KR101093831B1 - Preparation method of copper indium disulphide thin film for solar cell using spin spray - Google Patents

Preparation method of copper indium disulphide thin film for solar cell using spin spray Download PDF

Info

Publication number
KR101093831B1
KR101093831B1 KR1020090107654A KR20090107654A KR101093831B1 KR 101093831 B1 KR101093831 B1 KR 101093831B1 KR 1020090107654 A KR1020090107654 A KR 1020090107654A KR 20090107654 A KR20090107654 A KR 20090107654A KR 101093831 B1 KR101093831 B1 KR 101093831B1
Authority
KR
South Korea
Prior art keywords
thin film
cuins
spraying
substrate
sodium sulfide
Prior art date
Application number
KR1020090107654A
Other languages
Korean (ko)
Other versions
KR20110051012A (en
Inventor
류시옥
신형섭
박미선
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020090107654A priority Critical patent/KR101093831B1/en
Publication of KR20110051012A publication Critical patent/KR20110051012A/en
Application granted granted Critical
Publication of KR101093831B1 publication Critical patent/KR101093831B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법에 관한 것으로, 보다 상세하게는 본 발명은 (i) 기판을 세정하는 단계(제1단계); (ii) 염화구리, 염화인듐 및 황화나트륨으로 이루어진 군에서 선택된 전구체를 물에 용해하여 증착용 전구체 용액을 준비하는 단계(제2단계); (iii) 스핀코터에 로딩된 기판에 염화구리 수용액을 분무한 후, 황화나트륨 수용액을 분무하는 단계(제3단계); (iv) 염화구리 및 황화나트륨이 분무된 기판에 염화인듐을 분무한 후, 황화나트륨 수용액을 분무하는 단계(제4단계); (v) 제3단계 및 제4단계 분무를 지그재그형으로 반복하여 분무하여 실온 증착시키는 단계(제5단계); 및 (vi) 열처리하는 단계(제6단계)를 포함하여 구성되는 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a CuInS 2 thin film for solar cells using a spin spray method, and more particularly, the present invention comprises the steps of (i) cleaning the substrate (first step); (ii) dissolving a precursor selected from the group consisting of copper chloride, indium chloride and sodium sulfide in water to prepare a precursor solution for deposition (second step); (iii) spraying an aqueous copper chloride solution onto the substrate loaded on the spin coater, followed by spraying an aqueous sodium sulfide solution (step 3); (iv) spraying indium chloride on the substrate sprayed with copper chloride and sodium sulfide, followed by spraying with an aqueous sodium sulfide solution (step 4); (v) spraying the spray of the third and fourth stages in a zigzag pattern and depositing them at room temperature (step 5); And (vi) relates to a method for manufacturing a CuInS 2 thin film for solar cells using a spin spray method comprising a heat treatment step (sixth step).

스핀 스프레이, CuInS2, 염화구리, 염화인듐, 황화나트륨, 태양전지 Spin Spray, CuInS2, Copper Chloride, Indium Chloride, Sodium Sulfide, Solar Cell

Description

스핀 스프레이법을 이용한 태양전지용 CuInS2 박막의 제조방법{Preparation method of copper indium disulphide thin film for solar cell using spin spray}Preparation method of copper indium disulphide thin film for solar cell using spin spray}

본 발명은 스핀 스프레이(spin spray)법을 이용하여 실온 증착함으로써 종래보다 매끈하고 치밀한 태양전지용 CuInS2 박막을 저가로 제조할 수 있는 CuInS2 박막의 제조방법에 관한 것이다.The present invention relates to a process for the preparation of CuInS 2 thin film which can be produced smooth, dense CuInS 2 thin-film solar cell at a low cost than the prior art by depositing at room temperature using spin spray (spray spin) method.

카드뮴 텔루라이드(CdTe), 구리인듐셀레나이드(CuInSe2), 구리인듐갈륨디셀레나이드(CuInxGa(1-x)Se2) 및 무정형 실리콘(a-Si) 등과 같은 박막 소재는 제2세대 태양전지의 소재로서 현재 각광받고 있다. 박막 태양전지는 결정성 실리콘계 태양전지와 비교하면 낮은 공정비, 보다 가벼운 무게 및 유연성을 포함한 많은 장점을 지닌다. Thin film materials such as cadmium telluride (CdTe), copper indium selenide (CuInSe 2 ), copper indium gallium diselenide (CuIn x Ga (1-x) Se 2 ), and amorphous silicon (a-Si) are second generation It is currently in the spotlight as a solar cell material. Thin film solar cells have many advantages over crystalline silicon solar cells, including lower process costs, lighter weight and flexibility.

