類、醚類或酮類溶劑,只要是能將上述化合物溶解之單一或混合溶劑皆可。The selection of the above compounds is not limited to the above-mentioned compounds, and may be any compound which can contain Group IB, Group IIIA, and Group VIA. The solvent includes water, an acid, a base, an alcohol, a ketone, an ether, an amine or other organic solvent, and the solvent is a non-toxic general solvent, wherein the acid includes nitric acid, hydrochloric acid, sulfuric acid, acetic acid or pyruvic acid; The class includes sodium hydroxide solution or citric acid solution, ammonia water; alcohols include methanol, ethanol, propanol, isopropanol, n-butanol, isoamyl alcohol or ethylene glycol; ketones include acetone, methyl ethyl ketone, methyl iso Butanone; ethers include methyl ether, diethyl ether, methyl ethyl ether, diphenyl ether, ethylene glycol methyl ether, ethylene glycol butyl ether or ethylene glycol ethyl ether; amines include ethylene diamine, dimethylformamide, Triethanolamine or diethanolamine. However, the choice of the solvent is not limited to the above-mentioned alcohol, ether or ketone solvent, as long as it is a single or mixed solvent capable of dissolving the above compound.

此外,上述之前驅物溶液可再添加其它離子,以改善太陽電池之特性。例如,可添加ⅠA族化合物提高電池之光電轉化效率,其中所選擇之ⅠA族包括鋰(Li),鈉(Na)、鉀(K)或上述之組合,而ⅠA族化合物包括ⅠA族之鹵化物、硝酸物、醋酸物、硫酸物、碳酸物或氯酸物,例如氯化鋰(LiCl)、氯化鈉(NaCl)、氯化鉀(KCl)、硝酸鋰(LiNO3 )、硝酸鈉(NaNO3 )、硝酸鉀(KNO3 )、醋酸鋰(CH3 COOLi)、醋酸鈉(CH3 COONa)、醋酸鉀(CH3 COOK)、硫酸鋰(Li2 SO4 )、硫酸鈉(Na2 SO4 )、硫酸鉀(K2 SO4 )、碳酸鋰(Li2 CO3 )、碳酸鈉(Na2 CO3 )、碳酸鉀(K2 CO3 )、氯酸鋰(LiClO3 )、氯酸鈉(NaClO3 )或氯酸鉀(KClO3 )。前驅物溶液與摻雜ⅠA族之莫耳數比為約(10~2000):1,較佳為約(20~1000):1。In addition, the above precursor solution may be further added with other ions to improve the characteristics of the solar cell. For example, a group IA compound may be added to increase the photoelectric conversion efficiency of the battery, wherein the selected group IA includes lithium (Li), sodium (Na), potassium (K) or a combination thereof, and the group IA compound includes a group IA halide. , nitrate, acetic acid, sulfuric acid, carbonate or chloric acid, such as lithium chloride (LiCl), sodium chloride (NaCl), potassium chloride (KCl), lithium nitrate (LiNO 3 ), sodium nitrate (NaNO 3 ), potassium nitrate (KNO 3 ), lithium acetate (CH 3 COOLi), sodium acetate (CH 3 COONa), potassium acetate (CH 3 COOK), lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ) ), potassium sulfate (K 2 SO 4 ), lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), lithium chlorate (LiClO 3 ), sodium chlorate ( NaClO 3 ) or potassium chlorate (KClO 3 ). The molar ratio of the precursor solution to the doped Group IA is about (10 to 2000): 1, preferably about (20 to 1000): 1.

於一較佳實施例中,混合氯化銅(CuCl2 )、氯化銦(InCl3 )與硝酸鎵(Ga(NO3 )3 )、亞硒酸(H2 SeO3 )於乙醇溶液中,即可製得本發明之前驅物溶液。In a preferred embodiment, copper chloride (CuCl 2 ), indium chloride (InCl 3 ), gallium nitrate (Ga(NO 3 ) 3 ), and selenous acid (H 2 SeO 3 ) are mixed in an ethanol solution. The precursor solution of the present invention can be obtained.

此處須注意的是,上述前驅物溶液的製備過程,於一般室溫與大氣環境下進行,不需額外控制製程之氣氛、溫度、濕度與壓力。It should be noted here that the preparation process of the above precursor solution is carried out under normal room temperature and atmospheric environment, and no additional control of the atmosphere, temperature, humidity and pressure of the process is required.

另外,尚可添加一增稠劑(thickener)於前驅物溶液中,以調整前驅物溶液之黏度及附著性,以利後續之塗佈製程,而增稠劑例如為甲基纖維素、乙基纖維素、羧甲基纖維素等纖維素衍生物、澱粉衍生物、乾酪素、聚丙烯酸鈉、聚氧化乙烯、聚乙烯吡咯烷酮、聚乙烯醇、低分子聚乙烯蠟、聚丙烯醯胺、檸檬酸/乙二醇或上述之組合。In addition, a thickener may be added to the precursor solution to adjust the viscosity and adhesion of the precursor solution to facilitate the subsequent coating process, and the thickener is, for example, methyl cellulose or ethyl. Cellulose derivatives such as cellulose and carboxymethyl cellulose, starch derivatives, casein, sodium polyacrylate, polyethylene oxide, polyvinylpyrrolidone, polyvinyl alcohol, low molecular polyethylene wax, polypropylene decylamine, citric acid /ethylene glycol or a combination of the above.

接著,將前驅物溶液塗佈於一基板之上,塗佈之厚度為約0.1~20μm,較佳厚度為0.2~15μm,最佳厚度為0.5~10μm,而所選擇之塗佈方法包括溶液塗佈法,例如旋轉塗佈(spin coating)、棒狀塗佈(bar coating)、浸漬塗佈(dip coating)、滾筒塗佈(roll coating)、噴霧塗佈(spray coating)、凹版式塗佈(gravure coating)、噴墨印刷(ink jet printing)、狹縫塗佈(slot coating)或刮刀塗佈(blade coating)。Next, the precursor solution is coated on a substrate having a thickness of about 0.1 to 20 μm, preferably 0.2 to 15 μm, and an optimum thickness of 0.5 to 10 μm, and the selected coating method includes solution coating. Cloth method, such as spin coating, bar coating, dip coating, roll coating, spray coating, gravure coating ( Gravure coating), ink jet printing, slot coating or blade coating.

上述提及之基板包括玻璃、高分子基板、金屬基板、透明導電層(transparent conducting oxide,TCO)或上述之組合,其中高分子基板例如為聚亞醯胺(polyimide,PI)、聚對苯二甲酸乙二酯(poly(ethylene terephthalate),PET)、聚碳酸酯(poly carbonate,PC)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)或上述之組合,而該透明導電層(TCO)例如為包括氧化鋅:鋁(ZnO:Al)、氧化銦:錫(In2 O3 :Sn)、二氧化錫:氟(SnO2 :F)或上述之組合。The substrate mentioned above includes glass, a polymer substrate, a metal substrate, a transparent conducting oxide (TCO) or a combination thereof, wherein the polymer substrate is, for example, polyimide (PI) or polyparaphenylene. Ethylene terephthalate (PET), poly carbonate (PC), poly(methyl methacrylate, PMMA) or a combination thereof, and the transparent conductive layer ( The TCO) includes, for example, zinc oxide: aluminum (ZnO: Al), indium oxide: tin (In 2 O 3 :Sn), tin dioxide: fluorine (SnO 2 :F), or a combination thereof.