구리인듐디설파이드(CuInS2) 박막은 태양전지 적용을 위한 황동석 소재의 패밀리 중 가장 유망한 후보의 하나로 알려져 있다. 이러한 독특한 물리적, 광학적 및 전자적 특성으로 인해 구리인듐디설파이드가 좋은 광흡수 다결정성 소재로서 고 려되고 있다. CuInS2의 직접 밴드갭은 약 1.53eV이고, 이 값은 태양전지의 이론적 최적 변환 효율에 근접하는 값이다. 지구상 태양 스펙트럼 범위에서 CuInS2의 흡수 계수는 박막 태양전지를 제작할 수 있을 만큼 충분히 큰 것으로 알려져 있다. Copper indium disulfide (CuInS 2 ) thin films are known as one of the most promising candidates in a family of brass materials for solar cell applications. These unique physical, optical and electronic properties make copper indium disulfide a good light-absorbing polycrystalline material. The direct bandgap of CuInS 2 is about 1.53 eV, which is close to the theoretical optimal conversion efficiency of solar cells. The absorption coefficient of CuInS 2 in the global solar spectral range is known to be large enough to produce thin film solar cells.

CuInS2의 다결정성 박막 형성과 관련하여, 지금까지 분무열분해, RF-스퍼터링, 전착, 이온교환공정, 화학증착 및 증발 등과 같은 여러가지 방법들이 보고되어 있지만, 아직까지 매끈하고 치밀하게 박막이 형성되면서도 경제적인 CuInS2의 다결정성 박막 형성 공정은 보고된 바 없었다.Regarding polycrystalline thin film formation of CuInS 2 , various methods such as spray pyrolysis, RF-sputtering, electrodeposition, ion exchange process, chemical vapor deposition, and evaporation have been reported so far, but the thin and dense thin film is still economical. A polycrystalline thin film formation process of phosphorus CuInS 2 has not been reported.

상기 종래기술의 문제점을 해결하기 위하여, 본 발명의 목적은 스핀 스프레이(spin spray)법을 이용하여 실온 증착함으로써 저가로 매끈하고 치밀한 CuInS2 박막을 형성할 수 있다는 점에 착안하여 본 발명을 완성하였다.In order to solve the problems of the prior art, the object of the present invention was completed by focusing on the fact that it is possible to form a smooth and dense CuInS 2 thin film at low cost by depositing at room temperature using a spin spray method. .

이에, 본 발명의 목적은 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법을 제공하는 데에 있다.Accordingly, an object of the present invention is to provide a method for producing a CuInS 2 thin film for solar cells using a spin spray method.

상기 목적을 달성하기 위하여, 본 발명은 (i) 기판을 세정하는 단계(제1단계); (ii) 염화구리, 염화인듐 및 황화나트륨으로 이루어진 군에서 선택된 전구체를 물에 용해하여 증착용 전구체 용액을 준비하는 단계(제2단계); (iii) 스핀코터에 로딩된 기판에 염화구리 수용액을 분무한 후, 황화나트륨 수용액을 분무하는 단계(제3단계); (iv) 염화구리 및 황화나트륨이 분무된 기판에 염화인듐을 분무한 후, 황화나트륨 수용액을 분무하는 단계(제4단계); (v) 제3단계 및 제4단계 분무를 지그재그형으로 반복하여 분무하여 실온 증착시키는 단계(제5단계); 및 (vi) 열처리하는 단계(제6단계)를 포함하여 구성되는 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (i) cleaning the substrate (first step); (ii) dissolving a precursor selected from the group consisting of copper chloride, indium chloride and sodium sulfide in water to prepare a precursor solution for deposition (second step); (iii) spraying an aqueous copper chloride solution onto the substrate loaded on the spin coater, followed by spraying an aqueous sodium sulfide solution (step 3); (iv) spraying indium chloride on the substrate sprayed with copper chloride and sodium sulfide, followed by spraying with an aqueous sodium sulfide solution (step 4); (v) spraying the spray of the third and fourth stages in a zigzag pattern and depositing them at room temperature (step 5); And (vi) provides a method for producing a CuInS 2 thin film for solar cells using a spin spray method comprising a step (heat step 6).

상기 제1단계는 (i) 기판을 농 수산화나트륨 용액에서 가열하여 세정하는 단계; 및 (ii) 기판에 초순수물을 가하여 초음파 세정하는 단계를 포함할 수 있다.The first step includes (i) heating and cleaning the substrate in concentrated sodium hydroxide solution; And (ii) ultrasonic cleaning by adding ultrapure water to the substrate.

또한, 상기 제6단계는 질소 분위기 하 100-600℃에서 1-2 시간 동안 열처리할 수 있다.In addition, the sixth step may be heat-treated for 1-2 hours at 100-600 ℃ under a nitrogen atmosphere.

또한, 상기 CuInS2 박막 필름은 구리, 인듐 및 황을 몰비율로 1:1 내지 2:2 내지 4로 함유할 수 있고, 바람직하게는 1:1:2로 함유할 수 있다. 만약, 상기 구리, 인듐 및 황의 함량 범위가 상기 범위를 벗어난 몰비율로 함유되면 칼코피라이트계 물질로서의 태양전지용 p-type 박막의 기능에 문제가 야기될 수 있다.In addition, the CuInS 2 thin film may contain copper, indium and sulfur in a molar ratio of 1: 1 to 2: 2 to 4, preferably 1: 1: 2. If the content range of the copper, indium and sulfur is contained in a molar ratio outside the above range, a problem may occur in the function of the p-type thin film for solar cells as a calcopyrite-based material.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

1. 기판 세정 단계(제1단계)1. Substrate Cleaning Step (First Step)

본 발명에서는 글래스 기판을 사용하며, 기판 상단에 ITO를 스퍼터링에 의해 증착시켜 사용한다. 또한, 기판 세정은 박막 증착에 중요한 공정이므로, 농 수산화나트륨 용액에서 가열하면서 화학적으로 세정한 후, 초순수물로 초음파 처리하여 세정한다.In the present invention, a glass substrate is used, and ITO is deposited on the substrate by sputtering. In addition, since substrate cleaning is an important process for thin film deposition, it is chemically cleaned while heating in concentrated sodium hydroxide solution, and then ultrasonically cleaned with ultrapure water.

2. 증착용 전구체 용액 준비 단계(제2단계)2. Preparing precursor solution for deposition (second step)

염화구리(CuCl2·2H2O), 염화인듐(InCl3) 또는 황화나트륨(Na2S)을 각각 초순수물에 용해시켜 증착용 전구체 용액을 준비한다. 이때, 염화구리, 염화인듐 또는 황화나트륨을 100ml의 초순수물에 각각 0.1-5g, 0.1-5g 또는 0.1-5g으로 용해시킨다.Copper chloride (CuCl 2 · 2H 2 O), indium chloride (InCl 3 ), or sodium sulfide (Na 2 S) was dissolved in ultrapure water to prepare a precursor solution for deposition. At this time, copper chloride, indium chloride or sodium sulfide is dissolved in 100 ml of ultrapure water at 0.1-5 g, 0.1-5 g or 0.1-5 g, respectively.

3. CuInS3. CuInS 22 박막 증착 단계(제3단계 내지 제5단계) Thin film deposition step (third to fifth step)

CuInS2 박막 증착을 위하여, 준비된 전구체 용액을 스핀 코터에 로딩된 회전하는 기판에 분무한다. 이때, 증착용 전구체 용액의 유속은 1-10 ml/min이며, 분무를 위한 캐리어 기체로 질소 가스를 이용한다. For CuInS 2 thin film deposition, the prepared precursor solution is sprayed onto a rotating substrate loaded in a spin coater. At this time, the flow rate of the precursor solution for deposition is 1-10 ml / min, using nitrogen gas as a carrier gas for spraying.

구체적인 스핀-스프레이 증착 공정을 다음과 같이 25℃에서 수행한다. 즉, 일정 용기를 가진 스프레이건을 이용하여 펄스형으로 염화구리 수용액을 기판에 분무한 후, 황화나트륨 수용액을 기판에 분무한다. 그후, 염화인듐 수용액을 기판 상에 펄스형으로 분무한 후, 황화나트륨 수용액을 분무한다. A specific spin-spray deposition process is performed at 25 ° C. as follows. That is, after spraying a copper chloride aqueous solution to a board | substrate in pulse form using the spray gun which has a certain container, an aqueous sodium sulfide solution is sprayed on a board | substrate. Thereafter, an aqueous solution of indium chloride is sprayed onto the substrate in a pulsed form, followed by an aqueous solution of sodium sulfide.