此外,於玻璃、高分子基板或金屬基板之上尚包括一背電極,其中背電極包括鉬(Mo)電極、鈦(Ti)電極、鎢(W)電極、鉭(Ta)電極、鈮(Nb)電極或上述之組合。另外,於透明導電層(transparent conducting layer)之上尚包括一緩衝層(buffer layer),其中緩衝層(buffer layer)包括硫化鎘(CdS)、氫氧化鋅(Zn(OH)2 )、氧化鋅(ZnO)、硫化鋅(ZnS)、硒化銦(In2 Se3 )、硫化銦(In2 S3 )或上述之組合。In addition, a back electrode is further included on the glass, the polymer substrate or the metal substrate, wherein the back electrode comprises a molybdenum (Mo) electrode, a titanium (Ti) electrode, a tungsten (W) electrode, a tantalum (Ta) electrode, and a niobium (Nb). Electrode or a combination of the above. In addition, a buffer layer is further included on the transparent conducting layer, wherein the buffer layer comprises cadmium sulfide (CdS), zinc hydroxide (Zn(OH) 2 ), and zinc oxide. (ZnO), zinc sulfide (ZnS), indium selenide (In 2 Se 3 ), indium sulfide (In 2 S 3 ), or a combination thereof.

另外,上述前驅物溶液可反覆塗佈於基板上,以增加薄膜厚度,再經氣氛(atmosphere)之熱處理。或者是進行熱處理後,重複塗佈與熱處理步驟,以控制薄膜厚度及特性,另外重複塗佈步驟時,前驅物溶液成分可予調整。In addition, the precursor solution may be repeatedly applied to the substrate to increase the thickness of the film and then heat treated by an atmosphere. Alternatively, after the heat treatment, the coating and heat treatment steps are repeated to control the thickness and characteristics of the film, and when the coating step is repeated, the composition of the precursor solution can be adjusted.

此處須注意的是,上述所選擇之基板取決於製程步驟,當太陽能電池先從背光側(back contact)開始製作時,例如會選擇玻璃作為基板,接著製作製作背電極,之後再塗佈光吸收層。另外,當太陽能電池先從照光側(front contact)開始製作時,例如會選擇氧化鋅:鋁(ZnO:Al)作為基板,接著製作緩衝層,之後再塗佈光吸收層。因此,基板之選擇並不限於上述提及之基板,隨著太陽能電池製程技術的發展,基板之選擇也可隨著製程步驟而改變。It should be noted here that the substrate selected above depends on the process steps. When the solar cell is first fabricated from the back contact, for example, glass is selected as the substrate, and then the back electrode is fabricated and then coated. Absorbing layer. Further, when the solar cell is first produced from the front contact, for example, zinc oxide: aluminum (ZnO: Al) is selected as the substrate, and then a buffer layer is formed, and then the light absorbing layer is applied. Therefore, the selection of the substrate is not limited to the above-mentioned substrate, and as the solar cell process technology is developed, the selection of the substrate may also vary with the process steps.

接著,將基板置於包括氣氛(atmosphere)中進行一熱處理,使該基板之上形成光吸收層,其中光吸收層包括ⅠB-ⅢA-ⅥA族化合物。氣氛包括真空或非真空,而該非真空之氣體包括氧氣(O2 )、氮氣(N2 )、氫氣(H2 )、氬氣(Ar)或上述之組合。上述熱處理之溫度為約350℃~650℃,較佳為約400℃~600℃,而熱處理之時間為約0.1小時~8小時,較佳為約0.3小時~6小時,最佳為0.5小時~4小時,熱處理之後即可得到本發明之光吸收層,其能應用於CIGS太陽能電池。為促進反應進行,在上述非真空之氣體尚包括VIA族之氣體,例如硒化氫(H2 Se)、硫化氫(H2 S)、硒(Se)蒸氣、硫(S)蒸氣、碲(Te)蒸氣或上述之組合。Next, the substrate is placed in an atmosphere including a heat treatment to form a light absorbing layer thereon, wherein the light absorbing layer comprises a IB-IIIA-VIA compound. The atmosphere includes vacuum or non-vacuum, and the non-vacuum gas includes oxygen (O 2 ), nitrogen (N 2 ), hydrogen (H 2 ), argon (Ar), or a combination thereof. The heat treatment temperature is about 350 ° C to 650 ° C, preferably about 400 ° C to 600 ° C, and the heat treatment time is about 0.1 to 8 hours, preferably about 0.3 to 6 hours, preferably 0.5 hours. After 4 hours, the light absorbing layer of the present invention can be obtained after heat treatment, which can be applied to a CIGS solar cell. In order to promote the reaction, the above non-vacuum gas still includes a gas of Group VIA, such as hydrogen selenide (H 2 Se), hydrogen sulfide (H 2 S), selenium (Se) vapor, sulfur (S) vapor, hydrazine ( Te) Vapor or a combination of the above.

此外,為了得到較佳特性之光吸收層,進行熱處理步驟之前,可進行一預處理(pre-treatment)步驟,其預處理之溫度為約70℃~500℃,較佳為約150℃~400℃,而預處理之時間為約1分鐘~4小時,較佳為約10分鐘~2小時,以排除不欲殘留之有機物。該預處理之氣氛,可為空氣或含氧氣之氣體。經上述步驟後,最後可得到光吸收層之厚度為約0.08μm~18μm,較佳為0.1μm~12μm。In addition, in order to obtain a light absorbing layer of better characteristics, a pre-treatment step may be performed before the heat treatment step, and the pretreatment temperature is about 70 ° C to 500 ° C, preferably about 150 ° C to 400 °C, and the pretreatment time is about 1 minute to 4 hours, preferably about 10 minutes to 2 hours, to exclude organic matter that is not desired to remain. The atmosphere of the pretreatment may be air or a gas containing oxygen. After the above steps, the thickness of the light absorbing layer is finally obtained to be about 0.08 μm to 18 μm, preferably 0.1 μm to 12 μm.

為了更加了解光吸收層之成份,本發明利用X光繞射圖譜分析ⅠB-ⅢA-ⅥA族化合物,實驗結果得知其具有(112)、(211)、(204)/(220)與(312)/(116)四支主要繞射鋒,其中(204)與(220)為同位置之繞射鋒,(312)與(116)亦為同位置之繞射鋒,分析結果符合ICDD卡編號35-1102圖譜,因此化合物為黃銅礦(chalcopyrite)之晶體結構,其中ⅠB-ⅢA-ⅥA族化合物之化學式表示為ⅠBx ⅢAy ⅥA(x+3y)/2 ,其中x=0.7~1.3,y=0.7~1.3。此外,該化合物中尚可摻雜其他元素。In order to better understand the composition of the light absorbing layer, the present invention analyzes the IB-IIIA-VIA compound by X-ray diffraction pattern, and the experimental results show that it has (112), (211), (204)/(220) and (312). ) / (116) four main diffraction fronts, (204) and (220) are the same position of the diffraction front, (312) and (116) are also the same position of the diffraction front, the analysis results in line with the ICDD card number 35-1102 map, so the compound is a crystal structure of chalcopyrite, wherein the chemical formula of the IB-IIIA-VIA compound is expressed as IB x IIIA y VIA (x+3y)/2 , where x=0.7~1.3, y=0.7~1.3. In addition, other elements may be doped in the compound.

於一實施例中,所得之化合物為CuIn0.3 Ga0.7 Se2 。於一較佳實施例中,所得之化合物為CuIn0.7 Ga0.3 Se2In one embodiment, the resulting compound is CuIn 0.3 Ga 0.7 Se 2 . In a preferred embodiment, the resulting compound is CuIn 0.7 Ga 0.3 Se 2 .

綜上所述,本發明光吸收層之製備方法,其特徵在於在前驅物溶液之中直接加入ⅥA族之化合物,而得到ⅠB-ⅢA-ⅥA族化合物中,而先前技術中,需要經過ⅥA族氣體之熱處理(例如硒化步驟),或者是需要經由複雜的氧化還原反應(例如電沉積與無電極電鍍法),才能得到ⅠB-ⅢA-ⅥA族化合物,因此,本發明之製作方法較為簡易,能節省製作成本。In summary, the preparation method of the light absorbing layer of the present invention is characterized in that a compound of the VIA group is directly added to the precursor solution to obtain a compound of the IB-IIIA-VIA group, and in the prior art, it is required to pass the VIA group. The heat treatment of the gas (for example, the selenization step) or the complicated oxidation-reduction reaction (for example, electrodeposition and electroless plating) can be carried out to obtain the IB-IIIA-VIA compound. Therefore, the production method of the present invention is relatively simple. Can save production costs.

另外,利用原子力顯微鏡(atomic force microscope,AFM)觀察本發明之光吸收層,實驗結果顯示光吸收層之表面型態緻密且分佈均勻。再者,本發明之光吸收層之粗糙度大小為約60~75nm,相較於習知真空硒化製程(粗糙度大小為約80~100nm),本發明光吸收層之表面粗糙度(roughness)較低,有利於後續其他各層材料之塗佈。再者,有文獻(Solar Energy Materials &Solar Cells,93(2009)114-118;Solar Energy,77,(2004)685-695)指出,於CIGS太陽能電池中,需要光吸收層與緩衝層(buffer layer)之間產生PN介面(PN junction),使電子與電洞分離,若是光吸收層表面粗糙度太高時,使緩衝層無法完全覆蓋於光吸收層之上,將會導致光吸收層與電極直接接觸,造成不想要的分流電流(unwanted shunt current),進而使太陽能電池的光電轉化效率(photoelectric conversion efficiency)降低,因此,藉由本發明製備方法得到的光吸收層,其表面粗糙度較低,可避免發生分流電流,進而提高太陽能電池的光電轉化效率。Further, the light absorbing layer of the present invention was observed by an atomic force microscope (AFM), and the experimental results showed that the surface type of the light absorbing layer was dense and uniform. Furthermore, the roughness of the light absorbing layer of the present invention is about 60 to 75 nm, and the surface roughness of the light absorbing layer of the present invention is rougher than the conventional vacuum selenization process (roughness is about 80 to 100 nm). It is lower, which is beneficial to the coating of other layers of materials. Furthermore, there is a literature (Solar Energy Materials & Solar Cells, 93 (2009) 114-118; Solar Energy, 77, (2004) 685-695) that, in CIGS solar cells, a light absorbing layer and a buffer layer are required. A PN junction is formed between the electrons and the hole. If the surface roughness of the light absorbing layer is too high, the buffer layer cannot completely cover the light absorbing layer, which will result in the light absorbing layer and the electrode. Direct contact, resulting in an unwanted shunt current, thereby reducing the photoelectric conversion efficiency of the solar cell. Therefore, the light absorbing layer obtained by the preparation method of the present invention has a low surface roughness. The shunt current can be avoided, thereby improving the photoelectric conversion efficiency of the solar cell.

本發明又提供一種光吸收層,包括ⅠB-ⅢA-ⅥA族化合物,係由上述之光吸收層之製備方法製備而得。The present invention further provides a light absorbing layer comprising the IB-IIIA-VIA compound obtained by the above-mentioned method for preparing a light absorbing layer.

本發明亦提供一種前驅物溶液,包括有ⅠB族化合物、ⅢA族化合物與ⅥA族化合物與一溶劑,其中ⅠB族、ⅢA族、ⅥA族化合物之莫耳數比為約(0.7~1.3):(0.7~1.3):(1.5~20),較佳為約(0.8~1.2):(0.8~1.2):(1.7~16),最佳為約(0.8~1.2):(0.8~1.2):(1.8~15),而關於ⅠB族、ⅢA族、ⅥA族化合物與溶劑之選擇同前所述,在此不再贅述。此外,上述之前驅物溶液可再添加其它離子,以改善太陽電池之特性。例如,可添加ⅠA族化合物提高電池之光電轉化效率,其中ⅠA族化合物之選擇同前所述,在此不再贅述。The present invention also provides a precursor solution comprising a Group IB compound, a Group IIIA compound and a Group VIA compound and a solvent, wherein the molar ratio of the Group IB, Group IIIA, and Group VIA compounds is about (0.7 to 1.3): 0.7~1.3): (1.5~20), preferably about (0.8~1.2): (0.8~1.2): (1.7~16), the best is about (0.8~1.2): (0.8~1.2):( 1.8~15), and the selection of the IB group, the IIIA group, the VIA group compound and the solvent is the same as described above, and will not be described herein. In addition, the above precursor solution may be further added with other ions to improve the characteristics of the solar cell. For example, a group IA compound may be added to improve the photoelectric conversion efficiency of the battery, and the selection of the group IA compound is the same as described above, and details are not described herein again.