원하는 필름 두께를 얻을 때까지 지그재그 분무를 반복적으로 수행한다. 이때, 필름 두께는 반복 주기의 횟수에 따라 조절될 수 있다. 분무 공정이 계속됨에 따라 염화구리, 염화인듐 및 황화나트륨 간의 반응이 진행 중이라는 것을 공정 중의 색 변화를 통해 확인할 수 있다.Zig-zag spraying is performed repeatedly until the desired film thickness is obtained. In this case, the film thickness may be adjusted according to the number of repetition cycles. As the spraying process continues, it can be seen from the color change in the process that the reaction between copper chloride, indium chloride and sodium sulfide is in progress.

4. 열처리 단계(제6단계)4. Heat treatment step (sixth step)

증착된 CuInS2 박막을 질소 분위기 하에서 1-2 시간 동안 100-600℃에서 열처리한다. 바람직하게는 1시간 동안 400℃에서 열처리한다. The deposited CuInS 2 thin film is heat-treated at 100-600 ° C. for 1-2 hours under nitrogen atmosphere. Preferably heat treatment is carried out at 400 ℃ for 1 hour.

이러한 공정에 의해 얻어진 본 발명의 CuInS2 박막은 약 1-3 ㎛의 두께를 나타내며, 나노 크기의 결정이 균일하고 매끈한 표면을 지닌 CuInS2 정방 구조의 박막이 형성되며, 이때 화학적 조성은 Cu, In 및 S의 몰비율이 1:1:2이다.The CuInS 2 thin film of the present invention obtained by such a process has a thickness of about 1-3 μm, and a thin film of CuInS 2 tetragonal structure having a uniform and smooth surface with nano-sized crystals is formed, wherein the chemical composition is Cu, In And the molar ratio of S is 1: 1: 2.

본 발명에 따른 CuInS2 박막의 제조방법은 스핀 스프레이(spin spray)법을 이용하여 실온 증착함으로써 종래보다 매끈하고 치밀한 태양전지용 CuInS2 박막을 저가로 제조할 수 있다.In the method for manufacturing a CuInS 2 thin film according to the present invention, by using a spin spray method, the CuInS 2 thin film for solar cells, which is smoother and denser than conventional ones, can be manufactured at low cost.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 그러나, 하기 실시예는 본 발명의 내용을 구체화하기 위한 설명일 뿐 실시예에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for the purpose of clarifying the contents of the present invention, and the present invention is not limited by the examples.

<실시예 1> CuInSExample 1 CuInS 22 박막 제조 Thin film manufacturing

1. 기판 세정1. Substrate Cleaning

25.4mm X 76.2mm X 1mm 치수의 코닝 글래스 쿠폰을 기판로 이용하였다. 쿠폰의 상단에 ITO를 스퍼터링에 의해 증착시켰다. 글래스 상 ITO의 두께는 3㎛이며, 이의 광학 투시 및 전자 저항력은 각각 82% 및 2.25X10-4 Ωcm였다. 기판 세정은 농 수산화나트륨 용액에서 30분 동안 끓이면서 화학적으로 세정한 후, 초순수물로 초음파 처리하여 세정하였다.Corning glass coupons measuring 25.4 mm x 76.2 mm x 1 mm were used as the substrate. ITO was deposited by sputtering on top of the coupon. The thickness of the glass phase ITO was 3 μm, and its optical perspective and electron resistance were 82% and 2.25 × 10 −4 dBm, respectively. Substrate cleaning was chemically cleaned by boiling in concentrated sodium hydroxide solution for 30 minutes, followed by ultrasonication with ultrapure water.

2. 증착용 전구체 용액 제조2. Preparation of precursor solution for deposition

증착용 전구체 용액은 염화구리(CuCl2H2O), 염화인듐(InCl3) 및 황화나트륨(Na2S)을 초순수물에서 용해하여 제조하였다. 즉, 0.201g의 염화구리, 0.331g의 염화인듐 및 0.117g의 황화나트륨을 각각 100ml의 초순수물로 일정하게 교반하면서 용해시켰다.The precursor solution for deposition was prepared by dissolving copper chloride (CuCl 2 · 2H 2 O), indium chloride (InCl 3 ), and sodium sulfide (Na 2 S) in ultrapure water. That is, 0.201 g of copper chloride, 0.331 g of indium chloride, and 0.117 g of sodium sulfide were dissolved with constant stirring with 100 ml of ultrapure water, respectively.