本發明另外提供一種太陽能電池,請參見第1圖,其包括一基板10,其中基板10包括玻璃、高分子基板、金屬基板或上述之組合。一背電極20,形成於基板10之上,其中背電極包括鉬(Mo)電極、鈦(Ti)電極、鎢(W)電極、鉭(Ta)電極、鈮(Nb)電極或上述之組合,背電極之厚度為約0.1μm~2μm。一光吸收層(light absorbing layer)30,形成於背電極20之上,此光吸收層30包括ⅠB-ⅢA-ⅥA族化合物,可藉由溶液塗佈法製得,其化合物成份、厚度與其製備方式如同前述,在此不再贅述。一緩衝層(buffer layer)40,形成於光吸收層30之上,其中緩衝層40包括硫化鎘(CdS)、氫氧化鋅(Zn(OH)2 )、氧化鋅(ZnO)、硫化鋅(ZnS)、硒化銦(In2 Se3 )、硫化銦(In2 S3 )或上述之組合,其作用在於與光吸收層30結合成為適當的異質接面,可增加短波長光的吸收效率,其厚度為約0.01μm~0.5μm。一透明導電層(transparent conducting oxide,TCO)50,形成於緩衝層40之上,其包括氧化鋅:鋁(ZnO:Al)、氧化銦:錫(In2 O3 :Sn)、二氧化錫:氟(SnO2 :F)或上述之組合,其厚度為約0.1μm~1μm。以及一前電極60,形成於透明導電層50之上,其中前電極60包括鋁、銅、鎳或上述之組合,其厚度為約0.1μm~2μm。此外,尚可於前電極60之上形成一抗反射層62,此抗反射層62例如為氟化鎂(MgF2 )或其他抗反射材料,其作用在於減少光70在入射過程中造成損耗。此外,除上述之結構外,尚可於緩衝層40與透明導電層50之間形成一氧化鋅(ZnO)層,其用以抑制電流之損失,此結構可視需要而設置。The present invention further provides a solar cell, see Fig. 1, which includes a substrate 10, wherein the substrate 10 comprises glass, a polymer substrate, a metal substrate, or a combination thereof. a back electrode 20 formed on the substrate 10, wherein the back electrode comprises a molybdenum (Mo) electrode, a titanium (Ti) electrode, a tungsten (W) electrode, a tantalum (Ta) electrode, a niobium (Nb) electrode, or a combination thereof The thickness of the back electrode is about 0.1 μm to 2 μm. A light absorbing layer 30 is formed on the back electrode 20, and the light absorbing layer 30 comprises a compound of IB-IIIA-VIA, which can be prepared by a solution coating method, and the composition and thickness of the compound and the preparation method thereof As mentioned above, it will not be described here. A buffer layer 40 is formed on the light absorbing layer 30, wherein the buffer layer 40 comprises cadmium sulfide (CdS), zinc hydroxide (Zn(OH) 2 ), zinc oxide (ZnO), and zinc sulfide (ZnS). Indium selenide (In 2 Se 3 ), indium sulfide (In 2 S 3 ), or a combination thereof, which functions to bond with the light absorbing layer 30 to form a suitable heterojunction, which can increase the absorption efficiency of short-wavelength light. Its thickness is about 0.01 μm to 0.5 μm. A transparent conducting oxide (TCO) 50 is formed over the buffer layer 40 and includes zinc oxide: aluminum (ZnO: Al), indium oxide: tin (In 2 O 3 :Sn), tin dioxide: Fluorine (SnO 2 :F) or a combination thereof, having a thickness of about 0.1 μm to 1 μm. And a front electrode 60 formed on the transparent conductive layer 50, wherein the front electrode 60 comprises aluminum, copper, nickel or a combination thereof, and has a thickness of about 0.1 μm to 2 μm. In addition, an anti-reflective layer 62 can be formed on the front electrode 60. The anti-reflective layer 62 is, for example, magnesium fluoride (MgF 2 ) or other anti-reflective material, which serves to reduce the loss of light 70 during incident. Further, in addition to the above structure, a zinc oxide (ZnO) layer may be formed between the buffer layer 40 and the transparent conductive layer 50 for suppressing the loss of current, and the structure may be provided as needed.

本發明之CIGS太陽能電池,其中光吸收層中包括ⅠB-ⅢA-ⅥA族化合物,其係由直接含有ⅥA族化合物之前驅物溶液製得,不需經過複雜的硒化處理或者氧化還原反應,能簡化製程步驟並節省成本。再者,製得之光吸收層表面粗糙度較小,有助於減少分流電流的產生,進而提升太陽能電池之光電轉化效率。The CIGS solar cell of the invention comprises the IB-IIIA-VIA compound in the light absorbing layer, which is prepared by directly containing the VIA compound precursor solution, without complicated selenization treatment or redox reaction. Simplify process steps and save costs. Moreover, the surface roughness of the obtained light absorbing layer is small, which helps to reduce the generation of the shunt current, thereby improving the photoelectric conversion efficiency of the solar cell.

【實施例】[Examples] 實施例 1 Example 1

起始物CuCl2 、InCl3 、Ga(NO3 )3 和H2 SeO3 依1:0.7:0.3:10之莫耳數比例溶於乙醇溶液中,其中過量添加H2 SeO3 。再添加乙基纖維素(ethyl cellulose)做為增稠劑(thickener),混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於玻璃基材上,於高純度氮氫混合氣環境下,以350℃加熱30分鐘,即可獲得所需之光吸收層CuIn0.7 Ga0.3 Se2The starting materials CuCl 2 , InCl 3 , Ga(NO 3 ) 3 and H 2 SeO 3 were dissolved in an ethanol solution in a molar ratio of 1:0.7:0.3:10, in which H 2 SeO 3 was excessively added. Further, ethyl cellulose is added as a thickener, and after mixing, it becomes a precursor solution, and the precursor solution is applied to a glass substrate by spin coating to obtain high-purity nitrogen and hydrogen. The desired light absorbing layer CuIn 0.7 Ga 0.3 Se 2 was obtained by heating at 350 ° C for 30 minutes in a mixed gas atmosphere.

第2圖顯示光吸收層之X-ray繞射圖譜,其結果顯示光吸收層具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,其中(204)與(220)為同位置之繞射鋒,(312)與(116)亦為同位置之繞射鋒,符合ICDD卡編號35-1102圖譜,此為黃銅礦晶體結構。Fig. 2 shows an X-ray diffraction pattern of the light absorbing layer, and the results show that the light absorbing layer has four main windings of (112), (211), (204)/(220), and (312)/(116). Shooting, where (204) and (220) are the same position of the diffraction front, (312) and (116) are also the same position of the diffraction front, in line with ICDD card number 35-1102 map, this is chalcopyrite crystal structure.

另外,以原子力顯微鏡(atomic force microscope,AFM)分析光吸收層,如第3圖所示,其表面粗糙度為69.7nm。Further, the light absorbing layer was analyzed by an atomic force microscope (AFM), and as shown in Fig. 3, the surface roughness was 69.7 nm.

比較例1Comparative example 1

起始物CuCl2 、InCl3 和Ga(NO3 )3 依照1:0.7:0.3之莫耳數比例溶於乙醇溶液中。再添加乙基纖維素(ethyl cellulose)做為增稠劑,混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於玻璃基材上,於高純度氮氫混合氣環境下,以350℃加熱30分鐘,並通入硒蒸氣,即可獲得所需之光吸收層CuIn0.7 Ga0.3 Se2The starting materials CuCl 2 , InCl 3 and Ga(NO 3 ) 3 were dissolved in an ethanol solution in accordance with a molar ratio of 1:0.7:0.3. Ethyl cellulose (ethyl cellulose) is added as a thickener, and after mixing, it becomes a precursor solution, and the precursor solution is applied to a glass substrate by a spin coating method in a high-purity nitrogen-hydrogen mixed gas environment. The desired light absorbing layer CuIn 0.7 Ga 0.3 Se 2 was obtained by heating at 350 ° C for 30 minutes and introducing selenium vapor.