3. CuInS3. CuInS 22 박막 증착 Thin film deposition

CuInS2 박막 증착을 위하여, 준비된 전구체 용액을 스핀 코터에 로딩된 회전하는 기판에 분무하였다. 증착용 전구체 용액의 유속은 20ml/min이었고, 분무를 위한 캐리어 기체로 질소를 이용하였다. For CuInS 2 thin film deposition, the prepared precursor solution was sprayed onto a rotating substrate loaded in a spin coater. The flow rate of the precursor solution for deposition was 20 ml / min and nitrogen was used as the carrier gas for spraying.

스핀-스프레이 증착 공정을 다음과 같이 25℃에서 수행하였다. 먼저, 10ml 용기를 가진 스프레이건을 이용하여 펄스형으로 염화구리 수용액을 기판에 분무한 후, 황화나트륨 수용액을 기판에 분무하였다. 그후, 염화인듐 수용액을 기판 상에 펄스형으로 분무한 후, 황화나트륨 수용액을 분무하였다. 원하는 필름 두께를 얻을 때까지 지그재그 분무를 반복적으로 수행하였다. The spin-spray deposition process was performed at 25 ° C. as follows. First, an aqueous copper chloride solution was sprayed onto the substrate in a pulsed manner using a spray gun having a 10 ml container, and then an aqueous sodium sulfide solution was sprayed onto the substrate. Thereafter, an aqueous solution of indium chloride was sprayed onto the substrate in a pulsed form, followed by an aqueous solution of sodium sulfide. Zig-zag spraying was performed repeatedly until the desired film thickness was obtained.

이때, 증착용 전구체 용액에서 Cu/S 및 In/S의 몰비율을 각각 1:2 및 1:2로 고정하였다. 증착된 CuInS2 박막을 질소 분위기 하에서 1시간 동안 400℃에서 열처리하였다. 이렇게 얻어진 CuInS2 박막의 두께는 약 5㎛이었다. At this time, the molar ratios of Cu / S and In / S in the precursor solution for deposition were fixed at 1: 2 and 1: 2, respectively. The deposited CuInS 2 thin film was heat treated at 400 ° C. for 1 hour under a nitrogen atmosphere. The thickness of the CuInS 2 thin film thus obtained was about 5 μm.

<실시예 2> CuInSExample 2 CuInS 22 박막 분석 Thin film analysis

1. 구조 분석1. Structural Analysis

글래스 기판 상에 증착된 다결정질의 CuInS2 박막의 구조 및 결정 방향성을 X-선 회절 분광계(XRD; PANalytical MPD for thin film)를 사용하여 결정하였다. The structure and crystal orientation of polycrystalline CuInS 2 thin films deposited on glass substrates were determined using an X-ray diffraction spectrometer (XRD).

증착된 필름에서는 어떠한 회절 피크도 XRD 분석에서 관찰되지 않았다. 이러한 결과로부터 스핀-스프레이 필름의 결정성은 매우 작거나, 합성된 필름은 무정형인 것으로 알 수 있었다. No diffraction peaks were observed in the XRD analysis in the deposited film. From these results, it was found that the crystallinity of the spin-spray film was very small or the synthesized film was amorphous.

결정성 상태의 형성을 위하여, 도 2와 같이 증착된 필름을 질소 분위기 하 400℃에서 열처리한 전후를 나누어 XRD 피크를 비교하였다. In order to form a crystalline state, the XRD peaks were compared by dividing the deposited film as shown in FIG. 2 before and after heat treatment at 400 ° C. under a nitrogen atmosphere.

화학량적 비율로 준비된 수용액으로부터 출발된 스핀-스프레이 증착 후 열처리된 필름의 XRD 패턴을 도 1에 나타내었다. 도 1에서, 2θ=27.87°, 46.23°/46.48° 및 54.68°/55.08°에서의 피크는 정방 CuInS2 구조(JCPDS 85-1575)의 (112), (204)/(220) 및 (116)/(312) 결정면과 일치하며, 이러한 피크를 열처리한 필름의 X-선 회절 스펙트럼에서 관찰할 수 있었다. 이러한 XRD 분석으로부터 CuInS2 정방 구조만이 필름에서 형성된 것을 확인하였고, 황화인듐 또는 황화구리와 관련된 어떠한 피크도 관찰되지 않았다.The XRD pattern of the heat-treated film after spin-spray deposition starting from an aqueous solution prepared at stoichiometric ratio is shown in FIG. 1. In FIG. 1, the peaks at 2θ = 27.87 °, 46.23 ° / 46.48 ° and 54.68 ° / 55.08 ° are indicated by (112), (204) / (220) and (116) of the tetragonal CuInS 2 structure (JCPDS 85-1575). Consistent with the / (312) crystal plane, these peaks could be observed in the X-ray diffraction spectrum of the heat treated film. This XRD analysis confirmed that only CuInS 2 tetragonal structures were formed in the film, and no peaks related to indium sulfide or copper sulfide were observed.

2. 표면 형태 분석2. Surface Morphology Analysis

글래스 기판 상에 증착된 다결정질의 CuInS2 박막의 표면 형태를 분석하기 위하여, 주사전자현미경(SEM; Hitachi, LTD S-4800 FE-SEM)을 사용하였다. In order to analyze the surface morphology of the polycrystalline CuInS 2 thin film deposited on the glass substrate, a scanning electron microscope (SEM; Hitachi, LTD S-4800 FE-SEM) was used.

그 결과, 도 3과 같이 비록 큰 사이즈 입자가 표면 형태에서 관찰될지라도 표면 형태는 균일하였다. 또, 전계효과 이동도(field-effect mobility)가 입자 사이즈가 증가함에 따라 증가되었다. As a result, as shown in Fig. 3, even though large size particles were observed in the surface shape, the surface shape was uniform. In addition, field-effect mobility increased with increasing particle size.

또한, 화학적 스핀-스프레이법을 이용한 ITO층을 지닌 글래스 기판에 증착된 CuInS2 박막의 SEM 횡단면 이미지는 도 4와 같다. 도 4에서 CuInS2 박막은 400℃에서 열처리되었고, CuInS2 치밀층의 두께는 약 1㎛이었다.In addition, the SEM cross-sectional image of the CuInS 2 thin film deposited on the glass substrate having the ITO layer using the chemical spin-spray method is shown in FIG. In FIG. 4, the CuInS 2 thin film was heat-treated at 400 ° C., and the thickness of the CuInS 2 dense layer was about 1 μm.

3. 화학적 조성 분석3. Chemical Composition Analysis

1) XPS 분석1) XPS Analysis

글래스 기판 상에 증착된 다결정질의 CuInS2 박막의 화학적 조성을 분석하기 위하여, X-선 광전자 분광기(XPS; VGESCALAB, 200-IXL instrument with Mg K radiation)를 사용하였다. In order to analyze the chemical composition of the polycrystalline CuInS 2 thin film deposited on the glass substrate, X-ray photoelectron spectroscopy (XPS; VGESCALAB, 200-IXL instrument with Mg K radiation) was used.

그 결과, 도 5a와 같이 932.7 eV에서 Cu2+의 Cu 2p 위성 피크를 확인하였고, 이는 단지 Cu+만 시료에 존재하며, 이는 출발 물질의 Cu2+은 이온 반응 동안 환원되었음을 알 수 있다. 또한, 도 5b는 전형적인 In 3d 코어 레벨 스펙트럼을 나타내며, 444.6eV에서 강한 피크는 CuInS2용 In 3d 결합 에너지와 일치하였다. 원소 인듐의 In 3d 결합 에너지는 일반적으로 444.6eV에서 국재되며, 이는 원소 인듐이 박막의 열처리 동안 산화되지 않았음을 의미한다. 또한, 도 5c와 같이 S 2p 코어 레벨 스펙트럼은 Cu-S로부터 S에 대응하는 161.5eV에서 하나, In-S로부터 S에 대응하는 162.3eV에서 다른 하나를 포함한 2개 피크를 나타내었다.As a result, the Cu 2p satellite peak of Cu 2+ was confirmed at 932.7 eV as shown in FIG. 5A, which indicates that only Cu + was present in the sample, indicating that Cu 2+ of the starting material was reduced during the ionic reaction. 5B also shows a typical In 3d core level spectrum, with strong peaks at 444.6 eV consistent with the In 3d binding energy for CuInS 2 . The In 3d binding energy of elemental indium is generally localized at 444.6 eV, which means that elemental indium was not oxidized during the heat treatment of the thin film. In addition, as shown in FIG. 5C, the S 2p core level spectrum showed two peaks including one at 161.5 eV corresponding to S from Cu-S and the other at 162.3 eV corresponding to S from In-S.