此吸收層以X光繞射圖譜分析後可以發現具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,符合ICDD卡編號35-1102圖譜,此光吸收層為黃銅礦之晶體結構。The absorption layer can be found by X-ray diffraction pattern with four main diffraction fronts of (112), (211), (204)/(220), and (312)/(116), in accordance with ICDD card number 35. -1102 map, the light absorbing layer is a crystal structure of chalcopyrite.

另外,以原子力顯微鏡(atomic force microscope,AFM)分析光吸收層,結果如第4圖,其表面粗糙度為80.7nm。由表1可得知,於溶液中添加硒可有效降低光吸收層之表面粗糙度。Further, the light absorbing layer was analyzed by an atomic force microscope (AFM). As a result, as shown in Fig. 4, the surface roughness was 80.7 nm. It can be seen from Table 1 that the addition of selenium to the solution can effectively reduce the surface roughness of the light absorbing layer.

實施例2Example 2

起始物CuCl2 、InCl3 、Ga(NO3 )3 和H2 SeO3 依照1:0.3:0.7:10之莫耳數比例溶於乙醇溶液中,其中過量添加H2 SeO3 。再添加乙基纖維素(ethyl cellulose)做為增稠劑,混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於玻璃基材上,於高純度氮氫混合氣環境下,以500℃加熱1小時,即可獲得所需之光吸收層CuIn0.3 Ga0.7 Se2The starting materials CuCl 2 , InCl 3 , Ga(NO 3 ) 3 and H 2 SeO 3 were dissolved in an ethanol solution in a molar ratio of 1:0.3:0.7:10, in which H 2 SeO 3 was excessively added. Ethyl cellulose (ethyl cellulose) is added as a thickener, and after mixing, it becomes a precursor solution, and the precursor solution is applied to a glass substrate by a spin coating method in a high-purity nitrogen-hydrogen mixed gas environment. The desired light absorbing layer CuIn 0.3 Ga 0.7 Se 2 was obtained by heating at 500 ° C for 1 hour.

此光吸收層經X-ray繞射圖譜分析,顯示其具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,符合ICDD卡編號35-1102圖譜,此光吸收層為黃銅礦晶體結構。The light absorbing layer is analyzed by X-ray diffraction pattern and shows that it has four main diffraction fronts (112), (211), (204)/(220), and (312)/(116), which conforms to the ICDD card. No. 35-1102 map, this light absorbing layer is a chalcopyrite crystal structure.

實施例3Example 3

起始物CuCl2 、InCl3 、CS(NH2 )2 和H2 SeO3 依照1:1:2.5:2.5之莫耳數比例溶於乙醇溶液中,其中過量添加CS(NH2 )2 及H2 SeO3 。再添加乙基纖維素(ethyl cellulose)做為增稠劑,混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於濺鍍Mo之玻璃基材上,於高純度氮氣環境下,以450℃加熱30分鐘,即可獲得所需之光吸收層CuInSeS。The starting materials CuCl 2 , InCl 3 , CS(NH 2 ) 2 and H 2 SeO 3 are dissolved in an ethanol solution according to a molar ratio of 1:1:2.5:2.5, wherein CS(NH 2 ) 2 and H are excessively added. 2 SeO 3 . Ethyl cellulose (ethyl cellulose) was added as a thickener, and after mixing, it became a precursor solution, and the precursor solution was applied by spin coating to a glass substrate of sputtered Mo for high purity nitrogen. Under the environment, heating at 450 ° C for 30 minutes, the desired light absorbing layer CuInSeS can be obtained.

此光吸收層經X-ray繞射圖譜分析,顯示其具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,符合ICDD卡編號36-1311圖譜,此光吸收層為黃銅礦晶體結構。The light absorbing layer is analyzed by X-ray diffraction pattern and shows that it has four main diffraction fronts (112), (211), (204)/(220), and (312)/(116), which conforms to the ICDD card. No. 36-1311 map, this light absorbing layer is a chalcopyrite crystal structure.

實施例4Example 4

起始物CuCl2 、InCl3 、Al(No3 )3 和SeO2 依照1.2:0.1:0.7:1.5之莫耳數比例溶於水溶液中,其中SeO2 添加量不足,之後藉由硒化反應補足不足量。再添加乙基纖維素(ethyl cellulose)做為增稠劑及NaCl為改質劑,Cu1.2 In0.1 Al0.7 Se1.8 與NaCl莫耳數比為20:1,混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於沈積CdS之透明導電玻璃基材上,於高純度氬氣環境下,以550℃加熱30分鐘,並通入硒蒸氣進行硒化反應,即可獲得含Na之Cu1.2 In0.1 Al0.7 Se1.8 光吸收層薄膜。The starting materials CuCl 2 , InCl 3 , Al(No 3 ) 3 and SeO 2 are dissolved in an aqueous solution according to a molar ratio of 1.2:0.1:0.7:1.5, wherein the amount of SeO 2 added is insufficient, and then the selenization reaction is supplemented. Insufficient amount. Further, ethyl cellulose is added as a thickener and NaCl is used as a modifier. The molar ratio of Cu 1.2 In 0.1 Al 0.7 Se 1.8 to NaCl is 20:1. After mixing, it becomes a precursor solution. The precursor solution is applied to a transparent conductive glass substrate on which CdS is deposited by a spin coating method, heated at 550 ° C for 30 minutes in a high-purity argon atmosphere, and selenized by a selenium vapor. A Cu 1.2 In 0.1 Al 0.7 Se 1.8 light absorbing layer film containing Na.

此光吸收層經X-ray繞射圖譜分析,顯示其具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,此光吸收層為黃銅礦晶體結構。The light absorbing layer was analyzed by X-ray diffraction pattern and showed that it has four main diffraction fronts of (112), (211), (204)/(220), and (312)/(116). The layer is a chalcopyrite crystal structure.

實施例5Example 5

起始物CuCl2 、InCl3 、Ga(NO3 )3 和SeO2 依照0.8:0.5:0.5:1.8之莫耳數比例溶於丙酮溶液中。再添加乙基纖維素(ethyl cellulose)做為增稠劑及NaCl為改質劑,Cu0.8 In0.5 Ga0.5 Se1.8 與NaCl莫耳數比為10:1,混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於鈦基材上,於高純度氮氣環境下,以400℃加熱30分鐘,並通入硒蒸氣,即可獲得含Na之Cu0.8 In0.5 Ga0.5 Se1.8 光吸收層薄膜。The starting materials CuCl 2 , InCl 3 , Ga(NO 3 ) 3 and SeO 2 were dissolved in the acetone solution in a molar ratio of 0.8:0.5:0.5:1.8. Further, ethyl cellulose is added as a thickener and NaCl is used as a modifier. The molar ratio of Cu 0.8 In 0.5 Ga 0.5 Se 1.8 to NaCl is 10:1. After mixing, it becomes a precursor solution. The precursor solution is applied to a titanium substrate by a spin coating method, heated at 400 ° C for 30 minutes in a high-purity nitrogen atmosphere, and a selenium vapor is introduced to obtain a Na-containing Cu 0.8 In 0.5 Ga 0.5 Se. 1.8 light absorbing layer film.