2) EDS 분석2) EDS Analysis

CuInS2 박막에서 Cu, In 및 S의 원자 농도는 전구체 용액에서 Cu/In 몰비율의 기능에 따라 EDS(Energy Dispersive Spectroscopy; HORIBA/EX-250)로부터 결정 하였다.The atomic concentrations of Cu, In and S in the CuInS 2 thin films were determined from Energy Dispersive Spectroscopy (HDS) (HORIBA / EX-250) according to the function of the Cu / In molar ratio in the precursor solution.

그 결과, 도 5와 같이, CuInS2 박막은 황-리치 화학량적인 조성 [Cu(26.86%), In(27.76%), S(45.39%)]을 나타내었다.As a result, as shown in FIG. 5, the CuInS 2 thin film showed a sulfur-rich stoichiometric composition [Cu (26.86%), In (27.76%), S (45.39%)].

도 1은 본 발명에 따른 CuInS2 박막 제조공정의 모식도를 나타낸 것이고,1 shows a schematic diagram of a CuInS 2 thin film manufacturing process according to the present invention,

도 2는 본 발명에 따른 스핀-스프레이 증착 후 열처리된 CuInS2 박막의 XRD 패턴을 나타낸 것이고,Figure 2 shows the XRD pattern of the CuInS 2 thin film heat-treated after spin-spray deposition according to the present invention,

도 3은 본 발명에 따른 CuInS2 박막의 표면 형태를 나타낸 SEM 이미지이고,3 is an SEM image showing the surface shape of the CuInS 2 thin film according to the present invention,

도 4는 본 발명에 따른 CuInS2 박막의 횡단면을 나타낸 SEM 이미지이고,4 is an SEM image showing a cross-section of the CuInS 2 thin film according to the present invention,

도 5a 내지 도 5c는 본 발명에 따른 CuInS2 박막의 XPS 스펙트럼을 나타낸 것이고,5a to 5c show the XPS spectrum of the CuInS 2 thin film according to the present invention,

도 6은 본 발명에 따른 CuInS2 박막의 EDX 스펙트럼을 나타낸 것이다.6 shows the EDX spectrum of the CuInS 2 thin film according to the present invention.

Claims (4)

(i) 기판을 세정하는 단계(제1단계); (ii) 염화구리, 염화인듐 및 황화나트륨으로 이루어진 군에서 선택된 전구체를 물에 용해하여 증착용 전구체 용액을 준비하는 단계(제2단계); (iii) 스핀코터에 로딩된 기판에 염화구리 수용액을 분무한 후, 황화나트륨 수용액을 분무하는 단계(제3단계); (iv) 염화구리 및 황화나트륨이 분무된 기판에 염화인듐을 분무한 후, 황화나트륨 수용액을 분무하는 단계(제4단계); (v) 제3단계 및 제4단계 분무를 지그재그형으로 반복하여 분무하여 실온 증착시키는 단계(제5단계); 및 (vi) 열처리하여 CuInS2 박막을 제조하는 단계(제6단계)를 포함하며, 상기 CuInS2 박막은 구리, 인듐 및 황을 몰비율로 1:1:2로 함유하는 것을 특징으로 하는, 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법.(i) cleaning the substrate (first step); (ii) dissolving a precursor selected from the group consisting of copper chloride, indium chloride and sodium sulfide in water to prepare a precursor solution for deposition (second step); (iii) spraying an aqueous copper chloride solution onto the substrate loaded on the spin coater, followed by spraying an aqueous sodium sulfide solution (step 3); (iv) spraying indium chloride on the substrate sprayed with copper chloride and sodium sulfide, followed by spraying with an aqueous sodium sulfide solution (step 4); (v) spraying the spray of the third and fourth stages in a zigzag pattern and depositing them at room temperature (step 5); And (vi) thermally preparing a CuInS 2 thin film (sixth step), wherein the CuInS 2 thin film contains copper, indium and sulfur in a molar ratio of 1: 1: 2. Manufacturing method of CuInS 2 thin film for solar cells using the spin spray method. 청구항 1에 있어서, 상기 제1단계는 (i) 기판을 농 수산화나트륨 용액에서 가열하여 세정하는 단계; 및 (ii) 기판에 초순수물을 가하여 초음파 세정하는 단계를 포함하는, 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법.The method of claim 1, wherein the first step comprises: (i) heating and cleaning the substrate in a concentrated sodium hydroxide solution; And (ii) ultrasonic cleaning by adding ultrapure water to the substrate, wherein the CuInS 2 thin film for solar cells using the spin spray method. 청구항 1에 있어서, 상기 제6단계는 질소 분위기 하 100-600℃에서 1-2 시간 동안 열처리하는, 스핀 스프레이(spin spray)법을 이용한 태양전지용 CuInS2 박막의 제조방법.The method according to claim 1, wherein the sixth step is a process for producing a solar cell CuInS 2 thin film using 1-2 hours, the spin spray (spray spin) method to heat treatment at 100-600 for ℃ under nitrogen atmosphere. 삭제delete
KR1020090107654A 2009-11-09 2009-11-09 Preparation method of copper indium disulphide thin film for solar cell using spin spray KR101093831B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090107654A KR101093831B1 (en) 2009-11-09 2009-11-09 Preparation method of copper indium disulphide thin film for solar cell using spin spray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090107654A KR101093831B1 (en) 2009-11-09 2009-11-09 Preparation method of copper indium disulphide thin film for solar cell using spin spray

Publications (2)

Publication Number Publication Date
KR20110051012A KR20110051012A (en) 2011-05-17
KR101093831B1 true KR101093831B1 (en) 2011-12-13

Family

ID=44361452

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090107654A KR101093831B1 (en) 2009-11-09 2009-11-09 Preparation method of copper indium disulphide thin film for solar cell using spin spray

Country Status (1)

Country Link
KR (1) KR101093831B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428594B1 (en) 2013-09-10 2014-08-14 한국에너지기술연구원 Method for forming ci(g)s thin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115108732B (en) * 2022-06-22 2023-08-22 常州大学 Cu 3 SbS 4 Film and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Key Engineering Materials, vol.280-283 (2005), p. 877

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428594B1 (en) 2013-09-10 2014-08-14 한국에너지기술연구원 Method for forming ci(g)s thin film

Also Published As

Publication number Publication date
KR20110051012A (en) 2011-05-17

Similar Documents

Publication Publication Date Title
Xu et al. A novel one-step electrodeposition to prepare single-phase CuInS2 thin films for solar cells
JP4782880B2 (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
US20080023336A1 (en) Technique for doping compound layers used in solar cell fabrication
JP2010512647A (en) Doping technology for IBIIIAVIA group compound layer
JP4615067B1 (en) Photoelectric conversion element and solar cell including the same
KR101149474B1 (en) Preparation method of cis-based or czts-based colloidal solution by wet type ball milling process and method for preparing cis-based or czts-based compound thin film as an optical absorber layer of solar cell using the same
JP2009541991A (en) Manufacturing method of light absorption layer for solar cell
Hossain et al. Ecofriendly and nonvacuum electrostatic spray-assisted vapor deposition of Cu (In, Ga)(S, Se) 2 thin film solar cells
KR101322681B1 (en) Czts thin film prepared by electrostatic spray and preparing method of the same
Ji et al. Cu2ZnSnS4 as a new solar cell material: the history and the future
TWI500170B (en) Method for manufacturing light absorber layer of bismuth-doped ib-iiia-via compound and photovoltaic device including the same
KR101093831B1 (en) Preparation method of copper indium disulphide thin film for solar cell using spin spray
JP6035122B2 (en) Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element
JP5478474B2 (en) Photoelectric conversion element and solar cell including the same
KR100894216B1 (en) CulnS2 Absorber Layer of Thin Film Solar Cell and Manufacture Method Thereof
KR101229310B1 (en) Method for Manufacturing Absorber Layer of Thin Film Solar Cell
JP4750228B2 (en) Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion element, and solar cell
Qachaou et al. The influence of solution temperature of SnS thin films grown by successive ionic layer adsorption and reaction (SILAR) method
Arba et al. Preparation and properties of CZTS thin film prepared by spray pyrolysis
KR102165789B1 (en) Fabrication method of CZTS single light absorbing layer for flexible substrate
KR101114635B1 (en) Preparation method of cadmium telluride thin film for solar cell using spray process
WO2013001807A1 (en) Method for producing buffer layer and method for manufacturing photoelectric conversion element
Gozalzadeh et al. Environmental Friendly Multi-step Processing of Efficient Mixed-cation Mixed Halide Perovskite Solar Cells from Chemically Bath Deposited Lead Sulphide
KR101463327B1 (en) Preparation Method of Copper Indium Diselenide Thin Film for Solar Cell Using Spray Process
US9437761B2 (en) Method of forming chalcopyrite light-absorbing layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151109

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170510

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181205

Year of fee payment: 8