此光吸收層經X-ray繞射圖譜分析,顯示其具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,此光吸收層為黃銅礦晶體結構。The light absorbing layer was analyzed by X-ray diffraction pattern and showed that it has four main diffraction fronts of (112), (211), (204)/(220), and (312)/(116). The layer is a chalcopyrite crystal structure.

實施例6Example 6

起始物AgNO3 、InCl3 、GaLNO3 )3 和SeO2 依照1:0.9:0.3:15之莫耳數比例溶於異丙醇溶液中,其中過量添加SeO2 。再添加乙基纖維素(ethyl cellulose)做為增稠劑及KC1為改質劑,AgIn0.9 Ga0.3 Se2.3 與KCl莫耳數比為10:1,混合均勻後,成為前驅物溶液,利用旋轉塗佈法將前驅物溶液塗佈於不銹鋼基材上,於高純度氮氫混合氣環境下,以400℃加熱2小時,即可獲得含K之AgIn0.9 Ga0.3 Se2.3 光吸收層薄膜。The starting materials AgNO 3 , InCl 3 , GaLNO 3 ) 3 and SeO 2 were dissolved in an isopropanol solution in a molar ratio of 1:0.9:0.3:15, in which SeO 2 was excessively added. Ethyl cellulose (ethyl cellulose) is added as a thickener and KC1 is used as a modifier. AgIn 0.9 Ga 0.3 Se 2.3 and KCl molar ratio is 10:1. After mixing, it becomes a precursor solution and is rotated. The coating method was applied to a stainless steel substrate by a coating method, and heated at 400 ° C for 2 hours in a high-purity nitrogen-hydrogen mixed gas atmosphere to obtain a K-containing AgIn 0.9 Ga 0.3 Se 2.3 light absorbing layer film.

此光吸收層經X-ray繞射圖譜分析,顯示其具有(112)、(211)、(204)/(220)、與(312)/(116)四支主要繞射鋒,此光吸收層為黃銅礦晶體結構。The light absorbing layer was analyzed by X-ray diffraction pattern and showed that it has four main diffraction fronts of (112), (211), (204)/(220), and (312)/(116). The layer is a chalcopyrite crystal structure.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

10...基板10. . . Substrate

20...背電極20. . . Back electrode

30...光吸收層30. . . Light absorbing layer

40...緩衝層40. . . The buffer layer

50...透明導電層50. . . Transparent conductive layer

60...前電極60. . . Front electrode

62...抗反射層62. . . Antireflection layer

70...光70. . . Light

第1圖為一剖面圖,用以說明本發明一實施例之太陽能電池。1 is a cross-sectional view for explaining a solar cell according to an embodiment of the present invention.

第2圖為一X-ray繞射圖譜,用以說明本發明一實施例之光吸收層之晶體結構。Fig. 2 is an X-ray diffraction pattern for explaining the crystal structure of the light absorbing layer of an embodiment of the present invention.

第3圖為一原子力顯微鏡圖(AFM),用以說明本發明一實施例之光吸收層的表面型態。Fig. 3 is an atomic force microscope image (AFM) for explaining the surface morphology of the light absorbing layer of an embodiment of the present invention.

第4圖為一原子力顯微鏡圖(AFM),用以說明習知之光吸收層的表面型態。Figure 4 is an atomic force microscope image (AFM) illustrating the surface morphology of a conventional light absorbing layer.

10...基板10. . . Substrate

20...背電極20. . . Back electrode

30...光吸收層30. . . Light absorbing layer

40...緩衝層40. . . The buffer layer

50...透明導電層50. . . Transparent conductive layer

60...前電極60. . . Front electrode

62...抗反射層62. . . Antireflection layer

70...光70. . . Light

Claims (35)

一種光吸收層之製備方法,包括:混合包括I B族、Ⅲ A族、Ⅵ A族之化合物溶於一溶劑中以得到一前驅物溶液(precursor);塗佈該前驅物溶液於一基板之上;將該基板置於一氣氛(atmosphere)中進行熱處理,使該基板之上形成光吸收層。 A method for preparing a light absorbing layer, comprising: mixing a compound comprising Group IB, Group III A, Group VI A in a solvent to obtain a precursor solution; coating the precursor solution on a substrate The substrate is placed in an atmosphere for heat treatment to form a light absorbing layer on the substrate. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該光吸收層包括I B-Ⅲ A-Ⅵ A族化合物。 The method for producing a light absorbing layer according to claim 1, wherein the light absorbing layer comprises an I B-III A-VI A compound. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該前驅物溶液(precursor)尚包括I A族。 The method for preparing a light absorbing layer according to claim 1, wherein the precursor solution further comprises a group I A. 如申請專利範圍第3項所述之光吸收層之製備方法,其中該I A族包括鋰(Li)、鈉(Na)、鉀(K)或上述之組合。 The method of producing a light absorbing layer according to claim 3, wherein the Group I A comprises lithium (Li), sodium (Na), potassium (K) or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該I B族包括銅(Cu)、銀(Ag)、金(Au)或上述之組合。 The method for producing a light absorbing layer according to claim 1, wherein the Group I B includes copper (Cu), silver (Ag), gold (Au) or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該I B族之化合物包括含有I B族之氧化物、氮化物、氫氧化物、鹵化物、硝酸物、醋酸物、硫酸物、碳酸物、氯酸物、磷酸物、硒酸物、草酸物或磷化物。 The method for preparing a light absorbing layer according to claim 1, wherein the compound of the group IB comprises an oxide, a nitride, a hydroxide, a halide, a nitrate, an acetate, a sulfate, and a IB group. Carbonic acid, chlorate, phosphate, selenate, oxalic acid or phosphide. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該Ⅲ A族包括鋁(Al)、銦(In)、鎵(Ga)或上述之組合。 The method of producing a light absorbing layer according to claim 1, wherein the Group III A comprises aluminum (Al), indium (In), gallium (Ga) or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該Ⅲ A族之化合物包括含有Ⅲ A之氧化物、氮化物、氫氧化物、鹵化物、硝酸物、醋酸物、硫酸物、碳酸 物、氯酸物、磷酸物、硒酸物、草酸物或磷化物。 The method for preparing a light absorbing layer according to claim 1, wherein the compound of Group III A comprises an oxide, a nitride, a hydroxide, a halide, a nitrate, an acetate, a sulfate containing III A. Carbonic acid , chlorate, phosphate, selenate, oxalate or phosphide. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該ⅥA族包括硫(S)、硒(Se)、銻(Te)或上述之組合。 The method for producing a light absorbing layer according to claim 1, wherein the group VIA comprises sulfur (S), selenium (Se), tellurium (Te) or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該VIA族化合物包括含有VIA族之氧化物、鹵化物、鹵氧化物、硫化物、硒化物、胺化物、脲化物、硒酸物、硫酸物或碲酸物。 The method for preparing a light absorbing layer according to claim 1, wherein the group VIA compound comprises an oxide, a halide, an oxyhalide, a sulfide, a selenide, an amination, a urea, and a selenium containing a group VIA. Acid, sulphate or citrate. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該前驅物溶液中的I B族化合物、Ⅲ A族化合物、Ⅵ A化合物之莫耳數比為約(0.7~1.3):(0.7~1.3):(1.5~20)。 The method for preparing a light absorbing layer according to claim 1, wherein the molar ratio of the group IB compound, the group III A compound, and the VI A compound in the precursor solution is about (0.7 to 1.3): 0.7~1.3): (1.5~20). 如申請專利範圍第1項所述之光吸收層之製備方法,其中該溶劑包括水、酸類、鹼類、醇類、酮類、醚類、胺類或上述之組合。 The method for producing a light absorbing layer according to claim 1, wherein the solvent comprises water, an acid, a base, an alcohol, a ketone, an ether, an amine or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中進行熱處理步驟之前,尚包括一預處理(pre-treatment)步驟。 The method for preparing a light absorbing layer according to claim 1, wherein a pre-treatment step is included before the heat treatment step. 如申請專利範圍第13項所述之光吸收層之製備方法,其中該預處理(pre-treatment)步驟之溫度為約70℃~500℃。 The method for producing a light absorbing layer according to claim 13, wherein the pre-treatment step has a temperature of about 70 ° C to 500 ° C. 如申請專利範圍第13項所述之光吸收層之製備方法,其中該預處理(pre-treatment)步驟之時間為約1分鐘~4小時。 The method for preparing a light absorbing layer according to claim 13, wherein the pre-treatment step is performed for about 1 minute to 4 hours. 如申請專利範圍第1項所述之光吸收層之製備方法,其中塗佈該前驅物溶液之方法包括溶液塗佈法。 The method for producing a light absorbing layer according to claim 1, wherein the method of coating the precursor solution comprises a solution coating method. 如申請專利範圍第16項所述之光吸收層之製備方 法,其中該溶液塗佈法包括旋轉塗佈(spin coating)、棒狀塗佈(bar coating)、浸漬塗佈(dip coating)、滾筒塗佈(roll coating)、噴霧塗佈(spray coating)、凹版式塗佈(gravure coating)、噴墨印刷(ink jet printing)、狹縫塗佈(slot coating)或刮刀塗佈(blade coating)。 Preparation of the light absorbing layer as described in claim 16 a method in which the solution coating method includes spin coating, bar coating, dip coating, roll coating, spray coating, Gravure coating, ink jet printing, slot coating or blade coating. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該基板包括玻璃、高分子基板、金屬基板、透明導電層(transparent conducting oxide,TCO)或上述之組合。 The method for preparing a light absorbing layer according to claim 1, wherein the substrate comprises glass, a polymer substrate, a metal substrate, a transparent conducting oxide (TCO) or a combination thereof. 如申請專利範圍第18項所述之光吸收層之製備方法,其中該高分子基板包括聚亞醯胺(polyimide,PI)、聚對苯二甲酸乙二酯(poly(ethylene terephthalate),PET)、聚碳酸酯(poly carbonate,PC)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)或上述之組合。 The method for preparing a light absorbing layer according to claim 18, wherein the polymer substrate comprises polyimide (PI), polyethylene terephthalate (PET), and polyethylene terephthalate (PET). Polycarbonate (PC), poly(methyl methacrylate) (PMMA) or a combination thereof. 如申請專利範圍第18項所述之光吸收層之製備方法,其中該透明導電層(TCO)包括氧化鋅:鋁(ZnO:Al)、氧化銦:錫(In2 O3 :Sn)、二氧化錫:氟(SnO2 :F)或上述之組合。The method for preparing a light absorbing layer according to claim 18, wherein the transparent conductive layer (TCO) comprises zinc oxide: aluminum (ZnO: Al), indium oxide: tin (In 2 O 3 : Sn), Tin oxide: fluorine (SnO 2 : F) or a combination thereof. 如申請專利範圍第18項所述之光吸收層之製備方法,其中該玻璃、高分子基板或金屬基板之上尚包括一背電極。 The method for preparing a light absorbing layer according to claim 18, wherein the glass, the polymer substrate or the metal substrate further comprises a back electrode. 如申請專利範圍第21項所述之光吸收層之製備方法,其中該背電極包括鉬(Mo)電極、鈦(Ti)電極、鎢(W)電極、鉭(Ta)電極、鈮(Nb)電極或上述之組合。 The method for preparing a light absorbing layer according to claim 21, wherein the back electrode comprises a molybdenum (Mo) electrode, a titanium (Ti) electrode, a tungsten (W) electrode, a tantalum (Ta) electrode, and a niobium (Nb). Electrode or a combination of the above. 如申請專利範圍第18項所述之光吸收層之製備方法,其中該透明導電層(transparent conducting layer)之上尚包括一緩衝層(buffer layer)。 The method for preparing a light absorbing layer according to claim 18, wherein a buffer layer is further included on the transparent conducting layer. 如申請專利範圍第23項所述之光吸收層之製備方 法,其中該緩衝層(buffer layer)包括硫化鎘(CdS)、氫氧化鋅(Zn(OH)2 )、氧化鋅(ZnO)、硫化鋅(ZnS)、硒化銦(In2 Se3 )、硫化銦(In2 S3 )或上述之組合。The method for preparing a light absorbing layer according to claim 23, wherein the buffer layer comprises cadmium sulfide (CdS), zinc hydroxide (Zn(OH) 2 ), zinc oxide (ZnO), and vulcanization. Zinc (ZnS), indium selenide (In 2 Se 3 ), indium sulfide (In 2 S 3 ), or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該氣氛包括真空或非真空。 The method of producing a light absorbing layer according to claim 1, wherein the atmosphere comprises vacuum or non-vacuum. 如申請專利範圍第25項所述之光吸收層之製備方法,其中該非真空之氣體包括氧氣(O2 )、氮氣(N2 )、氫氣(H2 )、氬氣(Ar)或上述之組合。The method for preparing a light absorbing layer according to claim 25, wherein the non-vacuum gas comprises oxygen (O 2 ), nitrogen (N 2 ), hydrogen (H 2 ), argon (Ar) or a combination thereof. . 如申請專利範圍第25項所述之光吸收層之製備方法,其中該非真空之氣體尚包括硒化氫(H2 Se)、硫化氫(H2 S)、硒(Se)蒸氣、硫(S)蒸氣、碲(Te)蒸氣或上述之組合。The method for preparing a light absorbing layer according to claim 25, wherein the non-vacuum gas further comprises hydrogen selenide (H 2 Se), hydrogen sulfide (H 2 S), selenium (Se) vapor, sulfur (S). ) Vapor, cerium (Te) vapor or a combination thereof. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該熱處理之溫度為約350℃~650℃。 The method for producing a light absorbing layer according to claim 1, wherein the heat treatment temperature is about 350 ° C to 650 ° C. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該熱處理之時間為約0.1小時~8小時。 The method for preparing a light absorbing layer according to claim 1, wherein the heat treatment time is about 0.1 to 8 hours. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該光吸收層之塗佈厚度為約0.1~20μm。 The method for producing a light absorbing layer according to claim 1, wherein the light absorbing layer has a coating thickness of about 0.1 to 20 μm. 如申請專利範圍第1項所述之光吸收層之製備方法,其中該光吸收層係應用於CIGS太陽能電池。 The method for producing a light absorbing layer according to claim 1, wherein the light absorbing layer is applied to a CIGS solar cell. 一種前驅物溶液,包括I B族化合物、Ⅲ A族化合物、IA族與Ⅵ A族化合物溶於一溶劑中。 A precursor solution comprising a Group I B compound, a Group III A compound, a Group IA and a Group VI A compound dissolved in a solvent. 如申請專利範圍第32項所述之前驅物溶液,其中I B族化合物為氯化物或硝酸物,Ⅲ A族化合物為氯化物或硝酸物,且Ⅵ A族化合物為硒酸物或氧化物。 A precursor solution as described in claim 32, wherein the Group I B compound is a chloride or a nitrate, the Group III A compound is a chloride or a nitrate, and the Group VI A compound is a selenate or an oxide. 如申請專利範圍第32項所述之前驅物溶液,其中該前驅物溶液中的I B族化合物、Ⅲ A族化合物、Ⅵ A化 合物之莫耳數比為約(0.7~1.3):(0.7~1.3):(1.5~20)。 The precursor solution as described in claim 32, wherein the group I B compound, the group III A compound, and the VI A in the precursor solution The molar ratio of the compound is about (0.7~1.3): (0.7~1.3): (1.5~20). 如申請專利範圍第32項所述之前驅物溶液,其中該溶劑包括水、酸類、鹼類、醇類、酮類、醚類、胺類或上述之組合。 The precursor solution as described in claim 32, wherein the solvent comprises water, an acid, a base, an alcohol, a ketone, an ether, an amine or a combination thereof.
TW098108878A 2009-03-19 2009-03-19 Fabrication method for light absorbing layers precursor solution TWI495114B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098108878A TWI495114B (en) 2009-03-19 2009-03-19 Fabrication method for light absorbing layers precursor solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098108878A TWI495114B (en) 2009-03-19 2009-03-19 Fabrication method for light absorbing layers precursor solution

Publications (2)

Publication Number Publication Date
TW201036175A TW201036175A (en) 2010-10-01
TWI495114B true TWI495114B (en) 2015-08-01

Family

ID=44856134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108878A TWI495114B (en) 2009-03-19 2009-03-19 Fabrication method for light absorbing layers precursor solution

Country Status (1)

Country Link
TW (1) TWI495114B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201217466A (en) * 2010-10-20 2012-05-01 Bosin Technology Co Ltd wherein the printing ink composition comprises powder and a chelating agent corresponding to the powder
US8771555B2 (en) 2011-05-06 2014-07-08 Neo Solar Power Corp. Ink composition
TWI456779B (en) 2011-12-28 2014-10-11 Ind Tech Res Inst Modifying method for the light absorption layer
JP6373124B2 (en) * 2014-08-21 2018-08-15 東京応化工業株式会社 Coating liquid, light absorption layer for solar cell and solar cell, and production method thereof
CN109817734A (en) * 2018-12-26 2019-05-28 北京铂阳顶荣光伏科技有限公司 A kind of preparation method of copper-indium-galliun-selenium film solar cell absorbed layer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297442B1 (en) * 1998-11-13 2001-10-02 Fuji Xerox Co., Ltd. Solar cell, self-power-supply display device using same, and process for producing solar cell
TW200737304A (en) * 2005-11-02 2007-10-01 Solopower Inc Technique and apparatus for deposition layers of semiconductors for solar cell and module fabrication
US20080135812A1 (en) * 2004-02-19 2008-06-12 Dong Yu Solution-based fabrication of photovoltaic cell
US20080280030A1 (en) * 2007-01-31 2008-11-13 Van Duren Jeoren K J Solar cell absorber layer formed from metal ion precursors
TW200913338A (en) * 2007-07-25 2009-03-16 Polymers Crc Ltd Solar cell and method for preparation thereof
TW201022151A (en) * 2008-12-03 2010-06-16 Ind Tech Res Inst Fabrication method for IBIIIAVIA-group amorphous compound and IBIIIAVIA-group amorphous precursor for thin-film solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297442B1 (en) * 1998-11-13 2001-10-02 Fuji Xerox Co., Ltd. Solar cell, self-power-supply display device using same, and process for producing solar cell
US20080135812A1 (en) * 2004-02-19 2008-06-12 Dong Yu Solution-based fabrication of photovoltaic cell
TW200737304A (en) * 2005-11-02 2007-10-01 Solopower Inc Technique and apparatus for deposition layers of semiconductors for solar cell and module fabrication
US20080280030A1 (en) * 2007-01-31 2008-11-13 Van Duren Jeoren K J Solar cell absorber layer formed from metal ion precursors
TW200913338A (en) * 2007-07-25 2009-03-16 Polymers Crc Ltd Solar cell and method for preparation thereof
TW201022151A (en) * 2008-12-03 2010-06-16 Ind Tech Res Inst Fabrication method for IBIIIAVIA-group amorphous compound and IBIIIAVIA-group amorphous precursor for thin-film solar cell

Also Published As

Publication number Publication date
TW201036175A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
US20090260670A1 (en) Precursor ink for producing IB-IIIA-VIA semiconductors
US8617642B2 (en) Preparation of thin film for solar cell using paste
JP4303363B2 (en) Method for producing a compound semiconductor film based on an oxide and further producing an associated electronic device
JP4745450B2 (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
JP4782880B2 (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
CN101774629B (en) Controllable preparation method of p-type and n-type cuprous oxide film by using hydrothermal method
JP4615067B1 (en) Photoelectric conversion element and solar cell including the same
TWI495114B (en) Fabrication method for light absorbing layers precursor solution
TWI500170B (en) Method for manufacturing light absorber layer of bismuth-doped ib-iiia-via compound and photovoltaic device including the same
WO2013015745A1 (en) Cu-zn-sn-s/se thin film and methods of forming the same
JP6035122B2 (en) Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element
TWI390742B (en) Light absorbing layers, precursor solution and fabrication method thereof, and solar cell comprising the same
JP2012195416A (en) Method for manufacturing photoelectric conversion element
US20200343393A1 (en) Alkali metal-incorporated chalcopyrite compound-based thin film and method of fabricating the same
JP2011159652A (en) Method of manufacturing photoelectric conversion device, and photoelectric conversion device
JP2012028650A (en) Photoelectric element and manufacturing method thereof
KR101093831B1 (en) Preparation method of copper indium disulphide thin film for solar cell using spin spray
CN117174593B (en) Method for preparing copper zinc tin sulfur selenium film precursor solution, copper zinc tin sulfur selenium film and photovoltaic device based on ammonia water addition
Ge et al. Co-electroplated kesterite bifacial thin film solar cells
JP4750228B2 (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
JP2011159731A (en) Method of manufacturing photoelectric conversion device
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
KR101798411B1 (en) Thin film solar cell and method of manufacturing the same
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods
JP6184602B2 (en) Persulfate bath and method for chemically depositing layers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees